]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/varobj.c
gdb/testsuite: Fix typos in infcall-nested-structs.c
[thirdparty/binutils-gdb.git] / gdb / varobj.c
CommitLineData
8b93c638 1/* Implementation of the GDB variable objects API.
bc8332bb 2
42a4f53d 3 Copyright (C) 1999-2019 Free Software Foundation, Inc.
8b93c638
JM
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
a9762ec7 7 the Free Software Foundation; either version 3 of the License, or
8b93c638
JM
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
a9762ec7 16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
8b93c638
JM
17
18#include "defs.h"
19#include "value.h"
20#include "expression.h"
21#include "frame.h"
8b93c638 22#include "language.h"
8b93c638 23#include "gdbcmd.h"
d2353924 24#include "block.h"
79a45b7d 25#include "valprint.h"
0cc7d26f 26#include "gdb_regex.h"
8b93c638
JM
27
28#include "varobj.h"
268a13a5 29#include "gdbsupport/vec.h"
6208b47d
VP
30#include "gdbthread.h"
31#include "inferior.h"
827f100c 32#include "varobj-iter.h"
396af9a1 33#include "parser-defs.h"
0d12e84c 34#include "gdbarch.h"
8b93c638 35
b6313243
TT
36#if HAVE_PYTHON
37#include "python/python.h"
38#include "python/python-internal.h"
50389644
PA
39#else
40typedef int PyObject;
b6313243
TT
41#endif
42
8b93c638
JM
43/* Non-zero if we want to see trace of varobj level stuff. */
44
ccce17b0 45unsigned int varobjdebug = 0;
920d2a44
AC
46static void
47show_varobjdebug (struct ui_file *file, int from_tty,
48 struct cmd_list_element *c, const char *value)
49{
50 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
51}
8b93c638 52
581e13c1 53/* String representations of gdb's format codes. */
a121b7c1 54const char *varobj_format_string[] =
1c35a88f 55 { "natural", "binary", "decimal", "hexadecimal", "octal", "zero-hexadecimal" };
8b93c638 56
0cc7d26f 57/* True if we want to allow Python-based pretty-printing. */
4c37490d 58static bool pretty_printing = false;
0cc7d26f
TT
59
60void
61varobj_enable_pretty_printing (void)
62{
4c37490d 63 pretty_printing = true;
0cc7d26f
TT
64}
65
8b93c638
JM
66/* Data structures */
67
68/* Every root variable has one of these structures saved in its
4d01a485 69 varobj. */
8b93c638 70struct varobj_root
72330bd6 71{
4d01a485
PA
72 /* The expression for this parent. */
73 expression_up exp;
8b93c638 74
581e13c1 75 /* Block for which this expression is valid. */
9e5b9d2b 76 const struct block *valid_block = NULL;
8b93c638 77
44a67aa7
VP
78 /* The frame for this expression. This field is set iff valid_block is
79 not NULL. */
9e5b9d2b 80 struct frame_id frame = null_frame_id;
8b93c638 81
5d5658a1 82 /* The global thread ID that this varobj_root belongs to. This field
581e13c1 83 is only valid if valid_block is not NULL.
c5b48eac
VP
84 When not 0, indicates which thread 'frame' belongs to.
85 When 0, indicates that the thread list was empty when the varobj_root
86 was created. */
9e5b9d2b 87 int thread_id = 0;
c5b48eac 88
4c37490d 89 /* If true, the -var-update always recomputes the value in the
a5defcdc 90 current thread and frame. Otherwise, variable object is
581e13c1 91 always updated in the specific scope/thread/frame. */
4c37490d 92 bool floating = false;
73a93a32 93
4c37490d 94 /* Flag that indicates validity: set to false when this varobj_root refers
8756216b 95 to symbols that do not exist anymore. */
4c37490d 96 bool is_valid = true;
8756216b 97
99ad9427
YQ
98 /* Language-related operations for this variable and its
99 children. */
9e5b9d2b 100 const struct lang_varobj_ops *lang_ops = NULL;
8b93c638 101
581e13c1 102 /* The varobj for this root node. */
9e5b9d2b 103 struct varobj *rootvar = NULL;
8b93c638 104
72330bd6 105 /* Next root variable */
9e5b9d2b 106 struct varobj_root *next = NULL;
72330bd6 107};
8b93c638 108
bb5ce47a 109/* Dynamic part of varobj. */
8b93c638 110
bb5ce47a
YQ
111struct varobj_dynamic
112{
b6313243
TT
113 /* Whether the children of this varobj were requested. This field is
114 used to decide if dynamic varobj should recompute their children.
115 In the event that the frontend never asked for the children, we
116 can avoid that. */
bd046f64 117 bool children_requested = false;
b6313243 118
0cc7d26f
TT
119 /* The pretty-printer constructor. If NULL, then the default
120 pretty-printer will be looked up. If None, then no
121 pretty-printer will be installed. */
9e5b9d2b 122 PyObject *constructor = NULL;
0cc7d26f 123
b6313243
TT
124 /* The pretty-printer that has been constructed. If NULL, then a
125 new printer object is needed, and one will be constructed. */
9e5b9d2b 126 PyObject *pretty_printer = NULL;
0cc7d26f
TT
127
128 /* The iterator returned by the printer's 'children' method, or NULL
129 if not available. */
9e5b9d2b 130 struct varobj_iter *child_iter = NULL;
0cc7d26f
TT
131
132 /* We request one extra item from the iterator, so that we can
133 report to the caller whether there are more items than we have
134 already reported. However, we don't want to install this value
135 when we read it, because that will mess up future updates. So,
136 we stash it here instead. */
9e5b9d2b 137 varobj_item *saved_item = NULL;
72330bd6 138};
8b93c638 139
8b93c638
JM
140/* A list of varobjs */
141
142struct vlist
72330bd6
AC
143{
144 struct varobj *var;
145 struct vlist *next;
146};
8b93c638
JM
147
148/* Private function prototypes */
149
581e13c1 150/* Helper functions for the above subcommands. */
8b93c638 151
4c37490d 152static int delete_variable (struct varobj *, bool);
8b93c638 153
4c37490d 154static void delete_variable_1 (int *, struct varobj *, bool, bool);
8b93c638 155
4c37490d 156static bool install_variable (struct varobj *);
8b93c638 157
a14ed312 158static void uninstall_variable (struct varobj *);
8b93c638 159
2f408ecb 160static struct varobj *create_child (struct varobj *, int, std::string &);
8b93c638 161
b6313243 162static struct varobj *
5a2e0d6e
YQ
163create_child_with_value (struct varobj *parent, int index,
164 struct varobj_item *item);
b6313243 165
8b93c638
JM
166/* Utility routines */
167
a14ed312 168static enum varobj_display_formats variable_default_display (struct varobj *);
8b93c638 169
4c37490d
SM
170static bool update_type_if_necessary (struct varobj *var,
171 struct value *new_value);
8264ba82 172
4c37490d
SM
173static bool install_new_value (struct varobj *var, struct value *value,
174 bool initial);
acd65feb 175
581e13c1 176/* Language-specific routines. */
8b93c638 177
b09e2c59 178static int number_of_children (const struct varobj *);
8b93c638 179
2f408ecb 180static std::string name_of_variable (const struct varobj *);
8b93c638 181
2f408ecb 182static std::string name_of_child (struct varobj *, int);
8b93c638 183
4c37490d 184static struct value *value_of_root (struct varobj **var_handle, bool *);
8b93c638 185
c1cc6152 186static struct value *value_of_child (const struct varobj *parent, int index);
8b93c638 187
2f408ecb
PA
188static std::string my_value_of_variable (struct varobj *var,
189 enum varobj_display_formats format);
8b93c638 190
4c37490d 191static bool is_root_p (const struct varobj *var);
8b93c638 192
9a1edae6 193static struct varobj *varobj_add_child (struct varobj *var,
5a2e0d6e 194 struct varobj_item *item);
b6313243 195
8b93c638
JM
196/* Private data */
197
581e13c1 198/* Mappings of varobj_display_formats enums to gdb's format codes. */
1c35a88f 199static int format_code[] = { 0, 't', 'd', 'x', 'o', 'z' };
8b93c638 200
581e13c1 201/* Header of the list of root variable objects. */
8b93c638 202static struct varobj_root *rootlist;
8b93c638 203
581e13c1 204/* Prime number indicating the number of buckets in the hash table. */
5fa13070 205/* A prime large enough to avoid too many collisions. */
8b93c638
JM
206#define VAROBJ_TABLE_SIZE 227
207
581e13c1 208/* Pointer to the varobj hash table (built at run time). */
8b93c638
JM
209static struct vlist **varobj_table;
210
8b93c638
JM
211\f
212
213/* API Implementation */
4c37490d 214static bool
b09e2c59 215is_root_p (const struct varobj *var)
b2c2bd75
VP
216{
217 return (var->root->rootvar == var);
218}
8b93c638 219
d452c4bc 220#ifdef HAVE_PYTHON
6cd67bea
TT
221
222/* See python-internal.h. */
223gdbpy_enter_varobj::gdbpy_enter_varobj (const struct varobj *var)
224: gdbpy_enter (var->root->exp->gdbarch, var->root->exp->language_defn)
225{
226}
227
d452c4bc
UW
228#endif
229
7d8547c9
AC
230/* Return the full FRAME which corresponds to the given CORE_ADDR
231 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
232
233static struct frame_info *
234find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
235{
236 struct frame_info *frame = NULL;
237
238 if (frame_addr == (CORE_ADDR) 0)
239 return NULL;
240
9d49bdc2
PA
241 for (frame = get_current_frame ();
242 frame != NULL;
243 frame = get_prev_frame (frame))
7d8547c9 244 {
1fac167a
UW
245 /* The CORE_ADDR we get as argument was parsed from a string GDB
246 output as $fp. This output got truncated to gdbarch_addr_bit.
247 Truncate the frame base address in the same manner before
248 comparing it against our argument. */
249 CORE_ADDR frame_base = get_frame_base_address (frame);
250 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
a109c7c1 251
1fac167a
UW
252 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
253 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
254
255 if (frame_base == frame_addr)
7d8547c9
AC
256 return frame;
257 }
9d49bdc2
PA
258
259 return NULL;
7d8547c9
AC
260}
261
5fa13070
SM
262/* Creates a varobj (not its children). */
263
8b93c638 264struct varobj *
2f408ecb
PA
265varobj_create (const char *objname,
266 const char *expression, CORE_ADDR frame, enum varobj_type type)
8b93c638 267{
581e13c1 268 /* Fill out a varobj structure for the (root) variable being constructed. */
9e5b9d2b 269 std::unique_ptr<varobj> var (new varobj (new varobj_root));
8b93c638
JM
270
271 if (expression != NULL)
272 {
e4195b40 273 struct frame_info *fi;
35633fef 274 struct frame_id old_id = null_frame_id;
3977b71f 275 const struct block *block;
bbc13ae3 276 const char *p;
e55dccf0 277 struct value *value = NULL;
1bb9788d 278 CORE_ADDR pc;
8b93c638 279
9d49bdc2
PA
280 /* Parse and evaluate the expression, filling in as much of the
281 variable's data as possible. */
282
283 if (has_stack_frames ())
284 {
581e13c1 285 /* Allow creator to specify context of variable. */
9d49bdc2
PA
286 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
287 fi = get_selected_frame (NULL);
288 else
289 /* FIXME: cagney/2002-11-23: This code should be doing a
290 lookup using the frame ID and not just the frame's
291 ``address''. This, of course, means an interface
292 change. However, with out that interface change ISAs,
293 such as the ia64 with its two stacks, won't work.
294 Similar goes for the case where there is a frameless
295 function. */
296 fi = find_frame_addr_in_frame_chain (frame);
297 }
8b93c638 298 else
9d49bdc2 299 fi = NULL;
8b93c638 300
73a93a32 301 if (type == USE_SELECTED_FRAME)
4c37490d 302 var->root->floating = true;
73a93a32 303
1bb9788d 304 pc = 0;
8b93c638
JM
305 block = NULL;
306 if (fi != NULL)
1bb9788d
TT
307 {
308 block = get_frame_block (fi, 0);
309 pc = get_frame_pc (fi);
310 }
8b93c638
JM
311
312 p = expression;
699bd4cf
TT
313
314 innermost_block_tracker tracker (INNERMOST_BLOCK_FOR_SYMBOLS
315 | INNERMOST_BLOCK_FOR_REGISTERS);
73a93a32 316 /* Wrap the call to parse expression, so we can
581e13c1 317 return a sensible error. */
a70b8144 318 try
8e7b59a5 319 {
699bd4cf 320 var->root->exp = parse_exp_1 (&p, pc, block, 0, &tracker);
8e7b59a5
KS
321 }
322
230d2906 323 catch (const gdb_exception_error &except)
73a93a32
JI
324 {
325 return NULL;
326 }
8b93c638 327
581e13c1 328 /* Don't allow variables to be created for types. */
608b4967
TT
329 if (var->root->exp->elts[0].opcode == OP_TYPE
330 || var->root->exp->elts[0].opcode == OP_TYPEOF
331 || var->root->exp->elts[0].opcode == OP_DECLTYPE)
8b93c638 332 {
bc8332bb
AC
333 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
334 " as an expression.\n");
8b93c638
JM
335 return NULL;
336 }
337
9e5b9d2b 338 var->format = variable_default_display (var.get ());
e707fc44 339 var->root->valid_block =
699bd4cf 340 var->root->floating ? NULL : tracker.block ();
2f408ecb 341 var->name = expression;
02142340 342 /* For a root var, the name and the expr are the same. */
2f408ecb 343 var->path_expr = expression;
8b93c638
JM
344
345 /* When the frame is different from the current frame,
346 we must select the appropriate frame before parsing
347 the expression, otherwise the value will not be current.
581e13c1 348 Since select_frame is so benign, just call it for all cases. */
aee1fcdf 349 if (var->root->valid_block)
8b93c638 350 {
4e22772d
JK
351 /* User could specify explicit FRAME-ADDR which was not found but
352 EXPRESSION is frame specific and we would not be able to evaluate
353 it correctly next time. With VALID_BLOCK set we must also set
354 FRAME and THREAD_ID. */
355 if (fi == NULL)
356 error (_("Failed to find the specified frame"));
357
7a424e99 358 var->root->frame = get_frame_id (fi);
00431a78 359 var->root->thread_id = inferior_thread ()->global_num;
35633fef 360 old_id = get_frame_id (get_selected_frame (NULL));
c5b48eac 361 select_frame (fi);
8b93c638
JM
362 }
363
340a7723 364 /* We definitely need to catch errors here.
8b93c638 365 If evaluate_expression succeeds we got the value we wanted.
581e13c1 366 But if it fails, we still go on with a call to evaluate_type(). */
a70b8144 367 try
8e7b59a5 368 {
4d01a485 369 value = evaluate_expression (var->root->exp.get ());
8e7b59a5 370 }
230d2906 371 catch (const gdb_exception_error &except)
e55dccf0
VP
372 {
373 /* Error getting the value. Try to at least get the
374 right type. */
4d01a485 375 struct value *type_only_value = evaluate_type (var->root->exp.get ());
a109c7c1 376
e55dccf0
VP
377 var->type = value_type (type_only_value);
378 }
8264ba82 379
492d29ea
PA
380 if (value != NULL)
381 {
382 int real_type_found = 0;
383
384 var->type = value_actual_type (value, 0, &real_type_found);
385 if (real_type_found)
386 value = value_cast (var->type, value);
387 }
acd65feb 388
8b93c638 389 /* Set language info */
ca20d462 390 var->root->lang_ops = var->root->exp->language_defn->la_varobj_ops;
8b93c638 391
9e5b9d2b 392 install_new_value (var.get (), value, 1 /* Initial assignment */);
d32cafc7 393
581e13c1 394 /* Set ourselves as our root. */
9e5b9d2b 395 var->root->rootvar = var.get ();
8b93c638 396
581e13c1 397 /* Reset the selected frame. */
35633fef
JK
398 if (frame_id_p (old_id))
399 select_frame (frame_find_by_id (old_id));
8b93c638
JM
400 }
401
73a93a32 402 /* If the variable object name is null, that means this
581e13c1 403 is a temporary variable, so don't install it. */
73a93a32
JI
404
405 if ((var != NULL) && (objname != NULL))
8b93c638 406 {
2f408ecb 407 var->obj_name = objname;
8b93c638
JM
408
409 /* If a varobj name is duplicated, the install will fail so
581e13c1 410 we must cleanup. */
9e5b9d2b
SM
411 if (!install_variable (var.get ()))
412 return NULL;
8b93c638
JM
413 }
414
9e5b9d2b 415 return var.release ();
8b93c638
JM
416}
417
581e13c1 418/* Generates an unique name that can be used for a varobj. */
8b93c638 419
2d6960b4 420std::string
8b93c638
JM
421varobj_gen_name (void)
422{
423 static int id = 0;
8b93c638 424
581e13c1 425 /* Generate a name for this object. */
8b93c638 426 id++;
2d6960b4 427 return string_printf ("var%d", id);
8b93c638
JM
428}
429
61d8f275
JK
430/* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
431 error if OBJNAME cannot be found. */
8b93c638
JM
432
433struct varobj *
2f408ecb 434varobj_get_handle (const char *objname)
8b93c638
JM
435{
436 struct vlist *cv;
437 const char *chp;
438 unsigned int index = 0;
439 unsigned int i = 1;
440
441 for (chp = objname; *chp; chp++)
442 {
443 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
444 }
445
446 cv = *(varobj_table + index);
2f408ecb 447 while (cv != NULL && cv->var->obj_name != objname)
8b93c638
JM
448 cv = cv->next;
449
450 if (cv == NULL)
8a3fe4f8 451 error (_("Variable object not found"));
8b93c638
JM
452
453 return cv->var;
454}
455
581e13c1 456/* Given the handle, return the name of the object. */
8b93c638 457
2f408ecb 458const char *
b09e2c59 459varobj_get_objname (const struct varobj *var)
8b93c638 460{
2f408ecb 461 return var->obj_name.c_str ();
8b93c638
JM
462}
463
2f408ecb
PA
464/* Given the handle, return the expression represented by the
465 object. */
8b93c638 466
2f408ecb 467std::string
b09e2c59 468varobj_get_expression (const struct varobj *var)
8b93c638
JM
469{
470 return name_of_variable (var);
471}
472
30914ca8 473/* See varobj.h. */
8b93c638
JM
474
475int
4c37490d 476varobj_delete (struct varobj *var, bool only_children)
8b93c638 477{
30914ca8 478 return delete_variable (var, only_children);
8b93c638
JM
479}
480
d8b65138
JK
481#if HAVE_PYTHON
482
b6313243
TT
483/* Convenience function for varobj_set_visualizer. Instantiate a
484 pretty-printer for a given value. */
485static PyObject *
486instantiate_pretty_printer (PyObject *constructor, struct value *value)
487{
b6313243
TT
488 PyObject *val_obj = NULL;
489 PyObject *printer;
b6313243 490
b6313243 491 val_obj = value_to_value_object (value);
b6313243
TT
492 if (! val_obj)
493 return NULL;
494
495 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
496 Py_DECREF (val_obj);
497 return printer;
b6313243
TT
498}
499
d8b65138
JK
500#endif
501
581e13c1 502/* Set/Get variable object display format. */
8b93c638
JM
503
504enum varobj_display_formats
505varobj_set_display_format (struct varobj *var,
506 enum varobj_display_formats format)
507{
508 switch (format)
509 {
510 case FORMAT_NATURAL:
511 case FORMAT_BINARY:
512 case FORMAT_DECIMAL:
513 case FORMAT_HEXADECIMAL:
514 case FORMAT_OCTAL:
1c35a88f 515 case FORMAT_ZHEXADECIMAL:
8b93c638
JM
516 var->format = format;
517 break;
518
519 default:
520 var->format = variable_default_display (var);
521 }
522
ae7d22a6 523 if (varobj_value_is_changeable_p (var)
b4d61099 524 && var->value != nullptr && !value_lazy (var->value.get ()))
ae7d22a6 525 {
b4d61099 526 var->print_value = varobj_value_get_print_value (var->value.get (),
99ad9427 527 var->format, var);
ae7d22a6
VP
528 }
529
8b93c638
JM
530 return var->format;
531}
532
533enum varobj_display_formats
b09e2c59 534varobj_get_display_format (const struct varobj *var)
8b93c638
JM
535{
536 return var->format;
537}
538
9b972014 539gdb::unique_xmalloc_ptr<char>
b09e2c59 540varobj_get_display_hint (const struct varobj *var)
b6313243 541{
9b972014 542 gdb::unique_xmalloc_ptr<char> result;
b6313243
TT
543
544#if HAVE_PYTHON
0646da15
TT
545 if (!gdb_python_initialized)
546 return NULL;
547
bde7b3e3 548 gdbpy_enter_varobj enter_py (var);
d452c4bc 549
bb5ce47a
YQ
550 if (var->dynamic->pretty_printer != NULL)
551 result = gdbpy_get_display_hint (var->dynamic->pretty_printer);
b6313243
TT
552#endif
553
554 return result;
555}
556
0cc7d26f
TT
557/* Return true if the varobj has items after TO, false otherwise. */
558
4c37490d 559bool
b09e2c59 560varobj_has_more (const struct varobj *var, int to)
0cc7d26f 561{
ddf0ea08 562 if (var->children.size () > to)
4c37490d 563 return true;
ddf0ea08
SM
564
565 return ((to == -1 || var->children.size () == to)
bb5ce47a 566 && (var->dynamic->saved_item != NULL));
0cc7d26f
TT
567}
568
c5b48eac
VP
569/* If the variable object is bound to a specific thread, that
570 is its evaluation can always be done in context of a frame
571 inside that thread, returns GDB id of the thread -- which
581e13c1 572 is always positive. Otherwise, returns -1. */
c5b48eac 573int
b09e2c59 574varobj_get_thread_id (const struct varobj *var)
c5b48eac
VP
575{
576 if (var->root->valid_block && var->root->thread_id > 0)
577 return var->root->thread_id;
578 else
579 return -1;
580}
581
25d5ea92 582void
4c37490d 583varobj_set_frozen (struct varobj *var, bool frozen)
25d5ea92
VP
584{
585 /* When a variable is unfrozen, we don't fetch its value.
586 The 'not_fetched' flag remains set, so next -var-update
587 won't complain.
588
589 We don't fetch the value, because for structures the client
590 should do -var-update anyway. It would be bad to have different
591 client-size logic for structure and other types. */
592 var->frozen = frozen;
593}
594
4c37490d 595bool
b09e2c59 596varobj_get_frozen (const struct varobj *var)
25d5ea92
VP
597{
598 return var->frozen;
599}
600
0cc7d26f
TT
601/* A helper function that restricts a range to what is actually
602 available in a VEC. This follows the usual rules for the meaning
603 of FROM and TO -- if either is negative, the entire range is
604 used. */
605
99ad9427 606void
ddf0ea08
SM
607varobj_restrict_range (const std::vector<varobj *> &children,
608 int *from, int *to)
0cc7d26f 609{
ddf0ea08
SM
610 int len = children.size ();
611
0cc7d26f
TT
612 if (*from < 0 || *to < 0)
613 {
614 *from = 0;
ddf0ea08 615 *to = len;
0cc7d26f
TT
616 }
617 else
618 {
ddf0ea08
SM
619 if (*from > len)
620 *from = len;
621 if (*to > len)
622 *to = len;
0cc7d26f
TT
623 if (*from > *to)
624 *from = *to;
625 }
626}
627
628/* A helper for update_dynamic_varobj_children that installs a new
629 child when needed. */
630
631static void
632install_dynamic_child (struct varobj *var,
0604393c
SM
633 std::vector<varobj *> *changed,
634 std::vector<varobj *> *type_changed,
635 std::vector<varobj *> *newobj,
636 std::vector<varobj *> *unchanged,
4c37490d 637 bool *cchanged,
0cc7d26f 638 int index,
5a2e0d6e 639 struct varobj_item *item)
0cc7d26f 640{
ddf0ea08 641 if (var->children.size () < index + 1)
0cc7d26f
TT
642 {
643 /* There's no child yet. */
5a2e0d6e 644 struct varobj *child = varobj_add_child (var, item);
a109c7c1 645
0604393c 646 if (newobj != NULL)
0cc7d26f 647 {
0604393c 648 newobj->push_back (child);
4c37490d 649 *cchanged = true;
0cc7d26f
TT
650 }
651 }
bf8793bb 652 else
0cc7d26f 653 {
ddf0ea08 654 varobj *existing = var->children[index];
4c37490d 655 bool type_updated = update_type_if_necessary (existing, item->value);
bf8793bb 656
8264ba82
AG
657 if (type_updated)
658 {
0604393c
SM
659 if (type_changed != NULL)
660 type_changed->push_back (existing);
8264ba82 661 }
5a2e0d6e 662 if (install_new_value (existing, item->value, 0))
0cc7d26f 663 {
0604393c
SM
664 if (!type_updated && changed != NULL)
665 changed->push_back (existing);
0cc7d26f 666 }
0604393c
SM
667 else if (!type_updated && unchanged != NULL)
668 unchanged->push_back (existing);
0cc7d26f
TT
669 }
670}
671
576ea091
YQ
672#if HAVE_PYTHON
673
4c37490d 674static bool
b09e2c59 675dynamic_varobj_has_child_method (const struct varobj *var)
0cc7d26f 676{
bb5ce47a 677 PyObject *printer = var->dynamic->pretty_printer;
0cc7d26f 678
0646da15 679 if (!gdb_python_initialized)
4c37490d 680 return false;
0646da15 681
bde7b3e3
TT
682 gdbpy_enter_varobj enter_py (var);
683 return PyObject_HasAttr (printer, gdbpy_children_cst);
0cc7d26f 684}
576ea091 685#endif
0cc7d26f 686
e5250216
YQ
687/* A factory for creating dynamic varobj's iterators. Returns an
688 iterator object suitable for iterating over VAR's children. */
689
690static struct varobj_iter *
691varobj_get_iterator (struct varobj *var)
692{
576ea091 693#if HAVE_PYTHON
e5250216
YQ
694 if (var->dynamic->pretty_printer)
695 return py_varobj_get_iterator (var, var->dynamic->pretty_printer);
576ea091 696#endif
e5250216
YQ
697
698 gdb_assert_not_reached (_("\
699requested an iterator from a non-dynamic varobj"));
700}
701
827f100c
YQ
702/* Release and clear VAR's saved item, if any. */
703
704static void
705varobj_clear_saved_item (struct varobj_dynamic *var)
706{
707 if (var->saved_item != NULL)
708 {
22bc8444 709 value_decref (var->saved_item->value);
0a8beaba 710 delete var->saved_item;
827f100c
YQ
711 var->saved_item = NULL;
712 }
713}
0cc7d26f 714
4c37490d 715static bool
b6313243 716update_dynamic_varobj_children (struct varobj *var,
0604393c
SM
717 std::vector<varobj *> *changed,
718 std::vector<varobj *> *type_changed,
719 std::vector<varobj *> *newobj,
720 std::vector<varobj *> *unchanged,
4c37490d
SM
721 bool *cchanged,
722 bool update_children,
0cc7d26f
TT
723 int from,
724 int to)
b6313243 725{
b6313243 726 int i;
b6313243 727
4c37490d 728 *cchanged = false;
b6313243 729
bb5ce47a 730 if (update_children || var->dynamic->child_iter == NULL)
b6313243 731 {
e5250216
YQ
732 varobj_iter_delete (var->dynamic->child_iter);
733 var->dynamic->child_iter = varobj_get_iterator (var);
b6313243 734
827f100c 735 varobj_clear_saved_item (var->dynamic);
b6313243 736
e5250216 737 i = 0;
b6313243 738
bb5ce47a 739 if (var->dynamic->child_iter == NULL)
4c37490d 740 return false;
b6313243 741 }
0cc7d26f 742 else
ddf0ea08 743 i = var->children.size ();
b6313243 744
0cc7d26f
TT
745 /* We ask for one extra child, so that MI can report whether there
746 are more children. */
747 for (; to < 0 || i < to + 1; ++i)
b6313243 748 {
827f100c 749 varobj_item *item;
b6313243 750
0cc7d26f 751 /* See if there was a leftover from last time. */
827f100c 752 if (var->dynamic->saved_item != NULL)
0cc7d26f 753 {
bb5ce47a
YQ
754 item = var->dynamic->saved_item;
755 var->dynamic->saved_item = NULL;
0cc7d26f
TT
756 }
757 else
a4c8e806 758 {
e5250216 759 item = varobj_iter_next (var->dynamic->child_iter);
827f100c
YQ
760 /* Release vitem->value so its lifetime is not bound to the
761 execution of a command. */
762 if (item != NULL && item->value != NULL)
895dafa6 763 item->value = release_value (item->value).release ();
a4c8e806 764 }
b6313243 765
e5250216
YQ
766 if (item == NULL)
767 {
768 /* Iteration is done. Remove iterator from VAR. */
769 varobj_iter_delete (var->dynamic->child_iter);
770 var->dynamic->child_iter = NULL;
771 break;
772 }
0cc7d26f
TT
773 /* We don't want to push the extra child on any report list. */
774 if (to < 0 || i < to)
b6313243 775 {
4c37490d 776 bool can_mention = from < 0 || i >= from;
0cc7d26f 777
0cc7d26f 778 install_dynamic_child (var, can_mention ? changed : NULL,
8264ba82 779 can_mention ? type_changed : NULL,
fe978cb0 780 can_mention ? newobj : NULL,
0cc7d26f 781 can_mention ? unchanged : NULL,
5e5ac9a5 782 can_mention ? cchanged : NULL, i,
827f100c
YQ
783 item);
784
0a8beaba 785 delete item;
b6313243 786 }
0cc7d26f 787 else
b6313243 788 {
bb5ce47a 789 var->dynamic->saved_item = item;
b6313243 790
0cc7d26f
TT
791 /* We want to truncate the child list just before this
792 element. */
793 break;
794 }
b6313243
TT
795 }
796
ddf0ea08 797 if (i < var->children.size ())
b6313243 798 {
4c37490d 799 *cchanged = true;
ddf0ea08
SM
800 for (int j = i; j < var->children.size (); ++j)
801 varobj_delete (var->children[j], 0);
802
803 var->children.resize (i);
b6313243 804 }
0cc7d26f
TT
805
806 /* If there are fewer children than requested, note that the list of
807 children changed. */
ddf0ea08 808 if (to >= 0 && var->children.size () < to)
4c37490d 809 *cchanged = true;
0cc7d26f 810
ddf0ea08 811 var->num_children = var->children.size ();
b6313243 812
4c37490d 813 return true;
b6313243 814}
25d5ea92 815
8b93c638
JM
816int
817varobj_get_num_children (struct varobj *var)
818{
819 if (var->num_children == -1)
b6313243 820 {
31f628ae 821 if (varobj_is_dynamic_p (var))
0cc7d26f 822 {
4c37490d 823 bool dummy;
0cc7d26f
TT
824
825 /* If we have a dynamic varobj, don't report -1 children.
826 So, try to fetch some children first. */
8264ba82 827 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
4c37490d 828 false, 0, 0);
0cc7d26f
TT
829 }
830 else
b6313243
TT
831 var->num_children = number_of_children (var);
832 }
8b93c638 833
0cc7d26f 834 return var->num_children >= 0 ? var->num_children : 0;
8b93c638
JM
835}
836
837/* Creates a list of the immediate children of a variable object;
581e13c1 838 the return code is the number of such children or -1 on error. */
8b93c638 839
ddf0ea08 840const std::vector<varobj *> &
0cc7d26f 841varobj_list_children (struct varobj *var, int *from, int *to)
8b93c638 842{
bd046f64 843 var->dynamic->children_requested = true;
b6313243 844
31f628ae 845 if (varobj_is_dynamic_p (var))
0cc7d26f 846 {
4c37490d
SM
847 bool children_changed;
848
b6313243
TT
849 /* This, in theory, can result in the number of children changing without
850 frontend noticing. But well, calling -var-list-children on the same
851 varobj twice is not something a sane frontend would do. */
8264ba82 852 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
4c37490d 853 &children_changed, false, 0, *to);
99ad9427 854 varobj_restrict_range (var->children, from, to);
0cc7d26f
TT
855 return var->children;
856 }
8b93c638 857
8b93c638
JM
858 if (var->num_children == -1)
859 var->num_children = number_of_children (var);
860
74a44383
DJ
861 /* If that failed, give up. */
862 if (var->num_children == -1)
d56d46f5 863 return var->children;
74a44383 864
28335dcc
VP
865 /* If we're called when the list of children is not yet initialized,
866 allocate enough elements in it. */
ddf0ea08
SM
867 while (var->children.size () < var->num_children)
868 var->children.push_back (NULL);
28335dcc 869
ddf0ea08 870 for (int i = 0; i < var->num_children; i++)
8b93c638 871 {
ddf0ea08 872 if (var->children[i] == NULL)
28335dcc
VP
873 {
874 /* Either it's the first call to varobj_list_children for
875 this variable object, and the child was never created,
876 or it was explicitly deleted by the client. */
2f408ecb 877 std::string name = name_of_child (var, i);
ddf0ea08 878 var->children[i] = create_child (var, i, name);
28335dcc 879 }
8b93c638
JM
880 }
881
99ad9427 882 varobj_restrict_range (var->children, from, to);
d56d46f5 883 return var->children;
8b93c638
JM
884}
885
b6313243 886static struct varobj *
5a2e0d6e 887varobj_add_child (struct varobj *var, struct varobj_item *item)
b6313243 888{
ddf0ea08
SM
889 varobj *v = create_child_with_value (var, var->children.size (), item);
890
891 var->children.push_back (v);
a109c7c1 892
b6313243
TT
893 return v;
894}
895
8b93c638 896/* Obtain the type of an object Variable as a string similar to the one gdb
afa269ae
SM
897 prints on the console. The caller is responsible for freeing the string.
898 */
8b93c638 899
2f408ecb 900std::string
8b93c638
JM
901varobj_get_type (struct varobj *var)
902{
8ab91b96 903 /* For the "fake" variables, do not return a type. (Its type is
8756216b
DP
904 NULL, too.)
905 Do not return a type for invalid variables as well. */
906 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
2f408ecb 907 return std::string ();
8b93c638 908
1a4300e9 909 return type_to_string (var->type);
8b93c638
JM
910}
911
1ecb4ee0
DJ
912/* Obtain the type of an object variable. */
913
914struct type *
b09e2c59 915varobj_get_gdb_type (const struct varobj *var)
1ecb4ee0
DJ
916{
917 return var->type;
918}
919
85254831
KS
920/* Is VAR a path expression parent, i.e., can it be used to construct
921 a valid path expression? */
922
4c37490d 923static bool
b09e2c59 924is_path_expr_parent (const struct varobj *var)
85254831 925{
9a9a7608
AB
926 gdb_assert (var->root->lang_ops->is_path_expr_parent != NULL);
927 return var->root->lang_ops->is_path_expr_parent (var);
928}
85254831 929
9a9a7608
AB
930/* Is VAR a path expression parent, i.e., can it be used to construct
931 a valid path expression? By default we assume any VAR can be a path
932 parent. */
85254831 933
4c37490d 934bool
b09e2c59 935varobj_default_is_path_expr_parent (const struct varobj *var)
9a9a7608 936{
4c37490d 937 return true;
85254831
KS
938}
939
940/* Return the path expression parent for VAR. */
941
c1cc6152
SM
942const struct varobj *
943varobj_get_path_expr_parent (const struct varobj *var)
85254831 944{
c1cc6152 945 const struct varobj *parent = var;
85254831
KS
946
947 while (!is_root_p (parent) && !is_path_expr_parent (parent))
948 parent = parent->parent;
949
5abe0f0c
JV
950 /* Computation of full rooted expression for children of dynamic
951 varobjs is not supported. */
952 if (varobj_is_dynamic_p (parent))
953 error (_("Invalid variable object (child of a dynamic varobj)"));
954
85254831
KS
955 return parent;
956}
957
02142340
VP
958/* Return a pointer to the full rooted expression of varobj VAR.
959 If it has not been computed yet, compute it. */
2f408ecb
PA
960
961const char *
c1cc6152 962varobj_get_path_expr (const struct varobj *var)
02142340 963{
2f408ecb 964 if (var->path_expr.empty ())
02142340
VP
965 {
966 /* For root varobjs, we initialize path_expr
967 when creating varobj, so here it should be
968 child varobj. */
c1cc6152 969 struct varobj *mutable_var = (struct varobj *) var;
02142340 970 gdb_assert (!is_root_p (var));
2568868e 971
c1cc6152 972 mutable_var->path_expr = (*var->root->lang_ops->path_expr_of_child) (var);
02142340 973 }
2568868e 974
2f408ecb 975 return var->path_expr.c_str ();
02142340
VP
976}
977
fa4d0c40 978const struct language_defn *
b09e2c59 979varobj_get_language (const struct varobj *var)
8b93c638 980{
fa4d0c40 981 return var->root->exp->language_defn;
8b93c638
JM
982}
983
984int
b09e2c59 985varobj_get_attributes (const struct varobj *var)
8b93c638
JM
986{
987 int attributes = 0;
988
340a7723 989 if (varobj_editable_p (var))
581e13c1 990 /* FIXME: define masks for attributes. */
8b93c638
JM
991 attributes |= 0x00000001; /* Editable */
992
993 return attributes;
994}
995
cde5ef40
YQ
996/* Return true if VAR is a dynamic varobj. */
997
4c37490d 998bool
b09e2c59 999varobj_is_dynamic_p (const struct varobj *var)
0cc7d26f 1000{
bb5ce47a 1001 return var->dynamic->pretty_printer != NULL;
0cc7d26f
TT
1002}
1003
2f408ecb 1004std::string
de051565
MK
1005varobj_get_formatted_value (struct varobj *var,
1006 enum varobj_display_formats format)
1007{
1008 return my_value_of_variable (var, format);
1009}
1010
2f408ecb 1011std::string
8b93c638
JM
1012varobj_get_value (struct varobj *var)
1013{
de051565 1014 return my_value_of_variable (var, var->format);
8b93c638
JM
1015}
1016
1017/* Set the value of an object variable (if it is editable) to the
581e13c1
MS
1018 value of the given expression. */
1019/* Note: Invokes functions that can call error(). */
8b93c638 1020
4c37490d 1021bool
2f408ecb 1022varobj_set_value (struct varobj *var, const char *expression)
8b93c638 1023{
34365054 1024 struct value *val = NULL; /* Initialize to keep gcc happy. */
8b93c638 1025 /* The argument "expression" contains the variable's new value.
581e13c1
MS
1026 We need to first construct a legal expression for this -- ugh! */
1027 /* Does this cover all the bases? */
34365054 1028 struct value *value = NULL; /* Initialize to keep gcc happy. */
8b93c638 1029 int saved_input_radix = input_radix;
bbc13ae3 1030 const char *s = expression;
8b93c638 1031
340a7723 1032 gdb_assert (varobj_editable_p (var));
8b93c638 1033
581e13c1 1034 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
4d01a485 1035 expression_up exp = parse_exp_1 (&s, 0, 0, 0);
a70b8144 1036 try
8e7b59a5 1037 {
4d01a485 1038 value = evaluate_expression (exp.get ());
8e7b59a5
KS
1039 }
1040
230d2906 1041 catch (const gdb_exception_error &except)
340a7723 1042 {
581e13c1 1043 /* We cannot proceed without a valid expression. */
4c37490d 1044 return false;
8b93c638
JM
1045 }
1046
340a7723
NR
1047 /* All types that are editable must also be changeable. */
1048 gdb_assert (varobj_value_is_changeable_p (var));
1049
1050 /* The value of a changeable variable object must not be lazy. */
b4d61099 1051 gdb_assert (!value_lazy (var->value.get ()));
340a7723
NR
1052
1053 /* Need to coerce the input. We want to check if the
1054 value of the variable object will be different
1055 after assignment, and the first thing value_assign
1056 does is coerce the input.
1057 For example, if we are assigning an array to a pointer variable we
b021a221 1058 should compare the pointer with the array's address, not with the
340a7723
NR
1059 array's content. */
1060 value = coerce_array (value);
1061
8e7b59a5
KS
1062 /* The new value may be lazy. value_assign, or
1063 rather value_contents, will take care of this. */
a70b8144 1064 try
8e7b59a5 1065 {
b4d61099 1066 val = value_assign (var->value.get (), value);
8e7b59a5
KS
1067 }
1068
230d2906 1069 catch (const gdb_exception_error &except)
492d29ea 1070 {
4c37490d 1071 return false;
492d29ea 1072 }
8e7b59a5 1073
340a7723
NR
1074 /* If the value has changed, record it, so that next -var-update can
1075 report this change. If a variable had a value of '1', we've set it
1076 to '333' and then set again to '1', when -var-update will report this
1077 variable as changed -- because the first assignment has set the
1078 'updated' flag. There's no need to optimize that, because return value
1079 of -var-update should be considered an approximation. */
4c37490d 1080 var->updated = install_new_value (var, val, false /* Compare values. */);
340a7723 1081 input_radix = saved_input_radix;
4c37490d 1082 return true;
8b93c638
JM
1083}
1084
0cc7d26f
TT
1085#if HAVE_PYTHON
1086
1087/* A helper function to install a constructor function and visualizer
bb5ce47a 1088 in a varobj_dynamic. */
0cc7d26f
TT
1089
1090static void
bb5ce47a 1091install_visualizer (struct varobj_dynamic *var, PyObject *constructor,
0cc7d26f
TT
1092 PyObject *visualizer)
1093{
1094 Py_XDECREF (var->constructor);
1095 var->constructor = constructor;
1096
1097 Py_XDECREF (var->pretty_printer);
1098 var->pretty_printer = visualizer;
1099
e5250216 1100 varobj_iter_delete (var->child_iter);
0cc7d26f
TT
1101 var->child_iter = NULL;
1102}
1103
1104/* Install the default visualizer for VAR. */
1105
1106static void
1107install_default_visualizer (struct varobj *var)
1108{
d65aec65
PM
1109 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1110 if (CPLUS_FAKE_CHILD (var))
1111 return;
1112
0cc7d26f
TT
1113 if (pretty_printing)
1114 {
a31abe80 1115 gdbpy_ref<> pretty_printer;
0cc7d26f 1116
b4d61099 1117 if (var->value != nullptr)
0cc7d26f 1118 {
b4d61099 1119 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value.get ());
a31abe80 1120 if (pretty_printer == nullptr)
0cc7d26f
TT
1121 {
1122 gdbpy_print_stack ();
1123 error (_("Cannot instantiate printer for default visualizer"));
1124 }
1125 }
a31abe80 1126
0cc7d26f 1127 if (pretty_printer == Py_None)
895dafa6 1128 pretty_printer.reset (nullptr);
0cc7d26f 1129
a31abe80 1130 install_visualizer (var->dynamic, NULL, pretty_printer.release ());
0cc7d26f
TT
1131 }
1132}
1133
1134/* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1135 make a new object. */
1136
1137static void
1138construct_visualizer (struct varobj *var, PyObject *constructor)
1139{
1140 PyObject *pretty_printer;
1141
d65aec65
PM
1142 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1143 if (CPLUS_FAKE_CHILD (var))
1144 return;
1145
0cc7d26f
TT
1146 Py_INCREF (constructor);
1147 if (constructor == Py_None)
1148 pretty_printer = NULL;
1149 else
1150 {
b4d61099
TT
1151 pretty_printer = instantiate_pretty_printer (constructor,
1152 var->value.get ());
0cc7d26f
TT
1153 if (! pretty_printer)
1154 {
1155 gdbpy_print_stack ();
1156 Py_DECREF (constructor);
1157 constructor = Py_None;
1158 Py_INCREF (constructor);
1159 }
1160
1161 if (pretty_printer == Py_None)
1162 {
1163 Py_DECREF (pretty_printer);
1164 pretty_printer = NULL;
1165 }
1166 }
1167
bb5ce47a 1168 install_visualizer (var->dynamic, constructor, pretty_printer);
0cc7d26f
TT
1169}
1170
1171#endif /* HAVE_PYTHON */
1172
1173/* A helper function for install_new_value. This creates and installs
1174 a visualizer for VAR, if appropriate. */
1175
1176static void
1177install_new_value_visualizer (struct varobj *var)
1178{
1179#if HAVE_PYTHON
1180 /* If the constructor is None, then we want the raw value. If VAR
1181 does not have a value, just skip this. */
0646da15
TT
1182 if (!gdb_python_initialized)
1183 return;
1184
bb5ce47a 1185 if (var->dynamic->constructor != Py_None && var->value != NULL)
0cc7d26f 1186 {
bde7b3e3 1187 gdbpy_enter_varobj enter_py (var);
0cc7d26f 1188
bb5ce47a 1189 if (var->dynamic->constructor == NULL)
0cc7d26f
TT
1190 install_default_visualizer (var);
1191 else
bb5ce47a 1192 construct_visualizer (var, var->dynamic->constructor);
0cc7d26f
TT
1193 }
1194#else
1195 /* Do nothing. */
1196#endif
1197}
1198
8264ba82
AG
1199/* When using RTTI to determine variable type it may be changed in runtime when
1200 the variable value is changed. This function checks whether type of varobj
1201 VAR will change when a new value NEW_VALUE is assigned and if it is so
1202 updates the type of VAR. */
1203
4c37490d 1204static bool
8264ba82
AG
1205update_type_if_necessary (struct varobj *var, struct value *new_value)
1206{
1207 if (new_value)
1208 {
1209 struct value_print_options opts;
1210
1211 get_user_print_options (&opts);
1212 if (opts.objectprint)
1213 {
2f408ecb
PA
1214 struct type *new_type = value_actual_type (new_value, 0, 0);
1215 std::string new_type_str = type_to_string (new_type);
1216 std::string curr_type_str = varobj_get_type (var);
8264ba82 1217
2f408ecb
PA
1218 /* Did the type name change? */
1219 if (curr_type_str != new_type_str)
8264ba82
AG
1220 {
1221 var->type = new_type;
1222
1223 /* This information may be not valid for a new type. */
30914ca8 1224 varobj_delete (var, 1);
ddf0ea08 1225 var->children.clear ();
8264ba82 1226 var->num_children = -1;
4c37490d 1227 return true;
8264ba82
AG
1228 }
1229 }
1230 }
1231
4c37490d 1232 return false;
8264ba82
AG
1233}
1234
4c37490d
SM
1235/* Assign a new value to a variable object. If INITIAL is true,
1236 this is the first assignment after the variable object was just
acd65feb 1237 created, or changed type. In that case, just assign the value
4c37490d
SM
1238 and return false.
1239 Otherwise, assign the new value, and return true if the value is
1240 different from the current one, false otherwise. The comparison is
581e13c1
MS
1241 done on textual representation of value. Therefore, some types
1242 need not be compared. E.g. for structures the reported value is
1243 always "{...}", so no comparison is necessary here. If the old
4c37490d 1244 value was NULL and new one is not, or vice versa, we always return true.
b26ed50d
VP
1245
1246 The VALUE parameter should not be released -- the function will
1247 take care of releasing it when needed. */
4c37490d
SM
1248static bool
1249install_new_value (struct varobj *var, struct value *value, bool initial)
acd65feb 1250{
4c37490d
SM
1251 bool changeable;
1252 bool need_to_fetch;
1253 bool changed = false;
1254 bool intentionally_not_fetched = false;
acd65feb 1255
acd65feb 1256 /* We need to know the varobj's type to decide if the value should
3e43a32a 1257 be fetched or not. C++ fake children (public/protected/private)
581e13c1 1258 don't have a type. */
acd65feb 1259 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
b2c2bd75 1260 changeable = varobj_value_is_changeable_p (var);
b6313243
TT
1261
1262 /* If the type has custom visualizer, we consider it to be always
581e13c1 1263 changeable. FIXME: need to make sure this behaviour will not
b6313243 1264 mess up read-sensitive values. */
bb5ce47a 1265 if (var->dynamic->pretty_printer != NULL)
4c37490d 1266 changeable = true;
b6313243 1267
acd65feb
VP
1268 need_to_fetch = changeable;
1269
b26ed50d
VP
1270 /* We are not interested in the address of references, and given
1271 that in C++ a reference is not rebindable, it cannot
1272 meaningfully change. So, get hold of the real value. */
1273 if (value)
0cc7d26f 1274 value = coerce_ref (value);
b26ed50d 1275
acd65feb
VP
1276 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1277 /* For unions, we need to fetch the value implicitly because
1278 of implementation of union member fetch. When gdb
1279 creates a value for a field and the value of the enclosing
1280 structure is not lazy, it immediately copies the necessary
1281 bytes from the enclosing values. If the enclosing value is
1282 lazy, the call to value_fetch_lazy on the field will read
1283 the data from memory. For unions, that means we'll read the
1284 same memory more than once, which is not desirable. So
1285 fetch now. */
4c37490d 1286 need_to_fetch = true;
acd65feb
VP
1287
1288 /* The new value might be lazy. If the type is changeable,
1289 that is we'll be comparing values of this type, fetch the
1290 value now. Otherwise, on the next update the old value
1291 will be lazy, which means we've lost that old value. */
1292 if (need_to_fetch && value && value_lazy (value))
1293 {
c1cc6152 1294 const struct varobj *parent = var->parent;
4c37490d 1295 bool frozen = var->frozen;
a109c7c1 1296
25d5ea92
VP
1297 for (; !frozen && parent; parent = parent->parent)
1298 frozen |= parent->frozen;
1299
1300 if (frozen && initial)
1301 {
1302 /* For variables that are frozen, or are children of frozen
1303 variables, we don't do fetch on initial assignment.
1304 For non-initial assignemnt we do the fetch, since it means we're
1305 explicitly asked to compare the new value with the old one. */
4c37490d 1306 intentionally_not_fetched = true;
25d5ea92 1307 }
8e7b59a5 1308 else
acd65feb 1309 {
8e7b59a5 1310
a70b8144 1311 try
8e7b59a5
KS
1312 {
1313 value_fetch_lazy (value);
1314 }
1315
230d2906 1316 catch (const gdb_exception_error &except)
8e7b59a5
KS
1317 {
1318 /* Set the value to NULL, so that for the next -var-update,
1319 we don't try to compare the new value with this value,
1320 that we couldn't even read. */
1321 value = NULL;
1322 }
acd65feb 1323 }
acd65feb
VP
1324 }
1325
e848a8a5
TT
1326 /* Get a reference now, before possibly passing it to any Python
1327 code that might release it. */
b4d61099 1328 value_ref_ptr value_holder;
e848a8a5 1329 if (value != NULL)
bbfa6f00 1330 value_holder = value_ref_ptr::new_reference (value);
b6313243 1331
7a4d50bf
VP
1332 /* Below, we'll be comparing string rendering of old and new
1333 values. Don't get string rendering if the value is
1334 lazy -- if it is, the code above has decided that the value
1335 should not be fetched. */
2f408ecb 1336 std::string print_value;
bb5ce47a
YQ
1337 if (value != NULL && !value_lazy (value)
1338 && var->dynamic->pretty_printer == NULL)
99ad9427 1339 print_value = varobj_value_get_print_value (value, var->format, var);
7a4d50bf 1340
acd65feb
VP
1341 /* If the type is changeable, compare the old and the new values.
1342 If this is the initial assignment, we don't have any old value
1343 to compare with. */
7a4d50bf 1344 if (!initial && changeable)
acd65feb 1345 {
3e43a32a
MS
1346 /* If the value of the varobj was changed by -var-set-value,
1347 then the value in the varobj and in the target is the same.
1348 However, that value is different from the value that the
581e13c1 1349 varobj had after the previous -var-update. So need to the
3e43a32a 1350 varobj as changed. */
acd65feb 1351 if (var->updated)
4c37490d 1352 changed = true;
bb5ce47a 1353 else if (var->dynamic->pretty_printer == NULL)
acd65feb
VP
1354 {
1355 /* Try to compare the values. That requires that both
1356 values are non-lazy. */
b4d61099 1357 if (var->not_fetched && value_lazy (var->value.get ()))
25d5ea92
VP
1358 {
1359 /* This is a frozen varobj and the value was never read.
1360 Presumably, UI shows some "never read" indicator.
1361 Now that we've fetched the real value, we need to report
1362 this varobj as changed so that UI can show the real
1363 value. */
4c37490d 1364 changed = true;
25d5ea92
VP
1365 }
1366 else if (var->value == NULL && value == NULL)
581e13c1 1367 /* Equal. */
acd65feb
VP
1368 ;
1369 else if (var->value == NULL || value == NULL)
57e66780 1370 {
4c37490d 1371 changed = true;
57e66780 1372 }
acd65feb
VP
1373 else
1374 {
b4d61099 1375 gdb_assert (!value_lazy (var->value.get ()));
acd65feb 1376 gdb_assert (!value_lazy (value));
85265413 1377
2f408ecb
PA
1378 gdb_assert (!var->print_value.empty () && !print_value.empty ());
1379 if (var->print_value != print_value)
4c37490d 1380 changed = true;
acd65feb
VP
1381 }
1382 }
1383 }
85265413 1384
ee342b23
VP
1385 if (!initial && !changeable)
1386 {
1387 /* For values that are not changeable, we don't compare the values.
1388 However, we want to notice if a value was not NULL and now is NULL,
1389 or vise versa, so that we report when top-level varobjs come in scope
1390 and leave the scope. */
1391 changed = (var->value != NULL) != (value != NULL);
1392 }
1393
acd65feb 1394 /* We must always keep the new value, since children depend on it. */
b4d61099 1395 var->value = value_holder;
25d5ea92 1396 if (value && value_lazy (value) && intentionally_not_fetched)
4c37490d 1397 var->not_fetched = true;
25d5ea92 1398 else
4c37490d
SM
1399 var->not_fetched = false;
1400 var->updated = false;
85265413 1401
0cc7d26f
TT
1402 install_new_value_visualizer (var);
1403
1404 /* If we installed a pretty-printer, re-compare the printed version
1405 to see if the variable changed. */
bb5ce47a 1406 if (var->dynamic->pretty_printer != NULL)
0cc7d26f 1407 {
b4d61099
TT
1408 print_value = varobj_value_get_print_value (var->value.get (),
1409 var->format, var);
2f408ecb
PA
1410 if ((var->print_value.empty () && !print_value.empty ())
1411 || (!var->print_value.empty () && print_value.empty ())
1412 || (!var->print_value.empty () && !print_value.empty ()
1413 && var->print_value != print_value))
4c37490d 1414 changed = true;
0cc7d26f 1415 }
0cc7d26f
TT
1416 var->print_value = print_value;
1417
b4d61099 1418 gdb_assert (var->value == nullptr || value_type (var->value.get ()));
acd65feb
VP
1419
1420 return changed;
1421}
acd65feb 1422
0cc7d26f
TT
1423/* Return the requested range for a varobj. VAR is the varobj. FROM
1424 and TO are out parameters; *FROM and *TO will be set to the
1425 selected sub-range of VAR. If no range was selected using
1426 -var-set-update-range, then both will be -1. */
1427void
b09e2c59 1428varobj_get_child_range (const struct varobj *var, int *from, int *to)
b6313243 1429{
0cc7d26f
TT
1430 *from = var->from;
1431 *to = var->to;
b6313243
TT
1432}
1433
0cc7d26f
TT
1434/* Set the selected sub-range of children of VAR to start at index
1435 FROM and end at index TO. If either FROM or TO is less than zero,
1436 this is interpreted as a request for all children. */
1437void
1438varobj_set_child_range (struct varobj *var, int from, int to)
b6313243 1439{
0cc7d26f
TT
1440 var->from = from;
1441 var->to = to;
b6313243
TT
1442}
1443
1444void
1445varobj_set_visualizer (struct varobj *var, const char *visualizer)
1446{
1447#if HAVE_PYTHON
bde7b3e3 1448 PyObject *mainmod;
b6313243 1449
0646da15
TT
1450 if (!gdb_python_initialized)
1451 return;
1452
bde7b3e3 1453 gdbpy_enter_varobj enter_py (var);
b6313243
TT
1454
1455 mainmod = PyImport_AddModule ("__main__");
7c66fffc
TT
1456 gdbpy_ref<> globals
1457 = gdbpy_ref<>::new_reference (PyModule_GetDict (mainmod));
7780f186
TT
1458 gdbpy_ref<> constructor (PyRun_String (visualizer, Py_eval_input,
1459 globals.get (), globals.get ()));
b6313243 1460
bde7b3e3 1461 if (constructor == NULL)
b6313243
TT
1462 {
1463 gdbpy_print_stack ();
da1f2771 1464 error (_("Could not evaluate visualizer expression: %s"), visualizer);
b6313243
TT
1465 }
1466
bde7b3e3 1467 construct_visualizer (var, constructor.get ());
b6313243 1468
0cc7d26f 1469 /* If there are any children now, wipe them. */
30914ca8 1470 varobj_delete (var, 1 /* children only */);
0cc7d26f 1471 var->num_children = -1;
b6313243 1472#else
da1f2771 1473 error (_("Python support required"));
b6313243
TT
1474#endif
1475}
1476
7a290c40 1477/* If NEW_VALUE is the new value of the given varobj (var), return
4c37490d 1478 true if var has mutated. In other words, if the type of
7a290c40
JB
1479 the new value is different from the type of the varobj's old
1480 value.
1481
1482 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1483
4c37490d 1484static bool
b09e2c59 1485varobj_value_has_mutated (const struct varobj *var, struct value *new_value,
7a290c40
JB
1486 struct type *new_type)
1487{
1488 /* If we haven't previously computed the number of children in var,
1489 it does not matter from the front-end's perspective whether
1490 the type has mutated or not. For all intents and purposes,
1491 it has not mutated. */
1492 if (var->num_children < 0)
4c37490d 1493 return false;
7a290c40 1494
4c37490d 1495 if (var->root->lang_ops->value_has_mutated != NULL)
8776cfe9
JB
1496 {
1497 /* The varobj module, when installing new values, explicitly strips
1498 references, saying that we're not interested in those addresses.
1499 But detection of mutation happens before installing the new
1500 value, so our value may be a reference that we need to strip
1501 in order to remain consistent. */
1502 if (new_value != NULL)
1503 new_value = coerce_ref (new_value);
1504 return var->root->lang_ops->value_has_mutated (var, new_value, new_type);
1505 }
7a290c40 1506 else
4c37490d 1507 return false;
7a290c40
JB
1508}
1509
8b93c638
JM
1510/* Update the values for a variable and its children. This is a
1511 two-pronged attack. First, re-parse the value for the root's
1512 expression to see if it's changed. Then go all the way
1513 through its children, reconstructing them and noting if they've
1514 changed.
1515
4c37490d 1516 The IS_EXPLICIT parameter specifies if this call is result
25d5ea92 1517 of MI request to update this specific variable, or
581e13c1 1518 result of implicit -var-update *. For implicit request, we don't
25d5ea92 1519 update frozen variables.
705da579 1520
581e13c1 1521 NOTE: This function may delete the caller's varobj. If it
8756216b
DP
1522 returns TYPE_CHANGED, then it has done this and VARP will be modified
1523 to point to the new varobj. */
8b93c638 1524
0604393c 1525std::vector<varobj_update_result>
4c37490d 1526varobj_update (struct varobj **varp, bool is_explicit)
8b93c638 1527{
4c37490d 1528 bool type_changed = false;
fe978cb0 1529 struct value *newobj;
0604393c
SM
1530 std::vector<varobj_update_result> stack;
1531 std::vector<varobj_update_result> result;
8b93c638 1532
25d5ea92
VP
1533 /* Frozen means frozen -- we don't check for any change in
1534 this varobj, including its going out of scope, or
1535 changing type. One use case for frozen varobjs is
1536 retaining previously evaluated expressions, and we don't
1537 want them to be reevaluated at all. */
fe978cb0 1538 if (!is_explicit && (*varp)->frozen)
f7f9ae2c 1539 return result;
8756216b
DP
1540
1541 if (!(*varp)->root->is_valid)
f7f9ae2c 1542 {
0604393c 1543 result.emplace_back (*varp, VAROBJ_INVALID);
f7f9ae2c
VP
1544 return result;
1545 }
8b93c638 1546
25d5ea92 1547 if ((*varp)->root->rootvar == *varp)
ae093f96 1548 {
0604393c 1549 varobj_update_result r (*varp);
f7f9ae2c 1550
581e13c1 1551 /* Update the root variable. value_of_root can return NULL
25d5ea92 1552 if the variable is no longer around, i.e. we stepped out of
581e13c1 1553 the frame in which a local existed. We are letting the
25d5ea92
VP
1554 value_of_root variable dispose of the varobj if the type
1555 has changed. */
fe978cb0 1556 newobj = value_of_root (varp, &type_changed);
4c37490d
SM
1557 if (update_type_if_necessary (*varp, newobj))
1558 type_changed = true;
f7f9ae2c 1559 r.varobj = *varp;
f7f9ae2c 1560 r.type_changed = type_changed;
fe978cb0 1561 if (install_new_value ((*varp), newobj, type_changed))
4c37490d 1562 r.changed = true;
ea56f9c2 1563
fe978cb0 1564 if (newobj == NULL)
f7f9ae2c 1565 r.status = VAROBJ_NOT_IN_SCOPE;
4c37490d 1566 r.value_installed = true;
f7f9ae2c
VP
1567
1568 if (r.status == VAROBJ_NOT_IN_SCOPE)
b6313243 1569 {
0b4bc29a 1570 if (r.type_changed || r.changed)
0604393c
SM
1571 result.push_back (std::move (r));
1572
b6313243
TT
1573 return result;
1574 }
a109c7c1 1575
0604393c 1576 stack.push_back (std::move (r));
b20d8971 1577 }
0604393c
SM
1578 else
1579 stack.emplace_back (*varp);
8b93c638 1580
8756216b 1581 /* Walk through the children, reconstructing them all. */
0604393c 1582 while (!stack.empty ())
8b93c638 1583 {
0604393c
SM
1584 varobj_update_result r = std::move (stack.back ());
1585 stack.pop_back ();
b6313243
TT
1586 struct varobj *v = r.varobj;
1587
b6313243
TT
1588 /* Update this variable, unless it's a root, which is already
1589 updated. */
1590 if (!r.value_installed)
7a290c40
JB
1591 {
1592 struct type *new_type;
1593
fe978cb0 1594 newobj = value_of_child (v->parent, v->index);
4c37490d
SM
1595 if (update_type_if_necessary (v, newobj))
1596 r.type_changed = true;
fe978cb0
PA
1597 if (newobj)
1598 new_type = value_type (newobj);
7a290c40 1599 else
ca20d462 1600 new_type = v->root->lang_ops->type_of_child (v->parent, v->index);
7a290c40 1601
fe978cb0 1602 if (varobj_value_has_mutated (v, newobj, new_type))
7a290c40
JB
1603 {
1604 /* The children are no longer valid; delete them now.
1605 Report the fact that its type changed as well. */
30914ca8 1606 varobj_delete (v, 1 /* only_children */);
7a290c40
JB
1607 v->num_children = -1;
1608 v->to = -1;
1609 v->from = -1;
1610 v->type = new_type;
4c37490d 1611 r.type_changed = true;
7a290c40
JB
1612 }
1613
fe978cb0 1614 if (install_new_value (v, newobj, r.type_changed))
b6313243 1615 {
4c37490d
SM
1616 r.changed = true;
1617 v->updated = false;
b6313243
TT
1618 }
1619 }
1620
31f628ae
YQ
1621 /* We probably should not get children of a dynamic varobj, but
1622 for which -var-list-children was never invoked. */
1623 if (varobj_is_dynamic_p (v))
b6313243 1624 {
b926417a 1625 std::vector<varobj *> changed, type_changed_vec, unchanged, newobj_vec;
4c37490d 1626 bool children_changed = false;
b6313243
TT
1627
1628 if (v->frozen)
1629 continue;
1630
bd046f64 1631 if (!v->dynamic->children_requested)
0cc7d26f 1632 {
4c37490d 1633 bool dummy;
0cc7d26f
TT
1634
1635 /* If we initially did not have potential children, but
1636 now we do, consider the varobj as changed.
1637 Otherwise, if children were never requested, consider
1638 it as unchanged -- presumably, such varobj is not yet
1639 expanded in the UI, so we need not bother getting
1640 it. */
1641 if (!varobj_has_more (v, 0))
1642 {
8264ba82 1643 update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
4c37490d 1644 &dummy, false, 0, 0);
0cc7d26f 1645 if (varobj_has_more (v, 0))
4c37490d 1646 r.changed = true;
0cc7d26f
TT
1647 }
1648
1649 if (r.changed)
0604393c 1650 result.push_back (std::move (r));
0cc7d26f
TT
1651
1652 continue;
1653 }
1654
4c37490d 1655 /* If update_dynamic_varobj_children returns false, then we have
b6313243 1656 a non-conforming pretty-printer, so we skip it. */
b926417a
TT
1657 if (update_dynamic_varobj_children (v, &changed, &type_changed_vec,
1658 &newobj_vec,
1659 &unchanged, &children_changed,
1660 true, v->from, v->to))
b6313243 1661 {
b926417a 1662 if (children_changed || !newobj_vec.empty ())
b6313243 1663 {
4c37490d 1664 r.children_changed = true;
b926417a 1665 r.newobj = std::move (newobj_vec);
b6313243 1666 }
0cc7d26f
TT
1667 /* Push in reverse order so that the first child is
1668 popped from the work stack first, and so will be
1669 added to result first. This does not affect
1670 correctness, just "nicer". */
b926417a 1671 for (int i = type_changed_vec.size () - 1; i >= 0; --i)
8264ba82 1672 {
b926417a 1673 varobj_update_result item (type_changed_vec[i]);
8264ba82
AG
1674
1675 /* Type may change only if value was changed. */
b926417a
TT
1676 item.changed = true;
1677 item.type_changed = true;
1678 item.value_installed = true;
0604393c 1679
b926417a 1680 stack.push_back (std::move (item));
8264ba82 1681 }
0604393c 1682 for (int i = changed.size () - 1; i >= 0; --i)
b6313243 1683 {
b926417a 1684 varobj_update_result item (changed[i]);
a109c7c1 1685
b926417a
TT
1686 item.changed = true;
1687 item.value_installed = true;
0604393c 1688
b926417a 1689 stack.push_back (std::move (item));
b6313243 1690 }
0604393c
SM
1691 for (int i = unchanged.size () - 1; i >= 0; --i)
1692 {
1693 if (!unchanged[i]->frozen)
1694 {
b926417a 1695 varobj_update_result item (unchanged[i]);
0604393c 1696
b926417a 1697 item.value_installed = true;
0cc7d26f 1698
b926417a 1699 stack.push_back (std::move (item));
0604393c
SM
1700 }
1701 }
1702 if (r.changed || r.children_changed)
1703 result.push_back (std::move (r));
0cc7d26f 1704
b6313243
TT
1705 continue;
1706 }
1707 }
28335dcc
VP
1708
1709 /* Push any children. Use reverse order so that the first
1710 child is popped from the work stack first, and so
1711 will be added to result first. This does not
1712 affect correctness, just "nicer". */
0604393c 1713 for (int i = v->children.size () - 1; i >= 0; --i)
8b93c638 1714 {
ddf0ea08 1715 varobj *c = v->children[i];
a109c7c1 1716
28335dcc 1717 /* Child may be NULL if explicitly deleted by -var-delete. */
25d5ea92 1718 if (c != NULL && !c->frozen)
0604393c 1719 stack.emplace_back (c);
8b93c638 1720 }
b6313243
TT
1721
1722 if (r.changed || r.type_changed)
0604393c 1723 result.push_back (std::move (r));
8b93c638
JM
1724 }
1725
f7f9ae2c 1726 return result;
8b93c638 1727}
8b93c638
JM
1728
1729/* Helper functions */
1730
1731/*
1732 * Variable object construction/destruction
1733 */
1734
1735static int
4c37490d 1736delete_variable (struct varobj *var, bool only_children_p)
8b93c638
JM
1737{
1738 int delcount = 0;
1739
30914ca8 1740 delete_variable_1 (&delcount, var, only_children_p,
4c37490d 1741 true /* remove_from_parent_p */ );
8b93c638
JM
1742
1743 return delcount;
1744}
1745
581e13c1 1746/* Delete the variable object VAR and its children. */
8b93c638
JM
1747/* IMPORTANT NOTE: If we delete a variable which is a child
1748 and the parent is not removed we dump core. It must be always
581e13c1 1749 initially called with remove_from_parent_p set. */
8b93c638 1750static void
4c37490d
SM
1751delete_variable_1 (int *delcountp, struct varobj *var, bool only_children_p,
1752 bool remove_from_parent_p)
8b93c638 1753{
581e13c1 1754 /* Delete any children of this variable, too. */
ddf0ea08 1755 for (varobj *child : var->children)
28335dcc 1756 {
214270ab
VP
1757 if (!child)
1758 continue;
ddf0ea08 1759
8b93c638 1760 if (!remove_from_parent_p)
28335dcc 1761 child->parent = NULL;
ddf0ea08 1762
4c37490d 1763 delete_variable_1 (delcountp, child, false, only_children_p);
8b93c638 1764 }
ddf0ea08 1765 var->children.clear ();
8b93c638 1766
581e13c1 1767 /* if we were called to delete only the children we are done here. */
8b93c638
JM
1768 if (only_children_p)
1769 return;
1770
581e13c1 1771 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
2f408ecb 1772 /* If the name is empty, this is a temporary variable, that has not
581e13c1 1773 yet been installed, don't report it, it belongs to the caller... */
2f408ecb 1774 if (!var->obj_name.empty ())
8b93c638 1775 {
8b93c638
JM
1776 *delcountp = *delcountp + 1;
1777 }
1778
581e13c1 1779 /* If this variable has a parent, remove it from its parent's list. */
8b93c638
JM
1780 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1781 (as indicated by remove_from_parent_p) we don't bother doing an
1782 expensive list search to find the element to remove when we are
581e13c1 1783 discarding the list afterwards. */
72330bd6 1784 if ((remove_from_parent_p) && (var->parent != NULL))
ddf0ea08 1785 var->parent->children[var->index] = NULL;
72330bd6 1786
2f408ecb 1787 if (!var->obj_name.empty ())
73a93a32 1788 uninstall_variable (var);
8b93c638 1789
581e13c1 1790 /* Free memory associated with this variable. */
9e5b9d2b 1791 delete var;
8b93c638
JM
1792}
1793
581e13c1 1794/* Install the given variable VAR with the object name VAR->OBJ_NAME. */
4c37490d 1795static bool
fba45db2 1796install_variable (struct varobj *var)
8b93c638
JM
1797{
1798 struct vlist *cv;
1799 struct vlist *newvl;
1800 const char *chp;
1801 unsigned int index = 0;
1802 unsigned int i = 1;
1803
2f408ecb 1804 for (chp = var->obj_name.c_str (); *chp; chp++)
8b93c638
JM
1805 {
1806 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1807 }
1808
1809 cv = *(varobj_table + index);
2f408ecb 1810 while (cv != NULL && cv->var->obj_name != var->obj_name)
8b93c638
JM
1811 cv = cv->next;
1812
1813 if (cv != NULL)
8a3fe4f8 1814 error (_("Duplicate variable object name"));
8b93c638 1815
581e13c1 1816 /* Add varobj to hash table. */
8d749320 1817 newvl = XNEW (struct vlist);
8b93c638
JM
1818 newvl->next = *(varobj_table + index);
1819 newvl->var = var;
1820 *(varobj_table + index) = newvl;
1821
581e13c1 1822 /* If root, add varobj to root list. */
b2c2bd75 1823 if (is_root_p (var))
8b93c638 1824 {
581e13c1 1825 /* Add to list of root variables. */
8b93c638
JM
1826 if (rootlist == NULL)
1827 var->root->next = NULL;
1828 else
1829 var->root->next = rootlist;
1830 rootlist = var->root;
8b93c638
JM
1831 }
1832
4c37490d 1833 return true; /* OK */
8b93c638
JM
1834}
1835
581e13c1 1836/* Unistall the object VAR. */
8b93c638 1837static void
fba45db2 1838uninstall_variable (struct varobj *var)
8b93c638
JM
1839{
1840 struct vlist *cv;
1841 struct vlist *prev;
1842 struct varobj_root *cr;
1843 struct varobj_root *prer;
1844 const char *chp;
1845 unsigned int index = 0;
1846 unsigned int i = 1;
1847
581e13c1 1848 /* Remove varobj from hash table. */
2f408ecb 1849 for (chp = var->obj_name.c_str (); *chp; chp++)
8b93c638
JM
1850 {
1851 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1852 }
1853
1854 cv = *(varobj_table + index);
1855 prev = NULL;
2f408ecb 1856 while (cv != NULL && cv->var->obj_name != var->obj_name)
8b93c638
JM
1857 {
1858 prev = cv;
1859 cv = cv->next;
1860 }
1861
1862 if (varobjdebug)
2f408ecb 1863 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name.c_str ());
8b93c638
JM
1864
1865 if (cv == NULL)
1866 {
72330bd6
AC
1867 warning
1868 ("Assertion failed: Could not find variable object \"%s\" to delete",
2f408ecb 1869 var->obj_name.c_str ());
8b93c638
JM
1870 return;
1871 }
1872
1873 if (prev == NULL)
1874 *(varobj_table + index) = cv->next;
1875 else
1876 prev->next = cv->next;
1877
b8c9b27d 1878 xfree (cv);
8b93c638 1879
581e13c1 1880 /* If root, remove varobj from root list. */
b2c2bd75 1881 if (is_root_p (var))
8b93c638 1882 {
581e13c1 1883 /* Remove from list of root variables. */
8b93c638
JM
1884 if (rootlist == var->root)
1885 rootlist = var->root->next;
1886 else
1887 {
1888 prer = NULL;
1889 cr = rootlist;
1890 while ((cr != NULL) && (cr->rootvar != var))
1891 {
1892 prer = cr;
1893 cr = cr->next;
1894 }
1895 if (cr == NULL)
1896 {
8f7e195f
JB
1897 warning (_("Assertion failed: Could not find "
1898 "varobj \"%s\" in root list"),
2f408ecb 1899 var->obj_name.c_str ());
8b93c638
JM
1900 return;
1901 }
1902 if (prer == NULL)
1903 rootlist = NULL;
1904 else
1905 prer->next = cr->next;
1906 }
8b93c638
JM
1907 }
1908
1909}
1910
837ce252
SM
1911/* Create and install a child of the parent of the given name.
1912
1913 The created VAROBJ takes ownership of the allocated NAME. */
1914
8b93c638 1915static struct varobj *
2f408ecb 1916create_child (struct varobj *parent, int index, std::string &name)
b6313243 1917{
5a2e0d6e
YQ
1918 struct varobj_item item;
1919
2f408ecb 1920 std::swap (item.name, name);
5a2e0d6e
YQ
1921 item.value = value_of_child (parent, index);
1922
1923 return create_child_with_value (parent, index, &item);
b6313243
TT
1924}
1925
1926static struct varobj *
5a2e0d6e
YQ
1927create_child_with_value (struct varobj *parent, int index,
1928 struct varobj_item *item)
8b93c638 1929{
9e5b9d2b 1930 varobj *child = new varobj (parent->root);
8b93c638 1931
5e5ac9a5 1932 /* NAME is allocated by caller. */
2f408ecb 1933 std::swap (child->name, item->name);
8b93c638 1934 child->index = index;
8b93c638 1935 child->parent = parent;
85254831 1936
99ad9427 1937 if (varobj_is_anonymous_child (child))
2f408ecb
PA
1938 child->obj_name = string_printf ("%s.%d_anonymous",
1939 parent->obj_name.c_str (), index);
85254831 1940 else
2f408ecb
PA
1941 child->obj_name = string_printf ("%s.%s",
1942 parent->obj_name.c_str (),
1943 child->name.c_str ());
85254831 1944
8b93c638
JM
1945 install_variable (child);
1946
acd65feb
VP
1947 /* Compute the type of the child. Must do this before
1948 calling install_new_value. */
5a2e0d6e 1949 if (item->value != NULL)
acd65feb 1950 /* If the child had no evaluation errors, var->value
581e13c1 1951 will be non-NULL and contain a valid type. */
5a2e0d6e 1952 child->type = value_actual_type (item->value, 0, NULL);
acd65feb 1953 else
581e13c1 1954 /* Otherwise, we must compute the type. */
ca20d462
YQ
1955 child->type = (*child->root->lang_ops->type_of_child) (child->parent,
1956 child->index);
5a2e0d6e 1957 install_new_value (child, item->value, 1);
acd65feb 1958
8b93c638
JM
1959 return child;
1960}
8b93c638
JM
1961\f
1962
1963/*
1964 * Miscellaneous utility functions.
1965 */
1966
581e13c1 1967/* Allocate memory and initialize a new variable. */
9e5b9d2b
SM
1968varobj::varobj (varobj_root *root_)
1969: root (root_), dynamic (new varobj_dynamic)
8b93c638 1970{
8b93c638
JM
1971}
1972
581e13c1 1973/* Free any allocated memory associated with VAR. */
9e5b9d2b
SM
1974
1975varobj::~varobj ()
8b93c638 1976{
9e5b9d2b
SM
1977 varobj *var = this;
1978
d452c4bc 1979#if HAVE_PYTHON
bb5ce47a 1980 if (var->dynamic->pretty_printer != NULL)
d452c4bc 1981 {
bde7b3e3 1982 gdbpy_enter_varobj enter_py (var);
bb5ce47a
YQ
1983
1984 Py_XDECREF (var->dynamic->constructor);
1985 Py_XDECREF (var->dynamic->pretty_printer);
d452c4bc
UW
1986 }
1987#endif
1988
827f100c
YQ
1989 varobj_iter_delete (var->dynamic->child_iter);
1990 varobj_clear_saved_item (var->dynamic);
36746093 1991
b2c2bd75 1992 if (is_root_p (var))
4d01a485 1993 delete var->root;
8b93c638 1994
9e5b9d2b 1995 delete var->dynamic;
74b7792f
AC
1996}
1997
6e2a9270
VP
1998/* Return the type of the value that's stored in VAR,
1999 or that would have being stored there if the
581e13c1 2000 value were accessible.
6e2a9270
VP
2001
2002 This differs from VAR->type in that VAR->type is always
2003 the true type of the expession in the source language.
2004 The return value of this function is the type we're
2005 actually storing in varobj, and using for displaying
2006 the values and for comparing previous and new values.
2007
2008 For example, top-level references are always stripped. */
99ad9427 2009struct type *
b09e2c59 2010varobj_get_value_type (const struct varobj *var)
6e2a9270
VP
2011{
2012 struct type *type;
2013
b4d61099
TT
2014 if (var->value != nullptr)
2015 type = value_type (var->value.get ());
6e2a9270
VP
2016 else
2017 type = var->type;
2018
2019 type = check_typedef (type);
2020
aa006118 2021 if (TYPE_IS_REFERENCE (type))
6e2a9270
VP
2022 type = get_target_type (type);
2023
2024 type = check_typedef (type);
2025
2026 return type;
2027}
2028
8b93c638 2029/* What is the default display for this variable? We assume that
581e13c1 2030 everything is "natural". Any exceptions? */
8b93c638 2031static enum varobj_display_formats
fba45db2 2032variable_default_display (struct varobj *var)
8b93c638
JM
2033{
2034 return FORMAT_NATURAL;
2035}
2036
8b93c638
JM
2037/*
2038 * Language-dependencies
2039 */
2040
2041/* Common entry points */
2042
8b93c638
JM
2043/* Return the number of children for a given variable.
2044 The result of this function is defined by the language
581e13c1 2045 implementation. The number of children returned by this function
8b93c638 2046 is the number of children that the user will see in the variable
581e13c1 2047 display. */
8b93c638 2048static int
b09e2c59 2049number_of_children (const struct varobj *var)
8b93c638 2050{
ca20d462 2051 return (*var->root->lang_ops->number_of_children) (var);
8b93c638
JM
2052}
2053
2f408ecb
PA
2054/* What is the expression for the root varobj VAR? */
2055
2056static std::string
b09e2c59 2057name_of_variable (const struct varobj *var)
8b93c638 2058{
ca20d462 2059 return (*var->root->lang_ops->name_of_variable) (var);
8b93c638
JM
2060}
2061
2f408ecb
PA
2062/* What is the name of the INDEX'th child of VAR? */
2063
2064static std::string
fba45db2 2065name_of_child (struct varobj *var, int index)
8b93c638 2066{
ca20d462 2067 return (*var->root->lang_ops->name_of_child) (var, index);
8b93c638
JM
2068}
2069
2213e2be 2070/* If frame associated with VAR can be found, switch
4c37490d 2071 to it and return true. Otherwise, return false. */
2213e2be 2072
4c37490d 2073static bool
b09e2c59 2074check_scope (const struct varobj *var)
2213e2be
YQ
2075{
2076 struct frame_info *fi;
4c37490d 2077 bool scope;
2213e2be
YQ
2078
2079 fi = frame_find_by_id (var->root->frame);
2080 scope = fi != NULL;
2081
2082 if (fi)
2083 {
2084 CORE_ADDR pc = get_frame_pc (fi);
2085
2086 if (pc < BLOCK_START (var->root->valid_block) ||
2087 pc >= BLOCK_END (var->root->valid_block))
4c37490d 2088 scope = false;
2213e2be
YQ
2089 else
2090 select_frame (fi);
2091 }
2092 return scope;
2093}
2094
2095/* Helper function to value_of_root. */
2096
2097static struct value *
2098value_of_root_1 (struct varobj **var_handle)
2099{
2100 struct value *new_val = NULL;
2101 struct varobj *var = *var_handle;
4c37490d 2102 bool within_scope = false;
2213e2be
YQ
2103
2104 /* Only root variables can be updated... */
2105 if (!is_root_p (var))
2106 /* Not a root var. */
2107 return NULL;
2108
5ed8105e 2109 scoped_restore_current_thread restore_thread;
2213e2be
YQ
2110
2111 /* Determine whether the variable is still around. */
2112 if (var->root->valid_block == NULL || var->root->floating)
4c37490d 2113 within_scope = true;
2213e2be
YQ
2114 else if (var->root->thread_id == 0)
2115 {
2116 /* The program was single-threaded when the variable object was
2117 created. Technically, it's possible that the program became
2118 multi-threaded since then, but we don't support such
2119 scenario yet. */
2120 within_scope = check_scope (var);
2121 }
2122 else
2123 {
00431a78 2124 thread_info *thread = find_thread_global_id (var->root->thread_id);
5d5658a1 2125
00431a78 2126 if (thread != NULL)
2213e2be 2127 {
00431a78 2128 switch_to_thread (thread);
2213e2be
YQ
2129 within_scope = check_scope (var);
2130 }
2131 }
2132
2133 if (within_scope)
2134 {
2213e2be
YQ
2135
2136 /* We need to catch errors here, because if evaluate
2137 expression fails we want to just return NULL. */
a70b8144 2138 try
2213e2be 2139 {
4d01a485 2140 new_val = evaluate_expression (var->root->exp.get ());
2213e2be 2141 }
230d2906 2142 catch (const gdb_exception_error &except)
492d29ea
PA
2143 {
2144 }
2213e2be
YQ
2145 }
2146
2213e2be
YQ
2147 return new_val;
2148}
2149
a5defcdc
VP
2150/* What is the ``struct value *'' of the root variable VAR?
2151 For floating variable object, evaluation can get us a value
2152 of different type from what is stored in varobj already. In
2153 that case:
2154 - *type_changed will be set to 1
2155 - old varobj will be freed, and new one will be
2156 created, with the same name.
2157 - *var_handle will be set to the new varobj
2158 Otherwise, *type_changed will be set to 0. */
30b28db1 2159static struct value *
4c37490d 2160value_of_root (struct varobj **var_handle, bool *type_changed)
8b93c638 2161{
73a93a32
JI
2162 struct varobj *var;
2163
2164 if (var_handle == NULL)
2165 return NULL;
2166
2167 var = *var_handle;
2168
2169 /* This should really be an exception, since this should
581e13c1 2170 only get called with a root variable. */
73a93a32 2171
b2c2bd75 2172 if (!is_root_p (var))
73a93a32
JI
2173 return NULL;
2174
a5defcdc 2175 if (var->root->floating)
73a93a32
JI
2176 {
2177 struct varobj *tmp_var;
6225abfa 2178
2f408ecb 2179 tmp_var = varobj_create (NULL, var->name.c_str (), (CORE_ADDR) 0,
73a93a32
JI
2180 USE_SELECTED_FRAME);
2181 if (tmp_var == NULL)
2182 {
2183 return NULL;
2184 }
2f408ecb
PA
2185 std::string old_type = varobj_get_type (var);
2186 std::string new_type = varobj_get_type (tmp_var);
2187 if (old_type == new_type)
73a93a32 2188 {
fcacd99f
VP
2189 /* The expression presently stored inside var->root->exp
2190 remembers the locations of local variables relatively to
2191 the frame where the expression was created (in DWARF location
2192 button, for example). Naturally, those locations are not
2193 correct in other frames, so update the expression. */
2194
4d01a485 2195 std::swap (var->root->exp, tmp_var->root->exp);
fcacd99f 2196
30914ca8 2197 varobj_delete (tmp_var, 0);
73a93a32
JI
2198 *type_changed = 0;
2199 }
2200 else
2201 {
2f408ecb 2202 tmp_var->obj_name = var->obj_name;
0cc7d26f
TT
2203 tmp_var->from = var->from;
2204 tmp_var->to = var->to;
30914ca8 2205 varobj_delete (var, 0);
a5defcdc 2206
73a93a32
JI
2207 install_variable (tmp_var);
2208 *var_handle = tmp_var;
705da579 2209 var = *var_handle;
4c37490d 2210 *type_changed = true;
73a93a32
JI
2211 }
2212 }
2213 else
2214 {
2215 *type_changed = 0;
2216 }
2217
7a290c40
JB
2218 {
2219 struct value *value;
2220
2213e2be 2221 value = value_of_root_1 (var_handle);
7a290c40
JB
2222 if (var->value == NULL || value == NULL)
2223 {
2224 /* For root varobj-s, a NULL value indicates a scoping issue.
2225 So, nothing to do in terms of checking for mutations. */
2226 }
2227 else if (varobj_value_has_mutated (var, value, value_type (value)))
2228 {
2229 /* The type has mutated, so the children are no longer valid.
2230 Just delete them, and tell our caller that the type has
2231 changed. */
30914ca8 2232 varobj_delete (var, 1 /* only_children */);
7a290c40
JB
2233 var->num_children = -1;
2234 var->to = -1;
2235 var->from = -1;
4c37490d 2236 *type_changed = true;
7a290c40
JB
2237 }
2238 return value;
2239 }
8b93c638
JM
2240}
2241
581e13c1 2242/* What is the ``struct value *'' for the INDEX'th child of PARENT? */
30b28db1 2243static struct value *
c1cc6152 2244value_of_child (const struct varobj *parent, int index)
8b93c638 2245{
30b28db1 2246 struct value *value;
8b93c638 2247
ca20d462 2248 value = (*parent->root->lang_ops->value_of_child) (parent, index);
8b93c638 2249
8b93c638
JM
2250 return value;
2251}
2252
581e13c1 2253/* GDB already has a command called "value_of_variable". Sigh. */
2f408ecb 2254static std::string
de051565 2255my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 2256{
8756216b 2257 if (var->root->is_valid)
0cc7d26f 2258 {
bb5ce47a 2259 if (var->dynamic->pretty_printer != NULL)
b4d61099
TT
2260 return varobj_value_get_print_value (var->value.get (), var->format,
2261 var);
ca20d462 2262 return (*var->root->lang_ops->value_of_variable) (var, format);
0cc7d26f 2263 }
8756216b 2264 else
2f408ecb 2265 return std::string ();
8b93c638
JM
2266}
2267
99ad9427
YQ
2268void
2269varobj_formatted_print_options (struct value_print_options *opts,
2270 enum varobj_display_formats format)
2271{
2272 get_formatted_print_options (opts, format_code[(int) format]);
2273 opts->deref_ref = 0;
0625771b 2274 opts->raw = !pretty_printing;
99ad9427
YQ
2275}
2276
2f408ecb 2277std::string
99ad9427
YQ
2278varobj_value_get_print_value (struct value *value,
2279 enum varobj_display_formats format,
b09e2c59 2280 const struct varobj *var)
85265413 2281{
79a45b7d 2282 struct value_print_options opts;
be759fcf
PM
2283 struct type *type = NULL;
2284 long len = 0;
1eba6383 2285 gdb::unique_xmalloc_ptr<char> encoding;
3a182a69
JK
2286 /* Initialize it just to avoid a GCC false warning. */
2287 CORE_ADDR str_addr = 0;
4c37490d 2288 bool string_print = false;
57e66780
DJ
2289
2290 if (value == NULL)
2f408ecb 2291 return std::string ();
57e66780 2292
d7e74731 2293 string_file stb;
2f408ecb
PA
2294 std::string thevalue;
2295
b6313243 2296#if HAVE_PYTHON
0646da15
TT
2297 if (gdb_python_initialized)
2298 {
bb5ce47a 2299 PyObject *value_formatter = var->dynamic->pretty_printer;
d452c4bc 2300
68cdc557 2301 gdbpy_enter_varobj enter_py (var);
09ca9e2e 2302
0646da15
TT
2303 if (value_formatter)
2304 {
2305 /* First check to see if we have any children at all. If so,
2306 we simply return {...}. */
2307 if (dynamic_varobj_has_child_method (var))
d7e74731 2308 return "{...}";
b6313243 2309
0646da15
TT
2310 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2311 {
2312 struct value *replacement;
0646da15 2313
a5c5eda7
SM
2314 gdbpy_ref<> output = apply_varobj_pretty_printer (value_formatter,
2315 &replacement,
2316 &stb);
0646da15
TT
2317
2318 /* If we have string like output ... */
68cdc557 2319 if (output != NULL)
0646da15 2320 {
0646da15
TT
2321 /* If this is a lazy string, extract it. For lazy
2322 strings we always print as a string, so set
2323 string_print. */
68cdc557 2324 if (gdbpy_is_lazy_string (output.get ()))
0646da15 2325 {
68cdc557
TT
2326 gdbpy_extract_lazy_string (output.get (), &str_addr,
2327 &type, &len, &encoding);
4c37490d 2328 string_print = true;
0646da15
TT
2329 }
2330 else
2331 {
2332 /* If it is a regular (non-lazy) string, extract
2333 it and copy the contents into THEVALUE. If the
2334 hint says to print it as a string, set
2335 string_print. Otherwise just return the extracted
2336 string as a value. */
2337
9b972014 2338 gdb::unique_xmalloc_ptr<char> s
68cdc557 2339 = python_string_to_target_string (output.get ());
0646da15
TT
2340
2341 if (s)
2342 {
e3821cca 2343 struct gdbarch *gdbarch;
0646da15 2344
9b972014
TT
2345 gdb::unique_xmalloc_ptr<char> hint
2346 = gdbpy_get_display_hint (value_formatter);
0646da15
TT
2347 if (hint)
2348 {
9b972014 2349 if (!strcmp (hint.get (), "string"))
4c37490d 2350 string_print = true;
0646da15
TT
2351 }
2352
9b972014 2353 thevalue = std::string (s.get ());
2f408ecb 2354 len = thevalue.size ();
e3821cca 2355 gdbarch = get_type_arch (value_type (value));
0646da15 2356 type = builtin_type (gdbarch)->builtin_char;
0646da15
TT
2357
2358 if (!string_print)
d7e74731 2359 return thevalue;
0646da15
TT
2360 }
2361 else
2362 gdbpy_print_stack ();
2363 }
2364 }
2365 /* If the printer returned a replacement value, set VALUE
2366 to REPLACEMENT. If there is not a replacement value,
2367 just use the value passed to this function. */
2368 if (replacement)
2369 value = replacement;
2370 }
2371 }
2372 }
b6313243
TT
2373#endif
2374
99ad9427 2375 varobj_formatted_print_options (&opts, format);
00bd41d6
PM
2376
2377 /* If the THEVALUE has contents, it is a regular string. */
2f408ecb 2378 if (!thevalue.empty ())
d7e74731 2379 LA_PRINT_STRING (&stb, type, (gdb_byte *) thevalue.c_str (),
1eba6383 2380 len, encoding.get (), 0, &opts);
09ca9e2e 2381 else if (string_print)
00bd41d6
PM
2382 /* Otherwise, if string_print is set, and it is not a regular
2383 string, it is a lazy string. */
d7e74731 2384 val_print_string (type, encoding.get (), str_addr, len, &stb, &opts);
b6313243 2385 else
00bd41d6 2386 /* All other cases. */
d7e74731 2387 common_val_print (value, &stb, 0, &opts, current_language);
57e66780 2388
d7e74731 2389 return std::move (stb.string ());
85265413
NR
2390}
2391
4c37490d 2392bool
b09e2c59 2393varobj_editable_p (const struct varobj *var)
340a7723
NR
2394{
2395 struct type *type;
340a7723 2396
b4d61099
TT
2397 if (!(var->root->is_valid && var->value != nullptr
2398 && VALUE_LVAL (var->value.get ())))
4c37490d 2399 return false;
340a7723 2400
99ad9427 2401 type = varobj_get_value_type (var);
340a7723
NR
2402
2403 switch (TYPE_CODE (type))
2404 {
2405 case TYPE_CODE_STRUCT:
2406 case TYPE_CODE_UNION:
2407 case TYPE_CODE_ARRAY:
2408 case TYPE_CODE_FUNC:
2409 case TYPE_CODE_METHOD:
4c37490d 2410 return false;
340a7723
NR
2411 break;
2412
2413 default:
4c37490d 2414 return true;
340a7723
NR
2415 break;
2416 }
2417}
2418
d32cafc7 2419/* Call VAR's value_is_changeable_p language-specific callback. */
acd65feb 2420
4c37490d 2421bool
b09e2c59 2422varobj_value_is_changeable_p (const struct varobj *var)
8b93c638 2423{
ca20d462 2424 return var->root->lang_ops->value_is_changeable_p (var);
8b93c638
JM
2425}
2426
4c37490d 2427/* Return true if that varobj is floating, that is is always evaluated in the
5a413362
VP
2428 selected frame, and not bound to thread/frame. Such variable objects
2429 are created using '@' as frame specifier to -var-create. */
4c37490d 2430bool
b09e2c59 2431varobj_floating_p (const struct varobj *var)
5a413362
VP
2432{
2433 return var->root->floating;
2434}
2435
d32cafc7
JB
2436/* Implement the "value_is_changeable_p" varobj callback for most
2437 languages. */
2438
4c37490d 2439bool
b09e2c59 2440varobj_default_value_is_changeable_p (const struct varobj *var)
d32cafc7 2441{
4c37490d 2442 bool r;
d32cafc7
JB
2443 struct type *type;
2444
2445 if (CPLUS_FAKE_CHILD (var))
4c37490d 2446 return false;
d32cafc7 2447
99ad9427 2448 type = varobj_get_value_type (var);
d32cafc7
JB
2449
2450 switch (TYPE_CODE (type))
2451 {
2452 case TYPE_CODE_STRUCT:
2453 case TYPE_CODE_UNION:
2454 case TYPE_CODE_ARRAY:
4c37490d 2455 r = false;
d32cafc7
JB
2456 break;
2457
2458 default:
4c37490d 2459 r = true;
d32cafc7
JB
2460 }
2461
2462 return r;
2463}
2464
54333c3b
JK
2465/* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
2466 with an arbitrary caller supplied DATA pointer. */
2467
2468void
2469all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
2470{
2471 struct varobj_root *var_root, *var_root_next;
2472
2473 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
2474
2475 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
2476 {
2477 var_root_next = var_root->next;
2478
2479 (*func) (var_root->rootvar, data);
2480 }
2481}
8756216b 2482
54333c3b 2483/* Invalidate varobj VAR if it is tied to locals and re-create it if it is
4e969b4f
AB
2484 defined on globals. It is a helper for varobj_invalidate.
2485
2486 This function is called after changing the symbol file, in this case the
2487 pointers to "struct type" stored by the varobj are no longer valid. All
2488 varobj must be either re-evaluated, or marked as invalid here. */
2dbd25e5 2489
54333c3b
JK
2490static void
2491varobj_invalidate_iter (struct varobj *var, void *unused)
8756216b 2492{
4e969b4f
AB
2493 /* global and floating var must be re-evaluated. */
2494 if (var->root->floating || var->root->valid_block == NULL)
2dbd25e5 2495 {
54333c3b 2496 struct varobj *tmp_var;
2dbd25e5 2497
54333c3b
JK
2498 /* Try to create a varobj with same expression. If we succeed
2499 replace the old varobj, otherwise invalidate it. */
2f408ecb 2500 tmp_var = varobj_create (NULL, var->name.c_str (), (CORE_ADDR) 0,
54333c3b
JK
2501 USE_CURRENT_FRAME);
2502 if (tmp_var != NULL)
2503 {
2f408ecb 2504 tmp_var->obj_name = var->obj_name;
30914ca8 2505 varobj_delete (var, 0);
54333c3b 2506 install_variable (tmp_var);
2dbd25e5 2507 }
54333c3b 2508 else
4c37490d 2509 var->root->is_valid = false;
2dbd25e5 2510 }
54333c3b 2511 else /* locals must be invalidated. */
4c37490d 2512 var->root->is_valid = false;
54333c3b
JK
2513}
2514
2515/* Invalidate the varobjs that are tied to locals and re-create the ones that
2516 are defined on globals.
2517 Invalidated varobjs will be always printed in_scope="invalid". */
2518
2519void
2520varobj_invalidate (void)
2521{
2522 all_root_varobjs (varobj_invalidate_iter, NULL);
8756216b 2523}
481695ed 2524
1c3569d4
MR
2525void
2526_initialize_varobj (void)
2527{
8d749320 2528 varobj_table = XCNEWVEC (struct vlist *, VAROBJ_TABLE_SIZE);
1c3569d4
MR
2529
2530 add_setshow_zuinteger_cmd ("varobj", class_maintenance,
2531 &varobjdebug,
2532 _("Set varobj debugging."),
2533 _("Show varobj debugging."),
2534 _("When non-zero, varobj debugging is enabled."),
2535 NULL, show_varobjdebug,
2536 &setdebuglist, &showdebuglist);
2537}