]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/varobj.c
constify struct block in some places
[thirdparty/binutils-gdb.git] / gdb / varobj.c
CommitLineData
8b93c638 1/* Implementation of the GDB variable objects API.
bc8332bb 2
ecd75fc8 3 Copyright (C) 1999-2014 Free Software Foundation, Inc.
8b93c638
JM
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
a9762ec7 7 the Free Software Foundation; either version 3 of the License, or
8b93c638
JM
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
a9762ec7 16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
8b93c638
JM
17
18#include "defs.h"
a6c442d8 19#include "exceptions.h"
8b93c638
JM
20#include "value.h"
21#include "expression.h"
22#include "frame.h"
8b93c638 23#include "language.h"
8b93c638 24#include "gdbcmd.h"
d2353924 25#include "block.h"
79a45b7d 26#include "valprint.h"
a6c442d8
MK
27
28#include "gdb_assert.h"
0e9f083f 29#include <string.h>
0cc7d26f 30#include "gdb_regex.h"
8b93c638
JM
31
32#include "varobj.h"
28335dcc 33#include "vec.h"
6208b47d
VP
34#include "gdbthread.h"
35#include "inferior.h"
827f100c 36#include "varobj-iter.h"
8b93c638 37
b6313243
TT
38#if HAVE_PYTHON
39#include "python/python.h"
40#include "python/python-internal.h"
50389644
PA
41#else
42typedef int PyObject;
b6313243
TT
43#endif
44
8b93c638
JM
45/* Non-zero if we want to see trace of varobj level stuff. */
46
ccce17b0 47unsigned int varobjdebug = 0;
920d2a44
AC
48static void
49show_varobjdebug (struct ui_file *file, int from_tty,
50 struct cmd_list_element *c, const char *value)
51{
52 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
53}
8b93c638 54
581e13c1 55/* String representations of gdb's format codes. */
8b93c638 56char *varobj_format_string[] =
72330bd6 57 { "natural", "binary", "decimal", "hexadecimal", "octal" };
8b93c638 58
0cc7d26f
TT
59/* True if we want to allow Python-based pretty-printing. */
60static int pretty_printing = 0;
61
62void
63varobj_enable_pretty_printing (void)
64{
65 pretty_printing = 1;
66}
67
8b93c638
JM
68/* Data structures */
69
70/* Every root variable has one of these structures saved in its
581e13c1 71 varobj. Members which must be free'd are noted. */
8b93c638 72struct varobj_root
72330bd6 73{
8b93c638 74
581e13c1 75 /* Alloc'd expression for this parent. */
72330bd6 76 struct expression *exp;
8b93c638 77
581e13c1 78 /* Block for which this expression is valid. */
270140bd 79 const struct block *valid_block;
8b93c638 80
44a67aa7
VP
81 /* The frame for this expression. This field is set iff valid_block is
82 not NULL. */
e64d9b3d 83 struct frame_id frame;
8b93c638 84
c5b48eac 85 /* The thread ID that this varobj_root belong to. This field
581e13c1 86 is only valid if valid_block is not NULL.
c5b48eac
VP
87 When not 0, indicates which thread 'frame' belongs to.
88 When 0, indicates that the thread list was empty when the varobj_root
89 was created. */
90 int thread_id;
91
a5defcdc
VP
92 /* If 1, the -var-update always recomputes the value in the
93 current thread and frame. Otherwise, variable object is
581e13c1 94 always updated in the specific scope/thread/frame. */
a5defcdc 95 int floating;
73a93a32 96
8756216b
DP
97 /* Flag that indicates validity: set to 0 when this varobj_root refers
98 to symbols that do not exist anymore. */
99 int is_valid;
100
99ad9427
YQ
101 /* Language-related operations for this variable and its
102 children. */
ca20d462 103 const struct lang_varobj_ops *lang_ops;
8b93c638 104
581e13c1 105 /* The varobj for this root node. */
72330bd6 106 struct varobj *rootvar;
8b93c638 107
72330bd6
AC
108 /* Next root variable */
109 struct varobj_root *next;
110};
8b93c638 111
bb5ce47a 112/* Dynamic part of varobj. */
8b93c638 113
bb5ce47a
YQ
114struct varobj_dynamic
115{
b6313243
TT
116 /* Whether the children of this varobj were requested. This field is
117 used to decide if dynamic varobj should recompute their children.
118 In the event that the frontend never asked for the children, we
119 can avoid that. */
120 int children_requested;
121
0cc7d26f
TT
122 /* The pretty-printer constructor. If NULL, then the default
123 pretty-printer will be looked up. If None, then no
124 pretty-printer will be installed. */
125 PyObject *constructor;
126
b6313243
TT
127 /* The pretty-printer that has been constructed. If NULL, then a
128 new printer object is needed, and one will be constructed. */
129 PyObject *pretty_printer;
0cc7d26f
TT
130
131 /* The iterator returned by the printer's 'children' method, or NULL
132 if not available. */
e5250216 133 struct varobj_iter *child_iter;
0cc7d26f
TT
134
135 /* We request one extra item from the iterator, so that we can
136 report to the caller whether there are more items than we have
137 already reported. However, we don't want to install this value
138 when we read it, because that will mess up future updates. So,
139 we stash it here instead. */
e5250216 140 varobj_item *saved_item;
72330bd6 141};
8b93c638 142
8b93c638 143struct cpstack
72330bd6
AC
144{
145 char *name;
146 struct cpstack *next;
147};
8b93c638
JM
148
149/* A list of varobjs */
150
151struct vlist
72330bd6
AC
152{
153 struct varobj *var;
154 struct vlist *next;
155};
8b93c638
JM
156
157/* Private function prototypes */
158
581e13c1 159/* Helper functions for the above subcommands. */
8b93c638 160
a14ed312 161static int delete_variable (struct cpstack **, struct varobj *, int);
8b93c638 162
a14ed312
KB
163static void delete_variable_1 (struct cpstack **, int *,
164 struct varobj *, int, int);
8b93c638 165
a14ed312 166static int install_variable (struct varobj *);
8b93c638 167
a14ed312 168static void uninstall_variable (struct varobj *);
8b93c638 169
a14ed312 170static struct varobj *create_child (struct varobj *, int, char *);
8b93c638 171
b6313243 172static struct varobj *
5a2e0d6e
YQ
173create_child_with_value (struct varobj *parent, int index,
174 struct varobj_item *item);
b6313243 175
8b93c638
JM
176/* Utility routines */
177
a14ed312 178static struct varobj *new_variable (void);
8b93c638 179
a14ed312 180static struct varobj *new_root_variable (void);
8b93c638 181
a14ed312 182static void free_variable (struct varobj *var);
8b93c638 183
74b7792f
AC
184static struct cleanup *make_cleanup_free_variable (struct varobj *var);
185
a14ed312 186static enum varobj_display_formats variable_default_display (struct varobj *);
8b93c638 187
a14ed312 188static void cppush (struct cpstack **pstack, char *name);
8b93c638 189
a14ed312 190static char *cppop (struct cpstack **pstack);
8b93c638 191
8264ba82
AG
192static int update_type_if_necessary (struct varobj *var,
193 struct value *new_value);
194
acd65feb
VP
195static int install_new_value (struct varobj *var, struct value *value,
196 int initial);
197
581e13c1 198/* Language-specific routines. */
8b93c638 199
a14ed312 200static int number_of_children (struct varobj *);
8b93c638 201
a14ed312 202static char *name_of_variable (struct varobj *);
8b93c638 203
a14ed312 204static char *name_of_child (struct varobj *, int);
8b93c638 205
30b28db1 206static struct value *value_of_root (struct varobj **var_handle, int *);
8b93c638 207
30b28db1 208static struct value *value_of_child (struct varobj *parent, int index);
8b93c638 209
de051565
MK
210static char *my_value_of_variable (struct varobj *var,
211 enum varobj_display_formats format);
8b93c638 212
b2c2bd75 213static int is_root_p (struct varobj *var);
8b93c638 214
9a1edae6 215static struct varobj *varobj_add_child (struct varobj *var,
5a2e0d6e 216 struct varobj_item *item);
b6313243 217
8b93c638
JM
218/* Private data */
219
581e13c1 220/* Mappings of varobj_display_formats enums to gdb's format codes. */
72330bd6 221static int format_code[] = { 0, 't', 'd', 'x', 'o' };
8b93c638 222
581e13c1 223/* Header of the list of root variable objects. */
8b93c638 224static struct varobj_root *rootlist;
8b93c638 225
581e13c1
MS
226/* Prime number indicating the number of buckets in the hash table. */
227/* A prime large enough to avoid too many colisions. */
8b93c638
JM
228#define VAROBJ_TABLE_SIZE 227
229
581e13c1 230/* Pointer to the varobj hash table (built at run time). */
8b93c638
JM
231static struct vlist **varobj_table;
232
8b93c638
JM
233\f
234
235/* API Implementation */
b2c2bd75
VP
236static int
237is_root_p (struct varobj *var)
238{
239 return (var->root->rootvar == var);
240}
8b93c638 241
d452c4bc
UW
242#ifdef HAVE_PYTHON
243/* Helper function to install a Python environment suitable for
244 use during operations on VAR. */
e5250216 245struct cleanup *
d452c4bc
UW
246varobj_ensure_python_env (struct varobj *var)
247{
248 return ensure_python_env (var->root->exp->gdbarch,
249 var->root->exp->language_defn);
250}
251#endif
252
581e13c1 253/* Creates a varobj (not its children). */
8b93c638 254
7d8547c9
AC
255/* Return the full FRAME which corresponds to the given CORE_ADDR
256 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
257
258static struct frame_info *
259find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
260{
261 struct frame_info *frame = NULL;
262
263 if (frame_addr == (CORE_ADDR) 0)
264 return NULL;
265
9d49bdc2
PA
266 for (frame = get_current_frame ();
267 frame != NULL;
268 frame = get_prev_frame (frame))
7d8547c9 269 {
1fac167a
UW
270 /* The CORE_ADDR we get as argument was parsed from a string GDB
271 output as $fp. This output got truncated to gdbarch_addr_bit.
272 Truncate the frame base address in the same manner before
273 comparing it against our argument. */
274 CORE_ADDR frame_base = get_frame_base_address (frame);
275 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
a109c7c1 276
1fac167a
UW
277 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
278 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
279
280 if (frame_base == frame_addr)
7d8547c9
AC
281 return frame;
282 }
9d49bdc2
PA
283
284 return NULL;
7d8547c9
AC
285}
286
8b93c638
JM
287struct varobj *
288varobj_create (char *objname,
72330bd6 289 char *expression, CORE_ADDR frame, enum varobj_type type)
8b93c638
JM
290{
291 struct varobj *var;
8b93c638
JM
292 struct cleanup *old_chain;
293
581e13c1 294 /* Fill out a varobj structure for the (root) variable being constructed. */
8b93c638 295 var = new_root_variable ();
74b7792f 296 old_chain = make_cleanup_free_variable (var);
8b93c638
JM
297
298 if (expression != NULL)
299 {
e4195b40 300 struct frame_info *fi;
35633fef 301 struct frame_id old_id = null_frame_id;
3977b71f 302 const struct block *block;
bbc13ae3 303 const char *p;
e55dccf0 304 struct value *value = NULL;
8e7b59a5 305 volatile struct gdb_exception except;
1bb9788d 306 CORE_ADDR pc;
8b93c638 307
9d49bdc2
PA
308 /* Parse and evaluate the expression, filling in as much of the
309 variable's data as possible. */
310
311 if (has_stack_frames ())
312 {
581e13c1 313 /* Allow creator to specify context of variable. */
9d49bdc2
PA
314 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
315 fi = get_selected_frame (NULL);
316 else
317 /* FIXME: cagney/2002-11-23: This code should be doing a
318 lookup using the frame ID and not just the frame's
319 ``address''. This, of course, means an interface
320 change. However, with out that interface change ISAs,
321 such as the ia64 with its two stacks, won't work.
322 Similar goes for the case where there is a frameless
323 function. */
324 fi = find_frame_addr_in_frame_chain (frame);
325 }
8b93c638 326 else
9d49bdc2 327 fi = NULL;
8b93c638 328
581e13c1 329 /* frame = -2 means always use selected frame. */
73a93a32 330 if (type == USE_SELECTED_FRAME)
a5defcdc 331 var->root->floating = 1;
73a93a32 332
1bb9788d 333 pc = 0;
8b93c638
JM
334 block = NULL;
335 if (fi != NULL)
1bb9788d
TT
336 {
337 block = get_frame_block (fi, 0);
338 pc = get_frame_pc (fi);
339 }
8b93c638
JM
340
341 p = expression;
342 innermost_block = NULL;
73a93a32 343 /* Wrap the call to parse expression, so we can
581e13c1 344 return a sensible error. */
8e7b59a5
KS
345 TRY_CATCH (except, RETURN_MASK_ERROR)
346 {
1bb9788d 347 var->root->exp = parse_exp_1 (&p, pc, block, 0);
8e7b59a5
KS
348 }
349
350 if (except.reason < 0)
73a93a32 351 {
f748fb40 352 do_cleanups (old_chain);
73a93a32
JI
353 return NULL;
354 }
8b93c638 355
581e13c1 356 /* Don't allow variables to be created for types. */
608b4967
TT
357 if (var->root->exp->elts[0].opcode == OP_TYPE
358 || var->root->exp->elts[0].opcode == OP_TYPEOF
359 || var->root->exp->elts[0].opcode == OP_DECLTYPE)
8b93c638
JM
360 {
361 do_cleanups (old_chain);
bc8332bb
AC
362 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
363 " as an expression.\n");
8b93c638
JM
364 return NULL;
365 }
366
367 var->format = variable_default_display (var);
368 var->root->valid_block = innermost_block;
1b36a34b 369 var->name = xstrdup (expression);
02142340 370 /* For a root var, the name and the expr are the same. */
1b36a34b 371 var->path_expr = xstrdup (expression);
8b93c638
JM
372
373 /* When the frame is different from the current frame,
374 we must select the appropriate frame before parsing
375 the expression, otherwise the value will not be current.
581e13c1 376 Since select_frame is so benign, just call it for all cases. */
4e22772d 377 if (innermost_block)
8b93c638 378 {
4e22772d
JK
379 /* User could specify explicit FRAME-ADDR which was not found but
380 EXPRESSION is frame specific and we would not be able to evaluate
381 it correctly next time. With VALID_BLOCK set we must also set
382 FRAME and THREAD_ID. */
383 if (fi == NULL)
384 error (_("Failed to find the specified frame"));
385
7a424e99 386 var->root->frame = get_frame_id (fi);
c5b48eac 387 var->root->thread_id = pid_to_thread_id (inferior_ptid);
35633fef 388 old_id = get_frame_id (get_selected_frame (NULL));
c5b48eac 389 select_frame (fi);
8b93c638
JM
390 }
391
340a7723 392 /* We definitely need to catch errors here.
8b93c638 393 If evaluate_expression succeeds we got the value we wanted.
581e13c1 394 But if it fails, we still go on with a call to evaluate_type(). */
8e7b59a5
KS
395 TRY_CATCH (except, RETURN_MASK_ERROR)
396 {
397 value = evaluate_expression (var->root->exp);
398 }
399
400 if (except.reason < 0)
e55dccf0
VP
401 {
402 /* Error getting the value. Try to at least get the
403 right type. */
404 struct value *type_only_value = evaluate_type (var->root->exp);
a109c7c1 405
e55dccf0
VP
406 var->type = value_type (type_only_value);
407 }
8264ba82
AG
408 else
409 {
410 int real_type_found = 0;
411
412 var->type = value_actual_type (value, 0, &real_type_found);
413 if (real_type_found)
414 value = value_cast (var->type, value);
415 }
acd65feb 416
8b93c638 417 /* Set language info */
ca20d462 418 var->root->lang_ops = var->root->exp->language_defn->la_varobj_ops;
8b93c638 419
d32cafc7
JB
420 install_new_value (var, value, 1 /* Initial assignment */);
421
581e13c1 422 /* Set ourselves as our root. */
8b93c638
JM
423 var->root->rootvar = var;
424
581e13c1 425 /* Reset the selected frame. */
35633fef
JK
426 if (frame_id_p (old_id))
427 select_frame (frame_find_by_id (old_id));
8b93c638
JM
428 }
429
73a93a32 430 /* If the variable object name is null, that means this
581e13c1 431 is a temporary variable, so don't install it. */
73a93a32
JI
432
433 if ((var != NULL) && (objname != NULL))
8b93c638 434 {
1b36a34b 435 var->obj_name = xstrdup (objname);
8b93c638
JM
436
437 /* If a varobj name is duplicated, the install will fail so
581e13c1 438 we must cleanup. */
8b93c638
JM
439 if (!install_variable (var))
440 {
441 do_cleanups (old_chain);
442 return NULL;
443 }
444 }
445
446 discard_cleanups (old_chain);
447 return var;
448}
449
581e13c1 450/* Generates an unique name that can be used for a varobj. */
8b93c638
JM
451
452char *
453varobj_gen_name (void)
454{
455 static int id = 0;
e64d9b3d 456 char *obj_name;
8b93c638 457
581e13c1 458 /* Generate a name for this object. */
8b93c638 459 id++;
b435e160 460 obj_name = xstrprintf ("var%d", id);
8b93c638 461
e64d9b3d 462 return obj_name;
8b93c638
JM
463}
464
61d8f275
JK
465/* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
466 error if OBJNAME cannot be found. */
8b93c638
JM
467
468struct varobj *
469varobj_get_handle (char *objname)
470{
471 struct vlist *cv;
472 const char *chp;
473 unsigned int index = 0;
474 unsigned int i = 1;
475
476 for (chp = objname; *chp; chp++)
477 {
478 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
479 }
480
481 cv = *(varobj_table + index);
482 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
483 cv = cv->next;
484
485 if (cv == NULL)
8a3fe4f8 486 error (_("Variable object not found"));
8b93c638
JM
487
488 return cv->var;
489}
490
581e13c1 491/* Given the handle, return the name of the object. */
8b93c638
JM
492
493char *
494varobj_get_objname (struct varobj *var)
495{
496 return var->obj_name;
497}
498
581e13c1 499/* Given the handle, return the expression represented by the object. */
8b93c638
JM
500
501char *
502varobj_get_expression (struct varobj *var)
503{
504 return name_of_variable (var);
505}
506
507/* Deletes a varobj and all its children if only_children == 0,
3e43a32a
MS
508 otherwise deletes only the children; returns a malloc'ed list of
509 all the (malloc'ed) names of the variables that have been deleted
581e13c1 510 (NULL terminated). */
8b93c638
JM
511
512int
513varobj_delete (struct varobj *var, char ***dellist, int only_children)
514{
515 int delcount;
516 int mycount;
517 struct cpstack *result = NULL;
518 char **cp;
519
581e13c1 520 /* Initialize a stack for temporary results. */
8b93c638
JM
521 cppush (&result, NULL);
522
523 if (only_children)
581e13c1 524 /* Delete only the variable children. */
8b93c638
JM
525 delcount = delete_variable (&result, var, 1 /* only the children */ );
526 else
581e13c1 527 /* Delete the variable and all its children. */
8b93c638
JM
528 delcount = delete_variable (&result, var, 0 /* parent+children */ );
529
581e13c1 530 /* We may have been asked to return a list of what has been deleted. */
8b93c638
JM
531 if (dellist != NULL)
532 {
533 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
534
535 cp = *dellist;
536 mycount = delcount;
537 *cp = cppop (&result);
538 while ((*cp != NULL) && (mycount > 0))
539 {
540 mycount--;
541 cp++;
542 *cp = cppop (&result);
543 }
544
545 if (mycount || (*cp != NULL))
8a3fe4f8 546 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
72330bd6 547 mycount);
8b93c638
JM
548 }
549
550 return delcount;
551}
552
d8b65138
JK
553#if HAVE_PYTHON
554
b6313243
TT
555/* Convenience function for varobj_set_visualizer. Instantiate a
556 pretty-printer for a given value. */
557static PyObject *
558instantiate_pretty_printer (PyObject *constructor, struct value *value)
559{
b6313243
TT
560 PyObject *val_obj = NULL;
561 PyObject *printer;
b6313243 562
b6313243 563 val_obj = value_to_value_object (value);
b6313243
TT
564 if (! val_obj)
565 return NULL;
566
567 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
568 Py_DECREF (val_obj);
569 return printer;
b6313243
TT
570}
571
d8b65138
JK
572#endif
573
581e13c1 574/* Set/Get variable object display format. */
8b93c638
JM
575
576enum varobj_display_formats
577varobj_set_display_format (struct varobj *var,
578 enum varobj_display_formats format)
579{
580 switch (format)
581 {
582 case FORMAT_NATURAL:
583 case FORMAT_BINARY:
584 case FORMAT_DECIMAL:
585 case FORMAT_HEXADECIMAL:
586 case FORMAT_OCTAL:
587 var->format = format;
588 break;
589
590 default:
591 var->format = variable_default_display (var);
592 }
593
ae7d22a6
VP
594 if (varobj_value_is_changeable_p (var)
595 && var->value && !value_lazy (var->value))
596 {
6c761d9c 597 xfree (var->print_value);
99ad9427
YQ
598 var->print_value = varobj_value_get_print_value (var->value,
599 var->format, var);
ae7d22a6
VP
600 }
601
8b93c638
JM
602 return var->format;
603}
604
605enum varobj_display_formats
606varobj_get_display_format (struct varobj *var)
607{
608 return var->format;
609}
610
b6313243
TT
611char *
612varobj_get_display_hint (struct varobj *var)
613{
614 char *result = NULL;
615
616#if HAVE_PYTHON
0646da15
TT
617 struct cleanup *back_to;
618
619 if (!gdb_python_initialized)
620 return NULL;
621
622 back_to = varobj_ensure_python_env (var);
d452c4bc 623
bb5ce47a
YQ
624 if (var->dynamic->pretty_printer != NULL)
625 result = gdbpy_get_display_hint (var->dynamic->pretty_printer);
d452c4bc
UW
626
627 do_cleanups (back_to);
b6313243
TT
628#endif
629
630 return result;
631}
632
0cc7d26f
TT
633/* Return true if the varobj has items after TO, false otherwise. */
634
635int
636varobj_has_more (struct varobj *var, int to)
637{
638 if (VEC_length (varobj_p, var->children) > to)
639 return 1;
640 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
bb5ce47a 641 && (var->dynamic->saved_item != NULL));
0cc7d26f
TT
642}
643
c5b48eac
VP
644/* If the variable object is bound to a specific thread, that
645 is its evaluation can always be done in context of a frame
646 inside that thread, returns GDB id of the thread -- which
581e13c1 647 is always positive. Otherwise, returns -1. */
c5b48eac
VP
648int
649varobj_get_thread_id (struct varobj *var)
650{
651 if (var->root->valid_block && var->root->thread_id > 0)
652 return var->root->thread_id;
653 else
654 return -1;
655}
656
25d5ea92
VP
657void
658varobj_set_frozen (struct varobj *var, int frozen)
659{
660 /* When a variable is unfrozen, we don't fetch its value.
661 The 'not_fetched' flag remains set, so next -var-update
662 won't complain.
663
664 We don't fetch the value, because for structures the client
665 should do -var-update anyway. It would be bad to have different
666 client-size logic for structure and other types. */
667 var->frozen = frozen;
668}
669
670int
671varobj_get_frozen (struct varobj *var)
672{
673 return var->frozen;
674}
675
0cc7d26f
TT
676/* A helper function that restricts a range to what is actually
677 available in a VEC. This follows the usual rules for the meaning
678 of FROM and TO -- if either is negative, the entire range is
679 used. */
680
99ad9427
YQ
681void
682varobj_restrict_range (VEC (varobj_p) *children, int *from, int *to)
0cc7d26f
TT
683{
684 if (*from < 0 || *to < 0)
685 {
686 *from = 0;
687 *to = VEC_length (varobj_p, children);
688 }
689 else
690 {
691 if (*from > VEC_length (varobj_p, children))
692 *from = VEC_length (varobj_p, children);
693 if (*to > VEC_length (varobj_p, children))
694 *to = VEC_length (varobj_p, children);
695 if (*from > *to)
696 *from = *to;
697 }
698}
699
700/* A helper for update_dynamic_varobj_children that installs a new
701 child when needed. */
702
703static void
704install_dynamic_child (struct varobj *var,
705 VEC (varobj_p) **changed,
8264ba82 706 VEC (varobj_p) **type_changed,
0cc7d26f
TT
707 VEC (varobj_p) **new,
708 VEC (varobj_p) **unchanged,
709 int *cchanged,
710 int index,
5a2e0d6e 711 struct varobj_item *item)
0cc7d26f
TT
712{
713 if (VEC_length (varobj_p, var->children) < index + 1)
714 {
715 /* There's no child yet. */
5a2e0d6e 716 struct varobj *child = varobj_add_child (var, item);
a109c7c1 717
0cc7d26f
TT
718 if (new)
719 {
720 VEC_safe_push (varobj_p, *new, child);
721 *cchanged = 1;
722 }
723 }
bf8793bb 724 else
0cc7d26f
TT
725 {
726 varobj_p existing = VEC_index (varobj_p, var->children, index);
5a2e0d6e 727 int type_updated = update_type_if_necessary (existing, item->value);
bf8793bb 728
8264ba82
AG
729 if (type_updated)
730 {
731 if (type_changed)
732 VEC_safe_push (varobj_p, *type_changed, existing);
733 }
5a2e0d6e 734 if (install_new_value (existing, item->value, 0))
0cc7d26f 735 {
8264ba82 736 if (!type_updated && changed)
0cc7d26f
TT
737 VEC_safe_push (varobj_p, *changed, existing);
738 }
8264ba82 739 else if (!type_updated && unchanged)
0cc7d26f
TT
740 VEC_safe_push (varobj_p, *unchanged, existing);
741 }
742}
743
576ea091
YQ
744#if HAVE_PYTHON
745
0cc7d26f
TT
746static int
747dynamic_varobj_has_child_method (struct varobj *var)
748{
749 struct cleanup *back_to;
bb5ce47a 750 PyObject *printer = var->dynamic->pretty_printer;
0cc7d26f
TT
751 int result;
752
0646da15
TT
753 if (!gdb_python_initialized)
754 return 0;
755
0cc7d26f
TT
756 back_to = varobj_ensure_python_env (var);
757 result = PyObject_HasAttr (printer, gdbpy_children_cst);
758 do_cleanups (back_to);
759 return result;
760}
576ea091 761#endif
0cc7d26f 762
e5250216
YQ
763/* A factory for creating dynamic varobj's iterators. Returns an
764 iterator object suitable for iterating over VAR's children. */
765
766static struct varobj_iter *
767varobj_get_iterator (struct varobj *var)
768{
576ea091 769#if HAVE_PYTHON
e5250216
YQ
770 if (var->dynamic->pretty_printer)
771 return py_varobj_get_iterator (var, var->dynamic->pretty_printer);
576ea091 772#endif
e5250216
YQ
773
774 gdb_assert_not_reached (_("\
775requested an iterator from a non-dynamic varobj"));
776}
777
827f100c
YQ
778/* Release and clear VAR's saved item, if any. */
779
780static void
781varobj_clear_saved_item (struct varobj_dynamic *var)
782{
783 if (var->saved_item != NULL)
784 {
785 value_free (var->saved_item->value);
786 xfree (var->saved_item);
787 var->saved_item = NULL;
788 }
789}
0cc7d26f 790
b6313243
TT
791static int
792update_dynamic_varobj_children (struct varobj *var,
793 VEC (varobj_p) **changed,
8264ba82 794 VEC (varobj_p) **type_changed,
0cc7d26f
TT
795 VEC (varobj_p) **new,
796 VEC (varobj_p) **unchanged,
797 int *cchanged,
798 int update_children,
799 int from,
800 int to)
b6313243 801{
b6313243 802 int i;
b6313243 803
b6313243 804 *cchanged = 0;
b6313243 805
bb5ce47a 806 if (update_children || var->dynamic->child_iter == NULL)
b6313243 807 {
e5250216
YQ
808 varobj_iter_delete (var->dynamic->child_iter);
809 var->dynamic->child_iter = varobj_get_iterator (var);
b6313243 810
827f100c 811 varobj_clear_saved_item (var->dynamic);
b6313243 812
e5250216 813 i = 0;
b6313243 814
bb5ce47a 815 if (var->dynamic->child_iter == NULL)
827f100c 816 return 0;
b6313243 817 }
0cc7d26f
TT
818 else
819 i = VEC_length (varobj_p, var->children);
b6313243 820
0cc7d26f
TT
821 /* We ask for one extra child, so that MI can report whether there
822 are more children. */
823 for (; to < 0 || i < to + 1; ++i)
b6313243 824 {
827f100c 825 varobj_item *item;
b6313243 826
0cc7d26f 827 /* See if there was a leftover from last time. */
827f100c 828 if (var->dynamic->saved_item != NULL)
0cc7d26f 829 {
bb5ce47a
YQ
830 item = var->dynamic->saved_item;
831 var->dynamic->saved_item = NULL;
0cc7d26f
TT
832 }
833 else
a4c8e806 834 {
e5250216 835 item = varobj_iter_next (var->dynamic->child_iter);
827f100c
YQ
836 /* Release vitem->value so its lifetime is not bound to the
837 execution of a command. */
838 if (item != NULL && item->value != NULL)
839 release_value_or_incref (item->value);
a4c8e806 840 }
b6313243 841
e5250216
YQ
842 if (item == NULL)
843 {
844 /* Iteration is done. Remove iterator from VAR. */
845 varobj_iter_delete (var->dynamic->child_iter);
846 var->dynamic->child_iter = NULL;
847 break;
848 }
0cc7d26f
TT
849 /* We don't want to push the extra child on any report list. */
850 if (to < 0 || i < to)
b6313243 851 {
0cc7d26f
TT
852 int can_mention = from < 0 || i >= from;
853
0cc7d26f 854 install_dynamic_child (var, can_mention ? changed : NULL,
8264ba82 855 can_mention ? type_changed : NULL,
0cc7d26f
TT
856 can_mention ? new : NULL,
857 can_mention ? unchanged : NULL,
5e5ac9a5 858 can_mention ? cchanged : NULL, i,
827f100c
YQ
859 item);
860
861 xfree (item);
b6313243 862 }
0cc7d26f 863 else
b6313243 864 {
bb5ce47a 865 var->dynamic->saved_item = item;
b6313243 866
0cc7d26f
TT
867 /* We want to truncate the child list just before this
868 element. */
869 break;
870 }
b6313243
TT
871 }
872
873 if (i < VEC_length (varobj_p, var->children))
874 {
0cc7d26f 875 int j;
a109c7c1 876
0cc7d26f
TT
877 *cchanged = 1;
878 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
879 varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0);
880 VEC_truncate (varobj_p, var->children, i);
b6313243 881 }
0cc7d26f
TT
882
883 /* If there are fewer children than requested, note that the list of
884 children changed. */
885 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
886 *cchanged = 1;
887
b6313243 888 var->num_children = VEC_length (varobj_p, var->children);
b6313243 889
b6313243 890 return 1;
b6313243 891}
25d5ea92 892
8b93c638
JM
893int
894varobj_get_num_children (struct varobj *var)
895{
896 if (var->num_children == -1)
b6313243 897 {
31f628ae 898 if (varobj_is_dynamic_p (var))
0cc7d26f
TT
899 {
900 int dummy;
901
902 /* If we have a dynamic varobj, don't report -1 children.
903 So, try to fetch some children first. */
8264ba82 904 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
0cc7d26f
TT
905 0, 0, 0);
906 }
907 else
b6313243
TT
908 var->num_children = number_of_children (var);
909 }
8b93c638 910
0cc7d26f 911 return var->num_children >= 0 ? var->num_children : 0;
8b93c638
JM
912}
913
914/* Creates a list of the immediate children of a variable object;
581e13c1 915 the return code is the number of such children or -1 on error. */
8b93c638 916
d56d46f5 917VEC (varobj_p)*
0cc7d26f 918varobj_list_children (struct varobj *var, int *from, int *to)
8b93c638 919{
8b93c638 920 char *name;
b6313243
TT
921 int i, children_changed;
922
bb5ce47a 923 var->dynamic->children_requested = 1;
b6313243 924
31f628ae 925 if (varobj_is_dynamic_p (var))
0cc7d26f 926 {
b6313243
TT
927 /* This, in theory, can result in the number of children changing without
928 frontend noticing. But well, calling -var-list-children on the same
929 varobj twice is not something a sane frontend would do. */
8264ba82
AG
930 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
931 &children_changed, 0, 0, *to);
99ad9427 932 varobj_restrict_range (var->children, from, to);
0cc7d26f
TT
933 return var->children;
934 }
8b93c638 935
8b93c638
JM
936 if (var->num_children == -1)
937 var->num_children = number_of_children (var);
938
74a44383
DJ
939 /* If that failed, give up. */
940 if (var->num_children == -1)
d56d46f5 941 return var->children;
74a44383 942
28335dcc
VP
943 /* If we're called when the list of children is not yet initialized,
944 allocate enough elements in it. */
945 while (VEC_length (varobj_p, var->children) < var->num_children)
946 VEC_safe_push (varobj_p, var->children, NULL);
947
8b93c638
JM
948 for (i = 0; i < var->num_children; i++)
949 {
d56d46f5 950 varobj_p existing = VEC_index (varobj_p, var->children, i);
28335dcc
VP
951
952 if (existing == NULL)
953 {
954 /* Either it's the first call to varobj_list_children for
955 this variable object, and the child was never created,
956 or it was explicitly deleted by the client. */
957 name = name_of_child (var, i);
958 existing = create_child (var, i, name);
959 VEC_replace (varobj_p, var->children, i, existing);
960 }
8b93c638
JM
961 }
962
99ad9427 963 varobj_restrict_range (var->children, from, to);
d56d46f5 964 return var->children;
8b93c638
JM
965}
966
b6313243 967static struct varobj *
5a2e0d6e 968varobj_add_child (struct varobj *var, struct varobj_item *item)
b6313243 969{
5a2e0d6e 970 varobj_p v = create_child_with_value (var,
b6313243 971 VEC_length (varobj_p, var->children),
5a2e0d6e 972 item);
a109c7c1 973
b6313243 974 VEC_safe_push (varobj_p, var->children, v);
b6313243
TT
975 return v;
976}
977
8b93c638 978/* Obtain the type of an object Variable as a string similar to the one gdb
581e13c1 979 prints on the console. */
8b93c638
JM
980
981char *
982varobj_get_type (struct varobj *var)
983{
8ab91b96 984 /* For the "fake" variables, do not return a type. (Its type is
8756216b
DP
985 NULL, too.)
986 Do not return a type for invalid variables as well. */
987 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
8b93c638
JM
988 return NULL;
989
1a4300e9 990 return type_to_string (var->type);
8b93c638
JM
991}
992
1ecb4ee0
DJ
993/* Obtain the type of an object variable. */
994
995struct type *
996varobj_get_gdb_type (struct varobj *var)
997{
998 return var->type;
999}
1000
85254831
KS
1001/* Is VAR a path expression parent, i.e., can it be used to construct
1002 a valid path expression? */
1003
1004static int
1005is_path_expr_parent (struct varobj *var)
1006{
1007 struct type *type;
1008
1009 /* "Fake" children are not path_expr parents. */
1010 if (CPLUS_FAKE_CHILD (var))
1011 return 0;
1012
99ad9427 1013 type = varobj_get_value_type (var);
85254831
KS
1014
1015 /* Anonymous unions and structs are also not path_expr parents. */
1016 return !((TYPE_CODE (type) == TYPE_CODE_STRUCT
1017 || TYPE_CODE (type) == TYPE_CODE_UNION)
1018 && TYPE_NAME (type) == NULL);
1019}
1020
1021/* Return the path expression parent for VAR. */
1022
99ad9427
YQ
1023struct varobj *
1024varobj_get_path_expr_parent (struct varobj *var)
85254831
KS
1025{
1026 struct varobj *parent = var;
1027
1028 while (!is_root_p (parent) && !is_path_expr_parent (parent))
1029 parent = parent->parent;
1030
1031 return parent;
1032}
1033
02142340
VP
1034/* Return a pointer to the full rooted expression of varobj VAR.
1035 If it has not been computed yet, compute it. */
1036char *
1037varobj_get_path_expr (struct varobj *var)
1038{
1039 if (var->path_expr != NULL)
1040 return var->path_expr;
1041 else
1042 {
1043 /* For root varobjs, we initialize path_expr
1044 when creating varobj, so here it should be
1045 child varobj. */
1046 gdb_assert (!is_root_p (var));
ca20d462 1047 return (*var->root->lang_ops->path_expr_of_child) (var);
02142340
VP
1048 }
1049}
1050
fa4d0c40 1051const struct language_defn *
8b93c638
JM
1052varobj_get_language (struct varobj *var)
1053{
fa4d0c40 1054 return var->root->exp->language_defn;
8b93c638
JM
1055}
1056
1057int
1058varobj_get_attributes (struct varobj *var)
1059{
1060 int attributes = 0;
1061
340a7723 1062 if (varobj_editable_p (var))
581e13c1 1063 /* FIXME: define masks for attributes. */
8b93c638
JM
1064 attributes |= 0x00000001; /* Editable */
1065
1066 return attributes;
1067}
1068
cde5ef40
YQ
1069/* Return true if VAR is a dynamic varobj. */
1070
0cc7d26f 1071int
cde5ef40 1072varobj_is_dynamic_p (struct varobj *var)
0cc7d26f 1073{
bb5ce47a 1074 return var->dynamic->pretty_printer != NULL;
0cc7d26f
TT
1075}
1076
de051565
MK
1077char *
1078varobj_get_formatted_value (struct varobj *var,
1079 enum varobj_display_formats format)
1080{
1081 return my_value_of_variable (var, format);
1082}
1083
8b93c638
JM
1084char *
1085varobj_get_value (struct varobj *var)
1086{
de051565 1087 return my_value_of_variable (var, var->format);
8b93c638
JM
1088}
1089
1090/* Set the value of an object variable (if it is editable) to the
581e13c1
MS
1091 value of the given expression. */
1092/* Note: Invokes functions that can call error(). */
8b93c638
JM
1093
1094int
1095varobj_set_value (struct varobj *var, char *expression)
1096{
34365054 1097 struct value *val = NULL; /* Initialize to keep gcc happy. */
8b93c638 1098 /* The argument "expression" contains the variable's new value.
581e13c1
MS
1099 We need to first construct a legal expression for this -- ugh! */
1100 /* Does this cover all the bases? */
8b93c638 1101 struct expression *exp;
34365054 1102 struct value *value = NULL; /* Initialize to keep gcc happy. */
8b93c638 1103 int saved_input_radix = input_radix;
bbc13ae3 1104 const char *s = expression;
8e7b59a5 1105 volatile struct gdb_exception except;
8b93c638 1106
340a7723 1107 gdb_assert (varobj_editable_p (var));
8b93c638 1108
581e13c1 1109 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
1bb9788d 1110 exp = parse_exp_1 (&s, 0, 0, 0);
8e7b59a5
KS
1111 TRY_CATCH (except, RETURN_MASK_ERROR)
1112 {
1113 value = evaluate_expression (exp);
1114 }
1115
1116 if (except.reason < 0)
340a7723 1117 {
581e13c1 1118 /* We cannot proceed without a valid expression. */
340a7723
NR
1119 xfree (exp);
1120 return 0;
8b93c638
JM
1121 }
1122
340a7723
NR
1123 /* All types that are editable must also be changeable. */
1124 gdb_assert (varobj_value_is_changeable_p (var));
1125
1126 /* The value of a changeable variable object must not be lazy. */
1127 gdb_assert (!value_lazy (var->value));
1128
1129 /* Need to coerce the input. We want to check if the
1130 value of the variable object will be different
1131 after assignment, and the first thing value_assign
1132 does is coerce the input.
1133 For example, if we are assigning an array to a pointer variable we
b021a221 1134 should compare the pointer with the array's address, not with the
340a7723
NR
1135 array's content. */
1136 value = coerce_array (value);
1137
8e7b59a5
KS
1138 /* The new value may be lazy. value_assign, or
1139 rather value_contents, will take care of this. */
1140 TRY_CATCH (except, RETURN_MASK_ERROR)
1141 {
1142 val = value_assign (var->value, value);
1143 }
1144
1145 if (except.reason < 0)
340a7723 1146 return 0;
8e7b59a5 1147
340a7723
NR
1148 /* If the value has changed, record it, so that next -var-update can
1149 report this change. If a variable had a value of '1', we've set it
1150 to '333' and then set again to '1', when -var-update will report this
1151 variable as changed -- because the first assignment has set the
1152 'updated' flag. There's no need to optimize that, because return value
1153 of -var-update should be considered an approximation. */
581e13c1 1154 var->updated = install_new_value (var, val, 0 /* Compare values. */);
340a7723
NR
1155 input_radix = saved_input_radix;
1156 return 1;
8b93c638
JM
1157}
1158
0cc7d26f
TT
1159#if HAVE_PYTHON
1160
1161/* A helper function to install a constructor function and visualizer
bb5ce47a 1162 in a varobj_dynamic. */
0cc7d26f
TT
1163
1164static void
bb5ce47a 1165install_visualizer (struct varobj_dynamic *var, PyObject *constructor,
0cc7d26f
TT
1166 PyObject *visualizer)
1167{
1168 Py_XDECREF (var->constructor);
1169 var->constructor = constructor;
1170
1171 Py_XDECREF (var->pretty_printer);
1172 var->pretty_printer = visualizer;
1173
e5250216 1174 varobj_iter_delete (var->child_iter);
0cc7d26f
TT
1175 var->child_iter = NULL;
1176}
1177
1178/* Install the default visualizer for VAR. */
1179
1180static void
1181install_default_visualizer (struct varobj *var)
1182{
d65aec65
PM
1183 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1184 if (CPLUS_FAKE_CHILD (var))
1185 return;
1186
0cc7d26f
TT
1187 if (pretty_printing)
1188 {
1189 PyObject *pretty_printer = NULL;
1190
1191 if (var->value)
1192 {
1193 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1194 if (! pretty_printer)
1195 {
1196 gdbpy_print_stack ();
1197 error (_("Cannot instantiate printer for default visualizer"));
1198 }
1199 }
1200
1201 if (pretty_printer == Py_None)
1202 {
1203 Py_DECREF (pretty_printer);
1204 pretty_printer = NULL;
1205 }
1206
bb5ce47a 1207 install_visualizer (var->dynamic, NULL, pretty_printer);
0cc7d26f
TT
1208 }
1209}
1210
1211/* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1212 make a new object. */
1213
1214static void
1215construct_visualizer (struct varobj *var, PyObject *constructor)
1216{
1217 PyObject *pretty_printer;
1218
d65aec65
PM
1219 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1220 if (CPLUS_FAKE_CHILD (var))
1221 return;
1222
0cc7d26f
TT
1223 Py_INCREF (constructor);
1224 if (constructor == Py_None)
1225 pretty_printer = NULL;
1226 else
1227 {
1228 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1229 if (! pretty_printer)
1230 {
1231 gdbpy_print_stack ();
1232 Py_DECREF (constructor);
1233 constructor = Py_None;
1234 Py_INCREF (constructor);
1235 }
1236
1237 if (pretty_printer == Py_None)
1238 {
1239 Py_DECREF (pretty_printer);
1240 pretty_printer = NULL;
1241 }
1242 }
1243
bb5ce47a 1244 install_visualizer (var->dynamic, constructor, pretty_printer);
0cc7d26f
TT
1245}
1246
1247#endif /* HAVE_PYTHON */
1248
1249/* A helper function for install_new_value. This creates and installs
1250 a visualizer for VAR, if appropriate. */
1251
1252static void
1253install_new_value_visualizer (struct varobj *var)
1254{
1255#if HAVE_PYTHON
1256 /* If the constructor is None, then we want the raw value. If VAR
1257 does not have a value, just skip this. */
0646da15
TT
1258 if (!gdb_python_initialized)
1259 return;
1260
bb5ce47a 1261 if (var->dynamic->constructor != Py_None && var->value != NULL)
0cc7d26f
TT
1262 {
1263 struct cleanup *cleanup;
0cc7d26f
TT
1264
1265 cleanup = varobj_ensure_python_env (var);
1266
bb5ce47a 1267 if (var->dynamic->constructor == NULL)
0cc7d26f
TT
1268 install_default_visualizer (var);
1269 else
bb5ce47a 1270 construct_visualizer (var, var->dynamic->constructor);
0cc7d26f
TT
1271
1272 do_cleanups (cleanup);
1273 }
1274#else
1275 /* Do nothing. */
1276#endif
1277}
1278
8264ba82
AG
1279/* When using RTTI to determine variable type it may be changed in runtime when
1280 the variable value is changed. This function checks whether type of varobj
1281 VAR will change when a new value NEW_VALUE is assigned and if it is so
1282 updates the type of VAR. */
1283
1284static int
1285update_type_if_necessary (struct varobj *var, struct value *new_value)
1286{
1287 if (new_value)
1288 {
1289 struct value_print_options opts;
1290
1291 get_user_print_options (&opts);
1292 if (opts.objectprint)
1293 {
1294 struct type *new_type;
1295 char *curr_type_str, *new_type_str;
1296
1297 new_type = value_actual_type (new_value, 0, 0);
1298 new_type_str = type_to_string (new_type);
1299 curr_type_str = varobj_get_type (var);
1300 if (strcmp (curr_type_str, new_type_str) != 0)
1301 {
1302 var->type = new_type;
1303
1304 /* This information may be not valid for a new type. */
1305 varobj_delete (var, NULL, 1);
1306 VEC_free (varobj_p, var->children);
1307 var->num_children = -1;
1308 return 1;
1309 }
1310 }
1311 }
1312
1313 return 0;
1314}
1315
acd65feb
VP
1316/* Assign a new value to a variable object. If INITIAL is non-zero,
1317 this is the first assignement after the variable object was just
1318 created, or changed type. In that case, just assign the value
1319 and return 0.
581e13c1
MS
1320 Otherwise, assign the new value, and return 1 if the value is
1321 different from the current one, 0 otherwise. The comparison is
1322 done on textual representation of value. Therefore, some types
1323 need not be compared. E.g. for structures the reported value is
1324 always "{...}", so no comparison is necessary here. If the old
1325 value was NULL and new one is not, or vice versa, we always return 1.
b26ed50d
VP
1326
1327 The VALUE parameter should not be released -- the function will
1328 take care of releasing it when needed. */
acd65feb
VP
1329static int
1330install_new_value (struct varobj *var, struct value *value, int initial)
1331{
1332 int changeable;
1333 int need_to_fetch;
1334 int changed = 0;
25d5ea92 1335 int intentionally_not_fetched = 0;
7a4d50bf 1336 char *print_value = NULL;
acd65feb 1337
acd65feb 1338 /* We need to know the varobj's type to decide if the value should
3e43a32a 1339 be fetched or not. C++ fake children (public/protected/private)
581e13c1 1340 don't have a type. */
acd65feb 1341 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
b2c2bd75 1342 changeable = varobj_value_is_changeable_p (var);
b6313243
TT
1343
1344 /* If the type has custom visualizer, we consider it to be always
581e13c1 1345 changeable. FIXME: need to make sure this behaviour will not
b6313243 1346 mess up read-sensitive values. */
bb5ce47a 1347 if (var->dynamic->pretty_printer != NULL)
b6313243
TT
1348 changeable = 1;
1349
acd65feb
VP
1350 need_to_fetch = changeable;
1351
b26ed50d
VP
1352 /* We are not interested in the address of references, and given
1353 that in C++ a reference is not rebindable, it cannot
1354 meaningfully change. So, get hold of the real value. */
1355 if (value)
0cc7d26f 1356 value = coerce_ref (value);
b26ed50d 1357
acd65feb
VP
1358 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1359 /* For unions, we need to fetch the value implicitly because
1360 of implementation of union member fetch. When gdb
1361 creates a value for a field and the value of the enclosing
1362 structure is not lazy, it immediately copies the necessary
1363 bytes from the enclosing values. If the enclosing value is
1364 lazy, the call to value_fetch_lazy on the field will read
1365 the data from memory. For unions, that means we'll read the
1366 same memory more than once, which is not desirable. So
1367 fetch now. */
1368 need_to_fetch = 1;
1369
1370 /* The new value might be lazy. If the type is changeable,
1371 that is we'll be comparing values of this type, fetch the
1372 value now. Otherwise, on the next update the old value
1373 will be lazy, which means we've lost that old value. */
1374 if (need_to_fetch && value && value_lazy (value))
1375 {
25d5ea92
VP
1376 struct varobj *parent = var->parent;
1377 int frozen = var->frozen;
a109c7c1 1378
25d5ea92
VP
1379 for (; !frozen && parent; parent = parent->parent)
1380 frozen |= parent->frozen;
1381
1382 if (frozen && initial)
1383 {
1384 /* For variables that are frozen, or are children of frozen
1385 variables, we don't do fetch on initial assignment.
1386 For non-initial assignemnt we do the fetch, since it means we're
1387 explicitly asked to compare the new value with the old one. */
1388 intentionally_not_fetched = 1;
1389 }
8e7b59a5 1390 else
acd65feb 1391 {
8e7b59a5
KS
1392 volatile struct gdb_exception except;
1393
1394 TRY_CATCH (except, RETURN_MASK_ERROR)
1395 {
1396 value_fetch_lazy (value);
1397 }
1398
1399 if (except.reason < 0)
1400 {
1401 /* Set the value to NULL, so that for the next -var-update,
1402 we don't try to compare the new value with this value,
1403 that we couldn't even read. */
1404 value = NULL;
1405 }
acd65feb 1406 }
acd65feb
VP
1407 }
1408
e848a8a5
TT
1409 /* Get a reference now, before possibly passing it to any Python
1410 code that might release it. */
1411 if (value != NULL)
1412 value_incref (value);
b6313243 1413
7a4d50bf
VP
1414 /* Below, we'll be comparing string rendering of old and new
1415 values. Don't get string rendering if the value is
1416 lazy -- if it is, the code above has decided that the value
1417 should not be fetched. */
bb5ce47a
YQ
1418 if (value != NULL && !value_lazy (value)
1419 && var->dynamic->pretty_printer == NULL)
99ad9427 1420 print_value = varobj_value_get_print_value (value, var->format, var);
7a4d50bf 1421
acd65feb
VP
1422 /* If the type is changeable, compare the old and the new values.
1423 If this is the initial assignment, we don't have any old value
1424 to compare with. */
7a4d50bf 1425 if (!initial && changeable)
acd65feb 1426 {
3e43a32a
MS
1427 /* If the value of the varobj was changed by -var-set-value,
1428 then the value in the varobj and in the target is the same.
1429 However, that value is different from the value that the
581e13c1 1430 varobj had after the previous -var-update. So need to the
3e43a32a 1431 varobj as changed. */
acd65feb 1432 if (var->updated)
57e66780 1433 {
57e66780
DJ
1434 changed = 1;
1435 }
bb5ce47a 1436 else if (var->dynamic->pretty_printer == NULL)
acd65feb
VP
1437 {
1438 /* Try to compare the values. That requires that both
1439 values are non-lazy. */
25d5ea92
VP
1440 if (var->not_fetched && value_lazy (var->value))
1441 {
1442 /* This is a frozen varobj and the value was never read.
1443 Presumably, UI shows some "never read" indicator.
1444 Now that we've fetched the real value, we need to report
1445 this varobj as changed so that UI can show the real
1446 value. */
1447 changed = 1;
1448 }
1449 else if (var->value == NULL && value == NULL)
581e13c1 1450 /* Equal. */
acd65feb
VP
1451 ;
1452 else if (var->value == NULL || value == NULL)
57e66780 1453 {
57e66780
DJ
1454 changed = 1;
1455 }
acd65feb
VP
1456 else
1457 {
1458 gdb_assert (!value_lazy (var->value));
1459 gdb_assert (!value_lazy (value));
85265413 1460
57e66780 1461 gdb_assert (var->print_value != NULL && print_value != NULL);
85265413 1462 if (strcmp (var->print_value, print_value) != 0)
7a4d50bf 1463 changed = 1;
acd65feb
VP
1464 }
1465 }
1466 }
85265413 1467
ee342b23
VP
1468 if (!initial && !changeable)
1469 {
1470 /* For values that are not changeable, we don't compare the values.
1471 However, we want to notice if a value was not NULL and now is NULL,
1472 or vise versa, so that we report when top-level varobjs come in scope
1473 and leave the scope. */
1474 changed = (var->value != NULL) != (value != NULL);
1475 }
1476
acd65feb 1477 /* We must always keep the new value, since children depend on it. */
25d5ea92 1478 if (var->value != NULL && var->value != value)
acd65feb
VP
1479 value_free (var->value);
1480 var->value = value;
25d5ea92
VP
1481 if (value && value_lazy (value) && intentionally_not_fetched)
1482 var->not_fetched = 1;
1483 else
1484 var->not_fetched = 0;
acd65feb 1485 var->updated = 0;
85265413 1486
0cc7d26f
TT
1487 install_new_value_visualizer (var);
1488
1489 /* If we installed a pretty-printer, re-compare the printed version
1490 to see if the variable changed. */
bb5ce47a 1491 if (var->dynamic->pretty_printer != NULL)
0cc7d26f
TT
1492 {
1493 xfree (print_value);
99ad9427
YQ
1494 print_value = varobj_value_get_print_value (var->value, var->format,
1495 var);
e8f781e2
TT
1496 if ((var->print_value == NULL && print_value != NULL)
1497 || (var->print_value != NULL && print_value == NULL)
1498 || (var->print_value != NULL && print_value != NULL
1499 && strcmp (var->print_value, print_value) != 0))
0cc7d26f
TT
1500 changed = 1;
1501 }
1502 if (var->print_value)
1503 xfree (var->print_value);
1504 var->print_value = print_value;
1505
b26ed50d 1506 gdb_assert (!var->value || value_type (var->value));
acd65feb
VP
1507
1508 return changed;
1509}
acd65feb 1510
0cc7d26f
TT
1511/* Return the requested range for a varobj. VAR is the varobj. FROM
1512 and TO are out parameters; *FROM and *TO will be set to the
1513 selected sub-range of VAR. If no range was selected using
1514 -var-set-update-range, then both will be -1. */
1515void
1516varobj_get_child_range (struct varobj *var, int *from, int *to)
b6313243 1517{
0cc7d26f
TT
1518 *from = var->from;
1519 *to = var->to;
b6313243
TT
1520}
1521
0cc7d26f
TT
1522/* Set the selected sub-range of children of VAR to start at index
1523 FROM and end at index TO. If either FROM or TO is less than zero,
1524 this is interpreted as a request for all children. */
1525void
1526varobj_set_child_range (struct varobj *var, int from, int to)
b6313243 1527{
0cc7d26f
TT
1528 var->from = from;
1529 var->to = to;
b6313243
TT
1530}
1531
1532void
1533varobj_set_visualizer (struct varobj *var, const char *visualizer)
1534{
1535#if HAVE_PYTHON
34fa1d9d
MS
1536 PyObject *mainmod, *globals, *constructor;
1537 struct cleanup *back_to;
b6313243 1538
0646da15
TT
1539 if (!gdb_python_initialized)
1540 return;
1541
d452c4bc 1542 back_to = varobj_ensure_python_env (var);
b6313243
TT
1543
1544 mainmod = PyImport_AddModule ("__main__");
1545 globals = PyModule_GetDict (mainmod);
1546 Py_INCREF (globals);
1547 make_cleanup_py_decref (globals);
1548
1549 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
b6313243 1550
0cc7d26f 1551 if (! constructor)
b6313243
TT
1552 {
1553 gdbpy_print_stack ();
da1f2771 1554 error (_("Could not evaluate visualizer expression: %s"), visualizer);
b6313243
TT
1555 }
1556
0cc7d26f
TT
1557 construct_visualizer (var, constructor);
1558 Py_XDECREF (constructor);
b6313243 1559
0cc7d26f
TT
1560 /* If there are any children now, wipe them. */
1561 varobj_delete (var, NULL, 1 /* children only */);
1562 var->num_children = -1;
b6313243
TT
1563
1564 do_cleanups (back_to);
1565#else
da1f2771 1566 error (_("Python support required"));
b6313243
TT
1567#endif
1568}
1569
7a290c40
JB
1570/* If NEW_VALUE is the new value of the given varobj (var), return
1571 non-zero if var has mutated. In other words, if the type of
1572 the new value is different from the type of the varobj's old
1573 value.
1574
1575 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1576
1577static int
1578varobj_value_has_mutated (struct varobj *var, struct value *new_value,
1579 struct type *new_type)
1580{
1581 /* If we haven't previously computed the number of children in var,
1582 it does not matter from the front-end's perspective whether
1583 the type has mutated or not. For all intents and purposes,
1584 it has not mutated. */
1585 if (var->num_children < 0)
1586 return 0;
1587
ca20d462 1588 if (var->root->lang_ops->value_has_mutated)
8776cfe9
JB
1589 {
1590 /* The varobj module, when installing new values, explicitly strips
1591 references, saying that we're not interested in those addresses.
1592 But detection of mutation happens before installing the new
1593 value, so our value may be a reference that we need to strip
1594 in order to remain consistent. */
1595 if (new_value != NULL)
1596 new_value = coerce_ref (new_value);
1597 return var->root->lang_ops->value_has_mutated (var, new_value, new_type);
1598 }
7a290c40
JB
1599 else
1600 return 0;
1601}
1602
8b93c638
JM
1603/* Update the values for a variable and its children. This is a
1604 two-pronged attack. First, re-parse the value for the root's
1605 expression to see if it's changed. Then go all the way
1606 through its children, reconstructing them and noting if they've
1607 changed.
1608
25d5ea92
VP
1609 The EXPLICIT parameter specifies if this call is result
1610 of MI request to update this specific variable, or
581e13c1 1611 result of implicit -var-update *. For implicit request, we don't
25d5ea92 1612 update frozen variables.
705da579 1613
581e13c1 1614 NOTE: This function may delete the caller's varobj. If it
8756216b
DP
1615 returns TYPE_CHANGED, then it has done this and VARP will be modified
1616 to point to the new varobj. */
8b93c638 1617
1417b39d
JB
1618VEC(varobj_update_result) *
1619varobj_update (struct varobj **varp, int explicit)
8b93c638 1620{
25d5ea92 1621 int type_changed = 0;
8b93c638 1622 int i;
30b28db1 1623 struct value *new;
b6313243 1624 VEC (varobj_update_result) *stack = NULL;
f7f9ae2c 1625 VEC (varobj_update_result) *result = NULL;
8b93c638 1626
25d5ea92
VP
1627 /* Frozen means frozen -- we don't check for any change in
1628 this varobj, including its going out of scope, or
1629 changing type. One use case for frozen varobjs is
1630 retaining previously evaluated expressions, and we don't
1631 want them to be reevaluated at all. */
1632 if (!explicit && (*varp)->frozen)
f7f9ae2c 1633 return result;
8756216b
DP
1634
1635 if (!(*varp)->root->is_valid)
f7f9ae2c 1636 {
cfce2ea2 1637 varobj_update_result r = {0};
a109c7c1 1638
cfce2ea2 1639 r.varobj = *varp;
f7f9ae2c
VP
1640 r.status = VAROBJ_INVALID;
1641 VEC_safe_push (varobj_update_result, result, &r);
1642 return result;
1643 }
8b93c638 1644
25d5ea92 1645 if ((*varp)->root->rootvar == *varp)
ae093f96 1646 {
cfce2ea2 1647 varobj_update_result r = {0};
a109c7c1 1648
cfce2ea2 1649 r.varobj = *varp;
f7f9ae2c
VP
1650 r.status = VAROBJ_IN_SCOPE;
1651
581e13c1 1652 /* Update the root variable. value_of_root can return NULL
25d5ea92 1653 if the variable is no longer around, i.e. we stepped out of
581e13c1 1654 the frame in which a local existed. We are letting the
25d5ea92
VP
1655 value_of_root variable dispose of the varobj if the type
1656 has changed. */
25d5ea92 1657 new = value_of_root (varp, &type_changed);
8264ba82
AG
1658 if (update_type_if_necessary(*varp, new))
1659 type_changed = 1;
f7f9ae2c 1660 r.varobj = *varp;
f7f9ae2c 1661 r.type_changed = type_changed;
ea56f9c2 1662 if (install_new_value ((*varp), new, type_changed))
f7f9ae2c 1663 r.changed = 1;
ea56f9c2 1664
25d5ea92 1665 if (new == NULL)
f7f9ae2c 1666 r.status = VAROBJ_NOT_IN_SCOPE;
b6313243 1667 r.value_installed = 1;
f7f9ae2c
VP
1668
1669 if (r.status == VAROBJ_NOT_IN_SCOPE)
b6313243 1670 {
0b4bc29a
JK
1671 if (r.type_changed || r.changed)
1672 VEC_safe_push (varobj_update_result, result, &r);
b6313243
TT
1673 return result;
1674 }
1675
1676 VEC_safe_push (varobj_update_result, stack, &r);
1677 }
1678 else
1679 {
cfce2ea2 1680 varobj_update_result r = {0};
a109c7c1 1681
cfce2ea2 1682 r.varobj = *varp;
b6313243 1683 VEC_safe_push (varobj_update_result, stack, &r);
b20d8971 1684 }
8b93c638 1685
8756216b 1686 /* Walk through the children, reconstructing them all. */
b6313243 1687 while (!VEC_empty (varobj_update_result, stack))
8b93c638 1688 {
b6313243
TT
1689 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1690 struct varobj *v = r.varobj;
1691
1692 VEC_pop (varobj_update_result, stack);
1693
1694 /* Update this variable, unless it's a root, which is already
1695 updated. */
1696 if (!r.value_installed)
7a290c40
JB
1697 {
1698 struct type *new_type;
1699
b6313243 1700 new = value_of_child (v->parent, v->index);
8264ba82
AG
1701 if (update_type_if_necessary(v, new))
1702 r.type_changed = 1;
7a290c40
JB
1703 if (new)
1704 new_type = value_type (new);
1705 else
ca20d462 1706 new_type = v->root->lang_ops->type_of_child (v->parent, v->index);
7a290c40
JB
1707
1708 if (varobj_value_has_mutated (v, new, new_type))
1709 {
1710 /* The children are no longer valid; delete them now.
1711 Report the fact that its type changed as well. */
1712 varobj_delete (v, NULL, 1 /* only_children */);
1713 v->num_children = -1;
1714 v->to = -1;
1715 v->from = -1;
1716 v->type = new_type;
1717 r.type_changed = 1;
1718 }
1719
1720 if (install_new_value (v, new, r.type_changed))
b6313243
TT
1721 {
1722 r.changed = 1;
1723 v->updated = 0;
1724 }
1725 }
1726
31f628ae
YQ
1727 /* We probably should not get children of a dynamic varobj, but
1728 for which -var-list-children was never invoked. */
1729 if (varobj_is_dynamic_p (v))
b6313243 1730 {
8264ba82
AG
1731 VEC (varobj_p) *changed = 0, *type_changed = 0, *unchanged = 0;
1732 VEC (varobj_p) *new = 0;
26f9bcee 1733 int i, children_changed = 0;
b6313243
TT
1734
1735 if (v->frozen)
1736 continue;
1737
bb5ce47a 1738 if (!v->dynamic->children_requested)
0cc7d26f
TT
1739 {
1740 int dummy;
1741
1742 /* If we initially did not have potential children, but
1743 now we do, consider the varobj as changed.
1744 Otherwise, if children were never requested, consider
1745 it as unchanged -- presumably, such varobj is not yet
1746 expanded in the UI, so we need not bother getting
1747 it. */
1748 if (!varobj_has_more (v, 0))
1749 {
8264ba82 1750 update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
0cc7d26f
TT
1751 &dummy, 0, 0, 0);
1752 if (varobj_has_more (v, 0))
1753 r.changed = 1;
1754 }
1755
1756 if (r.changed)
1757 VEC_safe_push (varobj_update_result, result, &r);
1758
1759 continue;
1760 }
1761
b6313243
TT
1762 /* If update_dynamic_varobj_children returns 0, then we have
1763 a non-conforming pretty-printer, so we skip it. */
8264ba82
AG
1764 if (update_dynamic_varobj_children (v, &changed, &type_changed, &new,
1765 &unchanged, &children_changed, 1,
0cc7d26f 1766 v->from, v->to))
b6313243 1767 {
0cc7d26f 1768 if (children_changed || new)
b6313243 1769 {
0cc7d26f
TT
1770 r.children_changed = 1;
1771 r.new = new;
b6313243 1772 }
0cc7d26f
TT
1773 /* Push in reverse order so that the first child is
1774 popped from the work stack first, and so will be
1775 added to result first. This does not affect
1776 correctness, just "nicer". */
8264ba82
AG
1777 for (i = VEC_length (varobj_p, type_changed) - 1; i >= 0; --i)
1778 {
1779 varobj_p tmp = VEC_index (varobj_p, type_changed, i);
1780 varobj_update_result r = {0};
1781
1782 /* Type may change only if value was changed. */
1783 r.varobj = tmp;
1784 r.changed = 1;
1785 r.type_changed = 1;
1786 r.value_installed = 1;
1787 VEC_safe_push (varobj_update_result, stack, &r);
1788 }
0cc7d26f 1789 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
b6313243 1790 {
0cc7d26f 1791 varobj_p tmp = VEC_index (varobj_p, changed, i);
cfce2ea2 1792 varobj_update_result r = {0};
a109c7c1 1793
cfce2ea2 1794 r.varobj = tmp;
0cc7d26f 1795 r.changed = 1;
b6313243
TT
1796 r.value_installed = 1;
1797 VEC_safe_push (varobj_update_result, stack, &r);
1798 }
0cc7d26f
TT
1799 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
1800 {
1801 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
a109c7c1 1802
0cc7d26f
TT
1803 if (!tmp->frozen)
1804 {
cfce2ea2 1805 varobj_update_result r = {0};
a109c7c1 1806
cfce2ea2 1807 r.varobj = tmp;
0cc7d26f
TT
1808 r.value_installed = 1;
1809 VEC_safe_push (varobj_update_result, stack, &r);
1810 }
1811 }
b6313243
TT
1812 if (r.changed || r.children_changed)
1813 VEC_safe_push (varobj_update_result, result, &r);
0cc7d26f 1814
8264ba82
AG
1815 /* Free CHANGED, TYPE_CHANGED and UNCHANGED, but not NEW,
1816 because NEW has been put into the result vector. */
0cc7d26f 1817 VEC_free (varobj_p, changed);
8264ba82 1818 VEC_free (varobj_p, type_changed);
0cc7d26f
TT
1819 VEC_free (varobj_p, unchanged);
1820
b6313243
TT
1821 continue;
1822 }
1823 }
28335dcc
VP
1824
1825 /* Push any children. Use reverse order so that the first
1826 child is popped from the work stack first, and so
1827 will be added to result first. This does not
1828 affect correctness, just "nicer". */
1829 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
8b93c638 1830 {
28335dcc 1831 varobj_p c = VEC_index (varobj_p, v->children, i);
a109c7c1 1832
28335dcc 1833 /* Child may be NULL if explicitly deleted by -var-delete. */
25d5ea92 1834 if (c != NULL && !c->frozen)
28335dcc 1835 {
cfce2ea2 1836 varobj_update_result r = {0};
a109c7c1 1837
cfce2ea2 1838 r.varobj = c;
b6313243 1839 VEC_safe_push (varobj_update_result, stack, &r);
28335dcc 1840 }
8b93c638 1841 }
b6313243
TT
1842
1843 if (r.changed || r.type_changed)
1844 VEC_safe_push (varobj_update_result, result, &r);
8b93c638
JM
1845 }
1846
b6313243
TT
1847 VEC_free (varobj_update_result, stack);
1848
f7f9ae2c 1849 return result;
8b93c638
JM
1850}
1851\f
1852
1853/* Helper functions */
1854
1855/*
1856 * Variable object construction/destruction
1857 */
1858
1859static int
fba45db2
KB
1860delete_variable (struct cpstack **resultp, struct varobj *var,
1861 int only_children_p)
8b93c638
JM
1862{
1863 int delcount = 0;
1864
1865 delete_variable_1 (resultp, &delcount, var,
1866 only_children_p, 1 /* remove_from_parent_p */ );
1867
1868 return delcount;
1869}
1870
581e13c1 1871/* Delete the variable object VAR and its children. */
8b93c638
JM
1872/* IMPORTANT NOTE: If we delete a variable which is a child
1873 and the parent is not removed we dump core. It must be always
581e13c1 1874 initially called with remove_from_parent_p set. */
8b93c638 1875static void
72330bd6
AC
1876delete_variable_1 (struct cpstack **resultp, int *delcountp,
1877 struct varobj *var, int only_children_p,
1878 int remove_from_parent_p)
8b93c638 1879{
28335dcc 1880 int i;
8b93c638 1881
581e13c1 1882 /* Delete any children of this variable, too. */
28335dcc
VP
1883 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1884 {
1885 varobj_p child = VEC_index (varobj_p, var->children, i);
a109c7c1 1886
214270ab
VP
1887 if (!child)
1888 continue;
8b93c638 1889 if (!remove_from_parent_p)
28335dcc
VP
1890 child->parent = NULL;
1891 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
8b93c638 1892 }
28335dcc 1893 VEC_free (varobj_p, var->children);
8b93c638 1894
581e13c1 1895 /* if we were called to delete only the children we are done here. */
8b93c638
JM
1896 if (only_children_p)
1897 return;
1898
581e13c1 1899 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
73a93a32 1900 /* If the name is null, this is a temporary variable, that has not
581e13c1 1901 yet been installed, don't report it, it belongs to the caller... */
73a93a32 1902 if (var->obj_name != NULL)
8b93c638 1903 {
5b616ba1 1904 cppush (resultp, xstrdup (var->obj_name));
8b93c638
JM
1905 *delcountp = *delcountp + 1;
1906 }
1907
581e13c1 1908 /* If this variable has a parent, remove it from its parent's list. */
8b93c638
JM
1909 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1910 (as indicated by remove_from_parent_p) we don't bother doing an
1911 expensive list search to find the element to remove when we are
581e13c1 1912 discarding the list afterwards. */
72330bd6 1913 if ((remove_from_parent_p) && (var->parent != NULL))
8b93c638 1914 {
28335dcc 1915 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
8b93c638 1916 }
72330bd6 1917
73a93a32
JI
1918 if (var->obj_name != NULL)
1919 uninstall_variable (var);
8b93c638 1920
581e13c1 1921 /* Free memory associated with this variable. */
8b93c638
JM
1922 free_variable (var);
1923}
1924
581e13c1 1925/* Install the given variable VAR with the object name VAR->OBJ_NAME. */
8b93c638 1926static int
fba45db2 1927install_variable (struct varobj *var)
8b93c638
JM
1928{
1929 struct vlist *cv;
1930 struct vlist *newvl;
1931 const char *chp;
1932 unsigned int index = 0;
1933 unsigned int i = 1;
1934
1935 for (chp = var->obj_name; *chp; chp++)
1936 {
1937 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1938 }
1939
1940 cv = *(varobj_table + index);
1941 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1942 cv = cv->next;
1943
1944 if (cv != NULL)
8a3fe4f8 1945 error (_("Duplicate variable object name"));
8b93c638 1946
581e13c1 1947 /* Add varobj to hash table. */
8b93c638
JM
1948 newvl = xmalloc (sizeof (struct vlist));
1949 newvl->next = *(varobj_table + index);
1950 newvl->var = var;
1951 *(varobj_table + index) = newvl;
1952
581e13c1 1953 /* If root, add varobj to root list. */
b2c2bd75 1954 if (is_root_p (var))
8b93c638 1955 {
581e13c1 1956 /* Add to list of root variables. */
8b93c638
JM
1957 if (rootlist == NULL)
1958 var->root->next = NULL;
1959 else
1960 var->root->next = rootlist;
1961 rootlist = var->root;
8b93c638
JM
1962 }
1963
1964 return 1; /* OK */
1965}
1966
581e13c1 1967/* Unistall the object VAR. */
8b93c638 1968static void
fba45db2 1969uninstall_variable (struct varobj *var)
8b93c638
JM
1970{
1971 struct vlist *cv;
1972 struct vlist *prev;
1973 struct varobj_root *cr;
1974 struct varobj_root *prer;
1975 const char *chp;
1976 unsigned int index = 0;
1977 unsigned int i = 1;
1978
581e13c1 1979 /* Remove varobj from hash table. */
8b93c638
JM
1980 for (chp = var->obj_name; *chp; chp++)
1981 {
1982 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1983 }
1984
1985 cv = *(varobj_table + index);
1986 prev = NULL;
1987 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1988 {
1989 prev = cv;
1990 cv = cv->next;
1991 }
1992
1993 if (varobjdebug)
1994 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
1995
1996 if (cv == NULL)
1997 {
72330bd6
AC
1998 warning
1999 ("Assertion failed: Could not find variable object \"%s\" to delete",
2000 var->obj_name);
8b93c638
JM
2001 return;
2002 }
2003
2004 if (prev == NULL)
2005 *(varobj_table + index) = cv->next;
2006 else
2007 prev->next = cv->next;
2008
b8c9b27d 2009 xfree (cv);
8b93c638 2010
581e13c1 2011 /* If root, remove varobj from root list. */
b2c2bd75 2012 if (is_root_p (var))
8b93c638 2013 {
581e13c1 2014 /* Remove from list of root variables. */
8b93c638
JM
2015 if (rootlist == var->root)
2016 rootlist = var->root->next;
2017 else
2018 {
2019 prer = NULL;
2020 cr = rootlist;
2021 while ((cr != NULL) && (cr->rootvar != var))
2022 {
2023 prer = cr;
2024 cr = cr->next;
2025 }
2026 if (cr == NULL)
2027 {
8f7e195f
JB
2028 warning (_("Assertion failed: Could not find "
2029 "varobj \"%s\" in root list"),
3e43a32a 2030 var->obj_name);
8b93c638
JM
2031 return;
2032 }
2033 if (prer == NULL)
2034 rootlist = NULL;
2035 else
2036 prer->next = cr->next;
2037 }
8b93c638
JM
2038 }
2039
2040}
2041
581e13c1 2042/* Create and install a child of the parent of the given name. */
8b93c638 2043static struct varobj *
fba45db2 2044create_child (struct varobj *parent, int index, char *name)
b6313243 2045{
5a2e0d6e
YQ
2046 struct varobj_item item;
2047
2048 item.name = name;
2049 item.value = value_of_child (parent, index);
2050
2051 return create_child_with_value (parent, index, &item);
b6313243
TT
2052}
2053
2054static struct varobj *
5a2e0d6e
YQ
2055create_child_with_value (struct varobj *parent, int index,
2056 struct varobj_item *item)
8b93c638
JM
2057{
2058 struct varobj *child;
2059 char *childs_name;
2060
2061 child = new_variable ();
2062
5e5ac9a5 2063 /* NAME is allocated by caller. */
5a2e0d6e 2064 child->name = item->name;
8b93c638 2065 child->index = index;
8b93c638
JM
2066 child->parent = parent;
2067 child->root = parent->root;
85254831 2068
99ad9427 2069 if (varobj_is_anonymous_child (child))
85254831
KS
2070 childs_name = xstrprintf ("%s.%d_anonymous", parent->obj_name, index);
2071 else
5a2e0d6e 2072 childs_name = xstrprintf ("%s.%s", parent->obj_name, item->name);
8b93c638 2073 child->obj_name = childs_name;
85254831 2074
8b93c638
JM
2075 install_variable (child);
2076
acd65feb
VP
2077 /* Compute the type of the child. Must do this before
2078 calling install_new_value. */
5a2e0d6e 2079 if (item->value != NULL)
acd65feb 2080 /* If the child had no evaluation errors, var->value
581e13c1 2081 will be non-NULL and contain a valid type. */
5a2e0d6e 2082 child->type = value_actual_type (item->value, 0, NULL);
acd65feb 2083 else
581e13c1 2084 /* Otherwise, we must compute the type. */
ca20d462
YQ
2085 child->type = (*child->root->lang_ops->type_of_child) (child->parent,
2086 child->index);
5a2e0d6e 2087 install_new_value (child, item->value, 1);
acd65feb 2088
8b93c638
JM
2089 return child;
2090}
8b93c638
JM
2091\f
2092
2093/*
2094 * Miscellaneous utility functions.
2095 */
2096
581e13c1 2097/* Allocate memory and initialize a new variable. */
8b93c638
JM
2098static struct varobj *
2099new_variable (void)
2100{
2101 struct varobj *var;
2102
2103 var = (struct varobj *) xmalloc (sizeof (struct varobj));
2104 var->name = NULL;
02142340 2105 var->path_expr = NULL;
8b93c638
JM
2106 var->obj_name = NULL;
2107 var->index = -1;
2108 var->type = NULL;
2109 var->value = NULL;
8b93c638
JM
2110 var->num_children = -1;
2111 var->parent = NULL;
2112 var->children = NULL;
2113 var->format = 0;
2114 var->root = NULL;
fb9b6b35 2115 var->updated = 0;
85265413 2116 var->print_value = NULL;
25d5ea92
VP
2117 var->frozen = 0;
2118 var->not_fetched = 0;
bb5ce47a
YQ
2119 var->dynamic
2120 = (struct varobj_dynamic *) xmalloc (sizeof (struct varobj_dynamic));
2121 var->dynamic->children_requested = 0;
0cc7d26f
TT
2122 var->from = -1;
2123 var->to = -1;
bb5ce47a
YQ
2124 var->dynamic->constructor = 0;
2125 var->dynamic->pretty_printer = 0;
2126 var->dynamic->child_iter = 0;
2127 var->dynamic->saved_item = 0;
8b93c638
JM
2128
2129 return var;
2130}
2131
581e13c1 2132/* Allocate memory and initialize a new root variable. */
8b93c638
JM
2133static struct varobj *
2134new_root_variable (void)
2135{
2136 struct varobj *var = new_variable ();
a109c7c1 2137
3e43a32a 2138 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));
ca20d462 2139 var->root->lang_ops = NULL;
8b93c638
JM
2140 var->root->exp = NULL;
2141 var->root->valid_block = NULL;
7a424e99 2142 var->root->frame = null_frame_id;
a5defcdc 2143 var->root->floating = 0;
8b93c638 2144 var->root->rootvar = NULL;
8756216b 2145 var->root->is_valid = 1;
8b93c638
JM
2146
2147 return var;
2148}
2149
581e13c1 2150/* Free any allocated memory associated with VAR. */
8b93c638 2151static void
fba45db2 2152free_variable (struct varobj *var)
8b93c638 2153{
d452c4bc 2154#if HAVE_PYTHON
bb5ce47a 2155 if (var->dynamic->pretty_printer != NULL)
d452c4bc
UW
2156 {
2157 struct cleanup *cleanup = varobj_ensure_python_env (var);
bb5ce47a
YQ
2158
2159 Py_XDECREF (var->dynamic->constructor);
2160 Py_XDECREF (var->dynamic->pretty_printer);
d452c4bc
UW
2161 do_cleanups (cleanup);
2162 }
2163#endif
2164
827f100c
YQ
2165 varobj_iter_delete (var->dynamic->child_iter);
2166 varobj_clear_saved_item (var->dynamic);
36746093
JK
2167 value_free (var->value);
2168
581e13c1 2169 /* Free the expression if this is a root variable. */
b2c2bd75 2170 if (is_root_p (var))
8b93c638 2171 {
3038237c 2172 xfree (var->root->exp);
8038e1e2 2173 xfree (var->root);
8b93c638
JM
2174 }
2175
8038e1e2
AC
2176 xfree (var->name);
2177 xfree (var->obj_name);
85265413 2178 xfree (var->print_value);
02142340 2179 xfree (var->path_expr);
bb5ce47a 2180 xfree (var->dynamic);
8038e1e2 2181 xfree (var);
8b93c638
JM
2182}
2183
74b7792f
AC
2184static void
2185do_free_variable_cleanup (void *var)
2186{
2187 free_variable (var);
2188}
2189
2190static struct cleanup *
2191make_cleanup_free_variable (struct varobj *var)
2192{
2193 return make_cleanup (do_free_variable_cleanup, var);
2194}
2195
6e2a9270
VP
2196/* Return the type of the value that's stored in VAR,
2197 or that would have being stored there if the
581e13c1 2198 value were accessible.
6e2a9270
VP
2199
2200 This differs from VAR->type in that VAR->type is always
2201 the true type of the expession in the source language.
2202 The return value of this function is the type we're
2203 actually storing in varobj, and using for displaying
2204 the values and for comparing previous and new values.
2205
2206 For example, top-level references are always stripped. */
99ad9427
YQ
2207struct type *
2208varobj_get_value_type (struct varobj *var)
6e2a9270
VP
2209{
2210 struct type *type;
2211
2212 if (var->value)
2213 type = value_type (var->value);
2214 else
2215 type = var->type;
2216
2217 type = check_typedef (type);
2218
2219 if (TYPE_CODE (type) == TYPE_CODE_REF)
2220 type = get_target_type (type);
2221
2222 type = check_typedef (type);
2223
2224 return type;
2225}
2226
8b93c638 2227/* What is the default display for this variable? We assume that
581e13c1 2228 everything is "natural". Any exceptions? */
8b93c638 2229static enum varobj_display_formats
fba45db2 2230variable_default_display (struct varobj *var)
8b93c638
JM
2231{
2232 return FORMAT_NATURAL;
2233}
2234
581e13c1 2235/* FIXME: The following should be generic for any pointer. */
8b93c638 2236static void
fba45db2 2237cppush (struct cpstack **pstack, char *name)
8b93c638
JM
2238{
2239 struct cpstack *s;
2240
2241 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2242 s->name = name;
2243 s->next = *pstack;
2244 *pstack = s;
2245}
2246
581e13c1 2247/* FIXME: The following should be generic for any pointer. */
8b93c638 2248static char *
fba45db2 2249cppop (struct cpstack **pstack)
8b93c638
JM
2250{
2251 struct cpstack *s;
2252 char *v;
2253
2254 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2255 return NULL;
2256
2257 s = *pstack;
2258 v = s->name;
2259 *pstack = (*pstack)->next;
b8c9b27d 2260 xfree (s);
8b93c638
JM
2261
2262 return v;
2263}
2264\f
2265/*
2266 * Language-dependencies
2267 */
2268
2269/* Common entry points */
2270
8b93c638
JM
2271/* Return the number of children for a given variable.
2272 The result of this function is defined by the language
581e13c1 2273 implementation. The number of children returned by this function
8b93c638 2274 is the number of children that the user will see in the variable
581e13c1 2275 display. */
8b93c638 2276static int
fba45db2 2277number_of_children (struct varobj *var)
8b93c638 2278{
ca20d462 2279 return (*var->root->lang_ops->number_of_children) (var);
8b93c638
JM
2280}
2281
3e43a32a 2282/* What is the expression for the root varobj VAR? Returns a malloc'd
581e13c1 2283 string. */
8b93c638 2284static char *
fba45db2 2285name_of_variable (struct varobj *var)
8b93c638 2286{
ca20d462 2287 return (*var->root->lang_ops->name_of_variable) (var);
8b93c638
JM
2288}
2289
3e43a32a 2290/* What is the name of the INDEX'th child of VAR? Returns a malloc'd
581e13c1 2291 string. */
8b93c638 2292static char *
fba45db2 2293name_of_child (struct varobj *var, int index)
8b93c638 2294{
ca20d462 2295 return (*var->root->lang_ops->name_of_child) (var, index);
8b93c638
JM
2296}
2297
2213e2be
YQ
2298/* If frame associated with VAR can be found, switch
2299 to it and return 1. Otherwise, return 0. */
2300
2301static int
2302check_scope (struct varobj *var)
2303{
2304 struct frame_info *fi;
2305 int scope;
2306
2307 fi = frame_find_by_id (var->root->frame);
2308 scope = fi != NULL;
2309
2310 if (fi)
2311 {
2312 CORE_ADDR pc = get_frame_pc (fi);
2313
2314 if (pc < BLOCK_START (var->root->valid_block) ||
2315 pc >= BLOCK_END (var->root->valid_block))
2316 scope = 0;
2317 else
2318 select_frame (fi);
2319 }
2320 return scope;
2321}
2322
2323/* Helper function to value_of_root. */
2324
2325static struct value *
2326value_of_root_1 (struct varobj **var_handle)
2327{
2328 struct value *new_val = NULL;
2329 struct varobj *var = *var_handle;
2330 int within_scope = 0;
2331 struct cleanup *back_to;
2332
2333 /* Only root variables can be updated... */
2334 if (!is_root_p (var))
2335 /* Not a root var. */
2336 return NULL;
2337
2338 back_to = make_cleanup_restore_current_thread ();
2339
2340 /* Determine whether the variable is still around. */
2341 if (var->root->valid_block == NULL || var->root->floating)
2342 within_scope = 1;
2343 else if (var->root->thread_id == 0)
2344 {
2345 /* The program was single-threaded when the variable object was
2346 created. Technically, it's possible that the program became
2347 multi-threaded since then, but we don't support such
2348 scenario yet. */
2349 within_scope = check_scope (var);
2350 }
2351 else
2352 {
2353 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
2354 if (in_thread_list (ptid))
2355 {
2356 switch_to_thread (ptid);
2357 within_scope = check_scope (var);
2358 }
2359 }
2360
2361 if (within_scope)
2362 {
2363 volatile struct gdb_exception except;
2364
2365 /* We need to catch errors here, because if evaluate
2366 expression fails we want to just return NULL. */
2367 TRY_CATCH (except, RETURN_MASK_ERROR)
2368 {
2369 new_val = evaluate_expression (var->root->exp);
2370 }
2371 }
2372
2373 do_cleanups (back_to);
2374
2375 return new_val;
2376}
2377
a5defcdc
VP
2378/* What is the ``struct value *'' of the root variable VAR?
2379 For floating variable object, evaluation can get us a value
2380 of different type from what is stored in varobj already. In
2381 that case:
2382 - *type_changed will be set to 1
2383 - old varobj will be freed, and new one will be
2384 created, with the same name.
2385 - *var_handle will be set to the new varobj
2386 Otherwise, *type_changed will be set to 0. */
30b28db1 2387static struct value *
fba45db2 2388value_of_root (struct varobj **var_handle, int *type_changed)
8b93c638 2389{
73a93a32
JI
2390 struct varobj *var;
2391
2392 if (var_handle == NULL)
2393 return NULL;
2394
2395 var = *var_handle;
2396
2397 /* This should really be an exception, since this should
581e13c1 2398 only get called with a root variable. */
73a93a32 2399
b2c2bd75 2400 if (!is_root_p (var))
73a93a32
JI
2401 return NULL;
2402
a5defcdc 2403 if (var->root->floating)
73a93a32
JI
2404 {
2405 struct varobj *tmp_var;
2406 char *old_type, *new_type;
6225abfa 2407
73a93a32
JI
2408 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2409 USE_SELECTED_FRAME);
2410 if (tmp_var == NULL)
2411 {
2412 return NULL;
2413 }
6225abfa 2414 old_type = varobj_get_type (var);
73a93a32 2415 new_type = varobj_get_type (tmp_var);
72330bd6 2416 if (strcmp (old_type, new_type) == 0)
73a93a32 2417 {
fcacd99f
VP
2418 /* The expression presently stored inside var->root->exp
2419 remembers the locations of local variables relatively to
2420 the frame where the expression was created (in DWARF location
2421 button, for example). Naturally, those locations are not
2422 correct in other frames, so update the expression. */
2423
2424 struct expression *tmp_exp = var->root->exp;
a109c7c1 2425
fcacd99f
VP
2426 var->root->exp = tmp_var->root->exp;
2427 tmp_var->root->exp = tmp_exp;
2428
73a93a32
JI
2429 varobj_delete (tmp_var, NULL, 0);
2430 *type_changed = 0;
2431 }
2432 else
2433 {
1b36a34b 2434 tmp_var->obj_name = xstrdup (var->obj_name);
0cc7d26f
TT
2435 tmp_var->from = var->from;
2436 tmp_var->to = var->to;
a5defcdc
VP
2437 varobj_delete (var, NULL, 0);
2438
73a93a32
JI
2439 install_variable (tmp_var);
2440 *var_handle = tmp_var;
705da579 2441 var = *var_handle;
73a93a32
JI
2442 *type_changed = 1;
2443 }
74dddad3
MS
2444 xfree (old_type);
2445 xfree (new_type);
73a93a32
JI
2446 }
2447 else
2448 {
2449 *type_changed = 0;
2450 }
2451
7a290c40
JB
2452 {
2453 struct value *value;
2454
2213e2be 2455 value = value_of_root_1 (var_handle);
7a290c40
JB
2456 if (var->value == NULL || value == NULL)
2457 {
2458 /* For root varobj-s, a NULL value indicates a scoping issue.
2459 So, nothing to do in terms of checking for mutations. */
2460 }
2461 else if (varobj_value_has_mutated (var, value, value_type (value)))
2462 {
2463 /* The type has mutated, so the children are no longer valid.
2464 Just delete them, and tell our caller that the type has
2465 changed. */
2466 varobj_delete (var, NULL, 1 /* only_children */);
2467 var->num_children = -1;
2468 var->to = -1;
2469 var->from = -1;
2470 *type_changed = 1;
2471 }
2472 return value;
2473 }
8b93c638
JM
2474}
2475
581e13c1 2476/* What is the ``struct value *'' for the INDEX'th child of PARENT? */
30b28db1 2477static struct value *
fba45db2 2478value_of_child (struct varobj *parent, int index)
8b93c638 2479{
30b28db1 2480 struct value *value;
8b93c638 2481
ca20d462 2482 value = (*parent->root->lang_ops->value_of_child) (parent, index);
8b93c638 2483
8b93c638
JM
2484 return value;
2485}
2486
581e13c1 2487/* GDB already has a command called "value_of_variable". Sigh. */
8b93c638 2488static char *
de051565 2489my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 2490{
8756216b 2491 if (var->root->is_valid)
0cc7d26f 2492 {
bb5ce47a 2493 if (var->dynamic->pretty_printer != NULL)
99ad9427 2494 return varobj_value_get_print_value (var->value, var->format, var);
ca20d462 2495 return (*var->root->lang_ops->value_of_variable) (var, format);
0cc7d26f 2496 }
8756216b
DP
2497 else
2498 return NULL;
8b93c638
JM
2499}
2500
99ad9427
YQ
2501void
2502varobj_formatted_print_options (struct value_print_options *opts,
2503 enum varobj_display_formats format)
2504{
2505 get_formatted_print_options (opts, format_code[(int) format]);
2506 opts->deref_ref = 0;
2507 opts->raw = 1;
2508}
2509
2510char *
2511varobj_value_get_print_value (struct value *value,
2512 enum varobj_display_formats format,
2513 struct varobj *var)
85265413 2514{
57e66780 2515 struct ui_file *stb;
621c8364 2516 struct cleanup *old_chain;
ac91cd70 2517 char *thevalue = NULL;
79a45b7d 2518 struct value_print_options opts;
be759fcf
PM
2519 struct type *type = NULL;
2520 long len = 0;
2521 char *encoding = NULL;
2522 struct gdbarch *gdbarch = NULL;
3a182a69
JK
2523 /* Initialize it just to avoid a GCC false warning. */
2524 CORE_ADDR str_addr = 0;
09ca9e2e 2525 int string_print = 0;
57e66780
DJ
2526
2527 if (value == NULL)
2528 return NULL;
2529
621c8364
TT
2530 stb = mem_fileopen ();
2531 old_chain = make_cleanup_ui_file_delete (stb);
2532
be759fcf 2533 gdbarch = get_type_arch (value_type (value));
b6313243 2534#if HAVE_PYTHON
0646da15
TT
2535 if (gdb_python_initialized)
2536 {
bb5ce47a 2537 PyObject *value_formatter = var->dynamic->pretty_printer;
d452c4bc 2538
0646da15 2539 varobj_ensure_python_env (var);
09ca9e2e 2540
0646da15
TT
2541 if (value_formatter)
2542 {
2543 /* First check to see if we have any children at all. If so,
2544 we simply return {...}. */
2545 if (dynamic_varobj_has_child_method (var))
2546 {
2547 do_cleanups (old_chain);
2548 return xstrdup ("{...}");
2549 }
b6313243 2550
0646da15
TT
2551 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2552 {
2553 struct value *replacement;
2554 PyObject *output = NULL;
2555
2556 output = apply_varobj_pretty_printer (value_formatter,
2557 &replacement,
2558 stb);
2559
2560 /* If we have string like output ... */
2561 if (output)
2562 {
2563 make_cleanup_py_decref (output);
2564
2565 /* If this is a lazy string, extract it. For lazy
2566 strings we always print as a string, so set
2567 string_print. */
2568 if (gdbpy_is_lazy_string (output))
2569 {
2570 gdbpy_extract_lazy_string (output, &str_addr, &type,
2571 &len, &encoding);
2572 make_cleanup (free_current_contents, &encoding);
2573 string_print = 1;
2574 }
2575 else
2576 {
2577 /* If it is a regular (non-lazy) string, extract
2578 it and copy the contents into THEVALUE. If the
2579 hint says to print it as a string, set
2580 string_print. Otherwise just return the extracted
2581 string as a value. */
2582
2583 char *s = python_string_to_target_string (output);
2584
2585 if (s)
2586 {
2587 char *hint;
2588
2589 hint = gdbpy_get_display_hint (value_formatter);
2590 if (hint)
2591 {
2592 if (!strcmp (hint, "string"))
2593 string_print = 1;
2594 xfree (hint);
2595 }
2596
2597 len = strlen (s);
2598 thevalue = xmemdup (s, len + 1, len + 1);
2599 type = builtin_type (gdbarch)->builtin_char;
2600 xfree (s);
2601
2602 if (!string_print)
2603 {
2604 do_cleanups (old_chain);
2605 return thevalue;
2606 }
2607
2608 make_cleanup (xfree, thevalue);
2609 }
2610 else
2611 gdbpy_print_stack ();
2612 }
2613 }
2614 /* If the printer returned a replacement value, set VALUE
2615 to REPLACEMENT. If there is not a replacement value,
2616 just use the value passed to this function. */
2617 if (replacement)
2618 value = replacement;
2619 }
2620 }
2621 }
b6313243
TT
2622#endif
2623
99ad9427 2624 varobj_formatted_print_options (&opts, format);
00bd41d6
PM
2625
2626 /* If the THEVALUE has contents, it is a regular string. */
b6313243 2627 if (thevalue)
ac91cd70 2628 LA_PRINT_STRING (stb, type, (gdb_byte *) thevalue, len, encoding, 0, &opts);
09ca9e2e 2629 else if (string_print)
00bd41d6
PM
2630 /* Otherwise, if string_print is set, and it is not a regular
2631 string, it is a lazy string. */
09ca9e2e 2632 val_print_string (type, encoding, str_addr, len, stb, &opts);
b6313243 2633 else
00bd41d6 2634 /* All other cases. */
b6313243 2635 common_val_print (value, stb, 0, &opts, current_language);
00bd41d6 2636
759ef836 2637 thevalue = ui_file_xstrdup (stb, NULL);
57e66780 2638
85265413
NR
2639 do_cleanups (old_chain);
2640 return thevalue;
2641}
2642
340a7723
NR
2643int
2644varobj_editable_p (struct varobj *var)
2645{
2646 struct type *type;
340a7723
NR
2647
2648 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2649 return 0;
2650
99ad9427 2651 type = varobj_get_value_type (var);
340a7723
NR
2652
2653 switch (TYPE_CODE (type))
2654 {
2655 case TYPE_CODE_STRUCT:
2656 case TYPE_CODE_UNION:
2657 case TYPE_CODE_ARRAY:
2658 case TYPE_CODE_FUNC:
2659 case TYPE_CODE_METHOD:
2660 return 0;
2661 break;
2662
2663 default:
2664 return 1;
2665 break;
2666 }
2667}
2668
d32cafc7 2669/* Call VAR's value_is_changeable_p language-specific callback. */
acd65feb 2670
99ad9427 2671int
b2c2bd75 2672varobj_value_is_changeable_p (struct varobj *var)
8b93c638 2673{
ca20d462 2674 return var->root->lang_ops->value_is_changeable_p (var);
8b93c638
JM
2675}
2676
5a413362
VP
2677/* Return 1 if that varobj is floating, that is is always evaluated in the
2678 selected frame, and not bound to thread/frame. Such variable objects
2679 are created using '@' as frame specifier to -var-create. */
2680int
2681varobj_floating_p (struct varobj *var)
2682{
2683 return var->root->floating;
2684}
2685
d32cafc7
JB
2686/* Implement the "value_is_changeable_p" varobj callback for most
2687 languages. */
2688
99ad9427
YQ
2689int
2690varobj_default_value_is_changeable_p (struct varobj *var)
d32cafc7
JB
2691{
2692 int r;
2693 struct type *type;
2694
2695 if (CPLUS_FAKE_CHILD (var))
2696 return 0;
2697
99ad9427 2698 type = varobj_get_value_type (var);
d32cafc7
JB
2699
2700 switch (TYPE_CODE (type))
2701 {
2702 case TYPE_CODE_STRUCT:
2703 case TYPE_CODE_UNION:
2704 case TYPE_CODE_ARRAY:
2705 r = 0;
2706 break;
2707
2708 default:
2709 r = 1;
2710 }
2711
2712 return r;
2713}
2714
54333c3b
JK
2715/* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
2716 with an arbitrary caller supplied DATA pointer. */
2717
2718void
2719all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
2720{
2721 struct varobj_root *var_root, *var_root_next;
2722
2723 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
2724
2725 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
2726 {
2727 var_root_next = var_root->next;
2728
2729 (*func) (var_root->rootvar, data);
2730 }
2731}
8b93c638
JM
2732\f
2733extern void _initialize_varobj (void);
2734void
2735_initialize_varobj (void)
2736{
2737 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
2738
2739 varobj_table = xmalloc (sizeof_table);
2740 memset (varobj_table, 0, sizeof_table);
2741
f989a1c8 2742 add_setshow_zuinteger_cmd ("varobj", class_maintenance,
ccce17b0
YQ
2743 &varobjdebug,
2744 _("Set varobj debugging."),
2745 _("Show varobj debugging."),
2746 _("When non-zero, varobj debugging is enabled."),
2747 NULL, show_varobjdebug,
f989a1c8 2748 &setdebuglist, &showdebuglist);
8b93c638 2749}
8756216b 2750
54333c3b 2751/* Invalidate varobj VAR if it is tied to locals and re-create it if it is
4e969b4f
AB
2752 defined on globals. It is a helper for varobj_invalidate.
2753
2754 This function is called after changing the symbol file, in this case the
2755 pointers to "struct type" stored by the varobj are no longer valid. All
2756 varobj must be either re-evaluated, or marked as invalid here. */
2dbd25e5 2757
54333c3b
JK
2758static void
2759varobj_invalidate_iter (struct varobj *var, void *unused)
8756216b 2760{
4e969b4f
AB
2761 /* global and floating var must be re-evaluated. */
2762 if (var->root->floating || var->root->valid_block == NULL)
2dbd25e5 2763 {
54333c3b 2764 struct varobj *tmp_var;
2dbd25e5 2765
54333c3b
JK
2766 /* Try to create a varobj with same expression. If we succeed
2767 replace the old varobj, otherwise invalidate it. */
2768 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2769 USE_CURRENT_FRAME);
2770 if (tmp_var != NULL)
2771 {
2772 tmp_var->obj_name = xstrdup (var->obj_name);
2773 varobj_delete (var, NULL, 0);
2774 install_variable (tmp_var);
2dbd25e5 2775 }
54333c3b
JK
2776 else
2777 var->root->is_valid = 0;
2dbd25e5 2778 }
54333c3b
JK
2779 else /* locals must be invalidated. */
2780 var->root->is_valid = 0;
2781}
2782
2783/* Invalidate the varobjs that are tied to locals and re-create the ones that
2784 are defined on globals.
2785 Invalidated varobjs will be always printed in_scope="invalid". */
2786
2787void
2788varobj_invalidate (void)
2789{
2790 all_root_varobjs (varobj_invalidate_iter, NULL);
8756216b 2791}