]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/value.c
gdb: add type::is_unsigned / type::set_is_unsigned
[thirdparty/binutils-gdb.git] / gdb / value.c
CommitLineData
c906108c 1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
1bac305b 2
b811d2c2 3 Copyright (C) 1986-2020 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
e17c207e 21#include "arch-utils.h"
c906108c
SS
22#include "symtab.h"
23#include "gdbtypes.h"
24#include "value.h"
25#include "gdbcore.h"
c906108c
SS
26#include "command.h"
27#include "gdbcmd.h"
28#include "target.h"
29#include "language.h"
c906108c 30#include "demangle.h"
36160dc4 31#include "regcache.h"
fe898f56 32#include "block.h"
70100014 33#include "target-float.h"
bccdca4a 34#include "objfiles.h"
79a45b7d 35#include "valprint.h"
bc3b79fd 36#include "cli/cli-decode.h"
6dddc817 37#include "extension.h"
3bd0f5ef 38#include <ctype.h>
0914bcdb 39#include "tracepoint.h"
be335936 40#include "cp-abi.h"
a58e2656 41#include "user-regs.h"
325fac50 42#include <algorithm>
eb3ff9a5 43#include "completer.h"
268a13a5
TT
44#include "gdbsupport/selftest.h"
45#include "gdbsupport/array-view.h"
7f6aba03 46#include "cli/cli-style.h"
0914bcdb 47
bc3b79fd
TJB
48/* Definition of a user function. */
49struct internal_function
50{
51 /* The name of the function. It is a bit odd to have this in the
52 function itself -- the user might use a differently-named
53 convenience variable to hold the function. */
54 char *name;
55
56 /* The handler. */
57 internal_function_fn handler;
58
59 /* User data for the handler. */
60 void *cookie;
61};
62
4e07d55f
PA
63/* Defines an [OFFSET, OFFSET + LENGTH) range. */
64
65struct range
66{
67 /* Lowest offset in the range. */
6b850546 68 LONGEST offset;
4e07d55f
PA
69
70 /* Length of the range. */
6b850546 71 LONGEST length;
4e07d55f 72
0c7e6dd8
TT
73 /* Returns true if THIS is strictly less than OTHER, useful for
74 searching. We keep ranges sorted by offset and coalesce
75 overlapping and contiguous ranges, so this just compares the
76 starting offset. */
4e07d55f 77
0c7e6dd8
TT
78 bool operator< (const range &other) const
79 {
80 return offset < other.offset;
81 }
d5f4488f
SM
82
83 /* Returns true if THIS is equal to OTHER. */
84 bool operator== (const range &other) const
85 {
86 return offset == other.offset && length == other.length;
87 }
0c7e6dd8 88};
4e07d55f
PA
89
90/* Returns true if the ranges defined by [offset1, offset1+len1) and
91 [offset2, offset2+len2) overlap. */
92
93static int
6b850546
DT
94ranges_overlap (LONGEST offset1, LONGEST len1,
95 LONGEST offset2, LONGEST len2)
4e07d55f
PA
96{
97 ULONGEST h, l;
98
325fac50
PA
99 l = std::max (offset1, offset2);
100 h = std::min (offset1 + len1, offset2 + len2);
4e07d55f
PA
101 return (l < h);
102}
103
4e07d55f
PA
104/* Returns true if RANGES contains any range that overlaps [OFFSET,
105 OFFSET+LENGTH). */
106
107static int
0c7e6dd8
TT
108ranges_contain (const std::vector<range> &ranges, LONGEST offset,
109 LONGEST length)
4e07d55f 110{
0c7e6dd8 111 range what;
4e07d55f
PA
112
113 what.offset = offset;
114 what.length = length;
115
116 /* We keep ranges sorted by offset and coalesce overlapping and
117 contiguous ranges, so to check if a range list contains a given
118 range, we can do a binary search for the position the given range
119 would be inserted if we only considered the starting OFFSET of
120 ranges. We call that position I. Since we also have LENGTH to
121 care for (this is a range afterall), we need to check if the
122 _previous_ range overlaps the I range. E.g.,
123
124 R
125 |---|
126 |---| |---| |------| ... |--|
127 0 1 2 N
128
129 I=1
130
131 In the case above, the binary search would return `I=1', meaning,
132 this OFFSET should be inserted at position 1, and the current
133 position 1 should be pushed further (and before 2). But, `0'
134 overlaps with R.
135
136 Then we need to check if the I range overlaps the I range itself.
137 E.g.,
138
139 R
140 |---|
141 |---| |---| |-------| ... |--|
142 0 1 2 N
143
144 I=1
145 */
146
4e07d55f 147
0c7e6dd8
TT
148 auto i = std::lower_bound (ranges.begin (), ranges.end (), what);
149
150 if (i > ranges.begin ())
4e07d55f 151 {
0c7e6dd8 152 const struct range &bef = *(i - 1);
4e07d55f 153
0c7e6dd8 154 if (ranges_overlap (bef.offset, bef.length, offset, length))
4e07d55f
PA
155 return 1;
156 }
157
0c7e6dd8 158 if (i < ranges.end ())
4e07d55f 159 {
0c7e6dd8 160 const struct range &r = *i;
4e07d55f 161
0c7e6dd8 162 if (ranges_overlap (r.offset, r.length, offset, length))
4e07d55f
PA
163 return 1;
164 }
165
166 return 0;
167}
168
bc3b79fd
TJB
169static struct cmd_list_element *functionlist;
170
87784a47
TT
171/* Note that the fields in this structure are arranged to save a bit
172 of memory. */
173
91294c83
AC
174struct value
175{
466ce3ae
TT
176 explicit value (struct type *type_)
177 : modifiable (1),
178 lazy (1),
179 initialized (1),
180 stack (0),
181 type (type_),
182 enclosing_type (type_)
183 {
466ce3ae
TT
184 }
185
186 ~value ()
187 {
466ce3ae
TT
188 if (VALUE_LVAL (this) == lval_computed)
189 {
190 const struct lval_funcs *funcs = location.computed.funcs;
191
192 if (funcs->free_closure)
193 funcs->free_closure (this);
194 }
195 else if (VALUE_LVAL (this) == lval_xcallable)
196 delete location.xm_worker;
466ce3ae
TT
197 }
198
199 DISABLE_COPY_AND_ASSIGN (value);
200
91294c83
AC
201 /* Type of value; either not an lval, or one of the various
202 different possible kinds of lval. */
466ce3ae 203 enum lval_type lval = not_lval;
91294c83
AC
204
205 /* Is it modifiable? Only relevant if lval != not_lval. */
87784a47
TT
206 unsigned int modifiable : 1;
207
208 /* If zero, contents of this value are in the contents field. If
209 nonzero, contents are in inferior. If the lval field is lval_memory,
210 the contents are in inferior memory at location.address plus offset.
211 The lval field may also be lval_register.
212
213 WARNING: This field is used by the code which handles watchpoints
214 (see breakpoint.c) to decide whether a particular value can be
215 watched by hardware watchpoints. If the lazy flag is set for
216 some member of a value chain, it is assumed that this member of
217 the chain doesn't need to be watched as part of watching the
218 value itself. This is how GDB avoids watching the entire struct
219 or array when the user wants to watch a single struct member or
220 array element. If you ever change the way lazy flag is set and
221 reset, be sure to consider this use as well! */
222 unsigned int lazy : 1;
223
87784a47
TT
224 /* If value is a variable, is it initialized or not. */
225 unsigned int initialized : 1;
226
227 /* If value is from the stack. If this is set, read_stack will be
228 used instead of read_memory to enable extra caching. */
229 unsigned int stack : 1;
91294c83
AC
230
231 /* Location of value (if lval). */
232 union
233 {
7dc54575 234 /* If lval == lval_memory, this is the address in the inferior */
91294c83
AC
235 CORE_ADDR address;
236
7dc54575
YQ
237 /*If lval == lval_register, the value is from a register. */
238 struct
239 {
240 /* Register number. */
241 int regnum;
242 /* Frame ID of "next" frame to which a register value is relative.
243 If the register value is found relative to frame F, then the
244 frame id of F->next will be stored in next_frame_id. */
245 struct frame_id next_frame_id;
246 } reg;
247
91294c83
AC
248 /* Pointer to internal variable. */
249 struct internalvar *internalvar;
5f5233d4 250
e81e7f5e
SC
251 /* Pointer to xmethod worker. */
252 struct xmethod_worker *xm_worker;
253
5f5233d4
PA
254 /* If lval == lval_computed, this is a set of function pointers
255 to use to access and describe the value, and a closure pointer
256 for them to use. */
257 struct
258 {
c8f2448a
JK
259 /* Functions to call. */
260 const struct lval_funcs *funcs;
261
262 /* Closure for those functions to use. */
263 void *closure;
5f5233d4 264 } computed;
41a883c8 265 } location {};
91294c83 266
3723fda8 267 /* Describes offset of a value within lval of a structure in target
7dc54575
YQ
268 addressable memory units. Note also the member embedded_offset
269 below. */
466ce3ae 270 LONGEST offset = 0;
91294c83
AC
271
272 /* Only used for bitfields; number of bits contained in them. */
466ce3ae 273 LONGEST bitsize = 0;
91294c83
AC
274
275 /* Only used for bitfields; position of start of field. For
d5a22e77
TT
276 little-endian targets, it is the position of the LSB. For
277 big-endian targets, it is the position of the MSB. */
466ce3ae 278 LONGEST bitpos = 0;
91294c83 279
87784a47
TT
280 /* The number of references to this value. When a value is created,
281 the value chain holds a reference, so REFERENCE_COUNT is 1. If
282 release_value is called, this value is removed from the chain but
283 the caller of release_value now has a reference to this value.
284 The caller must arrange for a call to value_free later. */
466ce3ae 285 int reference_count = 1;
87784a47 286
4ea48cc1
DJ
287 /* Only used for bitfields; the containing value. This allows a
288 single read from the target when displaying multiple
289 bitfields. */
2c8331b9 290 value_ref_ptr parent;
4ea48cc1 291
91294c83
AC
292 /* Type of the value. */
293 struct type *type;
294
295 /* If a value represents a C++ object, then the `type' field gives
296 the object's compile-time type. If the object actually belongs
297 to some class derived from `type', perhaps with other base
298 classes and additional members, then `type' is just a subobject
299 of the real thing, and the full object is probably larger than
300 `type' would suggest.
301
302 If `type' is a dynamic class (i.e. one with a vtable), then GDB
303 can actually determine the object's run-time type by looking at
304 the run-time type information in the vtable. When this
305 information is available, we may elect to read in the entire
306 object, for several reasons:
307
308 - When printing the value, the user would probably rather see the
309 full object, not just the limited portion apparent from the
310 compile-time type.
311
312 - If `type' has virtual base classes, then even printing `type'
313 alone may require reaching outside the `type' portion of the
314 object to wherever the virtual base class has been stored.
315
316 When we store the entire object, `enclosing_type' is the run-time
317 type -- the complete object -- and `embedded_offset' is the
3723fda8
SM
318 offset of `type' within that larger type, in target addressable memory
319 units. The value_contents() macro takes `embedded_offset' into account,
320 so most GDB code continues to see the `type' portion of the value, just
321 as the inferior would.
91294c83
AC
322
323 If `type' is a pointer to an object, then `enclosing_type' is a
324 pointer to the object's run-time type, and `pointed_to_offset' is
3723fda8
SM
325 the offset in target addressable memory units from the full object
326 to the pointed-to object -- that is, the value `embedded_offset' would
327 have if we followed the pointer and fetched the complete object.
328 (I don't really see the point. Why not just determine the
329 run-time type when you indirect, and avoid the special case? The
330 contents don't matter until you indirect anyway.)
91294c83
AC
331
332 If we're not doing anything fancy, `enclosing_type' is equal to
333 `type', and `embedded_offset' is zero, so everything works
334 normally. */
335 struct type *enclosing_type;
466ce3ae
TT
336 LONGEST embedded_offset = 0;
337 LONGEST pointed_to_offset = 0;
91294c83 338
3e3d7139
JG
339 /* Actual contents of the value. Target byte-order. NULL or not
340 valid if lazy is nonzero. */
14c88955 341 gdb::unique_xmalloc_ptr<gdb_byte> contents;
828d3400 342
4e07d55f
PA
343 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
344 rather than available, since the common and default case is for a
9a0dc9e3
PA
345 value to be available. This is filled in at value read time.
346 The unavailable ranges are tracked in bits. Note that a contents
347 bit that has been optimized out doesn't really exist in the
348 program, so it can't be marked unavailable either. */
0c7e6dd8 349 std::vector<range> unavailable;
9a0dc9e3
PA
350
351 /* Likewise, but for optimized out contents (a chunk of the value of
352 a variable that does not actually exist in the program). If LVAL
353 is lval_register, this is a register ($pc, $sp, etc., never a
354 program variable) that has not been saved in the frame. Not
355 saved registers and optimized-out program variables values are
356 treated pretty much the same, except not-saved registers have a
357 different string representation and related error strings. */
0c7e6dd8 358 std::vector<range> optimized_out;
91294c83
AC
359};
360
e512cdbd
SM
361/* See value.h. */
362
363struct gdbarch *
364get_value_arch (const struct value *value)
365{
366 return get_type_arch (value_type (value));
367}
368
4e07d55f 369int
6b850546 370value_bits_available (const struct value *value, LONGEST offset, LONGEST length)
4e07d55f
PA
371{
372 gdb_assert (!value->lazy);
373
374 return !ranges_contain (value->unavailable, offset, length);
375}
376
bdf22206 377int
6b850546
DT
378value_bytes_available (const struct value *value,
379 LONGEST offset, LONGEST length)
bdf22206
AB
380{
381 return value_bits_available (value,
382 offset * TARGET_CHAR_BIT,
383 length * TARGET_CHAR_BIT);
384}
385
9a0dc9e3
PA
386int
387value_bits_any_optimized_out (const struct value *value, int bit_offset, int bit_length)
388{
389 gdb_assert (!value->lazy);
390
391 return ranges_contain (value->optimized_out, bit_offset, bit_length);
392}
393
ec0a52e1
PA
394int
395value_entirely_available (struct value *value)
396{
397 /* We can only tell whether the whole value is available when we try
398 to read it. */
399 if (value->lazy)
400 value_fetch_lazy (value);
401
0c7e6dd8 402 if (value->unavailable.empty ())
ec0a52e1
PA
403 return 1;
404 return 0;
405}
406
9a0dc9e3
PA
407/* Returns true if VALUE is entirely covered by RANGES. If the value
408 is lazy, it'll be read now. Note that RANGE is a pointer to
409 pointer because reading the value might change *RANGE. */
410
411static int
412value_entirely_covered_by_range_vector (struct value *value,
0c7e6dd8 413 const std::vector<range> &ranges)
6211c335 414{
9a0dc9e3
PA
415 /* We can only tell whether the whole value is optimized out /
416 unavailable when we try to read it. */
6211c335
YQ
417 if (value->lazy)
418 value_fetch_lazy (value);
419
0c7e6dd8 420 if (ranges.size () == 1)
6211c335 421 {
0c7e6dd8 422 const struct range &t = ranges[0];
6211c335 423
0c7e6dd8
TT
424 if (t.offset == 0
425 && t.length == (TARGET_CHAR_BIT
426 * TYPE_LENGTH (value_enclosing_type (value))))
6211c335
YQ
427 return 1;
428 }
429
430 return 0;
431}
432
9a0dc9e3
PA
433int
434value_entirely_unavailable (struct value *value)
435{
0c7e6dd8 436 return value_entirely_covered_by_range_vector (value, value->unavailable);
9a0dc9e3
PA
437}
438
439int
440value_entirely_optimized_out (struct value *value)
441{
0c7e6dd8 442 return value_entirely_covered_by_range_vector (value, value->optimized_out);
9a0dc9e3
PA
443}
444
445/* Insert into the vector pointed to by VECTORP the bit range starting of
446 OFFSET bits, and extending for the next LENGTH bits. */
447
448static void
0c7e6dd8 449insert_into_bit_range_vector (std::vector<range> *vectorp,
6b850546 450 LONGEST offset, LONGEST length)
4e07d55f 451{
0c7e6dd8 452 range newr;
4e07d55f
PA
453
454 /* Insert the range sorted. If there's overlap or the new range
455 would be contiguous with an existing range, merge. */
456
457 newr.offset = offset;
458 newr.length = length;
459
460 /* Do a binary search for the position the given range would be
461 inserted if we only considered the starting OFFSET of ranges.
462 Call that position I. Since we also have LENGTH to care for
463 (this is a range afterall), we need to check if the _previous_
464 range overlaps the I range. E.g., calling R the new range:
465
466 #1 - overlaps with previous
467
468 R
469 |-...-|
470 |---| |---| |------| ... |--|
471 0 1 2 N
472
473 I=1
474
475 In the case #1 above, the binary search would return `I=1',
476 meaning, this OFFSET should be inserted at position 1, and the
477 current position 1 should be pushed further (and become 2). But,
478 note that `0' overlaps with R, so we want to merge them.
479
480 A similar consideration needs to be taken if the new range would
481 be contiguous with the previous range:
482
483 #2 - contiguous with previous
484
485 R
486 |-...-|
487 |--| |---| |------| ... |--|
488 0 1 2 N
489
490 I=1
491
492 If there's no overlap with the previous range, as in:
493
494 #3 - not overlapping and not contiguous
495
496 R
497 |-...-|
498 |--| |---| |------| ... |--|
499 0 1 2 N
500
501 I=1
502
503 or if I is 0:
504
505 #4 - R is the range with lowest offset
506
507 R
508 |-...-|
509 |--| |---| |------| ... |--|
510 0 1 2 N
511
512 I=0
513
514 ... we just push the new range to I.
515
516 All the 4 cases above need to consider that the new range may
517 also overlap several of the ranges that follow, or that R may be
518 contiguous with the following range, and merge. E.g.,
519
520 #5 - overlapping following ranges
521
522 R
523 |------------------------|
524 |--| |---| |------| ... |--|
525 0 1 2 N
526
527 I=0
528
529 or:
530
531 R
532 |-------|
533 |--| |---| |------| ... |--|
534 0 1 2 N
535
536 I=1
537
538 */
539
0c7e6dd8
TT
540 auto i = std::lower_bound (vectorp->begin (), vectorp->end (), newr);
541 if (i > vectorp->begin ())
4e07d55f 542 {
0c7e6dd8 543 struct range &bef = *(i - 1);
4e07d55f 544
0c7e6dd8 545 if (ranges_overlap (bef.offset, bef.length, offset, length))
4e07d55f
PA
546 {
547 /* #1 */
0c7e6dd8
TT
548 ULONGEST l = std::min (bef.offset, offset);
549 ULONGEST h = std::max (bef.offset + bef.length, offset + length);
4e07d55f 550
0c7e6dd8
TT
551 bef.offset = l;
552 bef.length = h - l;
4e07d55f
PA
553 i--;
554 }
0c7e6dd8 555 else if (offset == bef.offset + bef.length)
4e07d55f
PA
556 {
557 /* #2 */
0c7e6dd8 558 bef.length += length;
4e07d55f
PA
559 i--;
560 }
561 else
562 {
563 /* #3 */
0c7e6dd8 564 i = vectorp->insert (i, newr);
4e07d55f
PA
565 }
566 }
567 else
568 {
569 /* #4 */
0c7e6dd8 570 i = vectorp->insert (i, newr);
4e07d55f
PA
571 }
572
573 /* Check whether the ranges following the one we've just added or
574 touched can be folded in (#5 above). */
0c7e6dd8 575 if (i != vectorp->end () && i + 1 < vectorp->end ())
4e07d55f 576 {
4e07d55f 577 int removed = 0;
0c7e6dd8 578 auto next = i + 1;
4e07d55f
PA
579
580 /* Get the range we just touched. */
0c7e6dd8 581 struct range &t = *i;
4e07d55f
PA
582 removed = 0;
583
584 i = next;
0c7e6dd8
TT
585 for (; i < vectorp->end (); i++)
586 {
587 struct range &r = *i;
588 if (r.offset <= t.offset + t.length)
589 {
590 ULONGEST l, h;
591
592 l = std::min (t.offset, r.offset);
593 h = std::max (t.offset + t.length, r.offset + r.length);
594
595 t.offset = l;
596 t.length = h - l;
597
598 removed++;
599 }
600 else
601 {
602 /* If we couldn't merge this one, we won't be able to
603 merge following ones either, since the ranges are
604 always sorted by OFFSET. */
605 break;
606 }
607 }
4e07d55f
PA
608
609 if (removed != 0)
0c7e6dd8 610 vectorp->erase (next, next + removed);
4e07d55f
PA
611 }
612}
613
9a0dc9e3 614void
6b850546
DT
615mark_value_bits_unavailable (struct value *value,
616 LONGEST offset, LONGEST length)
9a0dc9e3
PA
617{
618 insert_into_bit_range_vector (&value->unavailable, offset, length);
619}
620
bdf22206 621void
6b850546
DT
622mark_value_bytes_unavailable (struct value *value,
623 LONGEST offset, LONGEST length)
bdf22206
AB
624{
625 mark_value_bits_unavailable (value,
626 offset * TARGET_CHAR_BIT,
627 length * TARGET_CHAR_BIT);
628}
629
c8c1c22f
PA
630/* Find the first range in RANGES that overlaps the range defined by
631 OFFSET and LENGTH, starting at element POS in the RANGES vector,
632 Returns the index into RANGES where such overlapping range was
633 found, or -1 if none was found. */
634
635static int
0c7e6dd8 636find_first_range_overlap (const std::vector<range> *ranges, int pos,
6b850546 637 LONGEST offset, LONGEST length)
c8c1c22f 638{
c8c1c22f
PA
639 int i;
640
0c7e6dd8
TT
641 for (i = pos; i < ranges->size (); i++)
642 {
643 const range &r = (*ranges)[i];
644 if (ranges_overlap (r.offset, r.length, offset, length))
645 return i;
646 }
c8c1c22f
PA
647
648 return -1;
649}
650
bdf22206
AB
651/* Compare LENGTH_BITS of memory at PTR1 + OFFSET1_BITS with the memory at
652 PTR2 + OFFSET2_BITS. Return 0 if the memory is the same, otherwise
653 return non-zero.
654
655 It must always be the case that:
656 OFFSET1_BITS % TARGET_CHAR_BIT == OFFSET2_BITS % TARGET_CHAR_BIT
657
658 It is assumed that memory can be accessed from:
659 PTR + (OFFSET_BITS / TARGET_CHAR_BIT)
660 to:
661 PTR + ((OFFSET_BITS + LENGTH_BITS + TARGET_CHAR_BIT - 1)
662 / TARGET_CHAR_BIT) */
663static int
664memcmp_with_bit_offsets (const gdb_byte *ptr1, size_t offset1_bits,
665 const gdb_byte *ptr2, size_t offset2_bits,
666 size_t length_bits)
667{
668 gdb_assert (offset1_bits % TARGET_CHAR_BIT
669 == offset2_bits % TARGET_CHAR_BIT);
670
671 if (offset1_bits % TARGET_CHAR_BIT != 0)
672 {
673 size_t bits;
674 gdb_byte mask, b1, b2;
675
676 /* The offset from the base pointers PTR1 and PTR2 is not a complete
677 number of bytes. A number of bits up to either the next exact
678 byte boundary, or LENGTH_BITS (which ever is sooner) will be
679 compared. */
680 bits = TARGET_CHAR_BIT - offset1_bits % TARGET_CHAR_BIT;
681 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
682 mask = (1 << bits) - 1;
683
684 if (length_bits < bits)
685 {
686 mask &= ~(gdb_byte) ((1 << (bits - length_bits)) - 1);
687 bits = length_bits;
688 }
689
690 /* Now load the two bytes and mask off the bits we care about. */
691 b1 = *(ptr1 + offset1_bits / TARGET_CHAR_BIT) & mask;
692 b2 = *(ptr2 + offset2_bits / TARGET_CHAR_BIT) & mask;
693
694 if (b1 != b2)
695 return 1;
696
697 /* Now update the length and offsets to take account of the bits
698 we've just compared. */
699 length_bits -= bits;
700 offset1_bits += bits;
701 offset2_bits += bits;
702 }
703
704 if (length_bits % TARGET_CHAR_BIT != 0)
705 {
706 size_t bits;
707 size_t o1, o2;
708 gdb_byte mask, b1, b2;
709
710 /* The length is not an exact number of bytes. After the previous
711 IF.. block then the offsets are byte aligned, or the
712 length is zero (in which case this code is not reached). Compare
713 a number of bits at the end of the region, starting from an exact
714 byte boundary. */
715 bits = length_bits % TARGET_CHAR_BIT;
716 o1 = offset1_bits + length_bits - bits;
717 o2 = offset2_bits + length_bits - bits;
718
719 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
720 mask = ((1 << bits) - 1) << (TARGET_CHAR_BIT - bits);
721
722 gdb_assert (o1 % TARGET_CHAR_BIT == 0);
723 gdb_assert (o2 % TARGET_CHAR_BIT == 0);
724
725 b1 = *(ptr1 + o1 / TARGET_CHAR_BIT) & mask;
726 b2 = *(ptr2 + o2 / TARGET_CHAR_BIT) & mask;
727
728 if (b1 != b2)
729 return 1;
730
731 length_bits -= bits;
732 }
733
734 if (length_bits > 0)
735 {
736 /* We've now taken care of any stray "bits" at the start, or end of
737 the region to compare, the remainder can be covered with a simple
738 memcmp. */
739 gdb_assert (offset1_bits % TARGET_CHAR_BIT == 0);
740 gdb_assert (offset2_bits % TARGET_CHAR_BIT == 0);
741 gdb_assert (length_bits % TARGET_CHAR_BIT == 0);
742
743 return memcmp (ptr1 + offset1_bits / TARGET_CHAR_BIT,
744 ptr2 + offset2_bits / TARGET_CHAR_BIT,
745 length_bits / TARGET_CHAR_BIT);
746 }
747
748 /* Length is zero, regions match. */
749 return 0;
750}
751
9a0dc9e3
PA
752/* Helper struct for find_first_range_overlap_and_match and
753 value_contents_bits_eq. Keep track of which slot of a given ranges
754 vector have we last looked at. */
bdf22206 755
9a0dc9e3
PA
756struct ranges_and_idx
757{
758 /* The ranges. */
0c7e6dd8 759 const std::vector<range> *ranges;
9a0dc9e3
PA
760
761 /* The range we've last found in RANGES. Given ranges are sorted,
762 we can start the next lookup here. */
763 int idx;
764};
765
766/* Helper function for value_contents_bits_eq. Compare LENGTH bits of
767 RP1's ranges starting at OFFSET1 bits with LENGTH bits of RP2's
768 ranges starting at OFFSET2 bits. Return true if the ranges match
769 and fill in *L and *H with the overlapping window relative to
770 (both) OFFSET1 or OFFSET2. */
bdf22206
AB
771
772static int
9a0dc9e3
PA
773find_first_range_overlap_and_match (struct ranges_and_idx *rp1,
774 struct ranges_and_idx *rp2,
6b850546
DT
775 LONGEST offset1, LONGEST offset2,
776 LONGEST length, ULONGEST *l, ULONGEST *h)
c8c1c22f 777{
9a0dc9e3
PA
778 rp1->idx = find_first_range_overlap (rp1->ranges, rp1->idx,
779 offset1, length);
780 rp2->idx = find_first_range_overlap (rp2->ranges, rp2->idx,
781 offset2, length);
c8c1c22f 782
9a0dc9e3
PA
783 if (rp1->idx == -1 && rp2->idx == -1)
784 {
785 *l = length;
786 *h = length;
787 return 1;
788 }
789 else if (rp1->idx == -1 || rp2->idx == -1)
790 return 0;
791 else
c8c1c22f 792 {
0c7e6dd8 793 const range *r1, *r2;
c8c1c22f
PA
794 ULONGEST l1, h1;
795 ULONGEST l2, h2;
796
0c7e6dd8
TT
797 r1 = &(*rp1->ranges)[rp1->idx];
798 r2 = &(*rp2->ranges)[rp2->idx];
c8c1c22f
PA
799
800 /* Get the unavailable windows intersected by the incoming
801 ranges. The first and last ranges that overlap the argument
802 range may be wider than said incoming arguments ranges. */
325fac50
PA
803 l1 = std::max (offset1, r1->offset);
804 h1 = std::min (offset1 + length, r1->offset + r1->length);
c8c1c22f 805
325fac50
PA
806 l2 = std::max (offset2, r2->offset);
807 h2 = std::min (offset2 + length, offset2 + r2->length);
c8c1c22f
PA
808
809 /* Make them relative to the respective start offsets, so we can
810 compare them for equality. */
811 l1 -= offset1;
812 h1 -= offset1;
813
814 l2 -= offset2;
815 h2 -= offset2;
816
9a0dc9e3 817 /* Different ranges, no match. */
c8c1c22f
PA
818 if (l1 != l2 || h1 != h2)
819 return 0;
820
9a0dc9e3
PA
821 *h = h1;
822 *l = l1;
823 return 1;
824 }
825}
826
827/* Helper function for value_contents_eq. The only difference is that
828 this function is bit rather than byte based.
829
830 Compare LENGTH bits of VAL1's contents starting at OFFSET1 bits
831 with LENGTH bits of VAL2's contents starting at OFFSET2 bits.
832 Return true if the available bits match. */
833
98ead37e 834static bool
9a0dc9e3
PA
835value_contents_bits_eq (const struct value *val1, int offset1,
836 const struct value *val2, int offset2,
837 int length)
838{
839 /* Each array element corresponds to a ranges source (unavailable,
840 optimized out). '1' is for VAL1, '2' for VAL2. */
841 struct ranges_and_idx rp1[2], rp2[2];
842
843 /* See function description in value.h. */
844 gdb_assert (!val1->lazy && !val2->lazy);
845
846 /* We shouldn't be trying to compare past the end of the values. */
847 gdb_assert (offset1 + length
848 <= TYPE_LENGTH (val1->enclosing_type) * TARGET_CHAR_BIT);
849 gdb_assert (offset2 + length
850 <= TYPE_LENGTH (val2->enclosing_type) * TARGET_CHAR_BIT);
851
852 memset (&rp1, 0, sizeof (rp1));
853 memset (&rp2, 0, sizeof (rp2));
0c7e6dd8
TT
854 rp1[0].ranges = &val1->unavailable;
855 rp2[0].ranges = &val2->unavailable;
856 rp1[1].ranges = &val1->optimized_out;
857 rp2[1].ranges = &val2->optimized_out;
9a0dc9e3
PA
858
859 while (length > 0)
860 {
000339af 861 ULONGEST l = 0, h = 0; /* init for gcc -Wall */
9a0dc9e3
PA
862 int i;
863
864 for (i = 0; i < 2; i++)
865 {
866 ULONGEST l_tmp, h_tmp;
867
868 /* The contents only match equal if the invalid/unavailable
869 contents ranges match as well. */
870 if (!find_first_range_overlap_and_match (&rp1[i], &rp2[i],
871 offset1, offset2, length,
872 &l_tmp, &h_tmp))
98ead37e 873 return false;
9a0dc9e3
PA
874
875 /* We're interested in the lowest/first range found. */
876 if (i == 0 || l_tmp < l)
877 {
878 l = l_tmp;
879 h = h_tmp;
880 }
881 }
882
883 /* Compare the available/valid contents. */
14c88955
TT
884 if (memcmp_with_bit_offsets (val1->contents.get (), offset1,
885 val2->contents.get (), offset2, l) != 0)
98ead37e 886 return false;
c8c1c22f 887
9a0dc9e3
PA
888 length -= h;
889 offset1 += h;
890 offset2 += h;
c8c1c22f
PA
891 }
892
98ead37e 893 return true;
c8c1c22f
PA
894}
895
98ead37e 896bool
6b850546
DT
897value_contents_eq (const struct value *val1, LONGEST offset1,
898 const struct value *val2, LONGEST offset2,
899 LONGEST length)
bdf22206 900{
9a0dc9e3
PA
901 return value_contents_bits_eq (val1, offset1 * TARGET_CHAR_BIT,
902 val2, offset2 * TARGET_CHAR_BIT,
903 length * TARGET_CHAR_BIT);
bdf22206
AB
904}
905
c906108c 906
4d0266a0
TT
907/* The value-history records all the values printed by print commands
908 during this session. */
c906108c 909
4d0266a0 910static std::vector<value_ref_ptr> value_history;
bc3b79fd 911
c906108c
SS
912\f
913/* List of all value objects currently allocated
914 (except for those released by calls to release_value)
915 This is so they can be freed after each command. */
916
062d818d 917static std::vector<value_ref_ptr> all_values;
c906108c 918
3e3d7139
JG
919/* Allocate a lazy value for type TYPE. Its actual content is
920 "lazily" allocated too: the content field of the return value is
921 NULL; it will be allocated when it is fetched from the target. */
c906108c 922
f23631e4 923struct value *
3e3d7139 924allocate_value_lazy (struct type *type)
c906108c 925{
f23631e4 926 struct value *val;
c54eabfa
JK
927
928 /* Call check_typedef on our type to make sure that, if TYPE
929 is a TYPE_CODE_TYPEDEF, its length is set to the length
930 of the target type instead of zero. However, we do not
931 replace the typedef type by the target type, because we want
932 to keep the typedef in order to be able to set the VAL's type
933 description correctly. */
934 check_typedef (type);
c906108c 935
466ce3ae 936 val = new struct value (type);
828d3400
DJ
937
938 /* Values start out on the all_values chain. */
062d818d 939 all_values.emplace_back (val);
828d3400 940
c906108c
SS
941 return val;
942}
943
5fdf6324
AB
944/* The maximum size, in bytes, that GDB will try to allocate for a value.
945 The initial value of 64k was not selected for any specific reason, it is
946 just a reasonable starting point. */
947
948static int max_value_size = 65536; /* 64k bytes */
949
950/* It is critical that the MAX_VALUE_SIZE is at least as big as the size of
951 LONGEST, otherwise GDB will not be able to parse integer values from the
952 CLI; for example if the MAX_VALUE_SIZE could be set to 1 then GDB would
953 be unable to parse "set max-value-size 2".
954
955 As we want a consistent GDB experience across hosts with different sizes
956 of LONGEST, this arbitrary minimum value was selected, so long as this
957 is bigger than LONGEST on all GDB supported hosts we're fine. */
958
959#define MIN_VALUE_FOR_MAX_VALUE_SIZE 16
960gdb_static_assert (sizeof (LONGEST) <= MIN_VALUE_FOR_MAX_VALUE_SIZE);
961
962/* Implement the "set max-value-size" command. */
963
964static void
eb4c3f4a 965set_max_value_size (const char *args, int from_tty,
5fdf6324
AB
966 struct cmd_list_element *c)
967{
968 gdb_assert (max_value_size == -1 || max_value_size >= 0);
969
970 if (max_value_size > -1 && max_value_size < MIN_VALUE_FOR_MAX_VALUE_SIZE)
971 {
972 max_value_size = MIN_VALUE_FOR_MAX_VALUE_SIZE;
973 error (_("max-value-size set too low, increasing to %d bytes"),
974 max_value_size);
975 }
976}
977
978/* Implement the "show max-value-size" command. */
979
980static void
981show_max_value_size (struct ui_file *file, int from_tty,
982 struct cmd_list_element *c, const char *value)
983{
984 if (max_value_size == -1)
985 fprintf_filtered (file, _("Maximum value size is unlimited.\n"));
986 else
987 fprintf_filtered (file, _("Maximum value size is %d bytes.\n"),
988 max_value_size);
989}
990
991/* Called before we attempt to allocate or reallocate a buffer for the
992 contents of a value. TYPE is the type of the value for which we are
993 allocating the buffer. If the buffer is too large (based on the user
994 controllable setting) then throw an error. If this function returns
995 then we should attempt to allocate the buffer. */
996
997static void
998check_type_length_before_alloc (const struct type *type)
999{
6d8a0a5e 1000 ULONGEST length = TYPE_LENGTH (type);
5fdf6324
AB
1001
1002 if (max_value_size > -1 && length > max_value_size)
1003 {
7d93a1e0 1004 if (type->name () != NULL)
6d8a0a5e
LM
1005 error (_("value of type `%s' requires %s bytes, which is more "
1006 "than max-value-size"), type->name (), pulongest (length));
5fdf6324 1007 else
6d8a0a5e
LM
1008 error (_("value requires %s bytes, which is more than "
1009 "max-value-size"), pulongest (length));
5fdf6324
AB
1010 }
1011}
1012
3e3d7139
JG
1013/* Allocate the contents of VAL if it has not been allocated yet. */
1014
548b762d 1015static void
3e3d7139
JG
1016allocate_value_contents (struct value *val)
1017{
1018 if (!val->contents)
5fdf6324
AB
1019 {
1020 check_type_length_before_alloc (val->enclosing_type);
14c88955
TT
1021 val->contents.reset
1022 ((gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type)));
5fdf6324 1023 }
3e3d7139
JG
1024}
1025
1026/* Allocate a value and its contents for type TYPE. */
1027
1028struct value *
1029allocate_value (struct type *type)
1030{
1031 struct value *val = allocate_value_lazy (type);
a109c7c1 1032
3e3d7139
JG
1033 allocate_value_contents (val);
1034 val->lazy = 0;
1035 return val;
1036}
1037
c906108c 1038/* Allocate a value that has the correct length
938f5214 1039 for COUNT repetitions of type TYPE. */
c906108c 1040
f23631e4 1041struct value *
fba45db2 1042allocate_repeat_value (struct type *type, int count)
c906108c 1043{
c5aa993b 1044 int low_bound = current_language->string_lower_bound; /* ??? */
c906108c
SS
1045 /* FIXME-type-allocation: need a way to free this type when we are
1046 done with it. */
e3506a9f
UW
1047 struct type *array_type
1048 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
a109c7c1 1049
e3506a9f 1050 return allocate_value (array_type);
c906108c
SS
1051}
1052
5f5233d4
PA
1053struct value *
1054allocate_computed_value (struct type *type,
c8f2448a 1055 const struct lval_funcs *funcs,
5f5233d4
PA
1056 void *closure)
1057{
41e8491f 1058 struct value *v = allocate_value_lazy (type);
a109c7c1 1059
5f5233d4
PA
1060 VALUE_LVAL (v) = lval_computed;
1061 v->location.computed.funcs = funcs;
1062 v->location.computed.closure = closure;
5f5233d4
PA
1063
1064 return v;
1065}
1066
a7035dbb
JK
1067/* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
1068
1069struct value *
1070allocate_optimized_out_value (struct type *type)
1071{
1072 struct value *retval = allocate_value_lazy (type);
1073
9a0dc9e3
PA
1074 mark_value_bytes_optimized_out (retval, 0, TYPE_LENGTH (type));
1075 set_value_lazy (retval, 0);
a7035dbb
JK
1076 return retval;
1077}
1078
df407dfe
AC
1079/* Accessor methods. */
1080
1081struct type *
0e03807e 1082value_type (const struct value *value)
df407dfe
AC
1083{
1084 return value->type;
1085}
04624583
AC
1086void
1087deprecated_set_value_type (struct value *value, struct type *type)
1088{
1089 value->type = type;
1090}
df407dfe 1091
6b850546 1092LONGEST
0e03807e 1093value_offset (const struct value *value)
df407dfe
AC
1094{
1095 return value->offset;
1096}
f5cf64a7 1097void
6b850546 1098set_value_offset (struct value *value, LONGEST offset)
f5cf64a7
AC
1099{
1100 value->offset = offset;
1101}
df407dfe 1102
6b850546 1103LONGEST
0e03807e 1104value_bitpos (const struct value *value)
df407dfe
AC
1105{
1106 return value->bitpos;
1107}
9bbda503 1108void
6b850546 1109set_value_bitpos (struct value *value, LONGEST bit)
9bbda503
AC
1110{
1111 value->bitpos = bit;
1112}
df407dfe 1113
6b850546 1114LONGEST
0e03807e 1115value_bitsize (const struct value *value)
df407dfe
AC
1116{
1117 return value->bitsize;
1118}
9bbda503 1119void
6b850546 1120set_value_bitsize (struct value *value, LONGEST bit)
9bbda503
AC
1121{
1122 value->bitsize = bit;
1123}
df407dfe 1124
4ea48cc1 1125struct value *
4bf7b526 1126value_parent (const struct value *value)
4ea48cc1 1127{
2c8331b9 1128 return value->parent.get ();
4ea48cc1
DJ
1129}
1130
53ba8333
JB
1131/* See value.h. */
1132
1133void
1134set_value_parent (struct value *value, struct value *parent)
1135{
bbfa6f00 1136 value->parent = value_ref_ptr::new_reference (parent);
53ba8333
JB
1137}
1138
fc1a4b47 1139gdb_byte *
990a07ab
AC
1140value_contents_raw (struct value *value)
1141{
3ae385af
SM
1142 struct gdbarch *arch = get_value_arch (value);
1143 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1144
3e3d7139 1145 allocate_value_contents (value);
14c88955 1146 return value->contents.get () + value->embedded_offset * unit_size;
990a07ab
AC
1147}
1148
fc1a4b47 1149gdb_byte *
990a07ab
AC
1150value_contents_all_raw (struct value *value)
1151{
3e3d7139 1152 allocate_value_contents (value);
14c88955 1153 return value->contents.get ();
990a07ab
AC
1154}
1155
4754a64e 1156struct type *
4bf7b526 1157value_enclosing_type (const struct value *value)
4754a64e
AC
1158{
1159 return value->enclosing_type;
1160}
1161
8264ba82
AG
1162/* Look at value.h for description. */
1163
1164struct type *
1165value_actual_type (struct value *value, int resolve_simple_types,
1166 int *real_type_found)
1167{
1168 struct value_print_options opts;
8264ba82
AG
1169 struct type *result;
1170
1171 get_user_print_options (&opts);
1172
1173 if (real_type_found)
1174 *real_type_found = 0;
1175 result = value_type (value);
1176 if (opts.objectprint)
1177 {
5e34c6c3
LM
1178 /* If result's target type is TYPE_CODE_STRUCT, proceed to
1179 fetch its rtti type. */
78134374
SM
1180 if ((result->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (result))
1181 && (check_typedef (TYPE_TARGET_TYPE (result))->code ()
1182 == TYPE_CODE_STRUCT)
ecf2e90c 1183 && !value_optimized_out (value))
8264ba82
AG
1184 {
1185 struct type *real_type;
1186
1187 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
1188 if (real_type)
1189 {
1190 if (real_type_found)
1191 *real_type_found = 1;
1192 result = real_type;
1193 }
1194 }
1195 else if (resolve_simple_types)
1196 {
1197 if (real_type_found)
1198 *real_type_found = 1;
1199 result = value_enclosing_type (value);
1200 }
1201 }
1202
1203 return result;
1204}
1205
901461f8
PA
1206void
1207error_value_optimized_out (void)
1208{
1209 error (_("value has been optimized out"));
1210}
1211
0e03807e 1212static void
4e07d55f 1213require_not_optimized_out (const struct value *value)
0e03807e 1214{
0c7e6dd8 1215 if (!value->optimized_out.empty ())
901461f8
PA
1216 {
1217 if (value->lval == lval_register)
1218 error (_("register has not been saved in frame"));
1219 else
1220 error_value_optimized_out ();
1221 }
0e03807e
TT
1222}
1223
4e07d55f
PA
1224static void
1225require_available (const struct value *value)
1226{
0c7e6dd8 1227 if (!value->unavailable.empty ())
8af8e3bc 1228 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
4e07d55f
PA
1229}
1230
fc1a4b47 1231const gdb_byte *
0e03807e 1232value_contents_for_printing (struct value *value)
46615f07
AC
1233{
1234 if (value->lazy)
1235 value_fetch_lazy (value);
14c88955 1236 return value->contents.get ();
46615f07
AC
1237}
1238
de4127a3
PA
1239const gdb_byte *
1240value_contents_for_printing_const (const struct value *value)
1241{
1242 gdb_assert (!value->lazy);
14c88955 1243 return value->contents.get ();
de4127a3
PA
1244}
1245
0e03807e
TT
1246const gdb_byte *
1247value_contents_all (struct value *value)
1248{
1249 const gdb_byte *result = value_contents_for_printing (value);
1250 require_not_optimized_out (value);
4e07d55f 1251 require_available (value);
0e03807e
TT
1252 return result;
1253}
1254
9a0dc9e3
PA
1255/* Copy ranges in SRC_RANGE that overlap [SRC_BIT_OFFSET,
1256 SRC_BIT_OFFSET+BIT_LENGTH) ranges into *DST_RANGE, adjusted. */
1257
1258static void
0c7e6dd8
TT
1259ranges_copy_adjusted (std::vector<range> *dst_range, int dst_bit_offset,
1260 const std::vector<range> &src_range, int src_bit_offset,
9a0dc9e3
PA
1261 int bit_length)
1262{
0c7e6dd8 1263 for (const range &r : src_range)
9a0dc9e3
PA
1264 {
1265 ULONGEST h, l;
1266
0c7e6dd8
TT
1267 l = std::max (r.offset, (LONGEST) src_bit_offset);
1268 h = std::min (r.offset + r.length,
325fac50 1269 (LONGEST) src_bit_offset + bit_length);
9a0dc9e3
PA
1270
1271 if (l < h)
1272 insert_into_bit_range_vector (dst_range,
1273 dst_bit_offset + (l - src_bit_offset),
1274 h - l);
1275 }
1276}
1277
4875ffdb
PA
1278/* Copy the ranges metadata in SRC that overlaps [SRC_BIT_OFFSET,
1279 SRC_BIT_OFFSET+BIT_LENGTH) into DST, adjusted. */
1280
1281static void
1282value_ranges_copy_adjusted (struct value *dst, int dst_bit_offset,
1283 const struct value *src, int src_bit_offset,
1284 int bit_length)
1285{
1286 ranges_copy_adjusted (&dst->unavailable, dst_bit_offset,
1287 src->unavailable, src_bit_offset,
1288 bit_length);
1289 ranges_copy_adjusted (&dst->optimized_out, dst_bit_offset,
1290 src->optimized_out, src_bit_offset,
1291 bit_length);
1292}
1293
3ae385af 1294/* Copy LENGTH target addressable memory units of SRC value's (all) contents
29976f3f
PA
1295 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
1296 contents, starting at DST_OFFSET. If unavailable contents are
1297 being copied from SRC, the corresponding DST contents are marked
1298 unavailable accordingly. Neither DST nor SRC may be lazy
1299 values.
1300
1301 It is assumed the contents of DST in the [DST_OFFSET,
1302 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
1303
1304void
6b850546
DT
1305value_contents_copy_raw (struct value *dst, LONGEST dst_offset,
1306 struct value *src, LONGEST src_offset, LONGEST length)
39d37385 1307{
6b850546 1308 LONGEST src_bit_offset, dst_bit_offset, bit_length;
3ae385af
SM
1309 struct gdbarch *arch = get_value_arch (src);
1310 int unit_size = gdbarch_addressable_memory_unit_size (arch);
39d37385
PA
1311
1312 /* A lazy DST would make that this copy operation useless, since as
1313 soon as DST's contents were un-lazied (by a later value_contents
1314 call, say), the contents would be overwritten. A lazy SRC would
1315 mean we'd be copying garbage. */
1316 gdb_assert (!dst->lazy && !src->lazy);
1317
29976f3f
PA
1318 /* The overwritten DST range gets unavailability ORed in, not
1319 replaced. Make sure to remember to implement replacing if it
1320 turns out actually necessary. */
1321 gdb_assert (value_bytes_available (dst, dst_offset, length));
9a0dc9e3
PA
1322 gdb_assert (!value_bits_any_optimized_out (dst,
1323 TARGET_CHAR_BIT * dst_offset,
1324 TARGET_CHAR_BIT * length));
29976f3f 1325
39d37385 1326 /* Copy the data. */
3ae385af
SM
1327 memcpy (value_contents_all_raw (dst) + dst_offset * unit_size,
1328 value_contents_all_raw (src) + src_offset * unit_size,
1329 length * unit_size);
39d37385
PA
1330
1331 /* Copy the meta-data, adjusted. */
3ae385af
SM
1332 src_bit_offset = src_offset * unit_size * HOST_CHAR_BIT;
1333 dst_bit_offset = dst_offset * unit_size * HOST_CHAR_BIT;
1334 bit_length = length * unit_size * HOST_CHAR_BIT;
39d37385 1335
4875ffdb
PA
1336 value_ranges_copy_adjusted (dst, dst_bit_offset,
1337 src, src_bit_offset,
1338 bit_length);
39d37385
PA
1339}
1340
29976f3f
PA
1341/* Copy LENGTH bytes of SRC value's (all) contents
1342 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
1343 (all) contents, starting at DST_OFFSET. If unavailable contents
1344 are being copied from SRC, the corresponding DST contents are
1345 marked unavailable accordingly. DST must not be lazy. If SRC is
9a0dc9e3 1346 lazy, it will be fetched now.
29976f3f
PA
1347
1348 It is assumed the contents of DST in the [DST_OFFSET,
1349 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
1350
1351void
6b850546
DT
1352value_contents_copy (struct value *dst, LONGEST dst_offset,
1353 struct value *src, LONGEST src_offset, LONGEST length)
39d37385 1354{
39d37385
PA
1355 if (src->lazy)
1356 value_fetch_lazy (src);
1357
1358 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
1359}
1360
d69fe07e 1361int
4bf7b526 1362value_lazy (const struct value *value)
d69fe07e
AC
1363{
1364 return value->lazy;
1365}
1366
dfa52d88
AC
1367void
1368set_value_lazy (struct value *value, int val)
1369{
1370 value->lazy = val;
1371}
1372
4e5d721f 1373int
4bf7b526 1374value_stack (const struct value *value)
4e5d721f
DE
1375{
1376 return value->stack;
1377}
1378
1379void
1380set_value_stack (struct value *value, int val)
1381{
1382 value->stack = val;
1383}
1384
fc1a4b47 1385const gdb_byte *
0fd88904
AC
1386value_contents (struct value *value)
1387{
0e03807e
TT
1388 const gdb_byte *result = value_contents_writeable (value);
1389 require_not_optimized_out (value);
4e07d55f 1390 require_available (value);
0e03807e 1391 return result;
0fd88904
AC
1392}
1393
fc1a4b47 1394gdb_byte *
0fd88904
AC
1395value_contents_writeable (struct value *value)
1396{
1397 if (value->lazy)
1398 value_fetch_lazy (value);
fc0c53a0 1399 return value_contents_raw (value);
0fd88904
AC
1400}
1401
feb13ab0
AC
1402int
1403value_optimized_out (struct value *value)
1404{
691a26f5
AB
1405 /* We can only know if a value is optimized out once we have tried to
1406 fetch it. */
0c7e6dd8 1407 if (value->optimized_out.empty () && value->lazy)
ecf2e90c 1408 {
a70b8144 1409 try
ecf2e90c
DB
1410 {
1411 value_fetch_lazy (value);
1412 }
230d2906 1413 catch (const gdb_exception_error &ex)
ecf2e90c 1414 {
6d7aa592
PA
1415 switch (ex.error)
1416 {
1417 case MEMORY_ERROR:
1418 case OPTIMIZED_OUT_ERROR:
1419 case NOT_AVAILABLE_ERROR:
1420 /* These can normally happen when we try to access an
1421 optimized out or unavailable register, either in a
1422 physical register or spilled to memory. */
1423 break;
1424 default:
1425 throw;
1426 }
ecf2e90c 1427 }
ecf2e90c 1428 }
691a26f5 1429
0c7e6dd8 1430 return !value->optimized_out.empty ();
feb13ab0
AC
1431}
1432
9a0dc9e3
PA
1433/* Mark contents of VALUE as optimized out, starting at OFFSET bytes, and
1434 the following LENGTH bytes. */
eca07816 1435
feb13ab0 1436void
9a0dc9e3 1437mark_value_bytes_optimized_out (struct value *value, int offset, int length)
feb13ab0 1438{
9a0dc9e3
PA
1439 mark_value_bits_optimized_out (value,
1440 offset * TARGET_CHAR_BIT,
1441 length * TARGET_CHAR_BIT);
feb13ab0 1442}
13c3b5f5 1443
9a0dc9e3 1444/* See value.h. */
0e03807e 1445
9a0dc9e3 1446void
6b850546
DT
1447mark_value_bits_optimized_out (struct value *value,
1448 LONGEST offset, LONGEST length)
0e03807e 1449{
9a0dc9e3 1450 insert_into_bit_range_vector (&value->optimized_out, offset, length);
0e03807e
TT
1451}
1452
8cf6f0b1
TT
1453int
1454value_bits_synthetic_pointer (const struct value *value,
6b850546 1455 LONGEST offset, LONGEST length)
8cf6f0b1 1456{
e7303042 1457 if (value->lval != lval_computed
8cf6f0b1
TT
1458 || !value->location.computed.funcs->check_synthetic_pointer)
1459 return 0;
1460 return value->location.computed.funcs->check_synthetic_pointer (value,
1461 offset,
1462 length);
1463}
1464
6b850546 1465LONGEST
4bf7b526 1466value_embedded_offset (const struct value *value)
13c3b5f5
AC
1467{
1468 return value->embedded_offset;
1469}
1470
1471void
6b850546 1472set_value_embedded_offset (struct value *value, LONGEST val)
13c3b5f5
AC
1473{
1474 value->embedded_offset = val;
1475}
b44d461b 1476
6b850546 1477LONGEST
4bf7b526 1478value_pointed_to_offset (const struct value *value)
b44d461b
AC
1479{
1480 return value->pointed_to_offset;
1481}
1482
1483void
6b850546 1484set_value_pointed_to_offset (struct value *value, LONGEST val)
b44d461b
AC
1485{
1486 value->pointed_to_offset = val;
1487}
13bb5560 1488
c8f2448a 1489const struct lval_funcs *
a471c594 1490value_computed_funcs (const struct value *v)
5f5233d4 1491{
a471c594 1492 gdb_assert (value_lval_const (v) == lval_computed);
5f5233d4
PA
1493
1494 return v->location.computed.funcs;
1495}
1496
1497void *
0e03807e 1498value_computed_closure (const struct value *v)
5f5233d4 1499{
0e03807e 1500 gdb_assert (v->lval == lval_computed);
5f5233d4
PA
1501
1502 return v->location.computed.closure;
1503}
1504
13bb5560
AC
1505enum lval_type *
1506deprecated_value_lval_hack (struct value *value)
1507{
1508 return &value->lval;
1509}
1510
a471c594
JK
1511enum lval_type
1512value_lval_const (const struct value *value)
1513{
1514 return value->lval;
1515}
1516
42ae5230 1517CORE_ADDR
de4127a3 1518value_address (const struct value *value)
42ae5230 1519{
1a088441 1520 if (value->lval != lval_memory)
42ae5230 1521 return 0;
53ba8333 1522 if (value->parent != NULL)
2c8331b9 1523 return value_address (value->parent.get ()) + value->offset;
9920b434
BH
1524 if (NULL != TYPE_DATA_LOCATION (value_type (value)))
1525 {
1526 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (value_type (value)));
1527 return TYPE_DATA_LOCATION_ADDR (value_type (value));
1528 }
1529
1530 return value->location.address + value->offset;
42ae5230
TT
1531}
1532
1533CORE_ADDR
4bf7b526 1534value_raw_address (const struct value *value)
42ae5230 1535{
1a088441 1536 if (value->lval != lval_memory)
42ae5230
TT
1537 return 0;
1538 return value->location.address;
1539}
1540
1541void
1542set_value_address (struct value *value, CORE_ADDR addr)
13bb5560 1543{
1a088441 1544 gdb_assert (value->lval == lval_memory);
42ae5230 1545 value->location.address = addr;
13bb5560
AC
1546}
1547
1548struct internalvar **
1549deprecated_value_internalvar_hack (struct value *value)
1550{
1551 return &value->location.internalvar;
1552}
1553
1554struct frame_id *
41b56feb 1555deprecated_value_next_frame_id_hack (struct value *value)
13bb5560 1556{
7c2ba67e 1557 gdb_assert (value->lval == lval_register);
7dc54575 1558 return &value->location.reg.next_frame_id;
13bb5560
AC
1559}
1560
7dc54575 1561int *
13bb5560
AC
1562deprecated_value_regnum_hack (struct value *value)
1563{
7c2ba67e 1564 gdb_assert (value->lval == lval_register);
7dc54575 1565 return &value->location.reg.regnum;
13bb5560 1566}
88e3b34b
AC
1567
1568int
4bf7b526 1569deprecated_value_modifiable (const struct value *value)
88e3b34b
AC
1570{
1571 return value->modifiable;
1572}
990a07ab 1573\f
c906108c
SS
1574/* Return a mark in the value chain. All values allocated after the
1575 mark is obtained (except for those released) are subject to being freed
1576 if a subsequent value_free_to_mark is passed the mark. */
f23631e4 1577struct value *
fba45db2 1578value_mark (void)
c906108c 1579{
062d818d
TT
1580 if (all_values.empty ())
1581 return nullptr;
1582 return all_values.back ().get ();
c906108c
SS
1583}
1584
bbfa6f00 1585/* See value.h. */
828d3400 1586
bbfa6f00 1587void
828d3400
DJ
1588value_incref (struct value *val)
1589{
1590 val->reference_count++;
1591}
1592
1593/* Release a reference to VAL, which was acquired with value_incref.
1594 This function is also called to deallocate values from the value
1595 chain. */
1596
3e3d7139 1597void
22bc8444 1598value_decref (struct value *val)
3e3d7139 1599{
466ce3ae 1600 if (val != nullptr)
5f5233d4 1601 {
828d3400
DJ
1602 gdb_assert (val->reference_count > 0);
1603 val->reference_count--;
466ce3ae
TT
1604 if (val->reference_count == 0)
1605 delete val;
5f5233d4 1606 }
3e3d7139
JG
1607}
1608
c906108c
SS
1609/* Free all values allocated since MARK was obtained by value_mark
1610 (except for those released). */
1611void
4bf7b526 1612value_free_to_mark (const struct value *mark)
c906108c 1613{
062d818d
TT
1614 auto iter = std::find (all_values.begin (), all_values.end (), mark);
1615 if (iter == all_values.end ())
1616 all_values.clear ();
1617 else
1618 all_values.erase (iter + 1, all_values.end ());
c906108c
SS
1619}
1620
c906108c
SS
1621/* Remove VAL from the chain all_values
1622 so it will not be freed automatically. */
1623
22bc8444 1624value_ref_ptr
f23631e4 1625release_value (struct value *val)
c906108c 1626{
850645cf
TT
1627 if (val == nullptr)
1628 return value_ref_ptr ();
1629
062d818d
TT
1630 std::vector<value_ref_ptr>::reverse_iterator iter;
1631 for (iter = all_values.rbegin (); iter != all_values.rend (); ++iter)
c906108c 1632 {
062d818d 1633 if (*iter == val)
c906108c 1634 {
062d818d
TT
1635 value_ref_ptr result = *iter;
1636 all_values.erase (iter.base () - 1);
1637 return result;
c906108c
SS
1638 }
1639 }
c906108c 1640
062d818d
TT
1641 /* We must always return an owned reference. Normally this happens
1642 because we transfer the reference from the value chain, but in
1643 this case the value was not on the chain. */
bbfa6f00 1644 return value_ref_ptr::new_reference (val);
e848a8a5
TT
1645}
1646
a6535de1
TT
1647/* See value.h. */
1648
1649std::vector<value_ref_ptr>
4bf7b526 1650value_release_to_mark (const struct value *mark)
c906108c 1651{
a6535de1 1652 std::vector<value_ref_ptr> result;
c906108c 1653
062d818d
TT
1654 auto iter = std::find (all_values.begin (), all_values.end (), mark);
1655 if (iter == all_values.end ())
1656 std::swap (result, all_values);
1657 else
e848a8a5 1658 {
062d818d
TT
1659 std::move (iter + 1, all_values.end (), std::back_inserter (result));
1660 all_values.erase (iter + 1, all_values.end ());
e848a8a5 1661 }
062d818d 1662 std::reverse (result.begin (), result.end ());
a6535de1 1663 return result;
c906108c
SS
1664}
1665
1666/* Return a copy of the value ARG.
1667 It contains the same contents, for same memory address,
1668 but it's a different block of storage. */
1669
f23631e4
AC
1670struct value *
1671value_copy (struct value *arg)
c906108c 1672{
4754a64e 1673 struct type *encl_type = value_enclosing_type (arg);
3e3d7139
JG
1674 struct value *val;
1675
1676 if (value_lazy (arg))
1677 val = allocate_value_lazy (encl_type);
1678 else
1679 val = allocate_value (encl_type);
df407dfe 1680 val->type = arg->type;
c906108c 1681 VALUE_LVAL (val) = VALUE_LVAL (arg);
6f7c8fc2 1682 val->location = arg->location;
df407dfe
AC
1683 val->offset = arg->offset;
1684 val->bitpos = arg->bitpos;
1685 val->bitsize = arg->bitsize;
d69fe07e 1686 val->lazy = arg->lazy;
13c3b5f5 1687 val->embedded_offset = value_embedded_offset (arg);
b44d461b 1688 val->pointed_to_offset = arg->pointed_to_offset;
c906108c 1689 val->modifiable = arg->modifiable;
d69fe07e 1690 if (!value_lazy (val))
c906108c 1691 {
990a07ab 1692 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
4754a64e 1693 TYPE_LENGTH (value_enclosing_type (arg)));
c906108c
SS
1694
1695 }
0c7e6dd8
TT
1696 val->unavailable = arg->unavailable;
1697 val->optimized_out = arg->optimized_out;
2c8331b9 1698 val->parent = arg->parent;
5f5233d4
PA
1699 if (VALUE_LVAL (val) == lval_computed)
1700 {
c8f2448a 1701 const struct lval_funcs *funcs = val->location.computed.funcs;
5f5233d4
PA
1702
1703 if (funcs->copy_closure)
1704 val->location.computed.closure = funcs->copy_closure (val);
1705 }
c906108c
SS
1706 return val;
1707}
74bcbdf3 1708
4c082a81
SC
1709/* Return a "const" and/or "volatile" qualified version of the value V.
1710 If CNST is true, then the returned value will be qualified with
1711 "const".
1712 if VOLTL is true, then the returned value will be qualified with
1713 "volatile". */
1714
1715struct value *
1716make_cv_value (int cnst, int voltl, struct value *v)
1717{
1718 struct type *val_type = value_type (v);
1719 struct type *enclosing_type = value_enclosing_type (v);
1720 struct value *cv_val = value_copy (v);
1721
1722 deprecated_set_value_type (cv_val,
1723 make_cv_type (cnst, voltl, val_type, NULL));
1724 set_value_enclosing_type (cv_val,
1725 make_cv_type (cnst, voltl, enclosing_type, NULL));
1726
1727 return cv_val;
1728}
1729
c37f7098
KW
1730/* Return a version of ARG that is non-lvalue. */
1731
1732struct value *
1733value_non_lval (struct value *arg)
1734{
1735 if (VALUE_LVAL (arg) != not_lval)
1736 {
1737 struct type *enc_type = value_enclosing_type (arg);
1738 struct value *val = allocate_value (enc_type);
1739
1740 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1741 TYPE_LENGTH (enc_type));
1742 val->type = arg->type;
1743 set_value_embedded_offset (val, value_embedded_offset (arg));
1744 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1745 return val;
1746 }
1747 return arg;
1748}
1749
6c659fc2
SC
1750/* Write contents of V at ADDR and set its lval type to be LVAL_MEMORY. */
1751
1752void
1753value_force_lval (struct value *v, CORE_ADDR addr)
1754{
1755 gdb_assert (VALUE_LVAL (v) == not_lval);
1756
1757 write_memory (addr, value_contents_raw (v), TYPE_LENGTH (value_type (v)));
1758 v->lval = lval_memory;
1759 v->location.address = addr;
1760}
1761
74bcbdf3 1762void
0e03807e
TT
1763set_value_component_location (struct value *component,
1764 const struct value *whole)
74bcbdf3 1765{
9920b434
BH
1766 struct type *type;
1767
e81e7f5e
SC
1768 gdb_assert (whole->lval != lval_xcallable);
1769
0e03807e 1770 if (whole->lval == lval_internalvar)
74bcbdf3
PA
1771 VALUE_LVAL (component) = lval_internalvar_component;
1772 else
0e03807e 1773 VALUE_LVAL (component) = whole->lval;
5f5233d4 1774
74bcbdf3 1775 component->location = whole->location;
0e03807e 1776 if (whole->lval == lval_computed)
5f5233d4 1777 {
c8f2448a 1778 const struct lval_funcs *funcs = whole->location.computed.funcs;
5f5233d4
PA
1779
1780 if (funcs->copy_closure)
1781 component->location.computed.closure = funcs->copy_closure (whole);
1782 }
9920b434
BH
1783
1784 /* If type has a dynamic resolved location property
1785 update it's value address. */
1786 type = value_type (whole);
1787 if (NULL != TYPE_DATA_LOCATION (type)
1788 && TYPE_DATA_LOCATION_KIND (type) == PROP_CONST)
1789 set_value_address (component, TYPE_DATA_LOCATION_ADDR (type));
74bcbdf3
PA
1790}
1791
c906108c
SS
1792/* Access to the value history. */
1793
1794/* Record a new value in the value history.
eddf0bae 1795 Returns the absolute history index of the entry. */
c906108c
SS
1796
1797int
f23631e4 1798record_latest_value (struct value *val)
c906108c 1799{
c906108c
SS
1800 /* We don't want this value to have anything to do with the inferior anymore.
1801 In particular, "set $1 = 50" should not affect the variable from which
1802 the value was taken, and fast watchpoints should be able to assume that
1803 a value on the value history never changes. */
d69fe07e 1804 if (value_lazy (val))
c906108c
SS
1805 value_fetch_lazy (val);
1806 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1807 from. This is a bit dubious, because then *&$1 does not just return $1
1808 but the current contents of that location. c'est la vie... */
1809 val->modifiable = 0;
350e1a76 1810
4d0266a0 1811 value_history.push_back (release_value (val));
a109c7c1 1812
4d0266a0 1813 return value_history.size ();
c906108c
SS
1814}
1815
1816/* Return a copy of the value in the history with sequence number NUM. */
1817
f23631e4 1818struct value *
fba45db2 1819access_value_history (int num)
c906108c 1820{
52f0bd74 1821 int absnum = num;
c906108c
SS
1822
1823 if (absnum <= 0)
4d0266a0 1824 absnum += value_history.size ();
c906108c
SS
1825
1826 if (absnum <= 0)
1827 {
1828 if (num == 0)
8a3fe4f8 1829 error (_("The history is empty."));
c906108c 1830 else if (num == 1)
8a3fe4f8 1831 error (_("There is only one value in the history."));
c906108c 1832 else
8a3fe4f8 1833 error (_("History does not go back to $$%d."), -num);
c906108c 1834 }
4d0266a0 1835 if (absnum > value_history.size ())
8a3fe4f8 1836 error (_("History has not yet reached $%d."), absnum);
c906108c
SS
1837
1838 absnum--;
1839
4d0266a0 1840 return value_copy (value_history[absnum].get ());
c906108c
SS
1841}
1842
c906108c 1843static void
5fed81ff 1844show_values (const char *num_exp, int from_tty)
c906108c 1845{
52f0bd74 1846 int i;
f23631e4 1847 struct value *val;
c906108c
SS
1848 static int num = 1;
1849
1850 if (num_exp)
1851 {
f132ba9d
TJB
1852 /* "show values +" should print from the stored position.
1853 "show values <exp>" should print around value number <exp>. */
c906108c 1854 if (num_exp[0] != '+' || num_exp[1] != '\0')
bb518678 1855 num = parse_and_eval_long (num_exp) - 5;
c906108c
SS
1856 }
1857 else
1858 {
f132ba9d 1859 /* "show values" means print the last 10 values. */
4d0266a0 1860 num = value_history.size () - 9;
c906108c
SS
1861 }
1862
1863 if (num <= 0)
1864 num = 1;
1865
4d0266a0 1866 for (i = num; i < num + 10 && i <= value_history.size (); i++)
c906108c 1867 {
79a45b7d 1868 struct value_print_options opts;
a109c7c1 1869
c906108c 1870 val = access_value_history (i);
a3f17187 1871 printf_filtered (("$%d = "), i);
79a45b7d
TT
1872 get_user_print_options (&opts);
1873 value_print (val, gdb_stdout, &opts);
a3f17187 1874 printf_filtered (("\n"));
c906108c
SS
1875 }
1876
f132ba9d 1877 /* The next "show values +" should start after what we just printed. */
c906108c
SS
1878 num += 10;
1879
1880 /* Hitting just return after this command should do the same thing as
f132ba9d
TJB
1881 "show values +". If num_exp is null, this is unnecessary, since
1882 "show values +" is not useful after "show values". */
c906108c 1883 if (from_tty && num_exp)
85c4be7c 1884 set_repeat_arguments ("+");
c906108c
SS
1885}
1886\f
52059ffd
TT
1887enum internalvar_kind
1888{
1889 /* The internal variable is empty. */
1890 INTERNALVAR_VOID,
1891
1892 /* The value of the internal variable is provided directly as
1893 a GDB value object. */
1894 INTERNALVAR_VALUE,
1895
1896 /* A fresh value is computed via a call-back routine on every
1897 access to the internal variable. */
1898 INTERNALVAR_MAKE_VALUE,
1899
1900 /* The internal variable holds a GDB internal convenience function. */
1901 INTERNALVAR_FUNCTION,
1902
1903 /* The variable holds an integer value. */
1904 INTERNALVAR_INTEGER,
1905
1906 /* The variable holds a GDB-provided string. */
1907 INTERNALVAR_STRING,
1908};
1909
1910union internalvar_data
1911{
1912 /* A value object used with INTERNALVAR_VALUE. */
1913 struct value *value;
1914
1915 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
1916 struct
1917 {
1918 /* The functions to call. */
1919 const struct internalvar_funcs *functions;
1920
1921 /* The function's user-data. */
1922 void *data;
1923 } make_value;
1924
1925 /* The internal function used with INTERNALVAR_FUNCTION. */
1926 struct
1927 {
1928 struct internal_function *function;
1929 /* True if this is the canonical name for the function. */
1930 int canonical;
1931 } fn;
1932
1933 /* An integer value used with INTERNALVAR_INTEGER. */
1934 struct
1935 {
1936 /* If type is non-NULL, it will be used as the type to generate
1937 a value for this internal variable. If type is NULL, a default
1938 integer type for the architecture is used. */
1939 struct type *type;
1940 LONGEST val;
1941 } integer;
1942
1943 /* A string value used with INTERNALVAR_STRING. */
1944 char *string;
1945};
1946
c906108c
SS
1947/* Internal variables. These are variables within the debugger
1948 that hold values assigned by debugger commands.
1949 The user refers to them with a '$' prefix
1950 that does not appear in the variable names stored internally. */
1951
4fa62494
UW
1952struct internalvar
1953{
1954 struct internalvar *next;
1955 char *name;
4fa62494 1956
78267919
UW
1957 /* We support various different kinds of content of an internal variable.
1958 enum internalvar_kind specifies the kind, and union internalvar_data
1959 provides the data associated with this particular kind. */
1960
52059ffd 1961 enum internalvar_kind kind;
4fa62494 1962
52059ffd 1963 union internalvar_data u;
4fa62494
UW
1964};
1965
c906108c
SS
1966static struct internalvar *internalvars;
1967
3e43a32a
MS
1968/* If the variable does not already exist create it and give it the
1969 value given. If no value is given then the default is zero. */
53e5f3cf 1970static void
0b39b52e 1971init_if_undefined_command (const char* args, int from_tty)
53e5f3cf
AS
1972{
1973 struct internalvar* intvar;
1974
1975 /* Parse the expression - this is taken from set_command(). */
4d01a485 1976 expression_up expr = parse_expression (args);
53e5f3cf
AS
1977
1978 /* Validate the expression.
1979 Was the expression an assignment?
1980 Or even an expression at all? */
1981 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1982 error (_("Init-if-undefined requires an assignment expression."));
1983
1984 /* Extract the variable from the parsed expression.
1985 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1986 if (expr->elts[1].opcode != OP_INTERNALVAR)
3e43a32a
MS
1987 error (_("The first parameter to init-if-undefined "
1988 "should be a GDB variable."));
53e5f3cf
AS
1989 intvar = expr->elts[2].internalvar;
1990
1991 /* Only evaluate the expression if the lvalue is void.
85102364 1992 This may still fail if the expression is invalid. */
78267919 1993 if (intvar->kind == INTERNALVAR_VOID)
4d01a485 1994 evaluate_expression (expr.get ());
53e5f3cf
AS
1995}
1996
1997
c906108c
SS
1998/* Look up an internal variable with name NAME. NAME should not
1999 normally include a dollar sign.
2000
2001 If the specified internal variable does not exist,
c4a3d09a 2002 the return value is NULL. */
c906108c
SS
2003
2004struct internalvar *
bc3b79fd 2005lookup_only_internalvar (const char *name)
c906108c 2006{
52f0bd74 2007 struct internalvar *var;
c906108c
SS
2008
2009 for (var = internalvars; var; var = var->next)
5cb316ef 2010 if (strcmp (var->name, name) == 0)
c906108c
SS
2011 return var;
2012
c4a3d09a
MF
2013 return NULL;
2014}
2015
eb3ff9a5
PA
2016/* Complete NAME by comparing it to the names of internal
2017 variables. */
d55637df 2018
eb3ff9a5
PA
2019void
2020complete_internalvar (completion_tracker &tracker, const char *name)
d55637df 2021{
d55637df
TT
2022 struct internalvar *var;
2023 int len;
2024
2025 len = strlen (name);
2026
2027 for (var = internalvars; var; var = var->next)
2028 if (strncmp (var->name, name, len) == 0)
b02f78f9 2029 tracker.add_completion (make_unique_xstrdup (var->name));
d55637df 2030}
c4a3d09a
MF
2031
2032/* Create an internal variable with name NAME and with a void value.
2033 NAME should not normally include a dollar sign. */
2034
2035struct internalvar *
bc3b79fd 2036create_internalvar (const char *name)
c4a3d09a 2037{
8d749320 2038 struct internalvar *var = XNEW (struct internalvar);
a109c7c1 2039
395f9c91 2040 var->name = xstrdup (name);
78267919 2041 var->kind = INTERNALVAR_VOID;
c906108c
SS
2042 var->next = internalvars;
2043 internalvars = var;
2044 return var;
2045}
2046
4aa995e1
PA
2047/* Create an internal variable with name NAME and register FUN as the
2048 function that value_of_internalvar uses to create a value whenever
2049 this variable is referenced. NAME should not normally include a
22d2b532
SDJ
2050 dollar sign. DATA is passed uninterpreted to FUN when it is
2051 called. CLEANUP, if not NULL, is called when the internal variable
2052 is destroyed. It is passed DATA as its only argument. */
4aa995e1
PA
2053
2054struct internalvar *
22d2b532
SDJ
2055create_internalvar_type_lazy (const char *name,
2056 const struct internalvar_funcs *funcs,
2057 void *data)
4aa995e1 2058{
4fa62494 2059 struct internalvar *var = create_internalvar (name);
a109c7c1 2060
78267919 2061 var->kind = INTERNALVAR_MAKE_VALUE;
22d2b532
SDJ
2062 var->u.make_value.functions = funcs;
2063 var->u.make_value.data = data;
4aa995e1
PA
2064 return var;
2065}
c4a3d09a 2066
22d2b532
SDJ
2067/* See documentation in value.h. */
2068
2069int
2070compile_internalvar_to_ax (struct internalvar *var,
2071 struct agent_expr *expr,
2072 struct axs_value *value)
2073{
2074 if (var->kind != INTERNALVAR_MAKE_VALUE
2075 || var->u.make_value.functions->compile_to_ax == NULL)
2076 return 0;
2077
2078 var->u.make_value.functions->compile_to_ax (var, expr, value,
2079 var->u.make_value.data);
2080 return 1;
2081}
2082
c4a3d09a
MF
2083/* Look up an internal variable with name NAME. NAME should not
2084 normally include a dollar sign.
2085
2086 If the specified internal variable does not exist,
2087 one is created, with a void value. */
2088
2089struct internalvar *
bc3b79fd 2090lookup_internalvar (const char *name)
c4a3d09a
MF
2091{
2092 struct internalvar *var;
2093
2094 var = lookup_only_internalvar (name);
2095 if (var)
2096 return var;
2097
2098 return create_internalvar (name);
2099}
2100
78267919
UW
2101/* Return current value of internal variable VAR. For variables that
2102 are not inherently typed, use a value type appropriate for GDBARCH. */
2103
f23631e4 2104struct value *
78267919 2105value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
c906108c 2106{
f23631e4 2107 struct value *val;
0914bcdb
SS
2108 struct trace_state_variable *tsv;
2109
2110 /* If there is a trace state variable of the same name, assume that
2111 is what we really want to see. */
2112 tsv = find_trace_state_variable (var->name);
2113 if (tsv)
2114 {
2115 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2116 &(tsv->value));
2117 if (tsv->value_known)
2118 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2119 tsv->value);
2120 else
2121 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2122 return val;
2123 }
c906108c 2124
78267919 2125 switch (var->kind)
5f5233d4 2126 {
78267919
UW
2127 case INTERNALVAR_VOID:
2128 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2129 break;
4fa62494 2130
78267919
UW
2131 case INTERNALVAR_FUNCTION:
2132 val = allocate_value (builtin_type (gdbarch)->internal_fn);
2133 break;
4fa62494 2134
cab0c772
UW
2135 case INTERNALVAR_INTEGER:
2136 if (!var->u.integer.type)
78267919 2137 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
cab0c772 2138 var->u.integer.val);
78267919 2139 else
cab0c772
UW
2140 val = value_from_longest (var->u.integer.type, var->u.integer.val);
2141 break;
2142
78267919
UW
2143 case INTERNALVAR_STRING:
2144 val = value_cstring (var->u.string, strlen (var->u.string),
2145 builtin_type (gdbarch)->builtin_char);
2146 break;
4fa62494 2147
78267919
UW
2148 case INTERNALVAR_VALUE:
2149 val = value_copy (var->u.value);
4aa995e1
PA
2150 if (value_lazy (val))
2151 value_fetch_lazy (val);
78267919 2152 break;
4aa995e1 2153
78267919 2154 case INTERNALVAR_MAKE_VALUE:
22d2b532
SDJ
2155 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
2156 var->u.make_value.data);
78267919
UW
2157 break;
2158
2159 default:
9b20d036 2160 internal_error (__FILE__, __LINE__, _("bad kind"));
78267919
UW
2161 }
2162
2163 /* Change the VALUE_LVAL to lval_internalvar so that future operations
2164 on this value go back to affect the original internal variable.
2165
2166 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
30baf67b 2167 no underlying modifiable state in the internal variable.
78267919
UW
2168
2169 Likewise, if the variable's value is a computed lvalue, we want
2170 references to it to produce another computed lvalue, where
2171 references and assignments actually operate through the
2172 computed value's functions.
2173
2174 This means that internal variables with computed values
2175 behave a little differently from other internal variables:
2176 assignments to them don't just replace the previous value
2177 altogether. At the moment, this seems like the behavior we
2178 want. */
2179
2180 if (var->kind != INTERNALVAR_MAKE_VALUE
2181 && val->lval != lval_computed)
2182 {
2183 VALUE_LVAL (val) = lval_internalvar;
2184 VALUE_INTERNALVAR (val) = var;
5f5233d4 2185 }
d3c139e9 2186
4fa62494
UW
2187 return val;
2188}
d3c139e9 2189
4fa62494
UW
2190int
2191get_internalvar_integer (struct internalvar *var, LONGEST *result)
2192{
3158c6ed 2193 if (var->kind == INTERNALVAR_INTEGER)
4fa62494 2194 {
cab0c772
UW
2195 *result = var->u.integer.val;
2196 return 1;
3158c6ed 2197 }
d3c139e9 2198
3158c6ed
PA
2199 if (var->kind == INTERNALVAR_VALUE)
2200 {
2201 struct type *type = check_typedef (value_type (var->u.value));
2202
78134374 2203 if (type->code () == TYPE_CODE_INT)
3158c6ed
PA
2204 {
2205 *result = value_as_long (var->u.value);
2206 return 1;
2207 }
4fa62494 2208 }
3158c6ed
PA
2209
2210 return 0;
4fa62494 2211}
d3c139e9 2212
4fa62494
UW
2213static int
2214get_internalvar_function (struct internalvar *var,
2215 struct internal_function **result)
2216{
78267919 2217 switch (var->kind)
d3c139e9 2218 {
78267919
UW
2219 case INTERNALVAR_FUNCTION:
2220 *result = var->u.fn.function;
4fa62494 2221 return 1;
d3c139e9 2222
4fa62494
UW
2223 default:
2224 return 0;
2225 }
c906108c
SS
2226}
2227
2228void
6b850546
DT
2229set_internalvar_component (struct internalvar *var,
2230 LONGEST offset, LONGEST bitpos,
2231 LONGEST bitsize, struct value *newval)
c906108c 2232{
4fa62494 2233 gdb_byte *addr;
3ae385af
SM
2234 struct gdbarch *arch;
2235 int unit_size;
c906108c 2236
78267919 2237 switch (var->kind)
4fa62494 2238 {
78267919
UW
2239 case INTERNALVAR_VALUE:
2240 addr = value_contents_writeable (var->u.value);
3ae385af
SM
2241 arch = get_value_arch (var->u.value);
2242 unit_size = gdbarch_addressable_memory_unit_size (arch);
4fa62494
UW
2243
2244 if (bitsize)
50810684 2245 modify_field (value_type (var->u.value), addr + offset,
4fa62494
UW
2246 value_as_long (newval), bitpos, bitsize);
2247 else
3ae385af 2248 memcpy (addr + offset * unit_size, value_contents (newval),
4fa62494
UW
2249 TYPE_LENGTH (value_type (newval)));
2250 break;
78267919
UW
2251
2252 default:
2253 /* We can never get a component of any other kind. */
9b20d036 2254 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
4fa62494 2255 }
c906108c
SS
2256}
2257
2258void
f23631e4 2259set_internalvar (struct internalvar *var, struct value *val)
c906108c 2260{
78267919 2261 enum internalvar_kind new_kind;
4fa62494 2262 union internalvar_data new_data = { 0 };
c906108c 2263
78267919 2264 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
bc3b79fd
TJB
2265 error (_("Cannot overwrite convenience function %s"), var->name);
2266
4fa62494 2267 /* Prepare new contents. */
78134374 2268 switch (check_typedef (value_type (val))->code ())
4fa62494
UW
2269 {
2270 case TYPE_CODE_VOID:
78267919 2271 new_kind = INTERNALVAR_VOID;
4fa62494
UW
2272 break;
2273
2274 case TYPE_CODE_INTERNAL_FUNCTION:
2275 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
78267919
UW
2276 new_kind = INTERNALVAR_FUNCTION;
2277 get_internalvar_function (VALUE_INTERNALVAR (val),
2278 &new_data.fn.function);
2279 /* Copies created here are never canonical. */
4fa62494
UW
2280 break;
2281
4fa62494 2282 default:
78267919 2283 new_kind = INTERNALVAR_VALUE;
895dafa6
TT
2284 struct value *copy = value_copy (val);
2285 copy->modifiable = 1;
4fa62494
UW
2286
2287 /* Force the value to be fetched from the target now, to avoid problems
2288 later when this internalvar is referenced and the target is gone or
2289 has changed. */
895dafa6
TT
2290 if (value_lazy (copy))
2291 value_fetch_lazy (copy);
4fa62494
UW
2292
2293 /* Release the value from the value chain to prevent it from being
2294 deleted by free_all_values. From here on this function should not
2295 call error () until new_data is installed into the var->u to avoid
2296 leaking memory. */
895dafa6 2297 new_data.value = release_value (copy).release ();
9920b434
BH
2298
2299 /* Internal variables which are created from values with a dynamic
2300 location don't need the location property of the origin anymore.
2301 The resolved dynamic location is used prior then any other address
2302 when accessing the value.
2303 If we keep it, we would still refer to the origin value.
2304 Remove the location property in case it exist. */
7aa91313 2305 value_type (new_data.value)->remove_dyn_prop (DYN_PROP_DATA_LOCATION);
9920b434 2306
4fa62494
UW
2307 break;
2308 }
2309
2310 /* Clean up old contents. */
2311 clear_internalvar (var);
2312
2313 /* Switch over. */
78267919 2314 var->kind = new_kind;
4fa62494 2315 var->u = new_data;
c906108c
SS
2316 /* End code which must not call error(). */
2317}
2318
4fa62494
UW
2319void
2320set_internalvar_integer (struct internalvar *var, LONGEST l)
2321{
2322 /* Clean up old contents. */
2323 clear_internalvar (var);
2324
cab0c772
UW
2325 var->kind = INTERNALVAR_INTEGER;
2326 var->u.integer.type = NULL;
2327 var->u.integer.val = l;
78267919
UW
2328}
2329
2330void
2331set_internalvar_string (struct internalvar *var, const char *string)
2332{
2333 /* Clean up old contents. */
2334 clear_internalvar (var);
2335
2336 var->kind = INTERNALVAR_STRING;
2337 var->u.string = xstrdup (string);
4fa62494
UW
2338}
2339
2340static void
2341set_internalvar_function (struct internalvar *var, struct internal_function *f)
2342{
2343 /* Clean up old contents. */
2344 clear_internalvar (var);
2345
78267919
UW
2346 var->kind = INTERNALVAR_FUNCTION;
2347 var->u.fn.function = f;
2348 var->u.fn.canonical = 1;
2349 /* Variables installed here are always the canonical version. */
4fa62494
UW
2350}
2351
2352void
2353clear_internalvar (struct internalvar *var)
2354{
2355 /* Clean up old contents. */
78267919 2356 switch (var->kind)
4fa62494 2357 {
78267919 2358 case INTERNALVAR_VALUE:
22bc8444 2359 value_decref (var->u.value);
78267919
UW
2360 break;
2361
2362 case INTERNALVAR_STRING:
2363 xfree (var->u.string);
4fa62494
UW
2364 break;
2365
22d2b532
SDJ
2366 case INTERNALVAR_MAKE_VALUE:
2367 if (var->u.make_value.functions->destroy != NULL)
2368 var->u.make_value.functions->destroy (var->u.make_value.data);
2369 break;
2370
4fa62494 2371 default:
4fa62494
UW
2372 break;
2373 }
2374
78267919
UW
2375 /* Reset to void kind. */
2376 var->kind = INTERNALVAR_VOID;
4fa62494
UW
2377}
2378
c906108c 2379char *
4bf7b526 2380internalvar_name (const struct internalvar *var)
c906108c
SS
2381{
2382 return var->name;
2383}
2384
4fa62494
UW
2385static struct internal_function *
2386create_internal_function (const char *name,
2387 internal_function_fn handler, void *cookie)
bc3b79fd 2388{
bc3b79fd 2389 struct internal_function *ifn = XNEW (struct internal_function);
a109c7c1 2390
bc3b79fd
TJB
2391 ifn->name = xstrdup (name);
2392 ifn->handler = handler;
2393 ifn->cookie = cookie;
4fa62494 2394 return ifn;
bc3b79fd
TJB
2395}
2396
2397char *
2398value_internal_function_name (struct value *val)
2399{
4fa62494
UW
2400 struct internal_function *ifn;
2401 int result;
2402
2403 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2404 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2405 gdb_assert (result);
2406
bc3b79fd
TJB
2407 return ifn->name;
2408}
2409
2410struct value *
d452c4bc
UW
2411call_internal_function (struct gdbarch *gdbarch,
2412 const struct language_defn *language,
2413 struct value *func, int argc, struct value **argv)
bc3b79fd 2414{
4fa62494
UW
2415 struct internal_function *ifn;
2416 int result;
2417
2418 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2419 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2420 gdb_assert (result);
2421
d452c4bc 2422 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
bc3b79fd
TJB
2423}
2424
2425/* The 'function' command. This does nothing -- it is just a
2426 placeholder to let "help function NAME" work. This is also used as
2427 the implementation of the sub-command that is created when
2428 registering an internal function. */
2429static void
981a3fb3 2430function_command (const char *command, int from_tty)
bc3b79fd
TJB
2431{
2432 /* Do nothing. */
2433}
2434
1a6d41c6
TT
2435/* Helper function that does the work for add_internal_function. */
2436
2437static struct cmd_list_element *
2438do_add_internal_function (const char *name, const char *doc,
2439 internal_function_fn handler, void *cookie)
bc3b79fd 2440{
4fa62494 2441 struct internal_function *ifn;
bc3b79fd 2442 struct internalvar *var = lookup_internalvar (name);
4fa62494
UW
2443
2444 ifn = create_internal_function (name, handler, cookie);
2445 set_internalvar_function (var, ifn);
bc3b79fd 2446
3ea16160 2447 return add_cmd (name, no_class, function_command, doc, &functionlist);
1a6d41c6
TT
2448}
2449
2450/* See value.h. */
2451
2452void
2453add_internal_function (const char *name, const char *doc,
2454 internal_function_fn handler, void *cookie)
2455{
2456 do_add_internal_function (name, doc, handler, cookie);
2457}
2458
2459/* See value.h. */
2460
2461void
3ea16160
TT
2462add_internal_function (gdb::unique_xmalloc_ptr<char> &&name,
2463 gdb::unique_xmalloc_ptr<char> &&doc,
1a6d41c6
TT
2464 internal_function_fn handler, void *cookie)
2465{
2466 struct cmd_list_element *cmd
3ea16160 2467 = do_add_internal_function (name.get (), doc.get (), handler, cookie);
1a6d41c6
TT
2468 doc.release ();
2469 cmd->doc_allocated = 1;
3ea16160
TT
2470 name.release ();
2471 cmd->name_allocated = 1;
bc3b79fd
TJB
2472}
2473
ae5a43e0
DJ
2474/* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2475 prevent cycles / duplicates. */
2476
4e7a5ef5 2477void
ae5a43e0
DJ
2478preserve_one_value (struct value *value, struct objfile *objfile,
2479 htab_t copied_types)
2480{
2481 if (TYPE_OBJFILE (value->type) == objfile)
2482 value->type = copy_type_recursive (objfile, value->type, copied_types);
2483
2484 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2485 value->enclosing_type = copy_type_recursive (objfile,
2486 value->enclosing_type,
2487 copied_types);
2488}
2489
78267919
UW
2490/* Likewise for internal variable VAR. */
2491
2492static void
2493preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2494 htab_t copied_types)
2495{
2496 switch (var->kind)
2497 {
cab0c772
UW
2498 case INTERNALVAR_INTEGER:
2499 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2500 var->u.integer.type
2501 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2502 break;
2503
78267919
UW
2504 case INTERNALVAR_VALUE:
2505 preserve_one_value (var->u.value, objfile, copied_types);
2506 break;
2507 }
2508}
2509
ae5a43e0
DJ
2510/* Update the internal variables and value history when OBJFILE is
2511 discarded; we must copy the types out of the objfile. New global types
2512 will be created for every convenience variable which currently points to
2513 this objfile's types, and the convenience variables will be adjusted to
2514 use the new global types. */
c906108c
SS
2515
2516void
ae5a43e0 2517preserve_values (struct objfile *objfile)
c906108c 2518{
ae5a43e0 2519 htab_t copied_types;
52f0bd74 2520 struct internalvar *var;
c906108c 2521
ae5a43e0
DJ
2522 /* Create the hash table. We allocate on the objfile's obstack, since
2523 it is soon to be deleted. */
2524 copied_types = create_copied_types_hash (objfile);
2525
4d0266a0
TT
2526 for (const value_ref_ptr &item : value_history)
2527 preserve_one_value (item.get (), objfile, copied_types);
ae5a43e0
DJ
2528
2529 for (var = internalvars; var; var = var->next)
78267919 2530 preserve_one_internalvar (var, objfile, copied_types);
ae5a43e0 2531
6dddc817 2532 preserve_ext_lang_values (objfile, copied_types);
a08702d6 2533
ae5a43e0 2534 htab_delete (copied_types);
c906108c
SS
2535}
2536
2537static void
ad25e423 2538show_convenience (const char *ignore, int from_tty)
c906108c 2539{
e17c207e 2540 struct gdbarch *gdbarch = get_current_arch ();
52f0bd74 2541 struct internalvar *var;
c906108c 2542 int varseen = 0;
79a45b7d 2543 struct value_print_options opts;
c906108c 2544
79a45b7d 2545 get_user_print_options (&opts);
c906108c
SS
2546 for (var = internalvars; var; var = var->next)
2547 {
c709acd1 2548
c906108c
SS
2549 if (!varseen)
2550 {
2551 varseen = 1;
2552 }
a3f17187 2553 printf_filtered (("$%s = "), var->name);
c709acd1 2554
a70b8144 2555 try
c709acd1
PA
2556 {
2557 struct value *val;
2558
2559 val = value_of_internalvar (gdbarch, var);
2560 value_print (val, gdb_stdout, &opts);
2561 }
230d2906 2562 catch (const gdb_exception_error &ex)
492d29ea 2563 {
7f6aba03
TT
2564 fprintf_styled (gdb_stdout, metadata_style.style (),
2565 _("<error: %s>"), ex.what ());
492d29ea 2566 }
492d29ea 2567
a3f17187 2568 printf_filtered (("\n"));
c906108c
SS
2569 }
2570 if (!varseen)
f47f77df
DE
2571 {
2572 /* This text does not mention convenience functions on purpose.
2573 The user can't create them except via Python, and if Python support
2574 is installed this message will never be printed ($_streq will
2575 exist). */
2576 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2577 "Convenience variables have "
2578 "names starting with \"$\";\n"
2579 "use \"set\" as in \"set "
2580 "$foo = 5\" to define them.\n"));
2581 }
c906108c
SS
2582}
2583\f
ba18742c
SM
2584
2585/* See value.h. */
e81e7f5e
SC
2586
2587struct value *
ba18742c 2588value_from_xmethod (xmethod_worker_up &&worker)
e81e7f5e 2589{
ba18742c 2590 struct value *v;
e81e7f5e 2591
ba18742c
SM
2592 v = allocate_value (builtin_type (target_gdbarch ())->xmethod);
2593 v->lval = lval_xcallable;
2594 v->location.xm_worker = worker.release ();
2595 v->modifiable = 0;
e81e7f5e 2596
ba18742c 2597 return v;
e81e7f5e
SC
2598}
2599
2ce1cdbf
DE
2600/* Return the type of the result of TYPE_CODE_XMETHOD value METHOD. */
2601
2602struct type *
6b1747cd 2603result_type_of_xmethod (struct value *method, gdb::array_view<value *> argv)
2ce1cdbf 2604{
78134374 2605 gdb_assert (value_type (method)->code () == TYPE_CODE_XMETHOD
6b1747cd 2606 && method->lval == lval_xcallable && !argv.empty ());
2ce1cdbf 2607
6b1747cd 2608 return method->location.xm_worker->get_result_type (argv[0], argv.slice (1));
2ce1cdbf
DE
2609}
2610
e81e7f5e
SC
2611/* Call the xmethod corresponding to the TYPE_CODE_XMETHOD value METHOD. */
2612
2613struct value *
6b1747cd 2614call_xmethod (struct value *method, gdb::array_view<value *> argv)
e81e7f5e 2615{
78134374 2616 gdb_assert (value_type (method)->code () == TYPE_CODE_XMETHOD
6b1747cd 2617 && method->lval == lval_xcallable && !argv.empty ());
e81e7f5e 2618
6b1747cd 2619 return method->location.xm_worker->invoke (argv[0], argv.slice (1));
e81e7f5e
SC
2620}
2621\f
c906108c
SS
2622/* Extract a value as a C number (either long or double).
2623 Knows how to convert fixed values to double, or
2624 floating values to long.
2625 Does not deallocate the value. */
2626
2627LONGEST
f23631e4 2628value_as_long (struct value *val)
c906108c
SS
2629{
2630 /* This coerces arrays and functions, which is necessary (e.g.
2631 in disassemble_command). It also dereferences references, which
2632 I suspect is the most logical thing to do. */
994b9211 2633 val = coerce_array (val);
0fd88904 2634 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2635}
2636
581e13c1 2637/* Extract a value as a C pointer. Does not deallocate the value.
4478b372
JB
2638 Note that val's type may not actually be a pointer; value_as_long
2639 handles all the cases. */
c906108c 2640CORE_ADDR
f23631e4 2641value_as_address (struct value *val)
c906108c 2642{
50810684
UW
2643 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2644
c906108c
SS
2645 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2646 whether we want this to be true eventually. */
2647#if 0
bf6ae464 2648 /* gdbarch_addr_bits_remove is wrong if we are being called for a
c906108c
SS
2649 non-address (e.g. argument to "signal", "info break", etc.), or
2650 for pointers to char, in which the low bits *are* significant. */
50810684 2651 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
c906108c 2652#else
f312f057
JB
2653
2654 /* There are several targets (IA-64, PowerPC, and others) which
2655 don't represent pointers to functions as simply the address of
2656 the function's entry point. For example, on the IA-64, a
2657 function pointer points to a two-word descriptor, generated by
2658 the linker, which contains the function's entry point, and the
2659 value the IA-64 "global pointer" register should have --- to
2660 support position-independent code. The linker generates
2661 descriptors only for those functions whose addresses are taken.
2662
2663 On such targets, it's difficult for GDB to convert an arbitrary
2664 function address into a function pointer; it has to either find
2665 an existing descriptor for that function, or call malloc and
2666 build its own. On some targets, it is impossible for GDB to
2667 build a descriptor at all: the descriptor must contain a jump
2668 instruction; data memory cannot be executed; and code memory
2669 cannot be modified.
2670
2671 Upon entry to this function, if VAL is a value of type `function'
2672 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
42ae5230 2673 value_address (val) is the address of the function. This is what
f312f057
JB
2674 you'll get if you evaluate an expression like `main'. The call
2675 to COERCE_ARRAY below actually does all the usual unary
2676 conversions, which includes converting values of type `function'
2677 to `pointer to function'. This is the challenging conversion
2678 discussed above. Then, `unpack_long' will convert that pointer
2679 back into an address.
2680
2681 So, suppose the user types `disassemble foo' on an architecture
2682 with a strange function pointer representation, on which GDB
2683 cannot build its own descriptors, and suppose further that `foo'
2684 has no linker-built descriptor. The address->pointer conversion
2685 will signal an error and prevent the command from running, even
2686 though the next step would have been to convert the pointer
2687 directly back into the same address.
2688
2689 The following shortcut avoids this whole mess. If VAL is a
2690 function, just return its address directly. */
78134374
SM
2691 if (value_type (val)->code () == TYPE_CODE_FUNC
2692 || value_type (val)->code () == TYPE_CODE_METHOD)
42ae5230 2693 return value_address (val);
f312f057 2694
994b9211 2695 val = coerce_array (val);
fc0c74b1
AC
2696
2697 /* Some architectures (e.g. Harvard), map instruction and data
2698 addresses onto a single large unified address space. For
2699 instance: An architecture may consider a large integer in the
2700 range 0x10000000 .. 0x1000ffff to already represent a data
2701 addresses (hence not need a pointer to address conversion) while
2702 a small integer would still need to be converted integer to
2703 pointer to address. Just assume such architectures handle all
2704 integer conversions in a single function. */
2705
2706 /* JimB writes:
2707
2708 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2709 must admonish GDB hackers to make sure its behavior matches the
2710 compiler's, whenever possible.
2711
2712 In general, I think GDB should evaluate expressions the same way
2713 the compiler does. When the user copies an expression out of
2714 their source code and hands it to a `print' command, they should
2715 get the same value the compiler would have computed. Any
2716 deviation from this rule can cause major confusion and annoyance,
2717 and needs to be justified carefully. In other words, GDB doesn't
2718 really have the freedom to do these conversions in clever and
2719 useful ways.
2720
2721 AndrewC pointed out that users aren't complaining about how GDB
2722 casts integers to pointers; they are complaining that they can't
2723 take an address from a disassembly listing and give it to `x/i'.
2724 This is certainly important.
2725
79dd2d24 2726 Adding an architecture method like integer_to_address() certainly
fc0c74b1
AC
2727 makes it possible for GDB to "get it right" in all circumstances
2728 --- the target has complete control over how things get done, so
2729 people can Do The Right Thing for their target without breaking
2730 anyone else. The standard doesn't specify how integers get
2731 converted to pointers; usually, the ABI doesn't either, but
2732 ABI-specific code is a more reasonable place to handle it. */
2733
78134374 2734 if (value_type (val)->code () != TYPE_CODE_PTR
aa006118 2735 && !TYPE_IS_REFERENCE (value_type (val))
50810684
UW
2736 && gdbarch_integer_to_address_p (gdbarch))
2737 return gdbarch_integer_to_address (gdbarch, value_type (val),
0fd88904 2738 value_contents (val));
fc0c74b1 2739
0fd88904 2740 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2741#endif
2742}
2743\f
2744/* Unpack raw data (copied from debugee, target byte order) at VALADDR
2745 as a long, or as a double, assuming the raw data is described
2746 by type TYPE. Knows how to convert different sizes of values
2747 and can convert between fixed and floating point. We don't assume
2748 any alignment for the raw data. Return value is in host byte order.
2749
2750 If you want functions and arrays to be coerced to pointers, and
2751 references to be dereferenced, call value_as_long() instead.
2752
2753 C++: It is assumed that the front-end has taken care of
2754 all matters concerning pointers to members. A pointer
2755 to member which reaches here is considered to be equivalent
2756 to an INT (or some size). After all, it is only an offset. */
2757
2758LONGEST
fc1a4b47 2759unpack_long (struct type *type, const gdb_byte *valaddr)
c906108c 2760{
34877895 2761 enum bfd_endian byte_order = type_byte_order (type);
78134374 2762 enum type_code code = type->code ();
52f0bd74
AC
2763 int len = TYPE_LENGTH (type);
2764 int nosign = TYPE_UNSIGNED (type);
c906108c 2765
c906108c
SS
2766 switch (code)
2767 {
2768 case TYPE_CODE_TYPEDEF:
2769 return unpack_long (check_typedef (type), valaddr);
2770 case TYPE_CODE_ENUM:
4f2aea11 2771 case TYPE_CODE_FLAGS:
c906108c
SS
2772 case TYPE_CODE_BOOL:
2773 case TYPE_CODE_INT:
2774 case TYPE_CODE_CHAR:
2775 case TYPE_CODE_RANGE:
0d5de010 2776 case TYPE_CODE_MEMBERPTR:
4e962e74
TT
2777 {
2778 LONGEST result;
2779 if (nosign)
2780 result = extract_unsigned_integer (valaddr, len, byte_order);
2781 else
2782 result = extract_signed_integer (valaddr, len, byte_order);
2783 if (code == TYPE_CODE_RANGE)
599088e3 2784 result += type->bounds ()->bias;
4e962e74
TT
2785 return result;
2786 }
c906108c
SS
2787
2788 case TYPE_CODE_FLT:
4ef30785 2789 case TYPE_CODE_DECFLOAT:
50637b26 2790 return target_float_to_longest (valaddr, type);
4ef30785 2791
c906108c
SS
2792 case TYPE_CODE_PTR:
2793 case TYPE_CODE_REF:
aa006118 2794 case TYPE_CODE_RVALUE_REF:
c906108c 2795 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
c5aa993b 2796 whether we want this to be true eventually. */
4478b372 2797 return extract_typed_address (valaddr, type);
c906108c 2798
c906108c 2799 default:
8a3fe4f8 2800 error (_("Value can't be converted to integer."));
c906108c 2801 }
c906108c
SS
2802}
2803
c906108c
SS
2804/* Unpack raw data (copied from debugee, target byte order) at VALADDR
2805 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2806 We don't assume any alignment for the raw data. Return value is in
2807 host byte order.
2808
2809 If you want functions and arrays to be coerced to pointers, and
1aa20aa8 2810 references to be dereferenced, call value_as_address() instead.
c906108c
SS
2811
2812 C++: It is assumed that the front-end has taken care of
2813 all matters concerning pointers to members. A pointer
2814 to member which reaches here is considered to be equivalent
2815 to an INT (or some size). After all, it is only an offset. */
2816
2817CORE_ADDR
fc1a4b47 2818unpack_pointer (struct type *type, const gdb_byte *valaddr)
c906108c
SS
2819{
2820 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2821 whether we want this to be true eventually. */
2822 return unpack_long (type, valaddr);
2823}
4478b372 2824
70100014
UW
2825bool
2826is_floating_value (struct value *val)
2827{
2828 struct type *type = check_typedef (value_type (val));
2829
2830 if (is_floating_type (type))
2831 {
2832 if (!target_float_is_valid (value_contents (val), type))
2833 error (_("Invalid floating value found in program."));
2834 return true;
2835 }
2836
2837 return false;
2838}
2839
c906108c 2840\f
1596cb5d 2841/* Get the value of the FIELDNO'th field (which must be static) of
686d4def 2842 TYPE. */
c906108c 2843
f23631e4 2844struct value *
fba45db2 2845value_static_field (struct type *type, int fieldno)
c906108c 2846{
948e66d9
DJ
2847 struct value *retval;
2848
1596cb5d 2849 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
c906108c 2850 {
1596cb5d 2851 case FIELD_LOC_KIND_PHYSADDR:
940da03e 2852 retval = value_at_lazy (type->field (fieldno).type (),
52e9fde8 2853 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1596cb5d
DE
2854 break;
2855 case FIELD_LOC_KIND_PHYSNAME:
c906108c 2856 {
ff355380 2857 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
581e13c1 2858 /* TYPE_FIELD_NAME (type, fieldno); */
d12307c1 2859 struct block_symbol sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
94af9270 2860
d12307c1 2861 if (sym.symbol == NULL)
c906108c 2862 {
a109c7c1 2863 /* With some compilers, e.g. HP aCC, static data members are
581e13c1 2864 reported as non-debuggable symbols. */
3b7344d5
TT
2865 struct bound_minimal_symbol msym
2866 = lookup_minimal_symbol (phys_name, NULL, NULL);
940da03e 2867 struct type *field_type = type->field (fieldno).type ();
a109c7c1 2868
3b7344d5 2869 if (!msym.minsym)
c2e0e465 2870 retval = allocate_optimized_out_value (field_type);
c906108c 2871 else
c2e0e465 2872 retval = value_at_lazy (field_type, BMSYMBOL_VALUE_ADDRESS (msym));
c906108c
SS
2873 }
2874 else
d12307c1 2875 retval = value_of_variable (sym.symbol, sym.block);
1596cb5d 2876 break;
c906108c 2877 }
1596cb5d 2878 default:
f3574227 2879 gdb_assert_not_reached ("unexpected field location kind");
1596cb5d
DE
2880 }
2881
948e66d9 2882 return retval;
c906108c
SS
2883}
2884
4dfea560
DE
2885/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
2886 You have to be careful here, since the size of the data area for the value
2887 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
2888 than the old enclosing type, you have to allocate more space for the
2889 data. */
2b127877 2890
4dfea560
DE
2891void
2892set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2b127877 2893{
5fdf6324
AB
2894 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
2895 {
2896 check_type_length_before_alloc (new_encl_type);
2897 val->contents
14c88955
TT
2898 .reset ((gdb_byte *) xrealloc (val->contents.release (),
2899 TYPE_LENGTH (new_encl_type)));
5fdf6324 2900 }
3e3d7139
JG
2901
2902 val->enclosing_type = new_encl_type;
2b127877
DB
2903}
2904
c906108c
SS
2905/* Given a value ARG1 (offset by OFFSET bytes)
2906 of a struct or union type ARG_TYPE,
2907 extract and return the value of one of its (non-static) fields.
581e13c1 2908 FIELDNO says which field. */
c906108c 2909
f23631e4 2910struct value *
6b850546 2911value_primitive_field (struct value *arg1, LONGEST offset,
aa1ee363 2912 int fieldno, struct type *arg_type)
c906108c 2913{
f23631e4 2914 struct value *v;
52f0bd74 2915 struct type *type;
3ae385af
SM
2916 struct gdbarch *arch = get_value_arch (arg1);
2917 int unit_size = gdbarch_addressable_memory_unit_size (arch);
c906108c 2918
f168693b 2919 arg_type = check_typedef (arg_type);
940da03e 2920 type = arg_type->field (fieldno).type ();
c54eabfa
JK
2921
2922 /* Call check_typedef on our type to make sure that, if TYPE
2923 is a TYPE_CODE_TYPEDEF, its length is set to the length
2924 of the target type instead of zero. However, we do not
2925 replace the typedef type by the target type, because we want
2926 to keep the typedef in order to be able to print the type
2927 description correctly. */
2928 check_typedef (type);
c906108c 2929
691a26f5 2930 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
c906108c 2931 {
22c05d8a
JK
2932 /* Handle packed fields.
2933
2934 Create a new value for the bitfield, with bitpos and bitsize
4ea48cc1
DJ
2935 set. If possible, arrange offset and bitpos so that we can
2936 do a single aligned read of the size of the containing type.
2937 Otherwise, adjust offset to the byte containing the first
2938 bit. Assume that the address, offset, and embedded offset
2939 are sufficiently aligned. */
22c05d8a 2940
6b850546
DT
2941 LONGEST bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
2942 LONGEST container_bitsize = TYPE_LENGTH (type) * 8;
4ea48cc1 2943
9a0dc9e3
PA
2944 v = allocate_value_lazy (type);
2945 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
2946 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
2947 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
2948 v->bitpos = bitpos % container_bitsize;
4ea48cc1 2949 else
9a0dc9e3
PA
2950 v->bitpos = bitpos % 8;
2951 v->offset = (value_embedded_offset (arg1)
2952 + offset
2953 + (bitpos - v->bitpos) / 8);
2954 set_value_parent (v, arg1);
2955 if (!value_lazy (arg1))
2956 value_fetch_lazy (v);
c906108c
SS
2957 }
2958 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
2959 {
2960 /* This field is actually a base subobject, so preserve the
39d37385
PA
2961 entire object's contents for later references to virtual
2962 bases, etc. */
6b850546 2963 LONGEST boffset;
a4e2ee12
DJ
2964
2965 /* Lazy register values with offsets are not supported. */
2966 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2967 value_fetch_lazy (arg1);
2968
9a0dc9e3
PA
2969 /* We special case virtual inheritance here because this
2970 requires access to the contents, which we would rather avoid
2971 for references to ordinary fields of unavailable values. */
2972 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
2973 boffset = baseclass_offset (arg_type, fieldno,
2974 value_contents (arg1),
2975 value_embedded_offset (arg1),
2976 value_address (arg1),
2977 arg1);
c906108c 2978 else
9a0dc9e3 2979 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
691a26f5 2980
9a0dc9e3
PA
2981 if (value_lazy (arg1))
2982 v = allocate_value_lazy (value_enclosing_type (arg1));
2983 else
2984 {
2985 v = allocate_value (value_enclosing_type (arg1));
2986 value_contents_copy_raw (v, 0, arg1, 0,
2987 TYPE_LENGTH (value_enclosing_type (arg1)));
3e3d7139 2988 }
9a0dc9e3
PA
2989 v->type = type;
2990 v->offset = value_offset (arg1);
2991 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
c906108c 2992 }
9920b434
BH
2993 else if (NULL != TYPE_DATA_LOCATION (type))
2994 {
2995 /* Field is a dynamic data member. */
2996
2997 gdb_assert (0 == offset);
2998 /* We expect an already resolved data location. */
2999 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (type));
3000 /* For dynamic data types defer memory allocation
3001 until we actual access the value. */
3002 v = allocate_value_lazy (type);
3003 }
c906108c
SS
3004 else
3005 {
3006 /* Plain old data member */
3ae385af
SM
3007 offset += (TYPE_FIELD_BITPOS (arg_type, fieldno)
3008 / (HOST_CHAR_BIT * unit_size));
a4e2ee12
DJ
3009
3010 /* Lazy register values with offsets are not supported. */
3011 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3012 value_fetch_lazy (arg1);
3013
9a0dc9e3 3014 if (value_lazy (arg1))
3e3d7139 3015 v = allocate_value_lazy (type);
c906108c 3016 else
3e3d7139
JG
3017 {
3018 v = allocate_value (type);
39d37385
PA
3019 value_contents_copy_raw (v, value_embedded_offset (v),
3020 arg1, value_embedded_offset (arg1) + offset,
3ae385af 3021 type_length_units (type));
3e3d7139 3022 }
df407dfe 3023 v->offset = (value_offset (arg1) + offset
13c3b5f5 3024 + value_embedded_offset (arg1));
c906108c 3025 }
74bcbdf3 3026 set_value_component_location (v, arg1);
c906108c
SS
3027 return v;
3028}
3029
3030/* Given a value ARG1 of a struct or union type,
3031 extract and return the value of one of its (non-static) fields.
581e13c1 3032 FIELDNO says which field. */
c906108c 3033
f23631e4 3034struct value *
aa1ee363 3035value_field (struct value *arg1, int fieldno)
c906108c 3036{
df407dfe 3037 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
c906108c
SS
3038}
3039
3040/* Return a non-virtual function as a value.
3041 F is the list of member functions which contains the desired method.
0478d61c
FF
3042 J is an index into F which provides the desired method.
3043
3044 We only use the symbol for its address, so be happy with either a
581e13c1 3045 full symbol or a minimal symbol. */
c906108c 3046
f23631e4 3047struct value *
3e43a32a
MS
3048value_fn_field (struct value **arg1p, struct fn_field *f,
3049 int j, struct type *type,
6b850546 3050 LONGEST offset)
c906108c 3051{
f23631e4 3052 struct value *v;
52f0bd74 3053 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
1d06ead6 3054 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
c906108c 3055 struct symbol *sym;
7c7b6655 3056 struct bound_minimal_symbol msym;
c906108c 3057
d12307c1 3058 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0).symbol;
5ae326fa 3059 if (sym != NULL)
0478d61c 3060 {
7c7b6655 3061 memset (&msym, 0, sizeof (msym));
5ae326fa
AC
3062 }
3063 else
3064 {
3065 gdb_assert (sym == NULL);
7c7b6655
TT
3066 msym = lookup_bound_minimal_symbol (physname);
3067 if (msym.minsym == NULL)
5ae326fa 3068 return NULL;
0478d61c
FF
3069 }
3070
c906108c 3071 v = allocate_value (ftype);
1a088441 3072 VALUE_LVAL (v) = lval_memory;
0478d61c
FF
3073 if (sym)
3074 {
2b1ffcfd 3075 set_value_address (v, BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)));
0478d61c
FF
3076 }
3077 else
3078 {
bccdca4a
UW
3079 /* The minimal symbol might point to a function descriptor;
3080 resolve it to the actual code address instead. */
7c7b6655 3081 struct objfile *objfile = msym.objfile;
08feed99 3082 struct gdbarch *gdbarch = objfile->arch ();
bccdca4a 3083
42ae5230
TT
3084 set_value_address (v,
3085 gdbarch_convert_from_func_ptr_addr
8b88a78e 3086 (gdbarch, BMSYMBOL_VALUE_ADDRESS (msym), current_top_target ()));
0478d61c 3087 }
c906108c
SS
3088
3089 if (arg1p)
c5aa993b 3090 {
df407dfe 3091 if (type != value_type (*arg1p))
c5aa993b
JM
3092 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
3093 value_addr (*arg1p)));
3094
070ad9f0 3095 /* Move the `this' pointer according to the offset.
581e13c1 3096 VALUE_OFFSET (*arg1p) += offset; */
c906108c
SS
3097 }
3098
3099 return v;
3100}
3101
c906108c 3102\f
c906108c 3103
ef83a141
TT
3104/* See value.h. */
3105
3106LONGEST
4875ffdb 3107unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
6b850546 3108 LONGEST bitpos, LONGEST bitsize)
c906108c 3109{
34877895 3110 enum bfd_endian byte_order = type_byte_order (field_type);
c906108c
SS
3111 ULONGEST val;
3112 ULONGEST valmask;
c906108c 3113 int lsbcount;
6b850546
DT
3114 LONGEST bytes_read;
3115 LONGEST read_offset;
c906108c 3116
4a76eae5
DJ
3117 /* Read the minimum number of bytes required; there may not be
3118 enough bytes to read an entire ULONGEST. */
f168693b 3119 field_type = check_typedef (field_type);
4a76eae5
DJ
3120 if (bitsize)
3121 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
3122 else
15ce8941
TT
3123 {
3124 bytes_read = TYPE_LENGTH (field_type);
3125 bitsize = 8 * bytes_read;
3126 }
4a76eae5 3127
5467c6c8
PA
3128 read_offset = bitpos / 8;
3129
4875ffdb 3130 val = extract_unsigned_integer (valaddr + read_offset,
4a76eae5 3131 bytes_read, byte_order);
c906108c 3132
581e13c1 3133 /* Extract bits. See comment above. */
c906108c 3134
d5a22e77 3135 if (byte_order == BFD_ENDIAN_BIG)
4a76eae5 3136 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
c906108c
SS
3137 else
3138 lsbcount = (bitpos % 8);
3139 val >>= lsbcount;
3140
3141 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
581e13c1 3142 If the field is signed, and is negative, then sign extend. */
c906108c 3143
15ce8941 3144 if (bitsize < 8 * (int) sizeof (val))
c906108c
SS
3145 {
3146 valmask = (((ULONGEST) 1) << bitsize) - 1;
3147 val &= valmask;
3148 if (!TYPE_UNSIGNED (field_type))
3149 {
3150 if (val & (valmask ^ (valmask >> 1)))
3151 {
3152 val |= ~valmask;
3153 }
3154 }
3155 }
5467c6c8 3156
4875ffdb 3157 return val;
5467c6c8
PA
3158}
3159
3160/* Unpack a field FIELDNO of the specified TYPE, from the object at
3161 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
3162 ORIGINAL_VALUE, which must not be NULL. See
3163 unpack_value_bits_as_long for more details. */
3164
3165int
3166unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
6b850546 3167 LONGEST embedded_offset, int fieldno,
5467c6c8
PA
3168 const struct value *val, LONGEST *result)
3169{
4875ffdb
PA
3170 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3171 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
940da03e 3172 struct type *field_type = type->field (fieldno).type ();
4875ffdb
PA
3173 int bit_offset;
3174
5467c6c8
PA
3175 gdb_assert (val != NULL);
3176
4875ffdb
PA
3177 bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3178 if (value_bits_any_optimized_out (val, bit_offset, bitsize)
3179 || !value_bits_available (val, bit_offset, bitsize))
3180 return 0;
3181
3182 *result = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3183 bitpos, bitsize);
3184 return 1;
5467c6c8
PA
3185}
3186
3187/* Unpack a field FIELDNO of the specified TYPE, from the anonymous
4875ffdb 3188 object at VALADDR. See unpack_bits_as_long for more details. */
5467c6c8
PA
3189
3190LONGEST
3191unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
3192{
4875ffdb
PA
3193 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3194 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
940da03e 3195 struct type *field_type = type->field (fieldno).type ();
5467c6c8 3196
4875ffdb
PA
3197 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
3198}
3199
3200/* Unpack a bitfield of BITSIZE bits found at BITPOS in the object at
3201 VALADDR + EMBEDDEDOFFSET that has the type of DEST_VAL and store
3202 the contents in DEST_VAL, zero or sign extending if the type of
3203 DEST_VAL is wider than BITSIZE. VALADDR points to the contents of
3204 VAL. If the VAL's contents required to extract the bitfield from
3205 are unavailable/optimized out, DEST_VAL is correspondingly
3206 marked unavailable/optimized out. */
3207
bb9d5f81 3208void
4875ffdb 3209unpack_value_bitfield (struct value *dest_val,
6b850546
DT
3210 LONGEST bitpos, LONGEST bitsize,
3211 const gdb_byte *valaddr, LONGEST embedded_offset,
4875ffdb
PA
3212 const struct value *val)
3213{
3214 enum bfd_endian byte_order;
3215 int src_bit_offset;
3216 int dst_bit_offset;
4875ffdb
PA
3217 struct type *field_type = value_type (dest_val);
3218
34877895 3219 byte_order = type_byte_order (field_type);
e5ca03b4
PA
3220
3221 /* First, unpack and sign extend the bitfield as if it was wholly
3222 valid. Optimized out/unavailable bits are read as zero, but
3223 that's OK, as they'll end up marked below. If the VAL is
3224 wholly-invalid we may have skipped allocating its contents,
3225 though. See allocate_optimized_out_value. */
3226 if (valaddr != NULL)
3227 {
3228 LONGEST num;
3229
3230 num = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3231 bitpos, bitsize);
3232 store_signed_integer (value_contents_raw (dest_val),
3233 TYPE_LENGTH (field_type), byte_order, num);
3234 }
4875ffdb
PA
3235
3236 /* Now copy the optimized out / unavailability ranges to the right
3237 bits. */
3238 src_bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3239 if (byte_order == BFD_ENDIAN_BIG)
3240 dst_bit_offset = TYPE_LENGTH (field_type) * TARGET_CHAR_BIT - bitsize;
3241 else
3242 dst_bit_offset = 0;
3243 value_ranges_copy_adjusted (dest_val, dst_bit_offset,
3244 val, src_bit_offset, bitsize);
5467c6c8
PA
3245}
3246
3247/* Return a new value with type TYPE, which is FIELDNO field of the
3248 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
3249 of VAL. If the VAL's contents required to extract the bitfield
4875ffdb
PA
3250 from are unavailable/optimized out, the new value is
3251 correspondingly marked unavailable/optimized out. */
5467c6c8
PA
3252
3253struct value *
3254value_field_bitfield (struct type *type, int fieldno,
3255 const gdb_byte *valaddr,
6b850546 3256 LONGEST embedded_offset, const struct value *val)
5467c6c8 3257{
4875ffdb
PA
3258 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3259 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
940da03e 3260 struct value *res_val = allocate_value (type->field (fieldno).type ());
5467c6c8 3261
4875ffdb
PA
3262 unpack_value_bitfield (res_val, bitpos, bitsize,
3263 valaddr, embedded_offset, val);
3264
3265 return res_val;
4ea48cc1
DJ
3266}
3267
c906108c
SS
3268/* Modify the value of a bitfield. ADDR points to a block of memory in
3269 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
3270 is the desired value of the field, in host byte order. BITPOS and BITSIZE
581e13c1 3271 indicate which bits (in target bit order) comprise the bitfield.
19f220c3 3272 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
f4e88c8e 3273 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
c906108c
SS
3274
3275void
50810684 3276modify_field (struct type *type, gdb_byte *addr,
6b850546 3277 LONGEST fieldval, LONGEST bitpos, LONGEST bitsize)
c906108c 3278{
34877895 3279 enum bfd_endian byte_order = type_byte_order (type);
f4e88c8e
PH
3280 ULONGEST oword;
3281 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
6b850546 3282 LONGEST bytesize;
19f220c3
JK
3283
3284 /* Normalize BITPOS. */
3285 addr += bitpos / 8;
3286 bitpos %= 8;
c906108c
SS
3287
3288 /* If a negative fieldval fits in the field in question, chop
3289 off the sign extension bits. */
f4e88c8e
PH
3290 if ((~fieldval & ~(mask >> 1)) == 0)
3291 fieldval &= mask;
c906108c
SS
3292
3293 /* Warn if value is too big to fit in the field in question. */
f4e88c8e 3294 if (0 != (fieldval & ~mask))
c906108c
SS
3295 {
3296 /* FIXME: would like to include fieldval in the message, but
c5aa993b 3297 we don't have a sprintf_longest. */
6b850546 3298 warning (_("Value does not fit in %s bits."), plongest (bitsize));
c906108c
SS
3299
3300 /* Truncate it, otherwise adjoining fields may be corrupted. */
f4e88c8e 3301 fieldval &= mask;
c906108c
SS
3302 }
3303
19f220c3
JK
3304 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3305 false valgrind reports. */
3306
3307 bytesize = (bitpos + bitsize + 7) / 8;
3308 oword = extract_unsigned_integer (addr, bytesize, byte_order);
c906108c
SS
3309
3310 /* Shifting for bit field depends on endianness of the target machine. */
d5a22e77 3311 if (byte_order == BFD_ENDIAN_BIG)
19f220c3 3312 bitpos = bytesize * 8 - bitpos - bitsize;
c906108c 3313
f4e88c8e 3314 oword &= ~(mask << bitpos);
c906108c
SS
3315 oword |= fieldval << bitpos;
3316
19f220c3 3317 store_unsigned_integer (addr, bytesize, byte_order, oword);
c906108c
SS
3318}
3319\f
14d06750 3320/* Pack NUM into BUF using a target format of TYPE. */
c906108c 3321
14d06750
DJ
3322void
3323pack_long (gdb_byte *buf, struct type *type, LONGEST num)
c906108c 3324{
34877895 3325 enum bfd_endian byte_order = type_byte_order (type);
6b850546 3326 LONGEST len;
14d06750
DJ
3327
3328 type = check_typedef (type);
c906108c
SS
3329 len = TYPE_LENGTH (type);
3330
78134374 3331 switch (type->code ())
c906108c 3332 {
4e962e74 3333 case TYPE_CODE_RANGE:
599088e3 3334 num -= type->bounds ()->bias;
4e962e74 3335 /* Fall through. */
c906108c
SS
3336 case TYPE_CODE_INT:
3337 case TYPE_CODE_CHAR:
3338 case TYPE_CODE_ENUM:
4f2aea11 3339 case TYPE_CODE_FLAGS:
c906108c 3340 case TYPE_CODE_BOOL:
0d5de010 3341 case TYPE_CODE_MEMBERPTR:
e17a4113 3342 store_signed_integer (buf, len, byte_order, num);
c906108c 3343 break;
c5aa993b 3344
c906108c 3345 case TYPE_CODE_REF:
aa006118 3346 case TYPE_CODE_RVALUE_REF:
c906108c 3347 case TYPE_CODE_PTR:
14d06750 3348 store_typed_address (buf, type, (CORE_ADDR) num);
c906108c 3349 break;
c5aa993b 3350
50637b26
UW
3351 case TYPE_CODE_FLT:
3352 case TYPE_CODE_DECFLOAT:
3353 target_float_from_longest (buf, type, num);
3354 break;
3355
c906108c 3356 default:
14d06750 3357 error (_("Unexpected type (%d) encountered for integer constant."),
78134374 3358 type->code ());
c906108c 3359 }
14d06750
DJ
3360}
3361
3362
595939de
PM
3363/* Pack NUM into BUF using a target format of TYPE. */
3364
70221824 3365static void
595939de
PM
3366pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3367{
6b850546 3368 LONGEST len;
595939de
PM
3369 enum bfd_endian byte_order;
3370
3371 type = check_typedef (type);
3372 len = TYPE_LENGTH (type);
34877895 3373 byte_order = type_byte_order (type);
595939de 3374
78134374 3375 switch (type->code ())
595939de
PM
3376 {
3377 case TYPE_CODE_INT:
3378 case TYPE_CODE_CHAR:
3379 case TYPE_CODE_ENUM:
3380 case TYPE_CODE_FLAGS:
3381 case TYPE_CODE_BOOL:
3382 case TYPE_CODE_RANGE:
3383 case TYPE_CODE_MEMBERPTR:
3384 store_unsigned_integer (buf, len, byte_order, num);
3385 break;
3386
3387 case TYPE_CODE_REF:
aa006118 3388 case TYPE_CODE_RVALUE_REF:
595939de
PM
3389 case TYPE_CODE_PTR:
3390 store_typed_address (buf, type, (CORE_ADDR) num);
3391 break;
3392
50637b26
UW
3393 case TYPE_CODE_FLT:
3394 case TYPE_CODE_DECFLOAT:
3395 target_float_from_ulongest (buf, type, num);
3396 break;
3397
595939de 3398 default:
3e43a32a
MS
3399 error (_("Unexpected type (%d) encountered "
3400 "for unsigned integer constant."),
78134374 3401 type->code ());
595939de
PM
3402 }
3403}
3404
3405
14d06750
DJ
3406/* Convert C numbers into newly allocated values. */
3407
3408struct value *
3409value_from_longest (struct type *type, LONGEST num)
3410{
3411 struct value *val = allocate_value (type);
3412
3413 pack_long (value_contents_raw (val), type, num);
c906108c
SS
3414 return val;
3415}
3416
4478b372 3417
595939de
PM
3418/* Convert C unsigned numbers into newly allocated values. */
3419
3420struct value *
3421value_from_ulongest (struct type *type, ULONGEST num)
3422{
3423 struct value *val = allocate_value (type);
3424
3425 pack_unsigned_long (value_contents_raw (val), type, num);
3426
3427 return val;
3428}
3429
3430
4478b372 3431/* Create a value representing a pointer of type TYPE to the address
cb417230 3432 ADDR. */
80180f79 3433
f23631e4 3434struct value *
4478b372
JB
3435value_from_pointer (struct type *type, CORE_ADDR addr)
3436{
cb417230 3437 struct value *val = allocate_value (type);
a109c7c1 3438
80180f79 3439 store_typed_address (value_contents_raw (val),
cb417230 3440 check_typedef (type), addr);
4478b372
JB
3441 return val;
3442}
3443
7584bb30
AB
3444/* Create and return a value object of TYPE containing the value D. The
3445 TYPE must be of TYPE_CODE_FLT, and must be large enough to hold D once
3446 it is converted to target format. */
3447
3448struct value *
3449value_from_host_double (struct type *type, double d)
3450{
3451 struct value *value = allocate_value (type);
78134374 3452 gdb_assert (type->code () == TYPE_CODE_FLT);
7584bb30
AB
3453 target_float_from_host_double (value_contents_raw (value),
3454 value_type (value), d);
3455 return value;
3456}
4478b372 3457
012370f6
TT
3458/* Create a value of type TYPE whose contents come from VALADDR, if it
3459 is non-null, and whose memory address (in the inferior) is
3460 ADDRESS. The type of the created value may differ from the passed
3461 type TYPE. Make sure to retrieve values new type after this call.
3462 Note that TYPE is not passed through resolve_dynamic_type; this is
3463 a special API intended for use only by Ada. */
3464
3465struct value *
3466value_from_contents_and_address_unresolved (struct type *type,
3467 const gdb_byte *valaddr,
3468 CORE_ADDR address)
3469{
3470 struct value *v;
3471
3472 if (valaddr == NULL)
3473 v = allocate_value_lazy (type);
3474 else
3475 v = value_from_contents (type, valaddr);
012370f6 3476 VALUE_LVAL (v) = lval_memory;
1a088441 3477 set_value_address (v, address);
012370f6
TT
3478 return v;
3479}
3480
8acb6b92
TT
3481/* Create a value of type TYPE whose contents come from VALADDR, if it
3482 is non-null, and whose memory address (in the inferior) is
80180f79
SA
3483 ADDRESS. The type of the created value may differ from the passed
3484 type TYPE. Make sure to retrieve values new type after this call. */
8acb6b92
TT
3485
3486struct value *
3487value_from_contents_and_address (struct type *type,
3488 const gdb_byte *valaddr,
3489 CORE_ADDR address)
3490{
b249d2c2
TT
3491 gdb::array_view<const gdb_byte> view;
3492 if (valaddr != nullptr)
3493 view = gdb::make_array_view (valaddr, TYPE_LENGTH (type));
3494 struct type *resolved_type = resolve_dynamic_type (type, view, address);
d36430db 3495 struct type *resolved_type_no_typedef = check_typedef (resolved_type);
41e8491f 3496 struct value *v;
a109c7c1 3497
8acb6b92 3498 if (valaddr == NULL)
80180f79 3499 v = allocate_value_lazy (resolved_type);
8acb6b92 3500 else
80180f79 3501 v = value_from_contents (resolved_type, valaddr);
d36430db
JB
3502 if (TYPE_DATA_LOCATION (resolved_type_no_typedef) != NULL
3503 && TYPE_DATA_LOCATION_KIND (resolved_type_no_typedef) == PROP_CONST)
3504 address = TYPE_DATA_LOCATION_ADDR (resolved_type_no_typedef);
33d502b4 3505 VALUE_LVAL (v) = lval_memory;
1a088441 3506 set_value_address (v, address);
8acb6b92
TT
3507 return v;
3508}
3509
8a9b8146
TT
3510/* Create a value of type TYPE holding the contents CONTENTS.
3511 The new value is `not_lval'. */
3512
3513struct value *
3514value_from_contents (struct type *type, const gdb_byte *contents)
3515{
3516 struct value *result;
3517
3518 result = allocate_value (type);
3519 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3520 return result;
3521}
3522
3bd0f5ef
MS
3523/* Extract a value from the history file. Input will be of the form
3524 $digits or $$digits. See block comment above 'write_dollar_variable'
3525 for details. */
3526
3527struct value *
e799154c 3528value_from_history_ref (const char *h, const char **endp)
3bd0f5ef
MS
3529{
3530 int index, len;
3531
3532 if (h[0] == '$')
3533 len = 1;
3534 else
3535 return NULL;
3536
3537 if (h[1] == '$')
3538 len = 2;
3539
3540 /* Find length of numeral string. */
3541 for (; isdigit (h[len]); len++)
3542 ;
3543
3544 /* Make sure numeral string is not part of an identifier. */
3545 if (h[len] == '_' || isalpha (h[len]))
3546 return NULL;
3547
3548 /* Now collect the index value. */
3549 if (h[1] == '$')
3550 {
3551 if (len == 2)
3552 {
3553 /* For some bizarre reason, "$$" is equivalent to "$$1",
3554 rather than to "$$0" as it ought to be! */
3555 index = -1;
3556 *endp += len;
3557 }
3558 else
e799154c
TT
3559 {
3560 char *local_end;
3561
3562 index = -strtol (&h[2], &local_end, 10);
3563 *endp = local_end;
3564 }
3bd0f5ef
MS
3565 }
3566 else
3567 {
3568 if (len == 1)
3569 {
3570 /* "$" is equivalent to "$0". */
3571 index = 0;
3572 *endp += len;
3573 }
3574 else
e799154c
TT
3575 {
3576 char *local_end;
3577
3578 index = strtol (&h[1], &local_end, 10);
3579 *endp = local_end;
3580 }
3bd0f5ef
MS
3581 }
3582
3583 return access_value_history (index);
3584}
3585
3fff9862
YQ
3586/* Get the component value (offset by OFFSET bytes) of a struct or
3587 union WHOLE. Component's type is TYPE. */
3588
3589struct value *
3590value_from_component (struct value *whole, struct type *type, LONGEST offset)
3591{
3592 struct value *v;
3593
3594 if (VALUE_LVAL (whole) == lval_memory && value_lazy (whole))
3595 v = allocate_value_lazy (type);
3596 else
3597 {
3598 v = allocate_value (type);
3599 value_contents_copy (v, value_embedded_offset (v),
3600 whole, value_embedded_offset (whole) + offset,
3601 type_length_units (type));
3602 }
3603 v->offset = value_offset (whole) + offset + value_embedded_offset (whole);
3604 set_value_component_location (v, whole);
3fff9862
YQ
3605
3606 return v;
3607}
3608
a471c594
JK
3609struct value *
3610coerce_ref_if_computed (const struct value *arg)
3611{
3612 const struct lval_funcs *funcs;
3613
aa006118 3614 if (!TYPE_IS_REFERENCE (check_typedef (value_type (arg))))
a471c594
JK
3615 return NULL;
3616
3617 if (value_lval_const (arg) != lval_computed)
3618 return NULL;
3619
3620 funcs = value_computed_funcs (arg);
3621 if (funcs->coerce_ref == NULL)
3622 return NULL;
3623
3624 return funcs->coerce_ref (arg);
3625}
3626
dfcee124
AG
3627/* Look at value.h for description. */
3628
3629struct value *
3630readjust_indirect_value_type (struct value *value, struct type *enc_type,
4bf7b526 3631 const struct type *original_type,
e79eb02f
AB
3632 struct value *original_value,
3633 CORE_ADDR original_value_address)
dfcee124 3634{
e79eb02f
AB
3635 gdb_assert (original_type->code () == TYPE_CODE_PTR
3636 || TYPE_IS_REFERENCE (original_type));
3637
3638 struct type *original_target_type = TYPE_TARGET_TYPE (original_type);
3639 gdb::array_view<const gdb_byte> view;
3640 struct type *resolved_original_target_type
3641 = resolve_dynamic_type (original_target_type, view,
3642 original_value_address);
3643
dfcee124 3644 /* Re-adjust type. */
e79eb02f 3645 deprecated_set_value_type (value, resolved_original_target_type);
dfcee124
AG
3646
3647 /* Add embedding info. */
3648 set_value_enclosing_type (value, enc_type);
3649 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3650
3651 /* We may be pointing to an object of some derived type. */
3652 return value_full_object (value, NULL, 0, 0, 0);
3653}
3654
994b9211
AC
3655struct value *
3656coerce_ref (struct value *arg)
3657{
df407dfe 3658 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
a471c594 3659 struct value *retval;
dfcee124 3660 struct type *enc_type;
a109c7c1 3661
a471c594
JK
3662 retval = coerce_ref_if_computed (arg);
3663 if (retval)
3664 return retval;
3665
aa006118 3666 if (!TYPE_IS_REFERENCE (value_type_arg_tmp))
a471c594
JK
3667 return arg;
3668
dfcee124
AG
3669 enc_type = check_typedef (value_enclosing_type (arg));
3670 enc_type = TYPE_TARGET_TYPE (enc_type);
3671
e79eb02f
AB
3672 CORE_ADDR addr = unpack_pointer (value_type (arg), value_contents (arg));
3673 retval = value_at_lazy (enc_type, addr);
9f1f738a 3674 enc_type = value_type (retval);
e79eb02f
AB
3675 return readjust_indirect_value_type (retval, enc_type, value_type_arg_tmp,
3676 arg, addr);
994b9211
AC
3677}
3678
3679struct value *
3680coerce_array (struct value *arg)
3681{
f3134b88
TT
3682 struct type *type;
3683
994b9211 3684 arg = coerce_ref (arg);
f3134b88
TT
3685 type = check_typedef (value_type (arg));
3686
78134374 3687 switch (type->code ())
f3134b88
TT
3688 {
3689 case TYPE_CODE_ARRAY:
7346b668 3690 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
f3134b88
TT
3691 arg = value_coerce_array (arg);
3692 break;
3693 case TYPE_CODE_FUNC:
3694 arg = value_coerce_function (arg);
3695 break;
3696 }
994b9211
AC
3697 return arg;
3698}
c906108c 3699\f
c906108c 3700
bbfdfe1c
DM
3701/* Return the return value convention that will be used for the
3702 specified type. */
3703
3704enum return_value_convention
3705struct_return_convention (struct gdbarch *gdbarch,
3706 struct value *function, struct type *value_type)
3707{
78134374 3708 enum type_code code = value_type->code ();
bbfdfe1c
DM
3709
3710 if (code == TYPE_CODE_ERROR)
3711 error (_("Function return type unknown."));
3712
3713 /* Probe the architecture for the return-value convention. */
3714 return gdbarch_return_value (gdbarch, function, value_type,
3715 NULL, NULL, NULL);
3716}
3717
48436ce6
AC
3718/* Return true if the function returning the specified type is using
3719 the convention of returning structures in memory (passing in the
82585c72 3720 address as a hidden first parameter). */
c906108c
SS
3721
3722int
d80b854b 3723using_struct_return (struct gdbarch *gdbarch,
6a3a010b 3724 struct value *function, struct type *value_type)
c906108c 3725{
78134374 3726 if (value_type->code () == TYPE_CODE_VOID)
667e784f 3727 /* A void return value is never in memory. See also corresponding
44e5158b 3728 code in "print_return_value". */
667e784f
AC
3729 return 0;
3730
bbfdfe1c 3731 return (struct_return_convention (gdbarch, function, value_type)
31db7b6c 3732 != RETURN_VALUE_REGISTER_CONVENTION);
c906108c
SS
3733}
3734
42be36b3
CT
3735/* Set the initialized field in a value struct. */
3736
3737void
3738set_value_initialized (struct value *val, int status)
3739{
3740 val->initialized = status;
3741}
3742
3743/* Return the initialized field in a value struct. */
3744
3745int
4bf7b526 3746value_initialized (const struct value *val)
42be36b3
CT
3747{
3748 return val->initialized;
3749}
3750
41c60b4b
SM
3751/* Helper for value_fetch_lazy when the value is a bitfield. */
3752
3753static void
3754value_fetch_lazy_bitfield (struct value *val)
3755{
3756 gdb_assert (value_bitsize (val) != 0);
3757
3758 /* To read a lazy bitfield, read the entire enclosing value. This
3759 prevents reading the same block of (possibly volatile) memory once
3760 per bitfield. It would be even better to read only the containing
3761 word, but we have no way to record that just specific bits of a
3762 value have been fetched. */
41c60b4b
SM
3763 struct value *parent = value_parent (val);
3764
3765 if (value_lazy (parent))
3766 value_fetch_lazy (parent);
3767
3768 unpack_value_bitfield (val, value_bitpos (val), value_bitsize (val),
3769 value_contents_for_printing (parent),
3770 value_offset (val), parent);
3771}
3772
3773/* Helper for value_fetch_lazy when the value is in memory. */
3774
3775static void
3776value_fetch_lazy_memory (struct value *val)
3777{
3778 gdb_assert (VALUE_LVAL (val) == lval_memory);
3779
3780 CORE_ADDR addr = value_address (val);
3781 struct type *type = check_typedef (value_enclosing_type (val));
3782
3783 if (TYPE_LENGTH (type))
3784 read_value_memory (val, 0, value_stack (val),
3785 addr, value_contents_all_raw (val),
3786 type_length_units (type));
3787}
3788
3789/* Helper for value_fetch_lazy when the value is in a register. */
3790
3791static void
3792value_fetch_lazy_register (struct value *val)
3793{
3794 struct frame_info *next_frame;
3795 int regnum;
3796 struct type *type = check_typedef (value_type (val));
3797 struct value *new_val = val, *mark = value_mark ();
3798
3799 /* Offsets are not supported here; lazy register values must
3800 refer to the entire register. */
3801 gdb_assert (value_offset (val) == 0);
3802
3803 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
3804 {
3805 struct frame_id next_frame_id = VALUE_NEXT_FRAME_ID (new_val);
3806
3807 next_frame = frame_find_by_id (next_frame_id);
3808 regnum = VALUE_REGNUM (new_val);
3809
3810 gdb_assert (next_frame != NULL);
3811
3812 /* Convertible register routines are used for multi-register
3813 values and for interpretation in different types
3814 (e.g. float or int from a double register). Lazy
3815 register values should have the register's natural type,
3816 so they do not apply. */
3817 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (next_frame),
3818 regnum, type));
3819
3820 /* FRAME was obtained, above, via VALUE_NEXT_FRAME_ID.
3821 Since a "->next" operation was performed when setting
3822 this field, we do not need to perform a "next" operation
3823 again when unwinding the register. That's why
3824 frame_unwind_register_value() is called here instead of
3825 get_frame_register_value(). */
3826 new_val = frame_unwind_register_value (next_frame, regnum);
3827
3828 /* If we get another lazy lval_register value, it means the
3829 register is found by reading it from NEXT_FRAME's next frame.
3830 frame_unwind_register_value should never return a value with
3831 the frame id pointing to NEXT_FRAME. If it does, it means we
3832 either have two consecutive frames with the same frame id
3833 in the frame chain, or some code is trying to unwind
3834 behind get_prev_frame's back (e.g., a frame unwind
3835 sniffer trying to unwind), bypassing its validations. In
3836 any case, it should always be an internal error to end up
3837 in this situation. */
3838 if (VALUE_LVAL (new_val) == lval_register
3839 && value_lazy (new_val)
3840 && frame_id_eq (VALUE_NEXT_FRAME_ID (new_val), next_frame_id))
3841 internal_error (__FILE__, __LINE__,
3842 _("infinite loop while fetching a register"));
3843 }
3844
3845 /* If it's still lazy (for instance, a saved register on the
3846 stack), fetch it. */
3847 if (value_lazy (new_val))
3848 value_fetch_lazy (new_val);
3849
3850 /* Copy the contents and the unavailability/optimized-out
3851 meta-data from NEW_VAL to VAL. */
3852 set_value_lazy (val, 0);
3853 value_contents_copy (val, value_embedded_offset (val),
3854 new_val, value_embedded_offset (new_val),
3855 type_length_units (type));
3856
3857 if (frame_debug)
3858 {
3859 struct gdbarch *gdbarch;
3860 struct frame_info *frame;
3861 /* VALUE_FRAME_ID is used here, instead of VALUE_NEXT_FRAME_ID,
3862 so that the frame level will be shown correctly. */
3863 frame = frame_find_by_id (VALUE_FRAME_ID (val));
3864 regnum = VALUE_REGNUM (val);
3865 gdbarch = get_frame_arch (frame);
3866
3867 fprintf_unfiltered (gdb_stdlog,
3868 "{ value_fetch_lazy "
3869 "(frame=%d,regnum=%d(%s),...) ",
3870 frame_relative_level (frame), regnum,
3871 user_reg_map_regnum_to_name (gdbarch, regnum));
3872
3873 fprintf_unfiltered (gdb_stdlog, "->");
3874 if (value_optimized_out (new_val))
3875 {
3876 fprintf_unfiltered (gdb_stdlog, " ");
3877 val_print_optimized_out (new_val, gdb_stdlog);
3878 }
3879 else
3880 {
3881 int i;
3882 const gdb_byte *buf = value_contents (new_val);
3883
3884 if (VALUE_LVAL (new_val) == lval_register)
3885 fprintf_unfiltered (gdb_stdlog, " register=%d",
3886 VALUE_REGNUM (new_val));
3887 else if (VALUE_LVAL (new_val) == lval_memory)
3888 fprintf_unfiltered (gdb_stdlog, " address=%s",
3889 paddress (gdbarch,
3890 value_address (new_val)));
3891 else
3892 fprintf_unfiltered (gdb_stdlog, " computed");
3893
3894 fprintf_unfiltered (gdb_stdlog, " bytes=");
3895 fprintf_unfiltered (gdb_stdlog, "[");
3896 for (i = 0; i < register_size (gdbarch, regnum); i++)
3897 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3898 fprintf_unfiltered (gdb_stdlog, "]");
3899 }
3900
3901 fprintf_unfiltered (gdb_stdlog, " }\n");
3902 }
3903
3904 /* Dispose of the intermediate values. This prevents
3905 watchpoints from trying to watch the saved frame pointer. */
3906 value_free_to_mark (mark);
3907}
3908
a844296a
SM
3909/* Load the actual content of a lazy value. Fetch the data from the
3910 user's process and clear the lazy flag to indicate that the data in
3911 the buffer is valid.
a58e2656
AB
3912
3913 If the value is zero-length, we avoid calling read_memory, which
3914 would abort. We mark the value as fetched anyway -- all 0 bytes of
a844296a 3915 it. */
a58e2656 3916
a844296a 3917void
a58e2656
AB
3918value_fetch_lazy (struct value *val)
3919{
3920 gdb_assert (value_lazy (val));
3921 allocate_value_contents (val);
9a0dc9e3
PA
3922 /* A value is either lazy, or fully fetched. The
3923 availability/validity is only established as we try to fetch a
3924 value. */
0c7e6dd8
TT
3925 gdb_assert (val->optimized_out.empty ());
3926 gdb_assert (val->unavailable.empty ());
a58e2656 3927 if (value_bitsize (val))
41c60b4b 3928 value_fetch_lazy_bitfield (val);
a58e2656 3929 else if (VALUE_LVAL (val) == lval_memory)
41c60b4b 3930 value_fetch_lazy_memory (val);
a58e2656 3931 else if (VALUE_LVAL (val) == lval_register)
41c60b4b 3932 value_fetch_lazy_register (val);
a58e2656
AB
3933 else if (VALUE_LVAL (val) == lval_computed
3934 && value_computed_funcs (val)->read != NULL)
3935 value_computed_funcs (val)->read (val);
a58e2656
AB
3936 else
3937 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
3938
3939 set_value_lazy (val, 0);
a58e2656
AB
3940}
3941
a280dbd1
SDJ
3942/* Implementation of the convenience function $_isvoid. */
3943
3944static struct value *
3945isvoid_internal_fn (struct gdbarch *gdbarch,
3946 const struct language_defn *language,
3947 void *cookie, int argc, struct value **argv)
3948{
3949 int ret;
3950
3951 if (argc != 1)
6bc305f5 3952 error (_("You must provide one argument for $_isvoid."));
a280dbd1 3953
78134374 3954 ret = value_type (argv[0])->code () == TYPE_CODE_VOID;
a280dbd1
SDJ
3955
3956 return value_from_longest (builtin_type (gdbarch)->builtin_int, ret);
3957}
3958
53a008a6 3959/* Implementation of the convenience function $_creal. Extracts the
8bdc1658
AB
3960 real part from a complex number. */
3961
3962static struct value *
3963creal_internal_fn (struct gdbarch *gdbarch,
3964 const struct language_defn *language,
3965 void *cookie, int argc, struct value **argv)
3966{
3967 if (argc != 1)
3968 error (_("You must provide one argument for $_creal."));
3969
3970 value *cval = argv[0];
3971 type *ctype = check_typedef (value_type (cval));
78134374 3972 if (ctype->code () != TYPE_CODE_COMPLEX)
8bdc1658 3973 error (_("expected a complex number"));
4c99290d 3974 return value_real_part (cval);
8bdc1658
AB
3975}
3976
3977/* Implementation of the convenience function $_cimag. Extracts the
3978 imaginary part from a complex number. */
3979
3980static struct value *
3981cimag_internal_fn (struct gdbarch *gdbarch,
3982 const struct language_defn *language,
3983 void *cookie, int argc,
3984 struct value **argv)
3985{
3986 if (argc != 1)
3987 error (_("You must provide one argument for $_cimag."));
3988
3989 value *cval = argv[0];
3990 type *ctype = check_typedef (value_type (cval));
78134374 3991 if (ctype->code () != TYPE_CODE_COMPLEX)
8bdc1658 3992 error (_("expected a complex number"));
4c99290d 3993 return value_imaginary_part (cval);
8bdc1658
AB
3994}
3995
d5f4488f
SM
3996#if GDB_SELF_TEST
3997namespace selftests
3998{
3999
4000/* Test the ranges_contain function. */
4001
4002static void
4003test_ranges_contain ()
4004{
4005 std::vector<range> ranges;
4006 range r;
4007
4008 /* [10, 14] */
4009 r.offset = 10;
4010 r.length = 5;
4011 ranges.push_back (r);
4012
4013 /* [20, 24] */
4014 r.offset = 20;
4015 r.length = 5;
4016 ranges.push_back (r);
4017
4018 /* [2, 6] */
4019 SELF_CHECK (!ranges_contain (ranges, 2, 5));
4020 /* [9, 13] */
4021 SELF_CHECK (ranges_contain (ranges, 9, 5));
4022 /* [10, 11] */
4023 SELF_CHECK (ranges_contain (ranges, 10, 2));
4024 /* [10, 14] */
4025 SELF_CHECK (ranges_contain (ranges, 10, 5));
4026 /* [13, 18] */
4027 SELF_CHECK (ranges_contain (ranges, 13, 6));
4028 /* [14, 18] */
4029 SELF_CHECK (ranges_contain (ranges, 14, 5));
4030 /* [15, 18] */
4031 SELF_CHECK (!ranges_contain (ranges, 15, 4));
4032 /* [16, 19] */
4033 SELF_CHECK (!ranges_contain (ranges, 16, 4));
4034 /* [16, 21] */
4035 SELF_CHECK (ranges_contain (ranges, 16, 6));
4036 /* [21, 21] */
4037 SELF_CHECK (ranges_contain (ranges, 21, 1));
4038 /* [21, 25] */
4039 SELF_CHECK (ranges_contain (ranges, 21, 5));
4040 /* [26, 28] */
4041 SELF_CHECK (!ranges_contain (ranges, 26, 3));
4042}
4043
4044/* Check that RANGES contains the same ranges as EXPECTED. */
4045
4046static bool
4047check_ranges_vector (gdb::array_view<const range> ranges,
4048 gdb::array_view<const range> expected)
4049{
4050 return ranges == expected;
4051}
4052
4053/* Test the insert_into_bit_range_vector function. */
4054
4055static void
4056test_insert_into_bit_range_vector ()
4057{
4058 std::vector<range> ranges;
4059
4060 /* [10, 14] */
4061 {
4062 insert_into_bit_range_vector (&ranges, 10, 5);
4063 static const range expected[] = {
4064 {10, 5}
4065 };
4066 SELF_CHECK (check_ranges_vector (ranges, expected));
4067 }
4068
4069 /* [10, 14] */
4070 {
4071 insert_into_bit_range_vector (&ranges, 11, 4);
4072 static const range expected = {10, 5};
4073 SELF_CHECK (check_ranges_vector (ranges, expected));
4074 }
4075
4076 /* [10, 14] [20, 24] */
4077 {
4078 insert_into_bit_range_vector (&ranges, 20, 5);
4079 static const range expected[] = {
4080 {10, 5},
4081 {20, 5},
4082 };
4083 SELF_CHECK (check_ranges_vector (ranges, expected));
4084 }
4085
4086 /* [10, 14] [17, 24] */
4087 {
4088 insert_into_bit_range_vector (&ranges, 17, 5);
4089 static const range expected[] = {
4090 {10, 5},
4091 {17, 8},
4092 };
4093 SELF_CHECK (check_ranges_vector (ranges, expected));
4094 }
4095
4096 /* [2, 8] [10, 14] [17, 24] */
4097 {
4098 insert_into_bit_range_vector (&ranges, 2, 7);
4099 static const range expected[] = {
4100 {2, 7},
4101 {10, 5},
4102 {17, 8},
4103 };
4104 SELF_CHECK (check_ranges_vector (ranges, expected));
4105 }
4106
4107 /* [2, 14] [17, 24] */
4108 {
4109 insert_into_bit_range_vector (&ranges, 9, 1);
4110 static const range expected[] = {
4111 {2, 13},
4112 {17, 8},
4113 };
4114 SELF_CHECK (check_ranges_vector (ranges, expected));
4115 }
4116
4117 /* [2, 14] [17, 24] */
4118 {
4119 insert_into_bit_range_vector (&ranges, 9, 1);
4120 static const range expected[] = {
4121 {2, 13},
4122 {17, 8},
4123 };
4124 SELF_CHECK (check_ranges_vector (ranges, expected));
4125 }
4126
4127 /* [2, 33] */
4128 {
4129 insert_into_bit_range_vector (&ranges, 4, 30);
4130 static const range expected = {2, 32};
4131 SELF_CHECK (check_ranges_vector (ranges, expected));
4132 }
4133}
4134
4135} /* namespace selftests */
4136#endif /* GDB_SELF_TEST */
4137
6c265988 4138void _initialize_values ();
c906108c 4139void
6c265988 4140_initialize_values ()
c906108c 4141{
1a966eab 4142 add_cmd ("convenience", no_class, show_convenience, _("\
f47f77df
DE
4143Debugger convenience (\"$foo\") variables and functions.\n\
4144Convenience variables are created when you assign them values;\n\
4145thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
1a966eab 4146\n\
c906108c
SS
4147A few convenience variables are given values automatically:\n\
4148\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
f47f77df
DE
4149\"$__\" holds the contents of the last address examined with \"x\"."
4150#ifdef HAVE_PYTHON
4151"\n\n\
4152Convenience functions are defined via the Python API."
4153#endif
4154 ), &showlist);
7e20dfcd 4155 add_alias_cmd ("conv", "convenience", no_class, 1, &showlist);
c906108c 4156
db5f229b 4157 add_cmd ("values", no_set_class, show_values, _("\
3e43a32a 4158Elements of value history around item number IDX (or last ten)."),
c906108c 4159 &showlist);
53e5f3cf
AS
4160
4161 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
4162Initialize a convenience variable if necessary.\n\
4163init-if-undefined VARIABLE = EXPRESSION\n\
4164Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
4165exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
4166VARIABLE is already initialized."));
bc3b79fd
TJB
4167
4168 add_prefix_cmd ("function", no_class, function_command, _("\
4169Placeholder command for showing help on convenience functions."),
4170 &functionlist, "function ", 0, &cmdlist);
a280dbd1
SDJ
4171
4172 add_internal_function ("_isvoid", _("\
4173Check whether an expression is void.\n\
4174Usage: $_isvoid (expression)\n\
4175Return 1 if the expression is void, zero otherwise."),
4176 isvoid_internal_fn, NULL);
5fdf6324 4177
8bdc1658
AB
4178 add_internal_function ("_creal", _("\
4179Extract the real part of a complex number.\n\
4180Usage: $_creal (expression)\n\
4181Return the real part of a complex number, the type depends on the\n\
4182type of a complex number."),
4183 creal_internal_fn, NULL);
4184
4185 add_internal_function ("_cimag", _("\
4186Extract the imaginary part of a complex number.\n\
4187Usage: $_cimag (expression)\n\
4188Return the imaginary part of a complex number, the type depends on the\n\
4189type of a complex number."),
4190 cimag_internal_fn, NULL);
4191
5fdf6324
AB
4192 add_setshow_zuinteger_unlimited_cmd ("max-value-size",
4193 class_support, &max_value_size, _("\
4194Set maximum sized value gdb will load from the inferior."), _("\
4195Show maximum sized value gdb will load from the inferior."), _("\
4196Use this to control the maximum size, in bytes, of a value that gdb\n\
4197will load from the inferior. Setting this value to 'unlimited'\n\
4198disables checking.\n\
4199Setting this does not invalidate already allocated values, it only\n\
4200prevents future values, larger than this size, from being allocated."),
4201 set_max_value_size,
4202 show_max_value_size,
4203 &setlist, &showlist);
d5f4488f
SM
4204#if GDB_SELF_TEST
4205 selftests::register_test ("ranges_contain", selftests::test_ranges_contain);
4206 selftests::register_test ("insert_into_bit_range_vector",
4207 selftests::test_insert_into_bit_range_vector);
4208#endif
c906108c 4209}
9d1447e0
SDJ
4210
4211/* See value.h. */
4212
4213void
4214finalize_values ()
4215{
4216 all_values.clear ();
4217}