]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/value.c
PR 18423
[thirdparty/binutils-gdb.git] / gdb / value.c
CommitLineData
c906108c 1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
1bac305b 2
f23631e4 3 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
1bac305b
AC
4 1995, 1996, 1997, 1998, 1999, 2000, 2002, 2003 Free Software
5 Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b
JM
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
c906108c
SS
23
24#include "defs.h"
25#include "gdb_string.h"
26#include "symtab.h"
27#include "gdbtypes.h"
28#include "value.h"
29#include "gdbcore.h"
c906108c
SS
30#include "command.h"
31#include "gdbcmd.h"
32#include "target.h"
33#include "language.h"
34#include "scm-lang.h"
35#include "demangle.h"
d16aafd8 36#include "doublest.h"
5ae326fa 37#include "gdb_assert.h"
36160dc4 38#include "regcache.h"
fe898f56 39#include "block.h"
c906108c
SS
40
41/* Prototypes for exported functions. */
42
a14ed312 43void _initialize_values (void);
c906108c
SS
44
45/* Prototypes for local functions. */
46
a14ed312 47static void show_values (char *, int);
c906108c 48
a14ed312 49static void show_convenience (char *, int);
c906108c 50
c906108c
SS
51
52/* The value-history records all the values printed
53 by print commands during this session. Each chunk
54 records 60 consecutive values. The first chunk on
55 the chain records the most recent values.
56 The total number of values is in value_history_count. */
57
58#define VALUE_HISTORY_CHUNK 60
59
60struct value_history_chunk
c5aa993b
JM
61 {
62 struct value_history_chunk *next;
f23631e4 63 struct value *values[VALUE_HISTORY_CHUNK];
c5aa993b 64 };
c906108c
SS
65
66/* Chain of chunks now in use. */
67
68static struct value_history_chunk *value_history_chain;
69
70static int value_history_count; /* Abs number of last entry stored */
71\f
72/* List of all value objects currently allocated
73 (except for those released by calls to release_value)
74 This is so they can be freed after each command. */
75
f23631e4 76static struct value *all_values;
c906108c
SS
77
78/* Allocate a value that has the correct length for type TYPE. */
79
f23631e4 80struct value *
fba45db2 81allocate_value (struct type *type)
c906108c 82{
f23631e4 83 struct value *val;
c906108c
SS
84 struct type *atype = check_typedef (type);
85
86 val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (atype));
87 VALUE_NEXT (val) = all_values;
88 all_values = val;
89 VALUE_TYPE (val) = type;
90 VALUE_ENCLOSING_TYPE (val) = type;
91 VALUE_LVAL (val) = not_lval;
92 VALUE_ADDRESS (val) = 0;
1df6926e 93 VALUE_FRAME_ID (val) = null_frame_id;
c906108c
SS
94 VALUE_OFFSET (val) = 0;
95 VALUE_BITPOS (val) = 0;
96 VALUE_BITSIZE (val) = 0;
97 VALUE_REGNO (val) = -1;
98 VALUE_LAZY (val) = 0;
99 VALUE_OPTIMIZED_OUT (val) = 0;
c906108c
SS
100 VALUE_EMBEDDED_OFFSET (val) = 0;
101 VALUE_POINTED_TO_OFFSET (val) = 0;
102 val->modifiable = 1;
103 return val;
104}
105
106/* Allocate a value that has the correct length
107 for COUNT repetitions type TYPE. */
108
f23631e4 109struct value *
fba45db2 110allocate_repeat_value (struct type *type, int count)
c906108c 111{
c5aa993b 112 int low_bound = current_language->string_lower_bound; /* ??? */
c906108c
SS
113 /* FIXME-type-allocation: need a way to free this type when we are
114 done with it. */
115 struct type *range_type
c5aa993b
JM
116 = create_range_type ((struct type *) NULL, builtin_type_int,
117 low_bound, count + low_bound - 1);
c906108c
SS
118 /* FIXME-type-allocation: need a way to free this type when we are
119 done with it. */
120 return allocate_value (create_array_type ((struct type *) NULL,
121 type, range_type));
122}
123
124/* Return a mark in the value chain. All values allocated after the
125 mark is obtained (except for those released) are subject to being freed
126 if a subsequent value_free_to_mark is passed the mark. */
f23631e4 127struct value *
fba45db2 128value_mark (void)
c906108c
SS
129{
130 return all_values;
131}
132
133/* Free all values allocated since MARK was obtained by value_mark
134 (except for those released). */
135void
f23631e4 136value_free_to_mark (struct value *mark)
c906108c 137{
f23631e4
AC
138 struct value *val;
139 struct value *next;
c906108c
SS
140
141 for (val = all_values; val && val != mark; val = next)
142 {
143 next = VALUE_NEXT (val);
144 value_free (val);
145 }
146 all_values = val;
147}
148
149/* Free all the values that have been allocated (except for those released).
150 Called after each command, successful or not. */
151
152void
fba45db2 153free_all_values (void)
c906108c 154{
f23631e4
AC
155 struct value *val;
156 struct value *next;
c906108c
SS
157
158 for (val = all_values; val; val = next)
159 {
160 next = VALUE_NEXT (val);
161 value_free (val);
162 }
163
164 all_values = 0;
165}
166
167/* Remove VAL from the chain all_values
168 so it will not be freed automatically. */
169
170void
f23631e4 171release_value (struct value *val)
c906108c 172{
f23631e4 173 struct value *v;
c906108c
SS
174
175 if (all_values == val)
176 {
177 all_values = val->next;
178 return;
179 }
180
181 for (v = all_values; v; v = v->next)
182 {
183 if (v->next == val)
184 {
185 v->next = val->next;
186 break;
187 }
188 }
189}
190
191/* Release all values up to mark */
f23631e4
AC
192struct value *
193value_release_to_mark (struct value *mark)
c906108c 194{
f23631e4
AC
195 struct value *val;
196 struct value *next;
c906108c
SS
197
198 for (val = next = all_values; next; next = VALUE_NEXT (next))
199 if (VALUE_NEXT (next) == mark)
200 {
201 all_values = VALUE_NEXT (next);
202 VALUE_NEXT (next) = 0;
203 return val;
204 }
205 all_values = 0;
206 return val;
207}
208
209/* Return a copy of the value ARG.
210 It contains the same contents, for same memory address,
211 but it's a different block of storage. */
212
f23631e4
AC
213struct value *
214value_copy (struct value *arg)
c906108c 215{
52f0bd74 216 struct type *encl_type = VALUE_ENCLOSING_TYPE (arg);
f23631e4 217 struct value *val = allocate_value (encl_type);
c906108c
SS
218 VALUE_TYPE (val) = VALUE_TYPE (arg);
219 VALUE_LVAL (val) = VALUE_LVAL (arg);
220 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
221 VALUE_OFFSET (val) = VALUE_OFFSET (arg);
222 VALUE_BITPOS (val) = VALUE_BITPOS (arg);
223 VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
1df6926e 224 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
c906108c
SS
225 VALUE_REGNO (val) = VALUE_REGNO (arg);
226 VALUE_LAZY (val) = VALUE_LAZY (arg);
227 VALUE_OPTIMIZED_OUT (val) = VALUE_OPTIMIZED_OUT (arg);
228 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (arg);
229 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (arg);
c906108c
SS
230 val->modifiable = arg->modifiable;
231 if (!VALUE_LAZY (val))
232 {
233 memcpy (VALUE_CONTENTS_ALL_RAW (val), VALUE_CONTENTS_ALL_RAW (arg),
234 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg)));
235
236 }
237 return val;
238}
239\f
240/* Access to the value history. */
241
242/* Record a new value in the value history.
243 Returns the absolute history index of the entry.
244 Result of -1 indicates the value was not saved; otherwise it is the
245 value history index of this new item. */
246
247int
f23631e4 248record_latest_value (struct value *val)
c906108c
SS
249{
250 int i;
251
252 /* We don't want this value to have anything to do with the inferior anymore.
253 In particular, "set $1 = 50" should not affect the variable from which
254 the value was taken, and fast watchpoints should be able to assume that
255 a value on the value history never changes. */
256 if (VALUE_LAZY (val))
257 value_fetch_lazy (val);
258 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
259 from. This is a bit dubious, because then *&$1 does not just return $1
260 but the current contents of that location. c'est la vie... */
261 val->modifiable = 0;
262 release_value (val);
263
264 /* Here we treat value_history_count as origin-zero
265 and applying to the value being stored now. */
266
267 i = value_history_count % VALUE_HISTORY_CHUNK;
268 if (i == 0)
269 {
f23631e4 270 struct value_history_chunk *new
c5aa993b
JM
271 = (struct value_history_chunk *)
272 xmalloc (sizeof (struct value_history_chunk));
c906108c
SS
273 memset (new->values, 0, sizeof new->values);
274 new->next = value_history_chain;
275 value_history_chain = new;
276 }
277
278 value_history_chain->values[i] = val;
279
280 /* Now we regard value_history_count as origin-one
281 and applying to the value just stored. */
282
283 return ++value_history_count;
284}
285
286/* Return a copy of the value in the history with sequence number NUM. */
287
f23631e4 288struct value *
fba45db2 289access_value_history (int num)
c906108c 290{
f23631e4 291 struct value_history_chunk *chunk;
52f0bd74
AC
292 int i;
293 int absnum = num;
c906108c
SS
294
295 if (absnum <= 0)
296 absnum += value_history_count;
297
298 if (absnum <= 0)
299 {
300 if (num == 0)
301 error ("The history is empty.");
302 else if (num == 1)
303 error ("There is only one value in the history.");
304 else
305 error ("History does not go back to $$%d.", -num);
306 }
307 if (absnum > value_history_count)
308 error ("History has not yet reached $%d.", absnum);
309
310 absnum--;
311
312 /* Now absnum is always absolute and origin zero. */
313
314 chunk = value_history_chain;
315 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
316 i > 0; i--)
317 chunk = chunk->next;
318
319 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
320}
321
322/* Clear the value history entirely.
323 Must be done when new symbol tables are loaded,
324 because the type pointers become invalid. */
325
326void
fba45db2 327clear_value_history (void)
c906108c 328{
f23631e4 329 struct value_history_chunk *next;
52f0bd74 330 int i;
f23631e4 331 struct value *val;
c906108c
SS
332
333 while (value_history_chain)
334 {
335 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
336 if ((val = value_history_chain->values[i]) != NULL)
b8c9b27d 337 xfree (val);
c906108c 338 next = value_history_chain->next;
b8c9b27d 339 xfree (value_history_chain);
c906108c
SS
340 value_history_chain = next;
341 }
342 value_history_count = 0;
343}
344
345static void
fba45db2 346show_values (char *num_exp, int from_tty)
c906108c 347{
52f0bd74 348 int i;
f23631e4 349 struct value *val;
c906108c
SS
350 static int num = 1;
351
352 if (num_exp)
353 {
c5aa993b
JM
354 /* "info history +" should print from the stored position.
355 "info history <exp>" should print around value number <exp>. */
c906108c 356 if (num_exp[0] != '+' || num_exp[1] != '\0')
bb518678 357 num = parse_and_eval_long (num_exp) - 5;
c906108c
SS
358 }
359 else
360 {
361 /* "info history" means print the last 10 values. */
362 num = value_history_count - 9;
363 }
364
365 if (num <= 0)
366 num = 1;
367
368 for (i = num; i < num + 10 && i <= value_history_count; i++)
369 {
370 val = access_value_history (i);
371 printf_filtered ("$%d = ", i);
372 value_print (val, gdb_stdout, 0, Val_pretty_default);
373 printf_filtered ("\n");
374 }
375
376 /* The next "info history +" should start after what we just printed. */
377 num += 10;
378
379 /* Hitting just return after this command should do the same thing as
380 "info history +". If num_exp is null, this is unnecessary, since
381 "info history +" is not useful after "info history". */
382 if (from_tty && num_exp)
383 {
384 num_exp[0] = '+';
385 num_exp[1] = '\0';
386 }
387}
388\f
389/* Internal variables. These are variables within the debugger
390 that hold values assigned by debugger commands.
391 The user refers to them with a '$' prefix
392 that does not appear in the variable names stored internally. */
393
394static struct internalvar *internalvars;
395
396/* Look up an internal variable with name NAME. NAME should not
397 normally include a dollar sign.
398
399 If the specified internal variable does not exist,
400 one is created, with a void value. */
401
402struct internalvar *
fba45db2 403lookup_internalvar (char *name)
c906108c 404{
52f0bd74 405 struct internalvar *var;
c906108c
SS
406
407 for (var = internalvars; var; var = var->next)
5cb316ef 408 if (strcmp (var->name, name) == 0)
c906108c
SS
409 return var;
410
411 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
412 var->name = concat (name, NULL);
413 var->value = allocate_value (builtin_type_void);
414 release_value (var->value);
415 var->next = internalvars;
416 internalvars = var;
417 return var;
418}
419
f23631e4 420struct value *
fba45db2 421value_of_internalvar (struct internalvar *var)
c906108c 422{
f23631e4 423 struct value *val;
c906108c 424
c906108c
SS
425 val = value_copy (var->value);
426 if (VALUE_LAZY (val))
427 value_fetch_lazy (val);
428 VALUE_LVAL (val) = lval_internalvar;
429 VALUE_INTERNALVAR (val) = var;
430 return val;
431}
432
433void
fba45db2 434set_internalvar_component (struct internalvar *var, int offset, int bitpos,
f23631e4 435 int bitsize, struct value *newval)
c906108c 436{
52f0bd74 437 char *addr = VALUE_CONTENTS (var->value) + offset;
c906108c 438
c906108c
SS
439 if (bitsize)
440 modify_field (addr, value_as_long (newval),
441 bitpos, bitsize);
442 else
443 memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval)));
444}
445
446void
f23631e4 447set_internalvar (struct internalvar *var, struct value *val)
c906108c 448{
f23631e4 449 struct value *newval;
c906108c 450
c906108c
SS
451 newval = value_copy (val);
452 newval->modifiable = 1;
453
454 /* Force the value to be fetched from the target now, to avoid problems
455 later when this internalvar is referenced and the target is gone or
456 has changed. */
457 if (VALUE_LAZY (newval))
458 value_fetch_lazy (newval);
459
460 /* Begin code which must not call error(). If var->value points to
461 something free'd, an error() obviously leaves a dangling pointer.
462 But we also get a danling pointer if var->value points to
463 something in the value chain (i.e., before release_value is
464 called), because after the error free_all_values will get called before
465 long. */
b8c9b27d 466 xfree (var->value);
c906108c
SS
467 var->value = newval;
468 release_value (newval);
469 /* End code which must not call error(). */
470}
471
472char *
fba45db2 473internalvar_name (struct internalvar *var)
c906108c
SS
474{
475 return var->name;
476}
477
478/* Free all internalvars. Done when new symtabs are loaded,
479 because that makes the values invalid. */
480
481void
fba45db2 482clear_internalvars (void)
c906108c 483{
52f0bd74 484 struct internalvar *var;
c906108c
SS
485
486 while (internalvars)
487 {
488 var = internalvars;
489 internalvars = var->next;
b8c9b27d
KB
490 xfree (var->name);
491 xfree (var->value);
492 xfree (var);
c906108c
SS
493 }
494}
495
496static void
fba45db2 497show_convenience (char *ignore, int from_tty)
c906108c 498{
52f0bd74 499 struct internalvar *var;
c906108c
SS
500 int varseen = 0;
501
502 for (var = internalvars; var; var = var->next)
503 {
c906108c
SS
504 if (!varseen)
505 {
506 varseen = 1;
507 }
508 printf_filtered ("$%s = ", var->name);
509 value_print (var->value, gdb_stdout, 0, Val_pretty_default);
510 printf_filtered ("\n");
511 }
512 if (!varseen)
513 printf_unfiltered ("No debugger convenience variables now defined.\n\
514Convenience variables have names starting with \"$\";\n\
515use \"set\" as in \"set $foo = 5\" to define them.\n");
516}
517\f
518/* Extract a value as a C number (either long or double).
519 Knows how to convert fixed values to double, or
520 floating values to long.
521 Does not deallocate the value. */
522
523LONGEST
f23631e4 524value_as_long (struct value *val)
c906108c
SS
525{
526 /* This coerces arrays and functions, which is necessary (e.g.
527 in disassemble_command). It also dereferences references, which
528 I suspect is the most logical thing to do. */
994b9211 529 val = coerce_array (val);
c906108c
SS
530 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
531}
532
533DOUBLEST
f23631e4 534value_as_double (struct value *val)
c906108c
SS
535{
536 DOUBLEST foo;
537 int inv;
c5aa993b 538
c906108c
SS
539 foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
540 if (inv)
541 error ("Invalid floating value found in program.");
542 return foo;
543}
4478b372
JB
544/* Extract a value as a C pointer. Does not deallocate the value.
545 Note that val's type may not actually be a pointer; value_as_long
546 handles all the cases. */
c906108c 547CORE_ADDR
f23631e4 548value_as_address (struct value *val)
c906108c
SS
549{
550 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
551 whether we want this to be true eventually. */
552#if 0
553 /* ADDR_BITS_REMOVE is wrong if we are being called for a
554 non-address (e.g. argument to "signal", "info break", etc.), or
555 for pointers to char, in which the low bits *are* significant. */
c5aa993b 556 return ADDR_BITS_REMOVE (value_as_long (val));
c906108c 557#else
f312f057
JB
558
559 /* There are several targets (IA-64, PowerPC, and others) which
560 don't represent pointers to functions as simply the address of
561 the function's entry point. For example, on the IA-64, a
562 function pointer points to a two-word descriptor, generated by
563 the linker, which contains the function's entry point, and the
564 value the IA-64 "global pointer" register should have --- to
565 support position-independent code. The linker generates
566 descriptors only for those functions whose addresses are taken.
567
568 On such targets, it's difficult for GDB to convert an arbitrary
569 function address into a function pointer; it has to either find
570 an existing descriptor for that function, or call malloc and
571 build its own. On some targets, it is impossible for GDB to
572 build a descriptor at all: the descriptor must contain a jump
573 instruction; data memory cannot be executed; and code memory
574 cannot be modified.
575
576 Upon entry to this function, if VAL is a value of type `function'
577 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
578 VALUE_ADDRESS (val) is the address of the function. This is what
579 you'll get if you evaluate an expression like `main'. The call
580 to COERCE_ARRAY below actually does all the usual unary
581 conversions, which includes converting values of type `function'
582 to `pointer to function'. This is the challenging conversion
583 discussed above. Then, `unpack_long' will convert that pointer
584 back into an address.
585
586 So, suppose the user types `disassemble foo' on an architecture
587 with a strange function pointer representation, on which GDB
588 cannot build its own descriptors, and suppose further that `foo'
589 has no linker-built descriptor. The address->pointer conversion
590 will signal an error and prevent the command from running, even
591 though the next step would have been to convert the pointer
592 directly back into the same address.
593
594 The following shortcut avoids this whole mess. If VAL is a
595 function, just return its address directly. */
596 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC
597 || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_METHOD)
598 return VALUE_ADDRESS (val);
599
994b9211 600 val = coerce_array (val);
fc0c74b1
AC
601
602 /* Some architectures (e.g. Harvard), map instruction and data
603 addresses onto a single large unified address space. For
604 instance: An architecture may consider a large integer in the
605 range 0x10000000 .. 0x1000ffff to already represent a data
606 addresses (hence not need a pointer to address conversion) while
607 a small integer would still need to be converted integer to
608 pointer to address. Just assume such architectures handle all
609 integer conversions in a single function. */
610
611 /* JimB writes:
612
613 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
614 must admonish GDB hackers to make sure its behavior matches the
615 compiler's, whenever possible.
616
617 In general, I think GDB should evaluate expressions the same way
618 the compiler does. When the user copies an expression out of
619 their source code and hands it to a `print' command, they should
620 get the same value the compiler would have computed. Any
621 deviation from this rule can cause major confusion and annoyance,
622 and needs to be justified carefully. In other words, GDB doesn't
623 really have the freedom to do these conversions in clever and
624 useful ways.
625
626 AndrewC pointed out that users aren't complaining about how GDB
627 casts integers to pointers; they are complaining that they can't
628 take an address from a disassembly listing and give it to `x/i'.
629 This is certainly important.
630
631 Adding an architecture method like INTEGER_TO_ADDRESS certainly
632 makes it possible for GDB to "get it right" in all circumstances
633 --- the target has complete control over how things get done, so
634 people can Do The Right Thing for their target without breaking
635 anyone else. The standard doesn't specify how integers get
636 converted to pointers; usually, the ABI doesn't either, but
637 ABI-specific code is a more reasonable place to handle it. */
638
639 if (TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_PTR
640 && TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_REF
641 && INTEGER_TO_ADDRESS_P ())
642 return INTEGER_TO_ADDRESS (VALUE_TYPE (val), VALUE_CONTENTS (val));
643
67b2adb2 644 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
c906108c
SS
645#endif
646}
647\f
648/* Unpack raw data (copied from debugee, target byte order) at VALADDR
649 as a long, or as a double, assuming the raw data is described
650 by type TYPE. Knows how to convert different sizes of values
651 and can convert between fixed and floating point. We don't assume
652 any alignment for the raw data. Return value is in host byte order.
653
654 If you want functions and arrays to be coerced to pointers, and
655 references to be dereferenced, call value_as_long() instead.
656
657 C++: It is assumed that the front-end has taken care of
658 all matters concerning pointers to members. A pointer
659 to member which reaches here is considered to be equivalent
660 to an INT (or some size). After all, it is only an offset. */
661
662LONGEST
66140c26 663unpack_long (struct type *type, const char *valaddr)
c906108c 664{
52f0bd74
AC
665 enum type_code code = TYPE_CODE (type);
666 int len = TYPE_LENGTH (type);
667 int nosign = TYPE_UNSIGNED (type);
c906108c
SS
668
669 if (current_language->la_language == language_scm
670 && is_scmvalue_type (type))
671 return scm_unpack (type, valaddr, TYPE_CODE_INT);
672
673 switch (code)
674 {
675 case TYPE_CODE_TYPEDEF:
676 return unpack_long (check_typedef (type), valaddr);
677 case TYPE_CODE_ENUM:
678 case TYPE_CODE_BOOL:
679 case TYPE_CODE_INT:
680 case TYPE_CODE_CHAR:
681 case TYPE_CODE_RANGE:
682 if (nosign)
683 return extract_unsigned_integer (valaddr, len);
684 else
685 return extract_signed_integer (valaddr, len);
686
687 case TYPE_CODE_FLT:
96d2f608 688 return extract_typed_floating (valaddr, type);
c906108c
SS
689
690 case TYPE_CODE_PTR:
691 case TYPE_CODE_REF:
692 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
c5aa993b 693 whether we want this to be true eventually. */
4478b372 694 return extract_typed_address (valaddr, type);
c906108c
SS
695
696 case TYPE_CODE_MEMBER:
697 error ("not implemented: member types in unpack_long");
698
699 default:
700 error ("Value can't be converted to integer.");
701 }
c5aa993b 702 return 0; /* Placate lint. */
c906108c
SS
703}
704
705/* Return a double value from the specified type and address.
706 INVP points to an int which is set to 0 for valid value,
707 1 for invalid value (bad float format). In either case,
708 the returned double is OK to use. Argument is in target
709 format, result is in host format. */
710
711DOUBLEST
66140c26 712unpack_double (struct type *type, const char *valaddr, int *invp)
c906108c
SS
713{
714 enum type_code code;
715 int len;
716 int nosign;
717
718 *invp = 0; /* Assume valid. */
719 CHECK_TYPEDEF (type);
720 code = TYPE_CODE (type);
721 len = TYPE_LENGTH (type);
722 nosign = TYPE_UNSIGNED (type);
723 if (code == TYPE_CODE_FLT)
724 {
75bc7ddf
AC
725 /* NOTE: cagney/2002-02-19: There was a test here to see if the
726 floating-point value was valid (using the macro
727 INVALID_FLOAT). That test/macro have been removed.
728
729 It turns out that only the VAX defined this macro and then
730 only in a non-portable way. Fixing the portability problem
731 wouldn't help since the VAX floating-point code is also badly
732 bit-rotten. The target needs to add definitions for the
733 methods TARGET_FLOAT_FORMAT and TARGET_DOUBLE_FORMAT - these
734 exactly describe the target floating-point format. The
735 problem here is that the corresponding floatformat_vax_f and
736 floatformat_vax_d values these methods should be set to are
737 also not defined either. Oops!
738
739 Hopefully someone will add both the missing floatformat
ac79b88b
DJ
740 definitions and the new cases for floatformat_is_valid (). */
741
742 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
743 {
744 *invp = 1;
745 return 0.0;
746 }
747
96d2f608 748 return extract_typed_floating (valaddr, type);
c906108c
SS
749 }
750 else if (nosign)
751 {
752 /* Unsigned -- be sure we compensate for signed LONGEST. */
c906108c 753 return (ULONGEST) unpack_long (type, valaddr);
c906108c
SS
754 }
755 else
756 {
757 /* Signed -- we are OK with unpack_long. */
758 return unpack_long (type, valaddr);
759 }
760}
761
762/* Unpack raw data (copied from debugee, target byte order) at VALADDR
763 as a CORE_ADDR, assuming the raw data is described by type TYPE.
764 We don't assume any alignment for the raw data. Return value is in
765 host byte order.
766
767 If you want functions and arrays to be coerced to pointers, and
1aa20aa8 768 references to be dereferenced, call value_as_address() instead.
c906108c
SS
769
770 C++: It is assumed that the front-end has taken care of
771 all matters concerning pointers to members. A pointer
772 to member which reaches here is considered to be equivalent
773 to an INT (or some size). After all, it is only an offset. */
774
775CORE_ADDR
66140c26 776unpack_pointer (struct type *type, const char *valaddr)
c906108c
SS
777{
778 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
779 whether we want this to be true eventually. */
780 return unpack_long (type, valaddr);
781}
4478b372 782
c906108c 783\f
2c2738a0
DC
784/* Get the value of the FIELDN'th field (which must be static) of
785 TYPE. Return NULL if the field doesn't exist or has been
786 optimized out. */
c906108c 787
f23631e4 788struct value *
fba45db2 789value_static_field (struct type *type, int fieldno)
c906108c 790{
948e66d9
DJ
791 struct value *retval;
792
c906108c
SS
793 if (TYPE_FIELD_STATIC_HAS_ADDR (type, fieldno))
794 {
948e66d9 795 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
00a4c844 796 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
c906108c
SS
797 }
798 else
799 {
800 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
176620f1 801 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0, NULL);
948e66d9 802 if (sym == NULL)
c906108c
SS
803 {
804 /* With some compilers, e.g. HP aCC, static data members are reported
c5aa993b
JM
805 as non-debuggable symbols */
806 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
c906108c
SS
807 if (!msym)
808 return NULL;
809 else
c5aa993b 810 {
948e66d9 811 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
00a4c844 812 SYMBOL_VALUE_ADDRESS (msym));
c906108c
SS
813 }
814 }
815 else
816 {
948e66d9
DJ
817 /* SYM should never have a SYMBOL_CLASS which will require
818 read_var_value to use the FRAME parameter. */
819 if (symbol_read_needs_frame (sym))
820 warning ("static field's value depends on the current "
821 "frame - bad debug info?");
822 retval = read_var_value (sym, NULL);
2b127877 823 }
948e66d9
DJ
824 if (retval && VALUE_LVAL (retval) == lval_memory)
825 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno),
826 VALUE_ADDRESS (retval));
c906108c 827 }
948e66d9 828 return retval;
c906108c
SS
829}
830
2b127877
DB
831/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
832 You have to be careful here, since the size of the data area for the value
833 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
834 than the old enclosing type, you have to allocate more space for the data.
835 The return value is a pointer to the new version of this value structure. */
836
f23631e4
AC
837struct value *
838value_change_enclosing_type (struct value *val, struct type *new_encl_type)
2b127877
DB
839{
840 if (TYPE_LENGTH (new_encl_type) <= TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)))
841 {
842 VALUE_ENCLOSING_TYPE (val) = new_encl_type;
843 return val;
844 }
845 else
846 {
f23631e4
AC
847 struct value *new_val;
848 struct value *prev;
2b127877 849
f23631e4 850 new_val = (struct value *) xrealloc (val, sizeof (struct value) + TYPE_LENGTH (new_encl_type));
cc303028
PM
851
852 VALUE_ENCLOSING_TYPE (new_val) = new_encl_type;
853
2b127877
DB
854 /* We have to make sure this ends up in the same place in the value
855 chain as the original copy, so it's clean-up behavior is the same.
856 If the value has been released, this is a waste of time, but there
857 is no way to tell that in advance, so... */
858
859 if (val != all_values)
860 {
861 for (prev = all_values; prev != NULL; prev = prev->next)
862 {
863 if (prev->next == val)
864 {
865 prev->next = new_val;
866 break;
867 }
868 }
869 }
870
871 return new_val;
872 }
873}
874
c906108c
SS
875/* Given a value ARG1 (offset by OFFSET bytes)
876 of a struct or union type ARG_TYPE,
877 extract and return the value of one of its (non-static) fields.
878 FIELDNO says which field. */
879
f23631e4
AC
880struct value *
881value_primitive_field (struct value *arg1, int offset,
aa1ee363 882 int fieldno, struct type *arg_type)
c906108c 883{
f23631e4 884 struct value *v;
52f0bd74 885 struct type *type;
c906108c
SS
886
887 CHECK_TYPEDEF (arg_type);
888 type = TYPE_FIELD_TYPE (arg_type, fieldno);
889
890 /* Handle packed fields */
891
892 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
893 {
894 v = value_from_longest (type,
895 unpack_field_as_long (arg_type,
896 VALUE_CONTENTS (arg1)
c5aa993b 897 + offset,
c906108c
SS
898 fieldno));
899 VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
900 VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
2e70b7b9
MS
901 VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
902 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
c906108c
SS
903 }
904 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
905 {
906 /* This field is actually a base subobject, so preserve the
907 entire object's contents for later references to virtual
908 bases, etc. */
909 v = allocate_value (VALUE_ENCLOSING_TYPE (arg1));
8d65888a 910 VALUE_TYPE (v) = type;
c906108c
SS
911 if (VALUE_LAZY (arg1))
912 VALUE_LAZY (v) = 1;
913 else
914 memcpy (VALUE_CONTENTS_ALL_RAW (v), VALUE_CONTENTS_ALL_RAW (arg1),
915 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg1)));
916 VALUE_OFFSET (v) = VALUE_OFFSET (arg1);
917 VALUE_EMBEDDED_OFFSET (v)
c5aa993b
JM
918 = offset +
919 VALUE_EMBEDDED_OFFSET (arg1) +
920 TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
c906108c
SS
921 }
922 else
923 {
924 /* Plain old data member */
925 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
926 v = allocate_value (type);
927 if (VALUE_LAZY (arg1))
928 VALUE_LAZY (v) = 1;
929 else
930 memcpy (VALUE_CONTENTS_RAW (v),
931 VALUE_CONTENTS_RAW (arg1) + offset,
932 TYPE_LENGTH (type));
21cfb3b6
DJ
933 VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
934 + VALUE_EMBEDDED_OFFSET (arg1);
c906108c
SS
935 }
936 VALUE_LVAL (v) = VALUE_LVAL (arg1);
937 if (VALUE_LVAL (arg1) == lval_internalvar)
938 VALUE_LVAL (v) = lval_internalvar_component;
939 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
a88c1392 940 VALUE_REGNO (v) = VALUE_REGNO (arg1);
c906108c 941/* VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
c5aa993b 942 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; */
c906108c
SS
943 return v;
944}
945
946/* Given a value ARG1 of a struct or union type,
947 extract and return the value of one of its (non-static) fields.
948 FIELDNO says which field. */
949
f23631e4 950struct value *
aa1ee363 951value_field (struct value *arg1, int fieldno)
c906108c
SS
952{
953 return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
954}
955
956/* Return a non-virtual function as a value.
957 F is the list of member functions which contains the desired method.
0478d61c
FF
958 J is an index into F which provides the desired method.
959
960 We only use the symbol for its address, so be happy with either a
961 full symbol or a minimal symbol.
962 */
c906108c 963
f23631e4
AC
964struct value *
965value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
fba45db2 966 int offset)
c906108c 967{
f23631e4 968 struct value *v;
52f0bd74 969 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
0478d61c 970 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
c906108c 971 struct symbol *sym;
0478d61c 972 struct minimal_symbol *msym;
c906108c 973
176620f1 974 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0, NULL);
5ae326fa 975 if (sym != NULL)
0478d61c 976 {
5ae326fa
AC
977 msym = NULL;
978 }
979 else
980 {
981 gdb_assert (sym == NULL);
0478d61c 982 msym = lookup_minimal_symbol (physname, NULL, NULL);
5ae326fa
AC
983 if (msym == NULL)
984 return NULL;
0478d61c
FF
985 }
986
c906108c 987 v = allocate_value (ftype);
0478d61c
FF
988 if (sym)
989 {
990 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
991 }
992 else
993 {
994 VALUE_ADDRESS (v) = SYMBOL_VALUE_ADDRESS (msym);
995 }
c906108c
SS
996
997 if (arg1p)
c5aa993b
JM
998 {
999 if (type != VALUE_TYPE (*arg1p))
1000 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
1001 value_addr (*arg1p)));
1002
070ad9f0 1003 /* Move the `this' pointer according to the offset.
c5aa993b
JM
1004 VALUE_OFFSET (*arg1p) += offset;
1005 */
c906108c
SS
1006 }
1007
1008 return v;
1009}
1010
c906108c
SS
1011\f
1012/* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1013 VALADDR.
1014
1015 Extracting bits depends on endianness of the machine. Compute the
1016 number of least significant bits to discard. For big endian machines,
1017 we compute the total number of bits in the anonymous object, subtract
1018 off the bit count from the MSB of the object to the MSB of the
1019 bitfield, then the size of the bitfield, which leaves the LSB discard
1020 count. For little endian machines, the discard count is simply the
1021 number of bits from the LSB of the anonymous object to the LSB of the
1022 bitfield.
1023
1024 If the field is signed, we also do sign extension. */
1025
1026LONGEST
66140c26 1027unpack_field_as_long (struct type *type, const char *valaddr, int fieldno)
c906108c
SS
1028{
1029 ULONGEST val;
1030 ULONGEST valmask;
1031 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1032 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1033 int lsbcount;
1034 struct type *field_type;
1035
1036 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1037 field_type = TYPE_FIELD_TYPE (type, fieldno);
1038 CHECK_TYPEDEF (field_type);
1039
1040 /* Extract bits. See comment above. */
1041
1042 if (BITS_BIG_ENDIAN)
1043 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1044 else
1045 lsbcount = (bitpos % 8);
1046 val >>= lsbcount;
1047
1048 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1049 If the field is signed, and is negative, then sign extend. */
1050
1051 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
1052 {
1053 valmask = (((ULONGEST) 1) << bitsize) - 1;
1054 val &= valmask;
1055 if (!TYPE_UNSIGNED (field_type))
1056 {
1057 if (val & (valmask ^ (valmask >> 1)))
1058 {
1059 val |= ~valmask;
1060 }
1061 }
1062 }
1063 return (val);
1064}
1065
1066/* Modify the value of a bitfield. ADDR points to a block of memory in
1067 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1068 is the desired value of the field, in host byte order. BITPOS and BITSIZE
f4e88c8e
PH
1069 indicate which bits (in target bit order) comprise the bitfield.
1070 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS+BITSIZE <= lbits, and
1071 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
c906108c
SS
1072
1073void
fba45db2 1074modify_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
c906108c 1075{
f4e88c8e
PH
1076 ULONGEST oword;
1077 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
c906108c
SS
1078
1079 /* If a negative fieldval fits in the field in question, chop
1080 off the sign extension bits. */
f4e88c8e
PH
1081 if ((~fieldval & ~(mask >> 1)) == 0)
1082 fieldval &= mask;
c906108c
SS
1083
1084 /* Warn if value is too big to fit in the field in question. */
f4e88c8e 1085 if (0 != (fieldval & ~mask))
c906108c
SS
1086 {
1087 /* FIXME: would like to include fieldval in the message, but
c5aa993b 1088 we don't have a sprintf_longest. */
c906108c
SS
1089 warning ("Value does not fit in %d bits.", bitsize);
1090
1091 /* Truncate it, otherwise adjoining fields may be corrupted. */
f4e88c8e 1092 fieldval &= mask;
c906108c
SS
1093 }
1094
f4e88c8e 1095 oword = extract_unsigned_integer (addr, sizeof oword);
c906108c
SS
1096
1097 /* Shifting for bit field depends on endianness of the target machine. */
1098 if (BITS_BIG_ENDIAN)
1099 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1100
f4e88c8e 1101 oword &= ~(mask << bitpos);
c906108c
SS
1102 oword |= fieldval << bitpos;
1103
f4e88c8e 1104 store_unsigned_integer (addr, sizeof oword, oword);
c906108c
SS
1105}
1106\f
1107/* Convert C numbers into newly allocated values */
1108
f23631e4 1109struct value *
aa1ee363 1110value_from_longest (struct type *type, LONGEST num)
c906108c 1111{
f23631e4 1112 struct value *val = allocate_value (type);
52f0bd74
AC
1113 enum type_code code;
1114 int len;
c5aa993b 1115retry:
c906108c
SS
1116 code = TYPE_CODE (type);
1117 len = TYPE_LENGTH (type);
1118
1119 switch (code)
1120 {
1121 case TYPE_CODE_TYPEDEF:
1122 type = check_typedef (type);
1123 goto retry;
1124 case TYPE_CODE_INT:
1125 case TYPE_CODE_CHAR:
1126 case TYPE_CODE_ENUM:
1127 case TYPE_CODE_BOOL:
1128 case TYPE_CODE_RANGE:
1129 store_signed_integer (VALUE_CONTENTS_RAW (val), len, num);
1130 break;
c5aa993b 1131
c906108c
SS
1132 case TYPE_CODE_REF:
1133 case TYPE_CODE_PTR:
4478b372 1134 store_typed_address (VALUE_CONTENTS_RAW (val), type, (CORE_ADDR) num);
c906108c 1135 break;
c5aa993b 1136
c906108c
SS
1137 default:
1138 error ("Unexpected type (%d) encountered for integer constant.", code);
1139 }
1140 return val;
1141}
1142
4478b372
JB
1143
1144/* Create a value representing a pointer of type TYPE to the address
1145 ADDR. */
f23631e4 1146struct value *
4478b372
JB
1147value_from_pointer (struct type *type, CORE_ADDR addr)
1148{
f23631e4 1149 struct value *val = allocate_value (type);
4478b372
JB
1150 store_typed_address (VALUE_CONTENTS_RAW (val), type, addr);
1151 return val;
1152}
1153
1154
0f71a2f6 1155/* Create a value for a string constant to be stored locally
070ad9f0 1156 (not in the inferior's memory space, but in GDB memory).
0f71a2f6
JM
1157 This is analogous to value_from_longest, which also does not
1158 use inferior memory. String shall NOT contain embedded nulls. */
1159
f23631e4 1160struct value *
fba45db2 1161value_from_string (char *ptr)
0f71a2f6 1162{
f23631e4 1163 struct value *val;
c5aa993b 1164 int len = strlen (ptr);
0f71a2f6 1165 int lowbound = current_language->string_lower_bound;
f290d38e
AC
1166 struct type *string_char_type;
1167 struct type *rangetype;
1168 struct type *stringtype;
1169
1170 rangetype = create_range_type ((struct type *) NULL,
1171 builtin_type_int,
1172 lowbound, len + lowbound - 1);
1173 string_char_type = language_string_char_type (current_language,
1174 current_gdbarch);
1175 stringtype = create_array_type ((struct type *) NULL,
1176 string_char_type,
1177 rangetype);
0f71a2f6
JM
1178 val = allocate_value (stringtype);
1179 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1180 return val;
1181}
1182
f23631e4 1183struct value *
fba45db2 1184value_from_double (struct type *type, DOUBLEST num)
c906108c 1185{
f23631e4 1186 struct value *val = allocate_value (type);
c906108c 1187 struct type *base_type = check_typedef (type);
52f0bd74
AC
1188 enum type_code code = TYPE_CODE (base_type);
1189 int len = TYPE_LENGTH (base_type);
c906108c
SS
1190
1191 if (code == TYPE_CODE_FLT)
1192 {
96d2f608 1193 store_typed_floating (VALUE_CONTENTS_RAW (val), base_type, num);
c906108c
SS
1194 }
1195 else
1196 error ("Unexpected type encountered for floating constant.");
1197
1198 return val;
1199}
994b9211
AC
1200
1201struct value *
1202coerce_ref (struct value *arg)
1203{
1204 struct type *value_type_arg_tmp = check_typedef (VALUE_TYPE (arg));
1205 if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF)
1206 arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
1207 unpack_pointer (VALUE_TYPE (arg),
1208 VALUE_CONTENTS (arg)));
1209 return arg;
1210}
1211
1212struct value *
1213coerce_array (struct value *arg)
1214{
1215 arg = coerce_ref (arg);
1216 if (current_language->c_style_arrays
1217 && TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_ARRAY)
1218 arg = value_coerce_array (arg);
1219 if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_FUNC)
1220 arg = value_coerce_function (arg);
1221 return arg;
1222}
1223
1224struct value *
1225coerce_number (struct value *arg)
1226{
1227 arg = coerce_array (arg);
1228 arg = coerce_enum (arg);
1229 return arg;
1230}
1231
1232struct value *
1233coerce_enum (struct value *arg)
1234{
1235 if (TYPE_CODE (check_typedef (VALUE_TYPE (arg))) == TYPE_CODE_ENUM)
1236 arg = value_cast (builtin_type_unsigned_int, arg);
1237 return arg;
1238}
c906108c 1239\f
c906108c 1240
74055713
AC
1241/* Should we use DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS instead of
1242 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc and TYPE
1243 is the type (which is known to be struct, union or array).
c906108c
SS
1244
1245 On most machines, the struct convention is used unless we are
1246 using gcc and the type is of a special size. */
1247/* As of about 31 Mar 93, GCC was changed to be compatible with the
1248 native compiler. GCC 2.3.3 was the last release that did it the
1249 old way. Since gcc2_compiled was not changed, we have no
1250 way to correctly win in all cases, so we just do the right thing
1251 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1252 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1253 would cause more chaos than dealing with some struct returns being
1254 handled wrong. */
bc87dfa0
AC
1255/* NOTE: cagney/2004-06-13: Deleted check for "gcc_p". GCC 1.x is
1256 dead. */
c906108c
SS
1257
1258int
fba45db2 1259generic_use_struct_convention (int gcc_p, struct type *value_type)
c5aa993b 1260{
bc87dfa0
AC
1261 return !(TYPE_LENGTH (value_type) == 1
1262 || TYPE_LENGTH (value_type) == 2
1263 || TYPE_LENGTH (value_type) == 4
1264 || TYPE_LENGTH (value_type) == 8);
c906108c
SS
1265}
1266
48436ce6
AC
1267/* Return true if the function returning the specified type is using
1268 the convention of returning structures in memory (passing in the
1269 address as a hidden first parameter). GCC_P is nonzero if compiled
c906108c
SS
1270 with GCC. */
1271
1272int
48436ce6 1273using_struct_return (struct type *value_type, int gcc_p)
c906108c 1274{
52f0bd74 1275 enum type_code code = TYPE_CODE (value_type);
c906108c
SS
1276
1277 if (code == TYPE_CODE_ERROR)
1278 error ("Function return type unknown.");
1279
667e784f
AC
1280 if (code == TYPE_CODE_VOID)
1281 /* A void return value is never in memory. See also corresponding
44e5158b 1282 code in "print_return_value". */
667e784f
AC
1283 return 0;
1284
92ad9cd9
AC
1285 /* Probe the architecture for the return-value convention. */
1286 return (gdbarch_return_value (current_gdbarch, value_type,
1287 NULL, NULL, NULL)
31db7b6c 1288 != RETURN_VALUE_REGISTER_CONVENTION);
c906108c
SS
1289}
1290
c906108c 1291void
fba45db2 1292_initialize_values (void)
c906108c
SS
1293{
1294 add_cmd ("convenience", no_class, show_convenience,
c5aa993b 1295 "Debugger convenience (\"$foo\") variables.\n\
c906108c
SS
1296These variables are created when you assign them values;\n\
1297thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1298A few convenience variables are given values automatically:\n\
1299\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1300\"$__\" holds the contents of the last address examined with \"x\".",
1301 &showlist);
1302
1303 add_cmd ("values", no_class, show_values,
1304 "Elements of value history around item number IDX (or last ten).",
1305 &showlist);
1306}