]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/values.c
import gdb-1999-07-07 post reformat
[thirdparty/binutils-gdb.git] / gdb / values.c
CommitLineData
c906108c
SS
1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
2 Copyright 1986, 87, 89, 91, 93, 94, 95, 96, 97, 1998
3 Free Software Foundation, Inc.
4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b
JM
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
c906108c
SS
21
22#include "defs.h"
23#include "gdb_string.h"
24#include "symtab.h"
25#include "gdbtypes.h"
26#include "value.h"
27#include "gdbcore.h"
28#include "frame.h"
29#include "command.h"
30#include "gdbcmd.h"
31#include "target.h"
32#include "language.h"
33#include "scm-lang.h"
34#include "demangle.h"
35
36/* Prototypes for exported functions. */
37
38void _initialize_values PARAMS ((void));
39
40/* Prototypes for local functions. */
41
42static value_ptr value_headof PARAMS ((value_ptr, struct type *,
43 struct type *));
44
45static void show_values PARAMS ((char *, int));
46
47static void show_convenience PARAMS ((char *, int));
48
49static int vb_match PARAMS ((struct type *, int, struct type *));
50
51/* The value-history records all the values printed
52 by print commands during this session. Each chunk
53 records 60 consecutive values. The first chunk on
54 the chain records the most recent values.
55 The total number of values is in value_history_count. */
56
57#define VALUE_HISTORY_CHUNK 60
58
59struct value_history_chunk
c5aa993b
JM
60 {
61 struct value_history_chunk *next;
62 value_ptr values[VALUE_HISTORY_CHUNK];
63 };
c906108c
SS
64
65/* Chain of chunks now in use. */
66
67static struct value_history_chunk *value_history_chain;
68
69static int value_history_count; /* Abs number of last entry stored */
70\f
71/* List of all value objects currently allocated
72 (except for those released by calls to release_value)
73 This is so they can be freed after each command. */
74
75static value_ptr all_values;
76
77/* Allocate a value that has the correct length for type TYPE. */
78
79value_ptr
80allocate_value (type)
81 struct type *type;
82{
83 register value_ptr val;
84 struct type *atype = check_typedef (type);
85
86 val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (atype));
87 VALUE_NEXT (val) = all_values;
88 all_values = val;
89 VALUE_TYPE (val) = type;
90 VALUE_ENCLOSING_TYPE (val) = type;
91 VALUE_LVAL (val) = not_lval;
92 VALUE_ADDRESS (val) = 0;
93 VALUE_FRAME (val) = 0;
94 VALUE_OFFSET (val) = 0;
95 VALUE_BITPOS (val) = 0;
96 VALUE_BITSIZE (val) = 0;
97 VALUE_REGNO (val) = -1;
98 VALUE_LAZY (val) = 0;
99 VALUE_OPTIMIZED_OUT (val) = 0;
100 VALUE_BFD_SECTION (val) = NULL;
101 VALUE_EMBEDDED_OFFSET (val) = 0;
102 VALUE_POINTED_TO_OFFSET (val) = 0;
103 val->modifiable = 1;
104 return val;
105}
106
107/* Allocate a value that has the correct length
108 for COUNT repetitions type TYPE. */
109
110value_ptr
111allocate_repeat_value (type, count)
112 struct type *type;
113 int count;
114{
c5aa993b 115 int low_bound = current_language->string_lower_bound; /* ??? */
c906108c
SS
116 /* FIXME-type-allocation: need a way to free this type when we are
117 done with it. */
118 struct type *range_type
c5aa993b
JM
119 = create_range_type ((struct type *) NULL, builtin_type_int,
120 low_bound, count + low_bound - 1);
c906108c
SS
121 /* FIXME-type-allocation: need a way to free this type when we are
122 done with it. */
123 return allocate_value (create_array_type ((struct type *) NULL,
124 type, range_type));
125}
126
127/* Return a mark in the value chain. All values allocated after the
128 mark is obtained (except for those released) are subject to being freed
129 if a subsequent value_free_to_mark is passed the mark. */
130value_ptr
131value_mark ()
132{
133 return all_values;
134}
135
136/* Free all values allocated since MARK was obtained by value_mark
137 (except for those released). */
138void
139value_free_to_mark (mark)
140 value_ptr mark;
141{
142 value_ptr val, next;
143
144 for (val = all_values; val && val != mark; val = next)
145 {
146 next = VALUE_NEXT (val);
147 value_free (val);
148 }
149 all_values = val;
150}
151
152/* Free all the values that have been allocated (except for those released).
153 Called after each command, successful or not. */
154
155void
156free_all_values ()
157{
158 register value_ptr val, next;
159
160 for (val = all_values; val; val = next)
161 {
162 next = VALUE_NEXT (val);
163 value_free (val);
164 }
165
166 all_values = 0;
167}
168
169/* Remove VAL from the chain all_values
170 so it will not be freed automatically. */
171
172void
173release_value (val)
174 register value_ptr val;
175{
176 register value_ptr v;
177
178 if (all_values == val)
179 {
180 all_values = val->next;
181 return;
182 }
183
184 for (v = all_values; v; v = v->next)
185 {
186 if (v->next == val)
187 {
188 v->next = val->next;
189 break;
190 }
191 }
192}
193
194/* Release all values up to mark */
195value_ptr
196value_release_to_mark (mark)
197 value_ptr mark;
198{
199 value_ptr val, next;
200
201 for (val = next = all_values; next; next = VALUE_NEXT (next))
202 if (VALUE_NEXT (next) == mark)
203 {
204 all_values = VALUE_NEXT (next);
205 VALUE_NEXT (next) = 0;
206 return val;
207 }
208 all_values = 0;
209 return val;
210}
211
212/* Return a copy of the value ARG.
213 It contains the same contents, for same memory address,
214 but it's a different block of storage. */
215
216value_ptr
217value_copy (arg)
218 value_ptr arg;
219{
220 register struct type *encl_type = VALUE_ENCLOSING_TYPE (arg);
221 register value_ptr val = allocate_value (encl_type);
222 VALUE_TYPE (val) = VALUE_TYPE (arg);
223 VALUE_LVAL (val) = VALUE_LVAL (arg);
224 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
225 VALUE_OFFSET (val) = VALUE_OFFSET (arg);
226 VALUE_BITPOS (val) = VALUE_BITPOS (arg);
227 VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
228 VALUE_FRAME (val) = VALUE_FRAME (arg);
229 VALUE_REGNO (val) = VALUE_REGNO (arg);
230 VALUE_LAZY (val) = VALUE_LAZY (arg);
231 VALUE_OPTIMIZED_OUT (val) = VALUE_OPTIMIZED_OUT (arg);
232 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (arg);
233 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (arg);
234 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (arg);
235 val->modifiable = arg->modifiable;
236 if (!VALUE_LAZY (val))
237 {
238 memcpy (VALUE_CONTENTS_ALL_RAW (val), VALUE_CONTENTS_ALL_RAW (arg),
239 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg)));
240
241 }
242 return val;
243}
244\f
245/* Access to the value history. */
246
247/* Record a new value in the value history.
248 Returns the absolute history index of the entry.
249 Result of -1 indicates the value was not saved; otherwise it is the
250 value history index of this new item. */
251
252int
253record_latest_value (val)
254 value_ptr val;
255{
256 int i;
257
258 /* We don't want this value to have anything to do with the inferior anymore.
259 In particular, "set $1 = 50" should not affect the variable from which
260 the value was taken, and fast watchpoints should be able to assume that
261 a value on the value history never changes. */
262 if (VALUE_LAZY (val))
263 value_fetch_lazy (val);
264 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
265 from. This is a bit dubious, because then *&$1 does not just return $1
266 but the current contents of that location. c'est la vie... */
267 val->modifiable = 0;
268 release_value (val);
269
270 /* Here we treat value_history_count as origin-zero
271 and applying to the value being stored now. */
272
273 i = value_history_count % VALUE_HISTORY_CHUNK;
274 if (i == 0)
275 {
276 register struct value_history_chunk *new
c5aa993b
JM
277 = (struct value_history_chunk *)
278 xmalloc (sizeof (struct value_history_chunk));
c906108c
SS
279 memset (new->values, 0, sizeof new->values);
280 new->next = value_history_chain;
281 value_history_chain = new;
282 }
283
284 value_history_chain->values[i] = val;
285
286 /* Now we regard value_history_count as origin-one
287 and applying to the value just stored. */
288
289 return ++value_history_count;
290}
291
292/* Return a copy of the value in the history with sequence number NUM. */
293
294value_ptr
295access_value_history (num)
296 int num;
297{
298 register struct value_history_chunk *chunk;
299 register int i;
300 register int absnum = num;
301
302 if (absnum <= 0)
303 absnum += value_history_count;
304
305 if (absnum <= 0)
306 {
307 if (num == 0)
308 error ("The history is empty.");
309 else if (num == 1)
310 error ("There is only one value in the history.");
311 else
312 error ("History does not go back to $$%d.", -num);
313 }
314 if (absnum > value_history_count)
315 error ("History has not yet reached $%d.", absnum);
316
317 absnum--;
318
319 /* Now absnum is always absolute and origin zero. */
320
321 chunk = value_history_chain;
322 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
323 i > 0; i--)
324 chunk = chunk->next;
325
326 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
327}
328
329/* Clear the value history entirely.
330 Must be done when new symbol tables are loaded,
331 because the type pointers become invalid. */
332
333void
334clear_value_history ()
335{
336 register struct value_history_chunk *next;
337 register int i;
338 register value_ptr val;
339
340 while (value_history_chain)
341 {
342 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
343 if ((val = value_history_chain->values[i]) != NULL)
c5aa993b 344 free ((PTR) val);
c906108c 345 next = value_history_chain->next;
c5aa993b 346 free ((PTR) value_history_chain);
c906108c
SS
347 value_history_chain = next;
348 }
349 value_history_count = 0;
350}
351
352static void
353show_values (num_exp, from_tty)
354 char *num_exp;
355 int from_tty;
356{
357 register int i;
358 register value_ptr val;
359 static int num = 1;
360
361 if (num_exp)
362 {
c5aa993b
JM
363 /* "info history +" should print from the stored position.
364 "info history <exp>" should print around value number <exp>. */
c906108c
SS
365 if (num_exp[0] != '+' || num_exp[1] != '\0')
366 num = parse_and_eval_address (num_exp) - 5;
367 }
368 else
369 {
370 /* "info history" means print the last 10 values. */
371 num = value_history_count - 9;
372 }
373
374 if (num <= 0)
375 num = 1;
376
377 for (i = num; i < num + 10 && i <= value_history_count; i++)
378 {
379 val = access_value_history (i);
380 printf_filtered ("$%d = ", i);
381 value_print (val, gdb_stdout, 0, Val_pretty_default);
382 printf_filtered ("\n");
383 }
384
385 /* The next "info history +" should start after what we just printed. */
386 num += 10;
387
388 /* Hitting just return after this command should do the same thing as
389 "info history +". If num_exp is null, this is unnecessary, since
390 "info history +" is not useful after "info history". */
391 if (from_tty && num_exp)
392 {
393 num_exp[0] = '+';
394 num_exp[1] = '\0';
395 }
396}
397\f
398/* Internal variables. These are variables within the debugger
399 that hold values assigned by debugger commands.
400 The user refers to them with a '$' prefix
401 that does not appear in the variable names stored internally. */
402
403static struct internalvar *internalvars;
404
405/* Look up an internal variable with name NAME. NAME should not
406 normally include a dollar sign.
407
408 If the specified internal variable does not exist,
409 one is created, with a void value. */
410
411struct internalvar *
412lookup_internalvar (name)
413 char *name;
414{
415 register struct internalvar *var;
416
417 for (var = internalvars; var; var = var->next)
418 if (STREQ (var->name, name))
419 return var;
420
421 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
422 var->name = concat (name, NULL);
423 var->value = allocate_value (builtin_type_void);
424 release_value (var->value);
425 var->next = internalvars;
426 internalvars = var;
427 return var;
428}
429
430value_ptr
431value_of_internalvar (var)
432 struct internalvar *var;
433{
434 register value_ptr val;
435
436#ifdef IS_TRAPPED_INTERNALVAR
437 if (IS_TRAPPED_INTERNALVAR (var->name))
438 return VALUE_OF_TRAPPED_INTERNALVAR (var);
c5aa993b 439#endif
c906108c
SS
440
441 val = value_copy (var->value);
442 if (VALUE_LAZY (val))
443 value_fetch_lazy (val);
444 VALUE_LVAL (val) = lval_internalvar;
445 VALUE_INTERNALVAR (val) = var;
446 return val;
447}
448
449void
450set_internalvar_component (var, offset, bitpos, bitsize, newval)
451 struct internalvar *var;
452 int offset, bitpos, bitsize;
453 value_ptr newval;
454{
455 register char *addr = VALUE_CONTENTS (var->value) + offset;
456
457#ifdef IS_TRAPPED_INTERNALVAR
458 if (IS_TRAPPED_INTERNALVAR (var->name))
459 SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset);
460#endif
461
462 if (bitsize)
463 modify_field (addr, value_as_long (newval),
464 bitpos, bitsize);
465 else
466 memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval)));
467}
468
469void
470set_internalvar (var, val)
471 struct internalvar *var;
472 value_ptr val;
473{
474 value_ptr newval;
475
476#ifdef IS_TRAPPED_INTERNALVAR
477 if (IS_TRAPPED_INTERNALVAR (var->name))
478 SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0);
479#endif
480
481 newval = value_copy (val);
482 newval->modifiable = 1;
483
484 /* Force the value to be fetched from the target now, to avoid problems
485 later when this internalvar is referenced and the target is gone or
486 has changed. */
487 if (VALUE_LAZY (newval))
488 value_fetch_lazy (newval);
489
490 /* Begin code which must not call error(). If var->value points to
491 something free'd, an error() obviously leaves a dangling pointer.
492 But we also get a danling pointer if var->value points to
493 something in the value chain (i.e., before release_value is
494 called), because after the error free_all_values will get called before
495 long. */
c5aa993b 496 free ((PTR) var->value);
c906108c
SS
497 var->value = newval;
498 release_value (newval);
499 /* End code which must not call error(). */
500}
501
502char *
503internalvar_name (var)
504 struct internalvar *var;
505{
506 return var->name;
507}
508
509/* Free all internalvars. Done when new symtabs are loaded,
510 because that makes the values invalid. */
511
512void
513clear_internalvars ()
514{
515 register struct internalvar *var;
516
517 while (internalvars)
518 {
519 var = internalvars;
520 internalvars = var->next;
c5aa993b
JM
521 free ((PTR) var->name);
522 free ((PTR) var->value);
523 free ((PTR) var);
c906108c
SS
524 }
525}
526
527static void
528show_convenience (ignore, from_tty)
529 char *ignore;
530 int from_tty;
531{
532 register struct internalvar *var;
533 int varseen = 0;
534
535 for (var = internalvars; var; var = var->next)
536 {
537#ifdef IS_TRAPPED_INTERNALVAR
538 if (IS_TRAPPED_INTERNALVAR (var->name))
539 continue;
540#endif
541 if (!varseen)
542 {
543 varseen = 1;
544 }
545 printf_filtered ("$%s = ", var->name);
546 value_print (var->value, gdb_stdout, 0, Val_pretty_default);
547 printf_filtered ("\n");
548 }
549 if (!varseen)
550 printf_unfiltered ("No debugger convenience variables now defined.\n\
551Convenience variables have names starting with \"$\";\n\
552use \"set\" as in \"set $foo = 5\" to define them.\n");
553}
554\f
555/* Extract a value as a C number (either long or double).
556 Knows how to convert fixed values to double, or
557 floating values to long.
558 Does not deallocate the value. */
559
560LONGEST
561value_as_long (val)
562 register value_ptr val;
563{
564 /* This coerces arrays and functions, which is necessary (e.g.
565 in disassemble_command). It also dereferences references, which
566 I suspect is the most logical thing to do. */
567 COERCE_ARRAY (val);
568 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
569}
570
571DOUBLEST
572value_as_double (val)
573 register value_ptr val;
574{
575 DOUBLEST foo;
576 int inv;
c5aa993b 577
c906108c
SS
578 foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
579 if (inv)
580 error ("Invalid floating value found in program.");
581 return foo;
582}
583/* Extract a value as a C pointer.
584 Does not deallocate the value. */
585CORE_ADDR
586value_as_pointer (val)
587 value_ptr val;
588{
589 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
590 whether we want this to be true eventually. */
591#if 0
592 /* ADDR_BITS_REMOVE is wrong if we are being called for a
593 non-address (e.g. argument to "signal", "info break", etc.), or
594 for pointers to char, in which the low bits *are* significant. */
c5aa993b 595 return ADDR_BITS_REMOVE (value_as_long (val));
c906108c
SS
596#else
597 return value_as_long (val);
598#endif
599}
600\f
601/* Unpack raw data (copied from debugee, target byte order) at VALADDR
602 as a long, or as a double, assuming the raw data is described
603 by type TYPE. Knows how to convert different sizes of values
604 and can convert between fixed and floating point. We don't assume
605 any alignment for the raw data. Return value is in host byte order.
606
607 If you want functions and arrays to be coerced to pointers, and
608 references to be dereferenced, call value_as_long() instead.
609
610 C++: It is assumed that the front-end has taken care of
611 all matters concerning pointers to members. A pointer
612 to member which reaches here is considered to be equivalent
613 to an INT (or some size). After all, it is only an offset. */
614
615LONGEST
616unpack_long (type, valaddr)
617 struct type *type;
618 char *valaddr;
619{
620 register enum type_code code = TYPE_CODE (type);
621 register int len = TYPE_LENGTH (type);
622 register int nosign = TYPE_UNSIGNED (type);
623
624 if (current_language->la_language == language_scm
625 && is_scmvalue_type (type))
626 return scm_unpack (type, valaddr, TYPE_CODE_INT);
627
628 switch (code)
629 {
630 case TYPE_CODE_TYPEDEF:
631 return unpack_long (check_typedef (type), valaddr);
632 case TYPE_CODE_ENUM:
633 case TYPE_CODE_BOOL:
634 case TYPE_CODE_INT:
635 case TYPE_CODE_CHAR:
636 case TYPE_CODE_RANGE:
637 if (nosign)
638 return extract_unsigned_integer (valaddr, len);
639 else
640 return extract_signed_integer (valaddr, len);
641
642 case TYPE_CODE_FLT:
643 return extract_floating (valaddr, len);
644
645 case TYPE_CODE_PTR:
646 case TYPE_CODE_REF:
647 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
c5aa993b 648 whether we want this to be true eventually. */
7a292a7a
SS
649 if (GDB_TARGET_IS_D10V
650 && len == 2)
c5aa993b 651 return D10V_MAKE_DADDR (extract_address (valaddr, len));
c906108c
SS
652 return extract_address (valaddr, len);
653
654 case TYPE_CODE_MEMBER:
655 error ("not implemented: member types in unpack_long");
656
657 default:
658 error ("Value can't be converted to integer.");
659 }
c5aa993b 660 return 0; /* Placate lint. */
c906108c
SS
661}
662
663/* Return a double value from the specified type and address.
664 INVP points to an int which is set to 0 for valid value,
665 1 for invalid value (bad float format). In either case,
666 the returned double is OK to use. Argument is in target
667 format, result is in host format. */
668
669DOUBLEST
670unpack_double (type, valaddr, invp)
671 struct type *type;
672 char *valaddr;
673 int *invp;
674{
675 enum type_code code;
676 int len;
677 int nosign;
678
679 *invp = 0; /* Assume valid. */
680 CHECK_TYPEDEF (type);
681 code = TYPE_CODE (type);
682 len = TYPE_LENGTH (type);
683 nosign = TYPE_UNSIGNED (type);
684 if (code == TYPE_CODE_FLT)
685 {
686#ifdef INVALID_FLOAT
687 if (INVALID_FLOAT (valaddr, len))
688 {
689 *invp = 1;
690 return 1.234567891011121314;
691 }
692#endif
693 return extract_floating (valaddr, len);
694 }
695 else if (nosign)
696 {
697 /* Unsigned -- be sure we compensate for signed LONGEST. */
698#if !defined (_MSC_VER) || (_MSC_VER > 900)
699 return (ULONGEST) unpack_long (type, valaddr);
700#else
701 /* FIXME!!! msvc22 doesn't support unsigned __int64 -> double */
702 return (LONGEST) unpack_long (type, valaddr);
703#endif /* _MSC_VER */
704 }
705 else
706 {
707 /* Signed -- we are OK with unpack_long. */
708 return unpack_long (type, valaddr);
709 }
710}
711
712/* Unpack raw data (copied from debugee, target byte order) at VALADDR
713 as a CORE_ADDR, assuming the raw data is described by type TYPE.
714 We don't assume any alignment for the raw data. Return value is in
715 host byte order.
716
717 If you want functions and arrays to be coerced to pointers, and
718 references to be dereferenced, call value_as_pointer() instead.
719
720 C++: It is assumed that the front-end has taken care of
721 all matters concerning pointers to members. A pointer
722 to member which reaches here is considered to be equivalent
723 to an INT (or some size). After all, it is only an offset. */
724
725CORE_ADDR
726unpack_pointer (type, valaddr)
727 struct type *type;
728 char *valaddr;
729{
730 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
731 whether we want this to be true eventually. */
732 return unpack_long (type, valaddr);
733}
734\f
735/* Get the value of the FIELDN'th field (which must be static) of TYPE. */
736
737value_ptr
738value_static_field (type, fieldno)
739 struct type *type;
740 int fieldno;
741{
742 CORE_ADDR addr;
743 asection *sect;
744 if (TYPE_FIELD_STATIC_HAS_ADDR (type, fieldno))
745 {
746 addr = TYPE_FIELD_STATIC_PHYSADDR (type, fieldno);
747 sect = NULL;
748 }
749 else
750 {
751 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
752 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL);
753 if (sym == NULL)
754 {
755 /* With some compilers, e.g. HP aCC, static data members are reported
c5aa993b
JM
756 as non-debuggable symbols */
757 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
c906108c
SS
758 if (!msym)
759 return NULL;
760 else
c5aa993b 761 {
c906108c
SS
762 addr = SYMBOL_VALUE_ADDRESS (msym);
763 sect = SYMBOL_BFD_SECTION (msym);
764 }
765 }
766 else
767 {
768 addr = SYMBOL_VALUE_ADDRESS (sym);
769 sect = SYMBOL_BFD_SECTION (sym);
770 }
771 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno), addr);
772 }
773 return value_at (TYPE_FIELD_TYPE (type, fieldno), addr, sect);
774}
775
776/* Given a value ARG1 (offset by OFFSET bytes)
777 of a struct or union type ARG_TYPE,
778 extract and return the value of one of its (non-static) fields.
779 FIELDNO says which field. */
780
781value_ptr
782value_primitive_field (arg1, offset, fieldno, arg_type)
783 register value_ptr arg1;
784 int offset;
785 register int fieldno;
786 register struct type *arg_type;
787{
788 register value_ptr v;
789 register struct type *type;
790
791 CHECK_TYPEDEF (arg_type);
792 type = TYPE_FIELD_TYPE (arg_type, fieldno);
793
794 /* Handle packed fields */
795
796 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
797 {
798 v = value_from_longest (type,
799 unpack_field_as_long (arg_type,
800 VALUE_CONTENTS (arg1)
c5aa993b 801 + offset,
c906108c
SS
802 fieldno));
803 VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
804 VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
805 }
806 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
807 {
808 /* This field is actually a base subobject, so preserve the
809 entire object's contents for later references to virtual
810 bases, etc. */
811 v = allocate_value (VALUE_ENCLOSING_TYPE (arg1));
812 VALUE_TYPE (v) = arg_type;
813 if (VALUE_LAZY (arg1))
814 VALUE_LAZY (v) = 1;
815 else
816 memcpy (VALUE_CONTENTS_ALL_RAW (v), VALUE_CONTENTS_ALL_RAW (arg1),
817 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg1)));
818 VALUE_OFFSET (v) = VALUE_OFFSET (arg1);
819 VALUE_EMBEDDED_OFFSET (v)
c5aa993b
JM
820 = offset +
821 VALUE_EMBEDDED_OFFSET (arg1) +
822 TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
c906108c
SS
823 }
824 else
825 {
826 /* Plain old data member */
827 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
828 v = allocate_value (type);
829 if (VALUE_LAZY (arg1))
830 VALUE_LAZY (v) = 1;
831 else
832 memcpy (VALUE_CONTENTS_RAW (v),
833 VALUE_CONTENTS_RAW (arg1) + offset,
834 TYPE_LENGTH (type));
835 VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset;
836 }
837 VALUE_LVAL (v) = VALUE_LVAL (arg1);
838 if (VALUE_LVAL (arg1) == lval_internalvar)
839 VALUE_LVAL (v) = lval_internalvar_component;
840 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
841/* VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
c5aa993b 842 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; */
c906108c
SS
843 return v;
844}
845
846/* Given a value ARG1 of a struct or union type,
847 extract and return the value of one of its (non-static) fields.
848 FIELDNO says which field. */
849
850value_ptr
851value_field (arg1, fieldno)
852 register value_ptr arg1;
853 register int fieldno;
854{
855 return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
856}
857
858/* Return a non-virtual function as a value.
859 F is the list of member functions which contains the desired method.
860 J is an index into F which provides the desired method. */
861
862value_ptr
863value_fn_field (arg1p, f, j, type, offset)
864 value_ptr *arg1p;
865 struct fn_field *f;
866 int j;
867 struct type *type;
868 int offset;
869{
870 register value_ptr v;
871 register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
872 struct symbol *sym;
873
874 sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
875 0, VAR_NAMESPACE, 0, NULL);
c5aa993b
JM
876 if (!sym)
877 return NULL;
c906108c 878/*
c5aa993b
JM
879 error ("Internal error: could not find physical method named %s",
880 TYPE_FN_FIELD_PHYSNAME (f, j));
881 */
882
c906108c
SS
883 v = allocate_value (ftype);
884 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
885 VALUE_TYPE (v) = ftype;
886
887 if (arg1p)
c5aa993b
JM
888 {
889 if (type != VALUE_TYPE (*arg1p))
890 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
891 value_addr (*arg1p)));
892
893 /* Move the `this' pointer according to the offset.
894 VALUE_OFFSET (*arg1p) += offset;
895 */
c906108c
SS
896 }
897
898 return v;
899}
900
901/* Return a virtual function as a value.
902 ARG1 is the object which provides the virtual function
903 table pointer. *ARG1P is side-effected in calling this function.
904 F is the list of member functions which contains the desired virtual
905 function.
906 J is an index into F which provides the desired virtual function.
907
908 TYPE is the type in which F is located. */
909value_ptr
910value_virtual_fn_field (arg1p, f, j, type, offset)
911 value_ptr *arg1p;
912 struct fn_field *f;
913 int j;
914 struct type *type;
915 int offset;
916{
917 value_ptr arg1 = *arg1p;
918 struct type *type1 = check_typedef (VALUE_TYPE (arg1));
919
920 if (TYPE_HAS_VTABLE (type))
921 {
922 /* Deal with HP/Taligent runtime model for virtual functions */
923 value_ptr vp;
c5aa993b
JM
924 value_ptr argp; /* arg1 cast to base */
925 CORE_ADDR vfunc_addr; /* address of virtual method */
926 CORE_ADDR coreptr; /* pointer to target address */
927 int class_index; /* which class segment pointer to use */
928 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j); /* method type */
c906108c
SS
929
930 argp = value_cast (type, *arg1p);
931
932 if (VALUE_ADDRESS (argp) == 0)
c5aa993b
JM
933 error ("Address of object is null; object may not have been created.");
934
c906108c
SS
935 /* pai: FIXME -- 32x64 possible problem? */
936 /* First word (4 bytes) in object layout is the vtable pointer */
c5aa993b
JM
937 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (argp)); /* pai: (temp) */
938 /* + offset + VALUE_EMBEDDED_OFFSET (argp)); */
c906108c
SS
939
940 if (!coreptr)
c5aa993b
JM
941 error ("Virtual table pointer is null for object; object may not have been created.");
942
c906108c
SS
943 /* pai/1997-05-09
944 * FIXME: The code here currently handles only
945 * the non-RRBC case of the Taligent/HP runtime spec; when RRBC
946 * is introduced, the condition for the "if" below will have to
947 * be changed to be a test for the RRBC case. */
c5aa993b 948
c906108c 949 if (1)
c5aa993b
JM
950 {
951 /* Non-RRBC case; the virtual function pointers are stored at fixed
952 * offsets in the virtual table. */
953
954 /* Retrieve the offset in the virtual table from the debug
955 * info. The offset of the vfunc's entry is in words from
956 * the beginning of the vtable; but first we have to adjust
957 * by HP_ACC_VFUNC_START to account for other entries */
958
959 /* pai: FIXME: 32x64 problem here, a word may be 8 bytes in
960 * which case the multiplier should be 8 and values should be long */
961 vp = value_at (builtin_type_int,
962 coreptr + 4 * (TYPE_FN_FIELD_VOFFSET (f, j) + HP_ACC_VFUNC_START), NULL);
963
964 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp));
965 /* coreptr now contains the address of the virtual function */
966 /* (Actually, it contains the pointer to the plabel for the function. */
967 }
c906108c 968 else
c5aa993b
JM
969 {
970 /* RRBC case; the virtual function pointers are found by double
971 * indirection through the class segment tables. */
972
973 /* Choose class segment depending on type we were passed */
974 class_index = class_index_in_primary_list (type);
975
976 /* Find class segment pointer. These are in the vtable slots after
977 * some other entries, so adjust by HP_ACC_VFUNC_START for that. */
978 /* pai: FIXME 32x64 problem here, if words are 8 bytes long
979 * the multiplier below has to be 8 and value should be long. */
980 vp = value_at (builtin_type_int,
981 coreptr + 4 * (HP_ACC_VFUNC_START + class_index), NULL);
982 /* Indirect once more, offset by function index */
983 /* pai: FIXME 32x64 problem here, again multiplier could be 8 and value long */
984 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp) + 4 * TYPE_FN_FIELD_VOFFSET (f, j));
985 vp = value_at (builtin_type_int, coreptr, NULL);
986 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp));
987
988 /* coreptr now contains the address of the virtual function */
989 /* (Actually, it contains the pointer to the plabel for the function.) */
990
991 }
c906108c
SS
992
993 if (!coreptr)
c5aa993b 994 error ("Address of virtual function is null; error in virtual table?");
c906108c 995
c5aa993b 996 /* Wrap this addr in a value and return pointer */
c906108c
SS
997 vp = allocate_value (ftype);
998 VALUE_TYPE (vp) = ftype;
999 VALUE_ADDRESS (vp) = coreptr;
c5aa993b 1000
c906108c
SS
1001 /* pai: (temp) do we need the value_ind stuff in value_fn_field? */
1002 return vp;
1003 }
c5aa993b
JM
1004 else
1005 { /* Not using HP/Taligent runtime conventions; so try to
1006 * use g++ conventions for virtual table */
1007
c906108c
SS
1008 struct type *entry_type;
1009 /* First, get the virtual function table pointer. That comes
1010 with a strange type, so cast it to type `pointer to long' (which
1011 should serve just fine as a function type). Then, index into
1012 the table, and convert final value to appropriate function type. */
1013 value_ptr entry, vfn, vtbl;
c5aa993b
JM
1014 value_ptr vi = value_from_longest (builtin_type_int,
1015 (LONGEST) TYPE_FN_FIELD_VOFFSET (f, j));
c906108c
SS
1016 struct type *fcontext = TYPE_FN_FIELD_FCONTEXT (f, j);
1017 struct type *context;
1018 if (fcontext == NULL)
c5aa993b
JM
1019 /* We don't have an fcontext (e.g. the program was compiled with
1020 g++ version 1). Try to get the vtbl from the TYPE_VPTR_BASETYPE.
1021 This won't work right for multiple inheritance, but at least we
1022 should do as well as GDB 3.x did. */
1023 fcontext = TYPE_VPTR_BASETYPE (type);
c906108c
SS
1024 context = lookup_pointer_type (fcontext);
1025 /* Now context is a pointer to the basetype containing the vtbl. */
1026 if (TYPE_TARGET_TYPE (context) != type1)
c5aa993b 1027 {
c906108c
SS
1028 value_ptr tmp = value_cast (context, value_addr (arg1));
1029 VALUE_POINTED_TO_OFFSET (tmp) = 0;
c5aa993b
JM
1030 arg1 = value_ind (tmp);
1031 type1 = check_typedef (VALUE_TYPE (arg1));
1032 }
c906108c
SS
1033
1034 context = type1;
1035 /* Now context is the basetype containing the vtbl. */
1036
1037 /* This type may have been defined before its virtual function table
1038 was. If so, fill in the virtual function table entry for the
1039 type now. */
1040 if (TYPE_VPTR_FIELDNO (context) < 0)
c5aa993b 1041 fill_in_vptr_fieldno (context);
c906108c
SS
1042
1043 /* The virtual function table is now an array of structures
1044 which have the form { int16 offset, delta; void *pfn; }. */
1045 vtbl = value_primitive_field (arg1, 0, TYPE_VPTR_FIELDNO (context),
1046 TYPE_VPTR_BASETYPE (context));
c5aa993b 1047
c906108c 1048 /* With older versions of g++, the vtbl field pointed to an array
c5aa993b 1049 of structures. Nowadays it points directly to the structure. */
c906108c 1050 if (TYPE_CODE (VALUE_TYPE (vtbl)) == TYPE_CODE_PTR
c5aa993b 1051 && TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (vtbl))) == TYPE_CODE_ARRAY)
c906108c
SS
1052 {
1053 /* Handle the case where the vtbl field points to an
1054 array of structures. */
1055 vtbl = value_ind (vtbl);
1056
1057 /* Index into the virtual function table. This is hard-coded because
1058 looking up a field is not cheap, and it may be important to save
1059 time, e.g. if the user has set a conditional breakpoint calling
1060 a virtual function. */
1061 entry = value_subscript (vtbl, vi);
1062 }
1063 else
1064 {
1065 /* Handle the case where the vtbl field points directly to a structure. */
1066 vtbl = value_add (vtbl, vi);
1067 entry = value_ind (vtbl);
1068 }
1069
1070 entry_type = check_typedef (VALUE_TYPE (entry));
1071
1072 if (TYPE_CODE (entry_type) == TYPE_CODE_STRUCT)
c5aa993b
JM
1073 {
1074 /* Move the `this' pointer according to the virtual function table. */
1075 VALUE_OFFSET (arg1) += value_as_long (value_field (entry, 0));
1076
1077 if (!VALUE_LAZY (arg1))
1078 {
1079 VALUE_LAZY (arg1) = 1;
1080 value_fetch_lazy (arg1);
1081 }
1082
1083 vfn = value_field (entry, 2);
1084 }
c906108c 1085 else if (TYPE_CODE (entry_type) == TYPE_CODE_PTR)
c5aa993b 1086 vfn = entry;
c906108c 1087 else
c5aa993b 1088 error ("I'm confused: virtual function table has bad type");
c906108c
SS
1089 /* Reinstantiate the function pointer with the correct type. */
1090 VALUE_TYPE (vfn) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f, j));
1091
1092 *arg1p = arg1;
1093 return vfn;
1094 }
1095}
1096
1097/* ARG is a pointer to an object we know to be at least
1098 a DTYPE. BTYPE is the most derived basetype that has
1099 already been searched (and need not be searched again).
1100 After looking at the vtables between BTYPE and DTYPE,
1101 return the most derived type we find. The caller must
1102 be satisfied when the return value == DTYPE.
1103
1104 FIXME-tiemann: should work with dossier entries as well. */
1105
1106static value_ptr
1107value_headof (in_arg, btype, dtype)
1108 value_ptr in_arg;
1109 struct type *btype, *dtype;
1110{
1111 /* First collect the vtables we must look at for this object. */
1112 /* FIXME-tiemann: right now, just look at top-most vtable. */
1113 value_ptr arg, vtbl, entry, best_entry = 0;
1114 int i, nelems;
1115 int offset, best_offset = 0;
1116 struct symbol *sym;
1117 CORE_ADDR pc_for_sym;
1118 char *demangled_name;
1119 struct minimal_symbol *msymbol;
1120
1121 btype = TYPE_VPTR_BASETYPE (dtype);
1122 CHECK_TYPEDEF (btype);
1123 arg = in_arg;
1124 if (btype != dtype)
1125 arg = value_cast (lookup_pointer_type (btype), arg);
1126 vtbl = value_ind (value_field (value_ind (arg), TYPE_VPTR_FIELDNO (btype)));
1127
1128 /* Check that VTBL looks like it points to a virtual function table. */
1129 msymbol = lookup_minimal_symbol_by_pc (VALUE_ADDRESS (vtbl));
1130 if (msymbol == NULL
1131 || (demangled_name = SYMBOL_NAME (msymbol)) == NULL
1132 || !VTBL_PREFIX_P (demangled_name))
1133 {
1134 /* If we expected to find a vtable, but did not, let the user
c5aa993b
JM
1135 know that we aren't happy, but don't throw an error.
1136 FIXME: there has to be a better way to do this. */
1137 struct type *error_type = (struct type *) xmalloc (sizeof (struct type));
c906108c
SS
1138 memcpy (error_type, VALUE_TYPE (in_arg), sizeof (struct type));
1139 TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *"));
1140 VALUE_TYPE (in_arg) = error_type;
1141 return in_arg;
1142 }
1143
1144 /* Now search through the virtual function table. */
1145 entry = value_ind (vtbl);
1146 nelems = longest_to_int (value_as_long (value_field (entry, 2)));
1147 for (i = 1; i <= nelems; i++)
1148 {
c5aa993b
JM
1149 entry = value_subscript (vtbl, value_from_longest (builtin_type_int,
1150 (LONGEST) i));
c906108c
SS
1151 /* This won't work if we're using thunks. */
1152 if (TYPE_CODE (check_typedef (VALUE_TYPE (entry))) != TYPE_CODE_STRUCT)
1153 break;
1154 offset = longest_to_int (value_as_long (value_field (entry, 0)));
1155 /* If we use '<=' we can handle single inheritance
1156 * where all offsets are zero - just use the first entry found. */
1157 if (offset <= best_offset)
1158 {
1159 best_offset = offset;
1160 best_entry = entry;
1161 }
1162 }
1163 /* Move the pointer according to BEST_ENTRY's offset, and figure
1164 out what type we should return as the new pointer. */
1165 if (best_entry == 0)
1166 {
1167 /* An alternative method (which should no longer be necessary).
1168 * But we leave it in for future use, when we will hopefully
1169 * have optimizes the vtable to use thunks instead of offsets. */
1170 /* Use the name of vtable itself to extract a base type. */
c5aa993b 1171 demangled_name += 4; /* Skip _vt$ prefix. */
c906108c
SS
1172 }
1173 else
1174 {
1175 pc_for_sym = value_as_pointer (value_field (best_entry, 2));
1176 sym = find_pc_function (pc_for_sym);
1177 demangled_name = cplus_demangle (SYMBOL_NAME (sym), DMGL_ANSI);
1178 *(strchr (demangled_name, ':')) = '\0';
1179 }
1180 sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0);
1181 if (sym == NULL)
1182 error ("could not find type declaration for `%s'", demangled_name);
1183 if (best_entry)
1184 {
1185 free (demangled_name);
1186 arg = value_add (value_cast (builtin_type_int, arg),
1187 value_field (best_entry, 0));
1188 }
c5aa993b
JM
1189 else
1190 arg = in_arg;
c906108c
SS
1191 VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym));
1192 return arg;
1193}
1194
1195/* ARG is a pointer object of type TYPE. If TYPE has virtual
1196 function tables, probe ARG's tables (including the vtables
1197 of its baseclasses) to figure out the most derived type that ARG
1198 could actually be a pointer to. */
1199
1200value_ptr
1201value_from_vtable_info (arg, type)
1202 value_ptr arg;
1203 struct type *type;
1204{
1205 /* Take care of preliminaries. */
1206 if (TYPE_VPTR_FIELDNO (type) < 0)
1207 fill_in_vptr_fieldno (type);
1208 if (TYPE_VPTR_FIELDNO (type) < 0)
1209 return 0;
1210
1211 return value_headof (arg, 0, type);
1212}
1213
1214/* Return true if the INDEXth field of TYPE is a virtual baseclass
1215 pointer which is for the base class whose type is BASECLASS. */
1216
1217static int
1218vb_match (type, index, basetype)
1219 struct type *type;
1220 int index;
1221 struct type *basetype;
1222{
1223 struct type *fieldtype;
1224 char *name = TYPE_FIELD_NAME (type, index);
1225 char *field_class_name = NULL;
1226
1227 if (*name != '_')
1228 return 0;
1229 /* gcc 2.4 uses _vb$. */
1230 if (name[1] == 'v' && name[2] == 'b' && is_cplus_marker (name[3]))
1231 field_class_name = name + 4;
1232 /* gcc 2.5 will use __vb_. */
1233 if (name[1] == '_' && name[2] == 'v' && name[3] == 'b' && name[4] == '_')
1234 field_class_name = name + 5;
1235
1236 if (field_class_name == NULL)
1237 /* This field is not a virtual base class pointer. */
1238 return 0;
1239
1240 /* It's a virtual baseclass pointer, now we just need to find out whether
1241 it is for this baseclass. */
1242 fieldtype = TYPE_FIELD_TYPE (type, index);
1243 if (fieldtype == NULL
1244 || TYPE_CODE (fieldtype) != TYPE_CODE_PTR)
1245 /* "Can't happen". */
1246 return 0;
1247
1248 /* What we check for is that either the types are equal (needed for
1249 nameless types) or have the same name. This is ugly, and a more
1250 elegant solution should be devised (which would probably just push
1251 the ugliness into symbol reading unless we change the stabs format). */
1252 if (TYPE_TARGET_TYPE (fieldtype) == basetype)
1253 return 1;
1254
1255 if (TYPE_NAME (basetype) != NULL
1256 && TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)) != NULL
1257 && STREQ (TYPE_NAME (basetype),
1258 TYPE_NAME (TYPE_TARGET_TYPE (fieldtype))))
1259 return 1;
1260 return 0;
1261}
1262
1263/* Compute the offset of the baseclass which is
1264 the INDEXth baseclass of class TYPE,
1265 for value at VALADDR (in host) at ADDRESS (in target).
1266 The result is the offset of the baseclass value relative
1267 to (the address of)(ARG) + OFFSET.
1268
1269 -1 is returned on error. */
1270
1271int
1272baseclass_offset (type, index, valaddr, address)
1273 struct type *type;
1274 int index;
1275 char *valaddr;
1276 CORE_ADDR address;
1277{
1278 struct type *basetype = TYPE_BASECLASS (type, index);
1279
1280 if (BASETYPE_VIA_VIRTUAL (type, index))
1281 {
1282 /* Must hunt for the pointer to this virtual baseclass. */
1283 register int i, len = TYPE_NFIELDS (type);
1284 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1285
1286 /* First look for the virtual baseclass pointer
c5aa993b 1287 in the fields. */
c906108c
SS
1288 for (i = n_baseclasses; i < len; i++)
1289 {
1290 if (vb_match (type, i, basetype))
1291 {
1292 CORE_ADDR addr
c5aa993b
JM
1293 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1294 valaddr + (TYPE_FIELD_BITPOS (type, i) / 8));
c906108c
SS
1295
1296 return addr - (LONGEST) address;
1297 }
1298 }
1299 /* Not in the fields, so try looking through the baseclasses. */
c5aa993b 1300 for (i = index + 1; i < n_baseclasses; i++)
c906108c
SS
1301 {
1302 int boffset =
c5aa993b 1303 baseclass_offset (type, i, valaddr, address);
c906108c
SS
1304 if (boffset)
1305 return boffset;
1306 }
1307 /* Not found. */
1308 return -1;
1309 }
1310
1311 /* Baseclass is easily computed. */
1312 return TYPE_BASECLASS_BITPOS (type, index) / 8;
1313}
1314\f
1315/* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1316 VALADDR.
1317
1318 Extracting bits depends on endianness of the machine. Compute the
1319 number of least significant bits to discard. For big endian machines,
1320 we compute the total number of bits in the anonymous object, subtract
1321 off the bit count from the MSB of the object to the MSB of the
1322 bitfield, then the size of the bitfield, which leaves the LSB discard
1323 count. For little endian machines, the discard count is simply the
1324 number of bits from the LSB of the anonymous object to the LSB of the
1325 bitfield.
1326
1327 If the field is signed, we also do sign extension. */
1328
1329LONGEST
1330unpack_field_as_long (type, valaddr, fieldno)
1331 struct type *type;
1332 char *valaddr;
1333 int fieldno;
1334{
1335 ULONGEST val;
1336 ULONGEST valmask;
1337 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1338 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1339 int lsbcount;
1340 struct type *field_type;
1341
1342 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1343 field_type = TYPE_FIELD_TYPE (type, fieldno);
1344 CHECK_TYPEDEF (field_type);
1345
1346 /* Extract bits. See comment above. */
1347
1348 if (BITS_BIG_ENDIAN)
1349 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1350 else
1351 lsbcount = (bitpos % 8);
1352 val >>= lsbcount;
1353
1354 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1355 If the field is signed, and is negative, then sign extend. */
1356
1357 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
1358 {
1359 valmask = (((ULONGEST) 1) << bitsize) - 1;
1360 val &= valmask;
1361 if (!TYPE_UNSIGNED (field_type))
1362 {
1363 if (val & (valmask ^ (valmask >> 1)))
1364 {
1365 val |= ~valmask;
1366 }
1367 }
1368 }
1369 return (val);
1370}
1371
1372/* Modify the value of a bitfield. ADDR points to a block of memory in
1373 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1374 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1375 indicate which bits (in target bit order) comprise the bitfield. */
1376
1377void
1378modify_field (addr, fieldval, bitpos, bitsize)
1379 char *addr;
1380 LONGEST fieldval;
1381 int bitpos, bitsize;
1382{
1383 LONGEST oword;
1384
1385 /* If a negative fieldval fits in the field in question, chop
1386 off the sign extension bits. */
1387 if (bitsize < (8 * (int) sizeof (fieldval))
1388 && (~fieldval & ~((1 << (bitsize - 1)) - 1)) == 0)
1389 fieldval = fieldval & ((1 << bitsize) - 1);
1390
1391 /* Warn if value is too big to fit in the field in question. */
1392 if (bitsize < (8 * (int) sizeof (fieldval))
c5aa993b 1393 && 0 != (fieldval & ~((1 << bitsize) - 1)))
c906108c
SS
1394 {
1395 /* FIXME: would like to include fieldval in the message, but
c5aa993b 1396 we don't have a sprintf_longest. */
c906108c
SS
1397 warning ("Value does not fit in %d bits.", bitsize);
1398
1399 /* Truncate it, otherwise adjoining fields may be corrupted. */
1400 fieldval = fieldval & ((1 << bitsize) - 1);
1401 }
1402
1403 oword = extract_signed_integer (addr, sizeof oword);
1404
1405 /* Shifting for bit field depends on endianness of the target machine. */
1406 if (BITS_BIG_ENDIAN)
1407 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1408
1409 /* Mask out old value, while avoiding shifts >= size of oword */
1410 if (bitsize < 8 * (int) sizeof (oword))
c5aa993b 1411 oword &= ~(((((ULONGEST) 1) << bitsize) - 1) << bitpos);
c906108c 1412 else
c5aa993b 1413 oword &= ~((~(ULONGEST) 0) << bitpos);
c906108c
SS
1414 oword |= fieldval << bitpos;
1415
1416 store_signed_integer (addr, sizeof oword, oword);
1417}
1418\f
1419/* Convert C numbers into newly allocated values */
1420
1421value_ptr
1422value_from_longest (type, num)
1423 struct type *type;
1424 register LONGEST num;
1425{
1426 register value_ptr val = allocate_value (type);
1427 register enum type_code code;
1428 register int len;
c5aa993b 1429retry:
c906108c
SS
1430 code = TYPE_CODE (type);
1431 len = TYPE_LENGTH (type);
1432
1433 switch (code)
1434 {
1435 case TYPE_CODE_TYPEDEF:
1436 type = check_typedef (type);
1437 goto retry;
1438 case TYPE_CODE_INT:
1439 case TYPE_CODE_CHAR:
1440 case TYPE_CODE_ENUM:
1441 case TYPE_CODE_BOOL:
1442 case TYPE_CODE_RANGE:
1443 store_signed_integer (VALUE_CONTENTS_RAW (val), len, num);
1444 break;
c5aa993b 1445
c906108c
SS
1446 case TYPE_CODE_REF:
1447 case TYPE_CODE_PTR:
1448 /* This assumes that all pointers of a given length
c5aa993b 1449 have the same form. */
c906108c
SS
1450 store_address (VALUE_CONTENTS_RAW (val), len, (CORE_ADDR) num);
1451 break;
c5aa993b 1452
c906108c
SS
1453 default:
1454 error ("Unexpected type (%d) encountered for integer constant.", code);
1455 }
1456 return val;
1457}
1458
0f71a2f6
JM
1459/* Create a value for a string constant to be stored locally
1460 (not in the inferior's memory space, but in GDB memory).
1461 This is analogous to value_from_longest, which also does not
1462 use inferior memory. String shall NOT contain embedded nulls. */
1463
1464value_ptr
1465value_from_string (ptr)
1466 char *ptr;
1467{
1468 value_ptr val;
c5aa993b 1469 int len = strlen (ptr);
0f71a2f6 1470 int lowbound = current_language->string_lower_bound;
c5aa993b
JM
1471 struct type *rangetype =
1472 create_range_type ((struct type *) NULL,
1473 builtin_type_int,
1474 lowbound, len + lowbound - 1);
1475 struct type *stringtype =
1476 create_array_type ((struct type *) NULL,
1477 *current_language->string_char_type,
1478 rangetype);
0f71a2f6
JM
1479
1480 val = allocate_value (stringtype);
1481 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1482 return val;
1483}
1484
c906108c
SS
1485value_ptr
1486value_from_double (type, num)
1487 struct type *type;
1488 DOUBLEST num;
1489{
1490 register value_ptr val = allocate_value (type);
1491 struct type *base_type = check_typedef (type);
1492 register enum type_code code = TYPE_CODE (base_type);
1493 register int len = TYPE_LENGTH (base_type);
1494
1495 if (code == TYPE_CODE_FLT)
1496 {
1497 store_floating (VALUE_CONTENTS_RAW (val), len, num);
1498 }
1499 else
1500 error ("Unexpected type encountered for floating constant.");
1501
1502 return val;
1503}
1504\f
1505/* Deal with the value that is "about to be returned". */
1506
1507/* Return the value that a function returning now
1508 would be returning to its caller, assuming its type is VALTYPE.
1509 RETBUF is where we look for what ought to be the contents
1510 of the registers (in raw form). This is because it is often
1511 desirable to restore old values to those registers
1512 after saving the contents of interest, and then call
1513 this function using the saved values.
1514 struct_return is non-zero when the function in question is
1515 using the structure return conventions on the machine in question;
1516 0 when it is using the value returning conventions (this often
1517 means returning pointer to where structure is vs. returning value). */
1518
1519value_ptr
1520value_being_returned (valtype, retbuf, struct_return)
1521 register struct type *valtype;
7a292a7a 1522 char *retbuf;
c906108c 1523 int struct_return;
c5aa993b 1524 /*ARGSUSED */
c906108c
SS
1525{
1526 register value_ptr val;
1527 CORE_ADDR addr;
1528
c906108c 1529 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
ac9a91a7
JM
1530 if (EXTRACT_STRUCT_VALUE_ADDRESS_P)
1531 if (struct_return)
1532 {
1533 addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
1534 if (!addr)
1535 error ("Function return value unknown");
1536 return value_at (valtype, addr, NULL);
1537 }
c906108c
SS
1538
1539 val = allocate_value (valtype);
1540 CHECK_TYPEDEF (valtype);
1541 EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));
1542
1543 return val;
1544}
1545
1546/* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
1547 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
1548 and TYPE is the type (which is known to be struct, union or array).
1549
1550 On most machines, the struct convention is used unless we are
1551 using gcc and the type is of a special size. */
1552/* As of about 31 Mar 93, GCC was changed to be compatible with the
1553 native compiler. GCC 2.3.3 was the last release that did it the
1554 old way. Since gcc2_compiled was not changed, we have no
1555 way to correctly win in all cases, so we just do the right thing
1556 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1557 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1558 would cause more chaos than dealing with some struct returns being
1559 handled wrong. */
1560
1561int
1562generic_use_struct_convention (gcc_p, value_type)
1563 int gcc_p;
1564 struct type *value_type;
c5aa993b 1565{
c906108c 1566 return !((gcc_p == 1)
c5aa993b
JM
1567 && (TYPE_LENGTH (value_type) == 1
1568 || TYPE_LENGTH (value_type) == 2
1569 || TYPE_LENGTH (value_type) == 4
1570 || TYPE_LENGTH (value_type) == 8));
c906108c
SS
1571}
1572
1573#ifndef USE_STRUCT_CONVENTION
1574#define USE_STRUCT_CONVENTION(gcc_p,type) generic_use_struct_convention (gcc_p, type)
1575#endif
1576
1577/* Some fundamental types (such as long double) are returned on the stack for
1578 certain architectures. This macro should return true for any type besides
1579 struct, union or array that gets returned on the stack. */
1580
1581#ifndef RETURN_VALUE_ON_STACK
1582#define RETURN_VALUE_ON_STACK(TYPE) 0
1583#endif
1584
1585/* Return true if the function specified is using the structure returning
1586 convention on this machine to return arguments, or 0 if it is using
1587 the value returning convention. FUNCTION is the value representing
1588 the function, FUNCADDR is the address of the function, and VALUE_TYPE
1589 is the type returned by the function. GCC_P is nonzero if compiled
1590 with GCC. */
1591
1592int
1593using_struct_return (function, funcaddr, value_type, gcc_p)
1594 value_ptr function;
1595 CORE_ADDR funcaddr;
1596 struct type *value_type;
1597 int gcc_p;
c5aa993b 1598 /*ARGSUSED */
c906108c
SS
1599{
1600 register enum type_code code = TYPE_CODE (value_type);
1601
1602 if (code == TYPE_CODE_ERROR)
1603 error ("Function return type unknown.");
1604
1605 if (code == TYPE_CODE_STRUCT
1606 || code == TYPE_CODE_UNION
1607 || code == TYPE_CODE_ARRAY
1608 || RETURN_VALUE_ON_STACK (value_type))
1609 return USE_STRUCT_CONVENTION (gcc_p, value_type);
1610
1611 return 0;
1612}
1613
1614/* Store VAL so it will be returned if a function returns now.
1615 Does not verify that VAL's type matches what the current
1616 function wants to return. */
1617
1618void
1619set_return_value (val)
1620 value_ptr val;
1621{
1622 struct type *type = check_typedef (VALUE_TYPE (val));
1623 register enum type_code code = TYPE_CODE (type);
1624
1625 if (code == TYPE_CODE_ERROR)
1626 error ("Function return type unknown.");
1627
c5aa993b 1628 if (code == TYPE_CODE_STRUCT
c906108c
SS
1629 || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */
1630 error ("GDB does not support specifying a struct or union return value.");
1631
1632 STORE_RETURN_VALUE (type, VALUE_CONTENTS (val));
1633}
1634\f
1635void
1636_initialize_values ()
1637{
1638 add_cmd ("convenience", no_class, show_convenience,
c5aa993b 1639 "Debugger convenience (\"$foo\") variables.\n\
c906108c
SS
1640These variables are created when you assign them values;\n\
1641thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1642A few convenience variables are given values automatically:\n\
1643\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1644\"$__\" holds the contents of the last address examined with \"x\".",
1645 &showlist);
1646
1647 add_cmd ("values", no_class, show_values,
1648 "Elements of value history around item number IDX (or last ten).",
1649 &showlist);
1650}