]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/value.c
Remove free_all_values
[thirdparty/binutils-gdb.git] / gdb / value.c
CommitLineData
c906108c 1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
1bac305b 2
e2882c85 3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
e17c207e 21#include "arch-utils.h"
c906108c
SS
22#include "symtab.h"
23#include "gdbtypes.h"
24#include "value.h"
25#include "gdbcore.h"
c906108c
SS
26#include "command.h"
27#include "gdbcmd.h"
28#include "target.h"
29#include "language.h"
c906108c 30#include "demangle.h"
36160dc4 31#include "regcache.h"
fe898f56 32#include "block.h"
70100014 33#include "target-float.h"
bccdca4a 34#include "objfiles.h"
79a45b7d 35#include "valprint.h"
bc3b79fd 36#include "cli/cli-decode.h"
6dddc817 37#include "extension.h"
3bd0f5ef 38#include <ctype.h>
0914bcdb 39#include "tracepoint.h"
be335936 40#include "cp-abi.h"
a58e2656 41#include "user-regs.h"
325fac50 42#include <algorithm>
eb3ff9a5 43#include "completer.h"
0914bcdb 44
bc3b79fd
TJB
45/* Definition of a user function. */
46struct internal_function
47{
48 /* The name of the function. It is a bit odd to have this in the
49 function itself -- the user might use a differently-named
50 convenience variable to hold the function. */
51 char *name;
52
53 /* The handler. */
54 internal_function_fn handler;
55
56 /* User data for the handler. */
57 void *cookie;
58};
59
4e07d55f
PA
60/* Defines an [OFFSET, OFFSET + LENGTH) range. */
61
62struct range
63{
64 /* Lowest offset in the range. */
6b850546 65 LONGEST offset;
4e07d55f
PA
66
67 /* Length of the range. */
6b850546 68 LONGEST length;
4e07d55f
PA
69};
70
71typedef struct range range_s;
72
73DEF_VEC_O(range_s);
74
75/* Returns true if the ranges defined by [offset1, offset1+len1) and
76 [offset2, offset2+len2) overlap. */
77
78static int
6b850546
DT
79ranges_overlap (LONGEST offset1, LONGEST len1,
80 LONGEST offset2, LONGEST len2)
4e07d55f
PA
81{
82 ULONGEST h, l;
83
325fac50
PA
84 l = std::max (offset1, offset2);
85 h = std::min (offset1 + len1, offset2 + len2);
4e07d55f
PA
86 return (l < h);
87}
88
89/* Returns true if the first argument is strictly less than the
90 second, useful for VEC_lower_bound. We keep ranges sorted by
91 offset and coalesce overlapping and contiguous ranges, so this just
92 compares the starting offset. */
93
94static int
95range_lessthan (const range_s *r1, const range_s *r2)
96{
97 return r1->offset < r2->offset;
98}
99
100/* Returns true if RANGES contains any range that overlaps [OFFSET,
101 OFFSET+LENGTH). */
102
103static int
6b850546 104ranges_contain (VEC(range_s) *ranges, LONGEST offset, LONGEST length)
4e07d55f
PA
105{
106 range_s what;
6b850546 107 LONGEST i;
4e07d55f
PA
108
109 what.offset = offset;
110 what.length = length;
111
112 /* We keep ranges sorted by offset and coalesce overlapping and
113 contiguous ranges, so to check if a range list contains a given
114 range, we can do a binary search for the position the given range
115 would be inserted if we only considered the starting OFFSET of
116 ranges. We call that position I. Since we also have LENGTH to
117 care for (this is a range afterall), we need to check if the
118 _previous_ range overlaps the I range. E.g.,
119
120 R
121 |---|
122 |---| |---| |------| ... |--|
123 0 1 2 N
124
125 I=1
126
127 In the case above, the binary search would return `I=1', meaning,
128 this OFFSET should be inserted at position 1, and the current
129 position 1 should be pushed further (and before 2). But, `0'
130 overlaps with R.
131
132 Then we need to check if the I range overlaps the I range itself.
133 E.g.,
134
135 R
136 |---|
137 |---| |---| |-------| ... |--|
138 0 1 2 N
139
140 I=1
141 */
142
143 i = VEC_lower_bound (range_s, ranges, &what, range_lessthan);
144
145 if (i > 0)
146 {
147 struct range *bef = VEC_index (range_s, ranges, i - 1);
148
149 if (ranges_overlap (bef->offset, bef->length, offset, length))
150 return 1;
151 }
152
153 if (i < VEC_length (range_s, ranges))
154 {
155 struct range *r = VEC_index (range_s, ranges, i);
156
157 if (ranges_overlap (r->offset, r->length, offset, length))
158 return 1;
159 }
160
161 return 0;
162}
163
bc3b79fd
TJB
164static struct cmd_list_element *functionlist;
165
87784a47
TT
166/* Note that the fields in this structure are arranged to save a bit
167 of memory. */
168
91294c83
AC
169struct value
170{
171 /* Type of value; either not an lval, or one of the various
172 different possible kinds of lval. */
173 enum lval_type lval;
174
175 /* Is it modifiable? Only relevant if lval != not_lval. */
87784a47
TT
176 unsigned int modifiable : 1;
177
178 /* If zero, contents of this value are in the contents field. If
179 nonzero, contents are in inferior. If the lval field is lval_memory,
180 the contents are in inferior memory at location.address plus offset.
181 The lval field may also be lval_register.
182
183 WARNING: This field is used by the code which handles watchpoints
184 (see breakpoint.c) to decide whether a particular value can be
185 watched by hardware watchpoints. If the lazy flag is set for
186 some member of a value chain, it is assumed that this member of
187 the chain doesn't need to be watched as part of watching the
188 value itself. This is how GDB avoids watching the entire struct
189 or array when the user wants to watch a single struct member or
190 array element. If you ever change the way lazy flag is set and
191 reset, be sure to consider this use as well! */
192 unsigned int lazy : 1;
193
87784a47
TT
194 /* If value is a variable, is it initialized or not. */
195 unsigned int initialized : 1;
196
197 /* If value is from the stack. If this is set, read_stack will be
198 used instead of read_memory to enable extra caching. */
199 unsigned int stack : 1;
91294c83 200
e848a8a5
TT
201 /* If the value has been released. */
202 unsigned int released : 1;
203
91294c83
AC
204 /* Location of value (if lval). */
205 union
206 {
7dc54575 207 /* If lval == lval_memory, this is the address in the inferior */
91294c83
AC
208 CORE_ADDR address;
209
7dc54575
YQ
210 /*If lval == lval_register, the value is from a register. */
211 struct
212 {
213 /* Register number. */
214 int regnum;
215 /* Frame ID of "next" frame to which a register value is relative.
216 If the register value is found relative to frame F, then the
217 frame id of F->next will be stored in next_frame_id. */
218 struct frame_id next_frame_id;
219 } reg;
220
91294c83
AC
221 /* Pointer to internal variable. */
222 struct internalvar *internalvar;
5f5233d4 223
e81e7f5e
SC
224 /* Pointer to xmethod worker. */
225 struct xmethod_worker *xm_worker;
226
5f5233d4
PA
227 /* If lval == lval_computed, this is a set of function pointers
228 to use to access and describe the value, and a closure pointer
229 for them to use. */
230 struct
231 {
c8f2448a
JK
232 /* Functions to call. */
233 const struct lval_funcs *funcs;
234
235 /* Closure for those functions to use. */
236 void *closure;
5f5233d4 237 } computed;
91294c83
AC
238 } location;
239
3723fda8 240 /* Describes offset of a value within lval of a structure in target
7dc54575
YQ
241 addressable memory units. Note also the member embedded_offset
242 below. */
6b850546 243 LONGEST offset;
91294c83
AC
244
245 /* Only used for bitfields; number of bits contained in them. */
6b850546 246 LONGEST bitsize;
91294c83
AC
247
248 /* Only used for bitfields; position of start of field. For
32c9a795 249 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
581e13c1 250 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
6b850546 251 LONGEST bitpos;
91294c83 252
87784a47
TT
253 /* The number of references to this value. When a value is created,
254 the value chain holds a reference, so REFERENCE_COUNT is 1. If
255 release_value is called, this value is removed from the chain but
256 the caller of release_value now has a reference to this value.
257 The caller must arrange for a call to value_free later. */
258 int reference_count;
259
4ea48cc1
DJ
260 /* Only used for bitfields; the containing value. This allows a
261 single read from the target when displaying multiple
262 bitfields. */
263 struct value *parent;
264
91294c83
AC
265 /* Type of the value. */
266 struct type *type;
267
268 /* If a value represents a C++ object, then the `type' field gives
269 the object's compile-time type. If the object actually belongs
270 to some class derived from `type', perhaps with other base
271 classes and additional members, then `type' is just a subobject
272 of the real thing, and the full object is probably larger than
273 `type' would suggest.
274
275 If `type' is a dynamic class (i.e. one with a vtable), then GDB
276 can actually determine the object's run-time type by looking at
277 the run-time type information in the vtable. When this
278 information is available, we may elect to read in the entire
279 object, for several reasons:
280
281 - When printing the value, the user would probably rather see the
282 full object, not just the limited portion apparent from the
283 compile-time type.
284
285 - If `type' has virtual base classes, then even printing `type'
286 alone may require reaching outside the `type' portion of the
287 object to wherever the virtual base class has been stored.
288
289 When we store the entire object, `enclosing_type' is the run-time
290 type -- the complete object -- and `embedded_offset' is the
3723fda8
SM
291 offset of `type' within that larger type, in target addressable memory
292 units. The value_contents() macro takes `embedded_offset' into account,
293 so most GDB code continues to see the `type' portion of the value, just
294 as the inferior would.
91294c83
AC
295
296 If `type' is a pointer to an object, then `enclosing_type' is a
297 pointer to the object's run-time type, and `pointed_to_offset' is
3723fda8
SM
298 the offset in target addressable memory units from the full object
299 to the pointed-to object -- that is, the value `embedded_offset' would
300 have if we followed the pointer and fetched the complete object.
301 (I don't really see the point. Why not just determine the
302 run-time type when you indirect, and avoid the special case? The
303 contents don't matter until you indirect anyway.)
91294c83
AC
304
305 If we're not doing anything fancy, `enclosing_type' is equal to
306 `type', and `embedded_offset' is zero, so everything works
307 normally. */
308 struct type *enclosing_type;
6b850546
DT
309 LONGEST embedded_offset;
310 LONGEST pointed_to_offset;
91294c83
AC
311
312 /* Values are stored in a chain, so that they can be deleted easily
313 over calls to the inferior. Values assigned to internal
a08702d6
TJB
314 variables, put into the value history or exposed to Python are
315 taken off this list. */
91294c83
AC
316 struct value *next;
317
3e3d7139
JG
318 /* Actual contents of the value. Target byte-order. NULL or not
319 valid if lazy is nonzero. */
320 gdb_byte *contents;
828d3400 321
4e07d55f
PA
322 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
323 rather than available, since the common and default case is for a
9a0dc9e3
PA
324 value to be available. This is filled in at value read time.
325 The unavailable ranges are tracked in bits. Note that a contents
326 bit that has been optimized out doesn't really exist in the
327 program, so it can't be marked unavailable either. */
4e07d55f 328 VEC(range_s) *unavailable;
9a0dc9e3
PA
329
330 /* Likewise, but for optimized out contents (a chunk of the value of
331 a variable that does not actually exist in the program). If LVAL
332 is lval_register, this is a register ($pc, $sp, etc., never a
333 program variable) that has not been saved in the frame. Not
334 saved registers and optimized-out program variables values are
335 treated pretty much the same, except not-saved registers have a
336 different string representation and related error strings. */
337 VEC(range_s) *optimized_out;
91294c83
AC
338};
339
e512cdbd
SM
340/* See value.h. */
341
342struct gdbarch *
343get_value_arch (const struct value *value)
344{
345 return get_type_arch (value_type (value));
346}
347
4e07d55f 348int
6b850546 349value_bits_available (const struct value *value, LONGEST offset, LONGEST length)
4e07d55f
PA
350{
351 gdb_assert (!value->lazy);
352
353 return !ranges_contain (value->unavailable, offset, length);
354}
355
bdf22206 356int
6b850546
DT
357value_bytes_available (const struct value *value,
358 LONGEST offset, LONGEST length)
bdf22206
AB
359{
360 return value_bits_available (value,
361 offset * TARGET_CHAR_BIT,
362 length * TARGET_CHAR_BIT);
363}
364
9a0dc9e3
PA
365int
366value_bits_any_optimized_out (const struct value *value, int bit_offset, int bit_length)
367{
368 gdb_assert (!value->lazy);
369
370 return ranges_contain (value->optimized_out, bit_offset, bit_length);
371}
372
ec0a52e1
PA
373int
374value_entirely_available (struct value *value)
375{
376 /* We can only tell whether the whole value is available when we try
377 to read it. */
378 if (value->lazy)
379 value_fetch_lazy (value);
380
381 if (VEC_empty (range_s, value->unavailable))
382 return 1;
383 return 0;
384}
385
9a0dc9e3
PA
386/* Returns true if VALUE is entirely covered by RANGES. If the value
387 is lazy, it'll be read now. Note that RANGE is a pointer to
388 pointer because reading the value might change *RANGE. */
389
390static int
391value_entirely_covered_by_range_vector (struct value *value,
392 VEC(range_s) **ranges)
6211c335 393{
9a0dc9e3
PA
394 /* We can only tell whether the whole value is optimized out /
395 unavailable when we try to read it. */
6211c335
YQ
396 if (value->lazy)
397 value_fetch_lazy (value);
398
9a0dc9e3 399 if (VEC_length (range_s, *ranges) == 1)
6211c335 400 {
9a0dc9e3 401 struct range *t = VEC_index (range_s, *ranges, 0);
6211c335
YQ
402
403 if (t->offset == 0
64c46ce4
JB
404 && t->length == (TARGET_CHAR_BIT
405 * TYPE_LENGTH (value_enclosing_type (value))))
6211c335
YQ
406 return 1;
407 }
408
409 return 0;
410}
411
9a0dc9e3
PA
412int
413value_entirely_unavailable (struct value *value)
414{
415 return value_entirely_covered_by_range_vector (value, &value->unavailable);
416}
417
418int
419value_entirely_optimized_out (struct value *value)
420{
421 return value_entirely_covered_by_range_vector (value, &value->optimized_out);
422}
423
424/* Insert into the vector pointed to by VECTORP the bit range starting of
425 OFFSET bits, and extending for the next LENGTH bits. */
426
427static void
6b850546
DT
428insert_into_bit_range_vector (VEC(range_s) **vectorp,
429 LONGEST offset, LONGEST length)
4e07d55f
PA
430{
431 range_s newr;
432 int i;
433
434 /* Insert the range sorted. If there's overlap or the new range
435 would be contiguous with an existing range, merge. */
436
437 newr.offset = offset;
438 newr.length = length;
439
440 /* Do a binary search for the position the given range would be
441 inserted if we only considered the starting OFFSET of ranges.
442 Call that position I. Since we also have LENGTH to care for
443 (this is a range afterall), we need to check if the _previous_
444 range overlaps the I range. E.g., calling R the new range:
445
446 #1 - overlaps with previous
447
448 R
449 |-...-|
450 |---| |---| |------| ... |--|
451 0 1 2 N
452
453 I=1
454
455 In the case #1 above, the binary search would return `I=1',
456 meaning, this OFFSET should be inserted at position 1, and the
457 current position 1 should be pushed further (and become 2). But,
458 note that `0' overlaps with R, so we want to merge them.
459
460 A similar consideration needs to be taken if the new range would
461 be contiguous with the previous range:
462
463 #2 - contiguous with previous
464
465 R
466 |-...-|
467 |--| |---| |------| ... |--|
468 0 1 2 N
469
470 I=1
471
472 If there's no overlap with the previous range, as in:
473
474 #3 - not overlapping and not contiguous
475
476 R
477 |-...-|
478 |--| |---| |------| ... |--|
479 0 1 2 N
480
481 I=1
482
483 or if I is 0:
484
485 #4 - R is the range with lowest offset
486
487 R
488 |-...-|
489 |--| |---| |------| ... |--|
490 0 1 2 N
491
492 I=0
493
494 ... we just push the new range to I.
495
496 All the 4 cases above need to consider that the new range may
497 also overlap several of the ranges that follow, or that R may be
498 contiguous with the following range, and merge. E.g.,
499
500 #5 - overlapping following ranges
501
502 R
503 |------------------------|
504 |--| |---| |------| ... |--|
505 0 1 2 N
506
507 I=0
508
509 or:
510
511 R
512 |-------|
513 |--| |---| |------| ... |--|
514 0 1 2 N
515
516 I=1
517
518 */
519
9a0dc9e3 520 i = VEC_lower_bound (range_s, *vectorp, &newr, range_lessthan);
4e07d55f
PA
521 if (i > 0)
522 {
9a0dc9e3 523 struct range *bef = VEC_index (range_s, *vectorp, i - 1);
4e07d55f
PA
524
525 if (ranges_overlap (bef->offset, bef->length, offset, length))
526 {
527 /* #1 */
325fac50
PA
528 ULONGEST l = std::min (bef->offset, offset);
529 ULONGEST h = std::max (bef->offset + bef->length, offset + length);
4e07d55f
PA
530
531 bef->offset = l;
532 bef->length = h - l;
533 i--;
534 }
535 else if (offset == bef->offset + bef->length)
536 {
537 /* #2 */
538 bef->length += length;
539 i--;
540 }
541 else
542 {
543 /* #3 */
9a0dc9e3 544 VEC_safe_insert (range_s, *vectorp, i, &newr);
4e07d55f
PA
545 }
546 }
547 else
548 {
549 /* #4 */
9a0dc9e3 550 VEC_safe_insert (range_s, *vectorp, i, &newr);
4e07d55f
PA
551 }
552
553 /* Check whether the ranges following the one we've just added or
554 touched can be folded in (#5 above). */
9a0dc9e3 555 if (i + 1 < VEC_length (range_s, *vectorp))
4e07d55f
PA
556 {
557 struct range *t;
558 struct range *r;
559 int removed = 0;
560 int next = i + 1;
561
562 /* Get the range we just touched. */
9a0dc9e3 563 t = VEC_index (range_s, *vectorp, i);
4e07d55f
PA
564 removed = 0;
565
566 i = next;
9a0dc9e3 567 for (; VEC_iterate (range_s, *vectorp, i, r); i++)
4e07d55f
PA
568 if (r->offset <= t->offset + t->length)
569 {
570 ULONGEST l, h;
571
325fac50
PA
572 l = std::min (t->offset, r->offset);
573 h = std::max (t->offset + t->length, r->offset + r->length);
4e07d55f
PA
574
575 t->offset = l;
576 t->length = h - l;
577
578 removed++;
579 }
580 else
581 {
582 /* If we couldn't merge this one, we won't be able to
583 merge following ones either, since the ranges are
584 always sorted by OFFSET. */
585 break;
586 }
587
588 if (removed != 0)
9a0dc9e3 589 VEC_block_remove (range_s, *vectorp, next, removed);
4e07d55f
PA
590 }
591}
592
9a0dc9e3 593void
6b850546
DT
594mark_value_bits_unavailable (struct value *value,
595 LONGEST offset, LONGEST length)
9a0dc9e3
PA
596{
597 insert_into_bit_range_vector (&value->unavailable, offset, length);
598}
599
bdf22206 600void
6b850546
DT
601mark_value_bytes_unavailable (struct value *value,
602 LONGEST offset, LONGEST length)
bdf22206
AB
603{
604 mark_value_bits_unavailable (value,
605 offset * TARGET_CHAR_BIT,
606 length * TARGET_CHAR_BIT);
607}
608
c8c1c22f
PA
609/* Find the first range in RANGES that overlaps the range defined by
610 OFFSET and LENGTH, starting at element POS in the RANGES vector,
611 Returns the index into RANGES where such overlapping range was
612 found, or -1 if none was found. */
613
614static int
615find_first_range_overlap (VEC(range_s) *ranges, int pos,
6b850546 616 LONGEST offset, LONGEST length)
c8c1c22f
PA
617{
618 range_s *r;
619 int i;
620
621 for (i = pos; VEC_iterate (range_s, ranges, i, r); i++)
622 if (ranges_overlap (r->offset, r->length, offset, length))
623 return i;
624
625 return -1;
626}
627
bdf22206
AB
628/* Compare LENGTH_BITS of memory at PTR1 + OFFSET1_BITS with the memory at
629 PTR2 + OFFSET2_BITS. Return 0 if the memory is the same, otherwise
630 return non-zero.
631
632 It must always be the case that:
633 OFFSET1_BITS % TARGET_CHAR_BIT == OFFSET2_BITS % TARGET_CHAR_BIT
634
635 It is assumed that memory can be accessed from:
636 PTR + (OFFSET_BITS / TARGET_CHAR_BIT)
637 to:
638 PTR + ((OFFSET_BITS + LENGTH_BITS + TARGET_CHAR_BIT - 1)
639 / TARGET_CHAR_BIT) */
640static int
641memcmp_with_bit_offsets (const gdb_byte *ptr1, size_t offset1_bits,
642 const gdb_byte *ptr2, size_t offset2_bits,
643 size_t length_bits)
644{
645 gdb_assert (offset1_bits % TARGET_CHAR_BIT
646 == offset2_bits % TARGET_CHAR_BIT);
647
648 if (offset1_bits % TARGET_CHAR_BIT != 0)
649 {
650 size_t bits;
651 gdb_byte mask, b1, b2;
652
653 /* The offset from the base pointers PTR1 and PTR2 is not a complete
654 number of bytes. A number of bits up to either the next exact
655 byte boundary, or LENGTH_BITS (which ever is sooner) will be
656 compared. */
657 bits = TARGET_CHAR_BIT - offset1_bits % TARGET_CHAR_BIT;
658 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
659 mask = (1 << bits) - 1;
660
661 if (length_bits < bits)
662 {
663 mask &= ~(gdb_byte) ((1 << (bits - length_bits)) - 1);
664 bits = length_bits;
665 }
666
667 /* Now load the two bytes and mask off the bits we care about. */
668 b1 = *(ptr1 + offset1_bits / TARGET_CHAR_BIT) & mask;
669 b2 = *(ptr2 + offset2_bits / TARGET_CHAR_BIT) & mask;
670
671 if (b1 != b2)
672 return 1;
673
674 /* Now update the length and offsets to take account of the bits
675 we've just compared. */
676 length_bits -= bits;
677 offset1_bits += bits;
678 offset2_bits += bits;
679 }
680
681 if (length_bits % TARGET_CHAR_BIT != 0)
682 {
683 size_t bits;
684 size_t o1, o2;
685 gdb_byte mask, b1, b2;
686
687 /* The length is not an exact number of bytes. After the previous
688 IF.. block then the offsets are byte aligned, or the
689 length is zero (in which case this code is not reached). Compare
690 a number of bits at the end of the region, starting from an exact
691 byte boundary. */
692 bits = length_bits % TARGET_CHAR_BIT;
693 o1 = offset1_bits + length_bits - bits;
694 o2 = offset2_bits + length_bits - bits;
695
696 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
697 mask = ((1 << bits) - 1) << (TARGET_CHAR_BIT - bits);
698
699 gdb_assert (o1 % TARGET_CHAR_BIT == 0);
700 gdb_assert (o2 % TARGET_CHAR_BIT == 0);
701
702 b1 = *(ptr1 + o1 / TARGET_CHAR_BIT) & mask;
703 b2 = *(ptr2 + o2 / TARGET_CHAR_BIT) & mask;
704
705 if (b1 != b2)
706 return 1;
707
708 length_bits -= bits;
709 }
710
711 if (length_bits > 0)
712 {
713 /* We've now taken care of any stray "bits" at the start, or end of
714 the region to compare, the remainder can be covered with a simple
715 memcmp. */
716 gdb_assert (offset1_bits % TARGET_CHAR_BIT == 0);
717 gdb_assert (offset2_bits % TARGET_CHAR_BIT == 0);
718 gdb_assert (length_bits % TARGET_CHAR_BIT == 0);
719
720 return memcmp (ptr1 + offset1_bits / TARGET_CHAR_BIT,
721 ptr2 + offset2_bits / TARGET_CHAR_BIT,
722 length_bits / TARGET_CHAR_BIT);
723 }
724
725 /* Length is zero, regions match. */
726 return 0;
727}
728
9a0dc9e3
PA
729/* Helper struct for find_first_range_overlap_and_match and
730 value_contents_bits_eq. Keep track of which slot of a given ranges
731 vector have we last looked at. */
bdf22206 732
9a0dc9e3
PA
733struct ranges_and_idx
734{
735 /* The ranges. */
736 VEC(range_s) *ranges;
737
738 /* The range we've last found in RANGES. Given ranges are sorted,
739 we can start the next lookup here. */
740 int idx;
741};
742
743/* Helper function for value_contents_bits_eq. Compare LENGTH bits of
744 RP1's ranges starting at OFFSET1 bits with LENGTH bits of RP2's
745 ranges starting at OFFSET2 bits. Return true if the ranges match
746 and fill in *L and *H with the overlapping window relative to
747 (both) OFFSET1 or OFFSET2. */
bdf22206
AB
748
749static int
9a0dc9e3
PA
750find_first_range_overlap_and_match (struct ranges_and_idx *rp1,
751 struct ranges_and_idx *rp2,
6b850546
DT
752 LONGEST offset1, LONGEST offset2,
753 LONGEST length, ULONGEST *l, ULONGEST *h)
c8c1c22f 754{
9a0dc9e3
PA
755 rp1->idx = find_first_range_overlap (rp1->ranges, rp1->idx,
756 offset1, length);
757 rp2->idx = find_first_range_overlap (rp2->ranges, rp2->idx,
758 offset2, length);
c8c1c22f 759
9a0dc9e3
PA
760 if (rp1->idx == -1 && rp2->idx == -1)
761 {
762 *l = length;
763 *h = length;
764 return 1;
765 }
766 else if (rp1->idx == -1 || rp2->idx == -1)
767 return 0;
768 else
c8c1c22f
PA
769 {
770 range_s *r1, *r2;
771 ULONGEST l1, h1;
772 ULONGEST l2, h2;
773
9a0dc9e3
PA
774 r1 = VEC_index (range_s, rp1->ranges, rp1->idx);
775 r2 = VEC_index (range_s, rp2->ranges, rp2->idx);
c8c1c22f
PA
776
777 /* Get the unavailable windows intersected by the incoming
778 ranges. The first and last ranges that overlap the argument
779 range may be wider than said incoming arguments ranges. */
325fac50
PA
780 l1 = std::max (offset1, r1->offset);
781 h1 = std::min (offset1 + length, r1->offset + r1->length);
c8c1c22f 782
325fac50
PA
783 l2 = std::max (offset2, r2->offset);
784 h2 = std::min (offset2 + length, offset2 + r2->length);
c8c1c22f
PA
785
786 /* Make them relative to the respective start offsets, so we can
787 compare them for equality. */
788 l1 -= offset1;
789 h1 -= offset1;
790
791 l2 -= offset2;
792 h2 -= offset2;
793
9a0dc9e3 794 /* Different ranges, no match. */
c8c1c22f
PA
795 if (l1 != l2 || h1 != h2)
796 return 0;
797
9a0dc9e3
PA
798 *h = h1;
799 *l = l1;
800 return 1;
801 }
802}
803
804/* Helper function for value_contents_eq. The only difference is that
805 this function is bit rather than byte based.
806
807 Compare LENGTH bits of VAL1's contents starting at OFFSET1 bits
808 with LENGTH bits of VAL2's contents starting at OFFSET2 bits.
809 Return true if the available bits match. */
810
98ead37e 811static bool
9a0dc9e3
PA
812value_contents_bits_eq (const struct value *val1, int offset1,
813 const struct value *val2, int offset2,
814 int length)
815{
816 /* Each array element corresponds to a ranges source (unavailable,
817 optimized out). '1' is for VAL1, '2' for VAL2. */
818 struct ranges_and_idx rp1[2], rp2[2];
819
820 /* See function description in value.h. */
821 gdb_assert (!val1->lazy && !val2->lazy);
822
823 /* We shouldn't be trying to compare past the end of the values. */
824 gdb_assert (offset1 + length
825 <= TYPE_LENGTH (val1->enclosing_type) * TARGET_CHAR_BIT);
826 gdb_assert (offset2 + length
827 <= TYPE_LENGTH (val2->enclosing_type) * TARGET_CHAR_BIT);
828
829 memset (&rp1, 0, sizeof (rp1));
830 memset (&rp2, 0, sizeof (rp2));
831 rp1[0].ranges = val1->unavailable;
832 rp2[0].ranges = val2->unavailable;
833 rp1[1].ranges = val1->optimized_out;
834 rp2[1].ranges = val2->optimized_out;
835
836 while (length > 0)
837 {
000339af 838 ULONGEST l = 0, h = 0; /* init for gcc -Wall */
9a0dc9e3
PA
839 int i;
840
841 for (i = 0; i < 2; i++)
842 {
843 ULONGEST l_tmp, h_tmp;
844
845 /* The contents only match equal if the invalid/unavailable
846 contents ranges match as well. */
847 if (!find_first_range_overlap_and_match (&rp1[i], &rp2[i],
848 offset1, offset2, length,
849 &l_tmp, &h_tmp))
98ead37e 850 return false;
9a0dc9e3
PA
851
852 /* We're interested in the lowest/first range found. */
853 if (i == 0 || l_tmp < l)
854 {
855 l = l_tmp;
856 h = h_tmp;
857 }
858 }
859
860 /* Compare the available/valid contents. */
bdf22206 861 if (memcmp_with_bit_offsets (val1->contents, offset1,
9a0dc9e3 862 val2->contents, offset2, l) != 0)
98ead37e 863 return false;
c8c1c22f 864
9a0dc9e3
PA
865 length -= h;
866 offset1 += h;
867 offset2 += h;
c8c1c22f
PA
868 }
869
98ead37e 870 return true;
c8c1c22f
PA
871}
872
98ead37e 873bool
6b850546
DT
874value_contents_eq (const struct value *val1, LONGEST offset1,
875 const struct value *val2, LONGEST offset2,
876 LONGEST length)
bdf22206 877{
9a0dc9e3
PA
878 return value_contents_bits_eq (val1, offset1 * TARGET_CHAR_BIT,
879 val2, offset2 * TARGET_CHAR_BIT,
880 length * TARGET_CHAR_BIT);
bdf22206
AB
881}
882
c906108c 883
4d0266a0
TT
884/* The value-history records all the values printed by print commands
885 during this session. */
c906108c 886
4d0266a0 887static std::vector<value_ref_ptr> value_history;
bc3b79fd 888
c906108c
SS
889\f
890/* List of all value objects currently allocated
891 (except for those released by calls to release_value)
892 This is so they can be freed after each command. */
893
f23631e4 894static struct value *all_values;
c906108c 895
3e3d7139
JG
896/* Allocate a lazy value for type TYPE. Its actual content is
897 "lazily" allocated too: the content field of the return value is
898 NULL; it will be allocated when it is fetched from the target. */
c906108c 899
f23631e4 900struct value *
3e3d7139 901allocate_value_lazy (struct type *type)
c906108c 902{
f23631e4 903 struct value *val;
c54eabfa
JK
904
905 /* Call check_typedef on our type to make sure that, if TYPE
906 is a TYPE_CODE_TYPEDEF, its length is set to the length
907 of the target type instead of zero. However, we do not
908 replace the typedef type by the target type, because we want
909 to keep the typedef in order to be able to set the VAL's type
910 description correctly. */
911 check_typedef (type);
c906108c 912
8d749320 913 val = XCNEW (struct value);
3e3d7139 914 val->contents = NULL;
df407dfe 915 val->next = all_values;
c906108c 916 all_values = val;
df407dfe 917 val->type = type;
4754a64e 918 val->enclosing_type = type;
c906108c 919 VALUE_LVAL (val) = not_lval;
42ae5230 920 val->location.address = 0;
df407dfe
AC
921 val->offset = 0;
922 val->bitpos = 0;
923 val->bitsize = 0;
3e3d7139 924 val->lazy = 1;
13c3b5f5 925 val->embedded_offset = 0;
b44d461b 926 val->pointed_to_offset = 0;
c906108c 927 val->modifiable = 1;
42be36b3 928 val->initialized = 1; /* Default to initialized. */
828d3400
DJ
929
930 /* Values start out on the all_values chain. */
931 val->reference_count = 1;
932
c906108c
SS
933 return val;
934}
935
5fdf6324
AB
936/* The maximum size, in bytes, that GDB will try to allocate for a value.
937 The initial value of 64k was not selected for any specific reason, it is
938 just a reasonable starting point. */
939
940static int max_value_size = 65536; /* 64k bytes */
941
942/* It is critical that the MAX_VALUE_SIZE is at least as big as the size of
943 LONGEST, otherwise GDB will not be able to parse integer values from the
944 CLI; for example if the MAX_VALUE_SIZE could be set to 1 then GDB would
945 be unable to parse "set max-value-size 2".
946
947 As we want a consistent GDB experience across hosts with different sizes
948 of LONGEST, this arbitrary minimum value was selected, so long as this
949 is bigger than LONGEST on all GDB supported hosts we're fine. */
950
951#define MIN_VALUE_FOR_MAX_VALUE_SIZE 16
952gdb_static_assert (sizeof (LONGEST) <= MIN_VALUE_FOR_MAX_VALUE_SIZE);
953
954/* Implement the "set max-value-size" command. */
955
956static void
eb4c3f4a 957set_max_value_size (const char *args, int from_tty,
5fdf6324
AB
958 struct cmd_list_element *c)
959{
960 gdb_assert (max_value_size == -1 || max_value_size >= 0);
961
962 if (max_value_size > -1 && max_value_size < MIN_VALUE_FOR_MAX_VALUE_SIZE)
963 {
964 max_value_size = MIN_VALUE_FOR_MAX_VALUE_SIZE;
965 error (_("max-value-size set too low, increasing to %d bytes"),
966 max_value_size);
967 }
968}
969
970/* Implement the "show max-value-size" command. */
971
972static void
973show_max_value_size (struct ui_file *file, int from_tty,
974 struct cmd_list_element *c, const char *value)
975{
976 if (max_value_size == -1)
977 fprintf_filtered (file, _("Maximum value size is unlimited.\n"));
978 else
979 fprintf_filtered (file, _("Maximum value size is %d bytes.\n"),
980 max_value_size);
981}
982
983/* Called before we attempt to allocate or reallocate a buffer for the
984 contents of a value. TYPE is the type of the value for which we are
985 allocating the buffer. If the buffer is too large (based on the user
986 controllable setting) then throw an error. If this function returns
987 then we should attempt to allocate the buffer. */
988
989static void
990check_type_length_before_alloc (const struct type *type)
991{
992 unsigned int length = TYPE_LENGTH (type);
993
994 if (max_value_size > -1 && length > max_value_size)
995 {
996 if (TYPE_NAME (type) != NULL)
997 error (_("value of type `%s' requires %u bytes, which is more "
998 "than max-value-size"), TYPE_NAME (type), length);
999 else
1000 error (_("value requires %u bytes, which is more than "
1001 "max-value-size"), length);
1002 }
1003}
1004
3e3d7139
JG
1005/* Allocate the contents of VAL if it has not been allocated yet. */
1006
548b762d 1007static void
3e3d7139
JG
1008allocate_value_contents (struct value *val)
1009{
1010 if (!val->contents)
5fdf6324
AB
1011 {
1012 check_type_length_before_alloc (val->enclosing_type);
1013 val->contents
1014 = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
1015 }
3e3d7139
JG
1016}
1017
1018/* Allocate a value and its contents for type TYPE. */
1019
1020struct value *
1021allocate_value (struct type *type)
1022{
1023 struct value *val = allocate_value_lazy (type);
a109c7c1 1024
3e3d7139
JG
1025 allocate_value_contents (val);
1026 val->lazy = 0;
1027 return val;
1028}
1029
c906108c 1030/* Allocate a value that has the correct length
938f5214 1031 for COUNT repetitions of type TYPE. */
c906108c 1032
f23631e4 1033struct value *
fba45db2 1034allocate_repeat_value (struct type *type, int count)
c906108c 1035{
c5aa993b 1036 int low_bound = current_language->string_lower_bound; /* ??? */
c906108c
SS
1037 /* FIXME-type-allocation: need a way to free this type when we are
1038 done with it. */
e3506a9f
UW
1039 struct type *array_type
1040 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
a109c7c1 1041
e3506a9f 1042 return allocate_value (array_type);
c906108c
SS
1043}
1044
5f5233d4
PA
1045struct value *
1046allocate_computed_value (struct type *type,
c8f2448a 1047 const struct lval_funcs *funcs,
5f5233d4
PA
1048 void *closure)
1049{
41e8491f 1050 struct value *v = allocate_value_lazy (type);
a109c7c1 1051
5f5233d4
PA
1052 VALUE_LVAL (v) = lval_computed;
1053 v->location.computed.funcs = funcs;
1054 v->location.computed.closure = closure;
5f5233d4
PA
1055
1056 return v;
1057}
1058
a7035dbb
JK
1059/* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
1060
1061struct value *
1062allocate_optimized_out_value (struct type *type)
1063{
1064 struct value *retval = allocate_value_lazy (type);
1065
9a0dc9e3
PA
1066 mark_value_bytes_optimized_out (retval, 0, TYPE_LENGTH (type));
1067 set_value_lazy (retval, 0);
a7035dbb
JK
1068 return retval;
1069}
1070
df407dfe
AC
1071/* Accessor methods. */
1072
17cf0ecd 1073struct value *
4bf7b526 1074value_next (const struct value *value)
17cf0ecd
AC
1075{
1076 return value->next;
1077}
1078
df407dfe 1079struct type *
0e03807e 1080value_type (const struct value *value)
df407dfe
AC
1081{
1082 return value->type;
1083}
04624583
AC
1084void
1085deprecated_set_value_type (struct value *value, struct type *type)
1086{
1087 value->type = type;
1088}
df407dfe 1089
6b850546 1090LONGEST
0e03807e 1091value_offset (const struct value *value)
df407dfe
AC
1092{
1093 return value->offset;
1094}
f5cf64a7 1095void
6b850546 1096set_value_offset (struct value *value, LONGEST offset)
f5cf64a7
AC
1097{
1098 value->offset = offset;
1099}
df407dfe 1100
6b850546 1101LONGEST
0e03807e 1102value_bitpos (const struct value *value)
df407dfe
AC
1103{
1104 return value->bitpos;
1105}
9bbda503 1106void
6b850546 1107set_value_bitpos (struct value *value, LONGEST bit)
9bbda503
AC
1108{
1109 value->bitpos = bit;
1110}
df407dfe 1111
6b850546 1112LONGEST
0e03807e 1113value_bitsize (const struct value *value)
df407dfe
AC
1114{
1115 return value->bitsize;
1116}
9bbda503 1117void
6b850546 1118set_value_bitsize (struct value *value, LONGEST bit)
9bbda503
AC
1119{
1120 value->bitsize = bit;
1121}
df407dfe 1122
4ea48cc1 1123struct value *
4bf7b526 1124value_parent (const struct value *value)
4ea48cc1
DJ
1125{
1126 return value->parent;
1127}
1128
53ba8333
JB
1129/* See value.h. */
1130
1131void
1132set_value_parent (struct value *value, struct value *parent)
1133{
40501e00
TT
1134 struct value *old = value->parent;
1135
53ba8333 1136 value->parent = parent;
40501e00
TT
1137 if (parent != NULL)
1138 value_incref (parent);
22bc8444 1139 value_decref (old);
53ba8333
JB
1140}
1141
fc1a4b47 1142gdb_byte *
990a07ab
AC
1143value_contents_raw (struct value *value)
1144{
3ae385af
SM
1145 struct gdbarch *arch = get_value_arch (value);
1146 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1147
3e3d7139 1148 allocate_value_contents (value);
3ae385af 1149 return value->contents + value->embedded_offset * unit_size;
990a07ab
AC
1150}
1151
fc1a4b47 1152gdb_byte *
990a07ab
AC
1153value_contents_all_raw (struct value *value)
1154{
3e3d7139
JG
1155 allocate_value_contents (value);
1156 return value->contents;
990a07ab
AC
1157}
1158
4754a64e 1159struct type *
4bf7b526 1160value_enclosing_type (const struct value *value)
4754a64e
AC
1161{
1162 return value->enclosing_type;
1163}
1164
8264ba82
AG
1165/* Look at value.h for description. */
1166
1167struct type *
1168value_actual_type (struct value *value, int resolve_simple_types,
1169 int *real_type_found)
1170{
1171 struct value_print_options opts;
8264ba82
AG
1172 struct type *result;
1173
1174 get_user_print_options (&opts);
1175
1176 if (real_type_found)
1177 *real_type_found = 0;
1178 result = value_type (value);
1179 if (opts.objectprint)
1180 {
5e34c6c3
LM
1181 /* If result's target type is TYPE_CODE_STRUCT, proceed to
1182 fetch its rtti type. */
aa006118 1183 if ((TYPE_CODE (result) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (result))
5e34c6c3 1184 && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result)))
ecf2e90c
DB
1185 == TYPE_CODE_STRUCT
1186 && !value_optimized_out (value))
8264ba82
AG
1187 {
1188 struct type *real_type;
1189
1190 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
1191 if (real_type)
1192 {
1193 if (real_type_found)
1194 *real_type_found = 1;
1195 result = real_type;
1196 }
1197 }
1198 else if (resolve_simple_types)
1199 {
1200 if (real_type_found)
1201 *real_type_found = 1;
1202 result = value_enclosing_type (value);
1203 }
1204 }
1205
1206 return result;
1207}
1208
901461f8
PA
1209void
1210error_value_optimized_out (void)
1211{
1212 error (_("value has been optimized out"));
1213}
1214
0e03807e 1215static void
4e07d55f 1216require_not_optimized_out (const struct value *value)
0e03807e 1217{
9a0dc9e3 1218 if (!VEC_empty (range_s, value->optimized_out))
901461f8
PA
1219 {
1220 if (value->lval == lval_register)
1221 error (_("register has not been saved in frame"));
1222 else
1223 error_value_optimized_out ();
1224 }
0e03807e
TT
1225}
1226
4e07d55f
PA
1227static void
1228require_available (const struct value *value)
1229{
1230 if (!VEC_empty (range_s, value->unavailable))
8af8e3bc 1231 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
4e07d55f
PA
1232}
1233
fc1a4b47 1234const gdb_byte *
0e03807e 1235value_contents_for_printing (struct value *value)
46615f07
AC
1236{
1237 if (value->lazy)
1238 value_fetch_lazy (value);
3e3d7139 1239 return value->contents;
46615f07
AC
1240}
1241
de4127a3
PA
1242const gdb_byte *
1243value_contents_for_printing_const (const struct value *value)
1244{
1245 gdb_assert (!value->lazy);
1246 return value->contents;
1247}
1248
0e03807e
TT
1249const gdb_byte *
1250value_contents_all (struct value *value)
1251{
1252 const gdb_byte *result = value_contents_for_printing (value);
1253 require_not_optimized_out (value);
4e07d55f 1254 require_available (value);
0e03807e
TT
1255 return result;
1256}
1257
9a0dc9e3
PA
1258/* Copy ranges in SRC_RANGE that overlap [SRC_BIT_OFFSET,
1259 SRC_BIT_OFFSET+BIT_LENGTH) ranges into *DST_RANGE, adjusted. */
1260
1261static void
1262ranges_copy_adjusted (VEC (range_s) **dst_range, int dst_bit_offset,
1263 VEC (range_s) *src_range, int src_bit_offset,
1264 int bit_length)
1265{
1266 range_s *r;
1267 int i;
1268
1269 for (i = 0; VEC_iterate (range_s, src_range, i, r); i++)
1270 {
1271 ULONGEST h, l;
1272
325fac50
PA
1273 l = std::max (r->offset, (LONGEST) src_bit_offset);
1274 h = std::min (r->offset + r->length,
1275 (LONGEST) src_bit_offset + bit_length);
9a0dc9e3
PA
1276
1277 if (l < h)
1278 insert_into_bit_range_vector (dst_range,
1279 dst_bit_offset + (l - src_bit_offset),
1280 h - l);
1281 }
1282}
1283
4875ffdb
PA
1284/* Copy the ranges metadata in SRC that overlaps [SRC_BIT_OFFSET,
1285 SRC_BIT_OFFSET+BIT_LENGTH) into DST, adjusted. */
1286
1287static void
1288value_ranges_copy_adjusted (struct value *dst, int dst_bit_offset,
1289 const struct value *src, int src_bit_offset,
1290 int bit_length)
1291{
1292 ranges_copy_adjusted (&dst->unavailable, dst_bit_offset,
1293 src->unavailable, src_bit_offset,
1294 bit_length);
1295 ranges_copy_adjusted (&dst->optimized_out, dst_bit_offset,
1296 src->optimized_out, src_bit_offset,
1297 bit_length);
1298}
1299
3ae385af 1300/* Copy LENGTH target addressable memory units of SRC value's (all) contents
29976f3f
PA
1301 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
1302 contents, starting at DST_OFFSET. If unavailable contents are
1303 being copied from SRC, the corresponding DST contents are marked
1304 unavailable accordingly. Neither DST nor SRC may be lazy
1305 values.
1306
1307 It is assumed the contents of DST in the [DST_OFFSET,
1308 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
1309
1310void
6b850546
DT
1311value_contents_copy_raw (struct value *dst, LONGEST dst_offset,
1312 struct value *src, LONGEST src_offset, LONGEST length)
39d37385 1313{
6b850546 1314 LONGEST src_bit_offset, dst_bit_offset, bit_length;
3ae385af
SM
1315 struct gdbarch *arch = get_value_arch (src);
1316 int unit_size = gdbarch_addressable_memory_unit_size (arch);
39d37385
PA
1317
1318 /* A lazy DST would make that this copy operation useless, since as
1319 soon as DST's contents were un-lazied (by a later value_contents
1320 call, say), the contents would be overwritten. A lazy SRC would
1321 mean we'd be copying garbage. */
1322 gdb_assert (!dst->lazy && !src->lazy);
1323
29976f3f
PA
1324 /* The overwritten DST range gets unavailability ORed in, not
1325 replaced. Make sure to remember to implement replacing if it
1326 turns out actually necessary. */
1327 gdb_assert (value_bytes_available (dst, dst_offset, length));
9a0dc9e3
PA
1328 gdb_assert (!value_bits_any_optimized_out (dst,
1329 TARGET_CHAR_BIT * dst_offset,
1330 TARGET_CHAR_BIT * length));
29976f3f 1331
39d37385 1332 /* Copy the data. */
3ae385af
SM
1333 memcpy (value_contents_all_raw (dst) + dst_offset * unit_size,
1334 value_contents_all_raw (src) + src_offset * unit_size,
1335 length * unit_size);
39d37385
PA
1336
1337 /* Copy the meta-data, adjusted. */
3ae385af
SM
1338 src_bit_offset = src_offset * unit_size * HOST_CHAR_BIT;
1339 dst_bit_offset = dst_offset * unit_size * HOST_CHAR_BIT;
1340 bit_length = length * unit_size * HOST_CHAR_BIT;
39d37385 1341
4875ffdb
PA
1342 value_ranges_copy_adjusted (dst, dst_bit_offset,
1343 src, src_bit_offset,
1344 bit_length);
39d37385
PA
1345}
1346
29976f3f
PA
1347/* Copy LENGTH bytes of SRC value's (all) contents
1348 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
1349 (all) contents, starting at DST_OFFSET. If unavailable contents
1350 are being copied from SRC, the corresponding DST contents are
1351 marked unavailable accordingly. DST must not be lazy. If SRC is
9a0dc9e3 1352 lazy, it will be fetched now.
29976f3f
PA
1353
1354 It is assumed the contents of DST in the [DST_OFFSET,
1355 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
1356
1357void
6b850546
DT
1358value_contents_copy (struct value *dst, LONGEST dst_offset,
1359 struct value *src, LONGEST src_offset, LONGEST length)
39d37385 1360{
39d37385
PA
1361 if (src->lazy)
1362 value_fetch_lazy (src);
1363
1364 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
1365}
1366
d69fe07e 1367int
4bf7b526 1368value_lazy (const struct value *value)
d69fe07e
AC
1369{
1370 return value->lazy;
1371}
1372
dfa52d88
AC
1373void
1374set_value_lazy (struct value *value, int val)
1375{
1376 value->lazy = val;
1377}
1378
4e5d721f 1379int
4bf7b526 1380value_stack (const struct value *value)
4e5d721f
DE
1381{
1382 return value->stack;
1383}
1384
1385void
1386set_value_stack (struct value *value, int val)
1387{
1388 value->stack = val;
1389}
1390
fc1a4b47 1391const gdb_byte *
0fd88904
AC
1392value_contents (struct value *value)
1393{
0e03807e
TT
1394 const gdb_byte *result = value_contents_writeable (value);
1395 require_not_optimized_out (value);
4e07d55f 1396 require_available (value);
0e03807e 1397 return result;
0fd88904
AC
1398}
1399
fc1a4b47 1400gdb_byte *
0fd88904
AC
1401value_contents_writeable (struct value *value)
1402{
1403 if (value->lazy)
1404 value_fetch_lazy (value);
fc0c53a0 1405 return value_contents_raw (value);
0fd88904
AC
1406}
1407
feb13ab0
AC
1408int
1409value_optimized_out (struct value *value)
1410{
691a26f5
AB
1411 /* We can only know if a value is optimized out once we have tried to
1412 fetch it. */
9a0dc9e3 1413 if (VEC_empty (range_s, value->optimized_out) && value->lazy)
ecf2e90c
DB
1414 {
1415 TRY
1416 {
1417 value_fetch_lazy (value);
1418 }
1419 CATCH (ex, RETURN_MASK_ERROR)
1420 {
1421 /* Fall back to checking value->optimized_out. */
1422 }
1423 END_CATCH
1424 }
691a26f5 1425
9a0dc9e3 1426 return !VEC_empty (range_s, value->optimized_out);
feb13ab0
AC
1427}
1428
9a0dc9e3
PA
1429/* Mark contents of VALUE as optimized out, starting at OFFSET bytes, and
1430 the following LENGTH bytes. */
eca07816 1431
feb13ab0 1432void
9a0dc9e3 1433mark_value_bytes_optimized_out (struct value *value, int offset, int length)
feb13ab0 1434{
9a0dc9e3
PA
1435 mark_value_bits_optimized_out (value,
1436 offset * TARGET_CHAR_BIT,
1437 length * TARGET_CHAR_BIT);
feb13ab0 1438}
13c3b5f5 1439
9a0dc9e3 1440/* See value.h. */
0e03807e 1441
9a0dc9e3 1442void
6b850546
DT
1443mark_value_bits_optimized_out (struct value *value,
1444 LONGEST offset, LONGEST length)
0e03807e 1445{
9a0dc9e3 1446 insert_into_bit_range_vector (&value->optimized_out, offset, length);
0e03807e
TT
1447}
1448
8cf6f0b1
TT
1449int
1450value_bits_synthetic_pointer (const struct value *value,
6b850546 1451 LONGEST offset, LONGEST length)
8cf6f0b1 1452{
e7303042 1453 if (value->lval != lval_computed
8cf6f0b1
TT
1454 || !value->location.computed.funcs->check_synthetic_pointer)
1455 return 0;
1456 return value->location.computed.funcs->check_synthetic_pointer (value,
1457 offset,
1458 length);
1459}
1460
6b850546 1461LONGEST
4bf7b526 1462value_embedded_offset (const struct value *value)
13c3b5f5
AC
1463{
1464 return value->embedded_offset;
1465}
1466
1467void
6b850546 1468set_value_embedded_offset (struct value *value, LONGEST val)
13c3b5f5
AC
1469{
1470 value->embedded_offset = val;
1471}
b44d461b 1472
6b850546 1473LONGEST
4bf7b526 1474value_pointed_to_offset (const struct value *value)
b44d461b
AC
1475{
1476 return value->pointed_to_offset;
1477}
1478
1479void
6b850546 1480set_value_pointed_to_offset (struct value *value, LONGEST val)
b44d461b
AC
1481{
1482 value->pointed_to_offset = val;
1483}
13bb5560 1484
c8f2448a 1485const struct lval_funcs *
a471c594 1486value_computed_funcs (const struct value *v)
5f5233d4 1487{
a471c594 1488 gdb_assert (value_lval_const (v) == lval_computed);
5f5233d4
PA
1489
1490 return v->location.computed.funcs;
1491}
1492
1493void *
0e03807e 1494value_computed_closure (const struct value *v)
5f5233d4 1495{
0e03807e 1496 gdb_assert (v->lval == lval_computed);
5f5233d4
PA
1497
1498 return v->location.computed.closure;
1499}
1500
13bb5560
AC
1501enum lval_type *
1502deprecated_value_lval_hack (struct value *value)
1503{
1504 return &value->lval;
1505}
1506
a471c594
JK
1507enum lval_type
1508value_lval_const (const struct value *value)
1509{
1510 return value->lval;
1511}
1512
42ae5230 1513CORE_ADDR
de4127a3 1514value_address (const struct value *value)
42ae5230 1515{
1a088441 1516 if (value->lval != lval_memory)
42ae5230 1517 return 0;
53ba8333
JB
1518 if (value->parent != NULL)
1519 return value_address (value->parent) + value->offset;
9920b434
BH
1520 if (NULL != TYPE_DATA_LOCATION (value_type (value)))
1521 {
1522 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (value_type (value)));
1523 return TYPE_DATA_LOCATION_ADDR (value_type (value));
1524 }
1525
1526 return value->location.address + value->offset;
42ae5230
TT
1527}
1528
1529CORE_ADDR
4bf7b526 1530value_raw_address (const struct value *value)
42ae5230 1531{
1a088441 1532 if (value->lval != lval_memory)
42ae5230
TT
1533 return 0;
1534 return value->location.address;
1535}
1536
1537void
1538set_value_address (struct value *value, CORE_ADDR addr)
13bb5560 1539{
1a088441 1540 gdb_assert (value->lval == lval_memory);
42ae5230 1541 value->location.address = addr;
13bb5560
AC
1542}
1543
1544struct internalvar **
1545deprecated_value_internalvar_hack (struct value *value)
1546{
1547 return &value->location.internalvar;
1548}
1549
1550struct frame_id *
41b56feb 1551deprecated_value_next_frame_id_hack (struct value *value)
13bb5560 1552{
7c2ba67e 1553 gdb_assert (value->lval == lval_register);
7dc54575 1554 return &value->location.reg.next_frame_id;
13bb5560
AC
1555}
1556
7dc54575 1557int *
13bb5560
AC
1558deprecated_value_regnum_hack (struct value *value)
1559{
7c2ba67e 1560 gdb_assert (value->lval == lval_register);
7dc54575 1561 return &value->location.reg.regnum;
13bb5560 1562}
88e3b34b
AC
1563
1564int
4bf7b526 1565deprecated_value_modifiable (const struct value *value)
88e3b34b
AC
1566{
1567 return value->modifiable;
1568}
990a07ab 1569\f
c906108c
SS
1570/* Return a mark in the value chain. All values allocated after the
1571 mark is obtained (except for those released) are subject to being freed
1572 if a subsequent value_free_to_mark is passed the mark. */
f23631e4 1573struct value *
fba45db2 1574value_mark (void)
c906108c
SS
1575{
1576 return all_values;
1577}
1578
828d3400
DJ
1579/* Take a reference to VAL. VAL will not be deallocated until all
1580 references are released. */
1581
22bc8444 1582struct value *
828d3400
DJ
1583value_incref (struct value *val)
1584{
1585 val->reference_count++;
22bc8444 1586 return val;
828d3400
DJ
1587}
1588
1589/* Release a reference to VAL, which was acquired with value_incref.
1590 This function is also called to deallocate values from the value
1591 chain. */
1592
3e3d7139 1593void
22bc8444 1594value_decref (struct value *val)
3e3d7139
JG
1595{
1596 if (val)
5f5233d4 1597 {
828d3400
DJ
1598 gdb_assert (val->reference_count > 0);
1599 val->reference_count--;
1600 if (val->reference_count > 0)
1601 return;
1602
4ea48cc1
DJ
1603 /* If there's an associated parent value, drop our reference to
1604 it. */
1605 if (val->parent != NULL)
22bc8444 1606 value_decref (val->parent);
4ea48cc1 1607
5f5233d4
PA
1608 if (VALUE_LVAL (val) == lval_computed)
1609 {
c8f2448a 1610 const struct lval_funcs *funcs = val->location.computed.funcs;
5f5233d4
PA
1611
1612 if (funcs->free_closure)
1613 funcs->free_closure (val);
1614 }
e81e7f5e 1615 else if (VALUE_LVAL (val) == lval_xcallable)
ba18742c 1616 delete val->location.xm_worker;
5f5233d4
PA
1617
1618 xfree (val->contents);
4e07d55f 1619 VEC_free (range_s, val->unavailable);
5f5233d4 1620 }
3e3d7139
JG
1621 xfree (val);
1622}
1623
c906108c
SS
1624/* Free all values allocated since MARK was obtained by value_mark
1625 (except for those released). */
1626void
4bf7b526 1627value_free_to_mark (const struct value *mark)
c906108c 1628{
f23631e4
AC
1629 struct value *val;
1630 struct value *next;
c906108c
SS
1631
1632 for (val = all_values; val && val != mark; val = next)
1633 {
df407dfe 1634 next = val->next;
e848a8a5 1635 val->released = 1;
22bc8444 1636 value_decref (val);
c906108c
SS
1637 }
1638 all_values = val;
1639}
1640
0cf6dd15
TJB
1641/* Frees all the elements in a chain of values. */
1642
1643void
1644free_value_chain (struct value *v)
1645{
1646 struct value *next;
1647
1648 for (; v; v = next)
1649 {
1650 next = value_next (v);
22bc8444 1651 value_decref (v);
0cf6dd15
TJB
1652 }
1653}
1654
c906108c
SS
1655/* Remove VAL from the chain all_values
1656 so it will not be freed automatically. */
1657
22bc8444 1658value_ref_ptr
f23631e4 1659release_value (struct value *val)
c906108c 1660{
f23631e4 1661 struct value *v;
22bc8444 1662 bool released = false;
c906108c 1663
850645cf
TT
1664 if (val == nullptr)
1665 return value_ref_ptr ();
1666
c906108c
SS
1667 if (all_values == val)
1668 {
1669 all_values = val->next;
06a64a0b 1670 val->next = NULL;
22bc8444 1671 released = true;
c906108c 1672 }
22bc8444 1673 else
c906108c 1674 {
22bc8444 1675 for (v = all_values; v; v = v->next)
c906108c 1676 {
22bc8444
TT
1677 if (v->next == val)
1678 {
1679 v->next = val->next;
1680 val->next = NULL;
1681 released = true;
1682 break;
1683 }
c906108c
SS
1684 }
1685 }
c906108c 1686
22bc8444
TT
1687 if (!released)
1688 {
1689 /* We must always return an owned reference. Normally this
1690 happens because we transfer the reference from the value
1691 chain, but in this case the value was not on the chain. */
1692 value_incref (val);
1693 }
e848a8a5 1694
22bc8444 1695 return value_ref_ptr (val);
e848a8a5
TT
1696}
1697
c906108c 1698/* Release all values up to mark */
f23631e4 1699struct value *
4bf7b526 1700value_release_to_mark (const struct value *mark)
c906108c 1701{
f23631e4
AC
1702 struct value *val;
1703 struct value *next;
c906108c 1704
df407dfe 1705 for (val = next = all_values; next; next = next->next)
e848a8a5
TT
1706 {
1707 if (next->next == mark)
1708 {
1709 all_values = next->next;
1710 next->next = NULL;
1711 return val;
1712 }
1713 next->released = 1;
1714 }
c906108c
SS
1715 all_values = 0;
1716 return val;
1717}
1718
1719/* Return a copy of the value ARG.
1720 It contains the same contents, for same memory address,
1721 but it's a different block of storage. */
1722
f23631e4
AC
1723struct value *
1724value_copy (struct value *arg)
c906108c 1725{
4754a64e 1726 struct type *encl_type = value_enclosing_type (arg);
3e3d7139
JG
1727 struct value *val;
1728
1729 if (value_lazy (arg))
1730 val = allocate_value_lazy (encl_type);
1731 else
1732 val = allocate_value (encl_type);
df407dfe 1733 val->type = arg->type;
c906108c 1734 VALUE_LVAL (val) = VALUE_LVAL (arg);
6f7c8fc2 1735 val->location = arg->location;
df407dfe
AC
1736 val->offset = arg->offset;
1737 val->bitpos = arg->bitpos;
1738 val->bitsize = arg->bitsize;
d69fe07e 1739 val->lazy = arg->lazy;
13c3b5f5 1740 val->embedded_offset = value_embedded_offset (arg);
b44d461b 1741 val->pointed_to_offset = arg->pointed_to_offset;
c906108c 1742 val->modifiable = arg->modifiable;
d69fe07e 1743 if (!value_lazy (val))
c906108c 1744 {
990a07ab 1745 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
4754a64e 1746 TYPE_LENGTH (value_enclosing_type (arg)));
c906108c
SS
1747
1748 }
4e07d55f 1749 val->unavailable = VEC_copy (range_s, arg->unavailable);
9a0dc9e3 1750 val->optimized_out = VEC_copy (range_s, arg->optimized_out);
40501e00 1751 set_value_parent (val, arg->parent);
5f5233d4
PA
1752 if (VALUE_LVAL (val) == lval_computed)
1753 {
c8f2448a 1754 const struct lval_funcs *funcs = val->location.computed.funcs;
5f5233d4
PA
1755
1756 if (funcs->copy_closure)
1757 val->location.computed.closure = funcs->copy_closure (val);
1758 }
c906108c
SS
1759 return val;
1760}
74bcbdf3 1761
4c082a81
SC
1762/* Return a "const" and/or "volatile" qualified version of the value V.
1763 If CNST is true, then the returned value will be qualified with
1764 "const".
1765 if VOLTL is true, then the returned value will be qualified with
1766 "volatile". */
1767
1768struct value *
1769make_cv_value (int cnst, int voltl, struct value *v)
1770{
1771 struct type *val_type = value_type (v);
1772 struct type *enclosing_type = value_enclosing_type (v);
1773 struct value *cv_val = value_copy (v);
1774
1775 deprecated_set_value_type (cv_val,
1776 make_cv_type (cnst, voltl, val_type, NULL));
1777 set_value_enclosing_type (cv_val,
1778 make_cv_type (cnst, voltl, enclosing_type, NULL));
1779
1780 return cv_val;
1781}
1782
c37f7098
KW
1783/* Return a version of ARG that is non-lvalue. */
1784
1785struct value *
1786value_non_lval (struct value *arg)
1787{
1788 if (VALUE_LVAL (arg) != not_lval)
1789 {
1790 struct type *enc_type = value_enclosing_type (arg);
1791 struct value *val = allocate_value (enc_type);
1792
1793 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1794 TYPE_LENGTH (enc_type));
1795 val->type = arg->type;
1796 set_value_embedded_offset (val, value_embedded_offset (arg));
1797 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1798 return val;
1799 }
1800 return arg;
1801}
1802
6c659fc2
SC
1803/* Write contents of V at ADDR and set its lval type to be LVAL_MEMORY. */
1804
1805void
1806value_force_lval (struct value *v, CORE_ADDR addr)
1807{
1808 gdb_assert (VALUE_LVAL (v) == not_lval);
1809
1810 write_memory (addr, value_contents_raw (v), TYPE_LENGTH (value_type (v)));
1811 v->lval = lval_memory;
1812 v->location.address = addr;
1813}
1814
74bcbdf3 1815void
0e03807e
TT
1816set_value_component_location (struct value *component,
1817 const struct value *whole)
74bcbdf3 1818{
9920b434
BH
1819 struct type *type;
1820
e81e7f5e
SC
1821 gdb_assert (whole->lval != lval_xcallable);
1822
0e03807e 1823 if (whole->lval == lval_internalvar)
74bcbdf3
PA
1824 VALUE_LVAL (component) = lval_internalvar_component;
1825 else
0e03807e 1826 VALUE_LVAL (component) = whole->lval;
5f5233d4 1827
74bcbdf3 1828 component->location = whole->location;
0e03807e 1829 if (whole->lval == lval_computed)
5f5233d4 1830 {
c8f2448a 1831 const struct lval_funcs *funcs = whole->location.computed.funcs;
5f5233d4
PA
1832
1833 if (funcs->copy_closure)
1834 component->location.computed.closure = funcs->copy_closure (whole);
1835 }
9920b434
BH
1836
1837 /* If type has a dynamic resolved location property
1838 update it's value address. */
1839 type = value_type (whole);
1840 if (NULL != TYPE_DATA_LOCATION (type)
1841 && TYPE_DATA_LOCATION_KIND (type) == PROP_CONST)
1842 set_value_address (component, TYPE_DATA_LOCATION_ADDR (type));
74bcbdf3
PA
1843}
1844
c906108c
SS
1845/* Access to the value history. */
1846
1847/* Record a new value in the value history.
eddf0bae 1848 Returns the absolute history index of the entry. */
c906108c
SS
1849
1850int
f23631e4 1851record_latest_value (struct value *val)
c906108c
SS
1852{
1853 int i;
1854
1855 /* We don't want this value to have anything to do with the inferior anymore.
1856 In particular, "set $1 = 50" should not affect the variable from which
1857 the value was taken, and fast watchpoints should be able to assume that
1858 a value on the value history never changes. */
d69fe07e 1859 if (value_lazy (val))
c906108c
SS
1860 value_fetch_lazy (val);
1861 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1862 from. This is a bit dubious, because then *&$1 does not just return $1
1863 but the current contents of that location. c'est la vie... */
1864 val->modifiable = 0;
350e1a76 1865
4d0266a0 1866 value_history.push_back (release_value (val));
a109c7c1 1867
4d0266a0 1868 return value_history.size ();
c906108c
SS
1869}
1870
1871/* Return a copy of the value in the history with sequence number NUM. */
1872
f23631e4 1873struct value *
fba45db2 1874access_value_history (int num)
c906108c 1875{
52f0bd74
AC
1876 int i;
1877 int absnum = num;
c906108c
SS
1878
1879 if (absnum <= 0)
4d0266a0 1880 absnum += value_history.size ();
c906108c
SS
1881
1882 if (absnum <= 0)
1883 {
1884 if (num == 0)
8a3fe4f8 1885 error (_("The history is empty."));
c906108c 1886 else if (num == 1)
8a3fe4f8 1887 error (_("There is only one value in the history."));
c906108c 1888 else
8a3fe4f8 1889 error (_("History does not go back to $$%d."), -num);
c906108c 1890 }
4d0266a0 1891 if (absnum > value_history.size ())
8a3fe4f8 1892 error (_("History has not yet reached $%d."), absnum);
c906108c
SS
1893
1894 absnum--;
1895
4d0266a0 1896 return value_copy (value_history[absnum].get ());
c906108c
SS
1897}
1898
c906108c 1899static void
5fed81ff 1900show_values (const char *num_exp, int from_tty)
c906108c 1901{
52f0bd74 1902 int i;
f23631e4 1903 struct value *val;
c906108c
SS
1904 static int num = 1;
1905
1906 if (num_exp)
1907 {
f132ba9d
TJB
1908 /* "show values +" should print from the stored position.
1909 "show values <exp>" should print around value number <exp>. */
c906108c 1910 if (num_exp[0] != '+' || num_exp[1] != '\0')
bb518678 1911 num = parse_and_eval_long (num_exp) - 5;
c906108c
SS
1912 }
1913 else
1914 {
f132ba9d 1915 /* "show values" means print the last 10 values. */
4d0266a0 1916 num = value_history.size () - 9;
c906108c
SS
1917 }
1918
1919 if (num <= 0)
1920 num = 1;
1921
4d0266a0 1922 for (i = num; i < num + 10 && i <= value_history.size (); i++)
c906108c 1923 {
79a45b7d 1924 struct value_print_options opts;
a109c7c1 1925
c906108c 1926 val = access_value_history (i);
a3f17187 1927 printf_filtered (("$%d = "), i);
79a45b7d
TT
1928 get_user_print_options (&opts);
1929 value_print (val, gdb_stdout, &opts);
a3f17187 1930 printf_filtered (("\n"));
c906108c
SS
1931 }
1932
f132ba9d 1933 /* The next "show values +" should start after what we just printed. */
c906108c
SS
1934 num += 10;
1935
1936 /* Hitting just return after this command should do the same thing as
f132ba9d
TJB
1937 "show values +". If num_exp is null, this is unnecessary, since
1938 "show values +" is not useful after "show values". */
c906108c 1939 if (from_tty && num_exp)
85c4be7c 1940 set_repeat_arguments ("+");
c906108c
SS
1941}
1942\f
52059ffd
TT
1943enum internalvar_kind
1944{
1945 /* The internal variable is empty. */
1946 INTERNALVAR_VOID,
1947
1948 /* The value of the internal variable is provided directly as
1949 a GDB value object. */
1950 INTERNALVAR_VALUE,
1951
1952 /* A fresh value is computed via a call-back routine on every
1953 access to the internal variable. */
1954 INTERNALVAR_MAKE_VALUE,
1955
1956 /* The internal variable holds a GDB internal convenience function. */
1957 INTERNALVAR_FUNCTION,
1958
1959 /* The variable holds an integer value. */
1960 INTERNALVAR_INTEGER,
1961
1962 /* The variable holds a GDB-provided string. */
1963 INTERNALVAR_STRING,
1964};
1965
1966union internalvar_data
1967{
1968 /* A value object used with INTERNALVAR_VALUE. */
1969 struct value *value;
1970
1971 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
1972 struct
1973 {
1974 /* The functions to call. */
1975 const struct internalvar_funcs *functions;
1976
1977 /* The function's user-data. */
1978 void *data;
1979 } make_value;
1980
1981 /* The internal function used with INTERNALVAR_FUNCTION. */
1982 struct
1983 {
1984 struct internal_function *function;
1985 /* True if this is the canonical name for the function. */
1986 int canonical;
1987 } fn;
1988
1989 /* An integer value used with INTERNALVAR_INTEGER. */
1990 struct
1991 {
1992 /* If type is non-NULL, it will be used as the type to generate
1993 a value for this internal variable. If type is NULL, a default
1994 integer type for the architecture is used. */
1995 struct type *type;
1996 LONGEST val;
1997 } integer;
1998
1999 /* A string value used with INTERNALVAR_STRING. */
2000 char *string;
2001};
2002
c906108c
SS
2003/* Internal variables. These are variables within the debugger
2004 that hold values assigned by debugger commands.
2005 The user refers to them with a '$' prefix
2006 that does not appear in the variable names stored internally. */
2007
4fa62494
UW
2008struct internalvar
2009{
2010 struct internalvar *next;
2011 char *name;
4fa62494 2012
78267919
UW
2013 /* We support various different kinds of content of an internal variable.
2014 enum internalvar_kind specifies the kind, and union internalvar_data
2015 provides the data associated with this particular kind. */
2016
52059ffd 2017 enum internalvar_kind kind;
4fa62494 2018
52059ffd 2019 union internalvar_data u;
4fa62494
UW
2020};
2021
c906108c
SS
2022static struct internalvar *internalvars;
2023
3e43a32a
MS
2024/* If the variable does not already exist create it and give it the
2025 value given. If no value is given then the default is zero. */
53e5f3cf 2026static void
0b39b52e 2027init_if_undefined_command (const char* args, int from_tty)
53e5f3cf
AS
2028{
2029 struct internalvar* intvar;
2030
2031 /* Parse the expression - this is taken from set_command(). */
4d01a485 2032 expression_up expr = parse_expression (args);
53e5f3cf
AS
2033
2034 /* Validate the expression.
2035 Was the expression an assignment?
2036 Or even an expression at all? */
2037 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
2038 error (_("Init-if-undefined requires an assignment expression."));
2039
2040 /* Extract the variable from the parsed expression.
2041 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
2042 if (expr->elts[1].opcode != OP_INTERNALVAR)
3e43a32a
MS
2043 error (_("The first parameter to init-if-undefined "
2044 "should be a GDB variable."));
53e5f3cf
AS
2045 intvar = expr->elts[2].internalvar;
2046
2047 /* Only evaluate the expression if the lvalue is void.
2048 This may still fail if the expresssion is invalid. */
78267919 2049 if (intvar->kind == INTERNALVAR_VOID)
4d01a485 2050 evaluate_expression (expr.get ());
53e5f3cf
AS
2051}
2052
2053
c906108c
SS
2054/* Look up an internal variable with name NAME. NAME should not
2055 normally include a dollar sign.
2056
2057 If the specified internal variable does not exist,
c4a3d09a 2058 the return value is NULL. */
c906108c
SS
2059
2060struct internalvar *
bc3b79fd 2061lookup_only_internalvar (const char *name)
c906108c 2062{
52f0bd74 2063 struct internalvar *var;
c906108c
SS
2064
2065 for (var = internalvars; var; var = var->next)
5cb316ef 2066 if (strcmp (var->name, name) == 0)
c906108c
SS
2067 return var;
2068
c4a3d09a
MF
2069 return NULL;
2070}
2071
eb3ff9a5
PA
2072/* Complete NAME by comparing it to the names of internal
2073 variables. */
d55637df 2074
eb3ff9a5
PA
2075void
2076complete_internalvar (completion_tracker &tracker, const char *name)
d55637df 2077{
d55637df
TT
2078 struct internalvar *var;
2079 int len;
2080
2081 len = strlen (name);
2082
2083 for (var = internalvars; var; var = var->next)
2084 if (strncmp (var->name, name, len) == 0)
2085 {
eb3ff9a5 2086 gdb::unique_xmalloc_ptr<char> copy (xstrdup (var->name));
d55637df 2087
eb3ff9a5 2088 tracker.add_completion (std::move (copy));
d55637df 2089 }
d55637df 2090}
c4a3d09a
MF
2091
2092/* Create an internal variable with name NAME and with a void value.
2093 NAME should not normally include a dollar sign. */
2094
2095struct internalvar *
bc3b79fd 2096create_internalvar (const char *name)
c4a3d09a 2097{
8d749320 2098 struct internalvar *var = XNEW (struct internalvar);
a109c7c1 2099
1754f103 2100 var->name = concat (name, (char *)NULL);
78267919 2101 var->kind = INTERNALVAR_VOID;
c906108c
SS
2102 var->next = internalvars;
2103 internalvars = var;
2104 return var;
2105}
2106
4aa995e1
PA
2107/* Create an internal variable with name NAME and register FUN as the
2108 function that value_of_internalvar uses to create a value whenever
2109 this variable is referenced. NAME should not normally include a
22d2b532
SDJ
2110 dollar sign. DATA is passed uninterpreted to FUN when it is
2111 called. CLEANUP, if not NULL, is called when the internal variable
2112 is destroyed. It is passed DATA as its only argument. */
4aa995e1
PA
2113
2114struct internalvar *
22d2b532
SDJ
2115create_internalvar_type_lazy (const char *name,
2116 const struct internalvar_funcs *funcs,
2117 void *data)
4aa995e1 2118{
4fa62494 2119 struct internalvar *var = create_internalvar (name);
a109c7c1 2120
78267919 2121 var->kind = INTERNALVAR_MAKE_VALUE;
22d2b532
SDJ
2122 var->u.make_value.functions = funcs;
2123 var->u.make_value.data = data;
4aa995e1
PA
2124 return var;
2125}
c4a3d09a 2126
22d2b532
SDJ
2127/* See documentation in value.h. */
2128
2129int
2130compile_internalvar_to_ax (struct internalvar *var,
2131 struct agent_expr *expr,
2132 struct axs_value *value)
2133{
2134 if (var->kind != INTERNALVAR_MAKE_VALUE
2135 || var->u.make_value.functions->compile_to_ax == NULL)
2136 return 0;
2137
2138 var->u.make_value.functions->compile_to_ax (var, expr, value,
2139 var->u.make_value.data);
2140 return 1;
2141}
2142
c4a3d09a
MF
2143/* Look up an internal variable with name NAME. NAME should not
2144 normally include a dollar sign.
2145
2146 If the specified internal variable does not exist,
2147 one is created, with a void value. */
2148
2149struct internalvar *
bc3b79fd 2150lookup_internalvar (const char *name)
c4a3d09a
MF
2151{
2152 struct internalvar *var;
2153
2154 var = lookup_only_internalvar (name);
2155 if (var)
2156 return var;
2157
2158 return create_internalvar (name);
2159}
2160
78267919
UW
2161/* Return current value of internal variable VAR. For variables that
2162 are not inherently typed, use a value type appropriate for GDBARCH. */
2163
f23631e4 2164struct value *
78267919 2165value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
c906108c 2166{
f23631e4 2167 struct value *val;
0914bcdb
SS
2168 struct trace_state_variable *tsv;
2169
2170 /* If there is a trace state variable of the same name, assume that
2171 is what we really want to see. */
2172 tsv = find_trace_state_variable (var->name);
2173 if (tsv)
2174 {
2175 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2176 &(tsv->value));
2177 if (tsv->value_known)
2178 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2179 tsv->value);
2180 else
2181 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2182 return val;
2183 }
c906108c 2184
78267919 2185 switch (var->kind)
5f5233d4 2186 {
78267919
UW
2187 case INTERNALVAR_VOID:
2188 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2189 break;
4fa62494 2190
78267919
UW
2191 case INTERNALVAR_FUNCTION:
2192 val = allocate_value (builtin_type (gdbarch)->internal_fn);
2193 break;
4fa62494 2194
cab0c772
UW
2195 case INTERNALVAR_INTEGER:
2196 if (!var->u.integer.type)
78267919 2197 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
cab0c772 2198 var->u.integer.val);
78267919 2199 else
cab0c772
UW
2200 val = value_from_longest (var->u.integer.type, var->u.integer.val);
2201 break;
2202
78267919
UW
2203 case INTERNALVAR_STRING:
2204 val = value_cstring (var->u.string, strlen (var->u.string),
2205 builtin_type (gdbarch)->builtin_char);
2206 break;
4fa62494 2207
78267919
UW
2208 case INTERNALVAR_VALUE:
2209 val = value_copy (var->u.value);
4aa995e1
PA
2210 if (value_lazy (val))
2211 value_fetch_lazy (val);
78267919 2212 break;
4aa995e1 2213
78267919 2214 case INTERNALVAR_MAKE_VALUE:
22d2b532
SDJ
2215 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
2216 var->u.make_value.data);
78267919
UW
2217 break;
2218
2219 default:
9b20d036 2220 internal_error (__FILE__, __LINE__, _("bad kind"));
78267919
UW
2221 }
2222
2223 /* Change the VALUE_LVAL to lval_internalvar so that future operations
2224 on this value go back to affect the original internal variable.
2225
2226 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
2227 no underlying modifyable state in the internal variable.
2228
2229 Likewise, if the variable's value is a computed lvalue, we want
2230 references to it to produce another computed lvalue, where
2231 references and assignments actually operate through the
2232 computed value's functions.
2233
2234 This means that internal variables with computed values
2235 behave a little differently from other internal variables:
2236 assignments to them don't just replace the previous value
2237 altogether. At the moment, this seems like the behavior we
2238 want. */
2239
2240 if (var->kind != INTERNALVAR_MAKE_VALUE
2241 && val->lval != lval_computed)
2242 {
2243 VALUE_LVAL (val) = lval_internalvar;
2244 VALUE_INTERNALVAR (val) = var;
5f5233d4 2245 }
d3c139e9 2246
4fa62494
UW
2247 return val;
2248}
d3c139e9 2249
4fa62494
UW
2250int
2251get_internalvar_integer (struct internalvar *var, LONGEST *result)
2252{
3158c6ed 2253 if (var->kind == INTERNALVAR_INTEGER)
4fa62494 2254 {
cab0c772
UW
2255 *result = var->u.integer.val;
2256 return 1;
3158c6ed 2257 }
d3c139e9 2258
3158c6ed
PA
2259 if (var->kind == INTERNALVAR_VALUE)
2260 {
2261 struct type *type = check_typedef (value_type (var->u.value));
2262
2263 if (TYPE_CODE (type) == TYPE_CODE_INT)
2264 {
2265 *result = value_as_long (var->u.value);
2266 return 1;
2267 }
4fa62494 2268 }
3158c6ed
PA
2269
2270 return 0;
4fa62494 2271}
d3c139e9 2272
4fa62494
UW
2273static int
2274get_internalvar_function (struct internalvar *var,
2275 struct internal_function **result)
2276{
78267919 2277 switch (var->kind)
d3c139e9 2278 {
78267919
UW
2279 case INTERNALVAR_FUNCTION:
2280 *result = var->u.fn.function;
4fa62494 2281 return 1;
d3c139e9 2282
4fa62494
UW
2283 default:
2284 return 0;
2285 }
c906108c
SS
2286}
2287
2288void
6b850546
DT
2289set_internalvar_component (struct internalvar *var,
2290 LONGEST offset, LONGEST bitpos,
2291 LONGEST bitsize, struct value *newval)
c906108c 2292{
4fa62494 2293 gdb_byte *addr;
3ae385af
SM
2294 struct gdbarch *arch;
2295 int unit_size;
c906108c 2296
78267919 2297 switch (var->kind)
4fa62494 2298 {
78267919
UW
2299 case INTERNALVAR_VALUE:
2300 addr = value_contents_writeable (var->u.value);
3ae385af
SM
2301 arch = get_value_arch (var->u.value);
2302 unit_size = gdbarch_addressable_memory_unit_size (arch);
4fa62494
UW
2303
2304 if (bitsize)
50810684 2305 modify_field (value_type (var->u.value), addr + offset,
4fa62494
UW
2306 value_as_long (newval), bitpos, bitsize);
2307 else
3ae385af 2308 memcpy (addr + offset * unit_size, value_contents (newval),
4fa62494
UW
2309 TYPE_LENGTH (value_type (newval)));
2310 break;
78267919
UW
2311
2312 default:
2313 /* We can never get a component of any other kind. */
9b20d036 2314 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
4fa62494 2315 }
c906108c
SS
2316}
2317
2318void
f23631e4 2319set_internalvar (struct internalvar *var, struct value *val)
c906108c 2320{
78267919 2321 enum internalvar_kind new_kind;
4fa62494 2322 union internalvar_data new_data = { 0 };
c906108c 2323
78267919 2324 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
bc3b79fd
TJB
2325 error (_("Cannot overwrite convenience function %s"), var->name);
2326
4fa62494 2327 /* Prepare new contents. */
78267919 2328 switch (TYPE_CODE (check_typedef (value_type (val))))
4fa62494
UW
2329 {
2330 case TYPE_CODE_VOID:
78267919 2331 new_kind = INTERNALVAR_VOID;
4fa62494
UW
2332 break;
2333
2334 case TYPE_CODE_INTERNAL_FUNCTION:
2335 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
78267919
UW
2336 new_kind = INTERNALVAR_FUNCTION;
2337 get_internalvar_function (VALUE_INTERNALVAR (val),
2338 &new_data.fn.function);
2339 /* Copies created here are never canonical. */
4fa62494
UW
2340 break;
2341
4fa62494 2342 default:
78267919
UW
2343 new_kind = INTERNALVAR_VALUE;
2344 new_data.value = value_copy (val);
2345 new_data.value->modifiable = 1;
4fa62494
UW
2346
2347 /* Force the value to be fetched from the target now, to avoid problems
2348 later when this internalvar is referenced and the target is gone or
2349 has changed. */
78267919
UW
2350 if (value_lazy (new_data.value))
2351 value_fetch_lazy (new_data.value);
4fa62494
UW
2352
2353 /* Release the value from the value chain to prevent it from being
2354 deleted by free_all_values. From here on this function should not
2355 call error () until new_data is installed into the var->u to avoid
2356 leaking memory. */
22bc8444 2357 release_value (new_data.value).release ();
9920b434
BH
2358
2359 /* Internal variables which are created from values with a dynamic
2360 location don't need the location property of the origin anymore.
2361 The resolved dynamic location is used prior then any other address
2362 when accessing the value.
2363 If we keep it, we would still refer to the origin value.
2364 Remove the location property in case it exist. */
2365 remove_dyn_prop (DYN_PROP_DATA_LOCATION, value_type (new_data.value));
2366
4fa62494
UW
2367 break;
2368 }
2369
2370 /* Clean up old contents. */
2371 clear_internalvar (var);
2372
2373 /* Switch over. */
78267919 2374 var->kind = new_kind;
4fa62494 2375 var->u = new_data;
c906108c
SS
2376 /* End code which must not call error(). */
2377}
2378
4fa62494
UW
2379void
2380set_internalvar_integer (struct internalvar *var, LONGEST l)
2381{
2382 /* Clean up old contents. */
2383 clear_internalvar (var);
2384
cab0c772
UW
2385 var->kind = INTERNALVAR_INTEGER;
2386 var->u.integer.type = NULL;
2387 var->u.integer.val = l;
78267919
UW
2388}
2389
2390void
2391set_internalvar_string (struct internalvar *var, const char *string)
2392{
2393 /* Clean up old contents. */
2394 clear_internalvar (var);
2395
2396 var->kind = INTERNALVAR_STRING;
2397 var->u.string = xstrdup (string);
4fa62494
UW
2398}
2399
2400static void
2401set_internalvar_function (struct internalvar *var, struct internal_function *f)
2402{
2403 /* Clean up old contents. */
2404 clear_internalvar (var);
2405
78267919
UW
2406 var->kind = INTERNALVAR_FUNCTION;
2407 var->u.fn.function = f;
2408 var->u.fn.canonical = 1;
2409 /* Variables installed here are always the canonical version. */
4fa62494
UW
2410}
2411
2412void
2413clear_internalvar (struct internalvar *var)
2414{
2415 /* Clean up old contents. */
78267919 2416 switch (var->kind)
4fa62494 2417 {
78267919 2418 case INTERNALVAR_VALUE:
22bc8444 2419 value_decref (var->u.value);
78267919
UW
2420 break;
2421
2422 case INTERNALVAR_STRING:
2423 xfree (var->u.string);
4fa62494
UW
2424 break;
2425
22d2b532
SDJ
2426 case INTERNALVAR_MAKE_VALUE:
2427 if (var->u.make_value.functions->destroy != NULL)
2428 var->u.make_value.functions->destroy (var->u.make_value.data);
2429 break;
2430
4fa62494 2431 default:
4fa62494
UW
2432 break;
2433 }
2434
78267919
UW
2435 /* Reset to void kind. */
2436 var->kind = INTERNALVAR_VOID;
4fa62494
UW
2437}
2438
c906108c 2439char *
4bf7b526 2440internalvar_name (const struct internalvar *var)
c906108c
SS
2441{
2442 return var->name;
2443}
2444
4fa62494
UW
2445static struct internal_function *
2446create_internal_function (const char *name,
2447 internal_function_fn handler, void *cookie)
bc3b79fd 2448{
bc3b79fd 2449 struct internal_function *ifn = XNEW (struct internal_function);
a109c7c1 2450
bc3b79fd
TJB
2451 ifn->name = xstrdup (name);
2452 ifn->handler = handler;
2453 ifn->cookie = cookie;
4fa62494 2454 return ifn;
bc3b79fd
TJB
2455}
2456
2457char *
2458value_internal_function_name (struct value *val)
2459{
4fa62494
UW
2460 struct internal_function *ifn;
2461 int result;
2462
2463 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2464 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2465 gdb_assert (result);
2466
bc3b79fd
TJB
2467 return ifn->name;
2468}
2469
2470struct value *
d452c4bc
UW
2471call_internal_function (struct gdbarch *gdbarch,
2472 const struct language_defn *language,
2473 struct value *func, int argc, struct value **argv)
bc3b79fd 2474{
4fa62494
UW
2475 struct internal_function *ifn;
2476 int result;
2477
2478 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2479 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2480 gdb_assert (result);
2481
d452c4bc 2482 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
bc3b79fd
TJB
2483}
2484
2485/* The 'function' command. This does nothing -- it is just a
2486 placeholder to let "help function NAME" work. This is also used as
2487 the implementation of the sub-command that is created when
2488 registering an internal function. */
2489static void
981a3fb3 2490function_command (const char *command, int from_tty)
bc3b79fd
TJB
2491{
2492 /* Do nothing. */
2493}
2494
2495/* Clean up if an internal function's command is destroyed. */
2496static void
2497function_destroyer (struct cmd_list_element *self, void *ignore)
2498{
6f937416 2499 xfree ((char *) self->name);
1947513d 2500 xfree ((char *) self->doc);
bc3b79fd
TJB
2501}
2502
2503/* Add a new internal function. NAME is the name of the function; DOC
2504 is a documentation string describing the function. HANDLER is
2505 called when the function is invoked. COOKIE is an arbitrary
2506 pointer which is passed to HANDLER and is intended for "user
2507 data". */
2508void
2509add_internal_function (const char *name, const char *doc,
2510 internal_function_fn handler, void *cookie)
2511{
2512 struct cmd_list_element *cmd;
4fa62494 2513 struct internal_function *ifn;
bc3b79fd 2514 struct internalvar *var = lookup_internalvar (name);
4fa62494
UW
2515
2516 ifn = create_internal_function (name, handler, cookie);
2517 set_internalvar_function (var, ifn);
bc3b79fd
TJB
2518
2519 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2520 &functionlist);
2521 cmd->destroyer = function_destroyer;
2522}
2523
ae5a43e0
DJ
2524/* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2525 prevent cycles / duplicates. */
2526
4e7a5ef5 2527void
ae5a43e0
DJ
2528preserve_one_value (struct value *value, struct objfile *objfile,
2529 htab_t copied_types)
2530{
2531 if (TYPE_OBJFILE (value->type) == objfile)
2532 value->type = copy_type_recursive (objfile, value->type, copied_types);
2533
2534 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2535 value->enclosing_type = copy_type_recursive (objfile,
2536 value->enclosing_type,
2537 copied_types);
2538}
2539
78267919
UW
2540/* Likewise for internal variable VAR. */
2541
2542static void
2543preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2544 htab_t copied_types)
2545{
2546 switch (var->kind)
2547 {
cab0c772
UW
2548 case INTERNALVAR_INTEGER:
2549 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2550 var->u.integer.type
2551 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2552 break;
2553
78267919
UW
2554 case INTERNALVAR_VALUE:
2555 preserve_one_value (var->u.value, objfile, copied_types);
2556 break;
2557 }
2558}
2559
ae5a43e0
DJ
2560/* Update the internal variables and value history when OBJFILE is
2561 discarded; we must copy the types out of the objfile. New global types
2562 will be created for every convenience variable which currently points to
2563 this objfile's types, and the convenience variables will be adjusted to
2564 use the new global types. */
c906108c
SS
2565
2566void
ae5a43e0 2567preserve_values (struct objfile *objfile)
c906108c 2568{
ae5a43e0 2569 htab_t copied_types;
52f0bd74 2570 struct internalvar *var;
ae5a43e0 2571 int i;
c906108c 2572
ae5a43e0
DJ
2573 /* Create the hash table. We allocate on the objfile's obstack, since
2574 it is soon to be deleted. */
2575 copied_types = create_copied_types_hash (objfile);
2576
4d0266a0
TT
2577 for (const value_ref_ptr &item : value_history)
2578 preserve_one_value (item.get (), objfile, copied_types);
ae5a43e0
DJ
2579
2580 for (var = internalvars; var; var = var->next)
78267919 2581 preserve_one_internalvar (var, objfile, copied_types);
ae5a43e0 2582
6dddc817 2583 preserve_ext_lang_values (objfile, copied_types);
a08702d6 2584
ae5a43e0 2585 htab_delete (copied_types);
c906108c
SS
2586}
2587
2588static void
ad25e423 2589show_convenience (const char *ignore, int from_tty)
c906108c 2590{
e17c207e 2591 struct gdbarch *gdbarch = get_current_arch ();
52f0bd74 2592 struct internalvar *var;
c906108c 2593 int varseen = 0;
79a45b7d 2594 struct value_print_options opts;
c906108c 2595
79a45b7d 2596 get_user_print_options (&opts);
c906108c
SS
2597 for (var = internalvars; var; var = var->next)
2598 {
c709acd1 2599
c906108c
SS
2600 if (!varseen)
2601 {
2602 varseen = 1;
2603 }
a3f17187 2604 printf_filtered (("$%s = "), var->name);
c709acd1 2605
492d29ea 2606 TRY
c709acd1
PA
2607 {
2608 struct value *val;
2609
2610 val = value_of_internalvar (gdbarch, var);
2611 value_print (val, gdb_stdout, &opts);
2612 }
492d29ea
PA
2613 CATCH (ex, RETURN_MASK_ERROR)
2614 {
2615 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
2616 }
2617 END_CATCH
2618
a3f17187 2619 printf_filtered (("\n"));
c906108c
SS
2620 }
2621 if (!varseen)
f47f77df
DE
2622 {
2623 /* This text does not mention convenience functions on purpose.
2624 The user can't create them except via Python, and if Python support
2625 is installed this message will never be printed ($_streq will
2626 exist). */
2627 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2628 "Convenience variables have "
2629 "names starting with \"$\";\n"
2630 "use \"set\" as in \"set "
2631 "$foo = 5\" to define them.\n"));
2632 }
c906108c
SS
2633}
2634\f
ba18742c
SM
2635
2636/* See value.h. */
e81e7f5e
SC
2637
2638struct value *
ba18742c 2639value_from_xmethod (xmethod_worker_up &&worker)
e81e7f5e 2640{
ba18742c 2641 struct value *v;
e81e7f5e 2642
ba18742c
SM
2643 v = allocate_value (builtin_type (target_gdbarch ())->xmethod);
2644 v->lval = lval_xcallable;
2645 v->location.xm_worker = worker.release ();
2646 v->modifiable = 0;
e81e7f5e 2647
ba18742c 2648 return v;
e81e7f5e
SC
2649}
2650
2ce1cdbf
DE
2651/* Return the type of the result of TYPE_CODE_XMETHOD value METHOD. */
2652
2653struct type *
2654result_type_of_xmethod (struct value *method, int argc, struct value **argv)
2655{
2656 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2657 && method->lval == lval_xcallable && argc > 0);
2658
ba18742c
SM
2659 return method->location.xm_worker->get_result_type
2660 (argv[0], argv + 1, argc - 1);
2ce1cdbf
DE
2661}
2662
e81e7f5e
SC
2663/* Call the xmethod corresponding to the TYPE_CODE_XMETHOD value METHOD. */
2664
2665struct value *
2666call_xmethod (struct value *method, int argc, struct value **argv)
2667{
2668 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2669 && method->lval == lval_xcallable && argc > 0);
2670
ba18742c 2671 return method->location.xm_worker->invoke (argv[0], argv + 1, argc - 1);
e81e7f5e
SC
2672}
2673\f
c906108c
SS
2674/* Extract a value as a C number (either long or double).
2675 Knows how to convert fixed values to double, or
2676 floating values to long.
2677 Does not deallocate the value. */
2678
2679LONGEST
f23631e4 2680value_as_long (struct value *val)
c906108c
SS
2681{
2682 /* This coerces arrays and functions, which is necessary (e.g.
2683 in disassemble_command). It also dereferences references, which
2684 I suspect is the most logical thing to do. */
994b9211 2685 val = coerce_array (val);
0fd88904 2686 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2687}
2688
581e13c1 2689/* Extract a value as a C pointer. Does not deallocate the value.
4478b372
JB
2690 Note that val's type may not actually be a pointer; value_as_long
2691 handles all the cases. */
c906108c 2692CORE_ADDR
f23631e4 2693value_as_address (struct value *val)
c906108c 2694{
50810684
UW
2695 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2696
c906108c
SS
2697 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2698 whether we want this to be true eventually. */
2699#if 0
bf6ae464 2700 /* gdbarch_addr_bits_remove is wrong if we are being called for a
c906108c
SS
2701 non-address (e.g. argument to "signal", "info break", etc.), or
2702 for pointers to char, in which the low bits *are* significant. */
50810684 2703 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
c906108c 2704#else
f312f057
JB
2705
2706 /* There are several targets (IA-64, PowerPC, and others) which
2707 don't represent pointers to functions as simply the address of
2708 the function's entry point. For example, on the IA-64, a
2709 function pointer points to a two-word descriptor, generated by
2710 the linker, which contains the function's entry point, and the
2711 value the IA-64 "global pointer" register should have --- to
2712 support position-independent code. The linker generates
2713 descriptors only for those functions whose addresses are taken.
2714
2715 On such targets, it's difficult for GDB to convert an arbitrary
2716 function address into a function pointer; it has to either find
2717 an existing descriptor for that function, or call malloc and
2718 build its own. On some targets, it is impossible for GDB to
2719 build a descriptor at all: the descriptor must contain a jump
2720 instruction; data memory cannot be executed; and code memory
2721 cannot be modified.
2722
2723 Upon entry to this function, if VAL is a value of type `function'
2724 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
42ae5230 2725 value_address (val) is the address of the function. This is what
f312f057
JB
2726 you'll get if you evaluate an expression like `main'. The call
2727 to COERCE_ARRAY below actually does all the usual unary
2728 conversions, which includes converting values of type `function'
2729 to `pointer to function'. This is the challenging conversion
2730 discussed above. Then, `unpack_long' will convert that pointer
2731 back into an address.
2732
2733 So, suppose the user types `disassemble foo' on an architecture
2734 with a strange function pointer representation, on which GDB
2735 cannot build its own descriptors, and suppose further that `foo'
2736 has no linker-built descriptor. The address->pointer conversion
2737 will signal an error and prevent the command from running, even
2738 though the next step would have been to convert the pointer
2739 directly back into the same address.
2740
2741 The following shortcut avoids this whole mess. If VAL is a
2742 function, just return its address directly. */
df407dfe
AC
2743 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2744 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
42ae5230 2745 return value_address (val);
f312f057 2746
994b9211 2747 val = coerce_array (val);
fc0c74b1
AC
2748
2749 /* Some architectures (e.g. Harvard), map instruction and data
2750 addresses onto a single large unified address space. For
2751 instance: An architecture may consider a large integer in the
2752 range 0x10000000 .. 0x1000ffff to already represent a data
2753 addresses (hence not need a pointer to address conversion) while
2754 a small integer would still need to be converted integer to
2755 pointer to address. Just assume such architectures handle all
2756 integer conversions in a single function. */
2757
2758 /* JimB writes:
2759
2760 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2761 must admonish GDB hackers to make sure its behavior matches the
2762 compiler's, whenever possible.
2763
2764 In general, I think GDB should evaluate expressions the same way
2765 the compiler does. When the user copies an expression out of
2766 their source code and hands it to a `print' command, they should
2767 get the same value the compiler would have computed. Any
2768 deviation from this rule can cause major confusion and annoyance,
2769 and needs to be justified carefully. In other words, GDB doesn't
2770 really have the freedom to do these conversions in clever and
2771 useful ways.
2772
2773 AndrewC pointed out that users aren't complaining about how GDB
2774 casts integers to pointers; they are complaining that they can't
2775 take an address from a disassembly listing and give it to `x/i'.
2776 This is certainly important.
2777
79dd2d24 2778 Adding an architecture method like integer_to_address() certainly
fc0c74b1
AC
2779 makes it possible for GDB to "get it right" in all circumstances
2780 --- the target has complete control over how things get done, so
2781 people can Do The Right Thing for their target without breaking
2782 anyone else. The standard doesn't specify how integers get
2783 converted to pointers; usually, the ABI doesn't either, but
2784 ABI-specific code is a more reasonable place to handle it. */
2785
df407dfe 2786 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
aa006118 2787 && !TYPE_IS_REFERENCE (value_type (val))
50810684
UW
2788 && gdbarch_integer_to_address_p (gdbarch))
2789 return gdbarch_integer_to_address (gdbarch, value_type (val),
0fd88904 2790 value_contents (val));
fc0c74b1 2791
0fd88904 2792 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2793#endif
2794}
2795\f
2796/* Unpack raw data (copied from debugee, target byte order) at VALADDR
2797 as a long, or as a double, assuming the raw data is described
2798 by type TYPE. Knows how to convert different sizes of values
2799 and can convert between fixed and floating point. We don't assume
2800 any alignment for the raw data. Return value is in host byte order.
2801
2802 If you want functions and arrays to be coerced to pointers, and
2803 references to be dereferenced, call value_as_long() instead.
2804
2805 C++: It is assumed that the front-end has taken care of
2806 all matters concerning pointers to members. A pointer
2807 to member which reaches here is considered to be equivalent
2808 to an INT (or some size). After all, it is only an offset. */
2809
2810LONGEST
fc1a4b47 2811unpack_long (struct type *type, const gdb_byte *valaddr)
c906108c 2812{
e17a4113 2813 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74
AC
2814 enum type_code code = TYPE_CODE (type);
2815 int len = TYPE_LENGTH (type);
2816 int nosign = TYPE_UNSIGNED (type);
c906108c 2817
c906108c
SS
2818 switch (code)
2819 {
2820 case TYPE_CODE_TYPEDEF:
2821 return unpack_long (check_typedef (type), valaddr);
2822 case TYPE_CODE_ENUM:
4f2aea11 2823 case TYPE_CODE_FLAGS:
c906108c
SS
2824 case TYPE_CODE_BOOL:
2825 case TYPE_CODE_INT:
2826 case TYPE_CODE_CHAR:
2827 case TYPE_CODE_RANGE:
0d5de010 2828 case TYPE_CODE_MEMBERPTR:
c906108c 2829 if (nosign)
e17a4113 2830 return extract_unsigned_integer (valaddr, len, byte_order);
c906108c 2831 else
e17a4113 2832 return extract_signed_integer (valaddr, len, byte_order);
c906108c
SS
2833
2834 case TYPE_CODE_FLT:
4ef30785 2835 case TYPE_CODE_DECFLOAT:
50637b26 2836 return target_float_to_longest (valaddr, type);
4ef30785 2837
c906108c
SS
2838 case TYPE_CODE_PTR:
2839 case TYPE_CODE_REF:
aa006118 2840 case TYPE_CODE_RVALUE_REF:
c906108c 2841 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
c5aa993b 2842 whether we want this to be true eventually. */
4478b372 2843 return extract_typed_address (valaddr, type);
c906108c 2844
c906108c 2845 default:
8a3fe4f8 2846 error (_("Value can't be converted to integer."));
c906108c 2847 }
c5aa993b 2848 return 0; /* Placate lint. */
c906108c
SS
2849}
2850
c906108c
SS
2851/* Unpack raw data (copied from debugee, target byte order) at VALADDR
2852 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2853 We don't assume any alignment for the raw data. Return value is in
2854 host byte order.
2855
2856 If you want functions and arrays to be coerced to pointers, and
1aa20aa8 2857 references to be dereferenced, call value_as_address() instead.
c906108c
SS
2858
2859 C++: It is assumed that the front-end has taken care of
2860 all matters concerning pointers to members. A pointer
2861 to member which reaches here is considered to be equivalent
2862 to an INT (or some size). After all, it is only an offset. */
2863
2864CORE_ADDR
fc1a4b47 2865unpack_pointer (struct type *type, const gdb_byte *valaddr)
c906108c
SS
2866{
2867 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2868 whether we want this to be true eventually. */
2869 return unpack_long (type, valaddr);
2870}
4478b372 2871
70100014
UW
2872bool
2873is_floating_value (struct value *val)
2874{
2875 struct type *type = check_typedef (value_type (val));
2876
2877 if (is_floating_type (type))
2878 {
2879 if (!target_float_is_valid (value_contents (val), type))
2880 error (_("Invalid floating value found in program."));
2881 return true;
2882 }
2883
2884 return false;
2885}
2886
c906108c 2887\f
1596cb5d 2888/* Get the value of the FIELDNO'th field (which must be static) of
686d4def 2889 TYPE. */
c906108c 2890
f23631e4 2891struct value *
fba45db2 2892value_static_field (struct type *type, int fieldno)
c906108c 2893{
948e66d9
DJ
2894 struct value *retval;
2895
1596cb5d 2896 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
c906108c 2897 {
1596cb5d 2898 case FIELD_LOC_KIND_PHYSADDR:
52e9fde8
SS
2899 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2900 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1596cb5d
DE
2901 break;
2902 case FIELD_LOC_KIND_PHYSNAME:
c906108c 2903 {
ff355380 2904 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
581e13c1 2905 /* TYPE_FIELD_NAME (type, fieldno); */
d12307c1 2906 struct block_symbol sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
94af9270 2907
d12307c1 2908 if (sym.symbol == NULL)
c906108c 2909 {
a109c7c1 2910 /* With some compilers, e.g. HP aCC, static data members are
581e13c1 2911 reported as non-debuggable symbols. */
3b7344d5
TT
2912 struct bound_minimal_symbol msym
2913 = lookup_minimal_symbol (phys_name, NULL, NULL);
c2e0e465 2914 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
a109c7c1 2915
3b7344d5 2916 if (!msym.minsym)
c2e0e465 2917 retval = allocate_optimized_out_value (field_type);
c906108c 2918 else
c2e0e465 2919 retval = value_at_lazy (field_type, BMSYMBOL_VALUE_ADDRESS (msym));
c906108c
SS
2920 }
2921 else
d12307c1 2922 retval = value_of_variable (sym.symbol, sym.block);
1596cb5d 2923 break;
c906108c 2924 }
1596cb5d 2925 default:
f3574227 2926 gdb_assert_not_reached ("unexpected field location kind");
1596cb5d
DE
2927 }
2928
948e66d9 2929 return retval;
c906108c
SS
2930}
2931
4dfea560
DE
2932/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
2933 You have to be careful here, since the size of the data area for the value
2934 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
2935 than the old enclosing type, you have to allocate more space for the
2936 data. */
2b127877 2937
4dfea560
DE
2938void
2939set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2b127877 2940{
5fdf6324
AB
2941 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
2942 {
2943 check_type_length_before_alloc (new_encl_type);
2944 val->contents
2945 = (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
2946 }
3e3d7139
JG
2947
2948 val->enclosing_type = new_encl_type;
2b127877
DB
2949}
2950
c906108c
SS
2951/* Given a value ARG1 (offset by OFFSET bytes)
2952 of a struct or union type ARG_TYPE,
2953 extract and return the value of one of its (non-static) fields.
581e13c1 2954 FIELDNO says which field. */
c906108c 2955
f23631e4 2956struct value *
6b850546 2957value_primitive_field (struct value *arg1, LONGEST offset,
aa1ee363 2958 int fieldno, struct type *arg_type)
c906108c 2959{
f23631e4 2960 struct value *v;
52f0bd74 2961 struct type *type;
3ae385af
SM
2962 struct gdbarch *arch = get_value_arch (arg1);
2963 int unit_size = gdbarch_addressable_memory_unit_size (arch);
c906108c 2964
f168693b 2965 arg_type = check_typedef (arg_type);
c906108c 2966 type = TYPE_FIELD_TYPE (arg_type, fieldno);
c54eabfa
JK
2967
2968 /* Call check_typedef on our type to make sure that, if TYPE
2969 is a TYPE_CODE_TYPEDEF, its length is set to the length
2970 of the target type instead of zero. However, we do not
2971 replace the typedef type by the target type, because we want
2972 to keep the typedef in order to be able to print the type
2973 description correctly. */
2974 check_typedef (type);
c906108c 2975
691a26f5 2976 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
c906108c 2977 {
22c05d8a
JK
2978 /* Handle packed fields.
2979
2980 Create a new value for the bitfield, with bitpos and bitsize
4ea48cc1
DJ
2981 set. If possible, arrange offset and bitpos so that we can
2982 do a single aligned read of the size of the containing type.
2983 Otherwise, adjust offset to the byte containing the first
2984 bit. Assume that the address, offset, and embedded offset
2985 are sufficiently aligned. */
22c05d8a 2986
6b850546
DT
2987 LONGEST bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
2988 LONGEST container_bitsize = TYPE_LENGTH (type) * 8;
4ea48cc1 2989
9a0dc9e3
PA
2990 v = allocate_value_lazy (type);
2991 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
2992 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
2993 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
2994 v->bitpos = bitpos % container_bitsize;
4ea48cc1 2995 else
9a0dc9e3
PA
2996 v->bitpos = bitpos % 8;
2997 v->offset = (value_embedded_offset (arg1)
2998 + offset
2999 + (bitpos - v->bitpos) / 8);
3000 set_value_parent (v, arg1);
3001 if (!value_lazy (arg1))
3002 value_fetch_lazy (v);
c906108c
SS
3003 }
3004 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
3005 {
3006 /* This field is actually a base subobject, so preserve the
39d37385
PA
3007 entire object's contents for later references to virtual
3008 bases, etc. */
6b850546 3009 LONGEST boffset;
a4e2ee12
DJ
3010
3011 /* Lazy register values with offsets are not supported. */
3012 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3013 value_fetch_lazy (arg1);
3014
9a0dc9e3
PA
3015 /* We special case virtual inheritance here because this
3016 requires access to the contents, which we would rather avoid
3017 for references to ordinary fields of unavailable values. */
3018 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
3019 boffset = baseclass_offset (arg_type, fieldno,
3020 value_contents (arg1),
3021 value_embedded_offset (arg1),
3022 value_address (arg1),
3023 arg1);
c906108c 3024 else
9a0dc9e3 3025 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
691a26f5 3026
9a0dc9e3
PA
3027 if (value_lazy (arg1))
3028 v = allocate_value_lazy (value_enclosing_type (arg1));
3029 else
3030 {
3031 v = allocate_value (value_enclosing_type (arg1));
3032 value_contents_copy_raw (v, 0, arg1, 0,
3033 TYPE_LENGTH (value_enclosing_type (arg1)));
3e3d7139 3034 }
9a0dc9e3
PA
3035 v->type = type;
3036 v->offset = value_offset (arg1);
3037 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
c906108c 3038 }
9920b434
BH
3039 else if (NULL != TYPE_DATA_LOCATION (type))
3040 {
3041 /* Field is a dynamic data member. */
3042
3043 gdb_assert (0 == offset);
3044 /* We expect an already resolved data location. */
3045 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (type));
3046 /* For dynamic data types defer memory allocation
3047 until we actual access the value. */
3048 v = allocate_value_lazy (type);
3049 }
c906108c
SS
3050 else
3051 {
3052 /* Plain old data member */
3ae385af
SM
3053 offset += (TYPE_FIELD_BITPOS (arg_type, fieldno)
3054 / (HOST_CHAR_BIT * unit_size));
a4e2ee12
DJ
3055
3056 /* Lazy register values with offsets are not supported. */
3057 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3058 value_fetch_lazy (arg1);
3059
9a0dc9e3 3060 if (value_lazy (arg1))
3e3d7139 3061 v = allocate_value_lazy (type);
c906108c 3062 else
3e3d7139
JG
3063 {
3064 v = allocate_value (type);
39d37385
PA
3065 value_contents_copy_raw (v, value_embedded_offset (v),
3066 arg1, value_embedded_offset (arg1) + offset,
3ae385af 3067 type_length_units (type));
3e3d7139 3068 }
df407dfe 3069 v->offset = (value_offset (arg1) + offset
13c3b5f5 3070 + value_embedded_offset (arg1));
c906108c 3071 }
74bcbdf3 3072 set_value_component_location (v, arg1);
c906108c
SS
3073 return v;
3074}
3075
3076/* Given a value ARG1 of a struct or union type,
3077 extract and return the value of one of its (non-static) fields.
581e13c1 3078 FIELDNO says which field. */
c906108c 3079
f23631e4 3080struct value *
aa1ee363 3081value_field (struct value *arg1, int fieldno)
c906108c 3082{
df407dfe 3083 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
c906108c
SS
3084}
3085
3086/* Return a non-virtual function as a value.
3087 F is the list of member functions which contains the desired method.
0478d61c
FF
3088 J is an index into F which provides the desired method.
3089
3090 We only use the symbol for its address, so be happy with either a
581e13c1 3091 full symbol or a minimal symbol. */
c906108c 3092
f23631e4 3093struct value *
3e43a32a
MS
3094value_fn_field (struct value **arg1p, struct fn_field *f,
3095 int j, struct type *type,
6b850546 3096 LONGEST offset)
c906108c 3097{
f23631e4 3098 struct value *v;
52f0bd74 3099 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
1d06ead6 3100 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
c906108c 3101 struct symbol *sym;
7c7b6655 3102 struct bound_minimal_symbol msym;
c906108c 3103
d12307c1 3104 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0).symbol;
5ae326fa 3105 if (sym != NULL)
0478d61c 3106 {
7c7b6655 3107 memset (&msym, 0, sizeof (msym));
5ae326fa
AC
3108 }
3109 else
3110 {
3111 gdb_assert (sym == NULL);
7c7b6655
TT
3112 msym = lookup_bound_minimal_symbol (physname);
3113 if (msym.minsym == NULL)
5ae326fa 3114 return NULL;
0478d61c
FF
3115 }
3116
c906108c 3117 v = allocate_value (ftype);
1a088441 3118 VALUE_LVAL (v) = lval_memory;
0478d61c
FF
3119 if (sym)
3120 {
42ae5230 3121 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
0478d61c
FF
3122 }
3123 else
3124 {
bccdca4a
UW
3125 /* The minimal symbol might point to a function descriptor;
3126 resolve it to the actual code address instead. */
7c7b6655 3127 struct objfile *objfile = msym.objfile;
bccdca4a
UW
3128 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3129
42ae5230
TT
3130 set_value_address (v,
3131 gdbarch_convert_from_func_ptr_addr
77e371c0 3132 (gdbarch, BMSYMBOL_VALUE_ADDRESS (msym), &current_target));
0478d61c 3133 }
c906108c
SS
3134
3135 if (arg1p)
c5aa993b 3136 {
df407dfe 3137 if (type != value_type (*arg1p))
c5aa993b
JM
3138 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
3139 value_addr (*arg1p)));
3140
070ad9f0 3141 /* Move the `this' pointer according to the offset.
581e13c1 3142 VALUE_OFFSET (*arg1p) += offset; */
c906108c
SS
3143 }
3144
3145 return v;
3146}
3147
c906108c 3148\f
c906108c 3149
4875ffdb
PA
3150/* Unpack a bitfield of the specified FIELD_TYPE, from the object at
3151 VALADDR, and store the result in *RESULT.
15ce8941
TT
3152 The bitfield starts at BITPOS bits and contains BITSIZE bits; if
3153 BITSIZE is zero, then the length is taken from FIELD_TYPE.
c906108c 3154
4875ffdb
PA
3155 Extracting bits depends on endianness of the machine. Compute the
3156 number of least significant bits to discard. For big endian machines,
3157 we compute the total number of bits in the anonymous object, subtract
3158 off the bit count from the MSB of the object to the MSB of the
3159 bitfield, then the size of the bitfield, which leaves the LSB discard
3160 count. For little endian machines, the discard count is simply the
3161 number of bits from the LSB of the anonymous object to the LSB of the
3162 bitfield.
3163
3164 If the field is signed, we also do sign extension. */
3165
3166static LONGEST
3167unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
6b850546 3168 LONGEST bitpos, LONGEST bitsize)
c906108c 3169{
4ea48cc1 3170 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
c906108c
SS
3171 ULONGEST val;
3172 ULONGEST valmask;
c906108c 3173 int lsbcount;
6b850546
DT
3174 LONGEST bytes_read;
3175 LONGEST read_offset;
c906108c 3176
4a76eae5
DJ
3177 /* Read the minimum number of bytes required; there may not be
3178 enough bytes to read an entire ULONGEST. */
f168693b 3179 field_type = check_typedef (field_type);
4a76eae5
DJ
3180 if (bitsize)
3181 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
3182 else
15ce8941
TT
3183 {
3184 bytes_read = TYPE_LENGTH (field_type);
3185 bitsize = 8 * bytes_read;
3186 }
4a76eae5 3187
5467c6c8
PA
3188 read_offset = bitpos / 8;
3189
4875ffdb 3190 val = extract_unsigned_integer (valaddr + read_offset,
4a76eae5 3191 bytes_read, byte_order);
c906108c 3192
581e13c1 3193 /* Extract bits. See comment above. */
c906108c 3194
4ea48cc1 3195 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
4a76eae5 3196 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
c906108c
SS
3197 else
3198 lsbcount = (bitpos % 8);
3199 val >>= lsbcount;
3200
3201 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
581e13c1 3202 If the field is signed, and is negative, then sign extend. */
c906108c 3203
15ce8941 3204 if (bitsize < 8 * (int) sizeof (val))
c906108c
SS
3205 {
3206 valmask = (((ULONGEST) 1) << bitsize) - 1;
3207 val &= valmask;
3208 if (!TYPE_UNSIGNED (field_type))
3209 {
3210 if (val & (valmask ^ (valmask >> 1)))
3211 {
3212 val |= ~valmask;
3213 }
3214 }
3215 }
5467c6c8 3216
4875ffdb 3217 return val;
5467c6c8
PA
3218}
3219
3220/* Unpack a field FIELDNO of the specified TYPE, from the object at
3221 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
3222 ORIGINAL_VALUE, which must not be NULL. See
3223 unpack_value_bits_as_long for more details. */
3224
3225int
3226unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
6b850546 3227 LONGEST embedded_offset, int fieldno,
5467c6c8
PA
3228 const struct value *val, LONGEST *result)
3229{
4875ffdb
PA
3230 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3231 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3232 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3233 int bit_offset;
3234
5467c6c8
PA
3235 gdb_assert (val != NULL);
3236
4875ffdb
PA
3237 bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3238 if (value_bits_any_optimized_out (val, bit_offset, bitsize)
3239 || !value_bits_available (val, bit_offset, bitsize))
3240 return 0;
3241
3242 *result = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3243 bitpos, bitsize);
3244 return 1;
5467c6c8
PA
3245}
3246
3247/* Unpack a field FIELDNO of the specified TYPE, from the anonymous
4875ffdb 3248 object at VALADDR. See unpack_bits_as_long for more details. */
5467c6c8
PA
3249
3250LONGEST
3251unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
3252{
4875ffdb
PA
3253 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3254 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3255 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
5467c6c8 3256
4875ffdb
PA
3257 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
3258}
3259
3260/* Unpack a bitfield of BITSIZE bits found at BITPOS in the object at
3261 VALADDR + EMBEDDEDOFFSET that has the type of DEST_VAL and store
3262 the contents in DEST_VAL, zero or sign extending if the type of
3263 DEST_VAL is wider than BITSIZE. VALADDR points to the contents of
3264 VAL. If the VAL's contents required to extract the bitfield from
3265 are unavailable/optimized out, DEST_VAL is correspondingly
3266 marked unavailable/optimized out. */
3267
bb9d5f81 3268void
4875ffdb 3269unpack_value_bitfield (struct value *dest_val,
6b850546
DT
3270 LONGEST bitpos, LONGEST bitsize,
3271 const gdb_byte *valaddr, LONGEST embedded_offset,
4875ffdb
PA
3272 const struct value *val)
3273{
3274 enum bfd_endian byte_order;
3275 int src_bit_offset;
3276 int dst_bit_offset;
4875ffdb
PA
3277 struct type *field_type = value_type (dest_val);
3278
4875ffdb 3279 byte_order = gdbarch_byte_order (get_type_arch (field_type));
e5ca03b4
PA
3280
3281 /* First, unpack and sign extend the bitfield as if it was wholly
3282 valid. Optimized out/unavailable bits are read as zero, but
3283 that's OK, as they'll end up marked below. If the VAL is
3284 wholly-invalid we may have skipped allocating its contents,
3285 though. See allocate_optimized_out_value. */
3286 if (valaddr != NULL)
3287 {
3288 LONGEST num;
3289
3290 num = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3291 bitpos, bitsize);
3292 store_signed_integer (value_contents_raw (dest_val),
3293 TYPE_LENGTH (field_type), byte_order, num);
3294 }
4875ffdb
PA
3295
3296 /* Now copy the optimized out / unavailability ranges to the right
3297 bits. */
3298 src_bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3299 if (byte_order == BFD_ENDIAN_BIG)
3300 dst_bit_offset = TYPE_LENGTH (field_type) * TARGET_CHAR_BIT - bitsize;
3301 else
3302 dst_bit_offset = 0;
3303 value_ranges_copy_adjusted (dest_val, dst_bit_offset,
3304 val, src_bit_offset, bitsize);
5467c6c8
PA
3305}
3306
3307/* Return a new value with type TYPE, which is FIELDNO field of the
3308 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
3309 of VAL. If the VAL's contents required to extract the bitfield
4875ffdb
PA
3310 from are unavailable/optimized out, the new value is
3311 correspondingly marked unavailable/optimized out. */
5467c6c8
PA
3312
3313struct value *
3314value_field_bitfield (struct type *type, int fieldno,
3315 const gdb_byte *valaddr,
6b850546 3316 LONGEST embedded_offset, const struct value *val)
5467c6c8 3317{
4875ffdb
PA
3318 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3319 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3320 struct value *res_val = allocate_value (TYPE_FIELD_TYPE (type, fieldno));
5467c6c8 3321
4875ffdb
PA
3322 unpack_value_bitfield (res_val, bitpos, bitsize,
3323 valaddr, embedded_offset, val);
3324
3325 return res_val;
4ea48cc1
DJ
3326}
3327
c906108c
SS
3328/* Modify the value of a bitfield. ADDR points to a block of memory in
3329 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
3330 is the desired value of the field, in host byte order. BITPOS and BITSIZE
581e13c1 3331 indicate which bits (in target bit order) comprise the bitfield.
19f220c3 3332 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
f4e88c8e 3333 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
c906108c
SS
3334
3335void
50810684 3336modify_field (struct type *type, gdb_byte *addr,
6b850546 3337 LONGEST fieldval, LONGEST bitpos, LONGEST bitsize)
c906108c 3338{
e17a4113 3339 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
f4e88c8e
PH
3340 ULONGEST oword;
3341 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
6b850546 3342 LONGEST bytesize;
19f220c3
JK
3343
3344 /* Normalize BITPOS. */
3345 addr += bitpos / 8;
3346 bitpos %= 8;
c906108c
SS
3347
3348 /* If a negative fieldval fits in the field in question, chop
3349 off the sign extension bits. */
f4e88c8e
PH
3350 if ((~fieldval & ~(mask >> 1)) == 0)
3351 fieldval &= mask;
c906108c
SS
3352
3353 /* Warn if value is too big to fit in the field in question. */
f4e88c8e 3354 if (0 != (fieldval & ~mask))
c906108c
SS
3355 {
3356 /* FIXME: would like to include fieldval in the message, but
c5aa993b 3357 we don't have a sprintf_longest. */
6b850546 3358 warning (_("Value does not fit in %s bits."), plongest (bitsize));
c906108c
SS
3359
3360 /* Truncate it, otherwise adjoining fields may be corrupted. */
f4e88c8e 3361 fieldval &= mask;
c906108c
SS
3362 }
3363
19f220c3
JK
3364 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3365 false valgrind reports. */
3366
3367 bytesize = (bitpos + bitsize + 7) / 8;
3368 oword = extract_unsigned_integer (addr, bytesize, byte_order);
c906108c
SS
3369
3370 /* Shifting for bit field depends on endianness of the target machine. */
50810684 3371 if (gdbarch_bits_big_endian (get_type_arch (type)))
19f220c3 3372 bitpos = bytesize * 8 - bitpos - bitsize;
c906108c 3373
f4e88c8e 3374 oword &= ~(mask << bitpos);
c906108c
SS
3375 oword |= fieldval << bitpos;
3376
19f220c3 3377 store_unsigned_integer (addr, bytesize, byte_order, oword);
c906108c
SS
3378}
3379\f
14d06750 3380/* Pack NUM into BUF using a target format of TYPE. */
c906108c 3381
14d06750
DJ
3382void
3383pack_long (gdb_byte *buf, struct type *type, LONGEST num)
c906108c 3384{
e17a4113 3385 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
6b850546 3386 LONGEST len;
14d06750
DJ
3387
3388 type = check_typedef (type);
c906108c
SS
3389 len = TYPE_LENGTH (type);
3390
14d06750 3391 switch (TYPE_CODE (type))
c906108c 3392 {
c906108c
SS
3393 case TYPE_CODE_INT:
3394 case TYPE_CODE_CHAR:
3395 case TYPE_CODE_ENUM:
4f2aea11 3396 case TYPE_CODE_FLAGS:
c906108c
SS
3397 case TYPE_CODE_BOOL:
3398 case TYPE_CODE_RANGE:
0d5de010 3399 case TYPE_CODE_MEMBERPTR:
e17a4113 3400 store_signed_integer (buf, len, byte_order, num);
c906108c 3401 break;
c5aa993b 3402
c906108c 3403 case TYPE_CODE_REF:
aa006118 3404 case TYPE_CODE_RVALUE_REF:
c906108c 3405 case TYPE_CODE_PTR:
14d06750 3406 store_typed_address (buf, type, (CORE_ADDR) num);
c906108c 3407 break;
c5aa993b 3408
50637b26
UW
3409 case TYPE_CODE_FLT:
3410 case TYPE_CODE_DECFLOAT:
3411 target_float_from_longest (buf, type, num);
3412 break;
3413
c906108c 3414 default:
14d06750
DJ
3415 error (_("Unexpected type (%d) encountered for integer constant."),
3416 TYPE_CODE (type));
c906108c 3417 }
14d06750
DJ
3418}
3419
3420
595939de
PM
3421/* Pack NUM into BUF using a target format of TYPE. */
3422
70221824 3423static void
595939de
PM
3424pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3425{
6b850546 3426 LONGEST len;
595939de
PM
3427 enum bfd_endian byte_order;
3428
3429 type = check_typedef (type);
3430 len = TYPE_LENGTH (type);
3431 byte_order = gdbarch_byte_order (get_type_arch (type));
3432
3433 switch (TYPE_CODE (type))
3434 {
3435 case TYPE_CODE_INT:
3436 case TYPE_CODE_CHAR:
3437 case TYPE_CODE_ENUM:
3438 case TYPE_CODE_FLAGS:
3439 case TYPE_CODE_BOOL:
3440 case TYPE_CODE_RANGE:
3441 case TYPE_CODE_MEMBERPTR:
3442 store_unsigned_integer (buf, len, byte_order, num);
3443 break;
3444
3445 case TYPE_CODE_REF:
aa006118 3446 case TYPE_CODE_RVALUE_REF:
595939de
PM
3447 case TYPE_CODE_PTR:
3448 store_typed_address (buf, type, (CORE_ADDR) num);
3449 break;
3450
50637b26
UW
3451 case TYPE_CODE_FLT:
3452 case TYPE_CODE_DECFLOAT:
3453 target_float_from_ulongest (buf, type, num);
3454 break;
3455
595939de 3456 default:
3e43a32a
MS
3457 error (_("Unexpected type (%d) encountered "
3458 "for unsigned integer constant."),
595939de
PM
3459 TYPE_CODE (type));
3460 }
3461}
3462
3463
14d06750
DJ
3464/* Convert C numbers into newly allocated values. */
3465
3466struct value *
3467value_from_longest (struct type *type, LONGEST num)
3468{
3469 struct value *val = allocate_value (type);
3470
3471 pack_long (value_contents_raw (val), type, num);
c906108c
SS
3472 return val;
3473}
3474
4478b372 3475
595939de
PM
3476/* Convert C unsigned numbers into newly allocated values. */
3477
3478struct value *
3479value_from_ulongest (struct type *type, ULONGEST num)
3480{
3481 struct value *val = allocate_value (type);
3482
3483 pack_unsigned_long (value_contents_raw (val), type, num);
3484
3485 return val;
3486}
3487
3488
4478b372 3489/* Create a value representing a pointer of type TYPE to the address
cb417230 3490 ADDR. */
80180f79 3491
f23631e4 3492struct value *
4478b372
JB
3493value_from_pointer (struct type *type, CORE_ADDR addr)
3494{
cb417230 3495 struct value *val = allocate_value (type);
a109c7c1 3496
80180f79 3497 store_typed_address (value_contents_raw (val),
cb417230 3498 check_typedef (type), addr);
4478b372
JB
3499 return val;
3500}
3501
3502
012370f6
TT
3503/* Create a value of type TYPE whose contents come from VALADDR, if it
3504 is non-null, and whose memory address (in the inferior) is
3505 ADDRESS. The type of the created value may differ from the passed
3506 type TYPE. Make sure to retrieve values new type after this call.
3507 Note that TYPE is not passed through resolve_dynamic_type; this is
3508 a special API intended for use only by Ada. */
3509
3510struct value *
3511value_from_contents_and_address_unresolved (struct type *type,
3512 const gdb_byte *valaddr,
3513 CORE_ADDR address)
3514{
3515 struct value *v;
3516
3517 if (valaddr == NULL)
3518 v = allocate_value_lazy (type);
3519 else
3520 v = value_from_contents (type, valaddr);
012370f6 3521 VALUE_LVAL (v) = lval_memory;
1a088441 3522 set_value_address (v, address);
012370f6
TT
3523 return v;
3524}
3525
8acb6b92
TT
3526/* Create a value of type TYPE whose contents come from VALADDR, if it
3527 is non-null, and whose memory address (in the inferior) is
80180f79
SA
3528 ADDRESS. The type of the created value may differ from the passed
3529 type TYPE. Make sure to retrieve values new type after this call. */
8acb6b92
TT
3530
3531struct value *
3532value_from_contents_and_address (struct type *type,
3533 const gdb_byte *valaddr,
3534 CORE_ADDR address)
3535{
c3345124 3536 struct type *resolved_type = resolve_dynamic_type (type, valaddr, address);
d36430db 3537 struct type *resolved_type_no_typedef = check_typedef (resolved_type);
41e8491f 3538 struct value *v;
a109c7c1 3539
8acb6b92 3540 if (valaddr == NULL)
80180f79 3541 v = allocate_value_lazy (resolved_type);
8acb6b92 3542 else
80180f79 3543 v = value_from_contents (resolved_type, valaddr);
d36430db
JB
3544 if (TYPE_DATA_LOCATION (resolved_type_no_typedef) != NULL
3545 && TYPE_DATA_LOCATION_KIND (resolved_type_no_typedef) == PROP_CONST)
3546 address = TYPE_DATA_LOCATION_ADDR (resolved_type_no_typedef);
33d502b4 3547 VALUE_LVAL (v) = lval_memory;
1a088441 3548 set_value_address (v, address);
8acb6b92
TT
3549 return v;
3550}
3551
8a9b8146
TT
3552/* Create a value of type TYPE holding the contents CONTENTS.
3553 The new value is `not_lval'. */
3554
3555struct value *
3556value_from_contents (struct type *type, const gdb_byte *contents)
3557{
3558 struct value *result;
3559
3560 result = allocate_value (type);
3561 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3562 return result;
3563}
3564
3bd0f5ef
MS
3565/* Extract a value from the history file. Input will be of the form
3566 $digits or $$digits. See block comment above 'write_dollar_variable'
3567 for details. */
3568
3569struct value *
e799154c 3570value_from_history_ref (const char *h, const char **endp)
3bd0f5ef
MS
3571{
3572 int index, len;
3573
3574 if (h[0] == '$')
3575 len = 1;
3576 else
3577 return NULL;
3578
3579 if (h[1] == '$')
3580 len = 2;
3581
3582 /* Find length of numeral string. */
3583 for (; isdigit (h[len]); len++)
3584 ;
3585
3586 /* Make sure numeral string is not part of an identifier. */
3587 if (h[len] == '_' || isalpha (h[len]))
3588 return NULL;
3589
3590 /* Now collect the index value. */
3591 if (h[1] == '$')
3592 {
3593 if (len == 2)
3594 {
3595 /* For some bizarre reason, "$$" is equivalent to "$$1",
3596 rather than to "$$0" as it ought to be! */
3597 index = -1;
3598 *endp += len;
3599 }
3600 else
e799154c
TT
3601 {
3602 char *local_end;
3603
3604 index = -strtol (&h[2], &local_end, 10);
3605 *endp = local_end;
3606 }
3bd0f5ef
MS
3607 }
3608 else
3609 {
3610 if (len == 1)
3611 {
3612 /* "$" is equivalent to "$0". */
3613 index = 0;
3614 *endp += len;
3615 }
3616 else
e799154c
TT
3617 {
3618 char *local_end;
3619
3620 index = strtol (&h[1], &local_end, 10);
3621 *endp = local_end;
3622 }
3bd0f5ef
MS
3623 }
3624
3625 return access_value_history (index);
3626}
3627
3fff9862
YQ
3628/* Get the component value (offset by OFFSET bytes) of a struct or
3629 union WHOLE. Component's type is TYPE. */
3630
3631struct value *
3632value_from_component (struct value *whole, struct type *type, LONGEST offset)
3633{
3634 struct value *v;
3635
3636 if (VALUE_LVAL (whole) == lval_memory && value_lazy (whole))
3637 v = allocate_value_lazy (type);
3638 else
3639 {
3640 v = allocate_value (type);
3641 value_contents_copy (v, value_embedded_offset (v),
3642 whole, value_embedded_offset (whole) + offset,
3643 type_length_units (type));
3644 }
3645 v->offset = value_offset (whole) + offset + value_embedded_offset (whole);
3646 set_value_component_location (v, whole);
3fff9862
YQ
3647
3648 return v;
3649}
3650
a471c594
JK
3651struct value *
3652coerce_ref_if_computed (const struct value *arg)
3653{
3654 const struct lval_funcs *funcs;
3655
aa006118 3656 if (!TYPE_IS_REFERENCE (check_typedef (value_type (arg))))
a471c594
JK
3657 return NULL;
3658
3659 if (value_lval_const (arg) != lval_computed)
3660 return NULL;
3661
3662 funcs = value_computed_funcs (arg);
3663 if (funcs->coerce_ref == NULL)
3664 return NULL;
3665
3666 return funcs->coerce_ref (arg);
3667}
3668
dfcee124
AG
3669/* Look at value.h for description. */
3670
3671struct value *
3672readjust_indirect_value_type (struct value *value, struct type *enc_type,
4bf7b526
MG
3673 const struct type *original_type,
3674 const struct value *original_value)
dfcee124
AG
3675{
3676 /* Re-adjust type. */
3677 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
3678
3679 /* Add embedding info. */
3680 set_value_enclosing_type (value, enc_type);
3681 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3682
3683 /* We may be pointing to an object of some derived type. */
3684 return value_full_object (value, NULL, 0, 0, 0);
3685}
3686
994b9211
AC
3687struct value *
3688coerce_ref (struct value *arg)
3689{
df407dfe 3690 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
a471c594 3691 struct value *retval;
dfcee124 3692 struct type *enc_type;
a109c7c1 3693
a471c594
JK
3694 retval = coerce_ref_if_computed (arg);
3695 if (retval)
3696 return retval;
3697
aa006118 3698 if (!TYPE_IS_REFERENCE (value_type_arg_tmp))
a471c594
JK
3699 return arg;
3700
dfcee124
AG
3701 enc_type = check_typedef (value_enclosing_type (arg));
3702 enc_type = TYPE_TARGET_TYPE (enc_type);
3703
3704 retval = value_at_lazy (enc_type,
3705 unpack_pointer (value_type (arg),
3706 value_contents (arg)));
9f1f738a 3707 enc_type = value_type (retval);
dfcee124
AG
3708 return readjust_indirect_value_type (retval, enc_type,
3709 value_type_arg_tmp, arg);
994b9211
AC
3710}
3711
3712struct value *
3713coerce_array (struct value *arg)
3714{
f3134b88
TT
3715 struct type *type;
3716
994b9211 3717 arg = coerce_ref (arg);
f3134b88
TT
3718 type = check_typedef (value_type (arg));
3719
3720 switch (TYPE_CODE (type))
3721 {
3722 case TYPE_CODE_ARRAY:
7346b668 3723 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
f3134b88
TT
3724 arg = value_coerce_array (arg);
3725 break;
3726 case TYPE_CODE_FUNC:
3727 arg = value_coerce_function (arg);
3728 break;
3729 }
994b9211
AC
3730 return arg;
3731}
c906108c 3732\f
c906108c 3733
bbfdfe1c
DM
3734/* Return the return value convention that will be used for the
3735 specified type. */
3736
3737enum return_value_convention
3738struct_return_convention (struct gdbarch *gdbarch,
3739 struct value *function, struct type *value_type)
3740{
3741 enum type_code code = TYPE_CODE (value_type);
3742
3743 if (code == TYPE_CODE_ERROR)
3744 error (_("Function return type unknown."));
3745
3746 /* Probe the architecture for the return-value convention. */
3747 return gdbarch_return_value (gdbarch, function, value_type,
3748 NULL, NULL, NULL);
3749}
3750
48436ce6
AC
3751/* Return true if the function returning the specified type is using
3752 the convention of returning structures in memory (passing in the
82585c72 3753 address as a hidden first parameter). */
c906108c
SS
3754
3755int
d80b854b 3756using_struct_return (struct gdbarch *gdbarch,
6a3a010b 3757 struct value *function, struct type *value_type)
c906108c 3758{
bbfdfe1c 3759 if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
667e784f 3760 /* A void return value is never in memory. See also corresponding
44e5158b 3761 code in "print_return_value". */
667e784f
AC
3762 return 0;
3763
bbfdfe1c 3764 return (struct_return_convention (gdbarch, function, value_type)
31db7b6c 3765 != RETURN_VALUE_REGISTER_CONVENTION);
c906108c
SS
3766}
3767
42be36b3
CT
3768/* Set the initialized field in a value struct. */
3769
3770void
3771set_value_initialized (struct value *val, int status)
3772{
3773 val->initialized = status;
3774}
3775
3776/* Return the initialized field in a value struct. */
3777
3778int
4bf7b526 3779value_initialized (const struct value *val)
42be36b3
CT
3780{
3781 return val->initialized;
3782}
3783
a844296a
SM
3784/* Load the actual content of a lazy value. Fetch the data from the
3785 user's process and clear the lazy flag to indicate that the data in
3786 the buffer is valid.
a58e2656
AB
3787
3788 If the value is zero-length, we avoid calling read_memory, which
3789 would abort. We mark the value as fetched anyway -- all 0 bytes of
a844296a 3790 it. */
a58e2656 3791
a844296a 3792void
a58e2656
AB
3793value_fetch_lazy (struct value *val)
3794{
3795 gdb_assert (value_lazy (val));
3796 allocate_value_contents (val);
9a0dc9e3
PA
3797 /* A value is either lazy, or fully fetched. The
3798 availability/validity is only established as we try to fetch a
3799 value. */
3800 gdb_assert (VEC_empty (range_s, val->optimized_out));
3801 gdb_assert (VEC_empty (range_s, val->unavailable));
a58e2656
AB
3802 if (value_bitsize (val))
3803 {
3804 /* To read a lazy bitfield, read the entire enclosing value. This
3805 prevents reading the same block of (possibly volatile) memory once
3806 per bitfield. It would be even better to read only the containing
3807 word, but we have no way to record that just specific bits of a
3808 value have been fetched. */
3809 struct type *type = check_typedef (value_type (val));
a58e2656 3810 struct value *parent = value_parent (val);
a58e2656 3811
b0c54aa5
AB
3812 if (value_lazy (parent))
3813 value_fetch_lazy (parent);
3814
4875ffdb
PA
3815 unpack_value_bitfield (val,
3816 value_bitpos (val), value_bitsize (val),
3817 value_contents_for_printing (parent),
3818 value_offset (val), parent);
a58e2656
AB
3819 }
3820 else if (VALUE_LVAL (val) == lval_memory)
3821 {
3822 CORE_ADDR addr = value_address (val);
3823 struct type *type = check_typedef (value_enclosing_type (val));
3824
3825 if (TYPE_LENGTH (type))
3826 read_value_memory (val, 0, value_stack (val),
3827 addr, value_contents_all_raw (val),
3ae385af 3828 type_length_units (type));
a58e2656
AB
3829 }
3830 else if (VALUE_LVAL (val) == lval_register)
3831 {
41b56feb 3832 struct frame_info *next_frame;
a58e2656
AB
3833 int regnum;
3834 struct type *type = check_typedef (value_type (val));
3835 struct value *new_val = val, *mark = value_mark ();
3836
3837 /* Offsets are not supported here; lazy register values must
3838 refer to the entire register. */
3839 gdb_assert (value_offset (val) == 0);
3840
3841 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
3842 {
41b56feb 3843 struct frame_id next_frame_id = VALUE_NEXT_FRAME_ID (new_val);
6eeee81c 3844
41b56feb 3845 next_frame = frame_find_by_id (next_frame_id);
a58e2656
AB
3846 regnum = VALUE_REGNUM (new_val);
3847
41b56feb 3848 gdb_assert (next_frame != NULL);
a58e2656
AB
3849
3850 /* Convertible register routines are used for multi-register
3851 values and for interpretation in different types
3852 (e.g. float or int from a double register). Lazy
3853 register values should have the register's natural type,
3854 so they do not apply. */
41b56feb 3855 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (next_frame),
a58e2656
AB
3856 regnum, type));
3857
41b56feb
KB
3858 /* FRAME was obtained, above, via VALUE_NEXT_FRAME_ID.
3859 Since a "->next" operation was performed when setting
3860 this field, we do not need to perform a "next" operation
3861 again when unwinding the register. That's why
3862 frame_unwind_register_value() is called here instead of
3863 get_frame_register_value(). */
3864 new_val = frame_unwind_register_value (next_frame, regnum);
6eeee81c
TT
3865
3866 /* If we get another lazy lval_register value, it means the
41b56feb
KB
3867 register is found by reading it from NEXT_FRAME's next frame.
3868 frame_unwind_register_value should never return a value with
3869 the frame id pointing to NEXT_FRAME. If it does, it means we
6eeee81c
TT
3870 either have two consecutive frames with the same frame id
3871 in the frame chain, or some code is trying to unwind
3872 behind get_prev_frame's back (e.g., a frame unwind
3873 sniffer trying to unwind), bypassing its validations. In
3874 any case, it should always be an internal error to end up
3875 in this situation. */
3876 if (VALUE_LVAL (new_val) == lval_register
3877 && value_lazy (new_val)
41b56feb 3878 && frame_id_eq (VALUE_NEXT_FRAME_ID (new_val), next_frame_id))
6eeee81c
TT
3879 internal_error (__FILE__, __LINE__,
3880 _("infinite loop while fetching a register"));
a58e2656
AB
3881 }
3882
3883 /* If it's still lazy (for instance, a saved register on the
3884 stack), fetch it. */
3885 if (value_lazy (new_val))
3886 value_fetch_lazy (new_val);
3887
9a0dc9e3
PA
3888 /* Copy the contents and the unavailability/optimized-out
3889 meta-data from NEW_VAL to VAL. */
3890 set_value_lazy (val, 0);
3891 value_contents_copy (val, value_embedded_offset (val),
3892 new_val, value_embedded_offset (new_val),
3ae385af 3893 type_length_units (type));
a58e2656
AB
3894
3895 if (frame_debug)
3896 {
3897 struct gdbarch *gdbarch;
41b56feb
KB
3898 struct frame_info *frame;
3899 /* VALUE_FRAME_ID is used here, instead of VALUE_NEXT_FRAME_ID,
3900 so that the frame level will be shown correctly. */
a58e2656
AB
3901 frame = frame_find_by_id (VALUE_FRAME_ID (val));
3902 regnum = VALUE_REGNUM (val);
3903 gdbarch = get_frame_arch (frame);
3904
3905 fprintf_unfiltered (gdb_stdlog,
3906 "{ value_fetch_lazy "
3907 "(frame=%d,regnum=%d(%s),...) ",
3908 frame_relative_level (frame), regnum,
3909 user_reg_map_regnum_to_name (gdbarch, regnum));
3910
3911 fprintf_unfiltered (gdb_stdlog, "->");
3912 if (value_optimized_out (new_val))
f6c01fc5
AB
3913 {
3914 fprintf_unfiltered (gdb_stdlog, " ");
3915 val_print_optimized_out (new_val, gdb_stdlog);
3916 }
a58e2656
AB
3917 else
3918 {
3919 int i;
3920 const gdb_byte *buf = value_contents (new_val);
3921
3922 if (VALUE_LVAL (new_val) == lval_register)
3923 fprintf_unfiltered (gdb_stdlog, " register=%d",
3924 VALUE_REGNUM (new_val));
3925 else if (VALUE_LVAL (new_val) == lval_memory)
3926 fprintf_unfiltered (gdb_stdlog, " address=%s",
3927 paddress (gdbarch,
3928 value_address (new_val)));
3929 else
3930 fprintf_unfiltered (gdb_stdlog, " computed");
3931
3932 fprintf_unfiltered (gdb_stdlog, " bytes=");
3933 fprintf_unfiltered (gdb_stdlog, "[");
3934 for (i = 0; i < register_size (gdbarch, regnum); i++)
3935 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3936 fprintf_unfiltered (gdb_stdlog, "]");
3937 }
3938
3939 fprintf_unfiltered (gdb_stdlog, " }\n");
3940 }
3941
3942 /* Dispose of the intermediate values. This prevents
3943 watchpoints from trying to watch the saved frame pointer. */
3944 value_free_to_mark (mark);
3945 }
3946 else if (VALUE_LVAL (val) == lval_computed
3947 && value_computed_funcs (val)->read != NULL)
3948 value_computed_funcs (val)->read (val);
a58e2656
AB
3949 else
3950 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
3951
3952 set_value_lazy (val, 0);
a58e2656
AB
3953}
3954
a280dbd1
SDJ
3955/* Implementation of the convenience function $_isvoid. */
3956
3957static struct value *
3958isvoid_internal_fn (struct gdbarch *gdbarch,
3959 const struct language_defn *language,
3960 void *cookie, int argc, struct value **argv)
3961{
3962 int ret;
3963
3964 if (argc != 1)
6bc305f5 3965 error (_("You must provide one argument for $_isvoid."));
a280dbd1
SDJ
3966
3967 ret = TYPE_CODE (value_type (argv[0])) == TYPE_CODE_VOID;
3968
3969 return value_from_longest (builtin_type (gdbarch)->builtin_int, ret);
3970}
3971
c906108c 3972void
fba45db2 3973_initialize_values (void)
c906108c 3974{
1a966eab 3975 add_cmd ("convenience", no_class, show_convenience, _("\
f47f77df
DE
3976Debugger convenience (\"$foo\") variables and functions.\n\
3977Convenience variables are created when you assign them values;\n\
3978thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
1a966eab 3979\n\
c906108c
SS
3980A few convenience variables are given values automatically:\n\
3981\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
f47f77df
DE
3982\"$__\" holds the contents of the last address examined with \"x\"."
3983#ifdef HAVE_PYTHON
3984"\n\n\
3985Convenience functions are defined via the Python API."
3986#endif
3987 ), &showlist);
7e20dfcd 3988 add_alias_cmd ("conv", "convenience", no_class, 1, &showlist);
c906108c 3989
db5f229b 3990 add_cmd ("values", no_set_class, show_values, _("\
3e43a32a 3991Elements of value history around item number IDX (or last ten)."),
c906108c 3992 &showlist);
53e5f3cf
AS
3993
3994 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
3995Initialize a convenience variable if necessary.\n\
3996init-if-undefined VARIABLE = EXPRESSION\n\
3997Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
3998exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
3999VARIABLE is already initialized."));
bc3b79fd
TJB
4000
4001 add_prefix_cmd ("function", no_class, function_command, _("\
4002Placeholder command for showing help on convenience functions."),
4003 &functionlist, "function ", 0, &cmdlist);
a280dbd1
SDJ
4004
4005 add_internal_function ("_isvoid", _("\
4006Check whether an expression is void.\n\
4007Usage: $_isvoid (expression)\n\
4008Return 1 if the expression is void, zero otherwise."),
4009 isvoid_internal_fn, NULL);
5fdf6324
AB
4010
4011 add_setshow_zuinteger_unlimited_cmd ("max-value-size",
4012 class_support, &max_value_size, _("\
4013Set maximum sized value gdb will load from the inferior."), _("\
4014Show maximum sized value gdb will load from the inferior."), _("\
4015Use this to control the maximum size, in bytes, of a value that gdb\n\
4016will load from the inferior. Setting this value to 'unlimited'\n\
4017disables checking.\n\
4018Setting this does not invalidate already allocated values, it only\n\
4019prevents future values, larger than this size, from being allocated."),
4020 set_max_value_size,
4021 show_max_value_size,
4022 &setlist, &showlist);
c906108c 4023}