]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/varobj.c
2007-08-08 Michael Snyder <msnyder@access-company.com>
[thirdparty/binutils-gdb.git] / gdb / varobj.c
CommitLineData
8b93c638 1/* Implementation of the GDB variable objects API.
bc8332bb 2
6aba47ca 3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
1ecb4ee0 4 Free Software Foundation, Inc.
8b93c638
JM
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
197e01b6
EZ
18 Foundation, Inc., 51 Franklin Street, Fifth Floor,
19 Boston, MA 02110-1301, USA. */
8b93c638
JM
20
21#include "defs.h"
a6c442d8 22#include "exceptions.h"
8b93c638
JM
23#include "value.h"
24#include "expression.h"
25#include "frame.h"
8b93c638
JM
26#include "language.h"
27#include "wrapper.h"
28#include "gdbcmd.h"
d2353924 29#include "block.h"
a6c442d8
MK
30
31#include "gdb_assert.h"
b66d6d2e 32#include "gdb_string.h"
8b93c638
JM
33
34#include "varobj.h"
28335dcc 35#include "vec.h"
8b93c638
JM
36
37/* Non-zero if we want to see trace of varobj level stuff. */
38
39int varobjdebug = 0;
920d2a44
AC
40static void
41show_varobjdebug (struct ui_file *file, int from_tty,
42 struct cmd_list_element *c, const char *value)
43{
44 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
45}
8b93c638
JM
46
47/* String representations of gdb's format codes */
48char *varobj_format_string[] =
72330bd6 49 { "natural", "binary", "decimal", "hexadecimal", "octal" };
8b93c638
JM
50
51/* String representations of gdb's known languages */
72330bd6 52char *varobj_language_string[] = { "unknown", "C", "C++", "Java" };
8b93c638
JM
53
54/* Data structures */
55
56/* Every root variable has one of these structures saved in its
57 varobj. Members which must be free'd are noted. */
58struct varobj_root
72330bd6 59{
8b93c638 60
72330bd6
AC
61 /* Alloc'd expression for this parent. */
62 struct expression *exp;
8b93c638 63
72330bd6
AC
64 /* Block for which this expression is valid */
65 struct block *valid_block;
8b93c638 66
72330bd6 67 /* The frame for this expression */
e64d9b3d 68 struct frame_id frame;
8b93c638 69
72330bd6
AC
70 /* If 1, "update" always recomputes the frame & valid block
71 using the currently selected frame. */
72 int use_selected_frame;
73a93a32 73
8756216b
DP
74 /* Flag that indicates validity: set to 0 when this varobj_root refers
75 to symbols that do not exist anymore. */
76 int is_valid;
77
72330bd6
AC
78 /* Language info for this variable and its children */
79 struct language_specific *lang;
8b93c638 80
72330bd6
AC
81 /* The varobj for this root node. */
82 struct varobj *rootvar;
8b93c638 83
72330bd6
AC
84 /* Next root variable */
85 struct varobj_root *next;
86};
8b93c638 87
28335dcc
VP
88typedef struct varobj *varobj_p;
89
90DEF_VEC_P (varobj_p);
91
8b93c638
JM
92/* Every variable in the system has a structure of this type defined
93 for it. This structure holds all information necessary to manipulate
94 a particular object variable. Members which must be freed are noted. */
95struct varobj
72330bd6 96{
8b93c638 97
72330bd6
AC
98 /* Alloc'd name of the variable for this object.. If this variable is a
99 child, then this name will be the child's source name.
100 (bar, not foo.bar) */
101 /* NOTE: This is the "expression" */
102 char *name;
8b93c638 103
72330bd6
AC
104 /* The alloc'd name for this variable's object. This is here for
105 convenience when constructing this object's children. */
106 char *obj_name;
8b93c638 107
72330bd6
AC
108 /* Index of this variable in its parent or -1 */
109 int index;
8b93c638 110
72330bd6
AC
111 /* The type of this variable. This may NEVER be NULL. */
112 struct type *type;
8b93c638 113
b20d8971
VP
114 /* The value of this expression or subexpression. A NULL value
115 indicates there was an error getting this value.
b2c2bd75
VP
116 Invariant: if varobj_value_is_changeable_p (this) is non-zero,
117 the value is either NULL, or not lazy. */
30b28db1 118 struct value *value;
8b93c638 119
72330bd6
AC
120 /* The number of (immediate) children this variable has */
121 int num_children;
8b93c638 122
72330bd6
AC
123 /* If this object is a child, this points to its immediate parent. */
124 struct varobj *parent;
8b93c638 125
28335dcc
VP
126 /* Children of this object. */
127 VEC (varobj_p) *children;
8b93c638 128
72330bd6
AC
129 /* Description of the root variable. Points to root variable for children. */
130 struct varobj_root *root;
8b93c638 131
72330bd6
AC
132 /* The format of the output for this object */
133 enum varobj_display_formats format;
fb9b6b35
JJ
134
135 /* Was this variable updated via a varobj_set_value operation */
136 int updated;
85265413
NR
137
138 /* Last print value. */
139 char *print_value;
25d5ea92
VP
140
141 /* Is this variable frozen. Frozen variables are never implicitly
142 updated by -var-update *
143 or -var-update <direct-or-indirect-parent>. */
144 int frozen;
145
146 /* Is the value of this variable intentionally not fetched? It is
147 not fetched if either the variable is frozen, or any parents is
148 frozen. */
149 int not_fetched;
72330bd6 150};
8b93c638 151
8b93c638 152struct cpstack
72330bd6
AC
153{
154 char *name;
155 struct cpstack *next;
156};
8b93c638
JM
157
158/* A list of varobjs */
159
160struct vlist
72330bd6
AC
161{
162 struct varobj *var;
163 struct vlist *next;
164};
8b93c638
JM
165
166/* Private function prototypes */
167
168/* Helper functions for the above subcommands. */
169
a14ed312 170static int delete_variable (struct cpstack **, struct varobj *, int);
8b93c638 171
a14ed312
KB
172static void delete_variable_1 (struct cpstack **, int *,
173 struct varobj *, int, int);
8b93c638 174
a14ed312 175static int install_variable (struct varobj *);
8b93c638 176
a14ed312 177static void uninstall_variable (struct varobj *);
8b93c638 178
a14ed312 179static struct varobj *create_child (struct varobj *, int, char *);
8b93c638 180
8b93c638
JM
181/* Utility routines */
182
a14ed312 183static struct varobj *new_variable (void);
8b93c638 184
a14ed312 185static struct varobj *new_root_variable (void);
8b93c638 186
a14ed312 187static void free_variable (struct varobj *var);
8b93c638 188
74b7792f
AC
189static struct cleanup *make_cleanup_free_variable (struct varobj *var);
190
a14ed312 191static struct type *get_type (struct varobj *var);
8b93c638 192
6e2a9270
VP
193static struct type *get_value_type (struct varobj *var);
194
a14ed312 195static struct type *get_target_type (struct type *);
8b93c638 196
a14ed312 197static enum varobj_display_formats variable_default_display (struct varobj *);
8b93c638 198
a14ed312 199static void cppush (struct cpstack **pstack, char *name);
8b93c638 200
a14ed312 201static char *cppop (struct cpstack **pstack);
8b93c638 202
acd65feb
VP
203static int install_new_value (struct varobj *var, struct value *value,
204 int initial);
205
8b93c638
JM
206/* Language-specific routines. */
207
a14ed312 208static enum varobj_languages variable_language (struct varobj *var);
8b93c638 209
a14ed312 210static int number_of_children (struct varobj *);
8b93c638 211
a14ed312 212static char *name_of_variable (struct varobj *);
8b93c638 213
a14ed312 214static char *name_of_child (struct varobj *, int);
8b93c638 215
30b28db1 216static struct value *value_of_root (struct varobj **var_handle, int *);
8b93c638 217
30b28db1 218static struct value *value_of_child (struct varobj *parent, int index);
8b93c638 219
a14ed312 220static int variable_editable (struct varobj *var);
8b93c638 221
a14ed312 222static char *my_value_of_variable (struct varobj *var);
8b93c638 223
85265413
NR
224static char *value_get_print_value (struct value *value,
225 enum varobj_display_formats format);
226
b2c2bd75
VP
227static int varobj_value_is_changeable_p (struct varobj *var);
228
229static int is_root_p (struct varobj *var);
8b93c638
JM
230
231/* C implementation */
232
a14ed312 233static int c_number_of_children (struct varobj *var);
8b93c638 234
a14ed312 235static char *c_name_of_variable (struct varobj *parent);
8b93c638 236
a14ed312 237static char *c_name_of_child (struct varobj *parent, int index);
8b93c638 238
30b28db1 239static struct value *c_value_of_root (struct varobj **var_handle);
8b93c638 240
30b28db1 241static struct value *c_value_of_child (struct varobj *parent, int index);
8b93c638 242
a14ed312 243static struct type *c_type_of_child (struct varobj *parent, int index);
8b93c638 244
a14ed312 245static int c_variable_editable (struct varobj *var);
8b93c638 246
a14ed312 247static char *c_value_of_variable (struct varobj *var);
8b93c638
JM
248
249/* C++ implementation */
250
a14ed312 251static int cplus_number_of_children (struct varobj *var);
8b93c638 252
a14ed312 253static void cplus_class_num_children (struct type *type, int children[3]);
8b93c638 254
a14ed312 255static char *cplus_name_of_variable (struct varobj *parent);
8b93c638 256
a14ed312 257static char *cplus_name_of_child (struct varobj *parent, int index);
8b93c638 258
30b28db1 259static struct value *cplus_value_of_root (struct varobj **var_handle);
8b93c638 260
30b28db1 261static struct value *cplus_value_of_child (struct varobj *parent, int index);
8b93c638 262
a14ed312 263static struct type *cplus_type_of_child (struct varobj *parent, int index);
8b93c638 264
a14ed312 265static int cplus_variable_editable (struct varobj *var);
8b93c638 266
a14ed312 267static char *cplus_value_of_variable (struct varobj *var);
8b93c638
JM
268
269/* Java implementation */
270
a14ed312 271static int java_number_of_children (struct varobj *var);
8b93c638 272
a14ed312 273static char *java_name_of_variable (struct varobj *parent);
8b93c638 274
a14ed312 275static char *java_name_of_child (struct varobj *parent, int index);
8b93c638 276
30b28db1 277static struct value *java_value_of_root (struct varobj **var_handle);
8b93c638 278
30b28db1 279static struct value *java_value_of_child (struct varobj *parent, int index);
8b93c638 280
a14ed312 281static struct type *java_type_of_child (struct varobj *parent, int index);
8b93c638 282
a14ed312 283static int java_variable_editable (struct varobj *var);
8b93c638 284
a14ed312 285static char *java_value_of_variable (struct varobj *var);
8b93c638
JM
286
287/* The language specific vector */
288
289struct language_specific
72330bd6 290{
8b93c638 291
72330bd6
AC
292 /* The language of this variable */
293 enum varobj_languages language;
8b93c638 294
72330bd6
AC
295 /* The number of children of PARENT. */
296 int (*number_of_children) (struct varobj * parent);
8b93c638 297
72330bd6
AC
298 /* The name (expression) of a root varobj. */
299 char *(*name_of_variable) (struct varobj * parent);
8b93c638 300
72330bd6
AC
301 /* The name of the INDEX'th child of PARENT. */
302 char *(*name_of_child) (struct varobj * parent, int index);
8b93c638 303
30b28db1
AC
304 /* The ``struct value *'' of the root variable ROOT. */
305 struct value *(*value_of_root) (struct varobj ** root_handle);
8b93c638 306
30b28db1
AC
307 /* The ``struct value *'' of the INDEX'th child of PARENT. */
308 struct value *(*value_of_child) (struct varobj * parent, int index);
8b93c638 309
72330bd6
AC
310 /* The type of the INDEX'th child of PARENT. */
311 struct type *(*type_of_child) (struct varobj * parent, int index);
8b93c638 312
72330bd6
AC
313 /* Is VAR editable? */
314 int (*variable_editable) (struct varobj * var);
8b93c638 315
72330bd6
AC
316 /* The current value of VAR. */
317 char *(*value_of_variable) (struct varobj * var);
318};
8b93c638
JM
319
320/* Array of known source language routines. */
d5d6fca5 321static struct language_specific languages[vlang_end] = {
8b93c638
JM
322 /* Unknown (try treating as C */
323 {
72330bd6
AC
324 vlang_unknown,
325 c_number_of_children,
326 c_name_of_variable,
327 c_name_of_child,
328 c_value_of_root,
329 c_value_of_child,
330 c_type_of_child,
331 c_variable_editable,
332 c_value_of_variable}
8b93c638
JM
333 ,
334 /* C */
335 {
72330bd6
AC
336 vlang_c,
337 c_number_of_children,
338 c_name_of_variable,
339 c_name_of_child,
340 c_value_of_root,
341 c_value_of_child,
342 c_type_of_child,
343 c_variable_editable,
344 c_value_of_variable}
8b93c638
JM
345 ,
346 /* C++ */
347 {
72330bd6
AC
348 vlang_cplus,
349 cplus_number_of_children,
350 cplus_name_of_variable,
351 cplus_name_of_child,
352 cplus_value_of_root,
353 cplus_value_of_child,
354 cplus_type_of_child,
355 cplus_variable_editable,
356 cplus_value_of_variable}
8b93c638
JM
357 ,
358 /* Java */
359 {
72330bd6
AC
360 vlang_java,
361 java_number_of_children,
362 java_name_of_variable,
363 java_name_of_child,
364 java_value_of_root,
365 java_value_of_child,
366 java_type_of_child,
367 java_variable_editable,
368 java_value_of_variable}
8b93c638
JM
369};
370
371/* A little convenience enum for dealing with C++/Java */
372enum vsections
72330bd6
AC
373{
374 v_public = 0, v_private, v_protected
375};
8b93c638
JM
376
377/* Private data */
378
379/* Mappings of varobj_display_formats enums to gdb's format codes */
72330bd6 380static int format_code[] = { 0, 't', 'd', 'x', 'o' };
8b93c638
JM
381
382/* Header of the list of root variable objects */
383static struct varobj_root *rootlist;
384static int rootcount = 0; /* number of root varobjs in the list */
385
386/* Prime number indicating the number of buckets in the hash table */
387/* A prime large enough to avoid too many colisions */
388#define VAROBJ_TABLE_SIZE 227
389
390/* Pointer to the varobj hash table (built at run time) */
391static struct vlist **varobj_table;
392
8b93c638
JM
393/* Is the variable X one of our "fake" children? */
394#define CPLUS_FAKE_CHILD(x) \
395((x) != NULL && (x)->type == NULL && (x)->value == NULL)
396\f
397
398/* API Implementation */
b2c2bd75
VP
399static int
400is_root_p (struct varobj *var)
401{
402 return (var->root->rootvar == var);
403}
8b93c638
JM
404
405/* Creates a varobj (not its children) */
406
7d8547c9
AC
407/* Return the full FRAME which corresponds to the given CORE_ADDR
408 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
409
410static struct frame_info *
411find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
412{
413 struct frame_info *frame = NULL;
414
415 if (frame_addr == (CORE_ADDR) 0)
416 return NULL;
417
418 while (1)
419 {
420 frame = get_prev_frame (frame);
421 if (frame == NULL)
422 return NULL;
eb5492fa 423 if (get_frame_base_address (frame) == frame_addr)
7d8547c9
AC
424 return frame;
425 }
426}
427
8b93c638
JM
428struct varobj *
429varobj_create (char *objname,
72330bd6 430 char *expression, CORE_ADDR frame, enum varobj_type type)
8b93c638
JM
431{
432 struct varobj *var;
2c67cb8b
AC
433 struct frame_info *fi;
434 struct frame_info *old_fi = NULL;
8b93c638
JM
435 struct block *block;
436 struct cleanup *old_chain;
437
438 /* Fill out a varobj structure for the (root) variable being constructed. */
439 var = new_root_variable ();
74b7792f 440 old_chain = make_cleanup_free_variable (var);
8b93c638
JM
441
442 if (expression != NULL)
443 {
444 char *p;
445 enum varobj_languages lang;
e55dccf0 446 struct value *value = NULL;
8b93c638
JM
447
448 /* Parse and evaluate the expression, filling in as much
449 of the variable's data as possible */
450
451 /* Allow creator to specify context of variable */
72330bd6 452 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
206415a3 453 fi = deprecated_safe_get_selected_frame ();
8b93c638 454 else
7d8547c9
AC
455 /* FIXME: cagney/2002-11-23: This code should be doing a
456 lookup using the frame ID and not just the frame's
457 ``address''. This, of course, means an interface change.
458 However, with out that interface change ISAs, such as the
459 ia64 with its two stacks, won't work. Similar goes for the
460 case where there is a frameless function. */
8b93c638
JM
461 fi = find_frame_addr_in_frame_chain (frame);
462
73a93a32
JI
463 /* frame = -2 means always use selected frame */
464 if (type == USE_SELECTED_FRAME)
465 var->root->use_selected_frame = 1;
466
8b93c638
JM
467 block = NULL;
468 if (fi != NULL)
ae767bfb 469 block = get_frame_block (fi, 0);
8b93c638
JM
470
471 p = expression;
472 innermost_block = NULL;
73a93a32
JI
473 /* Wrap the call to parse expression, so we can
474 return a sensible error. */
475 if (!gdb_parse_exp_1 (&p, block, 0, &var->root->exp))
476 {
477 return NULL;
478 }
8b93c638
JM
479
480 /* Don't allow variables to be created for types. */
481 if (var->root->exp->elts[0].opcode == OP_TYPE)
482 {
483 do_cleanups (old_chain);
bc8332bb
AC
484 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
485 " as an expression.\n");
8b93c638
JM
486 return NULL;
487 }
488
489 var->format = variable_default_display (var);
490 var->root->valid_block = innermost_block;
491 var->name = savestring (expression, strlen (expression));
492
493 /* When the frame is different from the current frame,
494 we must select the appropriate frame before parsing
495 the expression, otherwise the value will not be current.
496 Since select_frame is so benign, just call it for all cases. */
497 if (fi != NULL)
498 {
7a424e99 499 var->root->frame = get_frame_id (fi);
206415a3 500 old_fi = get_selected_frame (NULL);
0f7d239c 501 select_frame (fi);
8b93c638
JM
502 }
503
504 /* We definitively need to catch errors here.
505 If evaluate_expression succeeds we got the value we wanted.
506 But if it fails, we still go on with a call to evaluate_type() */
acd65feb 507 if (!gdb_evaluate_expression (var->root->exp, &value))
e55dccf0
VP
508 {
509 /* Error getting the value. Try to at least get the
510 right type. */
511 struct value *type_only_value = evaluate_type (var->root->exp);
512 var->type = value_type (type_only_value);
513 }
514 else
515 var->type = value_type (value);
acd65feb 516
acd65feb 517 install_new_value (var, value, 1 /* Initial assignment */);
8b93c638
JM
518
519 /* Set language info */
520 lang = variable_language (var);
d5d6fca5 521 var->root->lang = &languages[lang];
8b93c638
JM
522
523 /* Set ourselves as our root */
524 var->root->rootvar = var;
525
526 /* Reset the selected frame */
527 if (fi != NULL)
0f7d239c 528 select_frame (old_fi);
8b93c638
JM
529 }
530
73a93a32
JI
531 /* If the variable object name is null, that means this
532 is a temporary variable, so don't install it. */
533
534 if ((var != NULL) && (objname != NULL))
8b93c638
JM
535 {
536 var->obj_name = savestring (objname, strlen (objname));
537
538 /* If a varobj name is duplicated, the install will fail so
539 we must clenup */
540 if (!install_variable (var))
541 {
542 do_cleanups (old_chain);
543 return NULL;
544 }
545 }
546
547 discard_cleanups (old_chain);
548 return var;
549}
550
551/* Generates an unique name that can be used for a varobj */
552
553char *
554varobj_gen_name (void)
555{
556 static int id = 0;
e64d9b3d 557 char *obj_name;
8b93c638
JM
558
559 /* generate a name for this object */
560 id++;
b435e160 561 obj_name = xstrprintf ("var%d", id);
8b93c638 562
e64d9b3d 563 return obj_name;
8b93c638
JM
564}
565
566/* Given an "objname", returns the pointer to the corresponding varobj
567 or NULL if not found */
568
569struct varobj *
570varobj_get_handle (char *objname)
571{
572 struct vlist *cv;
573 const char *chp;
574 unsigned int index = 0;
575 unsigned int i = 1;
576
577 for (chp = objname; *chp; chp++)
578 {
579 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
580 }
581
582 cv = *(varobj_table + index);
583 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
584 cv = cv->next;
585
586 if (cv == NULL)
8a3fe4f8 587 error (_("Variable object not found"));
8b93c638
JM
588
589 return cv->var;
590}
591
592/* Given the handle, return the name of the object */
593
594char *
595varobj_get_objname (struct varobj *var)
596{
597 return var->obj_name;
598}
599
600/* Given the handle, return the expression represented by the object */
601
602char *
603varobj_get_expression (struct varobj *var)
604{
605 return name_of_variable (var);
606}
607
608/* Deletes a varobj and all its children if only_children == 0,
609 otherwise deletes only the children; returns a malloc'ed list of all the
610 (malloc'ed) names of the variables that have been deleted (NULL terminated) */
611
612int
613varobj_delete (struct varobj *var, char ***dellist, int only_children)
614{
615 int delcount;
616 int mycount;
617 struct cpstack *result = NULL;
618 char **cp;
619
620 /* Initialize a stack for temporary results */
621 cppush (&result, NULL);
622
623 if (only_children)
624 /* Delete only the variable children */
625 delcount = delete_variable (&result, var, 1 /* only the children */ );
626 else
627 /* Delete the variable and all its children */
628 delcount = delete_variable (&result, var, 0 /* parent+children */ );
629
630 /* We may have been asked to return a list of what has been deleted */
631 if (dellist != NULL)
632 {
633 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
634
635 cp = *dellist;
636 mycount = delcount;
637 *cp = cppop (&result);
638 while ((*cp != NULL) && (mycount > 0))
639 {
640 mycount--;
641 cp++;
642 *cp = cppop (&result);
643 }
644
645 if (mycount || (*cp != NULL))
8a3fe4f8 646 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
72330bd6 647 mycount);
8b93c638
JM
648 }
649
650 return delcount;
651}
652
653/* Set/Get variable object display format */
654
655enum varobj_display_formats
656varobj_set_display_format (struct varobj *var,
657 enum varobj_display_formats format)
658{
659 switch (format)
660 {
661 case FORMAT_NATURAL:
662 case FORMAT_BINARY:
663 case FORMAT_DECIMAL:
664 case FORMAT_HEXADECIMAL:
665 case FORMAT_OCTAL:
666 var->format = format;
667 break;
668
669 default:
670 var->format = variable_default_display (var);
671 }
672
673 return var->format;
674}
675
676enum varobj_display_formats
677varobj_get_display_format (struct varobj *var)
678{
679 return var->format;
680}
681
25d5ea92
VP
682void
683varobj_set_frozen (struct varobj *var, int frozen)
684{
685 /* When a variable is unfrozen, we don't fetch its value.
686 The 'not_fetched' flag remains set, so next -var-update
687 won't complain.
688
689 We don't fetch the value, because for structures the client
690 should do -var-update anyway. It would be bad to have different
691 client-size logic for structure and other types. */
692 var->frozen = frozen;
693}
694
695int
696varobj_get_frozen (struct varobj *var)
697{
698 return var->frozen;
699}
700
701
8b93c638
JM
702int
703varobj_get_num_children (struct varobj *var)
704{
705 if (var->num_children == -1)
706 var->num_children = number_of_children (var);
707
708 return var->num_children;
709}
710
711/* Creates a list of the immediate children of a variable object;
712 the return code is the number of such children or -1 on error */
713
714int
715varobj_list_children (struct varobj *var, struct varobj ***childlist)
716{
717 struct varobj *child;
718 char *name;
719 int i;
720
721 /* sanity check: have we been passed a pointer? */
722 if (childlist == NULL)
723 return -1;
724
725 *childlist = NULL;
726
727 if (var->num_children == -1)
728 var->num_children = number_of_children (var);
729
74a44383
DJ
730 /* If that failed, give up. */
731 if (var->num_children == -1)
732 return -1;
733
28335dcc
VP
734 /* If we're called when the list of children is not yet initialized,
735 allocate enough elements in it. */
736 while (VEC_length (varobj_p, var->children) < var->num_children)
737 VEC_safe_push (varobj_p, var->children, NULL);
738
8b93c638
JM
739 /* List of children */
740 *childlist = xmalloc ((var->num_children + 1) * sizeof (struct varobj *));
741
742 for (i = 0; i < var->num_children; i++)
743 {
28335dcc
VP
744 varobj_p existing;
745
8b93c638
JM
746 /* Mark as the end in case we bail out */
747 *((*childlist) + i) = NULL;
748
28335dcc
VP
749 existing = VEC_index (varobj_p, var->children, i);
750
751 if (existing == NULL)
752 {
753 /* Either it's the first call to varobj_list_children for
754 this variable object, and the child was never created,
755 or it was explicitly deleted by the client. */
756 name = name_of_child (var, i);
757 existing = create_child (var, i, name);
758 VEC_replace (varobj_p, var->children, i, existing);
759 }
8b93c638 760
28335dcc 761 *((*childlist) + i) = existing;
8b93c638
JM
762 }
763
764 /* End of list is marked by a NULL pointer */
765 *((*childlist) + i) = NULL;
766
767 return var->num_children;
768}
769
770/* Obtain the type of an object Variable as a string similar to the one gdb
771 prints on the console */
772
773char *
774varobj_get_type (struct varobj *var)
775{
30b28db1 776 struct value *val;
8b93c638
JM
777 struct cleanup *old_chain;
778 struct ui_file *stb;
779 char *thetype;
780 long length;
781
782 /* For the "fake" variables, do not return a type. (It's type is
8756216b
DP
783 NULL, too.)
784 Do not return a type for invalid variables as well. */
785 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
8b93c638
JM
786 return NULL;
787
788 stb = mem_fileopen ();
789 old_chain = make_cleanup_ui_file_delete (stb);
790
30b28db1 791 /* To print the type, we simply create a zero ``struct value *'' and
8b93c638
JM
792 cast it to our type. We then typeprint this variable. */
793 val = value_zero (var->type, not_lval);
df407dfe 794 type_print (value_type (val), "", stb, -1);
8b93c638
JM
795
796 thetype = ui_file_xstrdup (stb, &length);
797 do_cleanups (old_chain);
798 return thetype;
799}
800
1ecb4ee0
DJ
801/* Obtain the type of an object variable. */
802
803struct type *
804varobj_get_gdb_type (struct varobj *var)
805{
806 return var->type;
807}
808
8b93c638
JM
809enum varobj_languages
810varobj_get_language (struct varobj *var)
811{
812 return variable_language (var);
813}
814
815int
816varobj_get_attributes (struct varobj *var)
817{
818 int attributes = 0;
819
8756216b 820 if (var->root->is_valid && variable_editable (var))
8b93c638
JM
821 /* FIXME: define masks for attributes */
822 attributes |= 0x00000001; /* Editable */
823
824 return attributes;
825}
826
827char *
828varobj_get_value (struct varobj *var)
829{
830 return my_value_of_variable (var);
831}
832
833/* Set the value of an object variable (if it is editable) to the
834 value of the given expression */
835/* Note: Invokes functions that can call error() */
836
837int
838varobj_set_value (struct varobj *var, char *expression)
839{
30b28db1 840 struct value *val;
8b93c638 841 int offset = 0;
a6c442d8 842 int error = 0;
8b93c638
JM
843
844 /* The argument "expression" contains the variable's new value.
845 We need to first construct a legal expression for this -- ugh! */
846 /* Does this cover all the bases? */
847 struct expression *exp;
30b28db1 848 struct value *value;
8b93c638
JM
849 int saved_input_radix = input_radix;
850
b20d8971 851 if (var->value != NULL && variable_editable (var))
8b93c638
JM
852 {
853 char *s = expression;
854 int i;
8b93c638
JM
855
856 input_radix = 10; /* ALWAYS reset to decimal temporarily */
7a24eb7c 857 exp = parse_exp_1 (&s, 0, 0);
8b93c638
JM
858 if (!gdb_evaluate_expression (exp, &value))
859 {
860 /* We cannot proceed without a valid expression. */
8038e1e2 861 xfree (exp);
8b93c638
JM
862 return 0;
863 }
864
acd65feb 865 /* All types that are editable must also be changeable. */
b2c2bd75 866 gdb_assert (varobj_value_is_changeable_p (var));
acd65feb
VP
867
868 /* The value of a changeable variable object must not be lazy. */
869 gdb_assert (!value_lazy (var->value));
870
871 /* Need to coerce the input. We want to check if the
872 value of the variable object will be different
873 after assignment, and the first thing value_assign
874 does is coerce the input.
875 For example, if we are assigning an array to a pointer variable we
876 should compare the pointer with the the array's address, not with the
877 array's content. */
878 value = coerce_array (value);
879
acd65feb
VP
880 /* The new value may be lazy. gdb_value_assign, or
881 rather value_contents, will take care of this.
882 If fetching of the new value will fail, gdb_value_assign
883 with catch the exception. */
575bbeb6 884 if (!gdb_value_assign (var->value, value, &val))
8a1a0112 885 return 0;
b26ed50d 886
ae097835
VP
887 /* If the value has changed, record it, so that next -var-update can
888 report this change. If a variable had a value of '1', we've set it
889 to '333' and then set again to '1', when -var-update will report this
890 variable as changed -- because the first assignment has set the
891 'updated' flag. There's no need to optimize that, because return value
892 of -var-update should be considered an approximation. */
893 var->updated = install_new_value (var, val, 0 /* Compare values. */);
8b93c638
JM
894 input_radix = saved_input_radix;
895 return 1;
896 }
897
898 return 0;
899}
900
901/* Returns a malloc'ed list with all root variable objects */
902int
903varobj_list (struct varobj ***varlist)
904{
905 struct varobj **cv;
906 struct varobj_root *croot;
907 int mycount = rootcount;
908
909 /* Alloc (rootcount + 1) entries for the result */
910 *varlist = xmalloc ((rootcount + 1) * sizeof (struct varobj *));
911
912 cv = *varlist;
913 croot = rootlist;
914 while ((croot != NULL) && (mycount > 0))
915 {
916 *cv = croot->rootvar;
917 mycount--;
918 cv++;
919 croot = croot->next;
920 }
921 /* Mark the end of the list */
922 *cv = NULL;
923
924 if (mycount || (croot != NULL))
72330bd6
AC
925 warning
926 ("varobj_list: assertion failed - wrong tally of root vars (%d:%d)",
927 rootcount, mycount);
8b93c638
JM
928
929 return rootcount;
930}
931
acd65feb
VP
932/* Assign a new value to a variable object. If INITIAL is non-zero,
933 this is the first assignement after the variable object was just
934 created, or changed type. In that case, just assign the value
935 and return 0.
936 Otherwise, assign the value and if type_changeable returns non-zero,
937 find if the new value is different from the current value.
b26ed50d
VP
938 Return 1 if so, and 0 if the values are equal.
939
940 The VALUE parameter should not be released -- the function will
941 take care of releasing it when needed. */
acd65feb
VP
942static int
943install_new_value (struct varobj *var, struct value *value, int initial)
944{
945 int changeable;
946 int need_to_fetch;
947 int changed = 0;
25d5ea92 948 int intentionally_not_fetched = 0;
acd65feb 949
acd65feb
VP
950 /* We need to know the varobj's type to decide if the value should
951 be fetched or not. C++ fake children (public/protected/private) don't have
952 a type. */
953 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
b2c2bd75 954 changeable = varobj_value_is_changeable_p (var);
acd65feb
VP
955 need_to_fetch = changeable;
956
b26ed50d
VP
957 /* We are not interested in the address of references, and given
958 that in C++ a reference is not rebindable, it cannot
959 meaningfully change. So, get hold of the real value. */
960 if (value)
961 {
962 value = coerce_ref (value);
963 release_value (value);
964 }
965
acd65feb
VP
966 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
967 /* For unions, we need to fetch the value implicitly because
968 of implementation of union member fetch. When gdb
969 creates a value for a field and the value of the enclosing
970 structure is not lazy, it immediately copies the necessary
971 bytes from the enclosing values. If the enclosing value is
972 lazy, the call to value_fetch_lazy on the field will read
973 the data from memory. For unions, that means we'll read the
974 same memory more than once, which is not desirable. So
975 fetch now. */
976 need_to_fetch = 1;
977
978 /* The new value might be lazy. If the type is changeable,
979 that is we'll be comparing values of this type, fetch the
980 value now. Otherwise, on the next update the old value
981 will be lazy, which means we've lost that old value. */
982 if (need_to_fetch && value && value_lazy (value))
983 {
25d5ea92
VP
984 struct varobj *parent = var->parent;
985 int frozen = var->frozen;
986 for (; !frozen && parent; parent = parent->parent)
987 frozen |= parent->frozen;
988
989 if (frozen && initial)
990 {
991 /* For variables that are frozen, or are children of frozen
992 variables, we don't do fetch on initial assignment.
993 For non-initial assignemnt we do the fetch, since it means we're
994 explicitly asked to compare the new value with the old one. */
995 intentionally_not_fetched = 1;
996 }
997 else if (!gdb_value_fetch_lazy (value))
acd65feb 998 {
acd65feb
VP
999 /* Set the value to NULL, so that for the next -var-update,
1000 we don't try to compare the new value with this value,
1001 that we couldn't even read. */
1002 value = NULL;
1003 }
acd65feb
VP
1004 }
1005
1006 /* If the type is changeable, compare the old and the new values.
1007 If this is the initial assignment, we don't have any old value
1008 to compare with. */
7af9851d 1009 if (initial && changeable)
85265413
NR
1010 var->print_value = value_get_print_value (value, var->format);
1011 else if (changeable)
acd65feb
VP
1012 {
1013 /* If the value of the varobj was changed by -var-set-value, then the
1014 value in the varobj and in the target is the same. However, that value
1015 is different from the value that the varobj had after the previous
57e66780 1016 -var-update. So need to the varobj as changed. */
acd65feb 1017 if (var->updated)
57e66780
DJ
1018 {
1019 xfree (var->print_value);
1020 var->print_value = value_get_print_value (value, var->format);
1021 changed = 1;
1022 }
acd65feb
VP
1023 else
1024 {
1025 /* Try to compare the values. That requires that both
1026 values are non-lazy. */
25d5ea92
VP
1027 if (var->not_fetched && value_lazy (var->value))
1028 {
1029 /* This is a frozen varobj and the value was never read.
1030 Presumably, UI shows some "never read" indicator.
1031 Now that we've fetched the real value, we need to report
1032 this varobj as changed so that UI can show the real
1033 value. */
1034 changed = 1;
1035 }
1036 else if (var->value == NULL && value == NULL)
acd65feb
VP
1037 /* Equal. */
1038 ;
1039 else if (var->value == NULL || value == NULL)
57e66780
DJ
1040 {
1041 xfree (var->print_value);
1042 var->print_value = value_get_print_value (value, var->format);
1043 changed = 1;
1044 }
acd65feb
VP
1045 else
1046 {
85265413 1047 char *print_value;
acd65feb
VP
1048 gdb_assert (!value_lazy (var->value));
1049 gdb_assert (!value_lazy (value));
85265413
NR
1050 print_value = value_get_print_value (value, var->format);
1051
57e66780 1052 gdb_assert (var->print_value != NULL && print_value != NULL);
85265413
NR
1053 if (strcmp (var->print_value, print_value) != 0)
1054 {
1055 xfree (var->print_value);
1056 var->print_value = print_value;
1057 changed = 1;
1058 }
1059 else
1060 xfree (print_value);
acd65feb
VP
1061 }
1062 }
1063 }
85265413 1064
acd65feb 1065 /* We must always keep the new value, since children depend on it. */
25d5ea92 1066 if (var->value != NULL && var->value != value)
acd65feb
VP
1067 value_free (var->value);
1068 var->value = value;
25d5ea92
VP
1069 if (value && value_lazy (value) && intentionally_not_fetched)
1070 var->not_fetched = 1;
1071 else
1072 var->not_fetched = 0;
acd65feb 1073 var->updated = 0;
85265413 1074
b26ed50d 1075 gdb_assert (!var->value || value_type (var->value));
acd65feb
VP
1076
1077 return changed;
1078}
acd65feb 1079
8b93c638
JM
1080/* Update the values for a variable and its children. This is a
1081 two-pronged attack. First, re-parse the value for the root's
1082 expression to see if it's changed. Then go all the way
1083 through its children, reconstructing them and noting if they've
1084 changed.
8756216b
DP
1085 Return value:
1086 < 0 for error values, see varobj.h.
1087 Otherwise it is the number of children + parent changed.
8b93c638 1088
25d5ea92
VP
1089 The EXPLICIT parameter specifies if this call is result
1090 of MI request to update this specific variable, or
1091 result of implicit -var-update *. For implicit request, we don't
1092 update frozen variables.
705da579
KS
1093
1094 NOTE: This function may delete the caller's varobj. If it
8756216b
DP
1095 returns TYPE_CHANGED, then it has done this and VARP will be modified
1096 to point to the new varobj. */
8b93c638
JM
1097
1098int
25d5ea92
VP
1099varobj_update (struct varobj **varp, struct varobj ***changelist,
1100 int explicit)
8b93c638
JM
1101{
1102 int changed = 0;
25d5ea92 1103 int type_changed = 0;
8b93c638
JM
1104 int i;
1105 int vleft;
8b93c638
JM
1106 struct varobj *v;
1107 struct varobj **cv;
2c67cb8b 1108 struct varobj **templist = NULL;
30b28db1 1109 struct value *new;
28335dcc
VP
1110 VEC (varobj_p) *stack = NULL;
1111 VEC (varobj_p) *result = NULL;
e64d9b3d
MH
1112 struct frame_id old_fid;
1113 struct frame_info *fi;
8b93c638 1114
8756216b 1115 /* sanity check: have we been passed a pointer? */
a1f42e84 1116 gdb_assert (changelist);
8b93c638 1117
25d5ea92
VP
1118 /* Frozen means frozen -- we don't check for any change in
1119 this varobj, including its going out of scope, or
1120 changing type. One use case for frozen varobjs is
1121 retaining previously evaluated expressions, and we don't
1122 want them to be reevaluated at all. */
1123 if (!explicit && (*varp)->frozen)
1124 return 0;
8756216b
DP
1125
1126 if (!(*varp)->root->is_valid)
1127 return INVALID;
8b93c638 1128
25d5ea92 1129 if ((*varp)->root->rootvar == *varp)
ae093f96 1130 {
25d5ea92
VP
1131 /* Save the selected stack frame, since we will need to change it
1132 in order to evaluate expressions. */
1133 old_fid = get_frame_id (deprecated_safe_get_selected_frame ());
1134
1135 /* Update the root variable. value_of_root can return NULL
1136 if the variable is no longer around, i.e. we stepped out of
1137 the frame in which a local existed. We are letting the
1138 value_of_root variable dispose of the varobj if the type
1139 has changed. */
1140 type_changed = 1;
1141 new = value_of_root (varp, &type_changed);
1142
1143 /* Restore selected frame. */
1144 fi = frame_find_by_id (old_fid);
1145 if (fi)
1146 select_frame (fi);
1147
1148 /* If this is a "use_selected_frame" varobj, and its type has changed,
1149 them note that it's changed. */
1150 if (type_changed)
1151 VEC_safe_push (varobj_p, result, *varp);
1152
1153 if (install_new_value ((*varp), new, type_changed))
1154 {
1155 /* If type_changed is 1, install_new_value will never return
1156 non-zero, so we'll never report the same variable twice. */
1157 gdb_assert (!type_changed);
1158 VEC_safe_push (varobj_p, result, *varp);
1159 }
8b93c638 1160
25d5ea92
VP
1161 if (new == NULL)
1162 {
1163 /* This means the varobj itself is out of scope.
1164 Report it. */
1165 VEC_free (varobj_p, result);
1166 return NOT_IN_SCOPE;
1167 }
b20d8971
VP
1168 }
1169
28335dcc 1170 VEC_safe_push (varobj_p, stack, *varp);
8b93c638 1171
8756216b 1172 /* Walk through the children, reconstructing them all. */
28335dcc 1173 while (!VEC_empty (varobj_p, stack))
8b93c638 1174 {
28335dcc
VP
1175 v = VEC_pop (varobj_p, stack);
1176
1177 /* Push any children. Use reverse order so that the first
1178 child is popped from the work stack first, and so
1179 will be added to result first. This does not
1180 affect correctness, just "nicer". */
1181 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
8b93c638 1182 {
28335dcc
VP
1183 varobj_p c = VEC_index (varobj_p, v->children, i);
1184 /* Child may be NULL if explicitly deleted by -var-delete. */
25d5ea92 1185 if (c != NULL && !c->frozen)
28335dcc 1186 VEC_safe_push (varobj_p, stack, c);
8b93c638
JM
1187 }
1188
28335dcc
VP
1189 /* Update this variable, unless it's a root, which is already
1190 updated. */
25d5ea92 1191 if (v->root->rootvar != v)
28335dcc
VP
1192 {
1193 new = value_of_child (v->parent, v->index);
1194 if (install_new_value (v, new, 0 /* type not changed */))
1195 {
1196 /* Note that it's changed */
1197 VEC_safe_push (varobj_p, result, v);
1198 v->updated = 0;
1199 }
8b93c638 1200 }
8b93c638
JM
1201 }
1202
8756216b 1203 /* Alloc (changed + 1) list entries. */
28335dcc 1204 changed = VEC_length (varobj_p, result);
8b93c638 1205 *changelist = xmalloc ((changed + 1) * sizeof (struct varobj *));
28335dcc 1206 cv = *changelist;
8b93c638 1207
28335dcc 1208 for (i = 0; i < changed; ++i)
8b93c638 1209 {
28335dcc
VP
1210 *cv = VEC_index (varobj_p, result, i);
1211 gdb_assert (*cv != NULL);
1212 ++cv;
8b93c638 1213 }
28335dcc 1214 *cv = 0;
8b93c638 1215
93b979d6
NR
1216 VEC_free (varobj_p, stack);
1217 VEC_free (varobj_p, result);
1218
73a93a32 1219 if (type_changed)
8756216b 1220 return TYPE_CHANGED;
73a93a32
JI
1221 else
1222 return changed;
8b93c638
JM
1223}
1224\f
1225
1226/* Helper functions */
1227
1228/*
1229 * Variable object construction/destruction
1230 */
1231
1232static int
fba45db2
KB
1233delete_variable (struct cpstack **resultp, struct varobj *var,
1234 int only_children_p)
8b93c638
JM
1235{
1236 int delcount = 0;
1237
1238 delete_variable_1 (resultp, &delcount, var,
1239 only_children_p, 1 /* remove_from_parent_p */ );
1240
1241 return delcount;
1242}
1243
1244/* Delete the variable object VAR and its children */
1245/* IMPORTANT NOTE: If we delete a variable which is a child
1246 and the parent is not removed we dump core. It must be always
1247 initially called with remove_from_parent_p set */
1248static void
72330bd6
AC
1249delete_variable_1 (struct cpstack **resultp, int *delcountp,
1250 struct varobj *var, int only_children_p,
1251 int remove_from_parent_p)
8b93c638 1252{
28335dcc 1253 int i;
8b93c638
JM
1254
1255 /* Delete any children of this variable, too. */
28335dcc
VP
1256 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1257 {
1258 varobj_p child = VEC_index (varobj_p, var->children, i);
8b93c638 1259 if (!remove_from_parent_p)
28335dcc
VP
1260 child->parent = NULL;
1261 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
8b93c638 1262 }
28335dcc 1263 VEC_free (varobj_p, var->children);
8b93c638
JM
1264
1265 /* if we were called to delete only the children we are done here */
1266 if (only_children_p)
1267 return;
1268
1269 /* Otherwise, add it to the list of deleted ones and proceed to do so */
73a93a32
JI
1270 /* If the name is null, this is a temporary variable, that has not
1271 yet been installed, don't report it, it belongs to the caller... */
1272 if (var->obj_name != NULL)
8b93c638 1273 {
5b616ba1 1274 cppush (resultp, xstrdup (var->obj_name));
8b93c638
JM
1275 *delcountp = *delcountp + 1;
1276 }
1277
1278 /* If this variable has a parent, remove it from its parent's list */
1279 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1280 (as indicated by remove_from_parent_p) we don't bother doing an
1281 expensive list search to find the element to remove when we are
1282 discarding the list afterwards */
72330bd6 1283 if ((remove_from_parent_p) && (var->parent != NULL))
8b93c638 1284 {
28335dcc 1285 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
8b93c638 1286 }
72330bd6 1287
73a93a32
JI
1288 if (var->obj_name != NULL)
1289 uninstall_variable (var);
8b93c638
JM
1290
1291 /* Free memory associated with this variable */
1292 free_variable (var);
1293}
1294
1295/* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1296static int
fba45db2 1297install_variable (struct varobj *var)
8b93c638
JM
1298{
1299 struct vlist *cv;
1300 struct vlist *newvl;
1301 const char *chp;
1302 unsigned int index = 0;
1303 unsigned int i = 1;
1304
1305 for (chp = var->obj_name; *chp; chp++)
1306 {
1307 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1308 }
1309
1310 cv = *(varobj_table + index);
1311 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1312 cv = cv->next;
1313
1314 if (cv != NULL)
8a3fe4f8 1315 error (_("Duplicate variable object name"));
8b93c638
JM
1316
1317 /* Add varobj to hash table */
1318 newvl = xmalloc (sizeof (struct vlist));
1319 newvl->next = *(varobj_table + index);
1320 newvl->var = var;
1321 *(varobj_table + index) = newvl;
1322
1323 /* If root, add varobj to root list */
b2c2bd75 1324 if (is_root_p (var))
8b93c638
JM
1325 {
1326 /* Add to list of root variables */
1327 if (rootlist == NULL)
1328 var->root->next = NULL;
1329 else
1330 var->root->next = rootlist;
1331 rootlist = var->root;
1332 rootcount++;
1333 }
1334
1335 return 1; /* OK */
1336}
1337
1338/* Unistall the object VAR. */
1339static void
fba45db2 1340uninstall_variable (struct varobj *var)
8b93c638
JM
1341{
1342 struct vlist *cv;
1343 struct vlist *prev;
1344 struct varobj_root *cr;
1345 struct varobj_root *prer;
1346 const char *chp;
1347 unsigned int index = 0;
1348 unsigned int i = 1;
1349
1350 /* Remove varobj from hash table */
1351 for (chp = var->obj_name; *chp; chp++)
1352 {
1353 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1354 }
1355
1356 cv = *(varobj_table + index);
1357 prev = NULL;
1358 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1359 {
1360 prev = cv;
1361 cv = cv->next;
1362 }
1363
1364 if (varobjdebug)
1365 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
1366
1367 if (cv == NULL)
1368 {
72330bd6
AC
1369 warning
1370 ("Assertion failed: Could not find variable object \"%s\" to delete",
1371 var->obj_name);
8b93c638
JM
1372 return;
1373 }
1374
1375 if (prev == NULL)
1376 *(varobj_table + index) = cv->next;
1377 else
1378 prev->next = cv->next;
1379
b8c9b27d 1380 xfree (cv);
8b93c638
JM
1381
1382 /* If root, remove varobj from root list */
b2c2bd75 1383 if (is_root_p (var))
8b93c638
JM
1384 {
1385 /* Remove from list of root variables */
1386 if (rootlist == var->root)
1387 rootlist = var->root->next;
1388 else
1389 {
1390 prer = NULL;
1391 cr = rootlist;
1392 while ((cr != NULL) && (cr->rootvar != var))
1393 {
1394 prer = cr;
1395 cr = cr->next;
1396 }
1397 if (cr == NULL)
1398 {
72330bd6
AC
1399 warning
1400 ("Assertion failed: Could not find varobj \"%s\" in root list",
1401 var->obj_name);
8b93c638
JM
1402 return;
1403 }
1404 if (prer == NULL)
1405 rootlist = NULL;
1406 else
1407 prer->next = cr->next;
1408 }
1409 rootcount--;
1410 }
1411
1412}
1413
8b93c638
JM
1414/* Create and install a child of the parent of the given name */
1415static struct varobj *
fba45db2 1416create_child (struct varobj *parent, int index, char *name)
8b93c638
JM
1417{
1418 struct varobj *child;
1419 char *childs_name;
acd65feb 1420 struct value *value;
8b93c638
JM
1421
1422 child = new_variable ();
1423
1424 /* name is allocated by name_of_child */
1425 child->name = name;
1426 child->index = index;
acd65feb 1427 value = value_of_child (parent, index);
8b93c638
JM
1428 child->parent = parent;
1429 child->root = parent->root;
b435e160 1430 childs_name = xstrprintf ("%s.%s", parent->obj_name, name);
8b93c638
JM
1431 child->obj_name = childs_name;
1432 install_variable (child);
1433
acd65feb
VP
1434 /* Compute the type of the child. Must do this before
1435 calling install_new_value. */
1436 if (value != NULL)
1437 /* If the child had no evaluation errors, var->value
1438 will be non-NULL and contain a valid type. */
1439 child->type = value_type (value);
1440 else
1441 /* Otherwise, we must compute the type. */
1442 child->type = (*child->root->lang->type_of_child) (child->parent,
1443 child->index);
1444 install_new_value (child, value, 1);
1445
8b93c638
JM
1446 return child;
1447}
8b93c638
JM
1448\f
1449
1450/*
1451 * Miscellaneous utility functions.
1452 */
1453
1454/* Allocate memory and initialize a new variable */
1455static struct varobj *
1456new_variable (void)
1457{
1458 struct varobj *var;
1459
1460 var = (struct varobj *) xmalloc (sizeof (struct varobj));
1461 var->name = NULL;
1462 var->obj_name = NULL;
1463 var->index = -1;
1464 var->type = NULL;
1465 var->value = NULL;
8b93c638
JM
1466 var->num_children = -1;
1467 var->parent = NULL;
1468 var->children = NULL;
1469 var->format = 0;
1470 var->root = NULL;
fb9b6b35 1471 var->updated = 0;
85265413 1472 var->print_value = NULL;
25d5ea92
VP
1473 var->frozen = 0;
1474 var->not_fetched = 0;
8b93c638
JM
1475
1476 return var;
1477}
1478
1479/* Allocate memory and initialize a new root variable */
1480static struct varobj *
1481new_root_variable (void)
1482{
1483 struct varobj *var = new_variable ();
1484 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));;
1485 var->root->lang = NULL;
1486 var->root->exp = NULL;
1487 var->root->valid_block = NULL;
7a424e99 1488 var->root->frame = null_frame_id;
73a93a32 1489 var->root->use_selected_frame = 0;
8b93c638 1490 var->root->rootvar = NULL;
8756216b 1491 var->root->is_valid = 1;
8b93c638
JM
1492
1493 return var;
1494}
1495
1496/* Free any allocated memory associated with VAR. */
1497static void
fba45db2 1498free_variable (struct varobj *var)
8b93c638
JM
1499{
1500 /* Free the expression if this is a root variable. */
b2c2bd75 1501 if (is_root_p (var))
8b93c638 1502 {
96c1eda2 1503 free_current_contents (&var->root->exp);
8038e1e2 1504 xfree (var->root);
8b93c638
JM
1505 }
1506
8038e1e2
AC
1507 xfree (var->name);
1508 xfree (var->obj_name);
85265413 1509 xfree (var->print_value);
8038e1e2 1510 xfree (var);
8b93c638
JM
1511}
1512
74b7792f
AC
1513static void
1514do_free_variable_cleanup (void *var)
1515{
1516 free_variable (var);
1517}
1518
1519static struct cleanup *
1520make_cleanup_free_variable (struct varobj *var)
1521{
1522 return make_cleanup (do_free_variable_cleanup, var);
1523}
1524
6766a268
DJ
1525/* This returns the type of the variable. It also skips past typedefs
1526 to return the real type of the variable.
94b66fa7
KS
1527
1528 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
1529 except within get_target_type and get_type. */
8b93c638 1530static struct type *
fba45db2 1531get_type (struct varobj *var)
8b93c638
JM
1532{
1533 struct type *type;
1534 type = var->type;
1535
6766a268
DJ
1536 if (type != NULL)
1537 type = check_typedef (type);
8b93c638
JM
1538
1539 return type;
1540}
1541
6e2a9270
VP
1542/* Return the type of the value that's stored in VAR,
1543 or that would have being stored there if the
1544 value were accessible.
1545
1546 This differs from VAR->type in that VAR->type is always
1547 the true type of the expession in the source language.
1548 The return value of this function is the type we're
1549 actually storing in varobj, and using for displaying
1550 the values and for comparing previous and new values.
1551
1552 For example, top-level references are always stripped. */
1553static struct type *
1554get_value_type (struct varobj *var)
1555{
1556 struct type *type;
1557
1558 if (var->value)
1559 type = value_type (var->value);
1560 else
1561 type = var->type;
1562
1563 type = check_typedef (type);
1564
1565 if (TYPE_CODE (type) == TYPE_CODE_REF)
1566 type = get_target_type (type);
1567
1568 type = check_typedef (type);
1569
1570 return type;
1571}
1572
8b93c638 1573/* This returns the target type (or NULL) of TYPE, also skipping
94b66fa7
KS
1574 past typedefs, just like get_type ().
1575
1576 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
1577 except within get_target_type and get_type. */
8b93c638 1578static struct type *
fba45db2 1579get_target_type (struct type *type)
8b93c638
JM
1580{
1581 if (type != NULL)
1582 {
1583 type = TYPE_TARGET_TYPE (type);
6766a268
DJ
1584 if (type != NULL)
1585 type = check_typedef (type);
8b93c638
JM
1586 }
1587
1588 return type;
1589}
1590
1591/* What is the default display for this variable? We assume that
1592 everything is "natural". Any exceptions? */
1593static enum varobj_display_formats
fba45db2 1594variable_default_display (struct varobj *var)
8b93c638
JM
1595{
1596 return FORMAT_NATURAL;
1597}
1598
8b93c638
JM
1599/* FIXME: The following should be generic for any pointer */
1600static void
fba45db2 1601cppush (struct cpstack **pstack, char *name)
8b93c638
JM
1602{
1603 struct cpstack *s;
1604
1605 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
1606 s->name = name;
1607 s->next = *pstack;
1608 *pstack = s;
1609}
1610
1611/* FIXME: The following should be generic for any pointer */
1612static char *
fba45db2 1613cppop (struct cpstack **pstack)
8b93c638
JM
1614{
1615 struct cpstack *s;
1616 char *v;
1617
1618 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
1619 return NULL;
1620
1621 s = *pstack;
1622 v = s->name;
1623 *pstack = (*pstack)->next;
b8c9b27d 1624 xfree (s);
8b93c638
JM
1625
1626 return v;
1627}
1628\f
1629/*
1630 * Language-dependencies
1631 */
1632
1633/* Common entry points */
1634
1635/* Get the language of variable VAR. */
1636static enum varobj_languages
fba45db2 1637variable_language (struct varobj *var)
8b93c638
JM
1638{
1639 enum varobj_languages lang;
1640
1641 switch (var->root->exp->language_defn->la_language)
1642 {
1643 default:
1644 case language_c:
1645 lang = vlang_c;
1646 break;
1647 case language_cplus:
1648 lang = vlang_cplus;
1649 break;
1650 case language_java:
1651 lang = vlang_java;
1652 break;
1653 }
1654
1655 return lang;
1656}
1657
1658/* Return the number of children for a given variable.
1659 The result of this function is defined by the language
1660 implementation. The number of children returned by this function
1661 is the number of children that the user will see in the variable
1662 display. */
1663static int
fba45db2 1664number_of_children (struct varobj *var)
8b93c638
JM
1665{
1666 return (*var->root->lang->number_of_children) (var);;
1667}
1668
1669/* What is the expression for the root varobj VAR? Returns a malloc'd string. */
1670static char *
fba45db2 1671name_of_variable (struct varobj *var)
8b93c638
JM
1672{
1673 return (*var->root->lang->name_of_variable) (var);
1674}
1675
1676/* What is the name of the INDEX'th child of VAR? Returns a malloc'd string. */
1677static char *
fba45db2 1678name_of_child (struct varobj *var, int index)
8b93c638
JM
1679{
1680 return (*var->root->lang->name_of_child) (var, index);
1681}
1682
30b28db1 1683/* What is the ``struct value *'' of the root variable VAR?
73a93a32
JI
1684 TYPE_CHANGED controls what to do if the type of a
1685 use_selected_frame = 1 variable changes. On input,
1686 TYPE_CHANGED = 1 means discard the old varobj, and replace
1687 it with this one. TYPE_CHANGED = 0 means leave it around.
1688 NB: In both cases, var_handle will point to the new varobj,
1689 so if you use TYPE_CHANGED = 0, you will have to stash the
1690 old varobj pointer away somewhere before calling this.
1691 On return, TYPE_CHANGED will be 1 if the type has changed, and
1692 0 otherwise. */
30b28db1 1693static struct value *
fba45db2 1694value_of_root (struct varobj **var_handle, int *type_changed)
8b93c638 1695{
73a93a32
JI
1696 struct varobj *var;
1697
1698 if (var_handle == NULL)
1699 return NULL;
1700
1701 var = *var_handle;
1702
1703 /* This should really be an exception, since this should
1704 only get called with a root variable. */
1705
b2c2bd75 1706 if (!is_root_p (var))
73a93a32
JI
1707 return NULL;
1708
1709 if (var->root->use_selected_frame)
1710 {
1711 struct varobj *tmp_var;
1712 char *old_type, *new_type;
1713 old_type = varobj_get_type (var);
1714 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
1715 USE_SELECTED_FRAME);
1716 if (tmp_var == NULL)
1717 {
1718 return NULL;
1719 }
1720 new_type = varobj_get_type (tmp_var);
72330bd6 1721 if (strcmp (old_type, new_type) == 0)
73a93a32
JI
1722 {
1723 varobj_delete (tmp_var, NULL, 0);
1724 *type_changed = 0;
1725 }
1726 else
1727 {
1728 if (*type_changed)
1729 {
72330bd6 1730 tmp_var->obj_name =
73a93a32 1731 savestring (var->obj_name, strlen (var->obj_name));
f7635dd9 1732 varobj_delete (var, NULL, 0);
73a93a32
JI
1733 }
1734 else
1735 {
72330bd6 1736 tmp_var->obj_name = varobj_gen_name ();
73a93a32
JI
1737 }
1738 install_variable (tmp_var);
1739 *var_handle = tmp_var;
705da579 1740 var = *var_handle;
73a93a32
JI
1741 *type_changed = 1;
1742 }
1743 }
1744 else
1745 {
1746 *type_changed = 0;
1747 }
1748
1749 return (*var->root->lang->value_of_root) (var_handle);
8b93c638
JM
1750}
1751
30b28db1
AC
1752/* What is the ``struct value *'' for the INDEX'th child of PARENT? */
1753static struct value *
fba45db2 1754value_of_child (struct varobj *parent, int index)
8b93c638 1755{
30b28db1 1756 struct value *value;
8b93c638
JM
1757
1758 value = (*parent->root->lang->value_of_child) (parent, index);
1759
8b93c638
JM
1760 return value;
1761}
1762
8b93c638
JM
1763/* Is this variable editable? Use the variable's type to make
1764 this determination. */
1765static int
fba45db2 1766variable_editable (struct varobj *var)
8b93c638
JM
1767{
1768 return (*var->root->lang->variable_editable) (var);
1769}
1770
1771/* GDB already has a command called "value_of_variable". Sigh. */
1772static char *
fba45db2 1773my_value_of_variable (struct varobj *var)
8b93c638 1774{
8756216b
DP
1775 if (var->root->is_valid)
1776 return (*var->root->lang->value_of_variable) (var);
1777 else
1778 return NULL;
8b93c638
JM
1779}
1780
85265413
NR
1781static char *
1782value_get_print_value (struct value *value, enum varobj_display_formats format)
1783{
1784 long dummy;
57e66780
DJ
1785 struct ui_file *stb;
1786 struct cleanup *old_chain;
85265413 1787 char *thevalue;
57e66780
DJ
1788
1789 if (value == NULL)
1790 return NULL;
1791
1792 stb = mem_fileopen ();
1793 old_chain = make_cleanup_ui_file_delete (stb);
1794
85265413
NR
1795 common_val_print (value, stb, format_code[(int) format], 1, 0, 0);
1796 thevalue = ui_file_xstrdup (stb, &dummy);
57e66780 1797
85265413
NR
1798 do_cleanups (old_chain);
1799 return thevalue;
1800}
1801
acd65feb
VP
1802/* Return non-zero if changes in value of VAR
1803 must be detected and reported by -var-update.
1804 Return zero is -var-update should never report
1805 changes of such values. This makes sense for structures
1806 (since the changes in children values will be reported separately),
1807 or for artifical objects (like 'public' pseudo-field in C++).
1808
1809 Return value of 0 means that gdb need not call value_fetch_lazy
1810 for the value of this variable object. */
8b93c638 1811static int
b2c2bd75 1812varobj_value_is_changeable_p (struct varobj *var)
8b93c638
JM
1813{
1814 int r;
1815 struct type *type;
1816
1817 if (CPLUS_FAKE_CHILD (var))
1818 return 0;
1819
6e2a9270 1820 type = get_value_type (var);
8b93c638
JM
1821
1822 switch (TYPE_CODE (type))
1823 {
72330bd6
AC
1824 case TYPE_CODE_STRUCT:
1825 case TYPE_CODE_UNION:
1826 case TYPE_CODE_ARRAY:
1827 r = 0;
1828 break;
8b93c638 1829
72330bd6
AC
1830 default:
1831 r = 1;
8b93c638
JM
1832 }
1833
1834 return r;
1835}
1836
2024f65a
VP
1837/* Given the value and the type of a variable object,
1838 adjust the value and type to those necessary
1839 for getting children of the variable object.
1840 This includes dereferencing top-level references
1841 to all types and dereferencing pointers to
1842 structures.
1843
1844 Both TYPE and *TYPE should be non-null. VALUE
1845 can be null if we want to only translate type.
1846 *VALUE can be null as well -- if the parent
1847 value is not known. */
1848static void
1849adjust_value_for_child_access (struct value **value,
1850 struct type **type)
1851{
1852 gdb_assert (type && *type);
1853
1854 *type = check_typedef (*type);
1855
1856 /* The type of value stored in varobj, that is passed
1857 to us, is already supposed to be
1858 reference-stripped. */
1859
1860 gdb_assert (TYPE_CODE (*type) != TYPE_CODE_REF);
1861
1862 /* Pointers to structures are treated just like
1863 structures when accessing children. Don't
1864 dererences pointers to other types. */
1865 if (TYPE_CODE (*type) == TYPE_CODE_PTR)
1866 {
1867 struct type *target_type = get_target_type (*type);
1868 if (TYPE_CODE (target_type) == TYPE_CODE_STRUCT
1869 || TYPE_CODE (target_type) == TYPE_CODE_UNION)
1870 {
1871 if (value && *value)
1872 gdb_value_ind (*value, value);
1873 *type = target_type;
1874 }
1875 }
1876
1877 /* The 'get_target_type' function calls check_typedef on
1878 result, so we can immediately check type code. No
1879 need to call check_typedef here. */
1880}
1881
8b93c638
JM
1882/* C */
1883static int
fba45db2 1884c_number_of_children (struct varobj *var)
8b93c638 1885{
2024f65a
VP
1886 struct type *type = get_value_type (var);
1887 int children = 0;
8b93c638 1888 struct type *target;
8b93c638 1889
2024f65a 1890 adjust_value_for_child_access (NULL, &type);
8b93c638 1891 target = get_target_type (type);
8b93c638
JM
1892
1893 switch (TYPE_CODE (type))
1894 {
1895 case TYPE_CODE_ARRAY:
1896 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0
72330bd6 1897 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) != BOUND_CANNOT_BE_DETERMINED)
8b93c638
JM
1898 children = TYPE_LENGTH (type) / TYPE_LENGTH (target);
1899 else
74a44383
DJ
1900 /* If we don't know how many elements there are, don't display
1901 any. */
1902 children = 0;
8b93c638
JM
1903 break;
1904
1905 case TYPE_CODE_STRUCT:
1906 case TYPE_CODE_UNION:
1907 children = TYPE_NFIELDS (type);
1908 break;
1909
1910 case TYPE_CODE_PTR:
2024f65a
VP
1911 /* The type here is a pointer to non-struct. Typically, pointers
1912 have one child, except for function ptrs, which have no children,
1913 and except for void*, as we don't know what to show.
1914
0755e6c1
FN
1915 We can show char* so we allow it to be dereferenced. If you decide
1916 to test for it, please mind that a little magic is necessary to
1917 properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and
1918 TYPE_NAME == "char" */
2024f65a
VP
1919 if (TYPE_CODE (target) == TYPE_CODE_FUNC
1920 || TYPE_CODE (target) == TYPE_CODE_VOID)
1921 children = 0;
1922 else
1923 children = 1;
8b93c638
JM
1924 break;
1925
1926 default:
1927 /* Other types have no children */
1928 break;
1929 }
1930
1931 return children;
1932}
1933
1934static char *
fba45db2 1935c_name_of_variable (struct varobj *parent)
8b93c638
JM
1936{
1937 return savestring (parent->name, strlen (parent->name));
1938}
1939
bbec2603
VP
1940/* Return the value of element TYPE_INDEX of a structure
1941 value VALUE. VALUE's type should be a structure,
1942 or union, or a typedef to struct/union.
1943
1944 Returns NULL if getting the value fails. Never throws. */
1945static struct value *
1946value_struct_element_index (struct value *value, int type_index)
8b93c638 1947{
bbec2603
VP
1948 struct value *result = NULL;
1949 volatile struct gdb_exception e;
8b93c638 1950
bbec2603
VP
1951 struct type *type = value_type (value);
1952 type = check_typedef (type);
1953
1954 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1955 || TYPE_CODE (type) == TYPE_CODE_UNION);
8b93c638 1956
bbec2603
VP
1957 TRY_CATCH (e, RETURN_MASK_ERROR)
1958 {
1959 if (TYPE_FIELD_STATIC (type, type_index))
1960 result = value_static_field (type, type_index);
1961 else
1962 result = value_primitive_field (value, 0, type_index, type);
1963 }
1964 if (e.reason < 0)
1965 {
1966 return NULL;
1967 }
1968 else
1969 {
1970 return result;
1971 }
1972}
1973
1974/* Obtain the information about child INDEX of the variable
1975 object PARENT.
1976 If CNAME is not null, sets *CNAME to the name of the child relative
1977 to the parent.
1978 If CVALUE is not null, sets *CVALUE to the value of the child.
1979 If CTYPE is not null, sets *CTYPE to the type of the child.
1980
1981 If any of CNAME, CVALUE, or CTYPE is not null, but the corresponding
1982 information cannot be determined, set *CNAME, *CVALUE, or *CTYPE
1983 to NULL. */
1984static void
1985c_describe_child (struct varobj *parent, int index,
1986 char **cname, struct value **cvalue, struct type **ctype)
1987{
1988 struct value *value = parent->value;
2024f65a 1989 struct type *type = get_value_type (parent);
bbec2603
VP
1990
1991 if (cname)
1992 *cname = NULL;
1993 if (cvalue)
1994 *cvalue = NULL;
1995 if (ctype)
1996 *ctype = NULL;
1997
2024f65a 1998 adjust_value_for_child_access (&value, &type);
bbec2603 1999
8b93c638
JM
2000 switch (TYPE_CODE (type))
2001 {
2002 case TYPE_CODE_ARRAY:
bbec2603
VP
2003 if (cname)
2004 *cname = xstrprintf ("%d", index
2005 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)));
2006
2007 if (cvalue && value)
2008 {
2009 int real_index = index + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type));
2010 struct value *indval =
2011 value_from_longest (builtin_type_int, (LONGEST) real_index);
2012 gdb_value_subscript (value, indval, cvalue);
2013 }
2014
2015 if (ctype)
2016 *ctype = get_target_type (type);
2017
8b93c638
JM
2018 break;
2019
2020 case TYPE_CODE_STRUCT:
2021 case TYPE_CODE_UNION:
bbec2603
VP
2022 if (cname)
2023 {
2024 char *string = TYPE_FIELD_NAME (type, index);
2025 *cname = savestring (string, strlen (string));
2026 }
2027
2028 if (cvalue && value)
2029 {
2030 /* For C, varobj index is the same as type index. */
2031 *cvalue = value_struct_element_index (value, index);
2032 }
2033
2034 if (ctype)
2035 *ctype = TYPE_FIELD_TYPE (type, index);
2036
8b93c638
JM
2037 break;
2038
2039 case TYPE_CODE_PTR:
bbec2603
VP
2040 if (cname)
2041 *cname = xstrprintf ("*%s", parent->name);
8b93c638 2042
bbec2603
VP
2043 if (cvalue && value)
2044 gdb_value_ind (value, cvalue);
2045
2024f65a
VP
2046 /* Don't use get_target_type because it calls
2047 check_typedef and here, we want to show the true
2048 declared type of the variable. */
bbec2603 2049 if (ctype)
2024f65a 2050 *ctype = TYPE_TARGET_TYPE (type);
bbec2603 2051
8b93c638
JM
2052 break;
2053
2054 default:
2055 /* This should not happen */
bbec2603
VP
2056 if (cname)
2057 *cname = xstrdup ("???");
2058 /* Don't set value and type, we don't know then. */
8b93c638 2059 }
bbec2603 2060}
8b93c638 2061
bbec2603
VP
2062static char *
2063c_name_of_child (struct varobj *parent, int index)
2064{
2065 char *name;
2066 c_describe_child (parent, index, &name, NULL, NULL);
8b93c638
JM
2067 return name;
2068}
2069
30b28db1 2070static struct value *
fba45db2 2071c_value_of_root (struct varobj **var_handle)
8b93c638 2072{
5e572bb4 2073 struct value *new_val = NULL;
73a93a32 2074 struct varobj *var = *var_handle;
8b93c638
JM
2075 struct frame_info *fi;
2076 int within_scope;
2077
73a93a32 2078 /* Only root variables can be updated... */
b2c2bd75 2079 if (!is_root_p (var))
73a93a32
JI
2080 /* Not a root var */
2081 return NULL;
2082
72330bd6 2083
8b93c638 2084 /* Determine whether the variable is still around. */
b20d8971 2085 if (var->root->valid_block == NULL || var->root->use_selected_frame)
8b93c638
JM
2086 within_scope = 1;
2087 else
2088 {
e64d9b3d 2089 fi = frame_find_by_id (var->root->frame);
8b93c638
JM
2090 within_scope = fi != NULL;
2091 /* FIXME: select_frame could fail */
d2353924
NR
2092 if (fi)
2093 {
2094 CORE_ADDR pc = get_frame_pc (fi);
2095 if (pc < BLOCK_START (var->root->valid_block) ||
2096 pc >= BLOCK_END (var->root->valid_block))
2097 within_scope = 0;
2d43bda2
NR
2098 else
2099 select_frame (fi);
d2353924 2100 }
8b93c638 2101 }
72330bd6 2102
8b93c638
JM
2103 if (within_scope)
2104 {
73a93a32 2105 /* We need to catch errors here, because if evaluate
85d93f1d
VP
2106 expression fails we want to just return NULL. */
2107 gdb_evaluate_expression (var->root->exp, &new_val);
8b93c638
JM
2108 return new_val;
2109 }
2110
2111 return NULL;
2112}
2113
30b28db1 2114static struct value *
fba45db2 2115c_value_of_child (struct varobj *parent, int index)
8b93c638 2116{
bbec2603
VP
2117 struct value *value = NULL;
2118 c_describe_child (parent, index, NULL, &value, NULL);
8b93c638
JM
2119
2120 return value;
2121}
2122
2123static struct type *
fba45db2 2124c_type_of_child (struct varobj *parent, int index)
8b93c638 2125{
bbec2603
VP
2126 struct type *type = NULL;
2127 c_describe_child (parent, index, NULL, NULL, &type);
8b93c638
JM
2128 return type;
2129}
2130
2131static int
fba45db2 2132c_variable_editable (struct varobj *var)
8b93c638 2133{
6e2a9270 2134 switch (TYPE_CODE (get_value_type (var)))
8b93c638
JM
2135 {
2136 case TYPE_CODE_STRUCT:
2137 case TYPE_CODE_UNION:
2138 case TYPE_CODE_ARRAY:
2139 case TYPE_CODE_FUNC:
8b93c638
JM
2140 case TYPE_CODE_METHOD:
2141 return 0;
2142 break;
2143
2144 default:
2145 return 1;
2146 break;
2147 }
2148}
2149
2150static char *
fba45db2 2151c_value_of_variable (struct varobj *var)
8b93c638 2152{
14b3d9c9
JB
2153 /* BOGUS: if val_print sees a struct/class, or a reference to one,
2154 it will print out its children instead of "{...}". So we need to
2155 catch that case explicitly. */
2156 struct type *type = get_type (var);
e64d9b3d 2157
14b3d9c9
JB
2158 /* Strip top-level references. */
2159 while (TYPE_CODE (type) == TYPE_CODE_REF)
2160 type = check_typedef (TYPE_TARGET_TYPE (type));
2161
2162 switch (TYPE_CODE (type))
8b93c638
JM
2163 {
2164 case TYPE_CODE_STRUCT:
2165 case TYPE_CODE_UNION:
2166 return xstrdup ("{...}");
2167 /* break; */
2168
2169 case TYPE_CODE_ARRAY:
2170 {
e64d9b3d 2171 char *number;
b435e160 2172 number = xstrprintf ("[%d]", var->num_children);
e64d9b3d 2173 return (number);
8b93c638
JM
2174 }
2175 /* break; */
2176
2177 default:
2178 {
575bbeb6
KS
2179 if (var->value == NULL)
2180 {
2181 /* This can happen if we attempt to get the value of a struct
2182 member when the parent is an invalid pointer. This is an
2183 error condition, so we should tell the caller. */
2184 return NULL;
2185 }
2186 else
2187 {
25d5ea92
VP
2188 if (var->not_fetched && value_lazy (var->value))
2189 /* Frozen variable and no value yet. We don't
2190 implicitly fetch the value. MI response will
2191 use empty string for the value, which is OK. */
2192 return NULL;
2193
b2c2bd75 2194 gdb_assert (varobj_value_is_changeable_p (var));
acd65feb 2195 gdb_assert (!value_lazy (var->value));
85265413
NR
2196 return value_get_print_value (var->value, var->format);
2197 }
e64d9b3d 2198 }
8b93c638
JM
2199 }
2200}
2201\f
2202
2203/* C++ */
2204
2205static int
fba45db2 2206cplus_number_of_children (struct varobj *var)
8b93c638
JM
2207{
2208 struct type *type;
2209 int children, dont_know;
2210
2211 dont_know = 1;
2212 children = 0;
2213
2214 if (!CPLUS_FAKE_CHILD (var))
2215 {
2024f65a
VP
2216 type = get_value_type (var);
2217 adjust_value_for_child_access (NULL, &type);
8b93c638
JM
2218
2219 if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) ||
72330bd6 2220 ((TYPE_CODE (type)) == TYPE_CODE_UNION))
8b93c638
JM
2221 {
2222 int kids[3];
2223
2224 cplus_class_num_children (type, kids);
2225 if (kids[v_public] != 0)
2226 children++;
2227 if (kids[v_private] != 0)
2228 children++;
2229 if (kids[v_protected] != 0)
2230 children++;
2231
2232 /* Add any baseclasses */
2233 children += TYPE_N_BASECLASSES (type);
2234 dont_know = 0;
2235
2236 /* FIXME: save children in var */
2237 }
2238 }
2239 else
2240 {
2241 int kids[3];
2242
2024f65a
VP
2243 type = get_value_type (var->parent);
2244 adjust_value_for_child_access (NULL, &type);
8b93c638
JM
2245
2246 cplus_class_num_children (type, kids);
6e382aa3 2247 if (strcmp (var->name, "public") == 0)
8b93c638 2248 children = kids[v_public];
6e382aa3 2249 else if (strcmp (var->name, "private") == 0)
8b93c638
JM
2250 children = kids[v_private];
2251 else
2252 children = kids[v_protected];
2253 dont_know = 0;
2254 }
2255
2256 if (dont_know)
2257 children = c_number_of_children (var);
2258
2259 return children;
2260}
2261
2262/* Compute # of public, private, and protected variables in this class.
2263 That means we need to descend into all baseclasses and find out
2264 how many are there, too. */
2265static void
1669605f 2266cplus_class_num_children (struct type *type, int children[3])
8b93c638
JM
2267{
2268 int i;
2269
2270 children[v_public] = 0;
2271 children[v_private] = 0;
2272 children[v_protected] = 0;
2273
2274 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++)
2275 {
2276 /* If we have a virtual table pointer, omit it. */
72330bd6 2277 if (TYPE_VPTR_BASETYPE (type) == type && TYPE_VPTR_FIELDNO (type) == i)
8b93c638
JM
2278 continue;
2279
2280 if (TYPE_FIELD_PROTECTED (type, i))
2281 children[v_protected]++;
2282 else if (TYPE_FIELD_PRIVATE (type, i))
2283 children[v_private]++;
2284 else
2285 children[v_public]++;
2286 }
2287}
2288
2289static char *
fba45db2 2290cplus_name_of_variable (struct varobj *parent)
8b93c638
JM
2291{
2292 return c_name_of_variable (parent);
2293}
2294
2024f65a
VP
2295enum accessibility { private_field, protected_field, public_field };
2296
2297/* Check if field INDEX of TYPE has the specified accessibility.
2298 Return 0 if so and 1 otherwise. */
2299static int
2300match_accessibility (struct type *type, int index, enum accessibility acc)
8b93c638 2301{
2024f65a
VP
2302 if (acc == private_field && TYPE_FIELD_PRIVATE (type, index))
2303 return 1;
2304 else if (acc == protected_field && TYPE_FIELD_PROTECTED (type, index))
2305 return 1;
2306 else if (acc == public_field && !TYPE_FIELD_PRIVATE (type, index)
2307 && !TYPE_FIELD_PROTECTED (type, index))
2308 return 1;
2309 else
2310 return 0;
2311}
2312
2313static void
2314cplus_describe_child (struct varobj *parent, int index,
2315 char **cname, struct value **cvalue, struct type **ctype)
2316{
2317 char *name = 0;
2318 struct value *value;
8b93c638 2319 struct type *type;
8b93c638 2320
2024f65a
VP
2321 if (cname)
2322 *cname = NULL;
2323 if (cvalue)
2324 *cvalue = NULL;
2325 if (ctype)
2326 *ctype = NULL;
2327
2328
8b93c638
JM
2329 if (CPLUS_FAKE_CHILD (parent))
2330 {
2024f65a
VP
2331 value = parent->parent->value;
2332 type = get_value_type (parent->parent);
8b93c638
JM
2333 }
2334 else
2024f65a
VP
2335 {
2336 value = parent->value;
2337 type = get_value_type (parent);
2338 }
8b93c638 2339
2024f65a
VP
2340 adjust_value_for_child_access (&value, &type);
2341
2342 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2343 || TYPE_CODE (type) == TYPE_CODE_STRUCT)
8b93c638 2344 {
8b93c638
JM
2345 if (CPLUS_FAKE_CHILD (parent))
2346 {
6e382aa3
JJ
2347 /* The fields of the class type are ordered as they
2348 appear in the class. We are given an index for a
2349 particular access control type ("public","protected",
2350 or "private"). We must skip over fields that don't
2351 have the access control we are looking for to properly
2352 find the indexed field. */
2353 int type_index = TYPE_N_BASECLASSES (type);
2024f65a 2354 enum accessibility acc = public_field;
6e382aa3 2355 if (strcmp (parent->name, "private") == 0)
2024f65a 2356 acc = private_field;
6e382aa3 2357 else if (strcmp (parent->name, "protected") == 0)
2024f65a
VP
2358 acc = protected_field;
2359
2360 while (index >= 0)
6e382aa3 2361 {
2024f65a
VP
2362 if (TYPE_VPTR_BASETYPE (type) == type
2363 && type_index == TYPE_VPTR_FIELDNO (type))
2364 ; /* ignore vptr */
2365 else if (match_accessibility (type, type_index, acc))
6e382aa3
JJ
2366 --index;
2367 ++type_index;
6e382aa3 2368 }
2024f65a
VP
2369 --type_index;
2370
2371 if (cname)
2372 *cname = xstrdup (TYPE_FIELD_NAME (type, type_index));
2373
2374 if (cvalue && value)
2375 *cvalue = value_struct_element_index (value, type_index);
2376
2377 if (ctype)
2378 *ctype = TYPE_FIELD_TYPE (type, type_index);
2379 }
2380 else if (index < TYPE_N_BASECLASSES (type))
2381 {
2382 /* This is a baseclass. */
2383 if (cname)
2384 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
2385
2386 if (cvalue && value)
6e382aa3 2387 {
2024f65a 2388 *cvalue = value_cast (TYPE_FIELD_TYPE (type, index), value);
6e382aa3
JJ
2389 }
2390
2024f65a
VP
2391 if (ctype)
2392 {
2393 *ctype = TYPE_FIELD_TYPE (type, index);
2394 }
8b93c638 2395 }
8b93c638
JM
2396 else
2397 {
2024f65a 2398 char *access = 0;
6e382aa3 2399 int children[3];
2024f65a 2400 cplus_class_num_children (type, children);
6e382aa3 2401
8b93c638 2402 /* Everything beyond the baseclasses can
6e382aa3
JJ
2403 only be "public", "private", or "protected"
2404
2405 The special "fake" children are always output by varobj in
2406 this order. So if INDEX == 2, it MUST be "protected". */
8b93c638
JM
2407 index -= TYPE_N_BASECLASSES (type);
2408 switch (index)
2409 {
2410 case 0:
6e382aa3 2411 if (children[v_public] > 0)
2024f65a 2412 access = "public";
6e382aa3 2413 else if (children[v_private] > 0)
2024f65a 2414 access = "private";
6e382aa3 2415 else
2024f65a 2416 access = "protected";
6e382aa3 2417 break;
8b93c638 2418 case 1:
6e382aa3 2419 if (children[v_public] > 0)
8b93c638 2420 {
6e382aa3 2421 if (children[v_private] > 0)
2024f65a 2422 access = "private";
6e382aa3 2423 else
2024f65a 2424 access = "protected";
8b93c638 2425 }
6e382aa3 2426 else if (children[v_private] > 0)
2024f65a 2427 access = "protected";
6e382aa3 2428 break;
8b93c638 2429 case 2:
6e382aa3 2430 /* Must be protected */
2024f65a 2431 access = "protected";
6e382aa3 2432 break;
8b93c638
JM
2433 default:
2434 /* error! */
2435 break;
2436 }
2024f65a
VP
2437
2438 if (cname)
2439 *cname = xstrdup (access);
8b93c638 2440
2024f65a
VP
2441 /* Value and type are null here. */
2442 }
8b93c638 2443 }
8b93c638
JM
2444 else
2445 {
2024f65a
VP
2446 c_describe_child (parent, index, cname, cvalue, ctype);
2447 }
2448}
8b93c638 2449
2024f65a
VP
2450static char *
2451cplus_name_of_child (struct varobj *parent, int index)
2452{
2453 char *name = NULL;
2454 cplus_describe_child (parent, index, &name, NULL, NULL);
8b93c638
JM
2455 return name;
2456}
2457
30b28db1 2458static struct value *
fba45db2 2459cplus_value_of_root (struct varobj **var_handle)
8b93c638 2460{
73a93a32 2461 return c_value_of_root (var_handle);
8b93c638
JM
2462}
2463
30b28db1 2464static struct value *
fba45db2 2465cplus_value_of_child (struct varobj *parent, int index)
8b93c638 2466{
2024f65a
VP
2467 struct value *value = NULL;
2468 cplus_describe_child (parent, index, NULL, &value, NULL);
8b93c638
JM
2469 return value;
2470}
2471
2472static struct type *
fba45db2 2473cplus_type_of_child (struct varobj *parent, int index)
8b93c638 2474{
2024f65a
VP
2475 struct type *type = NULL;
2476 cplus_describe_child (parent, index, NULL, NULL, &type);
8b93c638
JM
2477 return type;
2478}
2479
2480static int
fba45db2 2481cplus_variable_editable (struct varobj *var)
8b93c638
JM
2482{
2483 if (CPLUS_FAKE_CHILD (var))
2484 return 0;
2485
2486 return c_variable_editable (var);
2487}
2488
2489static char *
fba45db2 2490cplus_value_of_variable (struct varobj *var)
8b93c638
JM
2491{
2492
2493 /* If we have one of our special types, don't print out
2494 any value. */
2495 if (CPLUS_FAKE_CHILD (var))
2496 return xstrdup ("");
2497
2498 return c_value_of_variable (var);
2499}
2500\f
2501/* Java */
2502
2503static int
fba45db2 2504java_number_of_children (struct varobj *var)
8b93c638
JM
2505{
2506 return cplus_number_of_children (var);
2507}
2508
2509static char *
fba45db2 2510java_name_of_variable (struct varobj *parent)
8b93c638
JM
2511{
2512 char *p, *name;
2513
2514 name = cplus_name_of_variable (parent);
2515 /* If the name has "-" in it, it is because we
2516 needed to escape periods in the name... */
2517 p = name;
2518
2519 while (*p != '\000')
2520 {
2521 if (*p == '-')
2522 *p = '.';
2523 p++;
2524 }
2525
2526 return name;
2527}
2528
2529static char *
fba45db2 2530java_name_of_child (struct varobj *parent, int index)
8b93c638
JM
2531{
2532 char *name, *p;
2533
2534 name = cplus_name_of_child (parent, index);
2535 /* Escape any periods in the name... */
2536 p = name;
2537
2538 while (*p != '\000')
2539 {
2540 if (*p == '.')
2541 *p = '-';
2542 p++;
2543 }
2544
2545 return name;
2546}
2547
30b28db1 2548static struct value *
fba45db2 2549java_value_of_root (struct varobj **var_handle)
8b93c638 2550{
73a93a32 2551 return cplus_value_of_root (var_handle);
8b93c638
JM
2552}
2553
30b28db1 2554static struct value *
fba45db2 2555java_value_of_child (struct varobj *parent, int index)
8b93c638
JM
2556{
2557 return cplus_value_of_child (parent, index);
2558}
2559
2560static struct type *
fba45db2 2561java_type_of_child (struct varobj *parent, int index)
8b93c638
JM
2562{
2563 return cplus_type_of_child (parent, index);
2564}
2565
2566static int
fba45db2 2567java_variable_editable (struct varobj *var)
8b93c638
JM
2568{
2569 return cplus_variable_editable (var);
2570}
2571
2572static char *
fba45db2 2573java_value_of_variable (struct varobj *var)
8b93c638
JM
2574{
2575 return cplus_value_of_variable (var);
2576}
2577\f
2578extern void _initialize_varobj (void);
2579void
2580_initialize_varobj (void)
2581{
2582 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
2583
2584 varobj_table = xmalloc (sizeof_table);
2585 memset (varobj_table, 0, sizeof_table);
2586
85c07804
AC
2587 add_setshow_zinteger_cmd ("debugvarobj", class_maintenance,
2588 &varobjdebug, _("\
2589Set varobj debugging."), _("\
2590Show varobj debugging."), _("\
2591When non-zero, varobj debugging is enabled."),
2592 NULL,
920d2a44 2593 show_varobjdebug,
85c07804 2594 &setlist, &showlist);
8b93c638 2595}
8756216b
DP
2596
2597/* Invalidate the varobjs that are tied to locals and re-create the ones that
2598 are defined on globals.
2599 Invalidated varobjs will be always printed in_scope="invalid". */
2600void
2601varobj_invalidate (void)
2602{
2603 struct varobj **all_rootvarobj;
2604 struct varobj **varp;
2605
2606 if (varobj_list (&all_rootvarobj) > 0)
2607 {
2608 varp = all_rootvarobj;
2609 while (*varp != NULL)
2610 {
2611 /* global var must be re-evaluated. */
2612 if ((*varp)->root->valid_block == NULL)
2613 {
2614 struct varobj *tmp_var;
2615
2616 /* Try to create a varobj with same expression. If we succeed replace
2617 the old varobj, otherwise invalidate it. */
2618 tmp_var = varobj_create (NULL, (*varp)->name, (CORE_ADDR) 0, USE_CURRENT_FRAME);
2619 if (tmp_var != NULL)
2620 {
2621 tmp_var->obj_name = xstrdup ((*varp)->obj_name);
2622 varobj_delete (*varp, NULL, 0);
2623 install_variable (tmp_var);
2624 }
2625 else
2626 (*varp)->root->is_valid = 0;
2627 }
2628 else /* locals must be invalidated. */
2629 (*varp)->root->is_valid = 0;
2630
2631 varp++;
2632 }
2633 xfree (all_rootvarobj);
2634 }
2635 return;
2636}