]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/varobj.c
Copyright year update in most files of the GDB Project.
[thirdparty/binutils-gdb.git] / gdb / varobj.c
CommitLineData
8b93c638 1/* Implementation of the GDB variable objects API.
bc8332bb 2
0fb0cc75 3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
7b6bb8da 4 2009, 2010, 2011 Free Software Foundation, Inc.
8b93c638
JM
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
a9762ec7 8 the Free Software Foundation; either version 3 of the License, or
8b93c638
JM
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
a9762ec7 17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
8b93c638
JM
18
19#include "defs.h"
a6c442d8 20#include "exceptions.h"
8b93c638
JM
21#include "value.h"
22#include "expression.h"
23#include "frame.h"
8b93c638
JM
24#include "language.h"
25#include "wrapper.h"
26#include "gdbcmd.h"
d2353924 27#include "block.h"
79a45b7d 28#include "valprint.h"
a6c442d8
MK
29
30#include "gdb_assert.h"
b66d6d2e 31#include "gdb_string.h"
0cc7d26f 32#include "gdb_regex.h"
8b93c638
JM
33
34#include "varobj.h"
28335dcc 35#include "vec.h"
6208b47d
VP
36#include "gdbthread.h"
37#include "inferior.h"
8b93c638 38
b6313243
TT
39#if HAVE_PYTHON
40#include "python/python.h"
41#include "python/python-internal.h"
50389644
PA
42#else
43typedef int PyObject;
b6313243
TT
44#endif
45
8b93c638
JM
46/* Non-zero if we want to see trace of varobj level stuff. */
47
48int varobjdebug = 0;
920d2a44
AC
49static void
50show_varobjdebug (struct ui_file *file, int from_tty,
51 struct cmd_list_element *c, const char *value)
52{
53 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
54}
8b93c638 55
581e13c1 56/* String representations of gdb's format codes. */
8b93c638 57char *varobj_format_string[] =
72330bd6 58 { "natural", "binary", "decimal", "hexadecimal", "octal" };
8b93c638 59
581e13c1 60/* String representations of gdb's known languages. */
72330bd6 61char *varobj_language_string[] = { "unknown", "C", "C++", "Java" };
8b93c638 62
0cc7d26f
TT
63/* True if we want to allow Python-based pretty-printing. */
64static int pretty_printing = 0;
65
66void
67varobj_enable_pretty_printing (void)
68{
69 pretty_printing = 1;
70}
71
8b93c638
JM
72/* Data structures */
73
74/* Every root variable has one of these structures saved in its
581e13c1 75 varobj. Members which must be free'd are noted. */
8b93c638 76struct varobj_root
72330bd6 77{
8b93c638 78
581e13c1 79 /* Alloc'd expression for this parent. */
72330bd6 80 struct expression *exp;
8b93c638 81
581e13c1 82 /* Block for which this expression is valid. */
72330bd6 83 struct block *valid_block;
8b93c638 84
44a67aa7
VP
85 /* The frame for this expression. This field is set iff valid_block is
86 not NULL. */
e64d9b3d 87 struct frame_id frame;
8b93c638 88
c5b48eac 89 /* The thread ID that this varobj_root belong to. This field
581e13c1 90 is only valid if valid_block is not NULL.
c5b48eac
VP
91 When not 0, indicates which thread 'frame' belongs to.
92 When 0, indicates that the thread list was empty when the varobj_root
93 was created. */
94 int thread_id;
95
a5defcdc
VP
96 /* If 1, the -var-update always recomputes the value in the
97 current thread and frame. Otherwise, variable object is
581e13c1 98 always updated in the specific scope/thread/frame. */
a5defcdc 99 int floating;
73a93a32 100
8756216b
DP
101 /* Flag that indicates validity: set to 0 when this varobj_root refers
102 to symbols that do not exist anymore. */
103 int is_valid;
104
581e13c1 105 /* Language info for this variable and its children. */
72330bd6 106 struct language_specific *lang;
8b93c638 107
581e13c1 108 /* The varobj for this root node. */
72330bd6 109 struct varobj *rootvar;
8b93c638 110
72330bd6
AC
111 /* Next root variable */
112 struct varobj_root *next;
113};
8b93c638
JM
114
115/* Every variable in the system has a structure of this type defined
581e13c1
MS
116 for it. This structure holds all information necessary to manipulate
117 a particular object variable. Members which must be freed are noted. */
8b93c638 118struct varobj
72330bd6 119{
8b93c638 120
581e13c1 121 /* Alloc'd name of the variable for this object. If this variable is a
72330bd6 122 child, then this name will be the child's source name.
581e13c1
MS
123 (bar, not foo.bar). */
124 /* NOTE: This is the "expression". */
72330bd6 125 char *name;
8b93c638 126
02142340
VP
127 /* Alloc'd expression for this child. Can be used to create a
128 root variable corresponding to this child. */
129 char *path_expr;
130
581e13c1
MS
131 /* The alloc'd name for this variable's object. This is here for
132 convenience when constructing this object's children. */
72330bd6 133 char *obj_name;
8b93c638 134
581e13c1 135 /* Index of this variable in its parent or -1. */
72330bd6 136 int index;
8b93c638 137
202ddcaa
VP
138 /* The type of this variable. This can be NULL
139 for artifial variable objects -- currently, the "accessibility"
140 variable objects in C++. */
72330bd6 141 struct type *type;
8b93c638 142
b20d8971
VP
143 /* The value of this expression or subexpression. A NULL value
144 indicates there was an error getting this value.
b2c2bd75
VP
145 Invariant: if varobj_value_is_changeable_p (this) is non-zero,
146 the value is either NULL, or not lazy. */
30b28db1 147 struct value *value;
8b93c638 148
581e13c1 149 /* The number of (immediate) children this variable has. */
72330bd6 150 int num_children;
8b93c638 151
581e13c1 152 /* If this object is a child, this points to its immediate parent. */
72330bd6 153 struct varobj *parent;
8b93c638 154
28335dcc
VP
155 /* Children of this object. */
156 VEC (varobj_p) *children;
8b93c638 157
b6313243
TT
158 /* Whether the children of this varobj were requested. This field is
159 used to decide if dynamic varobj should recompute their children.
160 In the event that the frontend never asked for the children, we
161 can avoid that. */
162 int children_requested;
163
581e13c1
MS
164 /* Description of the root variable. Points to root variable for
165 children. */
72330bd6 166 struct varobj_root *root;
8b93c638 167
581e13c1 168 /* The format of the output for this object. */
72330bd6 169 enum varobj_display_formats format;
fb9b6b35 170
581e13c1 171 /* Was this variable updated via a varobj_set_value operation. */
fb9b6b35 172 int updated;
85265413
NR
173
174 /* Last print value. */
175 char *print_value;
25d5ea92
VP
176
177 /* Is this variable frozen. Frozen variables are never implicitly
178 updated by -var-update *
179 or -var-update <direct-or-indirect-parent>. */
180 int frozen;
181
182 /* Is the value of this variable intentionally not fetched? It is
183 not fetched if either the variable is frozen, or any parents is
184 frozen. */
185 int not_fetched;
b6313243 186
0cc7d26f
TT
187 /* Sub-range of children which the MI consumer has requested. If
188 FROM < 0 or TO < 0, means that all children have been
189 requested. */
190 int from;
191 int to;
192
193 /* The pretty-printer constructor. If NULL, then the default
194 pretty-printer will be looked up. If None, then no
195 pretty-printer will be installed. */
196 PyObject *constructor;
197
b6313243
TT
198 /* The pretty-printer that has been constructed. If NULL, then a
199 new printer object is needed, and one will be constructed. */
200 PyObject *pretty_printer;
0cc7d26f
TT
201
202 /* The iterator returned by the printer's 'children' method, or NULL
203 if not available. */
204 PyObject *child_iter;
205
206 /* We request one extra item from the iterator, so that we can
207 report to the caller whether there are more items than we have
208 already reported. However, we don't want to install this value
209 when we read it, because that will mess up future updates. So,
210 we stash it here instead. */
211 PyObject *saved_item;
72330bd6 212};
8b93c638 213
8b93c638 214struct cpstack
72330bd6
AC
215{
216 char *name;
217 struct cpstack *next;
218};
8b93c638
JM
219
220/* A list of varobjs */
221
222struct vlist
72330bd6
AC
223{
224 struct varobj *var;
225 struct vlist *next;
226};
8b93c638
JM
227
228/* Private function prototypes */
229
581e13c1 230/* Helper functions for the above subcommands. */
8b93c638 231
a14ed312 232static int delete_variable (struct cpstack **, struct varobj *, int);
8b93c638 233
a14ed312
KB
234static void delete_variable_1 (struct cpstack **, int *,
235 struct varobj *, int, int);
8b93c638 236
a14ed312 237static int install_variable (struct varobj *);
8b93c638 238
a14ed312 239static void uninstall_variable (struct varobj *);
8b93c638 240
a14ed312 241static struct varobj *create_child (struct varobj *, int, char *);
8b93c638 242
b6313243
TT
243static struct varobj *
244create_child_with_value (struct varobj *parent, int index, const char *name,
245 struct value *value);
246
8b93c638
JM
247/* Utility routines */
248
a14ed312 249static struct varobj *new_variable (void);
8b93c638 250
a14ed312 251static struct varobj *new_root_variable (void);
8b93c638 252
a14ed312 253static void free_variable (struct varobj *var);
8b93c638 254
74b7792f
AC
255static struct cleanup *make_cleanup_free_variable (struct varobj *var);
256
a14ed312 257static struct type *get_type (struct varobj *var);
8b93c638 258
6e2a9270
VP
259static struct type *get_value_type (struct varobj *var);
260
a14ed312 261static struct type *get_target_type (struct type *);
8b93c638 262
a14ed312 263static enum varobj_display_formats variable_default_display (struct varobj *);
8b93c638 264
a14ed312 265static void cppush (struct cpstack **pstack, char *name);
8b93c638 266
a14ed312 267static char *cppop (struct cpstack **pstack);
8b93c638 268
acd65feb
VP
269static int install_new_value (struct varobj *var, struct value *value,
270 int initial);
271
581e13c1 272/* Language-specific routines. */
8b93c638 273
a14ed312 274static enum varobj_languages variable_language (struct varobj *var);
8b93c638 275
a14ed312 276static int number_of_children (struct varobj *);
8b93c638 277
a14ed312 278static char *name_of_variable (struct varobj *);
8b93c638 279
a14ed312 280static char *name_of_child (struct varobj *, int);
8b93c638 281
30b28db1 282static struct value *value_of_root (struct varobj **var_handle, int *);
8b93c638 283
30b28db1 284static struct value *value_of_child (struct varobj *parent, int index);
8b93c638 285
de051565
MK
286static char *my_value_of_variable (struct varobj *var,
287 enum varobj_display_formats format);
8b93c638 288
85265413 289static char *value_get_print_value (struct value *value,
b6313243 290 enum varobj_display_formats format,
d452c4bc 291 struct varobj *var);
85265413 292
b2c2bd75
VP
293static int varobj_value_is_changeable_p (struct varobj *var);
294
295static int is_root_p (struct varobj *var);
8b93c638 296
d8b65138
JK
297#if HAVE_PYTHON
298
9a1edae6
PM
299static struct varobj *varobj_add_child (struct varobj *var,
300 const char *name,
301 struct value *value);
b6313243 302
d8b65138
JK
303#endif /* HAVE_PYTHON */
304
8b93c638
JM
305/* C implementation */
306
a14ed312 307static int c_number_of_children (struct varobj *var);
8b93c638 308
a14ed312 309static char *c_name_of_variable (struct varobj *parent);
8b93c638 310
a14ed312 311static char *c_name_of_child (struct varobj *parent, int index);
8b93c638 312
02142340
VP
313static char *c_path_expr_of_child (struct varobj *child);
314
30b28db1 315static struct value *c_value_of_root (struct varobj **var_handle);
8b93c638 316
30b28db1 317static struct value *c_value_of_child (struct varobj *parent, int index);
8b93c638 318
a14ed312 319static struct type *c_type_of_child (struct varobj *parent, int index);
8b93c638 320
de051565
MK
321static char *c_value_of_variable (struct varobj *var,
322 enum varobj_display_formats format);
8b93c638
JM
323
324/* C++ implementation */
325
a14ed312 326static int cplus_number_of_children (struct varobj *var);
8b93c638 327
a14ed312 328static void cplus_class_num_children (struct type *type, int children[3]);
8b93c638 329
a14ed312 330static char *cplus_name_of_variable (struct varobj *parent);
8b93c638 331
a14ed312 332static char *cplus_name_of_child (struct varobj *parent, int index);
8b93c638 333
02142340
VP
334static char *cplus_path_expr_of_child (struct varobj *child);
335
30b28db1 336static struct value *cplus_value_of_root (struct varobj **var_handle);
8b93c638 337
30b28db1 338static struct value *cplus_value_of_child (struct varobj *parent, int index);
8b93c638 339
a14ed312 340static struct type *cplus_type_of_child (struct varobj *parent, int index);
8b93c638 341
de051565
MK
342static char *cplus_value_of_variable (struct varobj *var,
343 enum varobj_display_formats format);
8b93c638
JM
344
345/* Java implementation */
346
a14ed312 347static int java_number_of_children (struct varobj *var);
8b93c638 348
a14ed312 349static char *java_name_of_variable (struct varobj *parent);
8b93c638 350
a14ed312 351static char *java_name_of_child (struct varobj *parent, int index);
8b93c638 352
02142340
VP
353static char *java_path_expr_of_child (struct varobj *child);
354
30b28db1 355static struct value *java_value_of_root (struct varobj **var_handle);
8b93c638 356
30b28db1 357static struct value *java_value_of_child (struct varobj *parent, int index);
8b93c638 358
a14ed312 359static struct type *java_type_of_child (struct varobj *parent, int index);
8b93c638 360
de051565
MK
361static char *java_value_of_variable (struct varobj *var,
362 enum varobj_display_formats format);
8b93c638 363
40591b7d
JCD
364/* Ada implementation */
365
366static int ada_number_of_children (struct varobj *var);
367
368static char *ada_name_of_variable (struct varobj *parent);
369
370static char *ada_name_of_child (struct varobj *parent, int index);
371
372static char *ada_path_expr_of_child (struct varobj *child);
373
374static struct value *ada_value_of_root (struct varobj **var_handle);
375
376static struct value *ada_value_of_child (struct varobj *parent, int index);
377
378static struct type *ada_type_of_child (struct varobj *parent, int index);
379
380static char *ada_value_of_variable (struct varobj *var,
381 enum varobj_display_formats format);
382
8b93c638
JM
383/* The language specific vector */
384
385struct language_specific
72330bd6 386{
8b93c638 387
581e13c1 388 /* The language of this variable. */
72330bd6 389 enum varobj_languages language;
8b93c638 390
581e13c1 391 /* The number of children of PARENT. */
72330bd6 392 int (*number_of_children) (struct varobj * parent);
8b93c638 393
581e13c1 394 /* The name (expression) of a root varobj. */
72330bd6 395 char *(*name_of_variable) (struct varobj * parent);
8b93c638 396
581e13c1 397 /* The name of the INDEX'th child of PARENT. */
72330bd6 398 char *(*name_of_child) (struct varobj * parent, int index);
8b93c638 399
02142340
VP
400 /* Returns the rooted expression of CHILD, which is a variable
401 obtain that has some parent. */
402 char *(*path_expr_of_child) (struct varobj * child);
403
581e13c1 404 /* The ``struct value *'' of the root variable ROOT. */
30b28db1 405 struct value *(*value_of_root) (struct varobj ** root_handle);
8b93c638 406
581e13c1 407 /* The ``struct value *'' of the INDEX'th child of PARENT. */
30b28db1 408 struct value *(*value_of_child) (struct varobj * parent, int index);
8b93c638 409
581e13c1 410 /* The type of the INDEX'th child of PARENT. */
72330bd6 411 struct type *(*type_of_child) (struct varobj * parent, int index);
8b93c638 412
581e13c1 413 /* The current value of VAR. */
de051565
MK
414 char *(*value_of_variable) (struct varobj * var,
415 enum varobj_display_formats format);
72330bd6 416};
8b93c638 417
581e13c1 418/* Array of known source language routines. */
d5d6fca5 419static struct language_specific languages[vlang_end] = {
581e13c1 420 /* Unknown (try treating as C). */
8b93c638 421 {
72330bd6
AC
422 vlang_unknown,
423 c_number_of_children,
424 c_name_of_variable,
425 c_name_of_child,
02142340 426 c_path_expr_of_child,
72330bd6
AC
427 c_value_of_root,
428 c_value_of_child,
429 c_type_of_child,
72330bd6 430 c_value_of_variable}
8b93c638
JM
431 ,
432 /* C */
433 {
72330bd6
AC
434 vlang_c,
435 c_number_of_children,
436 c_name_of_variable,
437 c_name_of_child,
02142340 438 c_path_expr_of_child,
72330bd6
AC
439 c_value_of_root,
440 c_value_of_child,
441 c_type_of_child,
72330bd6 442 c_value_of_variable}
8b93c638
JM
443 ,
444 /* C++ */
445 {
72330bd6
AC
446 vlang_cplus,
447 cplus_number_of_children,
448 cplus_name_of_variable,
449 cplus_name_of_child,
02142340 450 cplus_path_expr_of_child,
72330bd6
AC
451 cplus_value_of_root,
452 cplus_value_of_child,
453 cplus_type_of_child,
72330bd6 454 cplus_value_of_variable}
8b93c638
JM
455 ,
456 /* Java */
457 {
72330bd6
AC
458 vlang_java,
459 java_number_of_children,
460 java_name_of_variable,
461 java_name_of_child,
02142340 462 java_path_expr_of_child,
72330bd6
AC
463 java_value_of_root,
464 java_value_of_child,
465 java_type_of_child,
40591b7d
JCD
466 java_value_of_variable},
467 /* Ada */
468 {
469 vlang_ada,
470 ada_number_of_children,
471 ada_name_of_variable,
472 ada_name_of_child,
473 ada_path_expr_of_child,
474 ada_value_of_root,
475 ada_value_of_child,
476 ada_type_of_child,
477 ada_value_of_variable}
8b93c638
JM
478};
479
581e13c1 480/* A little convenience enum for dealing with C++/Java. */
8b93c638 481enum vsections
72330bd6
AC
482{
483 v_public = 0, v_private, v_protected
484};
8b93c638
JM
485
486/* Private data */
487
581e13c1 488/* Mappings of varobj_display_formats enums to gdb's format codes. */
72330bd6 489static int format_code[] = { 0, 't', 'd', 'x', 'o' };
8b93c638 490
581e13c1 491/* Header of the list of root variable objects. */
8b93c638 492static struct varobj_root *rootlist;
8b93c638 493
581e13c1
MS
494/* Prime number indicating the number of buckets in the hash table. */
495/* A prime large enough to avoid too many colisions. */
8b93c638
JM
496#define VAROBJ_TABLE_SIZE 227
497
581e13c1 498/* Pointer to the varobj hash table (built at run time). */
8b93c638
JM
499static struct vlist **varobj_table;
500
581e13c1 501/* Is the variable X one of our "fake" children? */
8b93c638
JM
502#define CPLUS_FAKE_CHILD(x) \
503((x) != NULL && (x)->type == NULL && (x)->value == NULL)
504\f
505
506/* API Implementation */
b2c2bd75
VP
507static int
508is_root_p (struct varobj *var)
509{
510 return (var->root->rootvar == var);
511}
8b93c638 512
d452c4bc
UW
513#ifdef HAVE_PYTHON
514/* Helper function to install a Python environment suitable for
515 use during operations on VAR. */
516struct cleanup *
517varobj_ensure_python_env (struct varobj *var)
518{
519 return ensure_python_env (var->root->exp->gdbarch,
520 var->root->exp->language_defn);
521}
522#endif
523
581e13c1 524/* Creates a varobj (not its children). */
8b93c638 525
7d8547c9
AC
526/* Return the full FRAME which corresponds to the given CORE_ADDR
527 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
528
529static struct frame_info *
530find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
531{
532 struct frame_info *frame = NULL;
533
534 if (frame_addr == (CORE_ADDR) 0)
535 return NULL;
536
9d49bdc2
PA
537 for (frame = get_current_frame ();
538 frame != NULL;
539 frame = get_prev_frame (frame))
7d8547c9 540 {
1fac167a
UW
541 /* The CORE_ADDR we get as argument was parsed from a string GDB
542 output as $fp. This output got truncated to gdbarch_addr_bit.
543 Truncate the frame base address in the same manner before
544 comparing it against our argument. */
545 CORE_ADDR frame_base = get_frame_base_address (frame);
546 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
a109c7c1 547
1fac167a
UW
548 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
549 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
550
551 if (frame_base == frame_addr)
7d8547c9
AC
552 return frame;
553 }
9d49bdc2
PA
554
555 return NULL;
7d8547c9
AC
556}
557
8b93c638
JM
558struct varobj *
559varobj_create (char *objname,
72330bd6 560 char *expression, CORE_ADDR frame, enum varobj_type type)
8b93c638
JM
561{
562 struct varobj *var;
8b93c638
JM
563 struct cleanup *old_chain;
564
581e13c1 565 /* Fill out a varobj structure for the (root) variable being constructed. */
8b93c638 566 var = new_root_variable ();
74b7792f 567 old_chain = make_cleanup_free_variable (var);
8b93c638
JM
568
569 if (expression != NULL)
570 {
e4195b40 571 struct frame_info *fi;
35633fef 572 struct frame_id old_id = null_frame_id;
e4195b40 573 struct block *block;
8b93c638
JM
574 char *p;
575 enum varobj_languages lang;
e55dccf0 576 struct value *value = NULL;
8b93c638 577
9d49bdc2
PA
578 /* Parse and evaluate the expression, filling in as much of the
579 variable's data as possible. */
580
581 if (has_stack_frames ())
582 {
581e13c1 583 /* Allow creator to specify context of variable. */
9d49bdc2
PA
584 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
585 fi = get_selected_frame (NULL);
586 else
587 /* FIXME: cagney/2002-11-23: This code should be doing a
588 lookup using the frame ID and not just the frame's
589 ``address''. This, of course, means an interface
590 change. However, with out that interface change ISAs,
591 such as the ia64 with its two stacks, won't work.
592 Similar goes for the case where there is a frameless
593 function. */
594 fi = find_frame_addr_in_frame_chain (frame);
595 }
8b93c638 596 else
9d49bdc2 597 fi = NULL;
8b93c638 598
581e13c1 599 /* frame = -2 means always use selected frame. */
73a93a32 600 if (type == USE_SELECTED_FRAME)
a5defcdc 601 var->root->floating = 1;
73a93a32 602
8b93c638
JM
603 block = NULL;
604 if (fi != NULL)
ae767bfb 605 block = get_frame_block (fi, 0);
8b93c638
JM
606
607 p = expression;
608 innermost_block = NULL;
73a93a32 609 /* Wrap the call to parse expression, so we can
581e13c1 610 return a sensible error. */
73a93a32
JI
611 if (!gdb_parse_exp_1 (&p, block, 0, &var->root->exp))
612 {
f748fb40 613 do_cleanups (old_chain);
73a93a32
JI
614 return NULL;
615 }
8b93c638 616
581e13c1 617 /* Don't allow variables to be created for types. */
8b93c638
JM
618 if (var->root->exp->elts[0].opcode == OP_TYPE)
619 {
620 do_cleanups (old_chain);
bc8332bb
AC
621 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
622 " as an expression.\n");
8b93c638
JM
623 return NULL;
624 }
625
626 var->format = variable_default_display (var);
627 var->root->valid_block = innermost_block;
1b36a34b 628 var->name = xstrdup (expression);
02142340 629 /* For a root var, the name and the expr are the same. */
1b36a34b 630 var->path_expr = xstrdup (expression);
8b93c638
JM
631
632 /* When the frame is different from the current frame,
633 we must select the appropriate frame before parsing
634 the expression, otherwise the value will not be current.
581e13c1 635 Since select_frame is so benign, just call it for all cases. */
4e22772d 636 if (innermost_block)
8b93c638 637 {
4e22772d
JK
638 /* User could specify explicit FRAME-ADDR which was not found but
639 EXPRESSION is frame specific and we would not be able to evaluate
640 it correctly next time. With VALID_BLOCK set we must also set
641 FRAME and THREAD_ID. */
642 if (fi == NULL)
643 error (_("Failed to find the specified frame"));
644
7a424e99 645 var->root->frame = get_frame_id (fi);
c5b48eac 646 var->root->thread_id = pid_to_thread_id (inferior_ptid);
35633fef 647 old_id = get_frame_id (get_selected_frame (NULL));
c5b48eac 648 select_frame (fi);
8b93c638
JM
649 }
650
340a7723 651 /* We definitely need to catch errors here.
8b93c638 652 If evaluate_expression succeeds we got the value we wanted.
581e13c1 653 But if it fails, we still go on with a call to evaluate_type(). */
acd65feb 654 if (!gdb_evaluate_expression (var->root->exp, &value))
e55dccf0
VP
655 {
656 /* Error getting the value. Try to at least get the
657 right type. */
658 struct value *type_only_value = evaluate_type (var->root->exp);
a109c7c1 659
e55dccf0
VP
660 var->type = value_type (type_only_value);
661 }
662 else
663 var->type = value_type (value);
acd65feb 664
acd65feb 665 install_new_value (var, value, 1 /* Initial assignment */);
8b93c638
JM
666
667 /* Set language info */
668 lang = variable_language (var);
d5d6fca5 669 var->root->lang = &languages[lang];
8b93c638 670
581e13c1 671 /* Set ourselves as our root. */
8b93c638
JM
672 var->root->rootvar = var;
673
581e13c1 674 /* Reset the selected frame. */
35633fef
JK
675 if (frame_id_p (old_id))
676 select_frame (frame_find_by_id (old_id));
8b93c638
JM
677 }
678
73a93a32 679 /* If the variable object name is null, that means this
581e13c1 680 is a temporary variable, so don't install it. */
73a93a32
JI
681
682 if ((var != NULL) && (objname != NULL))
8b93c638 683 {
1b36a34b 684 var->obj_name = xstrdup (objname);
8b93c638
JM
685
686 /* If a varobj name is duplicated, the install will fail so
581e13c1 687 we must cleanup. */
8b93c638
JM
688 if (!install_variable (var))
689 {
690 do_cleanups (old_chain);
691 return NULL;
692 }
693 }
694
695 discard_cleanups (old_chain);
696 return var;
697}
698
581e13c1 699/* Generates an unique name that can be used for a varobj. */
8b93c638
JM
700
701char *
702varobj_gen_name (void)
703{
704 static int id = 0;
e64d9b3d 705 char *obj_name;
8b93c638 706
581e13c1 707 /* Generate a name for this object. */
8b93c638 708 id++;
b435e160 709 obj_name = xstrprintf ("var%d", id);
8b93c638 710
e64d9b3d 711 return obj_name;
8b93c638
JM
712}
713
61d8f275
JK
714/* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
715 error if OBJNAME cannot be found. */
8b93c638
JM
716
717struct varobj *
718varobj_get_handle (char *objname)
719{
720 struct vlist *cv;
721 const char *chp;
722 unsigned int index = 0;
723 unsigned int i = 1;
724
725 for (chp = objname; *chp; chp++)
726 {
727 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
728 }
729
730 cv = *(varobj_table + index);
731 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
732 cv = cv->next;
733
734 if (cv == NULL)
8a3fe4f8 735 error (_("Variable object not found"));
8b93c638
JM
736
737 return cv->var;
738}
739
581e13c1 740/* Given the handle, return the name of the object. */
8b93c638
JM
741
742char *
743varobj_get_objname (struct varobj *var)
744{
745 return var->obj_name;
746}
747
581e13c1 748/* Given the handle, return the expression represented by the object. */
8b93c638
JM
749
750char *
751varobj_get_expression (struct varobj *var)
752{
753 return name_of_variable (var);
754}
755
756/* Deletes a varobj and all its children if only_children == 0,
3e43a32a
MS
757 otherwise deletes only the children; returns a malloc'ed list of
758 all the (malloc'ed) names of the variables that have been deleted
581e13c1 759 (NULL terminated). */
8b93c638
JM
760
761int
762varobj_delete (struct varobj *var, char ***dellist, int only_children)
763{
764 int delcount;
765 int mycount;
766 struct cpstack *result = NULL;
767 char **cp;
768
581e13c1 769 /* Initialize a stack for temporary results. */
8b93c638
JM
770 cppush (&result, NULL);
771
772 if (only_children)
581e13c1 773 /* Delete only the variable children. */
8b93c638
JM
774 delcount = delete_variable (&result, var, 1 /* only the children */ );
775 else
581e13c1 776 /* Delete the variable and all its children. */
8b93c638
JM
777 delcount = delete_variable (&result, var, 0 /* parent+children */ );
778
581e13c1 779 /* We may have been asked to return a list of what has been deleted. */
8b93c638
JM
780 if (dellist != NULL)
781 {
782 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
783
784 cp = *dellist;
785 mycount = delcount;
786 *cp = cppop (&result);
787 while ((*cp != NULL) && (mycount > 0))
788 {
789 mycount--;
790 cp++;
791 *cp = cppop (&result);
792 }
793
794 if (mycount || (*cp != NULL))
8a3fe4f8 795 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
72330bd6 796 mycount);
8b93c638
JM
797 }
798
799 return delcount;
800}
801
d8b65138
JK
802#if HAVE_PYTHON
803
b6313243
TT
804/* Convenience function for varobj_set_visualizer. Instantiate a
805 pretty-printer for a given value. */
806static PyObject *
807instantiate_pretty_printer (PyObject *constructor, struct value *value)
808{
b6313243
TT
809 PyObject *val_obj = NULL;
810 PyObject *printer;
b6313243 811
b6313243 812 val_obj = value_to_value_object (value);
b6313243
TT
813 if (! val_obj)
814 return NULL;
815
816 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
817 Py_DECREF (val_obj);
818 return printer;
b6313243
TT
819}
820
d8b65138
JK
821#endif
822
581e13c1 823/* Set/Get variable object display format. */
8b93c638
JM
824
825enum varobj_display_formats
826varobj_set_display_format (struct varobj *var,
827 enum varobj_display_formats format)
828{
829 switch (format)
830 {
831 case FORMAT_NATURAL:
832 case FORMAT_BINARY:
833 case FORMAT_DECIMAL:
834 case FORMAT_HEXADECIMAL:
835 case FORMAT_OCTAL:
836 var->format = format;
837 break;
838
839 default:
840 var->format = variable_default_display (var);
841 }
842
ae7d22a6
VP
843 if (varobj_value_is_changeable_p (var)
844 && var->value && !value_lazy (var->value))
845 {
6c761d9c 846 xfree (var->print_value);
d452c4bc 847 var->print_value = value_get_print_value (var->value, var->format, var);
ae7d22a6
VP
848 }
849
8b93c638
JM
850 return var->format;
851}
852
853enum varobj_display_formats
854varobj_get_display_format (struct varobj *var)
855{
856 return var->format;
857}
858
b6313243
TT
859char *
860varobj_get_display_hint (struct varobj *var)
861{
862 char *result = NULL;
863
864#if HAVE_PYTHON
d452c4bc
UW
865 struct cleanup *back_to = varobj_ensure_python_env (var);
866
b6313243
TT
867 if (var->pretty_printer)
868 result = gdbpy_get_display_hint (var->pretty_printer);
d452c4bc
UW
869
870 do_cleanups (back_to);
b6313243
TT
871#endif
872
873 return result;
874}
875
0cc7d26f
TT
876/* Return true if the varobj has items after TO, false otherwise. */
877
878int
879varobj_has_more (struct varobj *var, int to)
880{
881 if (VEC_length (varobj_p, var->children) > to)
882 return 1;
883 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
884 && var->saved_item != NULL);
885}
886
c5b48eac
VP
887/* If the variable object is bound to a specific thread, that
888 is its evaluation can always be done in context of a frame
889 inside that thread, returns GDB id of the thread -- which
581e13c1 890 is always positive. Otherwise, returns -1. */
c5b48eac
VP
891int
892varobj_get_thread_id (struct varobj *var)
893{
894 if (var->root->valid_block && var->root->thread_id > 0)
895 return var->root->thread_id;
896 else
897 return -1;
898}
899
25d5ea92
VP
900void
901varobj_set_frozen (struct varobj *var, int frozen)
902{
903 /* When a variable is unfrozen, we don't fetch its value.
904 The 'not_fetched' flag remains set, so next -var-update
905 won't complain.
906
907 We don't fetch the value, because for structures the client
908 should do -var-update anyway. It would be bad to have different
909 client-size logic for structure and other types. */
910 var->frozen = frozen;
911}
912
913int
914varobj_get_frozen (struct varobj *var)
915{
916 return var->frozen;
917}
918
0cc7d26f
TT
919/* A helper function that restricts a range to what is actually
920 available in a VEC. This follows the usual rules for the meaning
921 of FROM and TO -- if either is negative, the entire range is
922 used. */
923
924static void
925restrict_range (VEC (varobj_p) *children, int *from, int *to)
926{
927 if (*from < 0 || *to < 0)
928 {
929 *from = 0;
930 *to = VEC_length (varobj_p, children);
931 }
932 else
933 {
934 if (*from > VEC_length (varobj_p, children))
935 *from = VEC_length (varobj_p, children);
936 if (*to > VEC_length (varobj_p, children))
937 *to = VEC_length (varobj_p, children);
938 if (*from > *to)
939 *from = *to;
940 }
941}
942
d8b65138
JK
943#if HAVE_PYTHON
944
0cc7d26f
TT
945/* A helper for update_dynamic_varobj_children that installs a new
946 child when needed. */
947
948static void
949install_dynamic_child (struct varobj *var,
950 VEC (varobj_p) **changed,
951 VEC (varobj_p) **new,
952 VEC (varobj_p) **unchanged,
953 int *cchanged,
954 int index,
955 const char *name,
956 struct value *value)
957{
958 if (VEC_length (varobj_p, var->children) < index + 1)
959 {
960 /* There's no child yet. */
961 struct varobj *child = varobj_add_child (var, name, value);
a109c7c1 962
0cc7d26f
TT
963 if (new)
964 {
965 VEC_safe_push (varobj_p, *new, child);
966 *cchanged = 1;
967 }
968 }
969 else
970 {
971 varobj_p existing = VEC_index (varobj_p, var->children, index);
a109c7c1 972
0cc7d26f
TT
973 if (install_new_value (existing, value, 0))
974 {
975 if (changed)
976 VEC_safe_push (varobj_p, *changed, existing);
977 }
978 else if (unchanged)
979 VEC_safe_push (varobj_p, *unchanged, existing);
980 }
981}
982
0cc7d26f
TT
983static int
984dynamic_varobj_has_child_method (struct varobj *var)
985{
986 struct cleanup *back_to;
987 PyObject *printer = var->pretty_printer;
988 int result;
989
990 back_to = varobj_ensure_python_env (var);
991 result = PyObject_HasAttr (printer, gdbpy_children_cst);
992 do_cleanups (back_to);
993 return result;
994}
995
996#endif
997
b6313243
TT
998static int
999update_dynamic_varobj_children (struct varobj *var,
1000 VEC (varobj_p) **changed,
0cc7d26f
TT
1001 VEC (varobj_p) **new,
1002 VEC (varobj_p) **unchanged,
1003 int *cchanged,
1004 int update_children,
1005 int from,
1006 int to)
b6313243
TT
1007{
1008#if HAVE_PYTHON
b6313243
TT
1009 struct cleanup *back_to;
1010 PyObject *children;
b6313243 1011 int i;
b6313243 1012 PyObject *printer = var->pretty_printer;
b6313243 1013
d452c4bc 1014 back_to = varobj_ensure_python_env (var);
b6313243
TT
1015
1016 *cchanged = 0;
1017 if (!PyObject_HasAttr (printer, gdbpy_children_cst))
1018 {
1019 do_cleanups (back_to);
1020 return 0;
1021 }
1022
0cc7d26f 1023 if (update_children || !var->child_iter)
b6313243 1024 {
0cc7d26f
TT
1025 children = PyObject_CallMethodObjArgs (printer, gdbpy_children_cst,
1026 NULL);
b6313243 1027
0cc7d26f
TT
1028 if (!children)
1029 {
1030 gdbpy_print_stack ();
1031 error (_("Null value returned for children"));
1032 }
b6313243 1033
0cc7d26f 1034 make_cleanup_py_decref (children);
b6313243 1035
0cc7d26f
TT
1036 if (!PyIter_Check (children))
1037 error (_("Returned value is not iterable"));
1038
1039 Py_XDECREF (var->child_iter);
1040 var->child_iter = PyObject_GetIter (children);
1041 if (!var->child_iter)
1042 {
1043 gdbpy_print_stack ();
1044 error (_("Could not get children iterator"));
1045 }
1046
1047 Py_XDECREF (var->saved_item);
1048 var->saved_item = NULL;
1049
1050 i = 0;
b6313243 1051 }
0cc7d26f
TT
1052 else
1053 i = VEC_length (varobj_p, var->children);
b6313243 1054
0cc7d26f
TT
1055 /* We ask for one extra child, so that MI can report whether there
1056 are more children. */
1057 for (; to < 0 || i < to + 1; ++i)
b6313243 1058 {
0cc7d26f 1059 PyObject *item;
a4c8e806 1060 int force_done = 0;
b6313243 1061
0cc7d26f
TT
1062 /* See if there was a leftover from last time. */
1063 if (var->saved_item)
1064 {
1065 item = var->saved_item;
1066 var->saved_item = NULL;
1067 }
1068 else
1069 item = PyIter_Next (var->child_iter);
b6313243 1070
0cc7d26f 1071 if (!item)
a4c8e806
TT
1072 {
1073 /* Normal end of iteration. */
1074 if (!PyErr_Occurred ())
1075 break;
1076
1077 /* If we got a memory error, just use the text as the
1078 item. */
1079 if (PyErr_ExceptionMatches (gdbpy_gdb_memory_error))
1080 {
1081 PyObject *type, *value, *trace;
1082 char *name_str, *value_str;
1083
1084 PyErr_Fetch (&type, &value, &trace);
1085 value_str = gdbpy_exception_to_string (type, value);
1086 Py_XDECREF (type);
1087 Py_XDECREF (value);
1088 Py_XDECREF (trace);
1089 if (!value_str)
1090 {
1091 gdbpy_print_stack ();
1092 break;
1093 }
1094
1095 name_str = xstrprintf ("<error at %d>", i);
1096 item = Py_BuildValue ("(ss)", name_str, value_str);
1097 xfree (name_str);
1098 xfree (value_str);
1099 if (!item)
1100 {
1101 gdbpy_print_stack ();
1102 break;
1103 }
1104
1105 force_done = 1;
1106 }
1107 else
1108 {
1109 /* Any other kind of error. */
1110 gdbpy_print_stack ();
1111 break;
1112 }
1113 }
b6313243 1114
0cc7d26f
TT
1115 /* We don't want to push the extra child on any report list. */
1116 if (to < 0 || i < to)
b6313243 1117 {
0cc7d26f 1118 PyObject *py_v;
ddd49eee 1119 const char *name;
0cc7d26f
TT
1120 struct value *v;
1121 struct cleanup *inner;
1122 int can_mention = from < 0 || i >= from;
1123
1124 inner = make_cleanup_py_decref (item);
1125
1126 if (!PyArg_ParseTuple (item, "sO", &name, &py_v))
a4c8e806
TT
1127 {
1128 gdbpy_print_stack ();
1129 error (_("Invalid item from the child list"));
1130 }
0cc7d26f
TT
1131
1132 v = convert_value_from_python (py_v);
8dc78533
JK
1133 if (v == NULL)
1134 gdbpy_print_stack ();
0cc7d26f
TT
1135 install_dynamic_child (var, can_mention ? changed : NULL,
1136 can_mention ? new : NULL,
1137 can_mention ? unchanged : NULL,
1138 can_mention ? cchanged : NULL, i, name, v);
1139 do_cleanups (inner);
b6313243 1140 }
0cc7d26f 1141 else
b6313243 1142 {
0cc7d26f
TT
1143 Py_XDECREF (var->saved_item);
1144 var->saved_item = item;
b6313243 1145
0cc7d26f
TT
1146 /* We want to truncate the child list just before this
1147 element. */
1148 break;
1149 }
a4c8e806
TT
1150
1151 if (force_done)
1152 break;
b6313243
TT
1153 }
1154
1155 if (i < VEC_length (varobj_p, var->children))
1156 {
0cc7d26f 1157 int j;
a109c7c1 1158
0cc7d26f
TT
1159 *cchanged = 1;
1160 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
1161 varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0);
1162 VEC_truncate (varobj_p, var->children, i);
b6313243 1163 }
0cc7d26f
TT
1164
1165 /* If there are fewer children than requested, note that the list of
1166 children changed. */
1167 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
1168 *cchanged = 1;
1169
b6313243
TT
1170 var->num_children = VEC_length (varobj_p, var->children);
1171
1172 do_cleanups (back_to);
1173
b6313243
TT
1174 return 1;
1175#else
1176 gdb_assert (0 && "should never be called if Python is not enabled");
1177#endif
1178}
25d5ea92 1179
8b93c638
JM
1180int
1181varobj_get_num_children (struct varobj *var)
1182{
1183 if (var->num_children == -1)
b6313243 1184 {
0cc7d26f
TT
1185 if (var->pretty_printer)
1186 {
1187 int dummy;
1188
1189 /* If we have a dynamic varobj, don't report -1 children.
1190 So, try to fetch some children first. */
1191 update_dynamic_varobj_children (var, NULL, NULL, NULL, &dummy,
1192 0, 0, 0);
1193 }
1194 else
b6313243
TT
1195 var->num_children = number_of_children (var);
1196 }
8b93c638 1197
0cc7d26f 1198 return var->num_children >= 0 ? var->num_children : 0;
8b93c638
JM
1199}
1200
1201/* Creates a list of the immediate children of a variable object;
581e13c1 1202 the return code is the number of such children or -1 on error. */
8b93c638 1203
d56d46f5 1204VEC (varobj_p)*
0cc7d26f 1205varobj_list_children (struct varobj *var, int *from, int *to)
8b93c638 1206{
8b93c638 1207 char *name;
b6313243
TT
1208 int i, children_changed;
1209
1210 var->children_requested = 1;
1211
0cc7d26f
TT
1212 if (var->pretty_printer)
1213 {
b6313243
TT
1214 /* This, in theory, can result in the number of children changing without
1215 frontend noticing. But well, calling -var-list-children on the same
1216 varobj twice is not something a sane frontend would do. */
0cc7d26f
TT
1217 update_dynamic_varobj_children (var, NULL, NULL, NULL, &children_changed,
1218 0, 0, *to);
1219 restrict_range (var->children, from, to);
1220 return var->children;
1221 }
8b93c638 1222
8b93c638
JM
1223 if (var->num_children == -1)
1224 var->num_children = number_of_children (var);
1225
74a44383
DJ
1226 /* If that failed, give up. */
1227 if (var->num_children == -1)
d56d46f5 1228 return var->children;
74a44383 1229
28335dcc
VP
1230 /* If we're called when the list of children is not yet initialized,
1231 allocate enough elements in it. */
1232 while (VEC_length (varobj_p, var->children) < var->num_children)
1233 VEC_safe_push (varobj_p, var->children, NULL);
1234
8b93c638
JM
1235 for (i = 0; i < var->num_children; i++)
1236 {
d56d46f5 1237 varobj_p existing = VEC_index (varobj_p, var->children, i);
28335dcc
VP
1238
1239 if (existing == NULL)
1240 {
1241 /* Either it's the first call to varobj_list_children for
1242 this variable object, and the child was never created,
1243 or it was explicitly deleted by the client. */
1244 name = name_of_child (var, i);
1245 existing = create_child (var, i, name);
1246 VEC_replace (varobj_p, var->children, i, existing);
1247 }
8b93c638
JM
1248 }
1249
0cc7d26f 1250 restrict_range (var->children, from, to);
d56d46f5 1251 return var->children;
8b93c638
JM
1252}
1253
d8b65138
JK
1254#if HAVE_PYTHON
1255
b6313243
TT
1256static struct varobj *
1257varobj_add_child (struct varobj *var, const char *name, struct value *value)
1258{
1259 varobj_p v = create_child_with_value (var,
1260 VEC_length (varobj_p, var->children),
1261 name, value);
a109c7c1 1262
b6313243 1263 VEC_safe_push (varobj_p, var->children, v);
b6313243
TT
1264 return v;
1265}
1266
d8b65138
JK
1267#endif /* HAVE_PYTHON */
1268
8b93c638 1269/* Obtain the type of an object Variable as a string similar to the one gdb
581e13c1 1270 prints on the console. */
8b93c638
JM
1271
1272char *
1273varobj_get_type (struct varobj *var)
1274{
581e13c1 1275 /* For the "fake" variables, do not return a type. (It's type is
8756216b
DP
1276 NULL, too.)
1277 Do not return a type for invalid variables as well. */
1278 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
8b93c638
JM
1279 return NULL;
1280
1a4300e9 1281 return type_to_string (var->type);
8b93c638
JM
1282}
1283
1ecb4ee0
DJ
1284/* Obtain the type of an object variable. */
1285
1286struct type *
1287varobj_get_gdb_type (struct varobj *var)
1288{
1289 return var->type;
1290}
1291
02142340
VP
1292/* Return a pointer to the full rooted expression of varobj VAR.
1293 If it has not been computed yet, compute it. */
1294char *
1295varobj_get_path_expr (struct varobj *var)
1296{
1297 if (var->path_expr != NULL)
1298 return var->path_expr;
1299 else
1300 {
1301 /* For root varobjs, we initialize path_expr
1302 when creating varobj, so here it should be
1303 child varobj. */
1304 gdb_assert (!is_root_p (var));
1305 return (*var->root->lang->path_expr_of_child) (var);
1306 }
1307}
1308
8b93c638
JM
1309enum varobj_languages
1310varobj_get_language (struct varobj *var)
1311{
1312 return variable_language (var);
1313}
1314
1315int
1316varobj_get_attributes (struct varobj *var)
1317{
1318 int attributes = 0;
1319
340a7723 1320 if (varobj_editable_p (var))
581e13c1 1321 /* FIXME: define masks for attributes. */
8b93c638
JM
1322 attributes |= 0x00000001; /* Editable */
1323
1324 return attributes;
1325}
1326
0cc7d26f
TT
1327int
1328varobj_pretty_printed_p (struct varobj *var)
1329{
1330 return var->pretty_printer != NULL;
1331}
1332
de051565
MK
1333char *
1334varobj_get_formatted_value (struct varobj *var,
1335 enum varobj_display_formats format)
1336{
1337 return my_value_of_variable (var, format);
1338}
1339
8b93c638
JM
1340char *
1341varobj_get_value (struct varobj *var)
1342{
de051565 1343 return my_value_of_variable (var, var->format);
8b93c638
JM
1344}
1345
1346/* Set the value of an object variable (if it is editable) to the
581e13c1
MS
1347 value of the given expression. */
1348/* Note: Invokes functions that can call error(). */
8b93c638
JM
1349
1350int
1351varobj_set_value (struct varobj *var, char *expression)
1352{
30b28db1 1353 struct value *val;
8b93c638
JM
1354
1355 /* The argument "expression" contains the variable's new value.
581e13c1
MS
1356 We need to first construct a legal expression for this -- ugh! */
1357 /* Does this cover all the bases? */
8b93c638 1358 struct expression *exp;
30b28db1 1359 struct value *value;
8b93c638 1360 int saved_input_radix = input_radix;
340a7723 1361 char *s = expression;
8b93c638 1362
340a7723 1363 gdb_assert (varobj_editable_p (var));
8b93c638 1364
581e13c1 1365 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
340a7723
NR
1366 exp = parse_exp_1 (&s, 0, 0);
1367 if (!gdb_evaluate_expression (exp, &value))
1368 {
581e13c1 1369 /* We cannot proceed without a valid expression. */
340a7723
NR
1370 xfree (exp);
1371 return 0;
8b93c638
JM
1372 }
1373
340a7723
NR
1374 /* All types that are editable must also be changeable. */
1375 gdb_assert (varobj_value_is_changeable_p (var));
1376
1377 /* The value of a changeable variable object must not be lazy. */
1378 gdb_assert (!value_lazy (var->value));
1379
1380 /* Need to coerce the input. We want to check if the
1381 value of the variable object will be different
1382 after assignment, and the first thing value_assign
1383 does is coerce the input.
1384 For example, if we are assigning an array to a pointer variable we
b021a221 1385 should compare the pointer with the array's address, not with the
340a7723
NR
1386 array's content. */
1387 value = coerce_array (value);
1388
1389 /* The new value may be lazy. gdb_value_assign, or
1390 rather value_contents, will take care of this.
1391 If fetching of the new value will fail, gdb_value_assign
1392 with catch the exception. */
1393 if (!gdb_value_assign (var->value, value, &val))
1394 return 0;
1395
1396 /* If the value has changed, record it, so that next -var-update can
1397 report this change. If a variable had a value of '1', we've set it
1398 to '333' and then set again to '1', when -var-update will report this
1399 variable as changed -- because the first assignment has set the
1400 'updated' flag. There's no need to optimize that, because return value
1401 of -var-update should be considered an approximation. */
581e13c1 1402 var->updated = install_new_value (var, val, 0 /* Compare values. */);
340a7723
NR
1403 input_radix = saved_input_radix;
1404 return 1;
8b93c638
JM
1405}
1406
0cc7d26f
TT
1407#if HAVE_PYTHON
1408
1409/* A helper function to install a constructor function and visualizer
1410 in a varobj. */
1411
1412static void
1413install_visualizer (struct varobj *var, PyObject *constructor,
1414 PyObject *visualizer)
1415{
1416 Py_XDECREF (var->constructor);
1417 var->constructor = constructor;
1418
1419 Py_XDECREF (var->pretty_printer);
1420 var->pretty_printer = visualizer;
1421
1422 Py_XDECREF (var->child_iter);
1423 var->child_iter = NULL;
1424}
1425
1426/* Install the default visualizer for VAR. */
1427
1428static void
1429install_default_visualizer (struct varobj *var)
1430{
d65aec65
PM
1431 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1432 if (CPLUS_FAKE_CHILD (var))
1433 return;
1434
0cc7d26f
TT
1435 if (pretty_printing)
1436 {
1437 PyObject *pretty_printer = NULL;
1438
1439 if (var->value)
1440 {
1441 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1442 if (! pretty_printer)
1443 {
1444 gdbpy_print_stack ();
1445 error (_("Cannot instantiate printer for default visualizer"));
1446 }
1447 }
1448
1449 if (pretty_printer == Py_None)
1450 {
1451 Py_DECREF (pretty_printer);
1452 pretty_printer = NULL;
1453 }
1454
1455 install_visualizer (var, NULL, pretty_printer);
1456 }
1457}
1458
1459/* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1460 make a new object. */
1461
1462static void
1463construct_visualizer (struct varobj *var, PyObject *constructor)
1464{
1465 PyObject *pretty_printer;
1466
d65aec65
PM
1467 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1468 if (CPLUS_FAKE_CHILD (var))
1469 return;
1470
0cc7d26f
TT
1471 Py_INCREF (constructor);
1472 if (constructor == Py_None)
1473 pretty_printer = NULL;
1474 else
1475 {
1476 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1477 if (! pretty_printer)
1478 {
1479 gdbpy_print_stack ();
1480 Py_DECREF (constructor);
1481 constructor = Py_None;
1482 Py_INCREF (constructor);
1483 }
1484
1485 if (pretty_printer == Py_None)
1486 {
1487 Py_DECREF (pretty_printer);
1488 pretty_printer = NULL;
1489 }
1490 }
1491
1492 install_visualizer (var, constructor, pretty_printer);
1493}
1494
1495#endif /* HAVE_PYTHON */
1496
1497/* A helper function for install_new_value. This creates and installs
1498 a visualizer for VAR, if appropriate. */
1499
1500static void
1501install_new_value_visualizer (struct varobj *var)
1502{
1503#if HAVE_PYTHON
1504 /* If the constructor is None, then we want the raw value. If VAR
1505 does not have a value, just skip this. */
1506 if (var->constructor != Py_None && var->value)
1507 {
1508 struct cleanup *cleanup;
0cc7d26f
TT
1509
1510 cleanup = varobj_ensure_python_env (var);
1511
1512 if (!var->constructor)
1513 install_default_visualizer (var);
1514 else
1515 construct_visualizer (var, var->constructor);
1516
1517 do_cleanups (cleanup);
1518 }
1519#else
1520 /* Do nothing. */
1521#endif
1522}
1523
acd65feb
VP
1524/* Assign a new value to a variable object. If INITIAL is non-zero,
1525 this is the first assignement after the variable object was just
1526 created, or changed type. In that case, just assign the value
1527 and return 0.
581e13c1
MS
1528 Otherwise, assign the new value, and return 1 if the value is
1529 different from the current one, 0 otherwise. The comparison is
1530 done on textual representation of value. Therefore, some types
1531 need not be compared. E.g. for structures the reported value is
1532 always "{...}", so no comparison is necessary here. If the old
1533 value was NULL and new one is not, or vice versa, we always return 1.
b26ed50d
VP
1534
1535 The VALUE parameter should not be released -- the function will
1536 take care of releasing it when needed. */
acd65feb
VP
1537static int
1538install_new_value (struct varobj *var, struct value *value, int initial)
1539{
1540 int changeable;
1541 int need_to_fetch;
1542 int changed = 0;
25d5ea92 1543 int intentionally_not_fetched = 0;
7a4d50bf 1544 char *print_value = NULL;
acd65feb 1545
acd65feb 1546 /* We need to know the varobj's type to decide if the value should
3e43a32a 1547 be fetched or not. C++ fake children (public/protected/private)
581e13c1 1548 don't have a type. */
acd65feb 1549 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
b2c2bd75 1550 changeable = varobj_value_is_changeable_p (var);
b6313243
TT
1551
1552 /* If the type has custom visualizer, we consider it to be always
581e13c1 1553 changeable. FIXME: need to make sure this behaviour will not
b6313243
TT
1554 mess up read-sensitive values. */
1555 if (var->pretty_printer)
1556 changeable = 1;
1557
acd65feb
VP
1558 need_to_fetch = changeable;
1559
b26ed50d
VP
1560 /* We are not interested in the address of references, and given
1561 that in C++ a reference is not rebindable, it cannot
1562 meaningfully change. So, get hold of the real value. */
1563 if (value)
0cc7d26f 1564 value = coerce_ref (value);
b26ed50d 1565
acd65feb
VP
1566 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1567 /* For unions, we need to fetch the value implicitly because
1568 of implementation of union member fetch. When gdb
1569 creates a value for a field and the value of the enclosing
1570 structure is not lazy, it immediately copies the necessary
1571 bytes from the enclosing values. If the enclosing value is
1572 lazy, the call to value_fetch_lazy on the field will read
1573 the data from memory. For unions, that means we'll read the
1574 same memory more than once, which is not desirable. So
1575 fetch now. */
1576 need_to_fetch = 1;
1577
1578 /* The new value might be lazy. If the type is changeable,
1579 that is we'll be comparing values of this type, fetch the
1580 value now. Otherwise, on the next update the old value
1581 will be lazy, which means we've lost that old value. */
1582 if (need_to_fetch && value && value_lazy (value))
1583 {
25d5ea92
VP
1584 struct varobj *parent = var->parent;
1585 int frozen = var->frozen;
a109c7c1 1586
25d5ea92
VP
1587 for (; !frozen && parent; parent = parent->parent)
1588 frozen |= parent->frozen;
1589
1590 if (frozen && initial)
1591 {
1592 /* For variables that are frozen, or are children of frozen
1593 variables, we don't do fetch on initial assignment.
1594 For non-initial assignemnt we do the fetch, since it means we're
1595 explicitly asked to compare the new value with the old one. */
1596 intentionally_not_fetched = 1;
1597 }
1598 else if (!gdb_value_fetch_lazy (value))
acd65feb 1599 {
acd65feb
VP
1600 /* Set the value to NULL, so that for the next -var-update,
1601 we don't try to compare the new value with this value,
1602 that we couldn't even read. */
1603 value = NULL;
1604 }
acd65feb
VP
1605 }
1606
e848a8a5
TT
1607 /* Get a reference now, before possibly passing it to any Python
1608 code that might release it. */
1609 if (value != NULL)
1610 value_incref (value);
b6313243 1611
7a4d50bf
VP
1612 /* Below, we'll be comparing string rendering of old and new
1613 values. Don't get string rendering if the value is
1614 lazy -- if it is, the code above has decided that the value
1615 should not be fetched. */
0cc7d26f 1616 if (value && !value_lazy (value) && !var->pretty_printer)
d452c4bc 1617 print_value = value_get_print_value (value, var->format, var);
7a4d50bf 1618
acd65feb
VP
1619 /* If the type is changeable, compare the old and the new values.
1620 If this is the initial assignment, we don't have any old value
1621 to compare with. */
7a4d50bf 1622 if (!initial && changeable)
acd65feb 1623 {
3e43a32a
MS
1624 /* If the value of the varobj was changed by -var-set-value,
1625 then the value in the varobj and in the target is the same.
1626 However, that value is different from the value that the
581e13c1 1627 varobj had after the previous -var-update. So need to the
3e43a32a 1628 varobj as changed. */
acd65feb 1629 if (var->updated)
57e66780 1630 {
57e66780
DJ
1631 changed = 1;
1632 }
0cc7d26f 1633 else if (! var->pretty_printer)
acd65feb
VP
1634 {
1635 /* Try to compare the values. That requires that both
1636 values are non-lazy. */
25d5ea92
VP
1637 if (var->not_fetched && value_lazy (var->value))
1638 {
1639 /* This is a frozen varobj and the value was never read.
1640 Presumably, UI shows some "never read" indicator.
1641 Now that we've fetched the real value, we need to report
1642 this varobj as changed so that UI can show the real
1643 value. */
1644 changed = 1;
1645 }
1646 else if (var->value == NULL && value == NULL)
581e13c1 1647 /* Equal. */
acd65feb
VP
1648 ;
1649 else if (var->value == NULL || value == NULL)
57e66780 1650 {
57e66780
DJ
1651 changed = 1;
1652 }
acd65feb
VP
1653 else
1654 {
1655 gdb_assert (!value_lazy (var->value));
1656 gdb_assert (!value_lazy (value));
85265413 1657
57e66780 1658 gdb_assert (var->print_value != NULL && print_value != NULL);
85265413 1659 if (strcmp (var->print_value, print_value) != 0)
7a4d50bf 1660 changed = 1;
acd65feb
VP
1661 }
1662 }
1663 }
85265413 1664
ee342b23
VP
1665 if (!initial && !changeable)
1666 {
1667 /* For values that are not changeable, we don't compare the values.
1668 However, we want to notice if a value was not NULL and now is NULL,
1669 or vise versa, so that we report when top-level varobjs come in scope
1670 and leave the scope. */
1671 changed = (var->value != NULL) != (value != NULL);
1672 }
1673
acd65feb 1674 /* We must always keep the new value, since children depend on it. */
25d5ea92 1675 if (var->value != NULL && var->value != value)
acd65feb
VP
1676 value_free (var->value);
1677 var->value = value;
25d5ea92
VP
1678 if (value && value_lazy (value) && intentionally_not_fetched)
1679 var->not_fetched = 1;
1680 else
1681 var->not_fetched = 0;
acd65feb 1682 var->updated = 0;
85265413 1683
0cc7d26f
TT
1684 install_new_value_visualizer (var);
1685
1686 /* If we installed a pretty-printer, re-compare the printed version
1687 to see if the variable changed. */
1688 if (var->pretty_printer)
1689 {
1690 xfree (print_value);
1691 print_value = value_get_print_value (var->value, var->format, var);
e8f781e2
TT
1692 if ((var->print_value == NULL && print_value != NULL)
1693 || (var->print_value != NULL && print_value == NULL)
1694 || (var->print_value != NULL && print_value != NULL
1695 && strcmp (var->print_value, print_value) != 0))
0cc7d26f
TT
1696 changed = 1;
1697 }
1698 if (var->print_value)
1699 xfree (var->print_value);
1700 var->print_value = print_value;
1701
b26ed50d 1702 gdb_assert (!var->value || value_type (var->value));
acd65feb
VP
1703
1704 return changed;
1705}
acd65feb 1706
0cc7d26f
TT
1707/* Return the requested range for a varobj. VAR is the varobj. FROM
1708 and TO are out parameters; *FROM and *TO will be set to the
1709 selected sub-range of VAR. If no range was selected using
1710 -var-set-update-range, then both will be -1. */
1711void
1712varobj_get_child_range (struct varobj *var, int *from, int *to)
b6313243 1713{
0cc7d26f
TT
1714 *from = var->from;
1715 *to = var->to;
b6313243
TT
1716}
1717
0cc7d26f
TT
1718/* Set the selected sub-range of children of VAR to start at index
1719 FROM and end at index TO. If either FROM or TO is less than zero,
1720 this is interpreted as a request for all children. */
1721void
1722varobj_set_child_range (struct varobj *var, int from, int to)
b6313243 1723{
0cc7d26f
TT
1724 var->from = from;
1725 var->to = to;
b6313243
TT
1726}
1727
1728void
1729varobj_set_visualizer (struct varobj *var, const char *visualizer)
1730{
1731#if HAVE_PYTHON
34fa1d9d
MS
1732 PyObject *mainmod, *globals, *constructor;
1733 struct cleanup *back_to;
b6313243 1734
d452c4bc 1735 back_to = varobj_ensure_python_env (var);
b6313243
TT
1736
1737 mainmod = PyImport_AddModule ("__main__");
1738 globals = PyModule_GetDict (mainmod);
1739 Py_INCREF (globals);
1740 make_cleanup_py_decref (globals);
1741
1742 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
b6313243 1743
0cc7d26f 1744 if (! constructor)
b6313243
TT
1745 {
1746 gdbpy_print_stack ();
da1f2771 1747 error (_("Could not evaluate visualizer expression: %s"), visualizer);
b6313243
TT
1748 }
1749
0cc7d26f
TT
1750 construct_visualizer (var, constructor);
1751 Py_XDECREF (constructor);
b6313243 1752
0cc7d26f
TT
1753 /* If there are any children now, wipe them. */
1754 varobj_delete (var, NULL, 1 /* children only */);
1755 var->num_children = -1;
b6313243
TT
1756
1757 do_cleanups (back_to);
1758#else
da1f2771 1759 error (_("Python support required"));
b6313243
TT
1760#endif
1761}
1762
8b93c638
JM
1763/* Update the values for a variable and its children. This is a
1764 two-pronged attack. First, re-parse the value for the root's
1765 expression to see if it's changed. Then go all the way
1766 through its children, reconstructing them and noting if they've
1767 changed.
1768
25d5ea92
VP
1769 The EXPLICIT parameter specifies if this call is result
1770 of MI request to update this specific variable, or
581e13c1 1771 result of implicit -var-update *. For implicit request, we don't
25d5ea92 1772 update frozen variables.
705da579 1773
581e13c1 1774 NOTE: This function may delete the caller's varobj. If it
8756216b
DP
1775 returns TYPE_CHANGED, then it has done this and VARP will be modified
1776 to point to the new varobj. */
8b93c638 1777
1417b39d
JB
1778VEC(varobj_update_result) *
1779varobj_update (struct varobj **varp, int explicit)
8b93c638
JM
1780{
1781 int changed = 0;
25d5ea92 1782 int type_changed = 0;
8b93c638 1783 int i;
30b28db1 1784 struct value *new;
b6313243 1785 VEC (varobj_update_result) *stack = NULL;
f7f9ae2c 1786 VEC (varobj_update_result) *result = NULL;
8b93c638 1787
25d5ea92
VP
1788 /* Frozen means frozen -- we don't check for any change in
1789 this varobj, including its going out of scope, or
1790 changing type. One use case for frozen varobjs is
1791 retaining previously evaluated expressions, and we don't
1792 want them to be reevaluated at all. */
1793 if (!explicit && (*varp)->frozen)
f7f9ae2c 1794 return result;
8756216b
DP
1795
1796 if (!(*varp)->root->is_valid)
f7f9ae2c 1797 {
cfce2ea2 1798 varobj_update_result r = {0};
a109c7c1 1799
cfce2ea2 1800 r.varobj = *varp;
f7f9ae2c
VP
1801 r.status = VAROBJ_INVALID;
1802 VEC_safe_push (varobj_update_result, result, &r);
1803 return result;
1804 }
8b93c638 1805
25d5ea92 1806 if ((*varp)->root->rootvar == *varp)
ae093f96 1807 {
cfce2ea2 1808 varobj_update_result r = {0};
a109c7c1 1809
cfce2ea2 1810 r.varobj = *varp;
f7f9ae2c
VP
1811 r.status = VAROBJ_IN_SCOPE;
1812
581e13c1 1813 /* Update the root variable. value_of_root can return NULL
25d5ea92 1814 if the variable is no longer around, i.e. we stepped out of
581e13c1 1815 the frame in which a local existed. We are letting the
25d5ea92
VP
1816 value_of_root variable dispose of the varobj if the type
1817 has changed. */
25d5ea92 1818 new = value_of_root (varp, &type_changed);
f7f9ae2c
VP
1819 r.varobj = *varp;
1820
1821 r.type_changed = type_changed;
ea56f9c2 1822 if (install_new_value ((*varp), new, type_changed))
f7f9ae2c 1823 r.changed = 1;
ea56f9c2 1824
25d5ea92 1825 if (new == NULL)
f7f9ae2c 1826 r.status = VAROBJ_NOT_IN_SCOPE;
b6313243 1827 r.value_installed = 1;
f7f9ae2c
VP
1828
1829 if (r.status == VAROBJ_NOT_IN_SCOPE)
b6313243 1830 {
0b4bc29a
JK
1831 if (r.type_changed || r.changed)
1832 VEC_safe_push (varobj_update_result, result, &r);
b6313243
TT
1833 return result;
1834 }
1835
1836 VEC_safe_push (varobj_update_result, stack, &r);
1837 }
1838 else
1839 {
cfce2ea2 1840 varobj_update_result r = {0};
a109c7c1 1841
cfce2ea2 1842 r.varobj = *varp;
b6313243 1843 VEC_safe_push (varobj_update_result, stack, &r);
b20d8971 1844 }
8b93c638 1845
8756216b 1846 /* Walk through the children, reconstructing them all. */
b6313243 1847 while (!VEC_empty (varobj_update_result, stack))
8b93c638 1848 {
b6313243
TT
1849 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1850 struct varobj *v = r.varobj;
1851
1852 VEC_pop (varobj_update_result, stack);
1853
1854 /* Update this variable, unless it's a root, which is already
1855 updated. */
1856 if (!r.value_installed)
1857 {
1858 new = value_of_child (v->parent, v->index);
1859 if (install_new_value (v, new, 0 /* type not changed */))
1860 {
1861 r.changed = 1;
1862 v->updated = 0;
1863 }
1864 }
1865
1866 /* We probably should not get children of a varobj that has a
1867 pretty-printer, but for which -var-list-children was never
581e13c1 1868 invoked. */
b6313243
TT
1869 if (v->pretty_printer)
1870 {
0cc7d26f 1871 VEC (varobj_p) *changed = 0, *new = 0, *unchanged = 0;
26f9bcee 1872 int i, children_changed = 0;
b6313243
TT
1873
1874 if (v->frozen)
1875 continue;
1876
0cc7d26f
TT
1877 if (!v->children_requested)
1878 {
1879 int dummy;
1880
1881 /* If we initially did not have potential children, but
1882 now we do, consider the varobj as changed.
1883 Otherwise, if children were never requested, consider
1884 it as unchanged -- presumably, such varobj is not yet
1885 expanded in the UI, so we need not bother getting
1886 it. */
1887 if (!varobj_has_more (v, 0))
1888 {
1889 update_dynamic_varobj_children (v, NULL, NULL, NULL,
1890 &dummy, 0, 0, 0);
1891 if (varobj_has_more (v, 0))
1892 r.changed = 1;
1893 }
1894
1895 if (r.changed)
1896 VEC_safe_push (varobj_update_result, result, &r);
1897
1898 continue;
1899 }
1900
b6313243
TT
1901 /* If update_dynamic_varobj_children returns 0, then we have
1902 a non-conforming pretty-printer, so we skip it. */
0cc7d26f
TT
1903 if (update_dynamic_varobj_children (v, &changed, &new, &unchanged,
1904 &children_changed, 1,
1905 v->from, v->to))
b6313243 1906 {
0cc7d26f 1907 if (children_changed || new)
b6313243 1908 {
0cc7d26f
TT
1909 r.children_changed = 1;
1910 r.new = new;
b6313243 1911 }
0cc7d26f
TT
1912 /* Push in reverse order so that the first child is
1913 popped from the work stack first, and so will be
1914 added to result first. This does not affect
1915 correctness, just "nicer". */
1916 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
b6313243 1917 {
0cc7d26f 1918 varobj_p tmp = VEC_index (varobj_p, changed, i);
cfce2ea2 1919 varobj_update_result r = {0};
a109c7c1 1920
cfce2ea2 1921 r.varobj = tmp;
0cc7d26f 1922 r.changed = 1;
b6313243
TT
1923 r.value_installed = 1;
1924 VEC_safe_push (varobj_update_result, stack, &r);
1925 }
0cc7d26f
TT
1926 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
1927 {
1928 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
a109c7c1 1929
0cc7d26f
TT
1930 if (!tmp->frozen)
1931 {
cfce2ea2 1932 varobj_update_result r = {0};
a109c7c1 1933
cfce2ea2 1934 r.varobj = tmp;
0cc7d26f
TT
1935 r.value_installed = 1;
1936 VEC_safe_push (varobj_update_result, stack, &r);
1937 }
1938 }
b6313243
TT
1939 if (r.changed || r.children_changed)
1940 VEC_safe_push (varobj_update_result, result, &r);
0cc7d26f
TT
1941
1942 /* Free CHANGED and UNCHANGED, but not NEW, because NEW
1943 has been put into the result vector. */
1944 VEC_free (varobj_p, changed);
1945 VEC_free (varobj_p, unchanged);
1946
b6313243
TT
1947 continue;
1948 }
1949 }
28335dcc
VP
1950
1951 /* Push any children. Use reverse order so that the first
1952 child is popped from the work stack first, and so
1953 will be added to result first. This does not
1954 affect correctness, just "nicer". */
1955 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
8b93c638 1956 {
28335dcc 1957 varobj_p c = VEC_index (varobj_p, v->children, i);
a109c7c1 1958
28335dcc 1959 /* Child may be NULL if explicitly deleted by -var-delete. */
25d5ea92 1960 if (c != NULL && !c->frozen)
28335dcc 1961 {
cfce2ea2 1962 varobj_update_result r = {0};
a109c7c1 1963
cfce2ea2 1964 r.varobj = c;
b6313243 1965 VEC_safe_push (varobj_update_result, stack, &r);
28335dcc 1966 }
8b93c638 1967 }
b6313243
TT
1968
1969 if (r.changed || r.type_changed)
1970 VEC_safe_push (varobj_update_result, result, &r);
8b93c638
JM
1971 }
1972
b6313243
TT
1973 VEC_free (varobj_update_result, stack);
1974
f7f9ae2c 1975 return result;
8b93c638
JM
1976}
1977\f
1978
1979/* Helper functions */
1980
1981/*
1982 * Variable object construction/destruction
1983 */
1984
1985static int
fba45db2
KB
1986delete_variable (struct cpstack **resultp, struct varobj *var,
1987 int only_children_p)
8b93c638
JM
1988{
1989 int delcount = 0;
1990
1991 delete_variable_1 (resultp, &delcount, var,
1992 only_children_p, 1 /* remove_from_parent_p */ );
1993
1994 return delcount;
1995}
1996
581e13c1 1997/* Delete the variable object VAR and its children. */
8b93c638
JM
1998/* IMPORTANT NOTE: If we delete a variable which is a child
1999 and the parent is not removed we dump core. It must be always
581e13c1 2000 initially called with remove_from_parent_p set. */
8b93c638 2001static void
72330bd6
AC
2002delete_variable_1 (struct cpstack **resultp, int *delcountp,
2003 struct varobj *var, int only_children_p,
2004 int remove_from_parent_p)
8b93c638 2005{
28335dcc 2006 int i;
8b93c638 2007
581e13c1 2008 /* Delete any children of this variable, too. */
28335dcc
VP
2009 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
2010 {
2011 varobj_p child = VEC_index (varobj_p, var->children, i);
a109c7c1 2012
214270ab
VP
2013 if (!child)
2014 continue;
8b93c638 2015 if (!remove_from_parent_p)
28335dcc
VP
2016 child->parent = NULL;
2017 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
8b93c638 2018 }
28335dcc 2019 VEC_free (varobj_p, var->children);
8b93c638 2020
581e13c1 2021 /* if we were called to delete only the children we are done here. */
8b93c638
JM
2022 if (only_children_p)
2023 return;
2024
581e13c1 2025 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
73a93a32 2026 /* If the name is null, this is a temporary variable, that has not
581e13c1 2027 yet been installed, don't report it, it belongs to the caller... */
73a93a32 2028 if (var->obj_name != NULL)
8b93c638 2029 {
5b616ba1 2030 cppush (resultp, xstrdup (var->obj_name));
8b93c638
JM
2031 *delcountp = *delcountp + 1;
2032 }
2033
581e13c1 2034 /* If this variable has a parent, remove it from its parent's list. */
8b93c638
JM
2035 /* OPTIMIZATION: if the parent of this variable is also being deleted,
2036 (as indicated by remove_from_parent_p) we don't bother doing an
2037 expensive list search to find the element to remove when we are
581e13c1 2038 discarding the list afterwards. */
72330bd6 2039 if ((remove_from_parent_p) && (var->parent != NULL))
8b93c638 2040 {
28335dcc 2041 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
8b93c638 2042 }
72330bd6 2043
73a93a32
JI
2044 if (var->obj_name != NULL)
2045 uninstall_variable (var);
8b93c638 2046
581e13c1 2047 /* Free memory associated with this variable. */
8b93c638
JM
2048 free_variable (var);
2049}
2050
581e13c1 2051/* Install the given variable VAR with the object name VAR->OBJ_NAME. */
8b93c638 2052static int
fba45db2 2053install_variable (struct varobj *var)
8b93c638
JM
2054{
2055 struct vlist *cv;
2056 struct vlist *newvl;
2057 const char *chp;
2058 unsigned int index = 0;
2059 unsigned int i = 1;
2060
2061 for (chp = var->obj_name; *chp; chp++)
2062 {
2063 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
2064 }
2065
2066 cv = *(varobj_table + index);
2067 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
2068 cv = cv->next;
2069
2070 if (cv != NULL)
8a3fe4f8 2071 error (_("Duplicate variable object name"));
8b93c638 2072
581e13c1 2073 /* Add varobj to hash table. */
8b93c638
JM
2074 newvl = xmalloc (sizeof (struct vlist));
2075 newvl->next = *(varobj_table + index);
2076 newvl->var = var;
2077 *(varobj_table + index) = newvl;
2078
581e13c1 2079 /* If root, add varobj to root list. */
b2c2bd75 2080 if (is_root_p (var))
8b93c638 2081 {
581e13c1 2082 /* Add to list of root variables. */
8b93c638
JM
2083 if (rootlist == NULL)
2084 var->root->next = NULL;
2085 else
2086 var->root->next = rootlist;
2087 rootlist = var->root;
8b93c638
JM
2088 }
2089
2090 return 1; /* OK */
2091}
2092
581e13c1 2093/* Unistall the object VAR. */
8b93c638 2094static void
fba45db2 2095uninstall_variable (struct varobj *var)
8b93c638
JM
2096{
2097 struct vlist *cv;
2098 struct vlist *prev;
2099 struct varobj_root *cr;
2100 struct varobj_root *prer;
2101 const char *chp;
2102 unsigned int index = 0;
2103 unsigned int i = 1;
2104
581e13c1 2105 /* Remove varobj from hash table. */
8b93c638
JM
2106 for (chp = var->obj_name; *chp; chp++)
2107 {
2108 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
2109 }
2110
2111 cv = *(varobj_table + index);
2112 prev = NULL;
2113 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
2114 {
2115 prev = cv;
2116 cv = cv->next;
2117 }
2118
2119 if (varobjdebug)
2120 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
2121
2122 if (cv == NULL)
2123 {
72330bd6
AC
2124 warning
2125 ("Assertion failed: Could not find variable object \"%s\" to delete",
2126 var->obj_name);
8b93c638
JM
2127 return;
2128 }
2129
2130 if (prev == NULL)
2131 *(varobj_table + index) = cv->next;
2132 else
2133 prev->next = cv->next;
2134
b8c9b27d 2135 xfree (cv);
8b93c638 2136
581e13c1 2137 /* If root, remove varobj from root list. */
b2c2bd75 2138 if (is_root_p (var))
8b93c638 2139 {
581e13c1 2140 /* Remove from list of root variables. */
8b93c638
JM
2141 if (rootlist == var->root)
2142 rootlist = var->root->next;
2143 else
2144 {
2145 prer = NULL;
2146 cr = rootlist;
2147 while ((cr != NULL) && (cr->rootvar != var))
2148 {
2149 prer = cr;
2150 cr = cr->next;
2151 }
2152 if (cr == NULL)
2153 {
8f7e195f
JB
2154 warning (_("Assertion failed: Could not find "
2155 "varobj \"%s\" in root list"),
3e43a32a 2156 var->obj_name);
8b93c638
JM
2157 return;
2158 }
2159 if (prer == NULL)
2160 rootlist = NULL;
2161 else
2162 prer->next = cr->next;
2163 }
8b93c638
JM
2164 }
2165
2166}
2167
581e13c1 2168/* Create and install a child of the parent of the given name. */
8b93c638 2169static struct varobj *
fba45db2 2170create_child (struct varobj *parent, int index, char *name)
b6313243
TT
2171{
2172 return create_child_with_value (parent, index, name,
2173 value_of_child (parent, index));
2174}
2175
2176static struct varobj *
2177create_child_with_value (struct varobj *parent, int index, const char *name,
2178 struct value *value)
8b93c638
JM
2179{
2180 struct varobj *child;
2181 char *childs_name;
2182
2183 child = new_variable ();
2184
581e13c1 2185 /* Name is allocated by name_of_child. */
b6313243
TT
2186 /* FIXME: xstrdup should not be here. */
2187 child->name = xstrdup (name);
8b93c638 2188 child->index = index;
8b93c638
JM
2189 child->parent = parent;
2190 child->root = parent->root;
b435e160 2191 childs_name = xstrprintf ("%s.%s", parent->obj_name, name);
8b93c638
JM
2192 child->obj_name = childs_name;
2193 install_variable (child);
2194
acd65feb
VP
2195 /* Compute the type of the child. Must do this before
2196 calling install_new_value. */
2197 if (value != NULL)
2198 /* If the child had no evaluation errors, var->value
581e13c1 2199 will be non-NULL and contain a valid type. */
acd65feb
VP
2200 child->type = value_type (value);
2201 else
581e13c1 2202 /* Otherwise, we must compute the type. */
acd65feb
VP
2203 child->type = (*child->root->lang->type_of_child) (child->parent,
2204 child->index);
2205 install_new_value (child, value, 1);
2206
8b93c638
JM
2207 return child;
2208}
8b93c638
JM
2209\f
2210
2211/*
2212 * Miscellaneous utility functions.
2213 */
2214
581e13c1 2215/* Allocate memory and initialize a new variable. */
8b93c638
JM
2216static struct varobj *
2217new_variable (void)
2218{
2219 struct varobj *var;
2220
2221 var = (struct varobj *) xmalloc (sizeof (struct varobj));
2222 var->name = NULL;
02142340 2223 var->path_expr = NULL;
8b93c638
JM
2224 var->obj_name = NULL;
2225 var->index = -1;
2226 var->type = NULL;
2227 var->value = NULL;
8b93c638
JM
2228 var->num_children = -1;
2229 var->parent = NULL;
2230 var->children = NULL;
2231 var->format = 0;
2232 var->root = NULL;
fb9b6b35 2233 var->updated = 0;
85265413 2234 var->print_value = NULL;
25d5ea92
VP
2235 var->frozen = 0;
2236 var->not_fetched = 0;
b6313243 2237 var->children_requested = 0;
0cc7d26f
TT
2238 var->from = -1;
2239 var->to = -1;
2240 var->constructor = 0;
b6313243 2241 var->pretty_printer = 0;
0cc7d26f
TT
2242 var->child_iter = 0;
2243 var->saved_item = 0;
8b93c638
JM
2244
2245 return var;
2246}
2247
581e13c1 2248/* Allocate memory and initialize a new root variable. */
8b93c638
JM
2249static struct varobj *
2250new_root_variable (void)
2251{
2252 struct varobj *var = new_variable ();
a109c7c1 2253
3e43a32a 2254 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));
8b93c638
JM
2255 var->root->lang = NULL;
2256 var->root->exp = NULL;
2257 var->root->valid_block = NULL;
7a424e99 2258 var->root->frame = null_frame_id;
a5defcdc 2259 var->root->floating = 0;
8b93c638 2260 var->root->rootvar = NULL;
8756216b 2261 var->root->is_valid = 1;
8b93c638
JM
2262
2263 return var;
2264}
2265
581e13c1 2266/* Free any allocated memory associated with VAR. */
8b93c638 2267static void
fba45db2 2268free_variable (struct varobj *var)
8b93c638 2269{
d452c4bc
UW
2270#if HAVE_PYTHON
2271 if (var->pretty_printer)
2272 {
2273 struct cleanup *cleanup = varobj_ensure_python_env (var);
0cc7d26f
TT
2274 Py_XDECREF (var->constructor);
2275 Py_XDECREF (var->pretty_printer);
2276 Py_XDECREF (var->child_iter);
2277 Py_XDECREF (var->saved_item);
d452c4bc
UW
2278 do_cleanups (cleanup);
2279 }
2280#endif
2281
36746093
JK
2282 value_free (var->value);
2283
581e13c1 2284 /* Free the expression if this is a root variable. */
b2c2bd75 2285 if (is_root_p (var))
8b93c638 2286 {
3038237c 2287 xfree (var->root->exp);
8038e1e2 2288 xfree (var->root);
8b93c638
JM
2289 }
2290
8038e1e2
AC
2291 xfree (var->name);
2292 xfree (var->obj_name);
85265413 2293 xfree (var->print_value);
02142340 2294 xfree (var->path_expr);
8038e1e2 2295 xfree (var);
8b93c638
JM
2296}
2297
74b7792f
AC
2298static void
2299do_free_variable_cleanup (void *var)
2300{
2301 free_variable (var);
2302}
2303
2304static struct cleanup *
2305make_cleanup_free_variable (struct varobj *var)
2306{
2307 return make_cleanup (do_free_variable_cleanup, var);
2308}
2309
581e13c1 2310/* This returns the type of the variable. It also skips past typedefs
6766a268 2311 to return the real type of the variable.
94b66fa7
KS
2312
2313 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
581e13c1 2314 except within get_target_type and get_type. */
8b93c638 2315static struct type *
fba45db2 2316get_type (struct varobj *var)
8b93c638
JM
2317{
2318 struct type *type;
8b93c638 2319
a109c7c1 2320 type = var->type;
6766a268
DJ
2321 if (type != NULL)
2322 type = check_typedef (type);
8b93c638
JM
2323
2324 return type;
2325}
2326
6e2a9270
VP
2327/* Return the type of the value that's stored in VAR,
2328 or that would have being stored there if the
581e13c1 2329 value were accessible.
6e2a9270
VP
2330
2331 This differs from VAR->type in that VAR->type is always
2332 the true type of the expession in the source language.
2333 The return value of this function is the type we're
2334 actually storing in varobj, and using for displaying
2335 the values and for comparing previous and new values.
2336
2337 For example, top-level references are always stripped. */
2338static struct type *
2339get_value_type (struct varobj *var)
2340{
2341 struct type *type;
2342
2343 if (var->value)
2344 type = value_type (var->value);
2345 else
2346 type = var->type;
2347
2348 type = check_typedef (type);
2349
2350 if (TYPE_CODE (type) == TYPE_CODE_REF)
2351 type = get_target_type (type);
2352
2353 type = check_typedef (type);
2354
2355 return type;
2356}
2357
8b93c638 2358/* This returns the target type (or NULL) of TYPE, also skipping
94b66fa7
KS
2359 past typedefs, just like get_type ().
2360
2361 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
581e13c1 2362 except within get_target_type and get_type. */
8b93c638 2363static struct type *
fba45db2 2364get_target_type (struct type *type)
8b93c638
JM
2365{
2366 if (type != NULL)
2367 {
2368 type = TYPE_TARGET_TYPE (type);
6766a268
DJ
2369 if (type != NULL)
2370 type = check_typedef (type);
8b93c638
JM
2371 }
2372
2373 return type;
2374}
2375
2376/* What is the default display for this variable? We assume that
581e13c1 2377 everything is "natural". Any exceptions? */
8b93c638 2378static enum varobj_display_formats
fba45db2 2379variable_default_display (struct varobj *var)
8b93c638
JM
2380{
2381 return FORMAT_NATURAL;
2382}
2383
581e13c1 2384/* FIXME: The following should be generic for any pointer. */
8b93c638 2385static void
fba45db2 2386cppush (struct cpstack **pstack, char *name)
8b93c638
JM
2387{
2388 struct cpstack *s;
2389
2390 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2391 s->name = name;
2392 s->next = *pstack;
2393 *pstack = s;
2394}
2395
581e13c1 2396/* FIXME: The following should be generic for any pointer. */
8b93c638 2397static char *
fba45db2 2398cppop (struct cpstack **pstack)
8b93c638
JM
2399{
2400 struct cpstack *s;
2401 char *v;
2402
2403 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2404 return NULL;
2405
2406 s = *pstack;
2407 v = s->name;
2408 *pstack = (*pstack)->next;
b8c9b27d 2409 xfree (s);
8b93c638
JM
2410
2411 return v;
2412}
2413\f
2414/*
2415 * Language-dependencies
2416 */
2417
2418/* Common entry points */
2419
581e13c1 2420/* Get the language of variable VAR. */
8b93c638 2421static enum varobj_languages
fba45db2 2422variable_language (struct varobj *var)
8b93c638
JM
2423{
2424 enum varobj_languages lang;
2425
2426 switch (var->root->exp->language_defn->la_language)
2427 {
2428 default:
2429 case language_c:
2430 lang = vlang_c;
2431 break;
2432 case language_cplus:
2433 lang = vlang_cplus;
2434 break;
2435 case language_java:
2436 lang = vlang_java;
2437 break;
40591b7d
JCD
2438 case language_ada:
2439 lang = vlang_ada;
2440 break;
8b93c638
JM
2441 }
2442
2443 return lang;
2444}
2445
2446/* Return the number of children for a given variable.
2447 The result of this function is defined by the language
581e13c1 2448 implementation. The number of children returned by this function
8b93c638 2449 is the number of children that the user will see in the variable
581e13c1 2450 display. */
8b93c638 2451static int
fba45db2 2452number_of_children (struct varobj *var)
8b93c638 2453{
82ae4854 2454 return (*var->root->lang->number_of_children) (var);
8b93c638
JM
2455}
2456
3e43a32a 2457/* What is the expression for the root varobj VAR? Returns a malloc'd
581e13c1 2458 string. */
8b93c638 2459static char *
fba45db2 2460name_of_variable (struct varobj *var)
8b93c638
JM
2461{
2462 return (*var->root->lang->name_of_variable) (var);
2463}
2464
3e43a32a 2465/* What is the name of the INDEX'th child of VAR? Returns a malloc'd
581e13c1 2466 string. */
8b93c638 2467static char *
fba45db2 2468name_of_child (struct varobj *var, int index)
8b93c638
JM
2469{
2470 return (*var->root->lang->name_of_child) (var, index);
2471}
2472
a5defcdc
VP
2473/* What is the ``struct value *'' of the root variable VAR?
2474 For floating variable object, evaluation can get us a value
2475 of different type from what is stored in varobj already. In
2476 that case:
2477 - *type_changed will be set to 1
2478 - old varobj will be freed, and new one will be
2479 created, with the same name.
2480 - *var_handle will be set to the new varobj
2481 Otherwise, *type_changed will be set to 0. */
30b28db1 2482static struct value *
fba45db2 2483value_of_root (struct varobj **var_handle, int *type_changed)
8b93c638 2484{
73a93a32
JI
2485 struct varobj *var;
2486
2487 if (var_handle == NULL)
2488 return NULL;
2489
2490 var = *var_handle;
2491
2492 /* This should really be an exception, since this should
581e13c1 2493 only get called with a root variable. */
73a93a32 2494
b2c2bd75 2495 if (!is_root_p (var))
73a93a32
JI
2496 return NULL;
2497
a5defcdc 2498 if (var->root->floating)
73a93a32
JI
2499 {
2500 struct varobj *tmp_var;
2501 char *old_type, *new_type;
6225abfa 2502
73a93a32
JI
2503 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2504 USE_SELECTED_FRAME);
2505 if (tmp_var == NULL)
2506 {
2507 return NULL;
2508 }
6225abfa 2509 old_type = varobj_get_type (var);
73a93a32 2510 new_type = varobj_get_type (tmp_var);
72330bd6 2511 if (strcmp (old_type, new_type) == 0)
73a93a32 2512 {
fcacd99f
VP
2513 /* The expression presently stored inside var->root->exp
2514 remembers the locations of local variables relatively to
2515 the frame where the expression was created (in DWARF location
2516 button, for example). Naturally, those locations are not
2517 correct in other frames, so update the expression. */
2518
2519 struct expression *tmp_exp = var->root->exp;
a109c7c1 2520
fcacd99f
VP
2521 var->root->exp = tmp_var->root->exp;
2522 tmp_var->root->exp = tmp_exp;
2523
73a93a32
JI
2524 varobj_delete (tmp_var, NULL, 0);
2525 *type_changed = 0;
2526 }
2527 else
2528 {
1b36a34b 2529 tmp_var->obj_name = xstrdup (var->obj_name);
0cc7d26f
TT
2530 tmp_var->from = var->from;
2531 tmp_var->to = var->to;
a5defcdc
VP
2532 varobj_delete (var, NULL, 0);
2533
73a93a32
JI
2534 install_variable (tmp_var);
2535 *var_handle = tmp_var;
705da579 2536 var = *var_handle;
73a93a32
JI
2537 *type_changed = 1;
2538 }
74dddad3
MS
2539 xfree (old_type);
2540 xfree (new_type);
73a93a32
JI
2541 }
2542 else
2543 {
2544 *type_changed = 0;
2545 }
2546
2547 return (*var->root->lang->value_of_root) (var_handle);
8b93c638
JM
2548}
2549
581e13c1 2550/* What is the ``struct value *'' for the INDEX'th child of PARENT? */
30b28db1 2551static struct value *
fba45db2 2552value_of_child (struct varobj *parent, int index)
8b93c638 2553{
30b28db1 2554 struct value *value;
8b93c638
JM
2555
2556 value = (*parent->root->lang->value_of_child) (parent, index);
2557
8b93c638
JM
2558 return value;
2559}
2560
581e13c1 2561/* GDB already has a command called "value_of_variable". Sigh. */
8b93c638 2562static char *
de051565 2563my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 2564{
8756216b 2565 if (var->root->is_valid)
0cc7d26f
TT
2566 {
2567 if (var->pretty_printer)
2568 return value_get_print_value (var->value, var->format, var);
2569 return (*var->root->lang->value_of_variable) (var, format);
2570 }
8756216b
DP
2571 else
2572 return NULL;
8b93c638
JM
2573}
2574
85265413 2575static char *
b6313243 2576value_get_print_value (struct value *value, enum varobj_display_formats format,
d452c4bc 2577 struct varobj *var)
85265413 2578{
57e66780 2579 struct ui_file *stb;
621c8364 2580 struct cleanup *old_chain;
fbb8f299 2581 gdb_byte *thevalue = NULL;
79a45b7d 2582 struct value_print_options opts;
be759fcf
PM
2583 struct type *type = NULL;
2584 long len = 0;
2585 char *encoding = NULL;
2586 struct gdbarch *gdbarch = NULL;
3a182a69
JK
2587 /* Initialize it just to avoid a GCC false warning. */
2588 CORE_ADDR str_addr = 0;
09ca9e2e 2589 int string_print = 0;
57e66780
DJ
2590
2591 if (value == NULL)
2592 return NULL;
2593
621c8364
TT
2594 stb = mem_fileopen ();
2595 old_chain = make_cleanup_ui_file_delete (stb);
2596
be759fcf 2597 gdbarch = get_type_arch (value_type (value));
b6313243
TT
2598#if HAVE_PYTHON
2599 {
d452c4bc
UW
2600 PyObject *value_formatter = var->pretty_printer;
2601
09ca9e2e
TT
2602 varobj_ensure_python_env (var);
2603
0cc7d26f 2604 if (value_formatter)
b6313243 2605 {
0cc7d26f
TT
2606 /* First check to see if we have any children at all. If so,
2607 we simply return {...}. */
2608 if (dynamic_varobj_has_child_method (var))
621c8364
TT
2609 {
2610 do_cleanups (old_chain);
2611 return xstrdup ("{...}");
2612 }
b6313243 2613
0cc7d26f 2614 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
b6313243 2615 {
0cc7d26f 2616 struct value *replacement;
0cc7d26f
TT
2617 PyObject *output = NULL;
2618
0cc7d26f 2619 output = apply_varobj_pretty_printer (value_formatter,
621c8364
TT
2620 &replacement,
2621 stb);
00bd41d6
PM
2622
2623 /* If we have string like output ... */
0cc7d26f
TT
2624 if (output)
2625 {
09ca9e2e
TT
2626 make_cleanup_py_decref (output);
2627
00bd41d6
PM
2628 /* If this is a lazy string, extract it. For lazy
2629 strings we always print as a string, so set
2630 string_print. */
be759fcf 2631 if (gdbpy_is_lazy_string (output))
0cc7d26f 2632 {
09ca9e2e
TT
2633 gdbpy_extract_lazy_string (output, &str_addr, &type,
2634 &len, &encoding);
2635 make_cleanup (free_current_contents, &encoding);
be759fcf
PM
2636 string_print = 1;
2637 }
2638 else
2639 {
00bd41d6
PM
2640 /* If it is a regular (non-lazy) string, extract
2641 it and copy the contents into THEVALUE. If the
2642 hint says to print it as a string, set
2643 string_print. Otherwise just return the extracted
2644 string as a value. */
2645
be759fcf
PM
2646 PyObject *py_str
2647 = python_string_to_target_python_string (output);
a109c7c1 2648
be759fcf
PM
2649 if (py_str)
2650 {
2651 char *s = PyString_AsString (py_str);
00bd41d6
PM
2652 char *hint;
2653
2654 hint = gdbpy_get_display_hint (value_formatter);
2655 if (hint)
2656 {
2657 if (!strcmp (hint, "string"))
2658 string_print = 1;
2659 xfree (hint);
2660 }
a109c7c1 2661
be759fcf
PM
2662 len = PyString_Size (py_str);
2663 thevalue = xmemdup (s, len + 1, len + 1);
2664 type = builtin_type (gdbarch)->builtin_char;
2665 Py_DECREF (py_str);
09ca9e2e
TT
2666
2667 if (!string_print)
2668 {
2669 do_cleanups (old_chain);
2670 return thevalue;
2671 }
2672
2673 make_cleanup (xfree, thevalue);
be759fcf 2674 }
8dc78533
JK
2675 else
2676 gdbpy_print_stack ();
0cc7d26f 2677 }
0cc7d26f 2678 }
00bd41d6
PM
2679 /* If the printer returned a replacement value, set VALUE
2680 to REPLACEMENT. If there is not a replacement value,
2681 just use the value passed to this function. */
0cc7d26f
TT
2682 if (replacement)
2683 value = replacement;
b6313243 2684 }
b6313243 2685 }
b6313243
TT
2686 }
2687#endif
2688
79a45b7d
TT
2689 get_formatted_print_options (&opts, format_code[(int) format]);
2690 opts.deref_ref = 0;
b6313243 2691 opts.raw = 1;
00bd41d6
PM
2692
2693 /* If the THEVALUE has contents, it is a regular string. */
b6313243 2694 if (thevalue)
09ca9e2e
TT
2695 LA_PRINT_STRING (stb, type, thevalue, len, encoding, 0, &opts);
2696 else if (string_print)
00bd41d6
PM
2697 /* Otherwise, if string_print is set, and it is not a regular
2698 string, it is a lazy string. */
09ca9e2e 2699 val_print_string (type, encoding, str_addr, len, stb, &opts);
b6313243 2700 else
00bd41d6 2701 /* All other cases. */
b6313243 2702 common_val_print (value, stb, 0, &opts, current_language);
00bd41d6 2703
759ef836 2704 thevalue = ui_file_xstrdup (stb, NULL);
57e66780 2705
85265413
NR
2706 do_cleanups (old_chain);
2707 return thevalue;
2708}
2709
340a7723
NR
2710int
2711varobj_editable_p (struct varobj *var)
2712{
2713 struct type *type;
340a7723
NR
2714
2715 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2716 return 0;
2717
2718 type = get_value_type (var);
2719
2720 switch (TYPE_CODE (type))
2721 {
2722 case TYPE_CODE_STRUCT:
2723 case TYPE_CODE_UNION:
2724 case TYPE_CODE_ARRAY:
2725 case TYPE_CODE_FUNC:
2726 case TYPE_CODE_METHOD:
2727 return 0;
2728 break;
2729
2730 default:
2731 return 1;
2732 break;
2733 }
2734}
2735
acd65feb
VP
2736/* Return non-zero if changes in value of VAR
2737 must be detected and reported by -var-update.
2738 Return zero is -var-update should never report
2739 changes of such values. This makes sense for structures
2740 (since the changes in children values will be reported separately),
2741 or for artifical objects (like 'public' pseudo-field in C++).
2742
2743 Return value of 0 means that gdb need not call value_fetch_lazy
2744 for the value of this variable object. */
8b93c638 2745static int
b2c2bd75 2746varobj_value_is_changeable_p (struct varobj *var)
8b93c638
JM
2747{
2748 int r;
2749 struct type *type;
2750
2751 if (CPLUS_FAKE_CHILD (var))
2752 return 0;
2753
6e2a9270 2754 type = get_value_type (var);
8b93c638
JM
2755
2756 switch (TYPE_CODE (type))
2757 {
72330bd6
AC
2758 case TYPE_CODE_STRUCT:
2759 case TYPE_CODE_UNION:
2760 case TYPE_CODE_ARRAY:
2761 r = 0;
2762 break;
8b93c638 2763
72330bd6
AC
2764 default:
2765 r = 1;
8b93c638
JM
2766 }
2767
2768 return r;
2769}
2770
5a413362
VP
2771/* Return 1 if that varobj is floating, that is is always evaluated in the
2772 selected frame, and not bound to thread/frame. Such variable objects
2773 are created using '@' as frame specifier to -var-create. */
2774int
2775varobj_floating_p (struct varobj *var)
2776{
2777 return var->root->floating;
2778}
2779
2024f65a
VP
2780/* Given the value and the type of a variable object,
2781 adjust the value and type to those necessary
2782 for getting children of the variable object.
2783 This includes dereferencing top-level references
2784 to all types and dereferencing pointers to
581e13c1 2785 structures.
2024f65a 2786
581e13c1 2787 Both TYPE and *TYPE should be non-null. VALUE
2024f65a
VP
2788 can be null if we want to only translate type.
2789 *VALUE can be null as well -- if the parent
581e13c1 2790 value is not known.
02142340
VP
2791
2792 If WAS_PTR is not NULL, set *WAS_PTR to 0 or 1
b6313243 2793 depending on whether pointer was dereferenced
02142340 2794 in this function. */
2024f65a
VP
2795static void
2796adjust_value_for_child_access (struct value **value,
02142340
VP
2797 struct type **type,
2798 int *was_ptr)
2024f65a
VP
2799{
2800 gdb_assert (type && *type);
2801
02142340
VP
2802 if (was_ptr)
2803 *was_ptr = 0;
2804
2024f65a
VP
2805 *type = check_typedef (*type);
2806
2807 /* The type of value stored in varobj, that is passed
2808 to us, is already supposed to be
2809 reference-stripped. */
2810
2811 gdb_assert (TYPE_CODE (*type) != TYPE_CODE_REF);
2812
2813 /* Pointers to structures are treated just like
2814 structures when accessing children. Don't
2815 dererences pointers to other types. */
2816 if (TYPE_CODE (*type) == TYPE_CODE_PTR)
2817 {
2818 struct type *target_type = get_target_type (*type);
2819 if (TYPE_CODE (target_type) == TYPE_CODE_STRUCT
2820 || TYPE_CODE (target_type) == TYPE_CODE_UNION)
2821 {
2822 if (value && *value)
3f4178d6 2823 {
a109c7c1
MS
2824 int success = gdb_value_ind (*value, value);
2825
3f4178d6
DJ
2826 if (!success)
2827 *value = NULL;
2828 }
2024f65a 2829 *type = target_type;
02142340
VP
2830 if (was_ptr)
2831 *was_ptr = 1;
2024f65a
VP
2832 }
2833 }
2834
2835 /* The 'get_target_type' function calls check_typedef on
2836 result, so we can immediately check type code. No
2837 need to call check_typedef here. */
2838}
2839
8b93c638
JM
2840/* C */
2841static int
fba45db2 2842c_number_of_children (struct varobj *var)
8b93c638 2843{
2024f65a
VP
2844 struct type *type = get_value_type (var);
2845 int children = 0;
8b93c638 2846 struct type *target;
8b93c638 2847
02142340 2848 adjust_value_for_child_access (NULL, &type, NULL);
8b93c638 2849 target = get_target_type (type);
8b93c638
JM
2850
2851 switch (TYPE_CODE (type))
2852 {
2853 case TYPE_CODE_ARRAY:
2854 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0
d78df370 2855 && !TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
8b93c638
JM
2856 children = TYPE_LENGTH (type) / TYPE_LENGTH (target);
2857 else
74a44383
DJ
2858 /* If we don't know how many elements there are, don't display
2859 any. */
2860 children = 0;
8b93c638
JM
2861 break;
2862
2863 case TYPE_CODE_STRUCT:
2864 case TYPE_CODE_UNION:
2865 children = TYPE_NFIELDS (type);
2866 break;
2867
2868 case TYPE_CODE_PTR:
581e13c1 2869 /* The type here is a pointer to non-struct. Typically, pointers
2024f65a
VP
2870 have one child, except for function ptrs, which have no children,
2871 and except for void*, as we don't know what to show.
2872
0755e6c1
FN
2873 We can show char* so we allow it to be dereferenced. If you decide
2874 to test for it, please mind that a little magic is necessary to
2875 properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and
581e13c1 2876 TYPE_NAME == "char". */
2024f65a
VP
2877 if (TYPE_CODE (target) == TYPE_CODE_FUNC
2878 || TYPE_CODE (target) == TYPE_CODE_VOID)
2879 children = 0;
2880 else
2881 children = 1;
8b93c638
JM
2882 break;
2883
2884 default:
581e13c1 2885 /* Other types have no children. */
8b93c638
JM
2886 break;
2887 }
2888
2889 return children;
2890}
2891
2892static char *
fba45db2 2893c_name_of_variable (struct varobj *parent)
8b93c638 2894{
1b36a34b 2895 return xstrdup (parent->name);
8b93c638
JM
2896}
2897
bbec2603
VP
2898/* Return the value of element TYPE_INDEX of a structure
2899 value VALUE. VALUE's type should be a structure,
581e13c1 2900 or union, or a typedef to struct/union.
bbec2603
VP
2901
2902 Returns NULL if getting the value fails. Never throws. */
2903static struct value *
2904value_struct_element_index (struct value *value, int type_index)
8b93c638 2905{
bbec2603
VP
2906 struct value *result = NULL;
2907 volatile struct gdb_exception e;
bbec2603 2908 struct type *type = value_type (value);
a109c7c1 2909
bbec2603
VP
2910 type = check_typedef (type);
2911
2912 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
2913 || TYPE_CODE (type) == TYPE_CODE_UNION);
8b93c638 2914
bbec2603
VP
2915 TRY_CATCH (e, RETURN_MASK_ERROR)
2916 {
d6a843b5 2917 if (field_is_static (&TYPE_FIELD (type, type_index)))
bbec2603
VP
2918 result = value_static_field (type, type_index);
2919 else
2920 result = value_primitive_field (value, 0, type_index, type);
2921 }
2922 if (e.reason < 0)
2923 {
2924 return NULL;
2925 }
2926 else
2927 {
2928 return result;
2929 }
2930}
2931
2932/* Obtain the information about child INDEX of the variable
581e13c1 2933 object PARENT.
bbec2603
VP
2934 If CNAME is not null, sets *CNAME to the name of the child relative
2935 to the parent.
2936 If CVALUE is not null, sets *CVALUE to the value of the child.
2937 If CTYPE is not null, sets *CTYPE to the type of the child.
2938
2939 If any of CNAME, CVALUE, or CTYPE is not null, but the corresponding
2940 information cannot be determined, set *CNAME, *CVALUE, or *CTYPE
2941 to NULL. */
2942static void
2943c_describe_child (struct varobj *parent, int index,
02142340
VP
2944 char **cname, struct value **cvalue, struct type **ctype,
2945 char **cfull_expression)
bbec2603
VP
2946{
2947 struct value *value = parent->value;
2024f65a 2948 struct type *type = get_value_type (parent);
02142340
VP
2949 char *parent_expression = NULL;
2950 int was_ptr;
bbec2603
VP
2951
2952 if (cname)
2953 *cname = NULL;
2954 if (cvalue)
2955 *cvalue = NULL;
2956 if (ctype)
2957 *ctype = NULL;
02142340
VP
2958 if (cfull_expression)
2959 {
2960 *cfull_expression = NULL;
2961 parent_expression = varobj_get_path_expr (parent);
2962 }
2963 adjust_value_for_child_access (&value, &type, &was_ptr);
bbec2603 2964
8b93c638
JM
2965 switch (TYPE_CODE (type))
2966 {
2967 case TYPE_CODE_ARRAY:
bbec2603 2968 if (cname)
3e43a32a
MS
2969 *cname
2970 = xstrdup (int_string (index
2971 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
2972 10, 1, 0, 0));
bbec2603
VP
2973
2974 if (cvalue && value)
2975 {
2976 int real_index = index + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type));
a109c7c1 2977
2497b498 2978 gdb_value_subscript (value, real_index, cvalue);
bbec2603
VP
2979 }
2980
2981 if (ctype)
2982 *ctype = get_target_type (type);
2983
02142340 2984 if (cfull_expression)
43bbcdc2
PH
2985 *cfull_expression =
2986 xstrprintf ("(%s)[%s]", parent_expression,
2987 int_string (index
2988 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
2989 10, 1, 0, 0));
02142340
VP
2990
2991
8b93c638
JM
2992 break;
2993
2994 case TYPE_CODE_STRUCT:
2995 case TYPE_CODE_UNION:
bbec2603 2996 if (cname)
1b36a34b 2997 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
bbec2603
VP
2998
2999 if (cvalue && value)
3000 {
3001 /* For C, varobj index is the same as type index. */
3002 *cvalue = value_struct_element_index (value, index);
3003 }
3004
3005 if (ctype)
3006 *ctype = TYPE_FIELD_TYPE (type, index);
3007
02142340
VP
3008 if (cfull_expression)
3009 {
3010 char *join = was_ptr ? "->" : ".";
a109c7c1 3011
02142340
VP
3012 *cfull_expression = xstrprintf ("(%s)%s%s", parent_expression, join,
3013 TYPE_FIELD_NAME (type, index));
3014 }
3015
8b93c638
JM
3016 break;
3017
3018 case TYPE_CODE_PTR:
bbec2603
VP
3019 if (cname)
3020 *cname = xstrprintf ("*%s", parent->name);
8b93c638 3021
bbec2603 3022 if (cvalue && value)
3f4178d6
DJ
3023 {
3024 int success = gdb_value_ind (value, cvalue);
a109c7c1 3025
3f4178d6
DJ
3026 if (!success)
3027 *cvalue = NULL;
3028 }
bbec2603 3029
2024f65a
VP
3030 /* Don't use get_target_type because it calls
3031 check_typedef and here, we want to show the true
3032 declared type of the variable. */
bbec2603 3033 if (ctype)
2024f65a 3034 *ctype = TYPE_TARGET_TYPE (type);
02142340
VP
3035
3036 if (cfull_expression)
3037 *cfull_expression = xstrprintf ("*(%s)", parent_expression);
bbec2603 3038
8b93c638
JM
3039 break;
3040
3041 default:
581e13c1 3042 /* This should not happen. */
bbec2603
VP
3043 if (cname)
3044 *cname = xstrdup ("???");
02142340
VP
3045 if (cfull_expression)
3046 *cfull_expression = xstrdup ("???");
581e13c1 3047 /* Don't set value and type, we don't know then. */
8b93c638 3048 }
bbec2603 3049}
8b93c638 3050
bbec2603
VP
3051static char *
3052c_name_of_child (struct varobj *parent, int index)
3053{
3054 char *name;
a109c7c1 3055
02142340 3056 c_describe_child (parent, index, &name, NULL, NULL, NULL);
8b93c638
JM
3057 return name;
3058}
3059
02142340
VP
3060static char *
3061c_path_expr_of_child (struct varobj *child)
3062{
3063 c_describe_child (child->parent, child->index, NULL, NULL, NULL,
3064 &child->path_expr);
3065 return child->path_expr;
3066}
3067
c5b48eac
VP
3068/* If frame associated with VAR can be found, switch
3069 to it and return 1. Otherwise, return 0. */
3070static int
3071check_scope (struct varobj *var)
3072{
3073 struct frame_info *fi;
3074 int scope;
3075
3076 fi = frame_find_by_id (var->root->frame);
3077 scope = fi != NULL;
3078
3079 if (fi)
3080 {
3081 CORE_ADDR pc = get_frame_pc (fi);
a109c7c1 3082
c5b48eac
VP
3083 if (pc < BLOCK_START (var->root->valid_block) ||
3084 pc >= BLOCK_END (var->root->valid_block))
3085 scope = 0;
3086 else
3087 select_frame (fi);
3088 }
3089 return scope;
3090}
3091
30b28db1 3092static struct value *
fba45db2 3093c_value_of_root (struct varobj **var_handle)
8b93c638 3094{
5e572bb4 3095 struct value *new_val = NULL;
73a93a32 3096 struct varobj *var = *var_handle;
c5b48eac 3097 int within_scope = 0;
6208b47d
VP
3098 struct cleanup *back_to;
3099
581e13c1 3100 /* Only root variables can be updated... */
b2c2bd75 3101 if (!is_root_p (var))
581e13c1 3102 /* Not a root var. */
73a93a32
JI
3103 return NULL;
3104
4f8d22e3 3105 back_to = make_cleanup_restore_current_thread ();
72330bd6 3106
581e13c1 3107 /* Determine whether the variable is still around. */
a5defcdc 3108 if (var->root->valid_block == NULL || var->root->floating)
8b93c638 3109 within_scope = 1;
c5b48eac
VP
3110 else if (var->root->thread_id == 0)
3111 {
3112 /* The program was single-threaded when the variable object was
3113 created. Technically, it's possible that the program became
3114 multi-threaded since then, but we don't support such
3115 scenario yet. */
3116 within_scope = check_scope (var);
3117 }
8b93c638
JM
3118 else
3119 {
c5b48eac
VP
3120 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
3121 if (in_thread_list (ptid))
d2353924 3122 {
c5b48eac
VP
3123 switch_to_thread (ptid);
3124 within_scope = check_scope (var);
3125 }
8b93c638 3126 }
72330bd6 3127
8b93c638
JM
3128 if (within_scope)
3129 {
73a93a32 3130 /* We need to catch errors here, because if evaluate
85d93f1d
VP
3131 expression fails we want to just return NULL. */
3132 gdb_evaluate_expression (var->root->exp, &new_val);
8b93c638
JM
3133 return new_val;
3134 }
3135
6208b47d
VP
3136 do_cleanups (back_to);
3137
8b93c638
JM
3138 return NULL;
3139}
3140
30b28db1 3141static struct value *
fba45db2 3142c_value_of_child (struct varobj *parent, int index)
8b93c638 3143{
bbec2603 3144 struct value *value = NULL;
8b93c638 3145
a109c7c1 3146 c_describe_child (parent, index, NULL, &value, NULL, NULL);
8b93c638
JM
3147 return value;
3148}
3149
3150static struct type *
fba45db2 3151c_type_of_child (struct varobj *parent, int index)
8b93c638 3152{
bbec2603 3153 struct type *type = NULL;
a109c7c1 3154
02142340 3155 c_describe_child (parent, index, NULL, NULL, &type, NULL);
8b93c638
JM
3156 return type;
3157}
3158
8b93c638 3159static char *
de051565 3160c_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 3161{
14b3d9c9
JB
3162 /* BOGUS: if val_print sees a struct/class, or a reference to one,
3163 it will print out its children instead of "{...}". So we need to
3164 catch that case explicitly. */
3165 struct type *type = get_type (var);
e64d9b3d 3166
b6313243
TT
3167 /* If we have a custom formatter, return whatever string it has
3168 produced. */
3169 if (var->pretty_printer && var->print_value)
3170 return xstrdup (var->print_value);
3171
581e13c1 3172 /* Strip top-level references. */
14b3d9c9
JB
3173 while (TYPE_CODE (type) == TYPE_CODE_REF)
3174 type = check_typedef (TYPE_TARGET_TYPE (type));
3175
3176 switch (TYPE_CODE (type))
8b93c638
JM
3177 {
3178 case TYPE_CODE_STRUCT:
3179 case TYPE_CODE_UNION:
3180 return xstrdup ("{...}");
3181 /* break; */
3182
3183 case TYPE_CODE_ARRAY:
3184 {
e64d9b3d 3185 char *number;
a109c7c1 3186
b435e160 3187 number = xstrprintf ("[%d]", var->num_children);
e64d9b3d 3188 return (number);
8b93c638
JM
3189 }
3190 /* break; */
3191
3192 default:
3193 {
575bbeb6
KS
3194 if (var->value == NULL)
3195 {
3196 /* This can happen if we attempt to get the value of a struct
581e13c1
MS
3197 member when the parent is an invalid pointer. This is an
3198 error condition, so we should tell the caller. */
575bbeb6
KS
3199 return NULL;
3200 }
3201 else
3202 {
25d5ea92
VP
3203 if (var->not_fetched && value_lazy (var->value))
3204 /* Frozen variable and no value yet. We don't
3205 implicitly fetch the value. MI response will
3206 use empty string for the value, which is OK. */
3207 return NULL;
3208
b2c2bd75 3209 gdb_assert (varobj_value_is_changeable_p (var));
acd65feb 3210 gdb_assert (!value_lazy (var->value));
de051565
MK
3211
3212 /* If the specified format is the current one,
581e13c1 3213 we can reuse print_value. */
de051565
MK
3214 if (format == var->format)
3215 return xstrdup (var->print_value);
3216 else
d452c4bc 3217 return value_get_print_value (var->value, format, var);
85265413 3218 }
e64d9b3d 3219 }
8b93c638
JM
3220 }
3221}
3222\f
3223
3224/* C++ */
3225
3226static int
fba45db2 3227cplus_number_of_children (struct varobj *var)
8b93c638
JM
3228{
3229 struct type *type;
3230 int children, dont_know;
3231
3232 dont_know = 1;
3233 children = 0;
3234
3235 if (!CPLUS_FAKE_CHILD (var))
3236 {
2024f65a 3237 type = get_value_type (var);
02142340 3238 adjust_value_for_child_access (NULL, &type, NULL);
8b93c638
JM
3239
3240 if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) ||
72330bd6 3241 ((TYPE_CODE (type)) == TYPE_CODE_UNION))
8b93c638
JM
3242 {
3243 int kids[3];
3244
3245 cplus_class_num_children (type, kids);
3246 if (kids[v_public] != 0)
3247 children++;
3248 if (kids[v_private] != 0)
3249 children++;
3250 if (kids[v_protected] != 0)
3251 children++;
3252
581e13c1 3253 /* Add any baseclasses. */
8b93c638
JM
3254 children += TYPE_N_BASECLASSES (type);
3255 dont_know = 0;
3256
581e13c1 3257 /* FIXME: save children in var. */
8b93c638
JM
3258 }
3259 }
3260 else
3261 {
3262 int kids[3];
3263
2024f65a 3264 type = get_value_type (var->parent);
02142340 3265 adjust_value_for_child_access (NULL, &type, NULL);
8b93c638
JM
3266
3267 cplus_class_num_children (type, kids);
6e382aa3 3268 if (strcmp (var->name, "public") == 0)
8b93c638 3269 children = kids[v_public];
6e382aa3 3270 else if (strcmp (var->name, "private") == 0)
8b93c638
JM
3271 children = kids[v_private];
3272 else
3273 children = kids[v_protected];
3274 dont_know = 0;
3275 }
3276
3277 if (dont_know)
3278 children = c_number_of_children (var);
3279
3280 return children;
3281}
3282
3283/* Compute # of public, private, and protected variables in this class.
3284 That means we need to descend into all baseclasses and find out
581e13c1 3285 how many are there, too. */
8b93c638 3286static void
1669605f 3287cplus_class_num_children (struct type *type, int children[3])
8b93c638 3288{
d48cc9dd
DJ
3289 int i, vptr_fieldno;
3290 struct type *basetype = NULL;
8b93c638
JM
3291
3292 children[v_public] = 0;
3293 children[v_private] = 0;
3294 children[v_protected] = 0;
3295
d48cc9dd 3296 vptr_fieldno = get_vptr_fieldno (type, &basetype);
8b93c638
JM
3297 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++)
3298 {
d48cc9dd
DJ
3299 /* If we have a virtual table pointer, omit it. Even if virtual
3300 table pointers are not specifically marked in the debug info,
3301 they should be artificial. */
3302 if ((type == basetype && i == vptr_fieldno)
3303 || TYPE_FIELD_ARTIFICIAL (type, i))
8b93c638
JM
3304 continue;
3305
3306 if (TYPE_FIELD_PROTECTED (type, i))
3307 children[v_protected]++;
3308 else if (TYPE_FIELD_PRIVATE (type, i))
3309 children[v_private]++;
3310 else
3311 children[v_public]++;
3312 }
3313}
3314
3315static char *
fba45db2 3316cplus_name_of_variable (struct varobj *parent)
8b93c638
JM
3317{
3318 return c_name_of_variable (parent);
3319}
3320
2024f65a
VP
3321enum accessibility { private_field, protected_field, public_field };
3322
3323/* Check if field INDEX of TYPE has the specified accessibility.
3324 Return 0 if so and 1 otherwise. */
3325static int
3326match_accessibility (struct type *type, int index, enum accessibility acc)
8b93c638 3327{
2024f65a
VP
3328 if (acc == private_field && TYPE_FIELD_PRIVATE (type, index))
3329 return 1;
3330 else if (acc == protected_field && TYPE_FIELD_PROTECTED (type, index))
3331 return 1;
3332 else if (acc == public_field && !TYPE_FIELD_PRIVATE (type, index)
3333 && !TYPE_FIELD_PROTECTED (type, index))
3334 return 1;
3335 else
3336 return 0;
3337}
3338
3339static void
3340cplus_describe_child (struct varobj *parent, int index,
02142340
VP
3341 char **cname, struct value **cvalue, struct type **ctype,
3342 char **cfull_expression)
2024f65a 3343{
2024f65a 3344 struct value *value;
8b93c638 3345 struct type *type;
02142340
VP
3346 int was_ptr;
3347 char *parent_expression = NULL;
8b93c638 3348
2024f65a
VP
3349 if (cname)
3350 *cname = NULL;
3351 if (cvalue)
3352 *cvalue = NULL;
3353 if (ctype)
3354 *ctype = NULL;
02142340
VP
3355 if (cfull_expression)
3356 *cfull_expression = NULL;
2024f65a 3357
8b93c638
JM
3358 if (CPLUS_FAKE_CHILD (parent))
3359 {
2024f65a
VP
3360 value = parent->parent->value;
3361 type = get_value_type (parent->parent);
02142340
VP
3362 if (cfull_expression)
3363 parent_expression = varobj_get_path_expr (parent->parent);
8b93c638
JM
3364 }
3365 else
2024f65a
VP
3366 {
3367 value = parent->value;
3368 type = get_value_type (parent);
02142340
VP
3369 if (cfull_expression)
3370 parent_expression = varobj_get_path_expr (parent);
2024f65a 3371 }
8b93c638 3372
02142340 3373 adjust_value_for_child_access (&value, &type, &was_ptr);
2024f65a
VP
3374
3375 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3f4178d6 3376 || TYPE_CODE (type) == TYPE_CODE_UNION)
8b93c638 3377 {
02142340 3378 char *join = was_ptr ? "->" : ".";
a109c7c1 3379
8b93c638
JM
3380 if (CPLUS_FAKE_CHILD (parent))
3381 {
6e382aa3
JJ
3382 /* The fields of the class type are ordered as they
3383 appear in the class. We are given an index for a
3384 particular access control type ("public","protected",
3385 or "private"). We must skip over fields that don't
3386 have the access control we are looking for to properly
581e13c1 3387 find the indexed field. */
6e382aa3 3388 int type_index = TYPE_N_BASECLASSES (type);
2024f65a 3389 enum accessibility acc = public_field;
d48cc9dd
DJ
3390 int vptr_fieldno;
3391 struct type *basetype = NULL;
3392
3393 vptr_fieldno = get_vptr_fieldno (type, &basetype);
6e382aa3 3394 if (strcmp (parent->name, "private") == 0)
2024f65a 3395 acc = private_field;
6e382aa3 3396 else if (strcmp (parent->name, "protected") == 0)
2024f65a
VP
3397 acc = protected_field;
3398
3399 while (index >= 0)
6e382aa3 3400 {
d48cc9dd
DJ
3401 if ((type == basetype && type_index == vptr_fieldno)
3402 || TYPE_FIELD_ARTIFICIAL (type, type_index))
2024f65a
VP
3403 ; /* ignore vptr */
3404 else if (match_accessibility (type, type_index, acc))
6e382aa3
JJ
3405 --index;
3406 ++type_index;
6e382aa3 3407 }
2024f65a
VP
3408 --type_index;
3409
3410 if (cname)
3411 *cname = xstrdup (TYPE_FIELD_NAME (type, type_index));
3412
3413 if (cvalue && value)
3414 *cvalue = value_struct_element_index (value, type_index);
3415
3416 if (ctype)
3417 *ctype = TYPE_FIELD_TYPE (type, type_index);
02142340
VP
3418
3419 if (cfull_expression)
3e43a32a
MS
3420 *cfull_expression
3421 = xstrprintf ("((%s)%s%s)", parent_expression,
3422 join,
3423 TYPE_FIELD_NAME (type, type_index));
2024f65a
VP
3424 }
3425 else if (index < TYPE_N_BASECLASSES (type))
3426 {
3427 /* This is a baseclass. */
3428 if (cname)
3429 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
3430
3431 if (cvalue && value)
0cc7d26f 3432 *cvalue = value_cast (TYPE_FIELD_TYPE (type, index), value);
6e382aa3 3433
2024f65a
VP
3434 if (ctype)
3435 {
3436 *ctype = TYPE_FIELD_TYPE (type, index);
3437 }
02142340
VP
3438
3439 if (cfull_expression)
3440 {
3441 char *ptr = was_ptr ? "*" : "";
a109c7c1 3442
581e13c1 3443 /* Cast the parent to the base' type. Note that in gdb,
02142340
VP
3444 expression like
3445 (Base1)d
3446 will create an lvalue, for all appearences, so we don't
3447 need to use more fancy:
3448 *(Base1*)(&d)
0d932b2f
MK
3449 construct.
3450
3451 When we are in the scope of the base class or of one
3452 of its children, the type field name will be interpreted
3453 as a constructor, if it exists. Therefore, we must
3454 indicate that the name is a class name by using the
3455 'class' keyword. See PR mi/11912 */
3456 *cfull_expression = xstrprintf ("(%s(class %s%s) %s)",
02142340
VP
3457 ptr,
3458 TYPE_FIELD_NAME (type, index),
3459 ptr,
3460 parent_expression);
3461 }
8b93c638 3462 }
8b93c638
JM
3463 else
3464 {
348144ba 3465 char *access = NULL;
6e382aa3 3466 int children[3];
a109c7c1 3467
2024f65a 3468 cplus_class_num_children (type, children);
6e382aa3 3469
8b93c638 3470 /* Everything beyond the baseclasses can
6e382aa3
JJ
3471 only be "public", "private", or "protected"
3472
3473 The special "fake" children are always output by varobj in
581e13c1 3474 this order. So if INDEX == 2, it MUST be "protected". */
8b93c638
JM
3475 index -= TYPE_N_BASECLASSES (type);
3476 switch (index)
3477 {
3478 case 0:
6e382aa3 3479 if (children[v_public] > 0)
2024f65a 3480 access = "public";
6e382aa3 3481 else if (children[v_private] > 0)
2024f65a 3482 access = "private";
6e382aa3 3483 else
2024f65a 3484 access = "protected";
6e382aa3 3485 break;
8b93c638 3486 case 1:
6e382aa3 3487 if (children[v_public] > 0)
8b93c638 3488 {
6e382aa3 3489 if (children[v_private] > 0)
2024f65a 3490 access = "private";
6e382aa3 3491 else
2024f65a 3492 access = "protected";
8b93c638 3493 }
6e382aa3 3494 else if (children[v_private] > 0)
2024f65a 3495 access = "protected";
6e382aa3 3496 break;
8b93c638 3497 case 2:
581e13c1 3498 /* Must be protected. */
2024f65a 3499 access = "protected";
6e382aa3 3500 break;
8b93c638 3501 default:
581e13c1 3502 /* error! */
8b93c638
JM
3503 break;
3504 }
348144ba
MS
3505
3506 gdb_assert (access);
2024f65a
VP
3507 if (cname)
3508 *cname = xstrdup (access);
8b93c638 3509
02142340 3510 /* Value and type and full expression are null here. */
2024f65a 3511 }
8b93c638 3512 }
8b93c638
JM
3513 else
3514 {
02142340 3515 c_describe_child (parent, index, cname, cvalue, ctype, cfull_expression);
2024f65a
VP
3516 }
3517}
8b93c638 3518
2024f65a
VP
3519static char *
3520cplus_name_of_child (struct varobj *parent, int index)
3521{
3522 char *name = NULL;
a109c7c1 3523
02142340 3524 cplus_describe_child (parent, index, &name, NULL, NULL, NULL);
8b93c638
JM
3525 return name;
3526}
3527
02142340
VP
3528static char *
3529cplus_path_expr_of_child (struct varobj *child)
3530{
3531 cplus_describe_child (child->parent, child->index, NULL, NULL, NULL,
3532 &child->path_expr);
3533 return child->path_expr;
3534}
3535
30b28db1 3536static struct value *
fba45db2 3537cplus_value_of_root (struct varobj **var_handle)
8b93c638 3538{
73a93a32 3539 return c_value_of_root (var_handle);
8b93c638
JM
3540}
3541
30b28db1 3542static struct value *
fba45db2 3543cplus_value_of_child (struct varobj *parent, int index)
8b93c638 3544{
2024f65a 3545 struct value *value = NULL;
a109c7c1 3546
02142340 3547 cplus_describe_child (parent, index, NULL, &value, NULL, NULL);
8b93c638
JM
3548 return value;
3549}
3550
3551static struct type *
fba45db2 3552cplus_type_of_child (struct varobj *parent, int index)
8b93c638 3553{
2024f65a 3554 struct type *type = NULL;
a109c7c1 3555
02142340 3556 cplus_describe_child (parent, index, NULL, NULL, &type, NULL);
8b93c638
JM
3557 return type;
3558}
3559
8b93c638 3560static char *
a109c7c1
MS
3561cplus_value_of_variable (struct varobj *var,
3562 enum varobj_display_formats format)
8b93c638
JM
3563{
3564
3565 /* If we have one of our special types, don't print out
581e13c1 3566 any value. */
8b93c638
JM
3567 if (CPLUS_FAKE_CHILD (var))
3568 return xstrdup ("");
3569
de051565 3570 return c_value_of_variable (var, format);
8b93c638
JM
3571}
3572\f
3573/* Java */
3574
3575static int
fba45db2 3576java_number_of_children (struct varobj *var)
8b93c638
JM
3577{
3578 return cplus_number_of_children (var);
3579}
3580
3581static char *
fba45db2 3582java_name_of_variable (struct varobj *parent)
8b93c638
JM
3583{
3584 char *p, *name;
3585
3586 name = cplus_name_of_variable (parent);
3587 /* If the name has "-" in it, it is because we
581e13c1 3588 needed to escape periods in the name... */
8b93c638
JM
3589 p = name;
3590
3591 while (*p != '\000')
3592 {
3593 if (*p == '-')
3594 *p = '.';
3595 p++;
3596 }
3597
3598 return name;
3599}
3600
3601static char *
fba45db2 3602java_name_of_child (struct varobj *parent, int index)
8b93c638
JM
3603{
3604 char *name, *p;
3605
3606 name = cplus_name_of_child (parent, index);
581e13c1 3607 /* Escape any periods in the name... */
8b93c638
JM
3608 p = name;
3609
3610 while (*p != '\000')
3611 {
3612 if (*p == '.')
3613 *p = '-';
3614 p++;
3615 }
3616
3617 return name;
3618}
3619
02142340
VP
3620static char *
3621java_path_expr_of_child (struct varobj *child)
3622{
3623 return NULL;
3624}
3625
30b28db1 3626static struct value *
fba45db2 3627java_value_of_root (struct varobj **var_handle)
8b93c638 3628{
73a93a32 3629 return cplus_value_of_root (var_handle);
8b93c638
JM
3630}
3631
30b28db1 3632static struct value *
fba45db2 3633java_value_of_child (struct varobj *parent, int index)
8b93c638
JM
3634{
3635 return cplus_value_of_child (parent, index);
3636}
3637
3638static struct type *
fba45db2 3639java_type_of_child (struct varobj *parent, int index)
8b93c638
JM
3640{
3641 return cplus_type_of_child (parent, index);
3642}
3643
8b93c638 3644static char *
de051565 3645java_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 3646{
de051565 3647 return cplus_value_of_variable (var, format);
8b93c638 3648}
54333c3b 3649
40591b7d
JCD
3650/* Ada specific callbacks for VAROBJs. */
3651
3652static int
3653ada_number_of_children (struct varobj *var)
3654{
3655 return c_number_of_children (var);
3656}
3657
3658static char *
3659ada_name_of_variable (struct varobj *parent)
3660{
3661 return c_name_of_variable (parent);
3662}
3663
3664static char *
3665ada_name_of_child (struct varobj *parent, int index)
3666{
3667 return c_name_of_child (parent, index);
3668}
3669
3670static char*
3671ada_path_expr_of_child (struct varobj *child)
3672{
3673 return c_path_expr_of_child (child);
3674}
3675
3676static struct value *
3677ada_value_of_root (struct varobj **var_handle)
3678{
3679 return c_value_of_root (var_handle);
3680}
3681
3682static struct value *
3683ada_value_of_child (struct varobj *parent, int index)
3684{
3685 return c_value_of_child (parent, index);
3686}
3687
3688static struct type *
3689ada_type_of_child (struct varobj *parent, int index)
3690{
3691 return c_type_of_child (parent, index);
3692}
3693
3694static char *
3695ada_value_of_variable (struct varobj *var, enum varobj_display_formats format)
3696{
3697 return c_value_of_variable (var, format);
3698}
3699
54333c3b
JK
3700/* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
3701 with an arbitrary caller supplied DATA pointer. */
3702
3703void
3704all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
3705{
3706 struct varobj_root *var_root, *var_root_next;
3707
3708 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
3709
3710 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
3711 {
3712 var_root_next = var_root->next;
3713
3714 (*func) (var_root->rootvar, data);
3715 }
3716}
8b93c638
JM
3717\f
3718extern void _initialize_varobj (void);
3719void
3720_initialize_varobj (void)
3721{
3722 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
3723
3724 varobj_table = xmalloc (sizeof_table);
3725 memset (varobj_table, 0, sizeof_table);
3726
85c07804 3727 add_setshow_zinteger_cmd ("debugvarobj", class_maintenance,
3e43a32a
MS
3728 &varobjdebug,
3729 _("Set varobj debugging."),
3730 _("Show varobj debugging."),
3731 _("When non-zero, varobj debugging is enabled."),
3732 NULL, show_varobjdebug,
85c07804 3733 &setlist, &showlist);
8b93c638 3734}
8756216b 3735
54333c3b
JK
3736/* Invalidate varobj VAR if it is tied to locals and re-create it if it is
3737 defined on globals. It is a helper for varobj_invalidate. */
2dbd25e5 3738
54333c3b
JK
3739static void
3740varobj_invalidate_iter (struct varobj *var, void *unused)
8756216b 3741{
54333c3b
JK
3742 /* Floating varobjs are reparsed on each stop, so we don't care if the
3743 presently parsed expression refers to something that's gone. */
3744 if (var->root->floating)
3745 return;
8756216b 3746
54333c3b
JK
3747 /* global var must be re-evaluated. */
3748 if (var->root->valid_block == NULL)
2dbd25e5 3749 {
54333c3b 3750 struct varobj *tmp_var;
2dbd25e5 3751
54333c3b
JK
3752 /* Try to create a varobj with same expression. If we succeed
3753 replace the old varobj, otherwise invalidate it. */
3754 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
3755 USE_CURRENT_FRAME);
3756 if (tmp_var != NULL)
3757 {
3758 tmp_var->obj_name = xstrdup (var->obj_name);
3759 varobj_delete (var, NULL, 0);
3760 install_variable (tmp_var);
2dbd25e5 3761 }
54333c3b
JK
3762 else
3763 var->root->is_valid = 0;
2dbd25e5 3764 }
54333c3b
JK
3765 else /* locals must be invalidated. */
3766 var->root->is_valid = 0;
3767}
3768
3769/* Invalidate the varobjs that are tied to locals and re-create the ones that
3770 are defined on globals.
3771 Invalidated varobjs will be always printed in_scope="invalid". */
3772
3773void
3774varobj_invalidate (void)
3775{
3776 all_root_varobjs (varobj_invalidate_iter, NULL);
8756216b 3777}