]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/value.h
Turn value_contents_eq into a method
[thirdparty/binutils-gdb.git] / gdb / value.h
CommitLineData
c906108c 1/* Definitions for values of C expressions, for GDB.
dea7f9ba 2
213516ef 3 Copyright (C) 1986-2023 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#if !defined (VALUE_H)
21#define VALUE_H 1
22
1df6926e 23#include "frame.h" /* For struct frame_id. */
ba18742c 24#include "extension.h"
268a13a5 25#include "gdbsupport/gdb_ref_ptr.h"
b49180ac 26#include "gmp-utils.h"
dea7f9ba
MK
27
28struct block;
da3331ec 29struct expression;
dea7f9ba 30struct regcache;
da3331ec
AC
31struct symbol;
32struct type;
dea7f9ba 33struct ui_file;
d8ca156b 34struct language_defn;
79a45b7d 35struct value_print_options;
d16aafd8 36
9a0dc9e3
PA
37/* Values can be partially 'optimized out' and/or 'unavailable'.
38 These are distinct states and have different string representations
39 and related error strings.
40
41 'unavailable' has a specific meaning in this context. It means the
42 value exists in the program (at the machine level), but GDB has no
43 means to get to it. Such a value is normally printed as
44 <unavailable>. Examples of how to end up with an unavailable value
45 would be:
46
47 - We're inspecting a traceframe, and the memory or registers the
48 debug information says the value lives on haven't been collected.
49
50 - We're inspecting a core dump, the memory or registers the debug
51 information says the value lives aren't present in the dump
52 (that is, we have a partial/trimmed core dump, or we don't fully
53 understand/handle the core dump's format).
54
55 - We're doing live debugging, but the debug API has no means to
56 get at where the value lives in the machine, like e.g., ptrace
57 not having access to some register or register set.
58
59 - Any other similar scenario.
60
61 OTOH, "optimized out" is about what the compiler decided to generate
62 (or not generate). A chunk of a value that was optimized out does
63 not actually exist in the program. There's no way to get at it
64 short of compiling the program differently.
65
66 A register that has not been saved in a frame is likewise considered
67 optimized out, except not-saved registers have a different string
68 representation and related error strings. E.g., we'll print them as
69 <not-saved> instead of <optimized out>, as in:
70
71 (gdb) p/x $rax
72 $1 = <not saved>
73 (gdb) info registers rax
74 rax <not saved>
75
76 If the debug info describes a variable as being in such a register,
77 we'll still print the variable as <optimized out>. IOW, <not saved>
78 is reserved for inspecting registers at the machine level.
79
80 When comparing value contents, optimized out chunks, unavailable
81 chunks, and valid contents data are all considered different. See
82 value_contents_eq for more info.
83*/
84
e4153ae6
CB
85extern bool overload_resolution;
86
7cf57bc5 87/* Defines an [OFFSET, OFFSET + LENGTH) range. */
c906108c 88
7cf57bc5
TT
89struct range
90{
91 /* Lowest offset in the range. */
92 LONGEST offset;
93
94 /* Length of the range. */
95 ULONGEST length;
96
97 /* Returns true if THIS is strictly less than OTHER, useful for
98 searching. We keep ranges sorted by offset and coalesce
99 overlapping and contiguous ranges, so this just compares the
100 starting offset. */
101
102 bool operator< (const range &other) const
103 {
104 return offset < other.offset;
105 }
106
107 /* Returns true if THIS is equal to OTHER. */
108 bool operator== (const range &other) const
109 {
110 return offset == other.offset && length == other.length;
111 }
112};
c906108c 113
bbfa6f00 114/* Increase VAL's reference count. */
22bc8444 115
bbfa6f00 116extern void value_incref (struct value *val);
22bc8444 117
bbfa6f00
TT
118/* Decrease VAL's reference count. When the reference count drops to
119 0, VAL will be freed. */
22bc8444
TT
120
121extern void value_decref (struct value *val);
122
123/* A policy class to interface gdb::ref_ptr with struct value. */
124
125struct value_ref_policy
126{
127 static void incref (struct value *ptr)
128 {
129 value_incref (ptr);
130 }
131
132 static void decref (struct value *ptr)
133 {
134 value_decref (ptr);
135 }
136};
137
138/* A gdb:;ref_ptr pointer to a struct value. */
139
140typedef gdb::ref_ptr<struct value, value_ref_policy> value_ref_ptr;
141
7cf57bc5
TT
142/* Note that the fields in this structure are arranged to save a bit
143 of memory. */
144
145struct value
146{
cbe793af
TT
147private:
148
149 /* Values can only be created via "static constructors". */
7cf57bc5
TT
150 explicit value (struct type *type_)
151 : m_modifiable (1),
152 m_lazy (1),
153 m_initialized (1),
154 m_stack (0),
155 m_is_zero (false),
156 m_in_history (false),
157 m_type (type_),
158 m_enclosing_type (type_)
159 {
160 }
161
cbe793af
TT
162public:
163
164 /* Allocate a lazy value for type TYPE. Its actual content is
165 "lazily" allocated too: the content field of the return value is
166 NULL; it will be allocated when it is fetched from the target. */
167 static struct value *allocate_lazy (struct type *type);
168
317c3ed9
TT
169 /* Allocate a value and its contents for type TYPE. */
170 static struct value *allocate (struct type *type);
171
b64e2602
TT
172 /* Create a computed lvalue, with type TYPE, function pointers
173 FUNCS, and closure CLOSURE. */
174 static struct value *allocate_computed (struct type *type,
175 const struct lval_funcs *funcs,
176 void *closure);
177
b27556e3
TT
178 /* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
179 static struct value *allocate_optimized_out (struct type *type);
180
ee7bb294
TT
181 /* Create a value of type TYPE that is zero, and return it. */
182 static struct value *zero (struct type *type, enum lval_type lv);
183
7cf57bc5
TT
184 ~value ();
185
186 DISABLE_COPY_AND_ASSIGN (value);
187
d0c97917
TT
188 /* Type of the value. */
189 struct type *type () const
190 { return m_type; }
191
81ae560c
TT
192 /* This is being used to change the type of an existing value, that
193 code should instead be creating a new value with the changed type
194 (but possibly shared content). */
195 void deprecated_set_type (struct type *type)
196 { m_type = type; }
197
f9ee742c
TT
198 /* Return the gdbarch associated with the value. */
199 struct gdbarch *arch () const;
200
f49d5fa2
TT
201 /* Only used for bitfields; number of bits contained in them. */
202 LONGEST bitsize () const
203 { return m_bitsize; }
204
205 void set_bitsize (LONGEST bit)
206 { m_bitsize = bit; }
207
5011c493
TT
208 /* Only used for bitfields; position of start of field. For
209 little-endian targets, it is the position of the LSB. For
210 big-endian targets, it is the position of the MSB. */
211 LONGEST bitpos () const
212 { return m_bitpos; }
213
214 void set_bitpos (LONGEST bit)
215 { m_bitpos = bit; }
216
fac7bdaa
TT
217 /* Only used for bitfields; the containing value. This allows a
218 single read from the target when displaying multiple
219 bitfields. */
220 value *parent () const
221 { return m_parent.get (); }
222
223 void set_parent (struct value *parent)
224 { m_parent = value_ref_ptr::new_reference (parent); }
225
76675c4d
TT
226 /* Describes offset of a value within lval of a structure in bytes.
227 If lval == lval_memory, this is an offset to the address. If
228 lval == lval_register, this is a further offset from
229 location.address within the registers structure. Note also the
230 member embedded_offset below. */
231 LONGEST offset () const
232 { return m_offset; }
233
234 void set_offset (LONGEST offset)
235 { m_offset = offset; }
236
4b53ca88
TT
237 /* The comment from "struct value" reads: ``Is it modifiable? Only
238 relevant if lval != not_lval.''. Shouldn't the value instead be
239 not_lval and be done with it? */
240 int deprecated_modifiable () const
241 { return m_modifiable; }
242
391f8628
TT
243 LONGEST pointed_to_offset () const
244 { return m_pointed_to_offset; }
245
246 void set_pointed_to_offset (LONGEST val)
247 { m_pointed_to_offset = val; }
248
249 LONGEST embedded_offset () const
250 { return m_embedded_offset; }
251
252 void set_embedded_offset (LONGEST val)
253 { m_embedded_offset = val; }
254
3ee3b270
TT
255 /* If zero, contents of this value are in the contents field. If
256 nonzero, contents are in inferior. If the lval field is lval_memory,
257 the contents are in inferior memory at location.address plus offset.
258 The lval field may also be lval_register.
259
260 WARNING: This field is used by the code which handles watchpoints
261 (see breakpoint.c) to decide whether a particular value can be
262 watched by hardware watchpoints. If the lazy flag is set for some
263 member of a value chain, it is assumed that this member of the
264 chain doesn't need to be watched as part of watching the value
265 itself. This is how GDB avoids watching the entire struct or array
266 when the user wants to watch a single struct member or array
267 element. If you ever change the way lazy flag is set and reset, be
268 sure to consider this use as well! */
269
270 int lazy () const
271 { return m_lazy; }
272
273 void set_lazy (int val)
274 { m_lazy = val; }
275
391f8628 276
463b870d
TT
277 /* If a value represents a C++ object, then the `type' field gives the
278 object's compile-time type. If the object actually belongs to some
279 class derived from `type', perhaps with other base classes and
280 additional members, then `type' is just a subobject of the real
281 thing, and the full object is probably larger than `type' would
282 suggest.
283
284 If `type' is a dynamic class (i.e. one with a vtable), then GDB can
285 actually determine the object's run-time type by looking at the
286 run-time type information in the vtable. When this information is
287 available, we may elect to read in the entire object, for several
288 reasons:
289
290 - When printing the value, the user would probably rather see the
291 full object, not just the limited portion apparent from the
292 compile-time type.
293
294 - If `type' has virtual base classes, then even printing `type'
295 alone may require reaching outside the `type' portion of the
296 object to wherever the virtual base class has been stored.
297
298 When we store the entire object, `enclosing_type' is the run-time
299 type -- the complete object -- and `embedded_offset' is the offset
300 of `type' within that larger type, in bytes. The value_contents()
301 macro takes `embedded_offset' into account, so most GDB code
302 continues to see the `type' portion of the value, just as the
303 inferior would.
304
305 If `type' is a pointer to an object, then `enclosing_type' is a
306 pointer to the object's run-time type, and `pointed_to_offset' is
307 the offset in bytes from the full object to the pointed-to object
308 -- that is, the value `embedded_offset' would have if we followed
309 the pointer and fetched the complete object. (I don't really see
310 the point. Why not just determine the run-time type when you
311 indirect, and avoid the special case? The contents don't matter
312 until you indirect anyway.)
313
314 If we're not doing anything fancy, `enclosing_type' is equal to
315 `type', and `embedded_offset' is zero, so everything works
316 normally. */
317
318 struct type *enclosing_type () const
319 { return m_enclosing_type; }
320
321 void set_enclosing_type (struct type *new_type);
322
c8580184
TT
323 int stack () const
324 { return m_stack; }
325
326 void set_stack (int val)
327 { m_stack = val; }
328
b9f74d54
TT
329 /* If this value is lval_computed, return its lval_funcs
330 structure. */
331 const struct lval_funcs *computed_funcs () const;
332
333 /* If this value is lval_computed, return its closure. The meaning
334 of the returned value depends on the functions this value
335 uses. */
336 void *computed_closure () const;
337
97044105
TT
338 enum lval_type *deprecated_lval_hack ()
339 { return &m_lval; }
340
341 enum lval_type lval () const
342 { return m_lval; }
343
8e5b19ad
TT
344 /* Set or return field indicating whether a variable is initialized or
345 not, based on debugging information supplied by the compiler.
346 1 = initialized; 0 = uninitialized. */
347 int initialized () const
348 { return m_initialized; }
349
350 void set_initialized (int value)
351 { m_initialized = value; }
352
9feb2d07
TT
353 /* If lval == lval_memory, return the address in the inferior. If
354 lval == lval_register, return the byte offset into the registers
355 structure. Otherwise, return 0. The returned address
356 includes the offset, if any. */
357 CORE_ADDR address () const;
358
359 /* Like address, except the result does not include value's
360 offset. */
361 CORE_ADDR raw_address () const;
362
363 /* Set the address of a value. */
364 void set_address (CORE_ADDR);
365
f29de665
TT
366 struct internalvar **deprecated_internalvar_hack ()
367 { return &m_location.internalvar; }
368
369 struct frame_id *deprecated_next_frame_id_hack ();
370
371 int *deprecated_regnum_hack ();
372
bbe912ba
TT
373 /* contents() and contents_raw() both return the address of the gdb
374 buffer used to hold a copy of the contents of the lval.
375 contents() is used when the contents of the buffer are needed --
376 it uses fetch_lazy() to load the buffer from the process being
377 debugged if it hasn't already been loaded (contents_writeable()
378 is used when a writeable but fetched buffer is required)..
379 contents_raw() is used when data is being stored into the buffer,
380 or when it is certain that the contents of the buffer are valid.
381
382 Note: The contents pointer is adjusted by the offset required to
383 get to the real subobject, if the value happens to represent
384 something embedded in a larger run-time object. */
385 gdb::array_view<gdb_byte> contents_raw ();
386 gdb::array_view<gdb_byte> contents_all_raw ();
387 gdb::array_view<gdb_byte> contents_writeable ();
388
78259c36
TT
389 /* Load the actual content of a lazy value. Fetch the data from the
390 user's process and clear the lazy flag to indicate that the data in
391 the buffer is valid.
392
393 If the value is zero-length, we avoid calling read_memory, which
394 would abort. We mark the value as fetched anyway -- all 0 bytes of
395 it. */
396 void fetch_lazy ();
397
02744ba9
TT
398 /* Compare LENGTH bytes of this value's contents starting at OFFSET1
399 with LENGTH bytes of VAL2's contents starting at OFFSET2.
400
401 Note that "contents" refers to the whole value's contents
402 (value_contents_all), without any embedded offset adjustment. For
403 example, to compare a complete object value with itself, including
404 its enclosing type chunk, you'd do:
405
406 int len = check_typedef (val->enclosing_type ())->length ();
407 val->contents_eq (0, val, 0, len);
408
409 Returns true iff the set of available/valid contents match.
410
411 Optimized-out contents are equal to optimized-out contents, and are
412 not equal to non-optimized-out contents.
413
414 Unavailable contents are equal to unavailable contents, and are not
415 equal to non-unavailable contents.
416
417 For example, if 'x's represent an unavailable byte, and 'V' and 'Z'
418 represent different available/valid bytes, in a value with length
419 16:
420
421 offset: 0 4 8 12 16
422 contents: xxxxVVVVxxxxVVZZ
423
424 then:
425
426 val->contents_eq(0, val, 8, 6) => true
427 val->contents_eq(0, val, 4, 4) => false
428 val->contents_eq(0, val, 8, 8) => false
429 val->contents_eq(4, val, 12, 2) => true
430 val->contents_eq(4, val, 12, 4) => true
431 val->contents_eq(3, val, 4, 4) => true
432
433 If 'x's represent an unavailable byte, 'o' represents an optimized
434 out byte, in a value with length 8:
435
436 offset: 0 4 8
437 contents: xxxxoooo
438
439 then:
440
441 val->contents_eq(0, val, 2, 2) => true
442 val->contents_eq(4, val, 6, 2) => true
443 val->contents_eq(0, val, 4, 4) => true
444
445 We only know whether a value chunk is unavailable or optimized out
446 if we've tried to read it. As this routine is used by printing
447 routines, which may be printing values in the value history, long
448 after the inferior is gone, it works with const values. Therefore,
449 this routine must not be called with lazy values. */
450
451 bool contents_eq (LONGEST offset1, const struct value *val2, LONGEST offset2,
452 LONGEST length) const;
453
454 /* An overload of contents_eq that compares the entirety of both
455 values. */
456 bool contents_eq (const struct value *val2) const;
457
d0c97917 458
7cf57bc5
TT
459 /* Type of value; either not an lval, or one of the various
460 different possible kinds of lval. */
461 enum lval_type m_lval = not_lval;
462
463 /* Is it modifiable? Only relevant if lval != not_lval. */
464 unsigned int m_modifiable : 1;
465
466 /* If zero, contents of this value are in the contents field. If
467 nonzero, contents are in inferior. If the lval field is lval_memory,
468 the contents are in inferior memory at location.address plus offset.
469 The lval field may also be lval_register.
470
471 WARNING: This field is used by the code which handles watchpoints
472 (see breakpoint.c) to decide whether a particular value can be
473 watched by hardware watchpoints. If the lazy flag is set for
474 some member of a value chain, it is assumed that this member of
475 the chain doesn't need to be watched as part of watching the
476 value itself. This is how GDB avoids watching the entire struct
477 or array when the user wants to watch a single struct member or
478 array element. If you ever change the way lazy flag is set and
479 reset, be sure to consider this use as well! */
480 unsigned int m_lazy : 1;
481
482 /* If value is a variable, is it initialized or not. */
483 unsigned int m_initialized : 1;
484
485 /* If value is from the stack. If this is set, read_stack will be
486 used instead of read_memory to enable extra caching. */
487 unsigned int m_stack : 1;
488
ee7bb294 489 /* True if this is a zero value, created by 'value::zero'; false
7cf57bc5
TT
490 otherwise. */
491 bool m_is_zero : 1;
492
493 /* True if this a value recorded in value history; false otherwise. */
494 bool m_in_history : 1;
495
496 /* Location of value (if lval). */
497 union
498 {
499 /* If lval == lval_memory, this is the address in the inferior */
500 CORE_ADDR address;
501
502 /*If lval == lval_register, the value is from a register. */
503 struct
504 {
505 /* Register number. */
506 int regnum;
507 /* Frame ID of "next" frame to which a register value is relative.
508 If the register value is found relative to frame F, then the
509 frame id of F->next will be stored in next_frame_id. */
510 struct frame_id next_frame_id;
511 } reg;
512
513 /* Pointer to internal variable. */
514 struct internalvar *internalvar;
515
516 /* Pointer to xmethod worker. */
517 struct xmethod_worker *xm_worker;
518
519 /* If lval == lval_computed, this is a set of function pointers
520 to use to access and describe the value, and a closure pointer
521 for them to use. */
522 struct
523 {
524 /* Functions to call. */
525 const struct lval_funcs *funcs;
526
527 /* Closure for those functions to use. */
528 void *closure;
529 } computed;
530 } m_location {};
531
532 /* Describes offset of a value within lval of a structure in target
533 addressable memory units. Note also the member embedded_offset
534 below. */
535 LONGEST m_offset = 0;
536
537 /* Only used for bitfields; number of bits contained in them. */
538 LONGEST m_bitsize = 0;
539
540 /* Only used for bitfields; position of start of field. For
541 little-endian targets, it is the position of the LSB. For
542 big-endian targets, it is the position of the MSB. */
543 LONGEST m_bitpos = 0;
544
545 /* The number of references to this value. When a value is created,
546 the value chain holds a reference, so REFERENCE_COUNT is 1. If
547 release_value is called, this value is removed from the chain but
548 the caller of release_value now has a reference to this value.
549 The caller must arrange for a call to value_free later. */
550 int m_reference_count = 1;
551
552 /* Only used for bitfields; the containing value. This allows a
553 single read from the target when displaying multiple
554 bitfields. */
555 value_ref_ptr m_parent;
556
557 /* Type of the value. */
558 struct type *m_type;
559
560 /* If a value represents a C++ object, then the `type' field gives
561 the object's compile-time type. If the object actually belongs
562 to some class derived from `type', perhaps with other base
563 classes and additional members, then `type' is just a subobject
564 of the real thing, and the full object is probably larger than
565 `type' would suggest.
566
567 If `type' is a dynamic class (i.e. one with a vtable), then GDB
568 can actually determine the object's run-time type by looking at
569 the run-time type information in the vtable. When this
570 information is available, we may elect to read in the entire
571 object, for several reasons:
572
573 - When printing the value, the user would probably rather see the
574 full object, not just the limited portion apparent from the
575 compile-time type.
576
577 - If `type' has virtual base classes, then even printing `type'
578 alone may require reaching outside the `type' portion of the
579 object to wherever the virtual base class has been stored.
580
581 When we store the entire object, `enclosing_type' is the run-time
582 type -- the complete object -- and `embedded_offset' is the
583 offset of `type' within that larger type, in target addressable memory
584 units. The value_contents() macro takes `embedded_offset' into account,
585 so most GDB code continues to see the `type' portion of the value, just
586 as the inferior would.
587
588 If `type' is a pointer to an object, then `enclosing_type' is a
589 pointer to the object's run-time type, and `pointed_to_offset' is
590 the offset in target addressable memory units from the full object
591 to the pointed-to object -- that is, the value `embedded_offset' would
592 have if we followed the pointer and fetched the complete object.
593 (I don't really see the point. Why not just determine the
594 run-time type when you indirect, and avoid the special case? The
595 contents don't matter until you indirect anyway.)
596
597 If we're not doing anything fancy, `enclosing_type' is equal to
598 `type', and `embedded_offset' is zero, so everything works
599 normally. */
600 struct type *m_enclosing_type;
601 LONGEST m_embedded_offset = 0;
602 LONGEST m_pointed_to_offset = 0;
603
604 /* Actual contents of the value. Target byte-order.
605
606 May be nullptr if the value is lazy or is entirely optimized out.
607 Guaranteed to be non-nullptr otherwise. */
608 gdb::unique_xmalloc_ptr<gdb_byte> m_contents;
609
610 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
611 rather than available, since the common and default case is for a
612 value to be available. This is filled in at value read time.
613 The unavailable ranges are tracked in bits. Note that a contents
614 bit that has been optimized out doesn't really exist in the
615 program, so it can't be marked unavailable either. */
616 std::vector<range> m_unavailable;
617
618 /* Likewise, but for optimized out contents (a chunk of the value of
619 a variable that does not actually exist in the program). If LVAL
620 is lval_register, this is a register ($pc, $sp, etc., never a
621 program variable) that has not been saved in the frame. Not
622 saved registers and optimized-out program variables values are
623 treated pretty much the same, except not-saved registers have a
624 different string representation and related error strings. */
625 std::vector<range> m_optimized_out;
626
627 /* This is only non-zero for values of TYPE_CODE_ARRAY and if the size of
628 the array in inferior memory is greater than max_value_size. If these
629 conditions are met then, when the value is loaded from the inferior
630 GDB will only load a portion of the array into memory, and
631 limited_length will be set to indicate the length in octets that were
632 loaded from the inferior. */
633 ULONGEST m_limited_length = 0;
317c3ed9
TT
634
635private:
636
637 /* Allocate a value and its contents for type TYPE. If CHECK_SIZE
638 is true, then apply the usual max-value-size checks. */
639 static struct value *allocate (struct type *type, bool check_size);
78259c36
TT
640
641 /* Helper for fetch_lazy when the value is a bitfield. */
642 void fetch_lazy_bitfield ();
643
644 /* Helper for fetch_lazy when the value is in memory. */
645 void fetch_lazy_memory ();
646
647 /* Helper for fetch_lazy when the value is in a register. */
648 void fetch_lazy_register ();
82ca8f72
TT
649
650 /* Try to limit ourselves to only fetching the limited number of
651 elements. However, if this limited number of elements still
652 puts us over max_value_size, then we still refuse it and
653 return failure here, which will ultimately throw an error. */
654 bool set_limited_array_length ();
655
656public: /* Temporary */
657
658 /* Allocate the contents of this value if it has not been allocated
659 yet. If CHECK_SIZE is true, then apply the usual max-value-size
660 checks. */
661 void allocate_contents (bool check_size);
02744ba9
TT
662
663private:
664
665 /* Helper function for value_contents_eq. The only difference is that
666 this function is bit rather than byte based.
667
668 Compare LENGTH bits of this value's contents starting at OFFSET1
669 bits with LENGTH bits of VAL2's contents starting at OFFSET2
670 bits. Return true if the available bits match. */
671 bool contents_bits_eq (int offset1, const struct value *val2, int offset2,
672 int length) const;
7cf57bc5
TT
673};
674
8264ba82
AG
675/* Returns value_type or value_enclosing_type depending on
676 value_print_options.objectprint.
677
678 If RESOLVE_SIMPLE_TYPES is 0 the enclosing type will be resolved
679 only for pointers and references, else it will be returned
680 for all the types (e.g. structures). This option is useful
681 to prevent retrieving enclosing type for the base classes fields.
682
683 REAL_TYPE_FOUND is used to inform whether the real type was found
684 (or just static type was used). The NULL may be passed if it is not
685 necessary. */
686
687extern struct type *value_actual_type (struct value *value,
688 int resolve_simple_types,
689 int *real_type_found);
690
5f5233d4
PA
691/* For lval_computed values, this structure holds functions used to
692 retrieve and set the value (or portions of the value).
693
694 For each function, 'V' is the 'this' pointer: an lval_funcs
695 function F may always assume that the V it receives is an
696 lval_computed value, and has F in the appropriate slot of its
697 lval_funcs structure. */
698
699struct lval_funcs
700{
701 /* Fill in VALUE's contents. This is used to "un-lazy" values. If
702 a problem arises in obtaining VALUE's bits, this function should
ac71a68c
JK
703 call 'error'. If it is NULL value_fetch_lazy on "un-lazy"
704 non-optimized-out value is an internal error. */
5f5233d4
PA
705 void (*read) (struct value *v);
706
707 /* Handle an assignment TOVAL = FROMVAL by writing the value of
708 FROMVAL to TOVAL's location. The contents of TOVAL have not yet
709 been updated. If a problem arises in doing so, this function
ac71a68c
JK
710 should call 'error'. If it is NULL such TOVAL assignment is an error as
711 TOVAL is not considered as an lvalue. */
5f5233d4
PA
712 void (*write) (struct value *toval, struct value *fromval);
713
a519e8ff
TT
714 /* Return true if any part of V is optimized out, false otherwise.
715 This will only be called for lazy values -- if the value has been
716 fetched, then the value's optimized-out bits are consulted
717 instead. */
718 bool (*is_optimized_out) (struct value *v);
719
8cf6f0b1
TT
720 /* If non-NULL, this is used to implement pointer indirection for
721 this value. This method may return NULL, in which case value_ind
722 will fall back to ordinary indirection. */
723 struct value *(*indirect) (struct value *value);
724
a471c594
JK
725 /* If non-NULL, this is used to implement reference resolving for
726 this value. This method may return NULL, in which case coerce_ref
727 will fall back to ordinary references resolving. */
728 struct value *(*coerce_ref) (const struct value *value);
729
8cf6f0b1
TT
730 /* If non-NULL, this is used to determine whether the indicated bits
731 of VALUE are a synthetic pointer. */
732 int (*check_synthetic_pointer) (const struct value *value,
6b850546 733 LONGEST offset, int length);
8cf6f0b1 734
5f5233d4
PA
735 /* Return a duplicate of VALUE's closure, for use in a new value.
736 This may simply return the same closure, if VALUE's is
737 reference-counted or statically allocated.
738
739 This may be NULL, in which case VALUE's closure is re-used in the
740 new value. */
0e03807e 741 void *(*copy_closure) (const struct value *v);
5f5233d4
PA
742
743 /* Drop VALUE's reference to its closure. Maybe this frees the
744 closure; maybe this decrements a reference count; maybe the
745 closure is statically allocated and this does nothing.
746
747 This may be NULL, in which case no action is taken to free
748 VALUE's closure. */
749 void (*free_closure) (struct value *v);
750};
751
901461f8
PA
752/* Throw an error complaining that the value has been optimized
753 out. */
754
755extern void error_value_optimized_out (void);
756
91294c83
AC
757/* Actual contents of the value. For use of this value; setting it
758 uses the stuff above. Not valid if lazy is nonzero. Target
759 byte-order. We force it to be aligned properly for any possible
760 value. Note that a value therefore extends beyond what is
761 declared here. */
762
50888e42 763extern gdb::array_view<const gdb_byte> value_contents (struct value *);
c906108c
SS
764
765/* The ALL variants of the above two macros do not adjust the returned
dea7f9ba 766 pointer by the embedded_offset value. */
c5aa993b 767
50888e42 768extern gdb::array_view<const gdb_byte> value_contents_all (struct value *);
c5aa993b 769
0e03807e
TT
770/* Like value_contents_all, but does not require that the returned
771 bits be valid. This should only be used in situations where you
772 plan to check the validity manually. */
50888e42 773extern gdb::array_view<const gdb_byte> value_contents_for_printing (struct value *value);
0e03807e 774
de4127a3
PA
775/* Like value_contents_for_printing, but accepts a constant value
776 pointer. Unlike value_contents_for_printing however, the pointed
777 value must _not_ be lazy. */
50888e42 778extern gdb::array_view<const gdb_byte>
de4127a3
PA
779 value_contents_for_printing_const (const struct value *value);
780
91294c83 781/* If nonzero, this is the value of a variable which does not actually
eca07816
JB
782 exist in the program, at least partially. If the value is lazy,
783 this may fetch it now. */
feb13ab0 784extern int value_optimized_out (struct value *value);
c906108c 785
9a0dc9e3
PA
786/* Given a value, return true if any of the contents bits starting at
787 OFFSET and extending for LENGTH bits is optimized out, false
788 otherwise. */
789
790extern int value_bits_any_optimized_out (const struct value *value,
791 int bit_offset, int bit_length);
792
793/* Like value_optimized_out, but return true iff the whole value is
794 optimized out. */
795extern int value_entirely_optimized_out (struct value *value);
796
797/* Mark VALUE's content bytes starting at OFFSET and extending for
798 LENGTH bytes as optimized out. */
799
800extern void mark_value_bytes_optimized_out (struct value *value,
801 int offset, int length);
802
803/* Mark VALUE's content bits starting at OFFSET and extending for
804 LENGTH bits as optimized out. */
eca07816 805
9a0dc9e3 806extern void mark_value_bits_optimized_out (struct value *value,
6b850546 807 LONGEST offset, LONGEST length);
0e03807e 808
74bcbdf3
PA
809/* Set COMPONENT's location as appropriate for a component of WHOLE
810 --- regardless of what kind of lvalue WHOLE is. */
811extern void set_value_component_location (struct value *component,
dda83cd7 812 const struct value *whole);
74bcbdf3 813
13bb5560
AC
814/* While the following fields are per- VALUE .CONTENT .PIECE (i.e., a
815 single value might have multiple LVALs), this hacked interface is
816 limited to just the first PIECE. Expect further change. */
91294c83
AC
817/* Type of value; either not an lval, or one of the various different
818 possible kinds of lval. */
97044105 819#define VALUE_LVAL(val) (*((val)->deprecated_lval_hack ()))
a471c594 820
91294c83 821/* Pointer to internal variable. */
f29de665 822#define VALUE_INTERNALVAR(val) (*((val)->deprecated_internalvar_hack ()))
91294c83 823
41b56feb
KB
824/* Frame ID of "next" frame to which a register value is relative. A
825 register value is indicated by VALUE_LVAL being set to lval_register.
826 So, if the register value is found relative to frame F, then the
827 frame id of F->next will be stored in VALUE_NEXT_FRAME_ID. */
f29de665 828#define VALUE_NEXT_FRAME_ID(val) (*((val)->deprecated_next_frame_id_hack ()))
41b56feb 829
91294c83 830/* Register number if the value is from a register. */
f29de665 831#define VALUE_REGNUM(val) (*((val)->deprecated_regnum_hack ()))
13bb5560 832
a471c594
JK
833/* Return value after lval_funcs->coerce_ref (after check_typedef). Return
834 NULL if lval_funcs->coerce_ref is not applicable for whatever reason. */
835
836extern struct value *coerce_ref_if_computed (const struct value *arg);
837
dfcee124
AG
838/* Setup a new value type and enclosing value type for dereferenced value VALUE.
839 ENC_TYPE is the new enclosing type that should be set. ORIGINAL_TYPE and
e79eb02f
AB
840 ORIGINAL_VAL are the type and value of the original reference or
841 pointer. ORIGINAL_VALUE_ADDRESS is the address within VALUE, that is
842 the address that was dereferenced.
dfcee124
AG
843
844 Note, that VALUE is modified by this function.
845
846 It is a common implementation for coerce_ref and value_ind. */
847
848extern struct value * readjust_indirect_value_type (struct value *value,
849 struct type *enc_type,
4bf7b526 850 const struct type *original_type,
e79eb02f
AB
851 struct value *original_val,
852 CORE_ADDR original_value_address);
dfcee124 853
dea7f9ba 854/* Convert a REF to the object referenced. */
c906108c 855
994b9211 856extern struct value *coerce_ref (struct value *value);
c906108c
SS
857
858/* If ARG is an array, convert it to a pointer.
c906108c
SS
859 If ARG is a function, convert it to a function pointer.
860
861 References are dereferenced. */
862
994b9211 863extern struct value *coerce_array (struct value *value);
c906108c 864
8cf6f0b1
TT
865/* Given a value, determine whether the bits starting at OFFSET and
866 extending for LENGTH bits are a synthetic pointer. */
867
868extern int value_bits_synthetic_pointer (const struct value *value,
6b850546 869 LONGEST offset, LONGEST length);
8cf6f0b1 870
4e07d55f
PA
871/* Given a value, determine whether the contents bytes starting at
872 OFFSET and extending for LENGTH bytes are available. This returns
873 nonzero if all bytes in the given range are available, zero if any
874 byte is unavailable. */
875
876extern int value_bytes_available (const struct value *value,
4f82620c 877 LONGEST offset, ULONGEST length);
4e07d55f 878
bdf22206
AB
879/* Given a value, determine whether the contents bits starting at
880 OFFSET and extending for LENGTH bits are available. This returns
881 nonzero if all bits in the given range are available, zero if any
882 bit is unavailable. */
883
884extern int value_bits_available (const struct value *value,
4f82620c 885 LONGEST offset, ULONGEST length);
bdf22206 886
ec0a52e1
PA
887/* Like value_bytes_available, but return false if any byte in the
888 whole object is unavailable. */
889extern int value_entirely_available (struct value *value);
890
6211c335
YQ
891/* Like value_entirely_available, but return false if any byte in the
892 whole object is available. */
893extern int value_entirely_unavailable (struct value *value);
894
4e07d55f
PA
895/* Mark VALUE's content bytes starting at OFFSET and extending for
896 LENGTH bytes as unavailable. */
897
898extern void mark_value_bytes_unavailable (struct value *value,
4f82620c 899 LONGEST offset, ULONGEST length);
c8c1c22f 900
bdf22206
AB
901/* Mark VALUE's content bits starting at OFFSET and extending for
902 LENGTH bits as unavailable. */
903
904extern void mark_value_bits_unavailable (struct value *value,
4f82620c 905 LONGEST offset, ULONGEST length);
bdf22206 906
3ae385af
SM
907/* Read LENGTH addressable memory units starting at MEMADDR into BUFFER,
908 which is (or will be copied to) VAL's contents buffer offset by
23f945bf
AA
909 BIT_OFFSET bits. Marks value contents ranges as unavailable if
910 the corresponding memory is likewise unavailable. STACK indicates
911 whether the memory is known to be stack memory. */
e6ca34fc 912
23f945bf 913extern void read_value_memory (struct value *val, LONGEST bit_offset,
e6ca34fc
PA
914 int stack, CORE_ADDR memaddr,
915 gdb_byte *buffer, size_t length);
916
8954db33
AB
917/* Cast SCALAR_VALUE to the element type of VECTOR_TYPE, then replicate
918 into each element of a new vector value with VECTOR_TYPE. */
919
920struct value *value_vector_widen (struct value *scalar_value,
921 struct type *vector_type);
922
c906108c 923\f
c5aa993b 924
c906108c
SS
925#include "symtab.h"
926#include "gdbtypes.h"
927#include "expression.h"
928
bd2b40ac 929class frame_info_ptr;
c906108c 930struct fn_field;
c906108c 931
9cb709b6
TT
932extern int print_address_demangle (const struct value_print_options *,
933 struct gdbarch *, CORE_ADDR,
934 struct ui_file *, int);
c906108c 935
70100014
UW
936/* Returns true if VAL is of floating-point type. In addition,
937 throws an error if the value is an invalid floating-point value. */
938extern bool is_floating_value (struct value *val);
939
f23631e4 940extern LONGEST value_as_long (struct value *val);
f23631e4 941extern CORE_ADDR value_as_address (struct value *val);
c906108c 942
fc1a4b47 943extern LONGEST unpack_long (struct type *type, const gdb_byte *valaddr);
fc1a4b47 944extern CORE_ADDR unpack_pointer (struct type *type, const gdb_byte *valaddr);
5467c6c8 945
8929e59d 946extern LONGEST unpack_field_as_long (struct type *type,
fc1a4b47 947 const gdb_byte *valaddr,
a14ed312 948 int fieldno);
ef83a141
TT
949
950/* Unpack a bitfield of the specified FIELD_TYPE, from the object at
951 VALADDR, and store the result in *RESULT.
952 The bitfield starts at BITPOS bits and contains BITSIZE bits; if
953 BITSIZE is zero, then the length is taken from FIELD_TYPE.
954
955 Extracting bits depends on endianness of the machine. Compute the
956 number of least significant bits to discard. For big endian machines,
957 we compute the total number of bits in the anonymous object, subtract
958 off the bit count from the MSB of the object to the MSB of the
959 bitfield, then the size of the bitfield, which leaves the LSB discard
960 count. For little endian machines, the discard count is simply the
961 number of bits from the LSB of the anonymous object to the LSB of the
962 bitfield.
963
964 If the field is signed, we also do sign extension. */
965
966extern LONGEST unpack_bits_as_long (struct type *field_type,
967 const gdb_byte *valaddr,
968 LONGEST bitpos, LONGEST bitsize);
969
5467c6c8 970extern int unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
6b850546 971 LONGEST embedded_offset, int fieldno,
5467c6c8
PA
972 const struct value *val, LONGEST *result);
973
bb9d5f81 974extern void unpack_value_bitfield (struct value *dest_val,
6b850546
DT
975 LONGEST bitpos, LONGEST bitsize,
976 const gdb_byte *valaddr,
977 LONGEST embedded_offset,
bb9d5f81
PP
978 const struct value *val);
979
5467c6c8
PA
980extern struct value *value_field_bitfield (struct type *type, int fieldno,
981 const gdb_byte *valaddr,
6b850546 982 LONGEST embedded_offset,
5467c6c8 983 const struct value *val);
c906108c 984
14d06750
DJ
985extern void pack_long (gdb_byte *buf, struct type *type, LONGEST num);
986
f23631e4 987extern struct value *value_from_longest (struct type *type, LONGEST num);
595939de 988extern struct value *value_from_ulongest (struct type *type, ULONGEST num);
f23631e4 989extern struct value *value_from_pointer (struct type *type, CORE_ADDR addr);
7584bb30 990extern struct value *value_from_host_double (struct type *type, double d);
e799154c 991extern struct value *value_from_history_ref (const char *, const char **);
3fff9862
YQ
992extern struct value *value_from_component (struct value *, struct type *,
993 LONGEST);
0f71a2f6 994
e379f652
TT
995
996/* Create a new value by extracting it from WHOLE. TYPE is the type
997 of the new value. BIT_OFFSET and BIT_LENGTH describe the offset
998 and field width of the value to extract from WHOLE -- BIT_LENGTH
999 may differ from TYPE's length in the case where WHOLE's type is
1000 packed.
1001
1002 When the value does come from a non-byte-aligned offset or field
1003 width, it will be marked non_lval. */
1004
1005extern struct value *value_from_component_bitsize (struct value *whole,
1006 struct type *type,
1007 LONGEST bit_offset,
1008 LONGEST bit_length);
1009
00a4c844
AC
1010extern struct value *value_at (struct type *type, CORE_ADDR addr);
1011extern struct value *value_at_lazy (struct type *type, CORE_ADDR addr);
c906108c 1012
7f22044a
TT
1013/* Like value_at, but ensures that the result is marked not_lval.
1014 This can be important if the memory is "volatile". */
1015extern struct value *value_at_non_lval (struct type *type, CORE_ADDR addr);
1016
012370f6
TT
1017extern struct value *value_from_contents_and_address_unresolved
1018 (struct type *, const gdb_byte *, CORE_ADDR);
8acb6b92
TT
1019extern struct value *value_from_contents_and_address (struct type *,
1020 const gdb_byte *,
1021 CORE_ADDR);
8a9b8146 1022extern struct value *value_from_contents (struct type *, const gdb_byte *);
8acb6b92 1023
2ed3c037
UW
1024extern struct value *default_value_from_register (struct gdbarch *gdbarch,
1025 struct type *type,
9acbedc0 1026 int regnum,
2ed3c037 1027 struct frame_id frame_id);
9acbedc0 1028
b56d6f31 1029extern void read_frame_register_value (struct value *value,
bd2b40ac 1030 frame_info_ptr frame);
b56d6f31 1031
f23631e4 1032extern struct value *value_from_register (struct type *type, int regnum,
bd2b40ac 1033 frame_info_ptr frame);
c906108c 1034
2ed3c037 1035extern CORE_ADDR address_from_register (int regnum,
bd2b40ac 1036 frame_info_ptr frame);
0b2b0195 1037
9df2fbc4
PM
1038extern struct value *value_of_variable (struct symbol *var,
1039 const struct block *b);
c906108c 1040
270140bd
TT
1041extern struct value *address_of_variable (struct symbol *var,
1042 const struct block *b);
61212c0f 1043
bd2b40ac 1044extern struct value *value_of_register (int regnum, frame_info_ptr frame);
c906108c 1045
bd2b40ac 1046struct value *value_of_register_lazy (frame_info_ptr frame, int regnum);
9214ee5f 1047
0b31a4bc
TT
1048/* Return the symbol's reading requirement. */
1049
1050extern enum symbol_needs_kind symbol_read_needs (struct symbol *);
1051
1052/* Return true if the symbol needs a frame. This is a wrapper for
1053 symbol_read_needs that simply checks for SYMBOL_NEEDS_FRAME. */
1054
a14ed312 1055extern int symbol_read_needs_frame (struct symbol *);
c906108c 1056
f23631e4 1057extern struct value *read_var_value (struct symbol *var,
63e43d3a 1058 const struct block *var_block,
bd2b40ac 1059 frame_info_ptr frame);
c906108c 1060
6b850546
DT
1061extern void value_contents_copy (struct value *dst, LONGEST dst_offset,
1062 struct value *src, LONGEST src_offset,
1063 LONGEST length);
c906108c 1064
f23631e4 1065extern struct value *allocate_repeat_value (struct type *type, int count);
c906108c 1066
f23631e4 1067extern struct value *value_mark (void);
c906108c 1068
4bf7b526 1069extern void value_free_to_mark (const struct value *mark);
c906108c 1070
eb115069
TT
1071/* A helper class that uses value_mark at construction time and calls
1072 value_free_to_mark in the destructor. This is used to clear out
1073 temporary values created during the lifetime of this object. */
1074class scoped_value_mark
1075{
1076 public:
1077
1078 scoped_value_mark ()
1079 : m_value (value_mark ())
1080 {
1081 }
1082
1083 ~scoped_value_mark ()
1084 {
0cf08227
TT
1085 free_to_mark ();
1086 }
1087
54f70bc1
TT
1088 scoped_value_mark (scoped_value_mark &&other) = default;
1089
1090 DISABLE_COPY_AND_ASSIGN (scoped_value_mark);
1091
0cf08227
TT
1092 /* Free the values currently on the value stack. */
1093 void free_to_mark ()
1094 {
1095 if (m_value != NULL)
1096 {
1097 value_free_to_mark (m_value);
1098 m_value = NULL;
1099 }
eb115069
TT
1100 }
1101
1102 private:
1103
1104 const struct value *m_value;
1105};
1106
e3a3797e 1107extern struct value *value_cstring (const char *ptr, ssize_t len,
3b7538c0 1108 struct type *char_type);
7cc3f8e2 1109extern struct value *value_string (const char *ptr, ssize_t len,
3b7538c0 1110 struct type *char_type);
c906108c 1111
f23631e4 1112extern struct value *value_array (int lowbound, int highbound,
89f5065b 1113 struct value **elemvec);
c906108c 1114
f23631e4 1115extern struct value *value_concat (struct value *arg1, struct value *arg2);
c906108c 1116
f23631e4
AC
1117extern struct value *value_binop (struct value *arg1, struct value *arg2,
1118 enum exp_opcode op);
c906108c 1119
2497b498 1120extern struct value *value_ptradd (struct value *arg1, LONGEST arg2);
89eef114
UW
1121
1122extern LONGEST value_ptrdiff (struct value *arg1, struct value *arg2);
c906108c 1123
00db9531
SM
1124/* Return true if VAL does not live in target memory, but should in order
1125 to operate on it. Otherwise return false. */
1126
1127extern bool value_must_coerce_to_target (struct value *arg1);
63092375
DJ
1128
1129extern struct value *value_coerce_to_target (struct value *arg1);
1130
f23631e4 1131extern struct value *value_coerce_array (struct value *arg1);
c906108c 1132
f23631e4 1133extern struct value *value_coerce_function (struct value *arg1);
c906108c 1134
f23631e4 1135extern struct value *value_ind (struct value *arg1);
c906108c 1136
f23631e4 1137extern struct value *value_addr (struct value *arg1);
c906108c 1138
a65cfae5 1139extern struct value *value_ref (struct value *arg1, enum type_code refcode);
fb933624 1140
89f5065b
AC
1141extern struct value *value_assign (struct value *toval,
1142 struct value *fromval);
c906108c 1143
36e9969c
NS
1144extern struct value *value_pos (struct value *arg1);
1145
f23631e4 1146extern struct value *value_neg (struct value *arg1);
c906108c 1147
f23631e4 1148extern struct value *value_complement (struct value *arg1);
c906108c 1149
f23631e4 1150extern struct value *value_struct_elt (struct value **argp,
158cc4fe 1151 gdb::optional<gdb::array_view <value *>> args,
714f19d5
TT
1152 const char *name, int *static_memfuncp,
1153 const char *err);
c906108c 1154
b5b08fb4
SC
1155extern struct value *value_struct_elt_bitpos (struct value **argp,
1156 int bitpos,
1157 struct type *field_type,
1158 const char *err);
1159
79c2c32d 1160extern struct value *value_aggregate_elt (struct type *curtype,
c848d642 1161 const char *name,
072bba3b 1162 struct type *expect_type,
0d5de010
DJ
1163 int want_address,
1164 enum noside noside);
c906108c 1165
f23631e4 1166extern struct value *value_static_field (struct type *type, int fieldno);
c906108c 1167
4c3376c8
SW
1168enum oload_search_type { NON_METHOD, METHOD, BOTH };
1169
6b1747cd 1170extern int find_overload_match (gdb::array_view<value *> args,
4c3376c8 1171 const char *name,
28c64fc2 1172 enum oload_search_type method,
7f8c9282 1173 struct value **objp, struct symbol *fsym,
f23631e4 1174 struct value **valp, struct symbol **symp,
e66d4446
SC
1175 int *staticp, const int no_adl,
1176 enum noside noside);
c906108c 1177
f23631e4 1178extern struct value *value_field (struct value *arg1, int fieldno);
c906108c 1179
6b850546 1180extern struct value *value_primitive_field (struct value *arg1, LONGEST offset,
f23631e4
AC
1181 int fieldno,
1182 struct type *arg_type);
c906108c 1183
c906108c 1184
6b850546 1185extern struct type *value_rtti_indirect_type (struct value *, int *, LONGEST *,
dfcee124 1186 int *);
c906108c 1187
f23631e4
AC
1188extern struct value *value_full_object (struct value *, struct type *, int,
1189 int, int);
c906108c 1190
b1af9e97 1191extern struct value *value_cast_pointers (struct type *, struct value *, int);
fb933624 1192
f23631e4 1193extern struct value *value_cast (struct type *type, struct value *arg2);
c906108c 1194
4e8f195d
TT
1195extern struct value *value_reinterpret_cast (struct type *type,
1196 struct value *arg);
1197
1198extern struct value *value_dynamic_cast (struct type *type, struct value *arg);
1199
18a46dbe 1200extern struct value *value_one (struct type *type);
301f0ecf 1201
f23631e4 1202extern struct value *value_repeat (struct value *arg1, int count);
c906108c 1203
2497b498 1204extern struct value *value_subscript (struct value *array, LONGEST index);
c906108c 1205
afc05acb
UW
1206extern struct value *value_bitstring_subscript (struct type *type,
1207 struct value *bitstring,
2497b498 1208 LONGEST index);
afc05acb 1209
5fe830e4
AC
1210extern struct value *register_value_being_returned (struct type *valtype,
1211 struct regcache *retbuf);
c906108c 1212
fbb06eb1 1213extern int value_in (struct value *element, struct value *set);
c906108c 1214
fc1a4b47 1215extern int value_bit_index (struct type *type, const gdb_byte *addr,
c84141d6 1216 int index);
c906108c 1217
bbfdfe1c
DM
1218extern enum return_value_convention
1219struct_return_convention (struct gdbarch *gdbarch, struct value *function,
1220 struct type *value_type);
1221
d80b854b 1222extern int using_struct_return (struct gdbarch *gdbarch,
6a3a010b 1223 struct value *function,
c055b101 1224 struct type *value_type);
c906108c 1225
efd7ff14
TT
1226/* Evaluate the expression EXP. If set, EXPECT_TYPE is passed to the
1227 outermost operation's evaluation. This is ignored by most
1228 operations, but may be used, e.g., to determine the type of an
1229 otherwise untyped symbol. The caller should not assume that the
1230 returned value has this type. */
1231
1232extern struct value *evaluate_expression (struct expression *exp,
1233 struct type *expect_type = nullptr);
c906108c 1234
f23631e4 1235extern struct value *evaluate_type (struct expression *exp);
c906108c 1236
ced9779b
JB
1237extern value *evaluate_var_value (enum noside noside, const block *blk,
1238 symbol *var);
1239
1240extern value *evaluate_var_msym_value (enum noside noside,
1241 struct objfile *objfile,
1242 minimal_symbol *msymbol);
1243
413403fc 1244namespace expr { class operation; };
1eaebe02 1245extern void fetch_subexp_value (struct expression *exp,
413403fc 1246 expr::operation *op,
0cf6dd15 1247 struct value **valp, struct value **resultp,
a6535de1 1248 std::vector<value_ref_ptr> *val_chain,
2e362716 1249 bool preserve_errors);
0cf6dd15 1250
bbc13ae3 1251extern struct value *parse_and_eval (const char *exp);
c906108c 1252
bbc13ae3 1253extern struct value *parse_to_comma_and_eval (const char **expp);
c906108c 1254
f5756acc 1255extern struct type *parse_and_eval_type (const char *p, int length);
c906108c 1256
bbc13ae3 1257extern CORE_ADDR parse_and_eval_address (const char *exp);
c906108c 1258
a1b8c4cc 1259extern LONGEST parse_and_eval_long (const char *exp);
bb518678 1260
4066e646
UW
1261extern void unop_promote (const struct language_defn *language,
1262 struct gdbarch *gdbarch,
1263 struct value **arg1);
1264
1265extern void binop_promote (const struct language_defn *language,
1266 struct gdbarch *gdbarch,
1267 struct value **arg1, struct value **arg2);
1268
f23631e4 1269extern struct value *access_value_history (int num);
c906108c 1270
30a87e90
AB
1271/* Return the number of items in the value history. */
1272
1273extern ULONGEST value_history_count ();
1274
78267919
UW
1275extern struct value *value_of_internalvar (struct gdbarch *gdbarch,
1276 struct internalvar *var);
c906108c 1277
4fa62494
UW
1278extern int get_internalvar_integer (struct internalvar *var, LONGEST *l);
1279
f23631e4 1280extern void set_internalvar (struct internalvar *var, struct value *val);
c906108c 1281
4fa62494
UW
1282extern void set_internalvar_integer (struct internalvar *var, LONGEST l);
1283
78267919
UW
1284extern void set_internalvar_string (struct internalvar *var,
1285 const char *string);
1286
4fa62494
UW
1287extern void clear_internalvar (struct internalvar *var);
1288
a14ed312 1289extern void set_internalvar_component (struct internalvar *var,
6b850546
DT
1290 LONGEST offset,
1291 LONGEST bitpos, LONGEST bitsize,
f23631e4 1292 struct value *newvalue);
c906108c 1293
bc3b79fd 1294extern struct internalvar *lookup_only_internalvar (const char *name);
c4a3d09a 1295
bc3b79fd 1296extern struct internalvar *create_internalvar (const char *name);
c4a3d09a 1297
eb3ff9a5
PA
1298extern void complete_internalvar (completion_tracker &tracker,
1299 const char *name);
d55637df 1300
22d2b532
SDJ
1301/* An internalvar can be dynamically computed by supplying a vector of
1302 function pointers to perform various operations. */
1303
1304struct internalvar_funcs
1305{
1306 /* Compute the value of the variable. The DATA argument passed to
1307 the function is the same argument that was passed to
1308 `create_internalvar_type_lazy'. */
1309
1310 struct value *(*make_value) (struct gdbarch *arch,
1311 struct internalvar *var,
1312 void *data);
1313
1314 /* Update the agent expression EXPR with bytecode to compute the
1315 value. VALUE is the agent value we are updating. The DATA
1316 argument passed to this function is the same argument that was
1317 passed to `create_internalvar_type_lazy'. If this pointer is
1318 NULL, then the internalvar cannot be compiled to an agent
1319 expression. */
1320
1321 void (*compile_to_ax) (struct internalvar *var,
1322 struct agent_expr *expr,
1323 struct axs_value *value,
1324 void *data);
22d2b532
SDJ
1325};
1326
73033f12
SDJ
1327extern struct internalvar *create_internalvar_type_lazy (const char *name,
1328 const struct internalvar_funcs *funcs,
1329 void *data);
22d2b532
SDJ
1330
1331/* Compile an internal variable to an agent expression. VAR is the
1332 variable to compile; EXPR and VALUE are the agent expression we are
1333 updating. This will return 0 if there is no known way to compile
1334 VAR, and 1 if VAR was successfully compiled. It may also throw an
1335 exception on error. */
1336
1337extern int compile_internalvar_to_ax (struct internalvar *var,
1338 struct agent_expr *expr,
1339 struct axs_value *value);
4aa995e1 1340
bc3b79fd 1341extern struct internalvar *lookup_internalvar (const char *name);
c906108c 1342
f23631e4 1343extern int value_equal (struct value *arg1, struct value *arg2);
c906108c 1344
218d2fc6
TJB
1345extern int value_equal_contents (struct value *arg1, struct value *arg2);
1346
f23631e4 1347extern int value_less (struct value *arg1, struct value *arg2);
c906108c 1348
7ebaa5f7
TT
1349/* Simulate the C operator ! -- return true if ARG1 contains zero. */
1350extern bool value_logical_not (struct value *arg1);
1351
1352/* Returns true if the value VAL represents a true value. */
1353static inline bool
1354value_true (struct value *val)
1355{
1356 return !value_logical_not (val);
1357}
c906108c
SS
1358
1359/* C++ */
1360
85bc8cb7
JK
1361extern struct value *value_of_this (const struct language_defn *lang);
1362
1363extern struct value *value_of_this_silent (const struct language_defn *lang);
c906108c 1364
f23631e4
AC
1365extern struct value *value_x_binop (struct value *arg1, struct value *arg2,
1366 enum exp_opcode op,
1367 enum exp_opcode otherop,
1368 enum noside noside);
c906108c 1369
f23631e4
AC
1370extern struct value *value_x_unop (struct value *arg1, enum exp_opcode op,
1371 enum noside noside);
c906108c 1372
89f5065b 1373extern struct value *value_fn_field (struct value **arg1p, struct fn_field *f,
6b850546 1374 int j, struct type *type, LONGEST offset);
c906108c 1375
be636754
PA
1376extern int binop_types_user_defined_p (enum exp_opcode op,
1377 struct type *type1,
1378 struct type *type2);
1379
f23631e4
AC
1380extern int binop_user_defined_p (enum exp_opcode op, struct value *arg1,
1381 struct value *arg2);
c906108c 1382
f23631e4 1383extern int unop_user_defined_p (enum exp_opcode op, struct value *arg1);
c906108c 1384
d8228535 1385extern int destructor_name_p (const char *name, struct type *type);
c906108c 1386
22bc8444 1387extern value_ref_ptr release_value (struct value *val);
e848a8a5 1388
f23631e4 1389extern int record_latest_value (struct value *val);
c906108c 1390
50810684 1391extern void modify_field (struct type *type, gdb_byte *addr,
6b850546 1392 LONGEST fieldval, LONGEST bitpos, LONGEST bitsize);
c906108c 1393
0d5cff50 1394extern void type_print (struct type *type, const char *varstring,
89f5065b 1395 struct ui_file *stream, int show);
c906108c 1396
2f408ecb 1397extern std::string type_to_string (struct type *type);
ae6a3a4c 1398
fc1a4b47
AC
1399extern gdb_byte *baseclass_addr (struct type *type, int index,
1400 gdb_byte *valaddr,
8929e59d 1401 struct value **valuep, int *errp);
c906108c 1402
89f5065b 1403extern void print_longest (struct ui_file *stream, int format,
d9fcf2fb 1404 int use_local, LONGEST val);
c906108c 1405
fc1a4b47 1406extern void print_floating (const gdb_byte *valaddr, struct type *type,
89f5065b 1407 struct ui_file *stream);
c906108c 1408
8e069a98
TT
1409extern void value_print (struct value *val, struct ui_file *stream,
1410 const struct value_print_options *options);
c906108c 1411
a6535de1
TT
1412/* Release values from the value chain and return them. Values
1413 created after MARK are released. If MARK is nullptr, or if MARK is
1414 not found on the value chain, then all values are released. Values
1415 are returned in reverse order of creation; that is, newest
1416 first. */
1417
1418extern std::vector<value_ref_ptr> value_release_to_mark
1419 (const struct value *mark);
c906108c 1420
a1f5dd1b
TT
1421extern void common_val_print (struct value *val,
1422 struct ui_file *stream, int recurse,
1423 const struct value_print_options *options,
1424 const struct language_defn *language);
806048c6 1425
09ca9e2e
TT
1426extern int val_print_string (struct type *elttype, const char *encoding,
1427 CORE_ADDR addr, int len,
79a45b7d
TT
1428 struct ui_file *stream,
1429 const struct value_print_options *options);
c906108c 1430
aad95b57
TT
1431extern void print_variable_and_value (const char *name,
1432 struct symbol *var,
bd2b40ac 1433 frame_info_ptr frame,
aad95b57
TT
1434 struct ui_file *stream,
1435 int indent);
c906108c 1436
89f5065b
AC
1437extern void typedef_print (struct type *type, struct symbol *news,
1438 struct ui_file *stream);
c906108c 1439
baf20f76 1440extern const char *internalvar_name (const struct internalvar *var);
c906108c 1441
ae5a43e0 1442extern void preserve_values (struct objfile *);
c906108c
SS
1443
1444/* From values.c */
1445
5f8ab46b 1446extern struct value *value_copy (const value *);
c906108c 1447
c37f7098
KW
1448extern struct value *value_non_lval (struct value *);
1449
6c659fc2
SC
1450extern void value_force_lval (struct value *, CORE_ADDR);
1451
4c082a81
SC
1452extern struct value *make_cv_value (int, int, struct value *);
1453
4e7a5ef5
TT
1454extern void preserve_one_value (struct value *, struct objfile *, htab_t);
1455
c906108c
SS
1456/* From valops.c */
1457
f23631e4 1458extern struct value *varying_to_slice (struct value *);
c906108c 1459
f23631e4 1460extern struct value *value_slice (struct value *, int, int);
c906108c 1461
6b4a335b
TT
1462/* Create a complex number. The type is the complex type; the values
1463 are cast to the underlying scalar type before the complex number is
1464 created. */
1465
f23631e4
AC
1466extern struct value *value_literal_complex (struct value *, struct value *,
1467 struct type *);
c906108c 1468
4c99290d
TT
1469/* Return the real part of a complex value. */
1470
1471extern struct value *value_real_part (struct value *value);
1472
1473/* Return the imaginary part of a complex value. */
1474
1475extern struct value *value_imaginary_part (struct value *value);
1476
3e3b026f
UW
1477extern struct value *find_function_in_inferior (const char *,
1478 struct objfile **);
c906108c 1479
f23631e4 1480extern struct value *value_allocate_space_in_inferior (int);
c906108c 1481
bc3b79fd
TJB
1482/* User function handler. */
1483
d452c4bc
UW
1484typedef struct value *(*internal_function_fn) (struct gdbarch *gdbarch,
1485 const struct language_defn *language,
1486 void *cookie,
bc3b79fd
TJB
1487 int argc,
1488 struct value **argv);
1489
1a6d41c6
TT
1490/* Add a new internal function. NAME is the name of the function; DOC
1491 is a documentation string describing the function. HANDLER is
1492 called when the function is invoked. COOKIE is an arbitrary
1493 pointer which is passed to HANDLER and is intended for "user
1494 data". */
1495
1496extern void add_internal_function (const char *name, const char *doc,
1497 internal_function_fn handler,
1498 void *cookie);
1499
1500/* This overload takes an allocated documentation string. */
1501
3ea16160 1502extern void add_internal_function (gdb::unique_xmalloc_ptr<char> &&name,
1a6d41c6
TT
1503 gdb::unique_xmalloc_ptr<char> &&doc,
1504 internal_function_fn handler,
1505 void *cookie);
bc3b79fd 1506
d452c4bc
UW
1507struct value *call_internal_function (struct gdbarch *gdbarch,
1508 const struct language_defn *language,
1509 struct value *function,
bc3b79fd
TJB
1510 int argc, struct value **argv);
1511
91f87213 1512const char *value_internal_function_name (struct value *);
bc3b79fd 1513
ba18742c
SM
1514/* Build a value wrapping and representing WORKER. The value takes ownership
1515 of the xmethod_worker object. */
1516
1517extern struct value *value_from_xmethod (xmethod_worker_up &&worker);
e81e7f5e 1518
2ce1cdbf 1519extern struct type *result_type_of_xmethod (struct value *method,
6b1747cd 1520 gdb::array_view<value *> argv);
2ce1cdbf
DE
1521
1522extern struct value *call_xmethod (struct value *method,
6b1747cd 1523 gdb::array_view<value *> argv);
e81e7f5e 1524
9d1447e0
SDJ
1525/* Destroy the values currently allocated. This is called when GDB is
1526 exiting (e.g., on quit_force). */
1527extern void finalize_values ();
1528
b49180ac
TT
1529/* Convert VALUE to a gdb_mpq. The caller must ensure that VALUE is
1530 of floating-point, fixed-point, or integer type. */
1531extern gdb_mpq value_to_gdb_mpq (struct value *value);
1532
a0c07915
AB
1533/* While an instance of this class is live, and array values that are
1534 created, that are larger than max_value_size, will be restricted in size
1535 to a particular number of elements. */
1536
1537struct scoped_array_length_limiting
1538{
1539 /* Limit any large array values to only contain ELEMENTS elements. */
1540 scoped_array_length_limiting (int elements);
1541
1542 /* Restore the previous array value limit. */
1543 ~scoped_array_length_limiting ();
1544
1545private:
1546 /* Used to hold the previous array value element limit. */
1547 gdb::optional<int> m_old_value;
1548};
1549
c5aa993b 1550#endif /* !defined (VALUE_H) */