]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/varobj.c
binutils/riscv: Register names in DWARF output
[thirdparty/binutils-gdb.git] / gdb / varobj.c
CommitLineData
8b93c638 1/* Implementation of the GDB variable objects API.
bc8332bb 2
e2882c85 3 Copyright (C) 1999-2018 Free Software Foundation, Inc.
8b93c638
JM
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
a9762ec7 7 the Free Software Foundation; either version 3 of the License, or
8b93c638
JM
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
a9762ec7 16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
8b93c638
JM
17
18#include "defs.h"
19#include "value.h"
20#include "expression.h"
21#include "frame.h"
8b93c638 22#include "language.h"
8b93c638 23#include "gdbcmd.h"
d2353924 24#include "block.h"
79a45b7d 25#include "valprint.h"
0cc7d26f 26#include "gdb_regex.h"
8b93c638
JM
27
28#include "varobj.h"
28335dcc 29#include "vec.h"
6208b47d
VP
30#include "gdbthread.h"
31#include "inferior.h"
827f100c 32#include "varobj-iter.h"
396af9a1 33#include "parser-defs.h"
8b93c638 34
b6313243
TT
35#if HAVE_PYTHON
36#include "python/python.h"
37#include "python/python-internal.h"
bde7b3e3 38#include "python/py-ref.h"
50389644
PA
39#else
40typedef int PyObject;
b6313243
TT
41#endif
42
8b93c638
JM
43/* Non-zero if we want to see trace of varobj level stuff. */
44
ccce17b0 45unsigned int varobjdebug = 0;
920d2a44
AC
46static void
47show_varobjdebug (struct ui_file *file, int from_tty,
48 struct cmd_list_element *c, const char *value)
49{
50 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
51}
8b93c638 52
581e13c1 53/* String representations of gdb's format codes. */
a121b7c1 54const char *varobj_format_string[] =
1c35a88f 55 { "natural", "binary", "decimal", "hexadecimal", "octal", "zero-hexadecimal" };
8b93c638 56
0cc7d26f 57/* True if we want to allow Python-based pretty-printing. */
4c37490d 58static bool pretty_printing = false;
0cc7d26f
TT
59
60void
61varobj_enable_pretty_printing (void)
62{
4c37490d 63 pretty_printing = true;
0cc7d26f
TT
64}
65
8b93c638
JM
66/* Data structures */
67
68/* Every root variable has one of these structures saved in its
4d01a485 69 varobj. */
8b93c638 70struct varobj_root
72330bd6 71{
4d01a485
PA
72 /* The expression for this parent. */
73 expression_up exp;
8b93c638 74
581e13c1 75 /* Block for which this expression is valid. */
9e5b9d2b 76 const struct block *valid_block = NULL;
8b93c638 77
44a67aa7
VP
78 /* The frame for this expression. This field is set iff valid_block is
79 not NULL. */
9e5b9d2b 80 struct frame_id frame = null_frame_id;
8b93c638 81
5d5658a1 82 /* The global thread ID that this varobj_root belongs to. This field
581e13c1 83 is only valid if valid_block is not NULL.
c5b48eac
VP
84 When not 0, indicates which thread 'frame' belongs to.
85 When 0, indicates that the thread list was empty when the varobj_root
86 was created. */
9e5b9d2b 87 int thread_id = 0;
c5b48eac 88
4c37490d 89 /* If true, the -var-update always recomputes the value in the
a5defcdc 90 current thread and frame. Otherwise, variable object is
581e13c1 91 always updated in the specific scope/thread/frame. */
4c37490d 92 bool floating = false;
73a93a32 93
4c37490d 94 /* Flag that indicates validity: set to false when this varobj_root refers
8756216b 95 to symbols that do not exist anymore. */
4c37490d 96 bool is_valid = true;
8756216b 97
99ad9427
YQ
98 /* Language-related operations for this variable and its
99 children. */
9e5b9d2b 100 const struct lang_varobj_ops *lang_ops = NULL;
8b93c638 101
581e13c1 102 /* The varobj for this root node. */
9e5b9d2b 103 struct varobj *rootvar = NULL;
8b93c638 104
72330bd6 105 /* Next root variable */
9e5b9d2b 106 struct varobj_root *next = NULL;
72330bd6 107};
8b93c638 108
bb5ce47a 109/* Dynamic part of varobj. */
8b93c638 110
bb5ce47a
YQ
111struct varobj_dynamic
112{
b6313243
TT
113 /* Whether the children of this varobj were requested. This field is
114 used to decide if dynamic varobj should recompute their children.
115 In the event that the frontend never asked for the children, we
116 can avoid that. */
bd046f64 117 bool children_requested = false;
b6313243 118
0cc7d26f
TT
119 /* The pretty-printer constructor. If NULL, then the default
120 pretty-printer will be looked up. If None, then no
121 pretty-printer will be installed. */
9e5b9d2b 122 PyObject *constructor = NULL;
0cc7d26f 123
b6313243
TT
124 /* The pretty-printer that has been constructed. If NULL, then a
125 new printer object is needed, and one will be constructed. */
9e5b9d2b 126 PyObject *pretty_printer = NULL;
0cc7d26f
TT
127
128 /* The iterator returned by the printer's 'children' method, or NULL
129 if not available. */
9e5b9d2b 130 struct varobj_iter *child_iter = NULL;
0cc7d26f
TT
131
132 /* We request one extra item from the iterator, so that we can
133 report to the caller whether there are more items than we have
134 already reported. However, we don't want to install this value
135 when we read it, because that will mess up future updates. So,
136 we stash it here instead. */
9e5b9d2b 137 varobj_item *saved_item = NULL;
72330bd6 138};
8b93c638 139
8b93c638
JM
140/* A list of varobjs */
141
142struct vlist
72330bd6
AC
143{
144 struct varobj *var;
145 struct vlist *next;
146};
8b93c638
JM
147
148/* Private function prototypes */
149
581e13c1 150/* Helper functions for the above subcommands. */
8b93c638 151
4c37490d 152static int delete_variable (struct varobj *, bool);
8b93c638 153
4c37490d 154static void delete_variable_1 (int *, struct varobj *, bool, bool);
8b93c638 155
4c37490d 156static bool install_variable (struct varobj *);
8b93c638 157
a14ed312 158static void uninstall_variable (struct varobj *);
8b93c638 159
2f408ecb 160static struct varobj *create_child (struct varobj *, int, std::string &);
8b93c638 161
b6313243 162static struct varobj *
5a2e0d6e
YQ
163create_child_with_value (struct varobj *parent, int index,
164 struct varobj_item *item);
b6313243 165
8b93c638
JM
166/* Utility routines */
167
a14ed312 168static enum varobj_display_formats variable_default_display (struct varobj *);
8b93c638 169
4c37490d
SM
170static bool update_type_if_necessary (struct varobj *var,
171 struct value *new_value);
8264ba82 172
4c37490d
SM
173static bool install_new_value (struct varobj *var, struct value *value,
174 bool initial);
acd65feb 175
581e13c1 176/* Language-specific routines. */
8b93c638 177
b09e2c59 178static int number_of_children (const struct varobj *);
8b93c638 179
2f408ecb 180static std::string name_of_variable (const struct varobj *);
8b93c638 181
2f408ecb 182static std::string name_of_child (struct varobj *, int);
8b93c638 183
4c37490d 184static struct value *value_of_root (struct varobj **var_handle, bool *);
8b93c638 185
c1cc6152 186static struct value *value_of_child (const struct varobj *parent, int index);
8b93c638 187
2f408ecb
PA
188static std::string my_value_of_variable (struct varobj *var,
189 enum varobj_display_formats format);
8b93c638 190
4c37490d 191static bool is_root_p (const struct varobj *var);
8b93c638 192
9a1edae6 193static struct varobj *varobj_add_child (struct varobj *var,
5a2e0d6e 194 struct varobj_item *item);
b6313243 195
8b93c638
JM
196/* Private data */
197
581e13c1 198/* Mappings of varobj_display_formats enums to gdb's format codes. */
1c35a88f 199static int format_code[] = { 0, 't', 'd', 'x', 'o', 'z' };
8b93c638 200
581e13c1 201/* Header of the list of root variable objects. */
8b93c638 202static struct varobj_root *rootlist;
8b93c638 203
581e13c1 204/* Prime number indicating the number of buckets in the hash table. */
5fa13070 205/* A prime large enough to avoid too many collisions. */
8b93c638
JM
206#define VAROBJ_TABLE_SIZE 227
207
581e13c1 208/* Pointer to the varobj hash table (built at run time). */
8b93c638
JM
209static struct vlist **varobj_table;
210
8b93c638
JM
211\f
212
213/* API Implementation */
4c37490d 214static bool
b09e2c59 215is_root_p (const struct varobj *var)
b2c2bd75
VP
216{
217 return (var->root->rootvar == var);
218}
8b93c638 219
d452c4bc 220#ifdef HAVE_PYTHON
6cd67bea
TT
221
222/* See python-internal.h. */
223gdbpy_enter_varobj::gdbpy_enter_varobj (const struct varobj *var)
224: gdbpy_enter (var->root->exp->gdbarch, var->root->exp->language_defn)
225{
226}
227
d452c4bc
UW
228#endif
229
7d8547c9
AC
230/* Return the full FRAME which corresponds to the given CORE_ADDR
231 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
232
233static struct frame_info *
234find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
235{
236 struct frame_info *frame = NULL;
237
238 if (frame_addr == (CORE_ADDR) 0)
239 return NULL;
240
9d49bdc2
PA
241 for (frame = get_current_frame ();
242 frame != NULL;
243 frame = get_prev_frame (frame))
7d8547c9 244 {
1fac167a
UW
245 /* The CORE_ADDR we get as argument was parsed from a string GDB
246 output as $fp. This output got truncated to gdbarch_addr_bit.
247 Truncate the frame base address in the same manner before
248 comparing it against our argument. */
249 CORE_ADDR frame_base = get_frame_base_address (frame);
250 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
a109c7c1 251
1fac167a
UW
252 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
253 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
254
255 if (frame_base == frame_addr)
7d8547c9
AC
256 return frame;
257 }
9d49bdc2
PA
258
259 return NULL;
7d8547c9
AC
260}
261
5fa13070
SM
262/* Creates a varobj (not its children). */
263
8b93c638 264struct varobj *
2f408ecb
PA
265varobj_create (const char *objname,
266 const char *expression, CORE_ADDR frame, enum varobj_type type)
8b93c638 267{
581e13c1 268 /* Fill out a varobj structure for the (root) variable being constructed. */
9e5b9d2b 269 std::unique_ptr<varobj> var (new varobj (new varobj_root));
8b93c638
JM
270
271 if (expression != NULL)
272 {
e4195b40 273 struct frame_info *fi;
35633fef 274 struct frame_id old_id = null_frame_id;
3977b71f 275 const struct block *block;
bbc13ae3 276 const char *p;
e55dccf0 277 struct value *value = NULL;
1bb9788d 278 CORE_ADDR pc;
8b93c638 279
9d49bdc2
PA
280 /* Parse and evaluate the expression, filling in as much of the
281 variable's data as possible. */
282
283 if (has_stack_frames ())
284 {
581e13c1 285 /* Allow creator to specify context of variable. */
9d49bdc2
PA
286 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
287 fi = get_selected_frame (NULL);
288 else
289 /* FIXME: cagney/2002-11-23: This code should be doing a
290 lookup using the frame ID and not just the frame's
291 ``address''. This, of course, means an interface
292 change. However, with out that interface change ISAs,
293 such as the ia64 with its two stacks, won't work.
294 Similar goes for the case where there is a frameless
295 function. */
296 fi = find_frame_addr_in_frame_chain (frame);
297 }
8b93c638 298 else
9d49bdc2 299 fi = NULL;
8b93c638 300
73a93a32 301 if (type == USE_SELECTED_FRAME)
4c37490d 302 var->root->floating = true;
73a93a32 303
1bb9788d 304 pc = 0;
8b93c638
JM
305 block = NULL;
306 if (fi != NULL)
1bb9788d
TT
307 {
308 block = get_frame_block (fi, 0);
309 pc = get_frame_pc (fi);
310 }
8b93c638
JM
311
312 p = expression;
ae451627
AB
313 innermost_block.reset (INNERMOST_BLOCK_FOR_SYMBOLS
314 | INNERMOST_BLOCK_FOR_REGISTERS);
73a93a32 315 /* Wrap the call to parse expression, so we can
581e13c1 316 return a sensible error. */
492d29ea 317 TRY
8e7b59a5 318 {
1bb9788d 319 var->root->exp = parse_exp_1 (&p, pc, block, 0);
8e7b59a5
KS
320 }
321
492d29ea 322 CATCH (except, RETURN_MASK_ERROR)
73a93a32
JI
323 {
324 return NULL;
325 }
492d29ea 326 END_CATCH
8b93c638 327
581e13c1 328 /* Don't allow variables to be created for types. */
608b4967
TT
329 if (var->root->exp->elts[0].opcode == OP_TYPE
330 || var->root->exp->elts[0].opcode == OP_TYPEOF
331 || var->root->exp->elts[0].opcode == OP_DECLTYPE)
8b93c638 332 {
bc8332bb
AC
333 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
334 " as an expression.\n");
8b93c638
JM
335 return NULL;
336 }
337
9e5b9d2b 338 var->format = variable_default_display (var.get ());
e707fc44
AB
339 var->root->valid_block =
340 var->root->floating ? NULL : innermost_block.block ();
2f408ecb 341 var->name = expression;
02142340 342 /* For a root var, the name and the expr are the same. */
2f408ecb 343 var->path_expr = expression;
8b93c638
JM
344
345 /* When the frame is different from the current frame,
346 we must select the appropriate frame before parsing
347 the expression, otherwise the value will not be current.
581e13c1 348 Since select_frame is so benign, just call it for all cases. */
aee1fcdf 349 if (var->root->valid_block)
8b93c638 350 {
4e22772d
JK
351 /* User could specify explicit FRAME-ADDR which was not found but
352 EXPRESSION is frame specific and we would not be able to evaluate
353 it correctly next time. With VALID_BLOCK set we must also set
354 FRAME and THREAD_ID. */
355 if (fi == NULL)
356 error (_("Failed to find the specified frame"));
357
7a424e99 358 var->root->frame = get_frame_id (fi);
5d5658a1 359 var->root->thread_id = ptid_to_global_thread_id (inferior_ptid);
35633fef 360 old_id = get_frame_id (get_selected_frame (NULL));
c5b48eac 361 select_frame (fi);
8b93c638
JM
362 }
363
340a7723 364 /* We definitely need to catch errors here.
8b93c638 365 If evaluate_expression succeeds we got the value we wanted.
581e13c1 366 But if it fails, we still go on with a call to evaluate_type(). */
492d29ea 367 TRY
8e7b59a5 368 {
4d01a485 369 value = evaluate_expression (var->root->exp.get ());
8e7b59a5 370 }
492d29ea 371 CATCH (except, RETURN_MASK_ERROR)
e55dccf0
VP
372 {
373 /* Error getting the value. Try to at least get the
374 right type. */
4d01a485 375 struct value *type_only_value = evaluate_type (var->root->exp.get ());
a109c7c1 376
e55dccf0
VP
377 var->type = value_type (type_only_value);
378 }
492d29ea 379 END_CATCH
8264ba82 380
492d29ea
PA
381 if (value != NULL)
382 {
383 int real_type_found = 0;
384
385 var->type = value_actual_type (value, 0, &real_type_found);
386 if (real_type_found)
387 value = value_cast (var->type, value);
388 }
acd65feb 389
8b93c638 390 /* Set language info */
ca20d462 391 var->root->lang_ops = var->root->exp->language_defn->la_varobj_ops;
8b93c638 392
9e5b9d2b 393 install_new_value (var.get (), value, 1 /* Initial assignment */);
d32cafc7 394
581e13c1 395 /* Set ourselves as our root. */
9e5b9d2b 396 var->root->rootvar = var.get ();
8b93c638 397
581e13c1 398 /* Reset the selected frame. */
35633fef
JK
399 if (frame_id_p (old_id))
400 select_frame (frame_find_by_id (old_id));
8b93c638
JM
401 }
402
73a93a32 403 /* If the variable object name is null, that means this
581e13c1 404 is a temporary variable, so don't install it. */
73a93a32
JI
405
406 if ((var != NULL) && (objname != NULL))
8b93c638 407 {
2f408ecb 408 var->obj_name = objname;
8b93c638
JM
409
410 /* If a varobj name is duplicated, the install will fail so
581e13c1 411 we must cleanup. */
9e5b9d2b
SM
412 if (!install_variable (var.get ()))
413 return NULL;
8b93c638
JM
414 }
415
9e5b9d2b 416 return var.release ();
8b93c638
JM
417}
418
581e13c1 419/* Generates an unique name that can be used for a varobj. */
8b93c638 420
2d6960b4 421std::string
8b93c638
JM
422varobj_gen_name (void)
423{
424 static int id = 0;
8b93c638 425
581e13c1 426 /* Generate a name for this object. */
8b93c638 427 id++;
2d6960b4 428 return string_printf ("var%d", id);
8b93c638
JM
429}
430
61d8f275
JK
431/* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
432 error if OBJNAME cannot be found. */
8b93c638
JM
433
434struct varobj *
2f408ecb 435varobj_get_handle (const char *objname)
8b93c638
JM
436{
437 struct vlist *cv;
438 const char *chp;
439 unsigned int index = 0;
440 unsigned int i = 1;
441
442 for (chp = objname; *chp; chp++)
443 {
444 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
445 }
446
447 cv = *(varobj_table + index);
2f408ecb 448 while (cv != NULL && cv->var->obj_name != objname)
8b93c638
JM
449 cv = cv->next;
450
451 if (cv == NULL)
8a3fe4f8 452 error (_("Variable object not found"));
8b93c638
JM
453
454 return cv->var;
455}
456
581e13c1 457/* Given the handle, return the name of the object. */
8b93c638 458
2f408ecb 459const char *
b09e2c59 460varobj_get_objname (const struct varobj *var)
8b93c638 461{
2f408ecb 462 return var->obj_name.c_str ();
8b93c638
JM
463}
464
2f408ecb
PA
465/* Given the handle, return the expression represented by the
466 object. */
8b93c638 467
2f408ecb 468std::string
b09e2c59 469varobj_get_expression (const struct varobj *var)
8b93c638
JM
470{
471 return name_of_variable (var);
472}
473
30914ca8 474/* See varobj.h. */
8b93c638
JM
475
476int
4c37490d 477varobj_delete (struct varobj *var, bool only_children)
8b93c638 478{
30914ca8 479 return delete_variable (var, only_children);
8b93c638
JM
480}
481
d8b65138
JK
482#if HAVE_PYTHON
483
b6313243
TT
484/* Convenience function for varobj_set_visualizer. Instantiate a
485 pretty-printer for a given value. */
486static PyObject *
487instantiate_pretty_printer (PyObject *constructor, struct value *value)
488{
b6313243
TT
489 PyObject *val_obj = NULL;
490 PyObject *printer;
b6313243 491
b6313243 492 val_obj = value_to_value_object (value);
b6313243
TT
493 if (! val_obj)
494 return NULL;
495
496 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
497 Py_DECREF (val_obj);
498 return printer;
b6313243
TT
499}
500
d8b65138
JK
501#endif
502
581e13c1 503/* Set/Get variable object display format. */
8b93c638
JM
504
505enum varobj_display_formats
506varobj_set_display_format (struct varobj *var,
507 enum varobj_display_formats format)
508{
509 switch (format)
510 {
511 case FORMAT_NATURAL:
512 case FORMAT_BINARY:
513 case FORMAT_DECIMAL:
514 case FORMAT_HEXADECIMAL:
515 case FORMAT_OCTAL:
1c35a88f 516 case FORMAT_ZHEXADECIMAL:
8b93c638
JM
517 var->format = format;
518 break;
519
520 default:
521 var->format = variable_default_display (var);
522 }
523
ae7d22a6
VP
524 if (varobj_value_is_changeable_p (var)
525 && var->value && !value_lazy (var->value))
526 {
99ad9427
YQ
527 var->print_value = varobj_value_get_print_value (var->value,
528 var->format, var);
ae7d22a6
VP
529 }
530
8b93c638
JM
531 return var->format;
532}
533
534enum varobj_display_formats
b09e2c59 535varobj_get_display_format (const struct varobj *var)
8b93c638
JM
536{
537 return var->format;
538}
539
9b972014 540gdb::unique_xmalloc_ptr<char>
b09e2c59 541varobj_get_display_hint (const struct varobj *var)
b6313243 542{
9b972014 543 gdb::unique_xmalloc_ptr<char> result;
b6313243
TT
544
545#if HAVE_PYTHON
0646da15
TT
546 if (!gdb_python_initialized)
547 return NULL;
548
bde7b3e3 549 gdbpy_enter_varobj enter_py (var);
d452c4bc 550
bb5ce47a
YQ
551 if (var->dynamic->pretty_printer != NULL)
552 result = gdbpy_get_display_hint (var->dynamic->pretty_printer);
b6313243
TT
553#endif
554
555 return result;
556}
557
0cc7d26f
TT
558/* Return true if the varobj has items after TO, false otherwise. */
559
4c37490d 560bool
b09e2c59 561varobj_has_more (const struct varobj *var, int to)
0cc7d26f 562{
ddf0ea08 563 if (var->children.size () > to)
4c37490d 564 return true;
ddf0ea08
SM
565
566 return ((to == -1 || var->children.size () == to)
bb5ce47a 567 && (var->dynamic->saved_item != NULL));
0cc7d26f
TT
568}
569
c5b48eac
VP
570/* If the variable object is bound to a specific thread, that
571 is its evaluation can always be done in context of a frame
572 inside that thread, returns GDB id of the thread -- which
581e13c1 573 is always positive. Otherwise, returns -1. */
c5b48eac 574int
b09e2c59 575varobj_get_thread_id (const struct varobj *var)
c5b48eac
VP
576{
577 if (var->root->valid_block && var->root->thread_id > 0)
578 return var->root->thread_id;
579 else
580 return -1;
581}
582
25d5ea92 583void
4c37490d 584varobj_set_frozen (struct varobj *var, bool frozen)
25d5ea92
VP
585{
586 /* When a variable is unfrozen, we don't fetch its value.
587 The 'not_fetched' flag remains set, so next -var-update
588 won't complain.
589
590 We don't fetch the value, because for structures the client
591 should do -var-update anyway. It would be bad to have different
592 client-size logic for structure and other types. */
593 var->frozen = frozen;
594}
595
4c37490d 596bool
b09e2c59 597varobj_get_frozen (const struct varobj *var)
25d5ea92
VP
598{
599 return var->frozen;
600}
601
0cc7d26f
TT
602/* A helper function that restricts a range to what is actually
603 available in a VEC. This follows the usual rules for the meaning
604 of FROM and TO -- if either is negative, the entire range is
605 used. */
606
99ad9427 607void
ddf0ea08
SM
608varobj_restrict_range (const std::vector<varobj *> &children,
609 int *from, int *to)
0cc7d26f 610{
ddf0ea08
SM
611 int len = children.size ();
612
0cc7d26f
TT
613 if (*from < 0 || *to < 0)
614 {
615 *from = 0;
ddf0ea08 616 *to = len;
0cc7d26f
TT
617 }
618 else
619 {
ddf0ea08
SM
620 if (*from > len)
621 *from = len;
622 if (*to > len)
623 *to = len;
0cc7d26f
TT
624 if (*from > *to)
625 *from = *to;
626 }
627}
628
629/* A helper for update_dynamic_varobj_children that installs a new
630 child when needed. */
631
632static void
633install_dynamic_child (struct varobj *var,
0604393c
SM
634 std::vector<varobj *> *changed,
635 std::vector<varobj *> *type_changed,
636 std::vector<varobj *> *newobj,
637 std::vector<varobj *> *unchanged,
4c37490d 638 bool *cchanged,
0cc7d26f 639 int index,
5a2e0d6e 640 struct varobj_item *item)
0cc7d26f 641{
ddf0ea08 642 if (var->children.size () < index + 1)
0cc7d26f
TT
643 {
644 /* There's no child yet. */
5a2e0d6e 645 struct varobj *child = varobj_add_child (var, item);
a109c7c1 646
0604393c 647 if (newobj != NULL)
0cc7d26f 648 {
0604393c 649 newobj->push_back (child);
4c37490d 650 *cchanged = true;
0cc7d26f
TT
651 }
652 }
bf8793bb 653 else
0cc7d26f 654 {
ddf0ea08 655 varobj *existing = var->children[index];
4c37490d 656 bool type_updated = update_type_if_necessary (existing, item->value);
bf8793bb 657
8264ba82
AG
658 if (type_updated)
659 {
0604393c
SM
660 if (type_changed != NULL)
661 type_changed->push_back (existing);
8264ba82 662 }
5a2e0d6e 663 if (install_new_value (existing, item->value, 0))
0cc7d26f 664 {
0604393c
SM
665 if (!type_updated && changed != NULL)
666 changed->push_back (existing);
0cc7d26f 667 }
0604393c
SM
668 else if (!type_updated && unchanged != NULL)
669 unchanged->push_back (existing);
0cc7d26f
TT
670 }
671}
672
576ea091
YQ
673#if HAVE_PYTHON
674
4c37490d 675static bool
b09e2c59 676dynamic_varobj_has_child_method (const struct varobj *var)
0cc7d26f 677{
bb5ce47a 678 PyObject *printer = var->dynamic->pretty_printer;
0cc7d26f 679
0646da15 680 if (!gdb_python_initialized)
4c37490d 681 return false;
0646da15 682
bde7b3e3
TT
683 gdbpy_enter_varobj enter_py (var);
684 return PyObject_HasAttr (printer, gdbpy_children_cst);
0cc7d26f 685}
576ea091 686#endif
0cc7d26f 687
e5250216
YQ
688/* A factory for creating dynamic varobj's iterators. Returns an
689 iterator object suitable for iterating over VAR's children. */
690
691static struct varobj_iter *
692varobj_get_iterator (struct varobj *var)
693{
576ea091 694#if HAVE_PYTHON
e5250216
YQ
695 if (var->dynamic->pretty_printer)
696 return py_varobj_get_iterator (var, var->dynamic->pretty_printer);
576ea091 697#endif
e5250216
YQ
698
699 gdb_assert_not_reached (_("\
700requested an iterator from a non-dynamic varobj"));
701}
702
827f100c
YQ
703/* Release and clear VAR's saved item, if any. */
704
705static void
706varobj_clear_saved_item (struct varobj_dynamic *var)
707{
708 if (var->saved_item != NULL)
709 {
710 value_free (var->saved_item->value);
0a8beaba 711 delete var->saved_item;
827f100c
YQ
712 var->saved_item = NULL;
713 }
714}
0cc7d26f 715
4c37490d 716static bool
b6313243 717update_dynamic_varobj_children (struct varobj *var,
0604393c
SM
718 std::vector<varobj *> *changed,
719 std::vector<varobj *> *type_changed,
720 std::vector<varobj *> *newobj,
721 std::vector<varobj *> *unchanged,
4c37490d
SM
722 bool *cchanged,
723 bool update_children,
0cc7d26f
TT
724 int from,
725 int to)
b6313243 726{
b6313243 727 int i;
b6313243 728
4c37490d 729 *cchanged = false;
b6313243 730
bb5ce47a 731 if (update_children || var->dynamic->child_iter == NULL)
b6313243 732 {
e5250216
YQ
733 varobj_iter_delete (var->dynamic->child_iter);
734 var->dynamic->child_iter = varobj_get_iterator (var);
b6313243 735
827f100c 736 varobj_clear_saved_item (var->dynamic);
b6313243 737
e5250216 738 i = 0;
b6313243 739
bb5ce47a 740 if (var->dynamic->child_iter == NULL)
4c37490d 741 return false;
b6313243 742 }
0cc7d26f 743 else
ddf0ea08 744 i = var->children.size ();
b6313243 745
0cc7d26f
TT
746 /* We ask for one extra child, so that MI can report whether there
747 are more children. */
748 for (; to < 0 || i < to + 1; ++i)
b6313243 749 {
827f100c 750 varobj_item *item;
b6313243 751
0cc7d26f 752 /* See if there was a leftover from last time. */
827f100c 753 if (var->dynamic->saved_item != NULL)
0cc7d26f 754 {
bb5ce47a
YQ
755 item = var->dynamic->saved_item;
756 var->dynamic->saved_item = NULL;
0cc7d26f
TT
757 }
758 else
a4c8e806 759 {
e5250216 760 item = varobj_iter_next (var->dynamic->child_iter);
827f100c
YQ
761 /* Release vitem->value so its lifetime is not bound to the
762 execution of a command. */
763 if (item != NULL && item->value != NULL)
764 release_value_or_incref (item->value);
a4c8e806 765 }
b6313243 766
e5250216
YQ
767 if (item == NULL)
768 {
769 /* Iteration is done. Remove iterator from VAR. */
770 varobj_iter_delete (var->dynamic->child_iter);
771 var->dynamic->child_iter = NULL;
772 break;
773 }
0cc7d26f
TT
774 /* We don't want to push the extra child on any report list. */
775 if (to < 0 || i < to)
b6313243 776 {
4c37490d 777 bool can_mention = from < 0 || i >= from;
0cc7d26f 778
0cc7d26f 779 install_dynamic_child (var, can_mention ? changed : NULL,
8264ba82 780 can_mention ? type_changed : NULL,
fe978cb0 781 can_mention ? newobj : NULL,
0cc7d26f 782 can_mention ? unchanged : NULL,
5e5ac9a5 783 can_mention ? cchanged : NULL, i,
827f100c
YQ
784 item);
785
0a8beaba 786 delete item;
b6313243 787 }
0cc7d26f 788 else
b6313243 789 {
bb5ce47a 790 var->dynamic->saved_item = item;
b6313243 791
0cc7d26f
TT
792 /* We want to truncate the child list just before this
793 element. */
794 break;
795 }
b6313243
TT
796 }
797
ddf0ea08 798 if (i < var->children.size ())
b6313243 799 {
4c37490d 800 *cchanged = true;
ddf0ea08
SM
801 for (int j = i; j < var->children.size (); ++j)
802 varobj_delete (var->children[j], 0);
803
804 var->children.resize (i);
b6313243 805 }
0cc7d26f
TT
806
807 /* If there are fewer children than requested, note that the list of
808 children changed. */
ddf0ea08 809 if (to >= 0 && var->children.size () < to)
4c37490d 810 *cchanged = true;
0cc7d26f 811
ddf0ea08 812 var->num_children = var->children.size ();
b6313243 813
4c37490d 814 return true;
b6313243 815}
25d5ea92 816
8b93c638
JM
817int
818varobj_get_num_children (struct varobj *var)
819{
820 if (var->num_children == -1)
b6313243 821 {
31f628ae 822 if (varobj_is_dynamic_p (var))
0cc7d26f 823 {
4c37490d 824 bool dummy;
0cc7d26f
TT
825
826 /* If we have a dynamic varobj, don't report -1 children.
827 So, try to fetch some children first. */
8264ba82 828 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
4c37490d 829 false, 0, 0);
0cc7d26f
TT
830 }
831 else
b6313243
TT
832 var->num_children = number_of_children (var);
833 }
8b93c638 834
0cc7d26f 835 return var->num_children >= 0 ? var->num_children : 0;
8b93c638
JM
836}
837
838/* Creates a list of the immediate children of a variable object;
581e13c1 839 the return code is the number of such children or -1 on error. */
8b93c638 840
ddf0ea08 841const std::vector<varobj *> &
0cc7d26f 842varobj_list_children (struct varobj *var, int *from, int *to)
8b93c638 843{
bd046f64 844 var->dynamic->children_requested = true;
b6313243 845
31f628ae 846 if (varobj_is_dynamic_p (var))
0cc7d26f 847 {
4c37490d
SM
848 bool children_changed;
849
b6313243
TT
850 /* This, in theory, can result in the number of children changing without
851 frontend noticing. But well, calling -var-list-children on the same
852 varobj twice is not something a sane frontend would do. */
8264ba82 853 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
4c37490d 854 &children_changed, false, 0, *to);
99ad9427 855 varobj_restrict_range (var->children, from, to);
0cc7d26f
TT
856 return var->children;
857 }
8b93c638 858
8b93c638
JM
859 if (var->num_children == -1)
860 var->num_children = number_of_children (var);
861
74a44383
DJ
862 /* If that failed, give up. */
863 if (var->num_children == -1)
d56d46f5 864 return var->children;
74a44383 865
28335dcc
VP
866 /* If we're called when the list of children is not yet initialized,
867 allocate enough elements in it. */
ddf0ea08
SM
868 while (var->children.size () < var->num_children)
869 var->children.push_back (NULL);
28335dcc 870
ddf0ea08 871 for (int i = 0; i < var->num_children; i++)
8b93c638 872 {
ddf0ea08 873 if (var->children[i] == NULL)
28335dcc
VP
874 {
875 /* Either it's the first call to varobj_list_children for
876 this variable object, and the child was never created,
877 or it was explicitly deleted by the client. */
2f408ecb 878 std::string name = name_of_child (var, i);
ddf0ea08 879 var->children[i] = create_child (var, i, name);
28335dcc 880 }
8b93c638
JM
881 }
882
99ad9427 883 varobj_restrict_range (var->children, from, to);
d56d46f5 884 return var->children;
8b93c638
JM
885}
886
b6313243 887static struct varobj *
5a2e0d6e 888varobj_add_child (struct varobj *var, struct varobj_item *item)
b6313243 889{
ddf0ea08
SM
890 varobj *v = create_child_with_value (var, var->children.size (), item);
891
892 var->children.push_back (v);
a109c7c1 893
b6313243
TT
894 return v;
895}
896
8b93c638 897/* Obtain the type of an object Variable as a string similar to the one gdb
afa269ae
SM
898 prints on the console. The caller is responsible for freeing the string.
899 */
8b93c638 900
2f408ecb 901std::string
8b93c638
JM
902varobj_get_type (struct varobj *var)
903{
8ab91b96 904 /* For the "fake" variables, do not return a type. (Its type is
8756216b
DP
905 NULL, too.)
906 Do not return a type for invalid variables as well. */
907 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
2f408ecb 908 return std::string ();
8b93c638 909
1a4300e9 910 return type_to_string (var->type);
8b93c638
JM
911}
912
1ecb4ee0
DJ
913/* Obtain the type of an object variable. */
914
915struct type *
b09e2c59 916varobj_get_gdb_type (const struct varobj *var)
1ecb4ee0
DJ
917{
918 return var->type;
919}
920
85254831
KS
921/* Is VAR a path expression parent, i.e., can it be used to construct
922 a valid path expression? */
923
4c37490d 924static bool
b09e2c59 925is_path_expr_parent (const struct varobj *var)
85254831 926{
9a9a7608
AB
927 gdb_assert (var->root->lang_ops->is_path_expr_parent != NULL);
928 return var->root->lang_ops->is_path_expr_parent (var);
929}
85254831 930
9a9a7608
AB
931/* Is VAR a path expression parent, i.e., can it be used to construct
932 a valid path expression? By default we assume any VAR can be a path
933 parent. */
85254831 934
4c37490d 935bool
b09e2c59 936varobj_default_is_path_expr_parent (const struct varobj *var)
9a9a7608 937{
4c37490d 938 return true;
85254831
KS
939}
940
941/* Return the path expression parent for VAR. */
942
c1cc6152
SM
943const struct varobj *
944varobj_get_path_expr_parent (const struct varobj *var)
85254831 945{
c1cc6152 946 const struct varobj *parent = var;
85254831
KS
947
948 while (!is_root_p (parent) && !is_path_expr_parent (parent))
949 parent = parent->parent;
950
951 return parent;
952}
953
02142340
VP
954/* Return a pointer to the full rooted expression of varobj VAR.
955 If it has not been computed yet, compute it. */
2f408ecb
PA
956
957const char *
c1cc6152 958varobj_get_path_expr (const struct varobj *var)
02142340 959{
2f408ecb 960 if (var->path_expr.empty ())
02142340
VP
961 {
962 /* For root varobjs, we initialize path_expr
963 when creating varobj, so here it should be
964 child varobj. */
c1cc6152 965 struct varobj *mutable_var = (struct varobj *) var;
02142340 966 gdb_assert (!is_root_p (var));
2568868e 967
c1cc6152 968 mutable_var->path_expr = (*var->root->lang_ops->path_expr_of_child) (var);
02142340 969 }
2568868e 970
2f408ecb 971 return var->path_expr.c_str ();
02142340
VP
972}
973
fa4d0c40 974const struct language_defn *
b09e2c59 975varobj_get_language (const struct varobj *var)
8b93c638 976{
fa4d0c40 977 return var->root->exp->language_defn;
8b93c638
JM
978}
979
980int
b09e2c59 981varobj_get_attributes (const struct varobj *var)
8b93c638
JM
982{
983 int attributes = 0;
984
340a7723 985 if (varobj_editable_p (var))
581e13c1 986 /* FIXME: define masks for attributes. */
8b93c638
JM
987 attributes |= 0x00000001; /* Editable */
988
989 return attributes;
990}
991
cde5ef40
YQ
992/* Return true if VAR is a dynamic varobj. */
993
4c37490d 994bool
b09e2c59 995varobj_is_dynamic_p (const struct varobj *var)
0cc7d26f 996{
bb5ce47a 997 return var->dynamic->pretty_printer != NULL;
0cc7d26f
TT
998}
999
2f408ecb 1000std::string
de051565
MK
1001varobj_get_formatted_value (struct varobj *var,
1002 enum varobj_display_formats format)
1003{
1004 return my_value_of_variable (var, format);
1005}
1006
2f408ecb 1007std::string
8b93c638
JM
1008varobj_get_value (struct varobj *var)
1009{
de051565 1010 return my_value_of_variable (var, var->format);
8b93c638
JM
1011}
1012
1013/* Set the value of an object variable (if it is editable) to the
581e13c1
MS
1014 value of the given expression. */
1015/* Note: Invokes functions that can call error(). */
8b93c638 1016
4c37490d 1017bool
2f408ecb 1018varobj_set_value (struct varobj *var, const char *expression)
8b93c638 1019{
34365054 1020 struct value *val = NULL; /* Initialize to keep gcc happy. */
8b93c638 1021 /* The argument "expression" contains the variable's new value.
581e13c1
MS
1022 We need to first construct a legal expression for this -- ugh! */
1023 /* Does this cover all the bases? */
34365054 1024 struct value *value = NULL; /* Initialize to keep gcc happy. */
8b93c638 1025 int saved_input_radix = input_radix;
bbc13ae3 1026 const char *s = expression;
8b93c638 1027
340a7723 1028 gdb_assert (varobj_editable_p (var));
8b93c638 1029
581e13c1 1030 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
4d01a485 1031 expression_up exp = parse_exp_1 (&s, 0, 0, 0);
492d29ea 1032 TRY
8e7b59a5 1033 {
4d01a485 1034 value = evaluate_expression (exp.get ());
8e7b59a5
KS
1035 }
1036
492d29ea 1037 CATCH (except, RETURN_MASK_ERROR)
340a7723 1038 {
581e13c1 1039 /* We cannot proceed without a valid expression. */
4c37490d 1040 return false;
8b93c638 1041 }
492d29ea 1042 END_CATCH
8b93c638 1043
340a7723
NR
1044 /* All types that are editable must also be changeable. */
1045 gdb_assert (varobj_value_is_changeable_p (var));
1046
1047 /* The value of a changeable variable object must not be lazy. */
1048 gdb_assert (!value_lazy (var->value));
1049
1050 /* Need to coerce the input. We want to check if the
1051 value of the variable object will be different
1052 after assignment, and the first thing value_assign
1053 does is coerce the input.
1054 For example, if we are assigning an array to a pointer variable we
b021a221 1055 should compare the pointer with the array's address, not with the
340a7723
NR
1056 array's content. */
1057 value = coerce_array (value);
1058
8e7b59a5
KS
1059 /* The new value may be lazy. value_assign, or
1060 rather value_contents, will take care of this. */
492d29ea 1061 TRY
8e7b59a5
KS
1062 {
1063 val = value_assign (var->value, value);
1064 }
1065
492d29ea
PA
1066 CATCH (except, RETURN_MASK_ERROR)
1067 {
4c37490d 1068 return false;
492d29ea
PA
1069 }
1070 END_CATCH
8e7b59a5 1071
340a7723
NR
1072 /* If the value has changed, record it, so that next -var-update can
1073 report this change. If a variable had a value of '1', we've set it
1074 to '333' and then set again to '1', when -var-update will report this
1075 variable as changed -- because the first assignment has set the
1076 'updated' flag. There's no need to optimize that, because return value
1077 of -var-update should be considered an approximation. */
4c37490d 1078 var->updated = install_new_value (var, val, false /* Compare values. */);
340a7723 1079 input_radix = saved_input_radix;
4c37490d 1080 return true;
8b93c638
JM
1081}
1082
0cc7d26f
TT
1083#if HAVE_PYTHON
1084
1085/* A helper function to install a constructor function and visualizer
bb5ce47a 1086 in a varobj_dynamic. */
0cc7d26f
TT
1087
1088static void
bb5ce47a 1089install_visualizer (struct varobj_dynamic *var, PyObject *constructor,
0cc7d26f
TT
1090 PyObject *visualizer)
1091{
1092 Py_XDECREF (var->constructor);
1093 var->constructor = constructor;
1094
1095 Py_XDECREF (var->pretty_printer);
1096 var->pretty_printer = visualizer;
1097
e5250216 1098 varobj_iter_delete (var->child_iter);
0cc7d26f
TT
1099 var->child_iter = NULL;
1100}
1101
1102/* Install the default visualizer for VAR. */
1103
1104static void
1105install_default_visualizer (struct varobj *var)
1106{
d65aec65
PM
1107 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1108 if (CPLUS_FAKE_CHILD (var))
1109 return;
1110
0cc7d26f
TT
1111 if (pretty_printing)
1112 {
1113 PyObject *pretty_printer = NULL;
1114
1115 if (var->value)
1116 {
1117 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1118 if (! pretty_printer)
1119 {
1120 gdbpy_print_stack ();
1121 error (_("Cannot instantiate printer for default visualizer"));
1122 }
1123 }
1124
1125 if (pretty_printer == Py_None)
1126 {
1127 Py_DECREF (pretty_printer);
1128 pretty_printer = NULL;
1129 }
1130
bb5ce47a 1131 install_visualizer (var->dynamic, NULL, pretty_printer);
0cc7d26f
TT
1132 }
1133}
1134
1135/* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1136 make a new object. */
1137
1138static void
1139construct_visualizer (struct varobj *var, PyObject *constructor)
1140{
1141 PyObject *pretty_printer;
1142
d65aec65
PM
1143 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1144 if (CPLUS_FAKE_CHILD (var))
1145 return;
1146
0cc7d26f
TT
1147 Py_INCREF (constructor);
1148 if (constructor == Py_None)
1149 pretty_printer = NULL;
1150 else
1151 {
1152 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1153 if (! pretty_printer)
1154 {
1155 gdbpy_print_stack ();
1156 Py_DECREF (constructor);
1157 constructor = Py_None;
1158 Py_INCREF (constructor);
1159 }
1160
1161 if (pretty_printer == Py_None)
1162 {
1163 Py_DECREF (pretty_printer);
1164 pretty_printer = NULL;
1165 }
1166 }
1167
bb5ce47a 1168 install_visualizer (var->dynamic, constructor, pretty_printer);
0cc7d26f
TT
1169}
1170
1171#endif /* HAVE_PYTHON */
1172
1173/* A helper function for install_new_value. This creates and installs
1174 a visualizer for VAR, if appropriate. */
1175
1176static void
1177install_new_value_visualizer (struct varobj *var)
1178{
1179#if HAVE_PYTHON
1180 /* If the constructor is None, then we want the raw value. If VAR
1181 does not have a value, just skip this. */
0646da15
TT
1182 if (!gdb_python_initialized)
1183 return;
1184
bb5ce47a 1185 if (var->dynamic->constructor != Py_None && var->value != NULL)
0cc7d26f 1186 {
bde7b3e3 1187 gdbpy_enter_varobj enter_py (var);
0cc7d26f 1188
bb5ce47a 1189 if (var->dynamic->constructor == NULL)
0cc7d26f
TT
1190 install_default_visualizer (var);
1191 else
bb5ce47a 1192 construct_visualizer (var, var->dynamic->constructor);
0cc7d26f
TT
1193 }
1194#else
1195 /* Do nothing. */
1196#endif
1197}
1198
8264ba82
AG
1199/* When using RTTI to determine variable type it may be changed in runtime when
1200 the variable value is changed. This function checks whether type of varobj
1201 VAR will change when a new value NEW_VALUE is assigned and if it is so
1202 updates the type of VAR. */
1203
4c37490d 1204static bool
8264ba82
AG
1205update_type_if_necessary (struct varobj *var, struct value *new_value)
1206{
1207 if (new_value)
1208 {
1209 struct value_print_options opts;
1210
1211 get_user_print_options (&opts);
1212 if (opts.objectprint)
1213 {
2f408ecb
PA
1214 struct type *new_type = value_actual_type (new_value, 0, 0);
1215 std::string new_type_str = type_to_string (new_type);
1216 std::string curr_type_str = varobj_get_type (var);
8264ba82 1217
2f408ecb
PA
1218 /* Did the type name change? */
1219 if (curr_type_str != new_type_str)
8264ba82
AG
1220 {
1221 var->type = new_type;
1222
1223 /* This information may be not valid for a new type. */
30914ca8 1224 varobj_delete (var, 1);
ddf0ea08 1225 var->children.clear ();
8264ba82 1226 var->num_children = -1;
4c37490d 1227 return true;
8264ba82
AG
1228 }
1229 }
1230 }
1231
4c37490d 1232 return false;
8264ba82
AG
1233}
1234
4c37490d
SM
1235/* Assign a new value to a variable object. If INITIAL is true,
1236 this is the first assignment after the variable object was just
acd65feb 1237 created, or changed type. In that case, just assign the value
4c37490d
SM
1238 and return false.
1239 Otherwise, assign the new value, and return true if the value is
1240 different from the current one, false otherwise. The comparison is
581e13c1
MS
1241 done on textual representation of value. Therefore, some types
1242 need not be compared. E.g. for structures the reported value is
1243 always "{...}", so no comparison is necessary here. If the old
4c37490d 1244 value was NULL and new one is not, or vice versa, we always return true.
b26ed50d
VP
1245
1246 The VALUE parameter should not be released -- the function will
1247 take care of releasing it when needed. */
4c37490d
SM
1248static bool
1249install_new_value (struct varobj *var, struct value *value, bool initial)
acd65feb 1250{
4c37490d
SM
1251 bool changeable;
1252 bool need_to_fetch;
1253 bool changed = false;
1254 bool intentionally_not_fetched = false;
acd65feb 1255
acd65feb 1256 /* We need to know the varobj's type to decide if the value should
3e43a32a 1257 be fetched or not. C++ fake children (public/protected/private)
581e13c1 1258 don't have a type. */
acd65feb 1259 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
b2c2bd75 1260 changeable = varobj_value_is_changeable_p (var);
b6313243
TT
1261
1262 /* If the type has custom visualizer, we consider it to be always
581e13c1 1263 changeable. FIXME: need to make sure this behaviour will not
b6313243 1264 mess up read-sensitive values. */
bb5ce47a 1265 if (var->dynamic->pretty_printer != NULL)
4c37490d 1266 changeable = true;
b6313243 1267
acd65feb
VP
1268 need_to_fetch = changeable;
1269
b26ed50d
VP
1270 /* We are not interested in the address of references, and given
1271 that in C++ a reference is not rebindable, it cannot
1272 meaningfully change. So, get hold of the real value. */
1273 if (value)
0cc7d26f 1274 value = coerce_ref (value);
b26ed50d 1275
acd65feb
VP
1276 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1277 /* For unions, we need to fetch the value implicitly because
1278 of implementation of union member fetch. When gdb
1279 creates a value for a field and the value of the enclosing
1280 structure is not lazy, it immediately copies the necessary
1281 bytes from the enclosing values. If the enclosing value is
1282 lazy, the call to value_fetch_lazy on the field will read
1283 the data from memory. For unions, that means we'll read the
1284 same memory more than once, which is not desirable. So
1285 fetch now. */
4c37490d 1286 need_to_fetch = true;
acd65feb
VP
1287
1288 /* The new value might be lazy. If the type is changeable,
1289 that is we'll be comparing values of this type, fetch the
1290 value now. Otherwise, on the next update the old value
1291 will be lazy, which means we've lost that old value. */
1292 if (need_to_fetch && value && value_lazy (value))
1293 {
c1cc6152 1294 const struct varobj *parent = var->parent;
4c37490d 1295 bool frozen = var->frozen;
a109c7c1 1296
25d5ea92
VP
1297 for (; !frozen && parent; parent = parent->parent)
1298 frozen |= parent->frozen;
1299
1300 if (frozen && initial)
1301 {
1302 /* For variables that are frozen, or are children of frozen
1303 variables, we don't do fetch on initial assignment.
1304 For non-initial assignemnt we do the fetch, since it means we're
1305 explicitly asked to compare the new value with the old one. */
4c37490d 1306 intentionally_not_fetched = true;
25d5ea92 1307 }
8e7b59a5 1308 else
acd65feb 1309 {
8e7b59a5 1310
492d29ea 1311 TRY
8e7b59a5
KS
1312 {
1313 value_fetch_lazy (value);
1314 }
1315
492d29ea 1316 CATCH (except, RETURN_MASK_ERROR)
8e7b59a5
KS
1317 {
1318 /* Set the value to NULL, so that for the next -var-update,
1319 we don't try to compare the new value with this value,
1320 that we couldn't even read. */
1321 value = NULL;
1322 }
492d29ea 1323 END_CATCH
acd65feb 1324 }
acd65feb
VP
1325 }
1326
e848a8a5
TT
1327 /* Get a reference now, before possibly passing it to any Python
1328 code that might release it. */
1329 if (value != NULL)
1330 value_incref (value);
b6313243 1331
7a4d50bf
VP
1332 /* Below, we'll be comparing string rendering of old and new
1333 values. Don't get string rendering if the value is
1334 lazy -- if it is, the code above has decided that the value
1335 should not be fetched. */
2f408ecb 1336 std::string print_value;
bb5ce47a
YQ
1337 if (value != NULL && !value_lazy (value)
1338 && var->dynamic->pretty_printer == NULL)
99ad9427 1339 print_value = varobj_value_get_print_value (value, var->format, var);
7a4d50bf 1340
acd65feb
VP
1341 /* If the type is changeable, compare the old and the new values.
1342 If this is the initial assignment, we don't have any old value
1343 to compare with. */
7a4d50bf 1344 if (!initial && changeable)
acd65feb 1345 {
3e43a32a
MS
1346 /* If the value of the varobj was changed by -var-set-value,
1347 then the value in the varobj and in the target is the same.
1348 However, that value is different from the value that the
581e13c1 1349 varobj had after the previous -var-update. So need to the
3e43a32a 1350 varobj as changed. */
acd65feb 1351 if (var->updated)
4c37490d 1352 changed = true;
bb5ce47a 1353 else if (var->dynamic->pretty_printer == NULL)
acd65feb
VP
1354 {
1355 /* Try to compare the values. That requires that both
1356 values are non-lazy. */
25d5ea92
VP
1357 if (var->not_fetched && value_lazy (var->value))
1358 {
1359 /* This is a frozen varobj and the value was never read.
1360 Presumably, UI shows some "never read" indicator.
1361 Now that we've fetched the real value, we need to report
1362 this varobj as changed so that UI can show the real
1363 value. */
4c37490d 1364 changed = true;
25d5ea92
VP
1365 }
1366 else if (var->value == NULL && value == NULL)
581e13c1 1367 /* Equal. */
acd65feb
VP
1368 ;
1369 else if (var->value == NULL || value == NULL)
57e66780 1370 {
4c37490d 1371 changed = true;
57e66780 1372 }
acd65feb
VP
1373 else
1374 {
1375 gdb_assert (!value_lazy (var->value));
1376 gdb_assert (!value_lazy (value));
85265413 1377
2f408ecb
PA
1378 gdb_assert (!var->print_value.empty () && !print_value.empty ());
1379 if (var->print_value != print_value)
4c37490d 1380 changed = true;
acd65feb
VP
1381 }
1382 }
1383 }
85265413 1384
ee342b23
VP
1385 if (!initial && !changeable)
1386 {
1387 /* For values that are not changeable, we don't compare the values.
1388 However, we want to notice if a value was not NULL and now is NULL,
1389 or vise versa, so that we report when top-level varobjs come in scope
1390 and leave the scope. */
1391 changed = (var->value != NULL) != (value != NULL);
1392 }
1393
acd65feb 1394 /* We must always keep the new value, since children depend on it. */
25d5ea92 1395 if (var->value != NULL && var->value != value)
acd65feb
VP
1396 value_free (var->value);
1397 var->value = value;
25d5ea92 1398 if (value && value_lazy (value) && intentionally_not_fetched)
4c37490d 1399 var->not_fetched = true;
25d5ea92 1400 else
4c37490d
SM
1401 var->not_fetched = false;
1402 var->updated = false;
85265413 1403
0cc7d26f
TT
1404 install_new_value_visualizer (var);
1405
1406 /* If we installed a pretty-printer, re-compare the printed version
1407 to see if the variable changed. */
bb5ce47a 1408 if (var->dynamic->pretty_printer != NULL)
0cc7d26f 1409 {
99ad9427
YQ
1410 print_value = varobj_value_get_print_value (var->value, var->format,
1411 var);
2f408ecb
PA
1412 if ((var->print_value.empty () && !print_value.empty ())
1413 || (!var->print_value.empty () && print_value.empty ())
1414 || (!var->print_value.empty () && !print_value.empty ()
1415 && var->print_value != print_value))
4c37490d 1416 changed = true;
0cc7d26f 1417 }
0cc7d26f
TT
1418 var->print_value = print_value;
1419
b26ed50d 1420 gdb_assert (!var->value || value_type (var->value));
acd65feb
VP
1421
1422 return changed;
1423}
acd65feb 1424
0cc7d26f
TT
1425/* Return the requested range for a varobj. VAR is the varobj. FROM
1426 and TO are out parameters; *FROM and *TO will be set to the
1427 selected sub-range of VAR. If no range was selected using
1428 -var-set-update-range, then both will be -1. */
1429void
b09e2c59 1430varobj_get_child_range (const struct varobj *var, int *from, int *to)
b6313243 1431{
0cc7d26f
TT
1432 *from = var->from;
1433 *to = var->to;
b6313243
TT
1434}
1435
0cc7d26f
TT
1436/* Set the selected sub-range of children of VAR to start at index
1437 FROM and end at index TO. If either FROM or TO is less than zero,
1438 this is interpreted as a request for all children. */
1439void
1440varobj_set_child_range (struct varobj *var, int from, int to)
b6313243 1441{
0cc7d26f
TT
1442 var->from = from;
1443 var->to = to;
b6313243
TT
1444}
1445
1446void
1447varobj_set_visualizer (struct varobj *var, const char *visualizer)
1448{
1449#if HAVE_PYTHON
bde7b3e3 1450 PyObject *mainmod;
b6313243 1451
0646da15
TT
1452 if (!gdb_python_initialized)
1453 return;
1454
bde7b3e3 1455 gdbpy_enter_varobj enter_py (var);
b6313243
TT
1456
1457 mainmod = PyImport_AddModule ("__main__");
7780f186 1458 gdbpy_ref<> globals (PyModule_GetDict (mainmod));
bde7b3e3 1459 Py_INCREF (globals.get ());
b6313243 1460
7780f186
TT
1461 gdbpy_ref<> constructor (PyRun_String (visualizer, Py_eval_input,
1462 globals.get (), globals.get ()));
b6313243 1463
bde7b3e3 1464 if (constructor == NULL)
b6313243
TT
1465 {
1466 gdbpy_print_stack ();
da1f2771 1467 error (_("Could not evaluate visualizer expression: %s"), visualizer);
b6313243
TT
1468 }
1469
bde7b3e3 1470 construct_visualizer (var, constructor.get ());
b6313243 1471
0cc7d26f 1472 /* If there are any children now, wipe them. */
30914ca8 1473 varobj_delete (var, 1 /* children only */);
0cc7d26f 1474 var->num_children = -1;
b6313243 1475#else
da1f2771 1476 error (_("Python support required"));
b6313243
TT
1477#endif
1478}
1479
7a290c40 1480/* If NEW_VALUE is the new value of the given varobj (var), return
4c37490d 1481 true if var has mutated. In other words, if the type of
7a290c40
JB
1482 the new value is different from the type of the varobj's old
1483 value.
1484
1485 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1486
4c37490d 1487static bool
b09e2c59 1488varobj_value_has_mutated (const struct varobj *var, struct value *new_value,
7a290c40
JB
1489 struct type *new_type)
1490{
1491 /* If we haven't previously computed the number of children in var,
1492 it does not matter from the front-end's perspective whether
1493 the type has mutated or not. For all intents and purposes,
1494 it has not mutated. */
1495 if (var->num_children < 0)
4c37490d 1496 return false;
7a290c40 1497
4c37490d 1498 if (var->root->lang_ops->value_has_mutated != NULL)
8776cfe9
JB
1499 {
1500 /* The varobj module, when installing new values, explicitly strips
1501 references, saying that we're not interested in those addresses.
1502 But detection of mutation happens before installing the new
1503 value, so our value may be a reference that we need to strip
1504 in order to remain consistent. */
1505 if (new_value != NULL)
1506 new_value = coerce_ref (new_value);
1507 return var->root->lang_ops->value_has_mutated (var, new_value, new_type);
1508 }
7a290c40 1509 else
4c37490d 1510 return false;
7a290c40
JB
1511}
1512
8b93c638
JM
1513/* Update the values for a variable and its children. This is a
1514 two-pronged attack. First, re-parse the value for the root's
1515 expression to see if it's changed. Then go all the way
1516 through its children, reconstructing them and noting if they've
1517 changed.
1518
4c37490d 1519 The IS_EXPLICIT parameter specifies if this call is result
25d5ea92 1520 of MI request to update this specific variable, or
581e13c1 1521 result of implicit -var-update *. For implicit request, we don't
25d5ea92 1522 update frozen variables.
705da579 1523
581e13c1 1524 NOTE: This function may delete the caller's varobj. If it
8756216b
DP
1525 returns TYPE_CHANGED, then it has done this and VARP will be modified
1526 to point to the new varobj. */
8b93c638 1527
0604393c 1528std::vector<varobj_update_result>
4c37490d 1529varobj_update (struct varobj **varp, bool is_explicit)
8b93c638 1530{
4c37490d 1531 bool type_changed = false;
fe978cb0 1532 struct value *newobj;
0604393c
SM
1533 std::vector<varobj_update_result> stack;
1534 std::vector<varobj_update_result> result;
8b93c638 1535
25d5ea92
VP
1536 /* Frozen means frozen -- we don't check for any change in
1537 this varobj, including its going out of scope, or
1538 changing type. One use case for frozen varobjs is
1539 retaining previously evaluated expressions, and we don't
1540 want them to be reevaluated at all. */
fe978cb0 1541 if (!is_explicit && (*varp)->frozen)
f7f9ae2c 1542 return result;
8756216b
DP
1543
1544 if (!(*varp)->root->is_valid)
f7f9ae2c 1545 {
0604393c 1546 result.emplace_back (*varp, VAROBJ_INVALID);
f7f9ae2c
VP
1547 return result;
1548 }
8b93c638 1549
25d5ea92 1550 if ((*varp)->root->rootvar == *varp)
ae093f96 1551 {
0604393c 1552 varobj_update_result r (*varp);
f7f9ae2c 1553
581e13c1 1554 /* Update the root variable. value_of_root can return NULL
25d5ea92 1555 if the variable is no longer around, i.e. we stepped out of
581e13c1 1556 the frame in which a local existed. We are letting the
25d5ea92
VP
1557 value_of_root variable dispose of the varobj if the type
1558 has changed. */
fe978cb0 1559 newobj = value_of_root (varp, &type_changed);
4c37490d
SM
1560 if (update_type_if_necessary (*varp, newobj))
1561 type_changed = true;
f7f9ae2c 1562 r.varobj = *varp;
f7f9ae2c 1563 r.type_changed = type_changed;
fe978cb0 1564 if (install_new_value ((*varp), newobj, type_changed))
4c37490d 1565 r.changed = true;
ea56f9c2 1566
fe978cb0 1567 if (newobj == NULL)
f7f9ae2c 1568 r.status = VAROBJ_NOT_IN_SCOPE;
4c37490d 1569 r.value_installed = true;
f7f9ae2c
VP
1570
1571 if (r.status == VAROBJ_NOT_IN_SCOPE)
b6313243 1572 {
0b4bc29a 1573 if (r.type_changed || r.changed)
0604393c
SM
1574 result.push_back (std::move (r));
1575
b6313243
TT
1576 return result;
1577 }
a109c7c1 1578
0604393c 1579 stack.push_back (std::move (r));
b20d8971 1580 }
0604393c
SM
1581 else
1582 stack.emplace_back (*varp);
8b93c638 1583
8756216b 1584 /* Walk through the children, reconstructing them all. */
0604393c 1585 while (!stack.empty ())
8b93c638 1586 {
0604393c
SM
1587 varobj_update_result r = std::move (stack.back ());
1588 stack.pop_back ();
b6313243
TT
1589 struct varobj *v = r.varobj;
1590
b6313243
TT
1591 /* Update this variable, unless it's a root, which is already
1592 updated. */
1593 if (!r.value_installed)
7a290c40
JB
1594 {
1595 struct type *new_type;
1596
fe978cb0 1597 newobj = value_of_child (v->parent, v->index);
4c37490d
SM
1598 if (update_type_if_necessary (v, newobj))
1599 r.type_changed = true;
fe978cb0
PA
1600 if (newobj)
1601 new_type = value_type (newobj);
7a290c40 1602 else
ca20d462 1603 new_type = v->root->lang_ops->type_of_child (v->parent, v->index);
7a290c40 1604
fe978cb0 1605 if (varobj_value_has_mutated (v, newobj, new_type))
7a290c40
JB
1606 {
1607 /* The children are no longer valid; delete them now.
1608 Report the fact that its type changed as well. */
30914ca8 1609 varobj_delete (v, 1 /* only_children */);
7a290c40
JB
1610 v->num_children = -1;
1611 v->to = -1;
1612 v->from = -1;
1613 v->type = new_type;
4c37490d 1614 r.type_changed = true;
7a290c40
JB
1615 }
1616
fe978cb0 1617 if (install_new_value (v, newobj, r.type_changed))
b6313243 1618 {
4c37490d
SM
1619 r.changed = true;
1620 v->updated = false;
b6313243
TT
1621 }
1622 }
1623
31f628ae
YQ
1624 /* We probably should not get children of a dynamic varobj, but
1625 for which -var-list-children was never invoked. */
1626 if (varobj_is_dynamic_p (v))
b6313243 1627 {
0604393c 1628 std::vector<varobj *> changed, type_changed, unchanged, newobj;
4c37490d 1629 bool children_changed = false;
b6313243
TT
1630
1631 if (v->frozen)
1632 continue;
1633
bd046f64 1634 if (!v->dynamic->children_requested)
0cc7d26f 1635 {
4c37490d 1636 bool dummy;
0cc7d26f
TT
1637
1638 /* If we initially did not have potential children, but
1639 now we do, consider the varobj as changed.
1640 Otherwise, if children were never requested, consider
1641 it as unchanged -- presumably, such varobj is not yet
1642 expanded in the UI, so we need not bother getting
1643 it. */
1644 if (!varobj_has_more (v, 0))
1645 {
8264ba82 1646 update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
4c37490d 1647 &dummy, false, 0, 0);
0cc7d26f 1648 if (varobj_has_more (v, 0))
4c37490d 1649 r.changed = true;
0cc7d26f
TT
1650 }
1651
1652 if (r.changed)
0604393c 1653 result.push_back (std::move (r));
0cc7d26f
TT
1654
1655 continue;
1656 }
1657
4c37490d 1658 /* If update_dynamic_varobj_children returns false, then we have
b6313243 1659 a non-conforming pretty-printer, so we skip it. */
fe978cb0 1660 if (update_dynamic_varobj_children (v, &changed, &type_changed, &newobj,
4c37490d 1661 &unchanged, &children_changed, true,
0cc7d26f 1662 v->from, v->to))
b6313243 1663 {
0604393c 1664 if (children_changed || !newobj.empty ())
b6313243 1665 {
4c37490d 1666 r.children_changed = true;
0604393c 1667 r.newobj = std::move (newobj);
b6313243 1668 }
0cc7d26f
TT
1669 /* Push in reverse order so that the first child is
1670 popped from the work stack first, and so will be
1671 added to result first. This does not affect
1672 correctness, just "nicer". */
0604393c 1673 for (int i = type_changed.size () - 1; i >= 0; --i)
8264ba82 1674 {
0604393c 1675 varobj_update_result r (type_changed[i]);
8264ba82
AG
1676
1677 /* Type may change only if value was changed. */
4c37490d
SM
1678 r.changed = true;
1679 r.type_changed = true;
1680 r.value_installed = true;
0604393c
SM
1681
1682 stack.push_back (std::move (r));
8264ba82 1683 }
0604393c 1684 for (int i = changed.size () - 1; i >= 0; --i)
b6313243 1685 {
0604393c 1686 varobj_update_result r (changed[i]);
a109c7c1 1687
4c37490d
SM
1688 r.changed = true;
1689 r.value_installed = true;
0604393c
SM
1690
1691 stack.push_back (std::move (r));
b6313243 1692 }
0604393c
SM
1693 for (int i = unchanged.size () - 1; i >= 0; --i)
1694 {
1695 if (!unchanged[i]->frozen)
1696 {
1697 varobj_update_result r (unchanged[i]);
1698
4c37490d 1699 r.value_installed = true;
0cc7d26f 1700
0604393c
SM
1701 stack.push_back (std::move (r));
1702 }
1703 }
1704 if (r.changed || r.children_changed)
1705 result.push_back (std::move (r));
0cc7d26f 1706
b6313243
TT
1707 continue;
1708 }
1709 }
28335dcc
VP
1710
1711 /* Push any children. Use reverse order so that the first
1712 child is popped from the work stack first, and so
1713 will be added to result first. This does not
1714 affect correctness, just "nicer". */
0604393c 1715 for (int i = v->children.size () - 1; i >= 0; --i)
8b93c638 1716 {
ddf0ea08 1717 varobj *c = v->children[i];
a109c7c1 1718
28335dcc 1719 /* Child may be NULL if explicitly deleted by -var-delete. */
25d5ea92 1720 if (c != NULL && !c->frozen)
0604393c 1721 stack.emplace_back (c);
8b93c638 1722 }
b6313243
TT
1723
1724 if (r.changed || r.type_changed)
0604393c 1725 result.push_back (std::move (r));
8b93c638
JM
1726 }
1727
f7f9ae2c 1728 return result;
8b93c638 1729}
8b93c638
JM
1730
1731/* Helper functions */
1732
1733/*
1734 * Variable object construction/destruction
1735 */
1736
1737static int
4c37490d 1738delete_variable (struct varobj *var, bool only_children_p)
8b93c638
JM
1739{
1740 int delcount = 0;
1741
30914ca8 1742 delete_variable_1 (&delcount, var, only_children_p,
4c37490d 1743 true /* remove_from_parent_p */ );
8b93c638
JM
1744
1745 return delcount;
1746}
1747
581e13c1 1748/* Delete the variable object VAR and its children. */
8b93c638
JM
1749/* IMPORTANT NOTE: If we delete a variable which is a child
1750 and the parent is not removed we dump core. It must be always
581e13c1 1751 initially called with remove_from_parent_p set. */
8b93c638 1752static void
4c37490d
SM
1753delete_variable_1 (int *delcountp, struct varobj *var, bool only_children_p,
1754 bool remove_from_parent_p)
8b93c638 1755{
581e13c1 1756 /* Delete any children of this variable, too. */
ddf0ea08 1757 for (varobj *child : var->children)
28335dcc 1758 {
214270ab
VP
1759 if (!child)
1760 continue;
ddf0ea08 1761
8b93c638 1762 if (!remove_from_parent_p)
28335dcc 1763 child->parent = NULL;
ddf0ea08 1764
4c37490d 1765 delete_variable_1 (delcountp, child, false, only_children_p);
8b93c638 1766 }
ddf0ea08 1767 var->children.clear ();
8b93c638 1768
581e13c1 1769 /* if we were called to delete only the children we are done here. */
8b93c638
JM
1770 if (only_children_p)
1771 return;
1772
581e13c1 1773 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
2f408ecb 1774 /* If the name is empty, this is a temporary variable, that has not
581e13c1 1775 yet been installed, don't report it, it belongs to the caller... */
2f408ecb 1776 if (!var->obj_name.empty ())
8b93c638 1777 {
8b93c638
JM
1778 *delcountp = *delcountp + 1;
1779 }
1780
581e13c1 1781 /* If this variable has a parent, remove it from its parent's list. */
8b93c638
JM
1782 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1783 (as indicated by remove_from_parent_p) we don't bother doing an
1784 expensive list search to find the element to remove when we are
581e13c1 1785 discarding the list afterwards. */
72330bd6 1786 if ((remove_from_parent_p) && (var->parent != NULL))
ddf0ea08 1787 var->parent->children[var->index] = NULL;
72330bd6 1788
2f408ecb 1789 if (!var->obj_name.empty ())
73a93a32 1790 uninstall_variable (var);
8b93c638 1791
581e13c1 1792 /* Free memory associated with this variable. */
9e5b9d2b 1793 delete var;
8b93c638
JM
1794}
1795
581e13c1 1796/* Install the given variable VAR with the object name VAR->OBJ_NAME. */
4c37490d 1797static bool
fba45db2 1798install_variable (struct varobj *var)
8b93c638
JM
1799{
1800 struct vlist *cv;
1801 struct vlist *newvl;
1802 const char *chp;
1803 unsigned int index = 0;
1804 unsigned int i = 1;
1805
2f408ecb 1806 for (chp = var->obj_name.c_str (); *chp; chp++)
8b93c638
JM
1807 {
1808 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1809 }
1810
1811 cv = *(varobj_table + index);
2f408ecb 1812 while (cv != NULL && cv->var->obj_name != var->obj_name)
8b93c638
JM
1813 cv = cv->next;
1814
1815 if (cv != NULL)
8a3fe4f8 1816 error (_("Duplicate variable object name"));
8b93c638 1817
581e13c1 1818 /* Add varobj to hash table. */
8d749320 1819 newvl = XNEW (struct vlist);
8b93c638
JM
1820 newvl->next = *(varobj_table + index);
1821 newvl->var = var;
1822 *(varobj_table + index) = newvl;
1823
581e13c1 1824 /* If root, add varobj to root list. */
b2c2bd75 1825 if (is_root_p (var))
8b93c638 1826 {
581e13c1 1827 /* Add to list of root variables. */
8b93c638
JM
1828 if (rootlist == NULL)
1829 var->root->next = NULL;
1830 else
1831 var->root->next = rootlist;
1832 rootlist = var->root;
8b93c638
JM
1833 }
1834
4c37490d 1835 return true; /* OK */
8b93c638
JM
1836}
1837
581e13c1 1838/* Unistall the object VAR. */
8b93c638 1839static void
fba45db2 1840uninstall_variable (struct varobj *var)
8b93c638
JM
1841{
1842 struct vlist *cv;
1843 struct vlist *prev;
1844 struct varobj_root *cr;
1845 struct varobj_root *prer;
1846 const char *chp;
1847 unsigned int index = 0;
1848 unsigned int i = 1;
1849
581e13c1 1850 /* Remove varobj from hash table. */
2f408ecb 1851 for (chp = var->obj_name.c_str (); *chp; chp++)
8b93c638
JM
1852 {
1853 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1854 }
1855
1856 cv = *(varobj_table + index);
1857 prev = NULL;
2f408ecb 1858 while (cv != NULL && cv->var->obj_name != var->obj_name)
8b93c638
JM
1859 {
1860 prev = cv;
1861 cv = cv->next;
1862 }
1863
1864 if (varobjdebug)
2f408ecb 1865 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name.c_str ());
8b93c638
JM
1866
1867 if (cv == NULL)
1868 {
72330bd6
AC
1869 warning
1870 ("Assertion failed: Could not find variable object \"%s\" to delete",
2f408ecb 1871 var->obj_name.c_str ());
8b93c638
JM
1872 return;
1873 }
1874
1875 if (prev == NULL)
1876 *(varobj_table + index) = cv->next;
1877 else
1878 prev->next = cv->next;
1879
b8c9b27d 1880 xfree (cv);
8b93c638 1881
581e13c1 1882 /* If root, remove varobj from root list. */
b2c2bd75 1883 if (is_root_p (var))
8b93c638 1884 {
581e13c1 1885 /* Remove from list of root variables. */
8b93c638
JM
1886 if (rootlist == var->root)
1887 rootlist = var->root->next;
1888 else
1889 {
1890 prer = NULL;
1891 cr = rootlist;
1892 while ((cr != NULL) && (cr->rootvar != var))
1893 {
1894 prer = cr;
1895 cr = cr->next;
1896 }
1897 if (cr == NULL)
1898 {
8f7e195f
JB
1899 warning (_("Assertion failed: Could not find "
1900 "varobj \"%s\" in root list"),
2f408ecb 1901 var->obj_name.c_str ());
8b93c638
JM
1902 return;
1903 }
1904 if (prer == NULL)
1905 rootlist = NULL;
1906 else
1907 prer->next = cr->next;
1908 }
8b93c638
JM
1909 }
1910
1911}
1912
837ce252
SM
1913/* Create and install a child of the parent of the given name.
1914
1915 The created VAROBJ takes ownership of the allocated NAME. */
1916
8b93c638 1917static struct varobj *
2f408ecb 1918create_child (struct varobj *parent, int index, std::string &name)
b6313243 1919{
5a2e0d6e
YQ
1920 struct varobj_item item;
1921
2f408ecb 1922 std::swap (item.name, name);
5a2e0d6e
YQ
1923 item.value = value_of_child (parent, index);
1924
1925 return create_child_with_value (parent, index, &item);
b6313243
TT
1926}
1927
1928static struct varobj *
5a2e0d6e
YQ
1929create_child_with_value (struct varobj *parent, int index,
1930 struct varobj_item *item)
8b93c638 1931{
9e5b9d2b 1932 varobj *child = new varobj (parent->root);
8b93c638 1933
5e5ac9a5 1934 /* NAME is allocated by caller. */
2f408ecb 1935 std::swap (child->name, item->name);
8b93c638 1936 child->index = index;
8b93c638 1937 child->parent = parent;
85254831 1938
99ad9427 1939 if (varobj_is_anonymous_child (child))
2f408ecb
PA
1940 child->obj_name = string_printf ("%s.%d_anonymous",
1941 parent->obj_name.c_str (), index);
85254831 1942 else
2f408ecb
PA
1943 child->obj_name = string_printf ("%s.%s",
1944 parent->obj_name.c_str (),
1945 child->name.c_str ());
85254831 1946
8b93c638
JM
1947 install_variable (child);
1948
acd65feb
VP
1949 /* Compute the type of the child. Must do this before
1950 calling install_new_value. */
5a2e0d6e 1951 if (item->value != NULL)
acd65feb 1952 /* If the child had no evaluation errors, var->value
581e13c1 1953 will be non-NULL and contain a valid type. */
5a2e0d6e 1954 child->type = value_actual_type (item->value, 0, NULL);
acd65feb 1955 else
581e13c1 1956 /* Otherwise, we must compute the type. */
ca20d462
YQ
1957 child->type = (*child->root->lang_ops->type_of_child) (child->parent,
1958 child->index);
5a2e0d6e 1959 install_new_value (child, item->value, 1);
acd65feb 1960
8b93c638
JM
1961 return child;
1962}
8b93c638
JM
1963\f
1964
1965/*
1966 * Miscellaneous utility functions.
1967 */
1968
581e13c1 1969/* Allocate memory and initialize a new variable. */
9e5b9d2b
SM
1970varobj::varobj (varobj_root *root_)
1971: root (root_), dynamic (new varobj_dynamic)
8b93c638 1972{
8b93c638
JM
1973}
1974
581e13c1 1975/* Free any allocated memory associated with VAR. */
9e5b9d2b
SM
1976
1977varobj::~varobj ()
8b93c638 1978{
9e5b9d2b
SM
1979 varobj *var = this;
1980
d452c4bc 1981#if HAVE_PYTHON
bb5ce47a 1982 if (var->dynamic->pretty_printer != NULL)
d452c4bc 1983 {
bde7b3e3 1984 gdbpy_enter_varobj enter_py (var);
bb5ce47a
YQ
1985
1986 Py_XDECREF (var->dynamic->constructor);
1987 Py_XDECREF (var->dynamic->pretty_printer);
d452c4bc
UW
1988 }
1989#endif
1990
827f100c
YQ
1991 varobj_iter_delete (var->dynamic->child_iter);
1992 varobj_clear_saved_item (var->dynamic);
36746093
JK
1993 value_free (var->value);
1994
b2c2bd75 1995 if (is_root_p (var))
4d01a485 1996 delete var->root;
8b93c638 1997
9e5b9d2b 1998 delete var->dynamic;
74b7792f
AC
1999}
2000
6e2a9270
VP
2001/* Return the type of the value that's stored in VAR,
2002 or that would have being stored there if the
581e13c1 2003 value were accessible.
6e2a9270
VP
2004
2005 This differs from VAR->type in that VAR->type is always
2006 the true type of the expession in the source language.
2007 The return value of this function is the type we're
2008 actually storing in varobj, and using for displaying
2009 the values and for comparing previous and new values.
2010
2011 For example, top-level references are always stripped. */
99ad9427 2012struct type *
b09e2c59 2013varobj_get_value_type (const struct varobj *var)
6e2a9270
VP
2014{
2015 struct type *type;
2016
2017 if (var->value)
2018 type = value_type (var->value);
2019 else
2020 type = var->type;
2021
2022 type = check_typedef (type);
2023
aa006118 2024 if (TYPE_IS_REFERENCE (type))
6e2a9270
VP
2025 type = get_target_type (type);
2026
2027 type = check_typedef (type);
2028
2029 return type;
2030}
2031
8b93c638 2032/* What is the default display for this variable? We assume that
581e13c1 2033 everything is "natural". Any exceptions? */
8b93c638 2034static enum varobj_display_formats
fba45db2 2035variable_default_display (struct varobj *var)
8b93c638
JM
2036{
2037 return FORMAT_NATURAL;
2038}
2039
8b93c638
JM
2040/*
2041 * Language-dependencies
2042 */
2043
2044/* Common entry points */
2045
8b93c638
JM
2046/* Return the number of children for a given variable.
2047 The result of this function is defined by the language
581e13c1 2048 implementation. The number of children returned by this function
8b93c638 2049 is the number of children that the user will see in the variable
581e13c1 2050 display. */
8b93c638 2051static int
b09e2c59 2052number_of_children (const struct varobj *var)
8b93c638 2053{
ca20d462 2054 return (*var->root->lang_ops->number_of_children) (var);
8b93c638
JM
2055}
2056
2f408ecb
PA
2057/* What is the expression for the root varobj VAR? */
2058
2059static std::string
b09e2c59 2060name_of_variable (const struct varobj *var)
8b93c638 2061{
ca20d462 2062 return (*var->root->lang_ops->name_of_variable) (var);
8b93c638
JM
2063}
2064
2f408ecb
PA
2065/* What is the name of the INDEX'th child of VAR? */
2066
2067static std::string
fba45db2 2068name_of_child (struct varobj *var, int index)
8b93c638 2069{
ca20d462 2070 return (*var->root->lang_ops->name_of_child) (var, index);
8b93c638
JM
2071}
2072
2213e2be 2073/* If frame associated with VAR can be found, switch
4c37490d 2074 to it and return true. Otherwise, return false. */
2213e2be 2075
4c37490d 2076static bool
b09e2c59 2077check_scope (const struct varobj *var)
2213e2be
YQ
2078{
2079 struct frame_info *fi;
4c37490d 2080 bool scope;
2213e2be
YQ
2081
2082 fi = frame_find_by_id (var->root->frame);
2083 scope = fi != NULL;
2084
2085 if (fi)
2086 {
2087 CORE_ADDR pc = get_frame_pc (fi);
2088
2089 if (pc < BLOCK_START (var->root->valid_block) ||
2090 pc >= BLOCK_END (var->root->valid_block))
4c37490d 2091 scope = false;
2213e2be
YQ
2092 else
2093 select_frame (fi);
2094 }
2095 return scope;
2096}
2097
2098/* Helper function to value_of_root. */
2099
2100static struct value *
2101value_of_root_1 (struct varobj **var_handle)
2102{
2103 struct value *new_val = NULL;
2104 struct varobj *var = *var_handle;
4c37490d 2105 bool within_scope = false;
2213e2be
YQ
2106
2107 /* Only root variables can be updated... */
2108 if (!is_root_p (var))
2109 /* Not a root var. */
2110 return NULL;
2111
5ed8105e 2112 scoped_restore_current_thread restore_thread;
2213e2be
YQ
2113
2114 /* Determine whether the variable is still around. */
2115 if (var->root->valid_block == NULL || var->root->floating)
4c37490d 2116 within_scope = true;
2213e2be
YQ
2117 else if (var->root->thread_id == 0)
2118 {
2119 /* The program was single-threaded when the variable object was
2120 created. Technically, it's possible that the program became
2121 multi-threaded since then, but we don't support such
2122 scenario yet. */
2123 within_scope = check_scope (var);
2124 }
2125 else
2126 {
5d5658a1
PA
2127 ptid_t ptid = global_thread_id_to_ptid (var->root->thread_id);
2128
2129 if (!ptid_equal (minus_one_ptid, ptid))
2213e2be
YQ
2130 {
2131 switch_to_thread (ptid);
2132 within_scope = check_scope (var);
2133 }
2134 }
2135
2136 if (within_scope)
2137 {
2213e2be
YQ
2138
2139 /* We need to catch errors here, because if evaluate
2140 expression fails we want to just return NULL. */
492d29ea 2141 TRY
2213e2be 2142 {
4d01a485 2143 new_val = evaluate_expression (var->root->exp.get ());
2213e2be 2144 }
492d29ea
PA
2145 CATCH (except, RETURN_MASK_ERROR)
2146 {
2147 }
2148 END_CATCH
2213e2be
YQ
2149 }
2150
2213e2be
YQ
2151 return new_val;
2152}
2153
a5defcdc
VP
2154/* What is the ``struct value *'' of the root variable VAR?
2155 For floating variable object, evaluation can get us a value
2156 of different type from what is stored in varobj already. In
2157 that case:
2158 - *type_changed will be set to 1
2159 - old varobj will be freed, and new one will be
2160 created, with the same name.
2161 - *var_handle will be set to the new varobj
2162 Otherwise, *type_changed will be set to 0. */
30b28db1 2163static struct value *
4c37490d 2164value_of_root (struct varobj **var_handle, bool *type_changed)
8b93c638 2165{
73a93a32
JI
2166 struct varobj *var;
2167
2168 if (var_handle == NULL)
2169 return NULL;
2170
2171 var = *var_handle;
2172
2173 /* This should really be an exception, since this should
581e13c1 2174 only get called with a root variable. */
73a93a32 2175
b2c2bd75 2176 if (!is_root_p (var))
73a93a32
JI
2177 return NULL;
2178
a5defcdc 2179 if (var->root->floating)
73a93a32
JI
2180 {
2181 struct varobj *tmp_var;
6225abfa 2182
2f408ecb 2183 tmp_var = varobj_create (NULL, var->name.c_str (), (CORE_ADDR) 0,
73a93a32
JI
2184 USE_SELECTED_FRAME);
2185 if (tmp_var == NULL)
2186 {
2187 return NULL;
2188 }
2f408ecb
PA
2189 std::string old_type = varobj_get_type (var);
2190 std::string new_type = varobj_get_type (tmp_var);
2191 if (old_type == new_type)
73a93a32 2192 {
fcacd99f
VP
2193 /* The expression presently stored inside var->root->exp
2194 remembers the locations of local variables relatively to
2195 the frame where the expression was created (in DWARF location
2196 button, for example). Naturally, those locations are not
2197 correct in other frames, so update the expression. */
2198
4d01a485 2199 std::swap (var->root->exp, tmp_var->root->exp);
fcacd99f 2200
30914ca8 2201 varobj_delete (tmp_var, 0);
73a93a32
JI
2202 *type_changed = 0;
2203 }
2204 else
2205 {
2f408ecb 2206 tmp_var->obj_name = var->obj_name;
0cc7d26f
TT
2207 tmp_var->from = var->from;
2208 tmp_var->to = var->to;
30914ca8 2209 varobj_delete (var, 0);
a5defcdc 2210
73a93a32
JI
2211 install_variable (tmp_var);
2212 *var_handle = tmp_var;
705da579 2213 var = *var_handle;
4c37490d 2214 *type_changed = true;
73a93a32
JI
2215 }
2216 }
2217 else
2218 {
2219 *type_changed = 0;
2220 }
2221
7a290c40
JB
2222 {
2223 struct value *value;
2224
2213e2be 2225 value = value_of_root_1 (var_handle);
7a290c40
JB
2226 if (var->value == NULL || value == NULL)
2227 {
2228 /* For root varobj-s, a NULL value indicates a scoping issue.
2229 So, nothing to do in terms of checking for mutations. */
2230 }
2231 else if (varobj_value_has_mutated (var, value, value_type (value)))
2232 {
2233 /* The type has mutated, so the children are no longer valid.
2234 Just delete them, and tell our caller that the type has
2235 changed. */
30914ca8 2236 varobj_delete (var, 1 /* only_children */);
7a290c40
JB
2237 var->num_children = -1;
2238 var->to = -1;
2239 var->from = -1;
4c37490d 2240 *type_changed = true;
7a290c40
JB
2241 }
2242 return value;
2243 }
8b93c638
JM
2244}
2245
581e13c1 2246/* What is the ``struct value *'' for the INDEX'th child of PARENT? */
30b28db1 2247static struct value *
c1cc6152 2248value_of_child (const struct varobj *parent, int index)
8b93c638 2249{
30b28db1 2250 struct value *value;
8b93c638 2251
ca20d462 2252 value = (*parent->root->lang_ops->value_of_child) (parent, index);
8b93c638 2253
8b93c638
JM
2254 return value;
2255}
2256
581e13c1 2257/* GDB already has a command called "value_of_variable". Sigh. */
2f408ecb 2258static std::string
de051565 2259my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 2260{
8756216b 2261 if (var->root->is_valid)
0cc7d26f 2262 {
bb5ce47a 2263 if (var->dynamic->pretty_printer != NULL)
99ad9427 2264 return varobj_value_get_print_value (var->value, var->format, var);
ca20d462 2265 return (*var->root->lang_ops->value_of_variable) (var, format);
0cc7d26f 2266 }
8756216b 2267 else
2f408ecb 2268 return std::string ();
8b93c638
JM
2269}
2270
99ad9427
YQ
2271void
2272varobj_formatted_print_options (struct value_print_options *opts,
2273 enum varobj_display_formats format)
2274{
2275 get_formatted_print_options (opts, format_code[(int) format]);
2276 opts->deref_ref = 0;
2277 opts->raw = 1;
2278}
2279
2f408ecb 2280std::string
99ad9427
YQ
2281varobj_value_get_print_value (struct value *value,
2282 enum varobj_display_formats format,
b09e2c59 2283 const struct varobj *var)
85265413 2284{
79a45b7d 2285 struct value_print_options opts;
be759fcf
PM
2286 struct type *type = NULL;
2287 long len = 0;
1eba6383 2288 gdb::unique_xmalloc_ptr<char> encoding;
3a182a69
JK
2289 /* Initialize it just to avoid a GCC false warning. */
2290 CORE_ADDR str_addr = 0;
4c37490d 2291 bool string_print = false;
57e66780
DJ
2292
2293 if (value == NULL)
2f408ecb 2294 return std::string ();
57e66780 2295
d7e74731 2296 string_file stb;
2f408ecb
PA
2297 std::string thevalue;
2298
b6313243 2299#if HAVE_PYTHON
0646da15
TT
2300 if (gdb_python_initialized)
2301 {
bb5ce47a 2302 PyObject *value_formatter = var->dynamic->pretty_printer;
d452c4bc 2303
68cdc557 2304 gdbpy_enter_varobj enter_py (var);
09ca9e2e 2305
0646da15
TT
2306 if (value_formatter)
2307 {
2308 /* First check to see if we have any children at all. If so,
2309 we simply return {...}. */
2310 if (dynamic_varobj_has_child_method (var))
d7e74731 2311 return "{...}";
b6313243 2312
0646da15
TT
2313 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2314 {
2315 struct value *replacement;
0646da15 2316
7780f186
TT
2317 gdbpy_ref<> output (apply_varobj_pretty_printer (value_formatter,
2318 &replacement,
2319 &stb));
0646da15
TT
2320
2321 /* If we have string like output ... */
68cdc557 2322 if (output != NULL)
0646da15 2323 {
0646da15
TT
2324 /* If this is a lazy string, extract it. For lazy
2325 strings we always print as a string, so set
2326 string_print. */
68cdc557 2327 if (gdbpy_is_lazy_string (output.get ()))
0646da15 2328 {
68cdc557
TT
2329 gdbpy_extract_lazy_string (output.get (), &str_addr,
2330 &type, &len, &encoding);
4c37490d 2331 string_print = true;
0646da15
TT
2332 }
2333 else
2334 {
2335 /* If it is a regular (non-lazy) string, extract
2336 it and copy the contents into THEVALUE. If the
2337 hint says to print it as a string, set
2338 string_print. Otherwise just return the extracted
2339 string as a value. */
2340
9b972014 2341 gdb::unique_xmalloc_ptr<char> s
68cdc557 2342 = python_string_to_target_string (output.get ());
0646da15
TT
2343
2344 if (s)
2345 {
e3821cca 2346 struct gdbarch *gdbarch;
0646da15 2347
9b972014
TT
2348 gdb::unique_xmalloc_ptr<char> hint
2349 = gdbpy_get_display_hint (value_formatter);
0646da15
TT
2350 if (hint)
2351 {
9b972014 2352 if (!strcmp (hint.get (), "string"))
4c37490d 2353 string_print = true;
0646da15
TT
2354 }
2355
9b972014 2356 thevalue = std::string (s.get ());
2f408ecb 2357 len = thevalue.size ();
e3821cca 2358 gdbarch = get_type_arch (value_type (value));
0646da15 2359 type = builtin_type (gdbarch)->builtin_char;
0646da15
TT
2360
2361 if (!string_print)
d7e74731 2362 return thevalue;
0646da15
TT
2363 }
2364 else
2365 gdbpy_print_stack ();
2366 }
2367 }
2368 /* If the printer returned a replacement value, set VALUE
2369 to REPLACEMENT. If there is not a replacement value,
2370 just use the value passed to this function. */
2371 if (replacement)
2372 value = replacement;
2373 }
2374 }
2375 }
b6313243
TT
2376#endif
2377
99ad9427 2378 varobj_formatted_print_options (&opts, format);
00bd41d6
PM
2379
2380 /* If the THEVALUE has contents, it is a regular string. */
2f408ecb 2381 if (!thevalue.empty ())
d7e74731 2382 LA_PRINT_STRING (&stb, type, (gdb_byte *) thevalue.c_str (),
1eba6383 2383 len, encoding.get (), 0, &opts);
09ca9e2e 2384 else if (string_print)
00bd41d6
PM
2385 /* Otherwise, if string_print is set, and it is not a regular
2386 string, it is a lazy string. */
d7e74731 2387 val_print_string (type, encoding.get (), str_addr, len, &stb, &opts);
b6313243 2388 else
00bd41d6 2389 /* All other cases. */
d7e74731 2390 common_val_print (value, &stb, 0, &opts, current_language);
57e66780 2391
d7e74731 2392 return std::move (stb.string ());
85265413
NR
2393}
2394
4c37490d 2395bool
b09e2c59 2396varobj_editable_p (const struct varobj *var)
340a7723
NR
2397{
2398 struct type *type;
340a7723
NR
2399
2400 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
4c37490d 2401 return false;
340a7723 2402
99ad9427 2403 type = varobj_get_value_type (var);
340a7723
NR
2404
2405 switch (TYPE_CODE (type))
2406 {
2407 case TYPE_CODE_STRUCT:
2408 case TYPE_CODE_UNION:
2409 case TYPE_CODE_ARRAY:
2410 case TYPE_CODE_FUNC:
2411 case TYPE_CODE_METHOD:
4c37490d 2412 return false;
340a7723
NR
2413 break;
2414
2415 default:
4c37490d 2416 return true;
340a7723
NR
2417 break;
2418 }
2419}
2420
d32cafc7 2421/* Call VAR's value_is_changeable_p language-specific callback. */
acd65feb 2422
4c37490d 2423bool
b09e2c59 2424varobj_value_is_changeable_p (const struct varobj *var)
8b93c638 2425{
ca20d462 2426 return var->root->lang_ops->value_is_changeable_p (var);
8b93c638
JM
2427}
2428
4c37490d 2429/* Return true if that varobj is floating, that is is always evaluated in the
5a413362
VP
2430 selected frame, and not bound to thread/frame. Such variable objects
2431 are created using '@' as frame specifier to -var-create. */
4c37490d 2432bool
b09e2c59 2433varobj_floating_p (const struct varobj *var)
5a413362
VP
2434{
2435 return var->root->floating;
2436}
2437
d32cafc7
JB
2438/* Implement the "value_is_changeable_p" varobj callback for most
2439 languages. */
2440
4c37490d 2441bool
b09e2c59 2442varobj_default_value_is_changeable_p (const struct varobj *var)
d32cafc7 2443{
4c37490d 2444 bool r;
d32cafc7
JB
2445 struct type *type;
2446
2447 if (CPLUS_FAKE_CHILD (var))
4c37490d 2448 return false;
d32cafc7 2449
99ad9427 2450 type = varobj_get_value_type (var);
d32cafc7
JB
2451
2452 switch (TYPE_CODE (type))
2453 {
2454 case TYPE_CODE_STRUCT:
2455 case TYPE_CODE_UNION:
2456 case TYPE_CODE_ARRAY:
4c37490d 2457 r = false;
d32cafc7
JB
2458 break;
2459
2460 default:
4c37490d 2461 r = true;
d32cafc7
JB
2462 }
2463
2464 return r;
2465}
2466
54333c3b
JK
2467/* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
2468 with an arbitrary caller supplied DATA pointer. */
2469
2470void
2471all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
2472{
2473 struct varobj_root *var_root, *var_root_next;
2474
2475 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
2476
2477 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
2478 {
2479 var_root_next = var_root->next;
2480
2481 (*func) (var_root->rootvar, data);
2482 }
2483}
8756216b 2484
54333c3b 2485/* Invalidate varobj VAR if it is tied to locals and re-create it if it is
4e969b4f
AB
2486 defined on globals. It is a helper for varobj_invalidate.
2487
2488 This function is called after changing the symbol file, in this case the
2489 pointers to "struct type" stored by the varobj are no longer valid. All
2490 varobj must be either re-evaluated, or marked as invalid here. */
2dbd25e5 2491
54333c3b
JK
2492static void
2493varobj_invalidate_iter (struct varobj *var, void *unused)
8756216b 2494{
4e969b4f
AB
2495 /* global and floating var must be re-evaluated. */
2496 if (var->root->floating || var->root->valid_block == NULL)
2dbd25e5 2497 {
54333c3b 2498 struct varobj *tmp_var;
2dbd25e5 2499
54333c3b
JK
2500 /* Try to create a varobj with same expression. If we succeed
2501 replace the old varobj, otherwise invalidate it. */
2f408ecb 2502 tmp_var = varobj_create (NULL, var->name.c_str (), (CORE_ADDR) 0,
54333c3b
JK
2503 USE_CURRENT_FRAME);
2504 if (tmp_var != NULL)
2505 {
2f408ecb 2506 tmp_var->obj_name = var->obj_name;
30914ca8 2507 varobj_delete (var, 0);
54333c3b 2508 install_variable (tmp_var);
2dbd25e5 2509 }
54333c3b 2510 else
4c37490d 2511 var->root->is_valid = false;
2dbd25e5 2512 }
54333c3b 2513 else /* locals must be invalidated. */
4c37490d 2514 var->root->is_valid = false;
54333c3b
JK
2515}
2516
2517/* Invalidate the varobjs that are tied to locals and re-create the ones that
2518 are defined on globals.
2519 Invalidated varobjs will be always printed in_scope="invalid". */
2520
2521void
2522varobj_invalidate (void)
2523{
2524 all_root_varobjs (varobj_invalidate_iter, NULL);
8756216b 2525}
481695ed 2526
1c3569d4
MR
2527void
2528_initialize_varobj (void)
2529{
8d749320 2530 varobj_table = XCNEWVEC (struct vlist *, VAROBJ_TABLE_SIZE);
1c3569d4
MR
2531
2532 add_setshow_zuinteger_cmd ("varobj", class_maintenance,
2533 &varobjdebug,
2534 _("Set varobj debugging."),
2535 _("Show varobj debugging."),
2536 _("When non-zero, varobj debugging is enabled."),
2537 NULL, show_varobjdebug,
2538 &setdebuglist, &showdebuglist);
2539}