]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/value.c
gdb
[thirdparty/binutils-gdb.git] / gdb / value.c
CommitLineData
c906108c 1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
1bac305b 2
6aba47ca 3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
0fb0cc75 4 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
4c38e0a4 5 2009, 2010 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
e17c207e 23#include "arch-utils.h"
c906108c
SS
24#include "gdb_string.h"
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "value.h"
28#include "gdbcore.h"
c906108c
SS
29#include "command.h"
30#include "gdbcmd.h"
31#include "target.h"
32#include "language.h"
c906108c 33#include "demangle.h"
d16aafd8 34#include "doublest.h"
5ae326fa 35#include "gdb_assert.h"
36160dc4 36#include "regcache.h"
fe898f56 37#include "block.h"
27bc4d80 38#include "dfp.h"
bccdca4a 39#include "objfiles.h"
79a45b7d 40#include "valprint.h"
bc3b79fd 41#include "cli/cli-decode.h"
c906108c 42
a08702d6
TJB
43#include "python/python.h"
44
c906108c
SS
45/* Prototypes for exported functions. */
46
a14ed312 47void _initialize_values (void);
c906108c 48
bc3b79fd
TJB
49/* Definition of a user function. */
50struct internal_function
51{
52 /* The name of the function. It is a bit odd to have this in the
53 function itself -- the user might use a differently-named
54 convenience variable to hold the function. */
55 char *name;
56
57 /* The handler. */
58 internal_function_fn handler;
59
60 /* User data for the handler. */
61 void *cookie;
62};
63
64static struct cmd_list_element *functionlist;
65
91294c83
AC
66struct value
67{
68 /* Type of value; either not an lval, or one of the various
69 different possible kinds of lval. */
70 enum lval_type lval;
71
72 /* Is it modifiable? Only relevant if lval != not_lval. */
73 int modifiable;
74
75 /* Location of value (if lval). */
76 union
77 {
78 /* If lval == lval_memory, this is the address in the inferior.
79 If lval == lval_register, this is the byte offset into the
80 registers structure. */
81 CORE_ADDR address;
82
83 /* Pointer to internal variable. */
84 struct internalvar *internalvar;
5f5233d4
PA
85
86 /* If lval == lval_computed, this is a set of function pointers
87 to use to access and describe the value, and a closure pointer
88 for them to use. */
89 struct
90 {
91 struct lval_funcs *funcs; /* Functions to call. */
92 void *closure; /* Closure for those functions to use. */
93 } computed;
91294c83
AC
94 } location;
95
96 /* Describes offset of a value within lval of a structure in bytes.
97 If lval == lval_memory, this is an offset to the address. If
98 lval == lval_register, this is a further offset from
99 location.address within the registers structure. Note also the
100 member embedded_offset below. */
101 int offset;
102
103 /* Only used for bitfields; number of bits contained in them. */
104 int bitsize;
105
106 /* Only used for bitfields; position of start of field. For
32c9a795
MD
107 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
108 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
91294c83
AC
109 int bitpos;
110
4ea48cc1
DJ
111 /* Only used for bitfields; the containing value. This allows a
112 single read from the target when displaying multiple
113 bitfields. */
114 struct value *parent;
115
91294c83
AC
116 /* Frame register value is relative to. This will be described in
117 the lval enum above as "lval_register". */
118 struct frame_id frame_id;
119
120 /* Type of the value. */
121 struct type *type;
122
123 /* If a value represents a C++ object, then the `type' field gives
124 the object's compile-time type. If the object actually belongs
125 to some class derived from `type', perhaps with other base
126 classes and additional members, then `type' is just a subobject
127 of the real thing, and the full object is probably larger than
128 `type' would suggest.
129
130 If `type' is a dynamic class (i.e. one with a vtable), then GDB
131 can actually determine the object's run-time type by looking at
132 the run-time type information in the vtable. When this
133 information is available, we may elect to read in the entire
134 object, for several reasons:
135
136 - When printing the value, the user would probably rather see the
137 full object, not just the limited portion apparent from the
138 compile-time type.
139
140 - If `type' has virtual base classes, then even printing `type'
141 alone may require reaching outside the `type' portion of the
142 object to wherever the virtual base class has been stored.
143
144 When we store the entire object, `enclosing_type' is the run-time
145 type -- the complete object -- and `embedded_offset' is the
146 offset of `type' within that larger type, in bytes. The
147 value_contents() macro takes `embedded_offset' into account, so
148 most GDB code continues to see the `type' portion of the value,
149 just as the inferior would.
150
151 If `type' is a pointer to an object, then `enclosing_type' is a
152 pointer to the object's run-time type, and `pointed_to_offset' is
153 the offset in bytes from the full object to the pointed-to object
154 -- that is, the value `embedded_offset' would have if we followed
155 the pointer and fetched the complete object. (I don't really see
156 the point. Why not just determine the run-time type when you
157 indirect, and avoid the special case? The contents don't matter
158 until you indirect anyway.)
159
160 If we're not doing anything fancy, `enclosing_type' is equal to
161 `type', and `embedded_offset' is zero, so everything works
162 normally. */
163 struct type *enclosing_type;
164 int embedded_offset;
165 int pointed_to_offset;
166
167 /* Values are stored in a chain, so that they can be deleted easily
168 over calls to the inferior. Values assigned to internal
a08702d6
TJB
169 variables, put into the value history or exposed to Python are
170 taken off this list. */
91294c83
AC
171 struct value *next;
172
173 /* Register number if the value is from a register. */
174 short regnum;
175
176 /* If zero, contents of this value are in the contents field. If
9214ee5f
DJ
177 nonzero, contents are in inferior. If the lval field is lval_memory,
178 the contents are in inferior memory at location.address plus offset.
179 The lval field may also be lval_register.
91294c83
AC
180
181 WARNING: This field is used by the code which handles watchpoints
182 (see breakpoint.c) to decide whether a particular value can be
183 watched by hardware watchpoints. If the lazy flag is set for
184 some member of a value chain, it is assumed that this member of
185 the chain doesn't need to be watched as part of watching the
186 value itself. This is how GDB avoids watching the entire struct
187 or array when the user wants to watch a single struct member or
188 array element. If you ever change the way lazy flag is set and
189 reset, be sure to consider this use as well! */
190 char lazy;
191
192 /* If nonzero, this is the value of a variable which does not
193 actually exist in the program. */
194 char optimized_out;
195
42be36b3
CT
196 /* If value is a variable, is it initialized or not. */
197 int initialized;
198
4e5d721f
DE
199 /* If value is from the stack. If this is set, read_stack will be
200 used instead of read_memory to enable extra caching. */
201 int stack;
202
3e3d7139
JG
203 /* Actual contents of the value. Target byte-order. NULL or not
204 valid if lazy is nonzero. */
205 gdb_byte *contents;
828d3400
DJ
206
207 /* The number of references to this value. When a value is created,
208 the value chain holds a reference, so REFERENCE_COUNT is 1. If
209 release_value is called, this value is removed from the chain but
210 the caller of release_value now has a reference to this value.
211 The caller must arrange for a call to value_free later. */
212 int reference_count;
91294c83
AC
213};
214
c906108c
SS
215/* Prototypes for local functions. */
216
a14ed312 217static void show_values (char *, int);
c906108c 218
a14ed312 219static void show_convenience (char *, int);
c906108c 220
c906108c
SS
221
222/* The value-history records all the values printed
223 by print commands during this session. Each chunk
224 records 60 consecutive values. The first chunk on
225 the chain records the most recent values.
226 The total number of values is in value_history_count. */
227
228#define VALUE_HISTORY_CHUNK 60
229
230struct value_history_chunk
c5aa993b
JM
231 {
232 struct value_history_chunk *next;
f23631e4 233 struct value *values[VALUE_HISTORY_CHUNK];
c5aa993b 234 };
c906108c
SS
235
236/* Chain of chunks now in use. */
237
238static struct value_history_chunk *value_history_chain;
239
240static int value_history_count; /* Abs number of last entry stored */
bc3b79fd 241
c906108c
SS
242\f
243/* List of all value objects currently allocated
244 (except for those released by calls to release_value)
245 This is so they can be freed after each command. */
246
f23631e4 247static struct value *all_values;
c906108c 248
3e3d7139
JG
249/* Allocate a lazy value for type TYPE. Its actual content is
250 "lazily" allocated too: the content field of the return value is
251 NULL; it will be allocated when it is fetched from the target. */
c906108c 252
f23631e4 253struct value *
3e3d7139 254allocate_value_lazy (struct type *type)
c906108c 255{
f23631e4 256 struct value *val;
c54eabfa
JK
257
258 /* Call check_typedef on our type to make sure that, if TYPE
259 is a TYPE_CODE_TYPEDEF, its length is set to the length
260 of the target type instead of zero. However, we do not
261 replace the typedef type by the target type, because we want
262 to keep the typedef in order to be able to set the VAL's type
263 description correctly. */
264 check_typedef (type);
c906108c 265
3e3d7139
JG
266 val = (struct value *) xzalloc (sizeof (struct value));
267 val->contents = NULL;
df407dfe 268 val->next = all_values;
c906108c 269 all_values = val;
df407dfe 270 val->type = type;
4754a64e 271 val->enclosing_type = type;
c906108c 272 VALUE_LVAL (val) = not_lval;
42ae5230 273 val->location.address = 0;
1df6926e 274 VALUE_FRAME_ID (val) = null_frame_id;
df407dfe
AC
275 val->offset = 0;
276 val->bitpos = 0;
277 val->bitsize = 0;
9ee8fc9d 278 VALUE_REGNUM (val) = -1;
3e3d7139 279 val->lazy = 1;
feb13ab0 280 val->optimized_out = 0;
13c3b5f5 281 val->embedded_offset = 0;
b44d461b 282 val->pointed_to_offset = 0;
c906108c 283 val->modifiable = 1;
42be36b3 284 val->initialized = 1; /* Default to initialized. */
828d3400
DJ
285
286 /* Values start out on the all_values chain. */
287 val->reference_count = 1;
288
c906108c
SS
289 return val;
290}
291
3e3d7139
JG
292/* Allocate the contents of VAL if it has not been allocated yet. */
293
294void
295allocate_value_contents (struct value *val)
296{
297 if (!val->contents)
298 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
299}
300
301/* Allocate a value and its contents for type TYPE. */
302
303struct value *
304allocate_value (struct type *type)
305{
306 struct value *val = allocate_value_lazy (type);
a109c7c1 307
3e3d7139
JG
308 allocate_value_contents (val);
309 val->lazy = 0;
310 return val;
311}
312
c906108c 313/* Allocate a value that has the correct length
938f5214 314 for COUNT repetitions of type TYPE. */
c906108c 315
f23631e4 316struct value *
fba45db2 317allocate_repeat_value (struct type *type, int count)
c906108c 318{
c5aa993b 319 int low_bound = current_language->string_lower_bound; /* ??? */
c906108c
SS
320 /* FIXME-type-allocation: need a way to free this type when we are
321 done with it. */
e3506a9f
UW
322 struct type *array_type
323 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
a109c7c1 324
e3506a9f 325 return allocate_value (array_type);
c906108c
SS
326}
327
5f5233d4
PA
328struct value *
329allocate_computed_value (struct type *type,
330 struct lval_funcs *funcs,
331 void *closure)
332{
333 struct value *v = allocate_value (type);
a109c7c1 334
5f5233d4
PA
335 VALUE_LVAL (v) = lval_computed;
336 v->location.computed.funcs = funcs;
337 v->location.computed.closure = closure;
338 set_value_lazy (v, 1);
339
340 return v;
341}
342
df407dfe
AC
343/* Accessor methods. */
344
17cf0ecd
AC
345struct value *
346value_next (struct value *value)
347{
348 return value->next;
349}
350
df407dfe 351struct type *
0e03807e 352value_type (const struct value *value)
df407dfe
AC
353{
354 return value->type;
355}
04624583
AC
356void
357deprecated_set_value_type (struct value *value, struct type *type)
358{
359 value->type = type;
360}
df407dfe
AC
361
362int
0e03807e 363value_offset (const struct value *value)
df407dfe
AC
364{
365 return value->offset;
366}
f5cf64a7
AC
367void
368set_value_offset (struct value *value, int offset)
369{
370 value->offset = offset;
371}
df407dfe
AC
372
373int
0e03807e 374value_bitpos (const struct value *value)
df407dfe
AC
375{
376 return value->bitpos;
377}
9bbda503
AC
378void
379set_value_bitpos (struct value *value, int bit)
380{
381 value->bitpos = bit;
382}
df407dfe
AC
383
384int
0e03807e 385value_bitsize (const struct value *value)
df407dfe
AC
386{
387 return value->bitsize;
388}
9bbda503
AC
389void
390set_value_bitsize (struct value *value, int bit)
391{
392 value->bitsize = bit;
393}
df407dfe 394
4ea48cc1
DJ
395struct value *
396value_parent (struct value *value)
397{
398 return value->parent;
399}
400
fc1a4b47 401gdb_byte *
990a07ab
AC
402value_contents_raw (struct value *value)
403{
3e3d7139
JG
404 allocate_value_contents (value);
405 return value->contents + value->embedded_offset;
990a07ab
AC
406}
407
fc1a4b47 408gdb_byte *
990a07ab
AC
409value_contents_all_raw (struct value *value)
410{
3e3d7139
JG
411 allocate_value_contents (value);
412 return value->contents;
990a07ab
AC
413}
414
4754a64e
AC
415struct type *
416value_enclosing_type (struct value *value)
417{
418 return value->enclosing_type;
419}
420
0e03807e
TT
421static void
422require_not_optimized_out (struct value *value)
423{
424 if (value->optimized_out)
425 error (_("value has been optimized out"));
426}
427
fc1a4b47 428const gdb_byte *
0e03807e 429value_contents_for_printing (struct value *value)
46615f07
AC
430{
431 if (value->lazy)
432 value_fetch_lazy (value);
3e3d7139 433 return value->contents;
46615f07
AC
434}
435
0e03807e
TT
436const gdb_byte *
437value_contents_all (struct value *value)
438{
439 const gdb_byte *result = value_contents_for_printing (value);
440 require_not_optimized_out (value);
441 return result;
442}
443
d69fe07e
AC
444int
445value_lazy (struct value *value)
446{
447 return value->lazy;
448}
449
dfa52d88
AC
450void
451set_value_lazy (struct value *value, int val)
452{
453 value->lazy = val;
454}
455
4e5d721f
DE
456int
457value_stack (struct value *value)
458{
459 return value->stack;
460}
461
462void
463set_value_stack (struct value *value, int val)
464{
465 value->stack = val;
466}
467
fc1a4b47 468const gdb_byte *
0fd88904
AC
469value_contents (struct value *value)
470{
0e03807e
TT
471 const gdb_byte *result = value_contents_writeable (value);
472 require_not_optimized_out (value);
473 return result;
0fd88904
AC
474}
475
fc1a4b47 476gdb_byte *
0fd88904
AC
477value_contents_writeable (struct value *value)
478{
479 if (value->lazy)
480 value_fetch_lazy (value);
fc0c53a0 481 return value_contents_raw (value);
0fd88904
AC
482}
483
a6c442d8
MK
484/* Return non-zero if VAL1 and VAL2 have the same contents. Note that
485 this function is different from value_equal; in C the operator ==
486 can return 0 even if the two values being compared are equal. */
487
488int
489value_contents_equal (struct value *val1, struct value *val2)
490{
491 struct type *type1;
492 struct type *type2;
493 int len;
494
495 type1 = check_typedef (value_type (val1));
496 type2 = check_typedef (value_type (val2));
497 len = TYPE_LENGTH (type1);
498 if (len != TYPE_LENGTH (type2))
499 return 0;
500
501 return (memcmp (value_contents (val1), value_contents (val2), len) == 0);
502}
503
feb13ab0
AC
504int
505value_optimized_out (struct value *value)
506{
507 return value->optimized_out;
508}
509
510void
511set_value_optimized_out (struct value *value, int val)
512{
513 value->optimized_out = val;
514}
13c3b5f5 515
0e03807e
TT
516int
517value_entirely_optimized_out (const struct value *value)
518{
519 if (!value->optimized_out)
520 return 0;
521 if (value->lval != lval_computed
522 || !value->location.computed.funcs->check_validity)
523 return 1;
b65c7efe 524 return !value->location.computed.funcs->check_any_valid (value);
0e03807e
TT
525}
526
527int
528value_bits_valid (const struct value *value, int offset, int length)
529{
530 if (value == NULL || !value->optimized_out)
531 return 1;
532 if (value->lval != lval_computed
533 || !value->location.computed.funcs->check_validity)
534 return 0;
535 return value->location.computed.funcs->check_validity (value, offset,
536 length);
537}
538
13c3b5f5
AC
539int
540value_embedded_offset (struct value *value)
541{
542 return value->embedded_offset;
543}
544
545void
546set_value_embedded_offset (struct value *value, int val)
547{
548 value->embedded_offset = val;
549}
b44d461b
AC
550
551int
552value_pointed_to_offset (struct value *value)
553{
554 return value->pointed_to_offset;
555}
556
557void
558set_value_pointed_to_offset (struct value *value, int val)
559{
560 value->pointed_to_offset = val;
561}
13bb5560 562
5f5233d4
PA
563struct lval_funcs *
564value_computed_funcs (struct value *v)
565{
566 gdb_assert (VALUE_LVAL (v) == lval_computed);
567
568 return v->location.computed.funcs;
569}
570
571void *
0e03807e 572value_computed_closure (const struct value *v)
5f5233d4 573{
0e03807e 574 gdb_assert (v->lval == lval_computed);
5f5233d4
PA
575
576 return v->location.computed.closure;
577}
578
13bb5560
AC
579enum lval_type *
580deprecated_value_lval_hack (struct value *value)
581{
582 return &value->lval;
583}
584
42ae5230
TT
585CORE_ADDR
586value_address (struct value *value)
587{
588 if (value->lval == lval_internalvar
589 || value->lval == lval_internalvar_component)
590 return 0;
591 return value->location.address + value->offset;
592}
593
594CORE_ADDR
595value_raw_address (struct value *value)
596{
597 if (value->lval == lval_internalvar
598 || value->lval == lval_internalvar_component)
599 return 0;
600 return value->location.address;
601}
602
603void
604set_value_address (struct value *value, CORE_ADDR addr)
13bb5560 605{
42ae5230
TT
606 gdb_assert (value->lval != lval_internalvar
607 && value->lval != lval_internalvar_component);
608 value->location.address = addr;
13bb5560
AC
609}
610
611struct internalvar **
612deprecated_value_internalvar_hack (struct value *value)
613{
614 return &value->location.internalvar;
615}
616
617struct frame_id *
618deprecated_value_frame_id_hack (struct value *value)
619{
620 return &value->frame_id;
621}
622
623short *
624deprecated_value_regnum_hack (struct value *value)
625{
626 return &value->regnum;
627}
88e3b34b
AC
628
629int
630deprecated_value_modifiable (struct value *value)
631{
632 return value->modifiable;
633}
634void
635deprecated_set_value_modifiable (struct value *value, int modifiable)
636{
637 value->modifiable = modifiable;
638}
990a07ab 639\f
c906108c
SS
640/* Return a mark in the value chain. All values allocated after the
641 mark is obtained (except for those released) are subject to being freed
642 if a subsequent value_free_to_mark is passed the mark. */
f23631e4 643struct value *
fba45db2 644value_mark (void)
c906108c
SS
645{
646 return all_values;
647}
648
828d3400
DJ
649/* Take a reference to VAL. VAL will not be deallocated until all
650 references are released. */
651
652void
653value_incref (struct value *val)
654{
655 val->reference_count++;
656}
657
658/* Release a reference to VAL, which was acquired with value_incref.
659 This function is also called to deallocate values from the value
660 chain. */
661
3e3d7139
JG
662void
663value_free (struct value *val)
664{
665 if (val)
5f5233d4 666 {
828d3400
DJ
667 gdb_assert (val->reference_count > 0);
668 val->reference_count--;
669 if (val->reference_count > 0)
670 return;
671
4ea48cc1
DJ
672 /* If there's an associated parent value, drop our reference to
673 it. */
674 if (val->parent != NULL)
675 value_free (val->parent);
676
5f5233d4
PA
677 if (VALUE_LVAL (val) == lval_computed)
678 {
679 struct lval_funcs *funcs = val->location.computed.funcs;
680
681 if (funcs->free_closure)
682 funcs->free_closure (val);
683 }
684
685 xfree (val->contents);
686 }
3e3d7139
JG
687 xfree (val);
688}
689
c906108c
SS
690/* Free all values allocated since MARK was obtained by value_mark
691 (except for those released). */
692void
f23631e4 693value_free_to_mark (struct value *mark)
c906108c 694{
f23631e4
AC
695 struct value *val;
696 struct value *next;
c906108c
SS
697
698 for (val = all_values; val && val != mark; val = next)
699 {
df407dfe 700 next = val->next;
c906108c
SS
701 value_free (val);
702 }
703 all_values = val;
704}
705
706/* Free all the values that have been allocated (except for those released).
725e88af
DE
707 Call after each command, successful or not.
708 In practice this is called before each command, which is sufficient. */
c906108c
SS
709
710void
fba45db2 711free_all_values (void)
c906108c 712{
f23631e4
AC
713 struct value *val;
714 struct value *next;
c906108c
SS
715
716 for (val = all_values; val; val = next)
717 {
df407dfe 718 next = val->next;
c906108c
SS
719 value_free (val);
720 }
721
722 all_values = 0;
723}
724
0cf6dd15
TJB
725/* Frees all the elements in a chain of values. */
726
727void
728free_value_chain (struct value *v)
729{
730 struct value *next;
731
732 for (; v; v = next)
733 {
734 next = value_next (v);
735 value_free (v);
736 }
737}
738
c906108c
SS
739/* Remove VAL from the chain all_values
740 so it will not be freed automatically. */
741
742void
f23631e4 743release_value (struct value *val)
c906108c 744{
f23631e4 745 struct value *v;
c906108c
SS
746
747 if (all_values == val)
748 {
749 all_values = val->next;
06a64a0b 750 val->next = NULL;
c906108c
SS
751 return;
752 }
753
754 for (v = all_values; v; v = v->next)
755 {
756 if (v->next == val)
757 {
758 v->next = val->next;
06a64a0b 759 val->next = NULL;
c906108c
SS
760 break;
761 }
762 }
763}
764
765/* Release all values up to mark */
f23631e4
AC
766struct value *
767value_release_to_mark (struct value *mark)
c906108c 768{
f23631e4
AC
769 struct value *val;
770 struct value *next;
c906108c 771
df407dfe
AC
772 for (val = next = all_values; next; next = next->next)
773 if (next->next == mark)
c906108c 774 {
df407dfe
AC
775 all_values = next->next;
776 next->next = NULL;
c906108c
SS
777 return val;
778 }
779 all_values = 0;
780 return val;
781}
782
783/* Return a copy of the value ARG.
784 It contains the same contents, for same memory address,
785 but it's a different block of storage. */
786
f23631e4
AC
787struct value *
788value_copy (struct value *arg)
c906108c 789{
4754a64e 790 struct type *encl_type = value_enclosing_type (arg);
3e3d7139
JG
791 struct value *val;
792
793 if (value_lazy (arg))
794 val = allocate_value_lazy (encl_type);
795 else
796 val = allocate_value (encl_type);
df407dfe 797 val->type = arg->type;
c906108c 798 VALUE_LVAL (val) = VALUE_LVAL (arg);
6f7c8fc2 799 val->location = arg->location;
df407dfe
AC
800 val->offset = arg->offset;
801 val->bitpos = arg->bitpos;
802 val->bitsize = arg->bitsize;
1df6926e 803 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
9ee8fc9d 804 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
d69fe07e 805 val->lazy = arg->lazy;
feb13ab0 806 val->optimized_out = arg->optimized_out;
13c3b5f5 807 val->embedded_offset = value_embedded_offset (arg);
b44d461b 808 val->pointed_to_offset = arg->pointed_to_offset;
c906108c 809 val->modifiable = arg->modifiable;
d69fe07e 810 if (!value_lazy (val))
c906108c 811 {
990a07ab 812 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
4754a64e 813 TYPE_LENGTH (value_enclosing_type (arg)));
c906108c
SS
814
815 }
4ea48cc1
DJ
816 val->parent = arg->parent;
817 if (val->parent)
818 value_incref (val->parent);
5f5233d4
PA
819 if (VALUE_LVAL (val) == lval_computed)
820 {
821 struct lval_funcs *funcs = val->location.computed.funcs;
822
823 if (funcs->copy_closure)
824 val->location.computed.closure = funcs->copy_closure (val);
825 }
c906108c
SS
826 return val;
827}
74bcbdf3
PA
828
829void
0e03807e
TT
830set_value_component_location (struct value *component,
831 const struct value *whole)
74bcbdf3 832{
0e03807e 833 if (whole->lval == lval_internalvar)
74bcbdf3
PA
834 VALUE_LVAL (component) = lval_internalvar_component;
835 else
0e03807e 836 VALUE_LVAL (component) = whole->lval;
5f5233d4 837
74bcbdf3 838 component->location = whole->location;
0e03807e 839 if (whole->lval == lval_computed)
5f5233d4
PA
840 {
841 struct lval_funcs *funcs = whole->location.computed.funcs;
842
843 if (funcs->copy_closure)
844 component->location.computed.closure = funcs->copy_closure (whole);
845 }
74bcbdf3
PA
846}
847
c906108c
SS
848\f
849/* Access to the value history. */
850
851/* Record a new value in the value history.
852 Returns the absolute history index of the entry.
853 Result of -1 indicates the value was not saved; otherwise it is the
854 value history index of this new item. */
855
856int
f23631e4 857record_latest_value (struct value *val)
c906108c
SS
858{
859 int i;
860
861 /* We don't want this value to have anything to do with the inferior anymore.
862 In particular, "set $1 = 50" should not affect the variable from which
863 the value was taken, and fast watchpoints should be able to assume that
864 a value on the value history never changes. */
d69fe07e 865 if (value_lazy (val))
c906108c
SS
866 value_fetch_lazy (val);
867 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
868 from. This is a bit dubious, because then *&$1 does not just return $1
869 but the current contents of that location. c'est la vie... */
870 val->modifiable = 0;
871 release_value (val);
872
873 /* Here we treat value_history_count as origin-zero
874 and applying to the value being stored now. */
875
876 i = value_history_count % VALUE_HISTORY_CHUNK;
877 if (i == 0)
878 {
f23631e4 879 struct value_history_chunk *new
a109c7c1
MS
880 = (struct value_history_chunk *)
881
c5aa993b 882 xmalloc (sizeof (struct value_history_chunk));
c906108c
SS
883 memset (new->values, 0, sizeof new->values);
884 new->next = value_history_chain;
885 value_history_chain = new;
886 }
887
888 value_history_chain->values[i] = val;
889
890 /* Now we regard value_history_count as origin-one
891 and applying to the value just stored. */
892
893 return ++value_history_count;
894}
895
896/* Return a copy of the value in the history with sequence number NUM. */
897
f23631e4 898struct value *
fba45db2 899access_value_history (int num)
c906108c 900{
f23631e4 901 struct value_history_chunk *chunk;
52f0bd74
AC
902 int i;
903 int absnum = num;
c906108c
SS
904
905 if (absnum <= 0)
906 absnum += value_history_count;
907
908 if (absnum <= 0)
909 {
910 if (num == 0)
8a3fe4f8 911 error (_("The history is empty."));
c906108c 912 else if (num == 1)
8a3fe4f8 913 error (_("There is only one value in the history."));
c906108c 914 else
8a3fe4f8 915 error (_("History does not go back to $$%d."), -num);
c906108c
SS
916 }
917 if (absnum > value_history_count)
8a3fe4f8 918 error (_("History has not yet reached $%d."), absnum);
c906108c
SS
919
920 absnum--;
921
922 /* Now absnum is always absolute and origin zero. */
923
924 chunk = value_history_chain;
925 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
926 i > 0; i--)
927 chunk = chunk->next;
928
929 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
930}
931
c906108c 932static void
fba45db2 933show_values (char *num_exp, int from_tty)
c906108c 934{
52f0bd74 935 int i;
f23631e4 936 struct value *val;
c906108c
SS
937 static int num = 1;
938
939 if (num_exp)
940 {
f132ba9d
TJB
941 /* "show values +" should print from the stored position.
942 "show values <exp>" should print around value number <exp>. */
c906108c 943 if (num_exp[0] != '+' || num_exp[1] != '\0')
bb518678 944 num = parse_and_eval_long (num_exp) - 5;
c906108c
SS
945 }
946 else
947 {
f132ba9d 948 /* "show values" means print the last 10 values. */
c906108c
SS
949 num = value_history_count - 9;
950 }
951
952 if (num <= 0)
953 num = 1;
954
955 for (i = num; i < num + 10 && i <= value_history_count; i++)
956 {
79a45b7d 957 struct value_print_options opts;
a109c7c1 958
c906108c 959 val = access_value_history (i);
a3f17187 960 printf_filtered (("$%d = "), i);
79a45b7d
TT
961 get_user_print_options (&opts);
962 value_print (val, gdb_stdout, &opts);
a3f17187 963 printf_filtered (("\n"));
c906108c
SS
964 }
965
f132ba9d 966 /* The next "show values +" should start after what we just printed. */
c906108c
SS
967 num += 10;
968
969 /* Hitting just return after this command should do the same thing as
f132ba9d
TJB
970 "show values +". If num_exp is null, this is unnecessary, since
971 "show values +" is not useful after "show values". */
c906108c
SS
972 if (from_tty && num_exp)
973 {
974 num_exp[0] = '+';
975 num_exp[1] = '\0';
976 }
977}
978\f
979/* Internal variables. These are variables within the debugger
980 that hold values assigned by debugger commands.
981 The user refers to them with a '$' prefix
982 that does not appear in the variable names stored internally. */
983
4fa62494
UW
984struct internalvar
985{
986 struct internalvar *next;
987 char *name;
4fa62494 988
78267919
UW
989 /* We support various different kinds of content of an internal variable.
990 enum internalvar_kind specifies the kind, and union internalvar_data
991 provides the data associated with this particular kind. */
992
993 enum internalvar_kind
994 {
995 /* The internal variable is empty. */
996 INTERNALVAR_VOID,
997
998 /* The value of the internal variable is provided directly as
999 a GDB value object. */
1000 INTERNALVAR_VALUE,
1001
1002 /* A fresh value is computed via a call-back routine on every
1003 access to the internal variable. */
1004 INTERNALVAR_MAKE_VALUE,
4fa62494 1005
78267919
UW
1006 /* The internal variable holds a GDB internal convenience function. */
1007 INTERNALVAR_FUNCTION,
1008
cab0c772
UW
1009 /* The variable holds an integer value. */
1010 INTERNALVAR_INTEGER,
1011
1012 /* The variable holds a pointer value. */
1013 INTERNALVAR_POINTER,
78267919
UW
1014
1015 /* The variable holds a GDB-provided string. */
1016 INTERNALVAR_STRING,
1017
1018 } kind;
4fa62494 1019
4fa62494
UW
1020 union internalvar_data
1021 {
78267919
UW
1022 /* A value object used with INTERNALVAR_VALUE. */
1023 struct value *value;
1024
1025 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
1026 internalvar_make_value make_value;
1027
1028 /* The internal function used with INTERNALVAR_FUNCTION. */
1029 struct
1030 {
1031 struct internal_function *function;
1032 /* True if this is the canonical name for the function. */
1033 int canonical;
1034 } fn;
1035
cab0c772 1036 /* An integer value used with INTERNALVAR_INTEGER. */
78267919
UW
1037 struct
1038 {
1039 /* If type is non-NULL, it will be used as the type to generate
1040 a value for this internal variable. If type is NULL, a default
1041 integer type for the architecture is used. */
1042 struct type *type;
cab0c772
UW
1043 LONGEST val;
1044 } integer;
1045
1046 /* A pointer value used with INTERNALVAR_POINTER. */
1047 struct
1048 {
1049 struct type *type;
1050 CORE_ADDR val;
1051 } pointer;
78267919
UW
1052
1053 /* A string value used with INTERNALVAR_STRING. */
1054 char *string;
4fa62494
UW
1055 } u;
1056};
1057
c906108c
SS
1058static struct internalvar *internalvars;
1059
53e5f3cf
AS
1060/* If the variable does not already exist create it and give it the value given.
1061 If no value is given then the default is zero. */
1062static void
1063init_if_undefined_command (char* args, int from_tty)
1064{
1065 struct internalvar* intvar;
1066
1067 /* Parse the expression - this is taken from set_command(). */
1068 struct expression *expr = parse_expression (args);
1069 register struct cleanup *old_chain =
1070 make_cleanup (free_current_contents, &expr);
1071
1072 /* Validate the expression.
1073 Was the expression an assignment?
1074 Or even an expression at all? */
1075 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1076 error (_("Init-if-undefined requires an assignment expression."));
1077
1078 /* Extract the variable from the parsed expression.
1079 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1080 if (expr->elts[1].opcode != OP_INTERNALVAR)
1081 error (_("The first parameter to init-if-undefined should be a GDB variable."));
1082 intvar = expr->elts[2].internalvar;
1083
1084 /* Only evaluate the expression if the lvalue is void.
1085 This may still fail if the expresssion is invalid. */
78267919 1086 if (intvar->kind == INTERNALVAR_VOID)
53e5f3cf
AS
1087 evaluate_expression (expr);
1088
1089 do_cleanups (old_chain);
1090}
1091
1092
c906108c
SS
1093/* Look up an internal variable with name NAME. NAME should not
1094 normally include a dollar sign.
1095
1096 If the specified internal variable does not exist,
c4a3d09a 1097 the return value is NULL. */
c906108c
SS
1098
1099struct internalvar *
bc3b79fd 1100lookup_only_internalvar (const char *name)
c906108c 1101{
52f0bd74 1102 struct internalvar *var;
c906108c
SS
1103
1104 for (var = internalvars; var; var = var->next)
5cb316ef 1105 if (strcmp (var->name, name) == 0)
c906108c
SS
1106 return var;
1107
c4a3d09a
MF
1108 return NULL;
1109}
1110
1111
1112/* Create an internal variable with name NAME and with a void value.
1113 NAME should not normally include a dollar sign. */
1114
1115struct internalvar *
bc3b79fd 1116create_internalvar (const char *name)
c4a3d09a
MF
1117{
1118 struct internalvar *var;
a109c7c1 1119
c906108c 1120 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1754f103 1121 var->name = concat (name, (char *)NULL);
78267919 1122 var->kind = INTERNALVAR_VOID;
c906108c
SS
1123 var->next = internalvars;
1124 internalvars = var;
1125 return var;
1126}
1127
4aa995e1
PA
1128/* Create an internal variable with name NAME and register FUN as the
1129 function that value_of_internalvar uses to create a value whenever
1130 this variable is referenced. NAME should not normally include a
1131 dollar sign. */
1132
1133struct internalvar *
1134create_internalvar_type_lazy (char *name, internalvar_make_value fun)
1135{
4fa62494 1136 struct internalvar *var = create_internalvar (name);
a109c7c1 1137
78267919
UW
1138 var->kind = INTERNALVAR_MAKE_VALUE;
1139 var->u.make_value = fun;
4aa995e1
PA
1140 return var;
1141}
c4a3d09a
MF
1142
1143/* Look up an internal variable with name NAME. NAME should not
1144 normally include a dollar sign.
1145
1146 If the specified internal variable does not exist,
1147 one is created, with a void value. */
1148
1149struct internalvar *
bc3b79fd 1150lookup_internalvar (const char *name)
c4a3d09a
MF
1151{
1152 struct internalvar *var;
1153
1154 var = lookup_only_internalvar (name);
1155 if (var)
1156 return var;
1157
1158 return create_internalvar (name);
1159}
1160
78267919
UW
1161/* Return current value of internal variable VAR. For variables that
1162 are not inherently typed, use a value type appropriate for GDBARCH. */
1163
f23631e4 1164struct value *
78267919 1165value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
c906108c 1166{
f23631e4 1167 struct value *val;
c906108c 1168
78267919 1169 switch (var->kind)
5f5233d4 1170 {
78267919
UW
1171 case INTERNALVAR_VOID:
1172 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1173 break;
4fa62494 1174
78267919
UW
1175 case INTERNALVAR_FUNCTION:
1176 val = allocate_value (builtin_type (gdbarch)->internal_fn);
1177 break;
4fa62494 1178
cab0c772
UW
1179 case INTERNALVAR_INTEGER:
1180 if (!var->u.integer.type)
78267919 1181 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
cab0c772 1182 var->u.integer.val);
78267919 1183 else
cab0c772
UW
1184 val = value_from_longest (var->u.integer.type, var->u.integer.val);
1185 break;
1186
1187 case INTERNALVAR_POINTER:
1188 val = value_from_pointer (var->u.pointer.type, var->u.pointer.val);
78267919 1189 break;
4fa62494 1190
78267919
UW
1191 case INTERNALVAR_STRING:
1192 val = value_cstring (var->u.string, strlen (var->u.string),
1193 builtin_type (gdbarch)->builtin_char);
1194 break;
4fa62494 1195
78267919
UW
1196 case INTERNALVAR_VALUE:
1197 val = value_copy (var->u.value);
4aa995e1
PA
1198 if (value_lazy (val))
1199 value_fetch_lazy (val);
78267919 1200 break;
4aa995e1 1201
78267919
UW
1202 case INTERNALVAR_MAKE_VALUE:
1203 val = (*var->u.make_value) (gdbarch, var);
1204 break;
1205
1206 default:
1207 internal_error (__FILE__, __LINE__, "bad kind");
1208 }
1209
1210 /* Change the VALUE_LVAL to lval_internalvar so that future operations
1211 on this value go back to affect the original internal variable.
1212
1213 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
1214 no underlying modifyable state in the internal variable.
1215
1216 Likewise, if the variable's value is a computed lvalue, we want
1217 references to it to produce another computed lvalue, where
1218 references and assignments actually operate through the
1219 computed value's functions.
1220
1221 This means that internal variables with computed values
1222 behave a little differently from other internal variables:
1223 assignments to them don't just replace the previous value
1224 altogether. At the moment, this seems like the behavior we
1225 want. */
1226
1227 if (var->kind != INTERNALVAR_MAKE_VALUE
1228 && val->lval != lval_computed)
1229 {
1230 VALUE_LVAL (val) = lval_internalvar;
1231 VALUE_INTERNALVAR (val) = var;
5f5233d4 1232 }
d3c139e9 1233
4fa62494
UW
1234 return val;
1235}
d3c139e9 1236
4fa62494
UW
1237int
1238get_internalvar_integer (struct internalvar *var, LONGEST *result)
1239{
78267919 1240 switch (var->kind)
4fa62494 1241 {
cab0c772
UW
1242 case INTERNALVAR_INTEGER:
1243 *result = var->u.integer.val;
1244 return 1;
d3c139e9 1245
4fa62494
UW
1246 default:
1247 return 0;
1248 }
1249}
d3c139e9 1250
4fa62494
UW
1251static int
1252get_internalvar_function (struct internalvar *var,
1253 struct internal_function **result)
1254{
78267919 1255 switch (var->kind)
d3c139e9 1256 {
78267919
UW
1257 case INTERNALVAR_FUNCTION:
1258 *result = var->u.fn.function;
4fa62494 1259 return 1;
d3c139e9 1260
4fa62494
UW
1261 default:
1262 return 0;
1263 }
c906108c
SS
1264}
1265
1266void
fba45db2 1267set_internalvar_component (struct internalvar *var, int offset, int bitpos,
f23631e4 1268 int bitsize, struct value *newval)
c906108c 1269{
4fa62494 1270 gdb_byte *addr;
c906108c 1271
78267919 1272 switch (var->kind)
4fa62494 1273 {
78267919
UW
1274 case INTERNALVAR_VALUE:
1275 addr = value_contents_writeable (var->u.value);
4fa62494
UW
1276
1277 if (bitsize)
50810684 1278 modify_field (value_type (var->u.value), addr + offset,
4fa62494
UW
1279 value_as_long (newval), bitpos, bitsize);
1280 else
1281 memcpy (addr + offset, value_contents (newval),
1282 TYPE_LENGTH (value_type (newval)));
1283 break;
78267919
UW
1284
1285 default:
1286 /* We can never get a component of any other kind. */
1287 internal_error (__FILE__, __LINE__, "set_internalvar_component");
4fa62494 1288 }
c906108c
SS
1289}
1290
1291void
f23631e4 1292set_internalvar (struct internalvar *var, struct value *val)
c906108c 1293{
78267919 1294 enum internalvar_kind new_kind;
4fa62494 1295 union internalvar_data new_data = { 0 };
c906108c 1296
78267919 1297 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
bc3b79fd
TJB
1298 error (_("Cannot overwrite convenience function %s"), var->name);
1299
4fa62494 1300 /* Prepare new contents. */
78267919 1301 switch (TYPE_CODE (check_typedef (value_type (val))))
4fa62494
UW
1302 {
1303 case TYPE_CODE_VOID:
78267919 1304 new_kind = INTERNALVAR_VOID;
4fa62494
UW
1305 break;
1306
1307 case TYPE_CODE_INTERNAL_FUNCTION:
1308 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
78267919
UW
1309 new_kind = INTERNALVAR_FUNCTION;
1310 get_internalvar_function (VALUE_INTERNALVAR (val),
1311 &new_data.fn.function);
1312 /* Copies created here are never canonical. */
4fa62494
UW
1313 break;
1314
1315 case TYPE_CODE_INT:
cab0c772
UW
1316 new_kind = INTERNALVAR_INTEGER;
1317 new_data.integer.type = value_type (val);
1318 new_data.integer.val = value_as_long (val);
4fa62494
UW
1319 break;
1320
1321 case TYPE_CODE_PTR:
cab0c772
UW
1322 new_kind = INTERNALVAR_POINTER;
1323 new_data.pointer.type = value_type (val);
1324 new_data.pointer.val = value_as_address (val);
4fa62494
UW
1325 break;
1326
1327 default:
78267919
UW
1328 new_kind = INTERNALVAR_VALUE;
1329 new_data.value = value_copy (val);
1330 new_data.value->modifiable = 1;
4fa62494
UW
1331
1332 /* Force the value to be fetched from the target now, to avoid problems
1333 later when this internalvar is referenced and the target is gone or
1334 has changed. */
78267919
UW
1335 if (value_lazy (new_data.value))
1336 value_fetch_lazy (new_data.value);
4fa62494
UW
1337
1338 /* Release the value from the value chain to prevent it from being
1339 deleted by free_all_values. From here on this function should not
1340 call error () until new_data is installed into the var->u to avoid
1341 leaking memory. */
78267919 1342 release_value (new_data.value);
4fa62494
UW
1343 break;
1344 }
1345
1346 /* Clean up old contents. */
1347 clear_internalvar (var);
1348
1349 /* Switch over. */
78267919 1350 var->kind = new_kind;
4fa62494 1351 var->u = new_data;
c906108c
SS
1352 /* End code which must not call error(). */
1353}
1354
4fa62494
UW
1355void
1356set_internalvar_integer (struct internalvar *var, LONGEST l)
1357{
1358 /* Clean up old contents. */
1359 clear_internalvar (var);
1360
cab0c772
UW
1361 var->kind = INTERNALVAR_INTEGER;
1362 var->u.integer.type = NULL;
1363 var->u.integer.val = l;
78267919
UW
1364}
1365
1366void
1367set_internalvar_string (struct internalvar *var, const char *string)
1368{
1369 /* Clean up old contents. */
1370 clear_internalvar (var);
1371
1372 var->kind = INTERNALVAR_STRING;
1373 var->u.string = xstrdup (string);
4fa62494
UW
1374}
1375
1376static void
1377set_internalvar_function (struct internalvar *var, struct internal_function *f)
1378{
1379 /* Clean up old contents. */
1380 clear_internalvar (var);
1381
78267919
UW
1382 var->kind = INTERNALVAR_FUNCTION;
1383 var->u.fn.function = f;
1384 var->u.fn.canonical = 1;
1385 /* Variables installed here are always the canonical version. */
4fa62494
UW
1386}
1387
1388void
1389clear_internalvar (struct internalvar *var)
1390{
1391 /* Clean up old contents. */
78267919 1392 switch (var->kind)
4fa62494 1393 {
78267919
UW
1394 case INTERNALVAR_VALUE:
1395 value_free (var->u.value);
1396 break;
1397
1398 case INTERNALVAR_STRING:
1399 xfree (var->u.string);
4fa62494
UW
1400 break;
1401
1402 default:
4fa62494
UW
1403 break;
1404 }
1405
78267919
UW
1406 /* Reset to void kind. */
1407 var->kind = INTERNALVAR_VOID;
4fa62494
UW
1408}
1409
c906108c 1410char *
fba45db2 1411internalvar_name (struct internalvar *var)
c906108c
SS
1412{
1413 return var->name;
1414}
1415
4fa62494
UW
1416static struct internal_function *
1417create_internal_function (const char *name,
1418 internal_function_fn handler, void *cookie)
bc3b79fd 1419{
bc3b79fd 1420 struct internal_function *ifn = XNEW (struct internal_function);
a109c7c1 1421
bc3b79fd
TJB
1422 ifn->name = xstrdup (name);
1423 ifn->handler = handler;
1424 ifn->cookie = cookie;
4fa62494 1425 return ifn;
bc3b79fd
TJB
1426}
1427
1428char *
1429value_internal_function_name (struct value *val)
1430{
4fa62494
UW
1431 struct internal_function *ifn;
1432 int result;
1433
1434 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
1435 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
1436 gdb_assert (result);
1437
bc3b79fd
TJB
1438 return ifn->name;
1439}
1440
1441struct value *
d452c4bc
UW
1442call_internal_function (struct gdbarch *gdbarch,
1443 const struct language_defn *language,
1444 struct value *func, int argc, struct value **argv)
bc3b79fd 1445{
4fa62494
UW
1446 struct internal_function *ifn;
1447 int result;
1448
1449 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
1450 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
1451 gdb_assert (result);
1452
d452c4bc 1453 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
bc3b79fd
TJB
1454}
1455
1456/* The 'function' command. This does nothing -- it is just a
1457 placeholder to let "help function NAME" work. This is also used as
1458 the implementation of the sub-command that is created when
1459 registering an internal function. */
1460static void
1461function_command (char *command, int from_tty)
1462{
1463 /* Do nothing. */
1464}
1465
1466/* Clean up if an internal function's command is destroyed. */
1467static void
1468function_destroyer (struct cmd_list_element *self, void *ignore)
1469{
1470 xfree (self->name);
1471 xfree (self->doc);
1472}
1473
1474/* Add a new internal function. NAME is the name of the function; DOC
1475 is a documentation string describing the function. HANDLER is
1476 called when the function is invoked. COOKIE is an arbitrary
1477 pointer which is passed to HANDLER and is intended for "user
1478 data". */
1479void
1480add_internal_function (const char *name, const char *doc,
1481 internal_function_fn handler, void *cookie)
1482{
1483 struct cmd_list_element *cmd;
4fa62494 1484 struct internal_function *ifn;
bc3b79fd 1485 struct internalvar *var = lookup_internalvar (name);
4fa62494
UW
1486
1487 ifn = create_internal_function (name, handler, cookie);
1488 set_internalvar_function (var, ifn);
bc3b79fd
TJB
1489
1490 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
1491 &functionlist);
1492 cmd->destroyer = function_destroyer;
1493}
1494
ae5a43e0
DJ
1495/* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
1496 prevent cycles / duplicates. */
1497
4e7a5ef5 1498void
ae5a43e0
DJ
1499preserve_one_value (struct value *value, struct objfile *objfile,
1500 htab_t copied_types)
1501{
1502 if (TYPE_OBJFILE (value->type) == objfile)
1503 value->type = copy_type_recursive (objfile, value->type, copied_types);
1504
1505 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
1506 value->enclosing_type = copy_type_recursive (objfile,
1507 value->enclosing_type,
1508 copied_types);
1509}
1510
78267919
UW
1511/* Likewise for internal variable VAR. */
1512
1513static void
1514preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
1515 htab_t copied_types)
1516{
1517 switch (var->kind)
1518 {
cab0c772
UW
1519 case INTERNALVAR_INTEGER:
1520 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
1521 var->u.integer.type
1522 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
1523 break;
1524
1525 case INTERNALVAR_POINTER:
1526 if (TYPE_OBJFILE (var->u.pointer.type) == objfile)
1527 var->u.pointer.type
1528 = copy_type_recursive (objfile, var->u.pointer.type, copied_types);
78267919
UW
1529 break;
1530
1531 case INTERNALVAR_VALUE:
1532 preserve_one_value (var->u.value, objfile, copied_types);
1533 break;
1534 }
1535}
1536
ae5a43e0
DJ
1537/* Update the internal variables and value history when OBJFILE is
1538 discarded; we must copy the types out of the objfile. New global types
1539 will be created for every convenience variable which currently points to
1540 this objfile's types, and the convenience variables will be adjusted to
1541 use the new global types. */
c906108c
SS
1542
1543void
ae5a43e0 1544preserve_values (struct objfile *objfile)
c906108c 1545{
ae5a43e0
DJ
1546 htab_t copied_types;
1547 struct value_history_chunk *cur;
52f0bd74 1548 struct internalvar *var;
ae5a43e0 1549 int i;
c906108c 1550
ae5a43e0
DJ
1551 /* Create the hash table. We allocate on the objfile's obstack, since
1552 it is soon to be deleted. */
1553 copied_types = create_copied_types_hash (objfile);
1554
1555 for (cur = value_history_chain; cur; cur = cur->next)
1556 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
1557 if (cur->values[i])
1558 preserve_one_value (cur->values[i], objfile, copied_types);
1559
1560 for (var = internalvars; var; var = var->next)
78267919 1561 preserve_one_internalvar (var, objfile, copied_types);
ae5a43e0 1562
4e7a5ef5 1563 preserve_python_values (objfile, copied_types);
a08702d6 1564
ae5a43e0 1565 htab_delete (copied_types);
c906108c
SS
1566}
1567
1568static void
fba45db2 1569show_convenience (char *ignore, int from_tty)
c906108c 1570{
e17c207e 1571 struct gdbarch *gdbarch = get_current_arch ();
52f0bd74 1572 struct internalvar *var;
c906108c 1573 int varseen = 0;
79a45b7d 1574 struct value_print_options opts;
c906108c 1575
79a45b7d 1576 get_user_print_options (&opts);
c906108c
SS
1577 for (var = internalvars; var; var = var->next)
1578 {
c906108c
SS
1579 if (!varseen)
1580 {
1581 varseen = 1;
1582 }
a3f17187 1583 printf_filtered (("$%s = "), var->name);
78267919 1584 value_print (value_of_internalvar (gdbarch, var), gdb_stdout,
79a45b7d 1585 &opts);
a3f17187 1586 printf_filtered (("\n"));
c906108c
SS
1587 }
1588 if (!varseen)
a3f17187
AC
1589 printf_unfiltered (_("\
1590No debugger convenience variables now defined.\n\
c906108c 1591Convenience variables have names starting with \"$\";\n\
a3f17187 1592use \"set\" as in \"set $foo = 5\" to define them.\n"));
c906108c
SS
1593}
1594\f
1595/* Extract a value as a C number (either long or double).
1596 Knows how to convert fixed values to double, or
1597 floating values to long.
1598 Does not deallocate the value. */
1599
1600LONGEST
f23631e4 1601value_as_long (struct value *val)
c906108c
SS
1602{
1603 /* This coerces arrays and functions, which is necessary (e.g.
1604 in disassemble_command). It also dereferences references, which
1605 I suspect is the most logical thing to do. */
994b9211 1606 val = coerce_array (val);
0fd88904 1607 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
1608}
1609
1610DOUBLEST
f23631e4 1611value_as_double (struct value *val)
c906108c
SS
1612{
1613 DOUBLEST foo;
1614 int inv;
c5aa993b 1615
0fd88904 1616 foo = unpack_double (value_type (val), value_contents (val), &inv);
c906108c 1617 if (inv)
8a3fe4f8 1618 error (_("Invalid floating value found in program."));
c906108c
SS
1619 return foo;
1620}
4ef30785 1621
4478b372
JB
1622/* Extract a value as a C pointer. Does not deallocate the value.
1623 Note that val's type may not actually be a pointer; value_as_long
1624 handles all the cases. */
c906108c 1625CORE_ADDR
f23631e4 1626value_as_address (struct value *val)
c906108c 1627{
50810684
UW
1628 struct gdbarch *gdbarch = get_type_arch (value_type (val));
1629
c906108c
SS
1630 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1631 whether we want this to be true eventually. */
1632#if 0
bf6ae464 1633 /* gdbarch_addr_bits_remove is wrong if we are being called for a
c906108c
SS
1634 non-address (e.g. argument to "signal", "info break", etc.), or
1635 for pointers to char, in which the low bits *are* significant. */
50810684 1636 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
c906108c 1637#else
f312f057
JB
1638
1639 /* There are several targets (IA-64, PowerPC, and others) which
1640 don't represent pointers to functions as simply the address of
1641 the function's entry point. For example, on the IA-64, a
1642 function pointer points to a two-word descriptor, generated by
1643 the linker, which contains the function's entry point, and the
1644 value the IA-64 "global pointer" register should have --- to
1645 support position-independent code. The linker generates
1646 descriptors only for those functions whose addresses are taken.
1647
1648 On such targets, it's difficult for GDB to convert an arbitrary
1649 function address into a function pointer; it has to either find
1650 an existing descriptor for that function, or call malloc and
1651 build its own. On some targets, it is impossible for GDB to
1652 build a descriptor at all: the descriptor must contain a jump
1653 instruction; data memory cannot be executed; and code memory
1654 cannot be modified.
1655
1656 Upon entry to this function, if VAL is a value of type `function'
1657 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
42ae5230 1658 value_address (val) is the address of the function. This is what
f312f057
JB
1659 you'll get if you evaluate an expression like `main'. The call
1660 to COERCE_ARRAY below actually does all the usual unary
1661 conversions, which includes converting values of type `function'
1662 to `pointer to function'. This is the challenging conversion
1663 discussed above. Then, `unpack_long' will convert that pointer
1664 back into an address.
1665
1666 So, suppose the user types `disassemble foo' on an architecture
1667 with a strange function pointer representation, on which GDB
1668 cannot build its own descriptors, and suppose further that `foo'
1669 has no linker-built descriptor. The address->pointer conversion
1670 will signal an error and prevent the command from running, even
1671 though the next step would have been to convert the pointer
1672 directly back into the same address.
1673
1674 The following shortcut avoids this whole mess. If VAL is a
1675 function, just return its address directly. */
df407dfe
AC
1676 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1677 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
42ae5230 1678 return value_address (val);
f312f057 1679
994b9211 1680 val = coerce_array (val);
fc0c74b1
AC
1681
1682 /* Some architectures (e.g. Harvard), map instruction and data
1683 addresses onto a single large unified address space. For
1684 instance: An architecture may consider a large integer in the
1685 range 0x10000000 .. 0x1000ffff to already represent a data
1686 addresses (hence not need a pointer to address conversion) while
1687 a small integer would still need to be converted integer to
1688 pointer to address. Just assume such architectures handle all
1689 integer conversions in a single function. */
1690
1691 /* JimB writes:
1692
1693 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
1694 must admonish GDB hackers to make sure its behavior matches the
1695 compiler's, whenever possible.
1696
1697 In general, I think GDB should evaluate expressions the same way
1698 the compiler does. When the user copies an expression out of
1699 their source code and hands it to a `print' command, they should
1700 get the same value the compiler would have computed. Any
1701 deviation from this rule can cause major confusion and annoyance,
1702 and needs to be justified carefully. In other words, GDB doesn't
1703 really have the freedom to do these conversions in clever and
1704 useful ways.
1705
1706 AndrewC pointed out that users aren't complaining about how GDB
1707 casts integers to pointers; they are complaining that they can't
1708 take an address from a disassembly listing and give it to `x/i'.
1709 This is certainly important.
1710
79dd2d24 1711 Adding an architecture method like integer_to_address() certainly
fc0c74b1
AC
1712 makes it possible for GDB to "get it right" in all circumstances
1713 --- the target has complete control over how things get done, so
1714 people can Do The Right Thing for their target without breaking
1715 anyone else. The standard doesn't specify how integers get
1716 converted to pointers; usually, the ABI doesn't either, but
1717 ABI-specific code is a more reasonable place to handle it. */
1718
df407dfe
AC
1719 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
1720 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
50810684
UW
1721 && gdbarch_integer_to_address_p (gdbarch))
1722 return gdbarch_integer_to_address (gdbarch, value_type (val),
0fd88904 1723 value_contents (val));
fc0c74b1 1724
0fd88904 1725 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
1726#endif
1727}
1728\f
1729/* Unpack raw data (copied from debugee, target byte order) at VALADDR
1730 as a long, or as a double, assuming the raw data is described
1731 by type TYPE. Knows how to convert different sizes of values
1732 and can convert between fixed and floating point. We don't assume
1733 any alignment for the raw data. Return value is in host byte order.
1734
1735 If you want functions and arrays to be coerced to pointers, and
1736 references to be dereferenced, call value_as_long() instead.
1737
1738 C++: It is assumed that the front-end has taken care of
1739 all matters concerning pointers to members. A pointer
1740 to member which reaches here is considered to be equivalent
1741 to an INT (or some size). After all, it is only an offset. */
1742
1743LONGEST
fc1a4b47 1744unpack_long (struct type *type, const gdb_byte *valaddr)
c906108c 1745{
e17a4113 1746 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74
AC
1747 enum type_code code = TYPE_CODE (type);
1748 int len = TYPE_LENGTH (type);
1749 int nosign = TYPE_UNSIGNED (type);
c906108c 1750
c906108c
SS
1751 switch (code)
1752 {
1753 case TYPE_CODE_TYPEDEF:
1754 return unpack_long (check_typedef (type), valaddr);
1755 case TYPE_CODE_ENUM:
4f2aea11 1756 case TYPE_CODE_FLAGS:
c906108c
SS
1757 case TYPE_CODE_BOOL:
1758 case TYPE_CODE_INT:
1759 case TYPE_CODE_CHAR:
1760 case TYPE_CODE_RANGE:
0d5de010 1761 case TYPE_CODE_MEMBERPTR:
c906108c 1762 if (nosign)
e17a4113 1763 return extract_unsigned_integer (valaddr, len, byte_order);
c906108c 1764 else
e17a4113 1765 return extract_signed_integer (valaddr, len, byte_order);
c906108c
SS
1766
1767 case TYPE_CODE_FLT:
96d2f608 1768 return extract_typed_floating (valaddr, type);
c906108c 1769
4ef30785
TJB
1770 case TYPE_CODE_DECFLOAT:
1771 /* libdecnumber has a function to convert from decimal to integer, but
1772 it doesn't work when the decimal number has a fractional part. */
e17a4113 1773 return decimal_to_doublest (valaddr, len, byte_order);
4ef30785 1774
c906108c
SS
1775 case TYPE_CODE_PTR:
1776 case TYPE_CODE_REF:
1777 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
c5aa993b 1778 whether we want this to be true eventually. */
4478b372 1779 return extract_typed_address (valaddr, type);
c906108c 1780
c906108c 1781 default:
8a3fe4f8 1782 error (_("Value can't be converted to integer."));
c906108c 1783 }
c5aa993b 1784 return 0; /* Placate lint. */
c906108c
SS
1785}
1786
1787/* Return a double value from the specified type and address.
1788 INVP points to an int which is set to 0 for valid value,
1789 1 for invalid value (bad float format). In either case,
1790 the returned double is OK to use. Argument is in target
1791 format, result is in host format. */
1792
1793DOUBLEST
fc1a4b47 1794unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
c906108c 1795{
e17a4113 1796 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
c906108c
SS
1797 enum type_code code;
1798 int len;
1799 int nosign;
1800
1801 *invp = 0; /* Assume valid. */
1802 CHECK_TYPEDEF (type);
1803 code = TYPE_CODE (type);
1804 len = TYPE_LENGTH (type);
1805 nosign = TYPE_UNSIGNED (type);
1806 if (code == TYPE_CODE_FLT)
1807 {
75bc7ddf
AC
1808 /* NOTE: cagney/2002-02-19: There was a test here to see if the
1809 floating-point value was valid (using the macro
1810 INVALID_FLOAT). That test/macro have been removed.
1811
1812 It turns out that only the VAX defined this macro and then
1813 only in a non-portable way. Fixing the portability problem
1814 wouldn't help since the VAX floating-point code is also badly
1815 bit-rotten. The target needs to add definitions for the
ea06eb3d 1816 methods gdbarch_float_format and gdbarch_double_format - these
75bc7ddf
AC
1817 exactly describe the target floating-point format. The
1818 problem here is that the corresponding floatformat_vax_f and
1819 floatformat_vax_d values these methods should be set to are
1820 also not defined either. Oops!
1821
1822 Hopefully someone will add both the missing floatformat
ac79b88b
DJ
1823 definitions and the new cases for floatformat_is_valid (). */
1824
1825 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
1826 {
1827 *invp = 1;
1828 return 0.0;
1829 }
1830
96d2f608 1831 return extract_typed_floating (valaddr, type);
c906108c 1832 }
4ef30785 1833 else if (code == TYPE_CODE_DECFLOAT)
e17a4113 1834 return decimal_to_doublest (valaddr, len, byte_order);
c906108c
SS
1835 else if (nosign)
1836 {
1837 /* Unsigned -- be sure we compensate for signed LONGEST. */
c906108c 1838 return (ULONGEST) unpack_long (type, valaddr);
c906108c
SS
1839 }
1840 else
1841 {
1842 /* Signed -- we are OK with unpack_long. */
1843 return unpack_long (type, valaddr);
1844 }
1845}
1846
1847/* Unpack raw data (copied from debugee, target byte order) at VALADDR
1848 as a CORE_ADDR, assuming the raw data is described by type TYPE.
1849 We don't assume any alignment for the raw data. Return value is in
1850 host byte order.
1851
1852 If you want functions and arrays to be coerced to pointers, and
1aa20aa8 1853 references to be dereferenced, call value_as_address() instead.
c906108c
SS
1854
1855 C++: It is assumed that the front-end has taken care of
1856 all matters concerning pointers to members. A pointer
1857 to member which reaches here is considered to be equivalent
1858 to an INT (or some size). After all, it is only an offset. */
1859
1860CORE_ADDR
fc1a4b47 1861unpack_pointer (struct type *type, const gdb_byte *valaddr)
c906108c
SS
1862{
1863 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1864 whether we want this to be true eventually. */
1865 return unpack_long (type, valaddr);
1866}
4478b372 1867
c906108c 1868\f
1596cb5d 1869/* Get the value of the FIELDNO'th field (which must be static) of
2c2738a0
DC
1870 TYPE. Return NULL if the field doesn't exist or has been
1871 optimized out. */
c906108c 1872
f23631e4 1873struct value *
fba45db2 1874value_static_field (struct type *type, int fieldno)
c906108c 1875{
948e66d9
DJ
1876 struct value *retval;
1877
1596cb5d 1878 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
c906108c 1879 {
1596cb5d 1880 case FIELD_LOC_KIND_PHYSADDR:
52e9fde8
SS
1881 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
1882 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1596cb5d
DE
1883 break;
1884 case FIELD_LOC_KIND_PHYSNAME:
c906108c
SS
1885 {
1886 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
a109c7c1 1887 /*TYPE_FIELD_NAME (type, fieldno);*/
2570f2b7 1888 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
94af9270 1889
948e66d9 1890 if (sym == NULL)
c906108c 1891 {
a109c7c1
MS
1892 /* With some compilers, e.g. HP aCC, static data members are
1893 reported as non-debuggable symbols */
1894 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name,
1895 NULL, NULL);
1896
c906108c
SS
1897 if (!msym)
1898 return NULL;
1899 else
c5aa993b 1900 {
52e9fde8
SS
1901 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
1902 SYMBOL_VALUE_ADDRESS (msym));
c906108c
SS
1903 }
1904 }
1905 else
1906 {
948e66d9
DJ
1907 /* SYM should never have a SYMBOL_CLASS which will require
1908 read_var_value to use the FRAME parameter. */
1909 if (symbol_read_needs_frame (sym))
8a3fe4f8
AC
1910 warning (_("static field's value depends on the current "
1911 "frame - bad debug info?"));
948e66d9 1912 retval = read_var_value (sym, NULL);
2b127877 1913 }
948e66d9
DJ
1914 if (retval && VALUE_LVAL (retval) == lval_memory)
1915 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno),
42ae5230 1916 value_address (retval));
1596cb5d 1917 break;
c906108c 1918 }
1596cb5d
DE
1919 default:
1920 gdb_assert (0);
1921 }
1922
948e66d9 1923 return retval;
c906108c
SS
1924}
1925
2b127877
DB
1926/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
1927 You have to be careful here, since the size of the data area for the value
1928 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
1929 than the old enclosing type, you have to allocate more space for the data.
1930 The return value is a pointer to the new version of this value structure. */
1931
f23631e4
AC
1932struct value *
1933value_change_enclosing_type (struct value *val, struct type *new_encl_type)
2b127877 1934{
3e3d7139
JG
1935 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
1936 val->contents =
1937 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
1938
1939 val->enclosing_type = new_encl_type;
1940 return val;
2b127877
DB
1941}
1942
c906108c
SS
1943/* Given a value ARG1 (offset by OFFSET bytes)
1944 of a struct or union type ARG_TYPE,
1945 extract and return the value of one of its (non-static) fields.
1946 FIELDNO says which field. */
1947
f23631e4
AC
1948struct value *
1949value_primitive_field (struct value *arg1, int offset,
aa1ee363 1950 int fieldno, struct type *arg_type)
c906108c 1951{
f23631e4 1952 struct value *v;
52f0bd74 1953 struct type *type;
c906108c
SS
1954
1955 CHECK_TYPEDEF (arg_type);
1956 type = TYPE_FIELD_TYPE (arg_type, fieldno);
c54eabfa
JK
1957
1958 /* Call check_typedef on our type to make sure that, if TYPE
1959 is a TYPE_CODE_TYPEDEF, its length is set to the length
1960 of the target type instead of zero. However, we do not
1961 replace the typedef type by the target type, because we want
1962 to keep the typedef in order to be able to print the type
1963 description correctly. */
1964 check_typedef (type);
c906108c
SS
1965
1966 /* Handle packed fields */
1967
1968 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
1969 {
4ea48cc1
DJ
1970 /* Create a new value for the bitfield, with bitpos and bitsize
1971 set. If possible, arrange offset and bitpos so that we can
1972 do a single aligned read of the size of the containing type.
1973 Otherwise, adjust offset to the byte containing the first
1974 bit. Assume that the address, offset, and embedded offset
1975 are sufficiently aligned. */
1976 int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
1977 int container_bitsize = TYPE_LENGTH (type) * 8;
1978
1979 v = allocate_value_lazy (type);
df407dfe 1980 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
4ea48cc1
DJ
1981 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
1982 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
1983 v->bitpos = bitpos % container_bitsize;
1984 else
1985 v->bitpos = bitpos % 8;
4a76eae5 1986 v->offset = value_embedded_offset (arg1)
4ea48cc1
DJ
1987 + (bitpos - v->bitpos) / 8;
1988 v->parent = arg1;
1989 value_incref (v->parent);
1990 if (!value_lazy (arg1))
1991 value_fetch_lazy (v);
c906108c
SS
1992 }
1993 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
1994 {
1995 /* This field is actually a base subobject, so preserve the
1996 entire object's contents for later references to virtual
1997 bases, etc. */
a4e2ee12
DJ
1998
1999 /* Lazy register values with offsets are not supported. */
2000 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2001 value_fetch_lazy (arg1);
2002
2003 if (value_lazy (arg1))
3e3d7139 2004 v = allocate_value_lazy (value_enclosing_type (arg1));
c906108c 2005 else
3e3d7139
JG
2006 {
2007 v = allocate_value (value_enclosing_type (arg1));
2008 memcpy (value_contents_all_raw (v), value_contents_all_raw (arg1),
2009 TYPE_LENGTH (value_enclosing_type (arg1)));
2010 }
2011 v->type = type;
df407dfe 2012 v->offset = value_offset (arg1);
13c3b5f5
AC
2013 v->embedded_offset = (offset + value_embedded_offset (arg1)
2014 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8);
c906108c
SS
2015 }
2016 else
2017 {
2018 /* Plain old data member */
2019 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
a4e2ee12
DJ
2020
2021 /* Lazy register values with offsets are not supported. */
2022 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2023 value_fetch_lazy (arg1);
2024
2025 if (value_lazy (arg1))
3e3d7139 2026 v = allocate_value_lazy (type);
c906108c 2027 else
3e3d7139
JG
2028 {
2029 v = allocate_value (type);
2030 memcpy (value_contents_raw (v),
2031 value_contents_raw (arg1) + offset,
2032 TYPE_LENGTH (type));
2033 }
df407dfe 2034 v->offset = (value_offset (arg1) + offset
13c3b5f5 2035 + value_embedded_offset (arg1));
c906108c 2036 }
74bcbdf3 2037 set_value_component_location (v, arg1);
9ee8fc9d 2038 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
0c16dd26 2039 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
c906108c
SS
2040 return v;
2041}
2042
2043/* Given a value ARG1 of a struct or union type,
2044 extract and return the value of one of its (non-static) fields.
2045 FIELDNO says which field. */
2046
f23631e4 2047struct value *
aa1ee363 2048value_field (struct value *arg1, int fieldno)
c906108c 2049{
df407dfe 2050 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
c906108c
SS
2051}
2052
2053/* Return a non-virtual function as a value.
2054 F is the list of member functions which contains the desired method.
0478d61c
FF
2055 J is an index into F which provides the desired method.
2056
2057 We only use the symbol for its address, so be happy with either a
2058 full symbol or a minimal symbol.
2059 */
c906108c 2060
f23631e4
AC
2061struct value *
2062value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
fba45db2 2063 int offset)
c906108c 2064{
f23631e4 2065 struct value *v;
52f0bd74 2066 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
0478d61c 2067 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
c906108c 2068 struct symbol *sym;
0478d61c 2069 struct minimal_symbol *msym;
c906108c 2070
2570f2b7 2071 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
5ae326fa 2072 if (sym != NULL)
0478d61c 2073 {
5ae326fa
AC
2074 msym = NULL;
2075 }
2076 else
2077 {
2078 gdb_assert (sym == NULL);
0478d61c 2079 msym = lookup_minimal_symbol (physname, NULL, NULL);
5ae326fa
AC
2080 if (msym == NULL)
2081 return NULL;
0478d61c
FF
2082 }
2083
c906108c 2084 v = allocate_value (ftype);
0478d61c
FF
2085 if (sym)
2086 {
42ae5230 2087 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
0478d61c
FF
2088 }
2089 else
2090 {
bccdca4a
UW
2091 /* The minimal symbol might point to a function descriptor;
2092 resolve it to the actual code address instead. */
2093 struct objfile *objfile = msymbol_objfile (msym);
2094 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2095
42ae5230
TT
2096 set_value_address (v,
2097 gdbarch_convert_from_func_ptr_addr
2098 (gdbarch, SYMBOL_VALUE_ADDRESS (msym), &current_target));
0478d61c 2099 }
c906108c
SS
2100
2101 if (arg1p)
c5aa993b 2102 {
df407dfe 2103 if (type != value_type (*arg1p))
c5aa993b
JM
2104 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
2105 value_addr (*arg1p)));
2106
070ad9f0 2107 /* Move the `this' pointer according to the offset.
c5aa993b
JM
2108 VALUE_OFFSET (*arg1p) += offset;
2109 */
c906108c
SS
2110 }
2111
2112 return v;
2113}
2114
c906108c 2115\f
4ea48cc1
DJ
2116/* Unpack a bitfield of the specified FIELD_TYPE, from the anonymous
2117 object at VALADDR. The bitfield starts at BITPOS bits and contains
2118 BITSIZE bits.
c906108c
SS
2119
2120 Extracting bits depends on endianness of the machine. Compute the
2121 number of least significant bits to discard. For big endian machines,
2122 we compute the total number of bits in the anonymous object, subtract
2123 off the bit count from the MSB of the object to the MSB of the
2124 bitfield, then the size of the bitfield, which leaves the LSB discard
2125 count. For little endian machines, the discard count is simply the
2126 number of bits from the LSB of the anonymous object to the LSB of the
2127 bitfield.
2128
2129 If the field is signed, we also do sign extension. */
2130
2131LONGEST
4ea48cc1
DJ
2132unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
2133 int bitpos, int bitsize)
c906108c 2134{
4ea48cc1 2135 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
c906108c
SS
2136 ULONGEST val;
2137 ULONGEST valmask;
c906108c 2138 int lsbcount;
4a76eae5 2139 int bytes_read;
c906108c 2140
4a76eae5
DJ
2141 /* Read the minimum number of bytes required; there may not be
2142 enough bytes to read an entire ULONGEST. */
c906108c 2143 CHECK_TYPEDEF (field_type);
4a76eae5
DJ
2144 if (bitsize)
2145 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
2146 else
2147 bytes_read = TYPE_LENGTH (field_type);
2148
2149 val = extract_unsigned_integer (valaddr + bitpos / 8,
2150 bytes_read, byte_order);
c906108c
SS
2151
2152 /* Extract bits. See comment above. */
2153
4ea48cc1 2154 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
4a76eae5 2155 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
c906108c
SS
2156 else
2157 lsbcount = (bitpos % 8);
2158 val >>= lsbcount;
2159
2160 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
2161 If the field is signed, and is negative, then sign extend. */
2162
2163 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
2164 {
2165 valmask = (((ULONGEST) 1) << bitsize) - 1;
2166 val &= valmask;
2167 if (!TYPE_UNSIGNED (field_type))
2168 {
2169 if (val & (valmask ^ (valmask >> 1)))
2170 {
2171 val |= ~valmask;
2172 }
2173 }
2174 }
2175 return (val);
2176}
2177
4ea48cc1
DJ
2178/* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
2179 VALADDR. See unpack_bits_as_long for more details. */
2180
2181LONGEST
2182unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
2183{
2184 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
2185 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
2186 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2187
2188 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
2189}
2190
c906108c
SS
2191/* Modify the value of a bitfield. ADDR points to a block of memory in
2192 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
2193 is the desired value of the field, in host byte order. BITPOS and BITSIZE
f4e88c8e
PH
2194 indicate which bits (in target bit order) comprise the bitfield.
2195 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS+BITSIZE <= lbits, and
2196 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
c906108c
SS
2197
2198void
50810684
UW
2199modify_field (struct type *type, gdb_byte *addr,
2200 LONGEST fieldval, int bitpos, int bitsize)
c906108c 2201{
e17a4113 2202 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
f4e88c8e
PH
2203 ULONGEST oword;
2204 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
c906108c
SS
2205
2206 /* If a negative fieldval fits in the field in question, chop
2207 off the sign extension bits. */
f4e88c8e
PH
2208 if ((~fieldval & ~(mask >> 1)) == 0)
2209 fieldval &= mask;
c906108c
SS
2210
2211 /* Warn if value is too big to fit in the field in question. */
f4e88c8e 2212 if (0 != (fieldval & ~mask))
c906108c
SS
2213 {
2214 /* FIXME: would like to include fieldval in the message, but
c5aa993b 2215 we don't have a sprintf_longest. */
8a3fe4f8 2216 warning (_("Value does not fit in %d bits."), bitsize);
c906108c
SS
2217
2218 /* Truncate it, otherwise adjoining fields may be corrupted. */
f4e88c8e 2219 fieldval &= mask;
c906108c
SS
2220 }
2221
e17a4113 2222 oword = extract_unsigned_integer (addr, sizeof oword, byte_order);
c906108c
SS
2223
2224 /* Shifting for bit field depends on endianness of the target machine. */
50810684 2225 if (gdbarch_bits_big_endian (get_type_arch (type)))
c906108c
SS
2226 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
2227
f4e88c8e 2228 oword &= ~(mask << bitpos);
c906108c
SS
2229 oword |= fieldval << bitpos;
2230
e17a4113 2231 store_unsigned_integer (addr, sizeof oword, byte_order, oword);
c906108c
SS
2232}
2233\f
14d06750 2234/* Pack NUM into BUF using a target format of TYPE. */
c906108c 2235
14d06750
DJ
2236void
2237pack_long (gdb_byte *buf, struct type *type, LONGEST num)
c906108c 2238{
e17a4113 2239 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74 2240 int len;
14d06750
DJ
2241
2242 type = check_typedef (type);
c906108c
SS
2243 len = TYPE_LENGTH (type);
2244
14d06750 2245 switch (TYPE_CODE (type))
c906108c 2246 {
c906108c
SS
2247 case TYPE_CODE_INT:
2248 case TYPE_CODE_CHAR:
2249 case TYPE_CODE_ENUM:
4f2aea11 2250 case TYPE_CODE_FLAGS:
c906108c
SS
2251 case TYPE_CODE_BOOL:
2252 case TYPE_CODE_RANGE:
0d5de010 2253 case TYPE_CODE_MEMBERPTR:
e17a4113 2254 store_signed_integer (buf, len, byte_order, num);
c906108c 2255 break;
c5aa993b 2256
c906108c
SS
2257 case TYPE_CODE_REF:
2258 case TYPE_CODE_PTR:
14d06750 2259 store_typed_address (buf, type, (CORE_ADDR) num);
c906108c 2260 break;
c5aa993b 2261
c906108c 2262 default:
14d06750
DJ
2263 error (_("Unexpected type (%d) encountered for integer constant."),
2264 TYPE_CODE (type));
c906108c 2265 }
14d06750
DJ
2266}
2267
2268
595939de
PM
2269/* Pack NUM into BUF using a target format of TYPE. */
2270
2271void
2272pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
2273{
2274 int len;
2275 enum bfd_endian byte_order;
2276
2277 type = check_typedef (type);
2278 len = TYPE_LENGTH (type);
2279 byte_order = gdbarch_byte_order (get_type_arch (type));
2280
2281 switch (TYPE_CODE (type))
2282 {
2283 case TYPE_CODE_INT:
2284 case TYPE_CODE_CHAR:
2285 case TYPE_CODE_ENUM:
2286 case TYPE_CODE_FLAGS:
2287 case TYPE_CODE_BOOL:
2288 case TYPE_CODE_RANGE:
2289 case TYPE_CODE_MEMBERPTR:
2290 store_unsigned_integer (buf, len, byte_order, num);
2291 break;
2292
2293 case TYPE_CODE_REF:
2294 case TYPE_CODE_PTR:
2295 store_typed_address (buf, type, (CORE_ADDR) num);
2296 break;
2297
2298 default:
2299 error (_("\
2300Unexpected type (%d) encountered for unsigned integer constant."),
2301 TYPE_CODE (type));
2302 }
2303}
2304
2305
14d06750
DJ
2306/* Convert C numbers into newly allocated values. */
2307
2308struct value *
2309value_from_longest (struct type *type, LONGEST num)
2310{
2311 struct value *val = allocate_value (type);
2312
2313 pack_long (value_contents_raw (val), type, num);
c906108c
SS
2314 return val;
2315}
2316
4478b372 2317
595939de
PM
2318/* Convert C unsigned numbers into newly allocated values. */
2319
2320struct value *
2321value_from_ulongest (struct type *type, ULONGEST num)
2322{
2323 struct value *val = allocate_value (type);
2324
2325 pack_unsigned_long (value_contents_raw (val), type, num);
2326
2327 return val;
2328}
2329
2330
4478b372
JB
2331/* Create a value representing a pointer of type TYPE to the address
2332 ADDR. */
f23631e4 2333struct value *
4478b372
JB
2334value_from_pointer (struct type *type, CORE_ADDR addr)
2335{
f23631e4 2336 struct value *val = allocate_value (type);
a109c7c1 2337
cab0c772 2338 store_typed_address (value_contents_raw (val), check_typedef (type), addr);
4478b372
JB
2339 return val;
2340}
2341
2342
8acb6b92
TT
2343/* Create a value of type TYPE whose contents come from VALADDR, if it
2344 is non-null, and whose memory address (in the inferior) is
2345 ADDRESS. */
2346
2347struct value *
2348value_from_contents_and_address (struct type *type,
2349 const gdb_byte *valaddr,
2350 CORE_ADDR address)
2351{
2352 struct value *v = allocate_value (type);
a109c7c1 2353
8acb6b92
TT
2354 if (valaddr == NULL)
2355 set_value_lazy (v, 1);
2356 else
2357 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
42ae5230 2358 set_value_address (v, address);
33d502b4 2359 VALUE_LVAL (v) = lval_memory;
8acb6b92
TT
2360 return v;
2361}
2362
f23631e4 2363struct value *
fba45db2 2364value_from_double (struct type *type, DOUBLEST num)
c906108c 2365{
f23631e4 2366 struct value *val = allocate_value (type);
c906108c 2367 struct type *base_type = check_typedef (type);
52f0bd74 2368 enum type_code code = TYPE_CODE (base_type);
c906108c
SS
2369
2370 if (code == TYPE_CODE_FLT)
2371 {
990a07ab 2372 store_typed_floating (value_contents_raw (val), base_type, num);
c906108c
SS
2373 }
2374 else
8a3fe4f8 2375 error (_("Unexpected type encountered for floating constant."));
c906108c
SS
2376
2377 return val;
2378}
994b9211 2379
27bc4d80 2380struct value *
4ef30785 2381value_from_decfloat (struct type *type, const gdb_byte *dec)
27bc4d80
TJB
2382{
2383 struct value *val = allocate_value (type);
27bc4d80 2384
4ef30785 2385 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
27bc4d80
TJB
2386 return val;
2387}
2388
994b9211
AC
2389struct value *
2390coerce_ref (struct value *arg)
2391{
df407dfe 2392 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
a109c7c1 2393
994b9211
AC
2394 if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF)
2395 arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
df407dfe 2396 unpack_pointer (value_type (arg),
0fd88904 2397 value_contents (arg)));
994b9211
AC
2398 return arg;
2399}
2400
2401struct value *
2402coerce_array (struct value *arg)
2403{
f3134b88
TT
2404 struct type *type;
2405
994b9211 2406 arg = coerce_ref (arg);
f3134b88
TT
2407 type = check_typedef (value_type (arg));
2408
2409 switch (TYPE_CODE (type))
2410 {
2411 case TYPE_CODE_ARRAY:
7346b668 2412 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
f3134b88
TT
2413 arg = value_coerce_array (arg);
2414 break;
2415 case TYPE_CODE_FUNC:
2416 arg = value_coerce_function (arg);
2417 break;
2418 }
994b9211
AC
2419 return arg;
2420}
c906108c 2421\f
c906108c 2422
48436ce6
AC
2423/* Return true if the function returning the specified type is using
2424 the convention of returning structures in memory (passing in the
82585c72 2425 address as a hidden first parameter). */
c906108c
SS
2426
2427int
d80b854b
UW
2428using_struct_return (struct gdbarch *gdbarch,
2429 struct type *func_type, struct type *value_type)
c906108c 2430{
52f0bd74 2431 enum type_code code = TYPE_CODE (value_type);
c906108c
SS
2432
2433 if (code == TYPE_CODE_ERROR)
8a3fe4f8 2434 error (_("Function return type unknown."));
c906108c 2435
667e784f
AC
2436 if (code == TYPE_CODE_VOID)
2437 /* A void return value is never in memory. See also corresponding
44e5158b 2438 code in "print_return_value". */
667e784f
AC
2439 return 0;
2440
92ad9cd9 2441 /* Probe the architecture for the return-value convention. */
d80b854b 2442 return (gdbarch_return_value (gdbarch, func_type, value_type,
92ad9cd9 2443 NULL, NULL, NULL)
31db7b6c 2444 != RETURN_VALUE_REGISTER_CONVENTION);
c906108c
SS
2445}
2446
42be36b3
CT
2447/* Set the initialized field in a value struct. */
2448
2449void
2450set_value_initialized (struct value *val, int status)
2451{
2452 val->initialized = status;
2453}
2454
2455/* Return the initialized field in a value struct. */
2456
2457int
2458value_initialized (struct value *val)
2459{
2460 return val->initialized;
2461}
2462
c906108c 2463void
fba45db2 2464_initialize_values (void)
c906108c 2465{
1a966eab
AC
2466 add_cmd ("convenience", no_class, show_convenience, _("\
2467Debugger convenience (\"$foo\") variables.\n\
c906108c 2468These variables are created when you assign them values;\n\
1a966eab
AC
2469thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
2470\n\
c906108c
SS
2471A few convenience variables are given values automatically:\n\
2472\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1a966eab 2473\"$__\" holds the contents of the last address examined with \"x\"."),
c906108c
SS
2474 &showlist);
2475
2476 add_cmd ("values", no_class, show_values,
1a966eab 2477 _("Elements of value history around item number IDX (or last ten)."),
c906108c 2478 &showlist);
53e5f3cf
AS
2479
2480 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
2481Initialize a convenience variable if necessary.\n\
2482init-if-undefined VARIABLE = EXPRESSION\n\
2483Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
2484exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
2485VARIABLE is already initialized."));
bc3b79fd
TJB
2486
2487 add_prefix_cmd ("function", no_class, function_command, _("\
2488Placeholder command for showing help on convenience functions."),
2489 &functionlist, "function ", 0, &cmdlist);
c906108c 2490}