]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/values.c
* config/tc-mn10300.c (md_assemble): Copy size to real_size before
[thirdparty/binutils-gdb.git] / gdb / values.c
CommitLineData
c906108c
SS
1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
2 Copyright 1986, 87, 89, 91, 93, 94, 95, 96, 97, 1998
3 Free Software Foundation, Inc.
4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b
JM
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
c906108c
SS
21
22#include "defs.h"
23#include "gdb_string.h"
24#include "symtab.h"
25#include "gdbtypes.h"
26#include "value.h"
27#include "gdbcore.h"
28#include "frame.h"
29#include "command.h"
30#include "gdbcmd.h"
31#include "target.h"
32#include "language.h"
33#include "scm-lang.h"
34#include "demangle.h"
35
36/* Prototypes for exported functions. */
37
38void _initialize_values PARAMS ((void));
39
40/* Prototypes for local functions. */
41
42static value_ptr value_headof PARAMS ((value_ptr, struct type *,
43 struct type *));
44
45static void show_values PARAMS ((char *, int));
46
47static void show_convenience PARAMS ((char *, int));
48
49static int vb_match PARAMS ((struct type *, int, struct type *));
50
51/* The value-history records all the values printed
52 by print commands during this session. Each chunk
53 records 60 consecutive values. The first chunk on
54 the chain records the most recent values.
55 The total number of values is in value_history_count. */
56
57#define VALUE_HISTORY_CHUNK 60
58
59struct value_history_chunk
c5aa993b
JM
60 {
61 struct value_history_chunk *next;
62 value_ptr values[VALUE_HISTORY_CHUNK];
63 };
c906108c
SS
64
65/* Chain of chunks now in use. */
66
67static struct value_history_chunk *value_history_chain;
68
69static int value_history_count; /* Abs number of last entry stored */
70\f
71/* List of all value objects currently allocated
72 (except for those released by calls to release_value)
73 This is so they can be freed after each command. */
74
75static value_ptr all_values;
76
77/* Allocate a value that has the correct length for type TYPE. */
78
79value_ptr
80allocate_value (type)
81 struct type *type;
82{
83 register value_ptr val;
84 struct type *atype = check_typedef (type);
85
86 val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (atype));
87 VALUE_NEXT (val) = all_values;
88 all_values = val;
89 VALUE_TYPE (val) = type;
90 VALUE_ENCLOSING_TYPE (val) = type;
91 VALUE_LVAL (val) = not_lval;
92 VALUE_ADDRESS (val) = 0;
93 VALUE_FRAME (val) = 0;
94 VALUE_OFFSET (val) = 0;
95 VALUE_BITPOS (val) = 0;
96 VALUE_BITSIZE (val) = 0;
97 VALUE_REGNO (val) = -1;
98 VALUE_LAZY (val) = 0;
99 VALUE_OPTIMIZED_OUT (val) = 0;
100 VALUE_BFD_SECTION (val) = NULL;
101 VALUE_EMBEDDED_OFFSET (val) = 0;
102 VALUE_POINTED_TO_OFFSET (val) = 0;
103 val->modifiable = 1;
104 return val;
105}
106
107/* Allocate a value that has the correct length
108 for COUNT repetitions type TYPE. */
109
110value_ptr
111allocate_repeat_value (type, count)
112 struct type *type;
113 int count;
114{
c5aa993b 115 int low_bound = current_language->string_lower_bound; /* ??? */
c906108c
SS
116 /* FIXME-type-allocation: need a way to free this type when we are
117 done with it. */
118 struct type *range_type
c5aa993b
JM
119 = create_range_type ((struct type *) NULL, builtin_type_int,
120 low_bound, count + low_bound - 1);
c906108c
SS
121 /* FIXME-type-allocation: need a way to free this type when we are
122 done with it. */
123 return allocate_value (create_array_type ((struct type *) NULL,
124 type, range_type));
125}
126
127/* Return a mark in the value chain. All values allocated after the
128 mark is obtained (except for those released) are subject to being freed
129 if a subsequent value_free_to_mark is passed the mark. */
130value_ptr
131value_mark ()
132{
133 return all_values;
134}
135
136/* Free all values allocated since MARK was obtained by value_mark
137 (except for those released). */
138void
139value_free_to_mark (mark)
140 value_ptr mark;
141{
142 value_ptr val, next;
143
144 for (val = all_values; val && val != mark; val = next)
145 {
146 next = VALUE_NEXT (val);
147 value_free (val);
148 }
149 all_values = val;
150}
151
152/* Free all the values that have been allocated (except for those released).
153 Called after each command, successful or not. */
154
155void
156free_all_values ()
157{
158 register value_ptr val, next;
159
160 for (val = all_values; val; val = next)
161 {
162 next = VALUE_NEXT (val);
163 value_free (val);
164 }
165
166 all_values = 0;
167}
168
169/* Remove VAL from the chain all_values
170 so it will not be freed automatically. */
171
172void
173release_value (val)
174 register value_ptr val;
175{
176 register value_ptr v;
177
178 if (all_values == val)
179 {
180 all_values = val->next;
181 return;
182 }
183
184 for (v = all_values; v; v = v->next)
185 {
186 if (v->next == val)
187 {
188 v->next = val->next;
189 break;
190 }
191 }
192}
193
194/* Release all values up to mark */
195value_ptr
196value_release_to_mark (mark)
197 value_ptr mark;
198{
199 value_ptr val, next;
200
201 for (val = next = all_values; next; next = VALUE_NEXT (next))
202 if (VALUE_NEXT (next) == mark)
203 {
204 all_values = VALUE_NEXT (next);
205 VALUE_NEXT (next) = 0;
206 return val;
207 }
208 all_values = 0;
209 return val;
210}
211
212/* Return a copy of the value ARG.
213 It contains the same contents, for same memory address,
214 but it's a different block of storage. */
215
216value_ptr
217value_copy (arg)
218 value_ptr arg;
219{
220 register struct type *encl_type = VALUE_ENCLOSING_TYPE (arg);
221 register value_ptr val = allocate_value (encl_type);
222 VALUE_TYPE (val) = VALUE_TYPE (arg);
223 VALUE_LVAL (val) = VALUE_LVAL (arg);
224 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
225 VALUE_OFFSET (val) = VALUE_OFFSET (arg);
226 VALUE_BITPOS (val) = VALUE_BITPOS (arg);
227 VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
228 VALUE_FRAME (val) = VALUE_FRAME (arg);
229 VALUE_REGNO (val) = VALUE_REGNO (arg);
230 VALUE_LAZY (val) = VALUE_LAZY (arg);
231 VALUE_OPTIMIZED_OUT (val) = VALUE_OPTIMIZED_OUT (arg);
232 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (arg);
233 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (arg);
234 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (arg);
235 val->modifiable = arg->modifiable;
236 if (!VALUE_LAZY (val))
237 {
238 memcpy (VALUE_CONTENTS_ALL_RAW (val), VALUE_CONTENTS_ALL_RAW (arg),
239 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg)));
240
241 }
242 return val;
243}
244\f
245/* Access to the value history. */
246
247/* Record a new value in the value history.
248 Returns the absolute history index of the entry.
249 Result of -1 indicates the value was not saved; otherwise it is the
250 value history index of this new item. */
251
252int
253record_latest_value (val)
254 value_ptr val;
255{
256 int i;
257
258 /* We don't want this value to have anything to do with the inferior anymore.
259 In particular, "set $1 = 50" should not affect the variable from which
260 the value was taken, and fast watchpoints should be able to assume that
261 a value on the value history never changes. */
262 if (VALUE_LAZY (val))
263 value_fetch_lazy (val);
264 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
265 from. This is a bit dubious, because then *&$1 does not just return $1
266 but the current contents of that location. c'est la vie... */
267 val->modifiable = 0;
268 release_value (val);
269
270 /* Here we treat value_history_count as origin-zero
271 and applying to the value being stored now. */
272
273 i = value_history_count % VALUE_HISTORY_CHUNK;
274 if (i == 0)
275 {
276 register struct value_history_chunk *new
c5aa993b
JM
277 = (struct value_history_chunk *)
278 xmalloc (sizeof (struct value_history_chunk));
c906108c
SS
279 memset (new->values, 0, sizeof new->values);
280 new->next = value_history_chain;
281 value_history_chain = new;
282 }
283
284 value_history_chain->values[i] = val;
285
286 /* Now we regard value_history_count as origin-one
287 and applying to the value just stored. */
288
289 return ++value_history_count;
290}
291
292/* Return a copy of the value in the history with sequence number NUM. */
293
294value_ptr
295access_value_history (num)
296 int num;
297{
298 register struct value_history_chunk *chunk;
299 register int i;
300 register int absnum = num;
301
302 if (absnum <= 0)
303 absnum += value_history_count;
304
305 if (absnum <= 0)
306 {
307 if (num == 0)
308 error ("The history is empty.");
309 else if (num == 1)
310 error ("There is only one value in the history.");
311 else
312 error ("History does not go back to $$%d.", -num);
313 }
314 if (absnum > value_history_count)
315 error ("History has not yet reached $%d.", absnum);
316
317 absnum--;
318
319 /* Now absnum is always absolute and origin zero. */
320
321 chunk = value_history_chain;
322 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
323 i > 0; i--)
324 chunk = chunk->next;
325
326 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
327}
328
329/* Clear the value history entirely.
330 Must be done when new symbol tables are loaded,
331 because the type pointers become invalid. */
332
333void
334clear_value_history ()
335{
336 register struct value_history_chunk *next;
337 register int i;
338 register value_ptr val;
339
340 while (value_history_chain)
341 {
342 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
343 if ((val = value_history_chain->values[i]) != NULL)
c5aa993b 344 free ((PTR) val);
c906108c 345 next = value_history_chain->next;
c5aa993b 346 free ((PTR) value_history_chain);
c906108c
SS
347 value_history_chain = next;
348 }
349 value_history_count = 0;
350}
351
352static void
353show_values (num_exp, from_tty)
354 char *num_exp;
355 int from_tty;
356{
357 register int i;
358 register value_ptr val;
359 static int num = 1;
360
361 if (num_exp)
362 {
c5aa993b
JM
363 /* "info history +" should print from the stored position.
364 "info history <exp>" should print around value number <exp>. */
c906108c
SS
365 if (num_exp[0] != '+' || num_exp[1] != '\0')
366 num = parse_and_eval_address (num_exp) - 5;
367 }
368 else
369 {
370 /* "info history" means print the last 10 values. */
371 num = value_history_count - 9;
372 }
373
374 if (num <= 0)
375 num = 1;
376
377 for (i = num; i < num + 10 && i <= value_history_count; i++)
378 {
379 val = access_value_history (i);
380 printf_filtered ("$%d = ", i);
381 value_print (val, gdb_stdout, 0, Val_pretty_default);
382 printf_filtered ("\n");
383 }
384
385 /* The next "info history +" should start after what we just printed. */
386 num += 10;
387
388 /* Hitting just return after this command should do the same thing as
389 "info history +". If num_exp is null, this is unnecessary, since
390 "info history +" is not useful after "info history". */
391 if (from_tty && num_exp)
392 {
393 num_exp[0] = '+';
394 num_exp[1] = '\0';
395 }
396}
397\f
398/* Internal variables. These are variables within the debugger
399 that hold values assigned by debugger commands.
400 The user refers to them with a '$' prefix
401 that does not appear in the variable names stored internally. */
402
403static struct internalvar *internalvars;
404
405/* Look up an internal variable with name NAME. NAME should not
406 normally include a dollar sign.
407
408 If the specified internal variable does not exist,
409 one is created, with a void value. */
410
411struct internalvar *
412lookup_internalvar (name)
413 char *name;
414{
415 register struct internalvar *var;
416
417 for (var = internalvars; var; var = var->next)
418 if (STREQ (var->name, name))
419 return var;
420
421 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
422 var->name = concat (name, NULL);
423 var->value = allocate_value (builtin_type_void);
424 release_value (var->value);
425 var->next = internalvars;
426 internalvars = var;
427 return var;
428}
429
430value_ptr
431value_of_internalvar (var)
432 struct internalvar *var;
433{
434 register value_ptr val;
435
436#ifdef IS_TRAPPED_INTERNALVAR
437 if (IS_TRAPPED_INTERNALVAR (var->name))
438 return VALUE_OF_TRAPPED_INTERNALVAR (var);
c5aa993b 439#endif
c906108c
SS
440
441 val = value_copy (var->value);
442 if (VALUE_LAZY (val))
443 value_fetch_lazy (val);
444 VALUE_LVAL (val) = lval_internalvar;
445 VALUE_INTERNALVAR (val) = var;
446 return val;
447}
448
449void
450set_internalvar_component (var, offset, bitpos, bitsize, newval)
451 struct internalvar *var;
452 int offset, bitpos, bitsize;
453 value_ptr newval;
454{
455 register char *addr = VALUE_CONTENTS (var->value) + offset;
456
457#ifdef IS_TRAPPED_INTERNALVAR
458 if (IS_TRAPPED_INTERNALVAR (var->name))
459 SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset);
460#endif
461
462 if (bitsize)
463 modify_field (addr, value_as_long (newval),
464 bitpos, bitsize);
465 else
466 memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval)));
467}
468
469void
470set_internalvar (var, val)
471 struct internalvar *var;
472 value_ptr val;
473{
474 value_ptr newval;
475
476#ifdef IS_TRAPPED_INTERNALVAR
477 if (IS_TRAPPED_INTERNALVAR (var->name))
478 SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0);
479#endif
480
481 newval = value_copy (val);
482 newval->modifiable = 1;
483
484 /* Force the value to be fetched from the target now, to avoid problems
485 later when this internalvar is referenced and the target is gone or
486 has changed. */
487 if (VALUE_LAZY (newval))
488 value_fetch_lazy (newval);
489
490 /* Begin code which must not call error(). If var->value points to
491 something free'd, an error() obviously leaves a dangling pointer.
492 But we also get a danling pointer if var->value points to
493 something in the value chain (i.e., before release_value is
494 called), because after the error free_all_values will get called before
495 long. */
c5aa993b 496 free ((PTR) var->value);
c906108c
SS
497 var->value = newval;
498 release_value (newval);
499 /* End code which must not call error(). */
500}
501
502char *
503internalvar_name (var)
504 struct internalvar *var;
505{
506 return var->name;
507}
508
509/* Free all internalvars. Done when new symtabs are loaded,
510 because that makes the values invalid. */
511
512void
513clear_internalvars ()
514{
515 register struct internalvar *var;
516
517 while (internalvars)
518 {
519 var = internalvars;
520 internalvars = var->next;
c5aa993b
JM
521 free ((PTR) var->name);
522 free ((PTR) var->value);
523 free ((PTR) var);
c906108c
SS
524 }
525}
526
527static void
528show_convenience (ignore, from_tty)
529 char *ignore;
530 int from_tty;
531{
532 register struct internalvar *var;
533 int varseen = 0;
534
535 for (var = internalvars; var; var = var->next)
536 {
537#ifdef IS_TRAPPED_INTERNALVAR
538 if (IS_TRAPPED_INTERNALVAR (var->name))
539 continue;
540#endif
541 if (!varseen)
542 {
543 varseen = 1;
544 }
545 printf_filtered ("$%s = ", var->name);
546 value_print (var->value, gdb_stdout, 0, Val_pretty_default);
547 printf_filtered ("\n");
548 }
549 if (!varseen)
550 printf_unfiltered ("No debugger convenience variables now defined.\n\
551Convenience variables have names starting with \"$\";\n\
552use \"set\" as in \"set $foo = 5\" to define them.\n");
553}
554\f
555/* Extract a value as a C number (either long or double).
556 Knows how to convert fixed values to double, or
557 floating values to long.
558 Does not deallocate the value. */
559
560LONGEST
561value_as_long (val)
562 register value_ptr val;
563{
564 /* This coerces arrays and functions, which is necessary (e.g.
565 in disassemble_command). It also dereferences references, which
566 I suspect is the most logical thing to do. */
567 COERCE_ARRAY (val);
568 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
569}
570
571DOUBLEST
572value_as_double (val)
573 register value_ptr val;
574{
575 DOUBLEST foo;
576 int inv;
c5aa993b 577
c906108c
SS
578 foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
579 if (inv)
580 error ("Invalid floating value found in program.");
581 return foo;
582}
4478b372
JB
583/* Extract a value as a C pointer. Does not deallocate the value.
584 Note that val's type may not actually be a pointer; value_as_long
585 handles all the cases. */
c906108c
SS
586CORE_ADDR
587value_as_pointer (val)
588 value_ptr val;
589{
590 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
591 whether we want this to be true eventually. */
592#if 0
593 /* ADDR_BITS_REMOVE is wrong if we are being called for a
594 non-address (e.g. argument to "signal", "info break", etc.), or
595 for pointers to char, in which the low bits *are* significant. */
c5aa993b 596 return ADDR_BITS_REMOVE (value_as_long (val));
c906108c
SS
597#else
598 return value_as_long (val);
599#endif
600}
601\f
602/* Unpack raw data (copied from debugee, target byte order) at VALADDR
603 as a long, or as a double, assuming the raw data is described
604 by type TYPE. Knows how to convert different sizes of values
605 and can convert between fixed and floating point. We don't assume
606 any alignment for the raw data. Return value is in host byte order.
607
608 If you want functions and arrays to be coerced to pointers, and
609 references to be dereferenced, call value_as_long() instead.
610
611 C++: It is assumed that the front-end has taken care of
612 all matters concerning pointers to members. A pointer
613 to member which reaches here is considered to be equivalent
614 to an INT (or some size). After all, it is only an offset. */
615
616LONGEST
617unpack_long (type, valaddr)
618 struct type *type;
619 char *valaddr;
620{
621 register enum type_code code = TYPE_CODE (type);
622 register int len = TYPE_LENGTH (type);
623 register int nosign = TYPE_UNSIGNED (type);
624
625 if (current_language->la_language == language_scm
626 && is_scmvalue_type (type))
627 return scm_unpack (type, valaddr, TYPE_CODE_INT);
628
629 switch (code)
630 {
631 case TYPE_CODE_TYPEDEF:
632 return unpack_long (check_typedef (type), valaddr);
633 case TYPE_CODE_ENUM:
634 case TYPE_CODE_BOOL:
635 case TYPE_CODE_INT:
636 case TYPE_CODE_CHAR:
637 case TYPE_CODE_RANGE:
638 if (nosign)
639 return extract_unsigned_integer (valaddr, len);
640 else
641 return extract_signed_integer (valaddr, len);
642
643 case TYPE_CODE_FLT:
644 return extract_floating (valaddr, len);
645
646 case TYPE_CODE_PTR:
647 case TYPE_CODE_REF:
648 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
c5aa993b 649 whether we want this to be true eventually. */
7a292a7a
SS
650 if (GDB_TARGET_IS_D10V
651 && len == 2)
c5aa993b 652 return D10V_MAKE_DADDR (extract_address (valaddr, len));
4478b372 653 return extract_typed_address (valaddr, type);
c906108c
SS
654
655 case TYPE_CODE_MEMBER:
656 error ("not implemented: member types in unpack_long");
657
658 default:
659 error ("Value can't be converted to integer.");
660 }
c5aa993b 661 return 0; /* Placate lint. */
c906108c
SS
662}
663
664/* Return a double value from the specified type and address.
665 INVP points to an int which is set to 0 for valid value,
666 1 for invalid value (bad float format). In either case,
667 the returned double is OK to use. Argument is in target
668 format, result is in host format. */
669
670DOUBLEST
671unpack_double (type, valaddr, invp)
672 struct type *type;
673 char *valaddr;
674 int *invp;
675{
676 enum type_code code;
677 int len;
678 int nosign;
679
680 *invp = 0; /* Assume valid. */
681 CHECK_TYPEDEF (type);
682 code = TYPE_CODE (type);
683 len = TYPE_LENGTH (type);
684 nosign = TYPE_UNSIGNED (type);
685 if (code == TYPE_CODE_FLT)
686 {
687#ifdef INVALID_FLOAT
688 if (INVALID_FLOAT (valaddr, len))
689 {
690 *invp = 1;
691 return 1.234567891011121314;
692 }
693#endif
694 return extract_floating (valaddr, len);
695 }
696 else if (nosign)
697 {
698 /* Unsigned -- be sure we compensate for signed LONGEST. */
699#if !defined (_MSC_VER) || (_MSC_VER > 900)
700 return (ULONGEST) unpack_long (type, valaddr);
701#else
702 /* FIXME!!! msvc22 doesn't support unsigned __int64 -> double */
703 return (LONGEST) unpack_long (type, valaddr);
704#endif /* _MSC_VER */
705 }
706 else
707 {
708 /* Signed -- we are OK with unpack_long. */
709 return unpack_long (type, valaddr);
710 }
711}
712
713/* Unpack raw data (copied from debugee, target byte order) at VALADDR
714 as a CORE_ADDR, assuming the raw data is described by type TYPE.
715 We don't assume any alignment for the raw data. Return value is in
716 host byte order.
717
718 If you want functions and arrays to be coerced to pointers, and
719 references to be dereferenced, call value_as_pointer() instead.
720
721 C++: It is assumed that the front-end has taken care of
722 all matters concerning pointers to members. A pointer
723 to member which reaches here is considered to be equivalent
724 to an INT (or some size). After all, it is only an offset. */
725
726CORE_ADDR
727unpack_pointer (type, valaddr)
728 struct type *type;
729 char *valaddr;
730{
731 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
732 whether we want this to be true eventually. */
733 return unpack_long (type, valaddr);
734}
4478b372 735
c906108c
SS
736\f
737/* Get the value of the FIELDN'th field (which must be static) of TYPE. */
738
739value_ptr
740value_static_field (type, fieldno)
741 struct type *type;
742 int fieldno;
743{
744 CORE_ADDR addr;
745 asection *sect;
746 if (TYPE_FIELD_STATIC_HAS_ADDR (type, fieldno))
747 {
748 addr = TYPE_FIELD_STATIC_PHYSADDR (type, fieldno);
749 sect = NULL;
750 }
751 else
752 {
753 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
754 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL);
755 if (sym == NULL)
756 {
757 /* With some compilers, e.g. HP aCC, static data members are reported
c5aa993b
JM
758 as non-debuggable symbols */
759 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
c906108c
SS
760 if (!msym)
761 return NULL;
762 else
c5aa993b 763 {
c906108c
SS
764 addr = SYMBOL_VALUE_ADDRESS (msym);
765 sect = SYMBOL_BFD_SECTION (msym);
766 }
767 }
768 else
769 {
770 addr = SYMBOL_VALUE_ADDRESS (sym);
771 sect = SYMBOL_BFD_SECTION (sym);
772 }
773 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno), addr);
774 }
775 return value_at (TYPE_FIELD_TYPE (type, fieldno), addr, sect);
776}
777
778/* Given a value ARG1 (offset by OFFSET bytes)
779 of a struct or union type ARG_TYPE,
780 extract and return the value of one of its (non-static) fields.
781 FIELDNO says which field. */
782
783value_ptr
784value_primitive_field (arg1, offset, fieldno, arg_type)
785 register value_ptr arg1;
786 int offset;
787 register int fieldno;
788 register struct type *arg_type;
789{
790 register value_ptr v;
791 register struct type *type;
792
793 CHECK_TYPEDEF (arg_type);
794 type = TYPE_FIELD_TYPE (arg_type, fieldno);
795
796 /* Handle packed fields */
797
798 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
799 {
800 v = value_from_longest (type,
801 unpack_field_as_long (arg_type,
802 VALUE_CONTENTS (arg1)
c5aa993b 803 + offset,
c906108c
SS
804 fieldno));
805 VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
806 VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
2e70b7b9
MS
807 VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
808 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
c906108c
SS
809 }
810 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
811 {
812 /* This field is actually a base subobject, so preserve the
813 entire object's contents for later references to virtual
814 bases, etc. */
815 v = allocate_value (VALUE_ENCLOSING_TYPE (arg1));
816 VALUE_TYPE (v) = arg_type;
817 if (VALUE_LAZY (arg1))
818 VALUE_LAZY (v) = 1;
819 else
820 memcpy (VALUE_CONTENTS_ALL_RAW (v), VALUE_CONTENTS_ALL_RAW (arg1),
821 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg1)));
822 VALUE_OFFSET (v) = VALUE_OFFSET (arg1);
823 VALUE_EMBEDDED_OFFSET (v)
c5aa993b
JM
824 = offset +
825 VALUE_EMBEDDED_OFFSET (arg1) +
826 TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
c906108c
SS
827 }
828 else
829 {
830 /* Plain old data member */
831 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
832 v = allocate_value (type);
833 if (VALUE_LAZY (arg1))
834 VALUE_LAZY (v) = 1;
835 else
836 memcpy (VALUE_CONTENTS_RAW (v),
837 VALUE_CONTENTS_RAW (arg1) + offset,
838 TYPE_LENGTH (type));
839 VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset;
840 }
841 VALUE_LVAL (v) = VALUE_LVAL (arg1);
842 if (VALUE_LVAL (arg1) == lval_internalvar)
843 VALUE_LVAL (v) = lval_internalvar_component;
844 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
845/* VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
c5aa993b 846 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; */
c906108c
SS
847 return v;
848}
849
850/* Given a value ARG1 of a struct or union type,
851 extract and return the value of one of its (non-static) fields.
852 FIELDNO says which field. */
853
854value_ptr
855value_field (arg1, fieldno)
856 register value_ptr arg1;
857 register int fieldno;
858{
859 return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
860}
861
862/* Return a non-virtual function as a value.
863 F is the list of member functions which contains the desired method.
864 J is an index into F which provides the desired method. */
865
866value_ptr
867value_fn_field (arg1p, f, j, type, offset)
868 value_ptr *arg1p;
869 struct fn_field *f;
870 int j;
871 struct type *type;
872 int offset;
873{
874 register value_ptr v;
875 register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
876 struct symbol *sym;
877
878 sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
879 0, VAR_NAMESPACE, 0, NULL);
c5aa993b
JM
880 if (!sym)
881 return NULL;
c906108c 882/*
c5aa993b
JM
883 error ("Internal error: could not find physical method named %s",
884 TYPE_FN_FIELD_PHYSNAME (f, j));
885 */
886
c906108c
SS
887 v = allocate_value (ftype);
888 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
889 VALUE_TYPE (v) = ftype;
890
891 if (arg1p)
c5aa993b
JM
892 {
893 if (type != VALUE_TYPE (*arg1p))
894 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
895 value_addr (*arg1p)));
896
070ad9f0 897 /* Move the `this' pointer according to the offset.
c5aa993b
JM
898 VALUE_OFFSET (*arg1p) += offset;
899 */
c906108c
SS
900 }
901
902 return v;
903}
904
905/* Return a virtual function as a value.
906 ARG1 is the object which provides the virtual function
907 table pointer. *ARG1P is side-effected in calling this function.
908 F is the list of member functions which contains the desired virtual
909 function.
910 J is an index into F which provides the desired virtual function.
911
912 TYPE is the type in which F is located. */
913value_ptr
914value_virtual_fn_field (arg1p, f, j, type, offset)
915 value_ptr *arg1p;
916 struct fn_field *f;
917 int j;
918 struct type *type;
919 int offset;
920{
921 value_ptr arg1 = *arg1p;
922 struct type *type1 = check_typedef (VALUE_TYPE (arg1));
923
924 if (TYPE_HAS_VTABLE (type))
925 {
926 /* Deal with HP/Taligent runtime model for virtual functions */
927 value_ptr vp;
c5aa993b 928 value_ptr argp; /* arg1 cast to base */
c5aa993b
JM
929 CORE_ADDR coreptr; /* pointer to target address */
930 int class_index; /* which class segment pointer to use */
931 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j); /* method type */
c906108c
SS
932
933 argp = value_cast (type, *arg1p);
934
935 if (VALUE_ADDRESS (argp) == 0)
c5aa993b
JM
936 error ("Address of object is null; object may not have been created.");
937
c906108c
SS
938 /* pai: FIXME -- 32x64 possible problem? */
939 /* First word (4 bytes) in object layout is the vtable pointer */
c5aa993b
JM
940 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (argp)); /* pai: (temp) */
941 /* + offset + VALUE_EMBEDDED_OFFSET (argp)); */
c906108c
SS
942
943 if (!coreptr)
c5aa993b
JM
944 error ("Virtual table pointer is null for object; object may not have been created.");
945
c906108c
SS
946 /* pai/1997-05-09
947 * FIXME: The code here currently handles only
948 * the non-RRBC case of the Taligent/HP runtime spec; when RRBC
949 * is introduced, the condition for the "if" below will have to
950 * be changed to be a test for the RRBC case. */
c5aa993b 951
c906108c 952 if (1)
c5aa993b
JM
953 {
954 /* Non-RRBC case; the virtual function pointers are stored at fixed
955 * offsets in the virtual table. */
956
957 /* Retrieve the offset in the virtual table from the debug
958 * info. The offset of the vfunc's entry is in words from
959 * the beginning of the vtable; but first we have to adjust
960 * by HP_ACC_VFUNC_START to account for other entries */
961
962 /* pai: FIXME: 32x64 problem here, a word may be 8 bytes in
963 * which case the multiplier should be 8 and values should be long */
964 vp = value_at (builtin_type_int,
965 coreptr + 4 * (TYPE_FN_FIELD_VOFFSET (f, j) + HP_ACC_VFUNC_START), NULL);
966
967 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp));
968 /* coreptr now contains the address of the virtual function */
969 /* (Actually, it contains the pointer to the plabel for the function. */
970 }
c906108c 971 else
c5aa993b
JM
972 {
973 /* RRBC case; the virtual function pointers are found by double
974 * indirection through the class segment tables. */
975
976 /* Choose class segment depending on type we were passed */
977 class_index = class_index_in_primary_list (type);
978
979 /* Find class segment pointer. These are in the vtable slots after
980 * some other entries, so adjust by HP_ACC_VFUNC_START for that. */
981 /* pai: FIXME 32x64 problem here, if words are 8 bytes long
982 * the multiplier below has to be 8 and value should be long. */
983 vp = value_at (builtin_type_int,
984 coreptr + 4 * (HP_ACC_VFUNC_START + class_index), NULL);
985 /* Indirect once more, offset by function index */
986 /* pai: FIXME 32x64 problem here, again multiplier could be 8 and value long */
987 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp) + 4 * TYPE_FN_FIELD_VOFFSET (f, j));
988 vp = value_at (builtin_type_int, coreptr, NULL);
989 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp));
990
991 /* coreptr now contains the address of the virtual function */
992 /* (Actually, it contains the pointer to the plabel for the function.) */
993
994 }
c906108c
SS
995
996 if (!coreptr)
c5aa993b 997 error ("Address of virtual function is null; error in virtual table?");
c906108c 998
c5aa993b 999 /* Wrap this addr in a value and return pointer */
c906108c
SS
1000 vp = allocate_value (ftype);
1001 VALUE_TYPE (vp) = ftype;
1002 VALUE_ADDRESS (vp) = coreptr;
c5aa993b 1003
c906108c
SS
1004 /* pai: (temp) do we need the value_ind stuff in value_fn_field? */
1005 return vp;
1006 }
c5aa993b
JM
1007 else
1008 { /* Not using HP/Taligent runtime conventions; so try to
1009 * use g++ conventions for virtual table */
1010
c906108c
SS
1011 struct type *entry_type;
1012 /* First, get the virtual function table pointer. That comes
1013 with a strange type, so cast it to type `pointer to long' (which
1014 should serve just fine as a function type). Then, index into
1015 the table, and convert final value to appropriate function type. */
1016 value_ptr entry, vfn, vtbl;
c5aa993b
JM
1017 value_ptr vi = value_from_longest (builtin_type_int,
1018 (LONGEST) TYPE_FN_FIELD_VOFFSET (f, j));
c906108c
SS
1019 struct type *fcontext = TYPE_FN_FIELD_FCONTEXT (f, j);
1020 struct type *context;
1021 if (fcontext == NULL)
c5aa993b
JM
1022 /* We don't have an fcontext (e.g. the program was compiled with
1023 g++ version 1). Try to get the vtbl from the TYPE_VPTR_BASETYPE.
1024 This won't work right for multiple inheritance, but at least we
1025 should do as well as GDB 3.x did. */
1026 fcontext = TYPE_VPTR_BASETYPE (type);
c906108c
SS
1027 context = lookup_pointer_type (fcontext);
1028 /* Now context is a pointer to the basetype containing the vtbl. */
1029 if (TYPE_TARGET_TYPE (context) != type1)
c5aa993b 1030 {
c906108c
SS
1031 value_ptr tmp = value_cast (context, value_addr (arg1));
1032 VALUE_POINTED_TO_OFFSET (tmp) = 0;
c5aa993b
JM
1033 arg1 = value_ind (tmp);
1034 type1 = check_typedef (VALUE_TYPE (arg1));
1035 }
c906108c
SS
1036
1037 context = type1;
1038 /* Now context is the basetype containing the vtbl. */
1039
1040 /* This type may have been defined before its virtual function table
1041 was. If so, fill in the virtual function table entry for the
1042 type now. */
1043 if (TYPE_VPTR_FIELDNO (context) < 0)
c5aa993b 1044 fill_in_vptr_fieldno (context);
c906108c
SS
1045
1046 /* The virtual function table is now an array of structures
1047 which have the form { int16 offset, delta; void *pfn; }. */
1048 vtbl = value_primitive_field (arg1, 0, TYPE_VPTR_FIELDNO (context),
1049 TYPE_VPTR_BASETYPE (context));
c5aa993b 1050
c906108c 1051 /* With older versions of g++, the vtbl field pointed to an array
c5aa993b 1052 of structures. Nowadays it points directly to the structure. */
c906108c 1053 if (TYPE_CODE (VALUE_TYPE (vtbl)) == TYPE_CODE_PTR
c5aa993b 1054 && TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (vtbl))) == TYPE_CODE_ARRAY)
c906108c
SS
1055 {
1056 /* Handle the case where the vtbl field points to an
1057 array of structures. */
1058 vtbl = value_ind (vtbl);
1059
1060 /* Index into the virtual function table. This is hard-coded because
1061 looking up a field is not cheap, and it may be important to save
1062 time, e.g. if the user has set a conditional breakpoint calling
1063 a virtual function. */
1064 entry = value_subscript (vtbl, vi);
1065 }
1066 else
1067 {
1068 /* Handle the case where the vtbl field points directly to a structure. */
1069 vtbl = value_add (vtbl, vi);
1070 entry = value_ind (vtbl);
1071 }
1072
1073 entry_type = check_typedef (VALUE_TYPE (entry));
1074
1075 if (TYPE_CODE (entry_type) == TYPE_CODE_STRUCT)
c5aa993b
JM
1076 {
1077 /* Move the `this' pointer according to the virtual function table. */
1078 VALUE_OFFSET (arg1) += value_as_long (value_field (entry, 0));
1079
1080 if (!VALUE_LAZY (arg1))
1081 {
1082 VALUE_LAZY (arg1) = 1;
1083 value_fetch_lazy (arg1);
1084 }
1085
1086 vfn = value_field (entry, 2);
1087 }
c906108c 1088 else if (TYPE_CODE (entry_type) == TYPE_CODE_PTR)
c5aa993b 1089 vfn = entry;
c906108c 1090 else
c5aa993b 1091 error ("I'm confused: virtual function table has bad type");
c906108c
SS
1092 /* Reinstantiate the function pointer with the correct type. */
1093 VALUE_TYPE (vfn) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f, j));
1094
1095 *arg1p = arg1;
1096 return vfn;
1097 }
1098}
1099
1100/* ARG is a pointer to an object we know to be at least
1101 a DTYPE. BTYPE is the most derived basetype that has
1102 already been searched (and need not be searched again).
1103 After looking at the vtables between BTYPE and DTYPE,
1104 return the most derived type we find. The caller must
1105 be satisfied when the return value == DTYPE.
1106
070ad9f0
DB
1107 FIXME-tiemann: should work with dossier entries as well.
1108 NOTICE - djb: I see no good reason at all to keep this function now that
1109 we have RTTI support. It's used in literally one place, and it's
1110 hard to keep this function up to date when it's purpose is served
1111 by value_rtti_type efficiently.
1112 Consider it gone for 5.1. */
c906108c
SS
1113
1114static value_ptr
1115value_headof (in_arg, btype, dtype)
1116 value_ptr in_arg;
1117 struct type *btype, *dtype;
1118{
1119 /* First collect the vtables we must look at for this object. */
070ad9f0 1120 value_ptr arg, vtbl;
c906108c 1121 struct symbol *sym;
c906108c
SS
1122 char *demangled_name;
1123 struct minimal_symbol *msymbol;
1124
1125 btype = TYPE_VPTR_BASETYPE (dtype);
1126 CHECK_TYPEDEF (btype);
1127 arg = in_arg;
1128 if (btype != dtype)
070ad9f0
DB
1129 arg = value_cast (lookup_pointer_type (btype), arg);
1130 if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_REF)
1131 {
1132 /*
1133 * Copy the value, but change the type from (T&) to (T*).
1134 * We keep the same location information, which is efficient,
1135 * and allows &(&X) to get the location containing the reference.
1136 */
1137 arg = value_copy (arg);
1138 VALUE_TYPE (arg) = lookup_pointer_type (TYPE_TARGET_TYPE (VALUE_TYPE (arg)));
1139 }
1140 if (VALUE_ADDRESS(value_field (value_ind(arg), TYPE_VPTR_FIELDNO (btype)))==0)
1141 return arg;
1142
c906108c 1143 vtbl = value_ind (value_field (value_ind (arg), TYPE_VPTR_FIELDNO (btype)));
070ad9f0
DB
1144 /* Turn vtable into typeinfo function */
1145 VALUE_OFFSET(vtbl)+=4;
c906108c 1146
070ad9f0 1147 msymbol = lookup_minimal_symbol_by_pc ( value_as_pointer(value_ind(vtbl)) );
c906108c 1148 if (msymbol == NULL
070ad9f0
DB
1149 || (demangled_name = SYMBOL_NAME (msymbol)) == NULL)
1150 {
1151 /* If we expected to find a vtable, but did not, let the user
1152 know that we aren't happy, but don't throw an error.
1153 FIXME: there has to be a better way to do this. */
1154 struct type *error_type = (struct type *) xmalloc (sizeof (struct type));
1155 memcpy (error_type, VALUE_TYPE (in_arg), sizeof (struct type));
1156 TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *"));
1157 VALUE_TYPE (in_arg) = error_type;
1158 return in_arg;
1159 }
1160 demangled_name = cplus_demangle(demangled_name,DMGL_ANSI);
1161 *(strchr (demangled_name, ' ')) = '\0';
c906108c 1162
c906108c
SS
1163 sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0);
1164 if (sym == NULL)
070ad9f0
DB
1165 error ("could not find type declaration for `%s'", demangled_name);
1166
1167 arg = in_arg;
c906108c
SS
1168 VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym));
1169 return arg;
1170}
1171
1172/* ARG is a pointer object of type TYPE. If TYPE has virtual
1173 function tables, probe ARG's tables (including the vtables
1174 of its baseclasses) to figure out the most derived type that ARG
1175 could actually be a pointer to. */
1176
1177value_ptr
1178value_from_vtable_info (arg, type)
1179 value_ptr arg;
1180 struct type *type;
1181{
1182 /* Take care of preliminaries. */
1183 if (TYPE_VPTR_FIELDNO (type) < 0)
1184 fill_in_vptr_fieldno (type);
1185 if (TYPE_VPTR_FIELDNO (type) < 0)
1186 return 0;
1187
1188 return value_headof (arg, 0, type);
1189}
1190
1191/* Return true if the INDEXth field of TYPE is a virtual baseclass
1192 pointer which is for the base class whose type is BASECLASS. */
1193
1194static int
1195vb_match (type, index, basetype)
1196 struct type *type;
1197 int index;
1198 struct type *basetype;
1199{
1200 struct type *fieldtype;
1201 char *name = TYPE_FIELD_NAME (type, index);
1202 char *field_class_name = NULL;
1203
1204 if (*name != '_')
1205 return 0;
1206 /* gcc 2.4 uses _vb$. */
1207 if (name[1] == 'v' && name[2] == 'b' && is_cplus_marker (name[3]))
1208 field_class_name = name + 4;
1209 /* gcc 2.5 will use __vb_. */
1210 if (name[1] == '_' && name[2] == 'v' && name[3] == 'b' && name[4] == '_')
1211 field_class_name = name + 5;
1212
1213 if (field_class_name == NULL)
1214 /* This field is not a virtual base class pointer. */
1215 return 0;
1216
1217 /* It's a virtual baseclass pointer, now we just need to find out whether
1218 it is for this baseclass. */
1219 fieldtype = TYPE_FIELD_TYPE (type, index);
1220 if (fieldtype == NULL
1221 || TYPE_CODE (fieldtype) != TYPE_CODE_PTR)
1222 /* "Can't happen". */
1223 return 0;
1224
1225 /* What we check for is that either the types are equal (needed for
1226 nameless types) or have the same name. This is ugly, and a more
1227 elegant solution should be devised (which would probably just push
1228 the ugliness into symbol reading unless we change the stabs format). */
1229 if (TYPE_TARGET_TYPE (fieldtype) == basetype)
1230 return 1;
1231
1232 if (TYPE_NAME (basetype) != NULL
1233 && TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)) != NULL
1234 && STREQ (TYPE_NAME (basetype),
1235 TYPE_NAME (TYPE_TARGET_TYPE (fieldtype))))
1236 return 1;
1237 return 0;
1238}
1239
1240/* Compute the offset of the baseclass which is
1241 the INDEXth baseclass of class TYPE,
1242 for value at VALADDR (in host) at ADDRESS (in target).
1243 The result is the offset of the baseclass value relative
1244 to (the address of)(ARG) + OFFSET.
1245
1246 -1 is returned on error. */
1247
1248int
1249baseclass_offset (type, index, valaddr, address)
1250 struct type *type;
1251 int index;
1252 char *valaddr;
1253 CORE_ADDR address;
1254{
1255 struct type *basetype = TYPE_BASECLASS (type, index);
1256
1257 if (BASETYPE_VIA_VIRTUAL (type, index))
1258 {
1259 /* Must hunt for the pointer to this virtual baseclass. */
1260 register int i, len = TYPE_NFIELDS (type);
1261 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1262
1263 /* First look for the virtual baseclass pointer
c5aa993b 1264 in the fields. */
c906108c
SS
1265 for (i = n_baseclasses; i < len; i++)
1266 {
1267 if (vb_match (type, i, basetype))
1268 {
1269 CORE_ADDR addr
c5aa993b
JM
1270 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1271 valaddr + (TYPE_FIELD_BITPOS (type, i) / 8));
c906108c
SS
1272
1273 return addr - (LONGEST) address;
1274 }
1275 }
1276 /* Not in the fields, so try looking through the baseclasses. */
c5aa993b 1277 for (i = index + 1; i < n_baseclasses; i++)
c906108c
SS
1278 {
1279 int boffset =
c5aa993b 1280 baseclass_offset (type, i, valaddr, address);
c906108c
SS
1281 if (boffset)
1282 return boffset;
1283 }
1284 /* Not found. */
1285 return -1;
1286 }
1287
1288 /* Baseclass is easily computed. */
1289 return TYPE_BASECLASS_BITPOS (type, index) / 8;
1290}
1291\f
1292/* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1293 VALADDR.
1294
1295 Extracting bits depends on endianness of the machine. Compute the
1296 number of least significant bits to discard. For big endian machines,
1297 we compute the total number of bits in the anonymous object, subtract
1298 off the bit count from the MSB of the object to the MSB of the
1299 bitfield, then the size of the bitfield, which leaves the LSB discard
1300 count. For little endian machines, the discard count is simply the
1301 number of bits from the LSB of the anonymous object to the LSB of the
1302 bitfield.
1303
1304 If the field is signed, we also do sign extension. */
1305
1306LONGEST
1307unpack_field_as_long (type, valaddr, fieldno)
1308 struct type *type;
1309 char *valaddr;
1310 int fieldno;
1311{
1312 ULONGEST val;
1313 ULONGEST valmask;
1314 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1315 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1316 int lsbcount;
1317 struct type *field_type;
1318
1319 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1320 field_type = TYPE_FIELD_TYPE (type, fieldno);
1321 CHECK_TYPEDEF (field_type);
1322
1323 /* Extract bits. See comment above. */
1324
1325 if (BITS_BIG_ENDIAN)
1326 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1327 else
1328 lsbcount = (bitpos % 8);
1329 val >>= lsbcount;
1330
1331 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1332 If the field is signed, and is negative, then sign extend. */
1333
1334 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
1335 {
1336 valmask = (((ULONGEST) 1) << bitsize) - 1;
1337 val &= valmask;
1338 if (!TYPE_UNSIGNED (field_type))
1339 {
1340 if (val & (valmask ^ (valmask >> 1)))
1341 {
1342 val |= ~valmask;
1343 }
1344 }
1345 }
1346 return (val);
1347}
1348
1349/* Modify the value of a bitfield. ADDR points to a block of memory in
1350 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1351 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1352 indicate which bits (in target bit order) comprise the bitfield. */
1353
1354void
1355modify_field (addr, fieldval, bitpos, bitsize)
1356 char *addr;
1357 LONGEST fieldval;
1358 int bitpos, bitsize;
1359{
1360 LONGEST oword;
1361
1362 /* If a negative fieldval fits in the field in question, chop
1363 off the sign extension bits. */
1364 if (bitsize < (8 * (int) sizeof (fieldval))
1365 && (~fieldval & ~((1 << (bitsize - 1)) - 1)) == 0)
1366 fieldval = fieldval & ((1 << bitsize) - 1);
1367
1368 /* Warn if value is too big to fit in the field in question. */
1369 if (bitsize < (8 * (int) sizeof (fieldval))
c5aa993b 1370 && 0 != (fieldval & ~((1 << bitsize) - 1)))
c906108c
SS
1371 {
1372 /* FIXME: would like to include fieldval in the message, but
c5aa993b 1373 we don't have a sprintf_longest. */
c906108c
SS
1374 warning ("Value does not fit in %d bits.", bitsize);
1375
1376 /* Truncate it, otherwise adjoining fields may be corrupted. */
1377 fieldval = fieldval & ((1 << bitsize) - 1);
1378 }
1379
1380 oword = extract_signed_integer (addr, sizeof oword);
1381
1382 /* Shifting for bit field depends on endianness of the target machine. */
1383 if (BITS_BIG_ENDIAN)
1384 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1385
1386 /* Mask out old value, while avoiding shifts >= size of oword */
1387 if (bitsize < 8 * (int) sizeof (oword))
c5aa993b 1388 oword &= ~(((((ULONGEST) 1) << bitsize) - 1) << bitpos);
c906108c 1389 else
c5aa993b 1390 oword &= ~((~(ULONGEST) 0) << bitpos);
c906108c
SS
1391 oword |= fieldval << bitpos;
1392
1393 store_signed_integer (addr, sizeof oword, oword);
1394}
1395\f
1396/* Convert C numbers into newly allocated values */
1397
1398value_ptr
1399value_from_longest (type, num)
1400 struct type *type;
1401 register LONGEST num;
1402{
1403 register value_ptr val = allocate_value (type);
1404 register enum type_code code;
1405 register int len;
c5aa993b 1406retry:
c906108c
SS
1407 code = TYPE_CODE (type);
1408 len = TYPE_LENGTH (type);
1409
1410 switch (code)
1411 {
1412 case TYPE_CODE_TYPEDEF:
1413 type = check_typedef (type);
1414 goto retry;
1415 case TYPE_CODE_INT:
1416 case TYPE_CODE_CHAR:
1417 case TYPE_CODE_ENUM:
1418 case TYPE_CODE_BOOL:
1419 case TYPE_CODE_RANGE:
1420 store_signed_integer (VALUE_CONTENTS_RAW (val), len, num);
1421 break;
c5aa993b 1422
c906108c
SS
1423 case TYPE_CODE_REF:
1424 case TYPE_CODE_PTR:
4478b372 1425 store_typed_address (VALUE_CONTENTS_RAW (val), type, (CORE_ADDR) num);
c906108c 1426 break;
c5aa993b 1427
c906108c
SS
1428 default:
1429 error ("Unexpected type (%d) encountered for integer constant.", code);
1430 }
1431 return val;
1432}
1433
4478b372
JB
1434
1435/* Create a value representing a pointer of type TYPE to the address
1436 ADDR. */
1437value_ptr
1438value_from_pointer (struct type *type, CORE_ADDR addr)
1439{
1440 value_ptr val = allocate_value (type);
1441 store_typed_address (VALUE_CONTENTS_RAW (val), type, addr);
1442 return val;
1443}
1444
1445
0f71a2f6 1446/* Create a value for a string constant to be stored locally
070ad9f0 1447 (not in the inferior's memory space, but in GDB memory).
0f71a2f6
JM
1448 This is analogous to value_from_longest, which also does not
1449 use inferior memory. String shall NOT contain embedded nulls. */
1450
1451value_ptr
1452value_from_string (ptr)
1453 char *ptr;
1454{
1455 value_ptr val;
c5aa993b 1456 int len = strlen (ptr);
0f71a2f6 1457 int lowbound = current_language->string_lower_bound;
c5aa993b
JM
1458 struct type *rangetype =
1459 create_range_type ((struct type *) NULL,
1460 builtin_type_int,
1461 lowbound, len + lowbound - 1);
1462 struct type *stringtype =
1463 create_array_type ((struct type *) NULL,
1464 *current_language->string_char_type,
1465 rangetype);
0f71a2f6
JM
1466
1467 val = allocate_value (stringtype);
1468 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1469 return val;
1470}
1471
c906108c
SS
1472value_ptr
1473value_from_double (type, num)
1474 struct type *type;
1475 DOUBLEST num;
1476{
1477 register value_ptr val = allocate_value (type);
1478 struct type *base_type = check_typedef (type);
1479 register enum type_code code = TYPE_CODE (base_type);
1480 register int len = TYPE_LENGTH (base_type);
1481
1482 if (code == TYPE_CODE_FLT)
1483 {
1484 store_floating (VALUE_CONTENTS_RAW (val), len, num);
1485 }
1486 else
1487 error ("Unexpected type encountered for floating constant.");
1488
1489 return val;
1490}
1491\f
1492/* Deal with the value that is "about to be returned". */
1493
1494/* Return the value that a function returning now
1495 would be returning to its caller, assuming its type is VALTYPE.
1496 RETBUF is where we look for what ought to be the contents
1497 of the registers (in raw form). This is because it is often
1498 desirable to restore old values to those registers
1499 after saving the contents of interest, and then call
1500 this function using the saved values.
1501 struct_return is non-zero when the function in question is
1502 using the structure return conventions on the machine in question;
1503 0 when it is using the value returning conventions (this often
1504 means returning pointer to where structure is vs. returning value). */
1505
1506value_ptr
1507value_being_returned (valtype, retbuf, struct_return)
1508 register struct type *valtype;
7a292a7a 1509 char *retbuf;
c906108c 1510 int struct_return;
c5aa993b 1511 /*ARGSUSED */
c906108c
SS
1512{
1513 register value_ptr val;
1514 CORE_ADDR addr;
1515
c906108c 1516 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
ac9a91a7
JM
1517 if (EXTRACT_STRUCT_VALUE_ADDRESS_P)
1518 if (struct_return)
1519 {
1520 addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
1521 if (!addr)
1522 error ("Function return value unknown");
1523 return value_at (valtype, addr, NULL);
1524 }
c906108c
SS
1525
1526 val = allocate_value (valtype);
1527 CHECK_TYPEDEF (valtype);
1528 EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));
1529
1530 return val;
1531}
1532
1533/* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
1534 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
1535 and TYPE is the type (which is known to be struct, union or array).
1536
1537 On most machines, the struct convention is used unless we are
1538 using gcc and the type is of a special size. */
1539/* As of about 31 Mar 93, GCC was changed to be compatible with the
1540 native compiler. GCC 2.3.3 was the last release that did it the
1541 old way. Since gcc2_compiled was not changed, we have no
1542 way to correctly win in all cases, so we just do the right thing
1543 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1544 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1545 would cause more chaos than dealing with some struct returns being
1546 handled wrong. */
1547
1548int
1549generic_use_struct_convention (gcc_p, value_type)
1550 int gcc_p;
1551 struct type *value_type;
c5aa993b 1552{
c906108c 1553 return !((gcc_p == 1)
c5aa993b
JM
1554 && (TYPE_LENGTH (value_type) == 1
1555 || TYPE_LENGTH (value_type) == 2
1556 || TYPE_LENGTH (value_type) == 4
1557 || TYPE_LENGTH (value_type) == 8));
c906108c
SS
1558}
1559
1560#ifndef USE_STRUCT_CONVENTION
1561#define USE_STRUCT_CONVENTION(gcc_p,type) generic_use_struct_convention (gcc_p, type)
1562#endif
1563
c906108c
SS
1564
1565/* Return true if the function specified is using the structure returning
1566 convention on this machine to return arguments, or 0 if it is using
1567 the value returning convention. FUNCTION is the value representing
1568 the function, FUNCADDR is the address of the function, and VALUE_TYPE
1569 is the type returned by the function. GCC_P is nonzero if compiled
1570 with GCC. */
1571
1572int
1573using_struct_return (function, funcaddr, value_type, gcc_p)
1574 value_ptr function;
1575 CORE_ADDR funcaddr;
1576 struct type *value_type;
1577 int gcc_p;
c5aa993b 1578 /*ARGSUSED */
c906108c
SS
1579{
1580 register enum type_code code = TYPE_CODE (value_type);
1581
1582 if (code == TYPE_CODE_ERROR)
1583 error ("Function return type unknown.");
1584
1585 if (code == TYPE_CODE_STRUCT
1586 || code == TYPE_CODE_UNION
1587 || code == TYPE_CODE_ARRAY
1588 || RETURN_VALUE_ON_STACK (value_type))
1589 return USE_STRUCT_CONVENTION (gcc_p, value_type);
1590
1591 return 0;
1592}
1593
1594/* Store VAL so it will be returned if a function returns now.
1595 Does not verify that VAL's type matches what the current
1596 function wants to return. */
1597
1598void
1599set_return_value (val)
1600 value_ptr val;
1601{
1602 struct type *type = check_typedef (VALUE_TYPE (val));
1603 register enum type_code code = TYPE_CODE (type);
1604
1605 if (code == TYPE_CODE_ERROR)
1606 error ("Function return type unknown.");
1607
c5aa993b 1608 if (code == TYPE_CODE_STRUCT
c906108c
SS
1609 || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */
1610 error ("GDB does not support specifying a struct or union return value.");
1611
1612 STORE_RETURN_VALUE (type, VALUE_CONTENTS (val));
1613}
1614\f
1615void
1616_initialize_values ()
1617{
1618 add_cmd ("convenience", no_class, show_convenience,
c5aa993b 1619 "Debugger convenience (\"$foo\") variables.\n\
c906108c
SS
1620These variables are created when you assign them values;\n\
1621thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1622A few convenience variables are given values automatically:\n\
1623\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1624\"$__\" holds the contents of the last address examined with \"x\".",
1625 &showlist);
1626
1627 add_cmd ("values", no_class, show_values,
1628 "Elements of value history around item number IDX (or last ten).",
1629 &showlist);
1630}