]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/varobj.c
Iterate over 'struct varobj_item' instead of PyObject
[thirdparty/binutils-gdb.git] / gdb / varobj.c
CommitLineData
8b93c638 1/* Implementation of the GDB variable objects API.
bc8332bb 2
ecd75fc8 3 Copyright (C) 1999-2014 Free Software Foundation, Inc.
8b93c638
JM
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
a9762ec7 7 the Free Software Foundation; either version 3 of the License, or
8b93c638
JM
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
a9762ec7 16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
8b93c638
JM
17
18#include "defs.h"
a6c442d8 19#include "exceptions.h"
8b93c638
JM
20#include "value.h"
21#include "expression.h"
22#include "frame.h"
8b93c638 23#include "language.h"
8b93c638 24#include "gdbcmd.h"
d2353924 25#include "block.h"
79a45b7d 26#include "valprint.h"
a6c442d8
MK
27
28#include "gdb_assert.h"
0e9f083f 29#include <string.h>
0cc7d26f 30#include "gdb_regex.h"
8b93c638
JM
31
32#include "varobj.h"
28335dcc 33#include "vec.h"
6208b47d
VP
34#include "gdbthread.h"
35#include "inferior.h"
827f100c 36#include "varobj-iter.h"
8b93c638 37
b6313243
TT
38#if HAVE_PYTHON
39#include "python/python.h"
40#include "python/python-internal.h"
50389644
PA
41#else
42typedef int PyObject;
b6313243
TT
43#endif
44
8b93c638
JM
45/* Non-zero if we want to see trace of varobj level stuff. */
46
ccce17b0 47unsigned int varobjdebug = 0;
920d2a44
AC
48static void
49show_varobjdebug (struct ui_file *file, int from_tty,
50 struct cmd_list_element *c, const char *value)
51{
52 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
53}
8b93c638 54
581e13c1 55/* String representations of gdb's format codes. */
8b93c638 56char *varobj_format_string[] =
72330bd6 57 { "natural", "binary", "decimal", "hexadecimal", "octal" };
8b93c638 58
0cc7d26f
TT
59/* True if we want to allow Python-based pretty-printing. */
60static int pretty_printing = 0;
61
62void
63varobj_enable_pretty_printing (void)
64{
65 pretty_printing = 1;
66}
67
8b93c638
JM
68/* Data structures */
69
70/* Every root variable has one of these structures saved in its
581e13c1 71 varobj. Members which must be free'd are noted. */
8b93c638 72struct varobj_root
72330bd6 73{
8b93c638 74
581e13c1 75 /* Alloc'd expression for this parent. */
72330bd6 76 struct expression *exp;
8b93c638 77
581e13c1 78 /* Block for which this expression is valid. */
270140bd 79 const struct block *valid_block;
8b93c638 80
44a67aa7
VP
81 /* The frame for this expression. This field is set iff valid_block is
82 not NULL. */
e64d9b3d 83 struct frame_id frame;
8b93c638 84
c5b48eac 85 /* The thread ID that this varobj_root belong to. This field
581e13c1 86 is only valid if valid_block is not NULL.
c5b48eac
VP
87 When not 0, indicates which thread 'frame' belongs to.
88 When 0, indicates that the thread list was empty when the varobj_root
89 was created. */
90 int thread_id;
91
a5defcdc
VP
92 /* If 1, the -var-update always recomputes the value in the
93 current thread and frame. Otherwise, variable object is
581e13c1 94 always updated in the specific scope/thread/frame. */
a5defcdc 95 int floating;
73a93a32 96
8756216b
DP
97 /* Flag that indicates validity: set to 0 when this varobj_root refers
98 to symbols that do not exist anymore. */
99 int is_valid;
100
99ad9427
YQ
101 /* Language-related operations for this variable and its
102 children. */
ca20d462 103 const struct lang_varobj_ops *lang_ops;
8b93c638 104
581e13c1 105 /* The varobj for this root node. */
72330bd6 106 struct varobj *rootvar;
8b93c638 107
72330bd6
AC
108 /* Next root variable */
109 struct varobj_root *next;
110};
8b93c638 111
bb5ce47a 112/* Dynamic part of varobj. */
8b93c638 113
bb5ce47a
YQ
114struct varobj_dynamic
115{
b6313243
TT
116 /* Whether the children of this varobj were requested. This field is
117 used to decide if dynamic varobj should recompute their children.
118 In the event that the frontend never asked for the children, we
119 can avoid that. */
120 int children_requested;
121
0cc7d26f
TT
122 /* The pretty-printer constructor. If NULL, then the default
123 pretty-printer will be looked up. If None, then no
124 pretty-printer will be installed. */
125 PyObject *constructor;
126
b6313243
TT
127 /* The pretty-printer that has been constructed. If NULL, then a
128 new printer object is needed, and one will be constructed. */
129 PyObject *pretty_printer;
0cc7d26f
TT
130
131 /* The iterator returned by the printer's 'children' method, or NULL
132 if not available. */
e5250216 133 struct varobj_iter *child_iter;
0cc7d26f
TT
134
135 /* We request one extra item from the iterator, so that we can
136 report to the caller whether there are more items than we have
137 already reported. However, we don't want to install this value
138 when we read it, because that will mess up future updates. So,
139 we stash it here instead. */
e5250216 140 varobj_item *saved_item;
72330bd6 141};
8b93c638 142
8b93c638 143struct cpstack
72330bd6
AC
144{
145 char *name;
146 struct cpstack *next;
147};
8b93c638
JM
148
149/* A list of varobjs */
150
151struct vlist
72330bd6
AC
152{
153 struct varobj *var;
154 struct vlist *next;
155};
8b93c638
JM
156
157/* Private function prototypes */
158
581e13c1 159/* Helper functions for the above subcommands. */
8b93c638 160
a14ed312 161static int delete_variable (struct cpstack **, struct varobj *, int);
8b93c638 162
a14ed312
KB
163static void delete_variable_1 (struct cpstack **, int *,
164 struct varobj *, int, int);
8b93c638 165
a14ed312 166static int install_variable (struct varobj *);
8b93c638 167
a14ed312 168static void uninstall_variable (struct varobj *);
8b93c638 169
a14ed312 170static struct varobj *create_child (struct varobj *, int, char *);
8b93c638 171
b6313243 172static struct varobj *
5a2e0d6e
YQ
173create_child_with_value (struct varobj *parent, int index,
174 struct varobj_item *item);
b6313243 175
8b93c638
JM
176/* Utility routines */
177
a14ed312 178static struct varobj *new_variable (void);
8b93c638 179
a14ed312 180static struct varobj *new_root_variable (void);
8b93c638 181
a14ed312 182static void free_variable (struct varobj *var);
8b93c638 183
74b7792f
AC
184static struct cleanup *make_cleanup_free_variable (struct varobj *var);
185
a14ed312 186static enum varobj_display_formats variable_default_display (struct varobj *);
8b93c638 187
a14ed312 188static void cppush (struct cpstack **pstack, char *name);
8b93c638 189
a14ed312 190static char *cppop (struct cpstack **pstack);
8b93c638 191
8264ba82
AG
192static int update_type_if_necessary (struct varobj *var,
193 struct value *new_value);
194
acd65feb
VP
195static int install_new_value (struct varobj *var, struct value *value,
196 int initial);
197
581e13c1 198/* Language-specific routines. */
8b93c638 199
a14ed312 200static int number_of_children (struct varobj *);
8b93c638 201
a14ed312 202static char *name_of_variable (struct varobj *);
8b93c638 203
a14ed312 204static char *name_of_child (struct varobj *, int);
8b93c638 205
30b28db1 206static struct value *value_of_root (struct varobj **var_handle, int *);
8b93c638 207
30b28db1 208static struct value *value_of_child (struct varobj *parent, int index);
8b93c638 209
de051565
MK
210static char *my_value_of_variable (struct varobj *var,
211 enum varobj_display_formats format);
8b93c638 212
b2c2bd75 213static int is_root_p (struct varobj *var);
8b93c638 214
d8b65138
JK
215#if HAVE_PYTHON
216
9a1edae6 217static struct varobj *varobj_add_child (struct varobj *var,
5a2e0d6e 218 struct varobj_item *item);
b6313243 219
d8b65138
JK
220#endif /* HAVE_PYTHON */
221
8b93c638
JM
222/* Private data */
223
581e13c1 224/* Mappings of varobj_display_formats enums to gdb's format codes. */
72330bd6 225static int format_code[] = { 0, 't', 'd', 'x', 'o' };
8b93c638 226
581e13c1 227/* Header of the list of root variable objects. */
8b93c638 228static struct varobj_root *rootlist;
8b93c638 229
581e13c1
MS
230/* Prime number indicating the number of buckets in the hash table. */
231/* A prime large enough to avoid too many colisions. */
8b93c638
JM
232#define VAROBJ_TABLE_SIZE 227
233
581e13c1 234/* Pointer to the varobj hash table (built at run time). */
8b93c638
JM
235static struct vlist **varobj_table;
236
8b93c638
JM
237\f
238
239/* API Implementation */
b2c2bd75
VP
240static int
241is_root_p (struct varobj *var)
242{
243 return (var->root->rootvar == var);
244}
8b93c638 245
d452c4bc
UW
246#ifdef HAVE_PYTHON
247/* Helper function to install a Python environment suitable for
248 use during operations on VAR. */
e5250216 249struct cleanup *
d452c4bc
UW
250varobj_ensure_python_env (struct varobj *var)
251{
252 return ensure_python_env (var->root->exp->gdbarch,
253 var->root->exp->language_defn);
254}
255#endif
256
581e13c1 257/* Creates a varobj (not its children). */
8b93c638 258
7d8547c9
AC
259/* Return the full FRAME which corresponds to the given CORE_ADDR
260 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
261
262static struct frame_info *
263find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
264{
265 struct frame_info *frame = NULL;
266
267 if (frame_addr == (CORE_ADDR) 0)
268 return NULL;
269
9d49bdc2
PA
270 for (frame = get_current_frame ();
271 frame != NULL;
272 frame = get_prev_frame (frame))
7d8547c9 273 {
1fac167a
UW
274 /* The CORE_ADDR we get as argument was parsed from a string GDB
275 output as $fp. This output got truncated to gdbarch_addr_bit.
276 Truncate the frame base address in the same manner before
277 comparing it against our argument. */
278 CORE_ADDR frame_base = get_frame_base_address (frame);
279 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
a109c7c1 280
1fac167a
UW
281 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
282 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
283
284 if (frame_base == frame_addr)
7d8547c9
AC
285 return frame;
286 }
9d49bdc2
PA
287
288 return NULL;
7d8547c9
AC
289}
290
8b93c638
JM
291struct varobj *
292varobj_create (char *objname,
72330bd6 293 char *expression, CORE_ADDR frame, enum varobj_type type)
8b93c638
JM
294{
295 struct varobj *var;
8b93c638
JM
296 struct cleanup *old_chain;
297
581e13c1 298 /* Fill out a varobj structure for the (root) variable being constructed. */
8b93c638 299 var = new_root_variable ();
74b7792f 300 old_chain = make_cleanup_free_variable (var);
8b93c638
JM
301
302 if (expression != NULL)
303 {
e4195b40 304 struct frame_info *fi;
35633fef 305 struct frame_id old_id = null_frame_id;
e4195b40 306 struct block *block;
bbc13ae3 307 const char *p;
e55dccf0 308 struct value *value = NULL;
8e7b59a5 309 volatile struct gdb_exception except;
1bb9788d 310 CORE_ADDR pc;
8b93c638 311
9d49bdc2
PA
312 /* Parse and evaluate the expression, filling in as much of the
313 variable's data as possible. */
314
315 if (has_stack_frames ())
316 {
581e13c1 317 /* Allow creator to specify context of variable. */
9d49bdc2
PA
318 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
319 fi = get_selected_frame (NULL);
320 else
321 /* FIXME: cagney/2002-11-23: This code should be doing a
322 lookup using the frame ID and not just the frame's
323 ``address''. This, of course, means an interface
324 change. However, with out that interface change ISAs,
325 such as the ia64 with its two stacks, won't work.
326 Similar goes for the case where there is a frameless
327 function. */
328 fi = find_frame_addr_in_frame_chain (frame);
329 }
8b93c638 330 else
9d49bdc2 331 fi = NULL;
8b93c638 332
581e13c1 333 /* frame = -2 means always use selected frame. */
73a93a32 334 if (type == USE_SELECTED_FRAME)
a5defcdc 335 var->root->floating = 1;
73a93a32 336
1bb9788d 337 pc = 0;
8b93c638
JM
338 block = NULL;
339 if (fi != NULL)
1bb9788d
TT
340 {
341 block = get_frame_block (fi, 0);
342 pc = get_frame_pc (fi);
343 }
8b93c638
JM
344
345 p = expression;
346 innermost_block = NULL;
73a93a32 347 /* Wrap the call to parse expression, so we can
581e13c1 348 return a sensible error. */
8e7b59a5
KS
349 TRY_CATCH (except, RETURN_MASK_ERROR)
350 {
1bb9788d 351 var->root->exp = parse_exp_1 (&p, pc, block, 0);
8e7b59a5
KS
352 }
353
354 if (except.reason < 0)
73a93a32 355 {
f748fb40 356 do_cleanups (old_chain);
73a93a32
JI
357 return NULL;
358 }
8b93c638 359
581e13c1 360 /* Don't allow variables to be created for types. */
608b4967
TT
361 if (var->root->exp->elts[0].opcode == OP_TYPE
362 || var->root->exp->elts[0].opcode == OP_TYPEOF
363 || var->root->exp->elts[0].opcode == OP_DECLTYPE)
8b93c638
JM
364 {
365 do_cleanups (old_chain);
bc8332bb
AC
366 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
367 " as an expression.\n");
8b93c638
JM
368 return NULL;
369 }
370
371 var->format = variable_default_display (var);
372 var->root->valid_block = innermost_block;
1b36a34b 373 var->name = xstrdup (expression);
02142340 374 /* For a root var, the name and the expr are the same. */
1b36a34b 375 var->path_expr = xstrdup (expression);
8b93c638
JM
376
377 /* When the frame is different from the current frame,
378 we must select the appropriate frame before parsing
379 the expression, otherwise the value will not be current.
581e13c1 380 Since select_frame is so benign, just call it for all cases. */
4e22772d 381 if (innermost_block)
8b93c638 382 {
4e22772d
JK
383 /* User could specify explicit FRAME-ADDR which was not found but
384 EXPRESSION is frame specific and we would not be able to evaluate
385 it correctly next time. With VALID_BLOCK set we must also set
386 FRAME and THREAD_ID. */
387 if (fi == NULL)
388 error (_("Failed to find the specified frame"));
389
7a424e99 390 var->root->frame = get_frame_id (fi);
c5b48eac 391 var->root->thread_id = pid_to_thread_id (inferior_ptid);
35633fef 392 old_id = get_frame_id (get_selected_frame (NULL));
c5b48eac 393 select_frame (fi);
8b93c638
JM
394 }
395
340a7723 396 /* We definitely need to catch errors here.
8b93c638 397 If evaluate_expression succeeds we got the value we wanted.
581e13c1 398 But if it fails, we still go on with a call to evaluate_type(). */
8e7b59a5
KS
399 TRY_CATCH (except, RETURN_MASK_ERROR)
400 {
401 value = evaluate_expression (var->root->exp);
402 }
403
404 if (except.reason < 0)
e55dccf0
VP
405 {
406 /* Error getting the value. Try to at least get the
407 right type. */
408 struct value *type_only_value = evaluate_type (var->root->exp);
a109c7c1 409
e55dccf0
VP
410 var->type = value_type (type_only_value);
411 }
8264ba82
AG
412 else
413 {
414 int real_type_found = 0;
415
416 var->type = value_actual_type (value, 0, &real_type_found);
417 if (real_type_found)
418 value = value_cast (var->type, value);
419 }
acd65feb 420
8b93c638 421 /* Set language info */
ca20d462 422 var->root->lang_ops = var->root->exp->language_defn->la_varobj_ops;
8b93c638 423
d32cafc7
JB
424 install_new_value (var, value, 1 /* Initial assignment */);
425
581e13c1 426 /* Set ourselves as our root. */
8b93c638
JM
427 var->root->rootvar = var;
428
581e13c1 429 /* Reset the selected frame. */
35633fef
JK
430 if (frame_id_p (old_id))
431 select_frame (frame_find_by_id (old_id));
8b93c638
JM
432 }
433
73a93a32 434 /* If the variable object name is null, that means this
581e13c1 435 is a temporary variable, so don't install it. */
73a93a32
JI
436
437 if ((var != NULL) && (objname != NULL))
8b93c638 438 {
1b36a34b 439 var->obj_name = xstrdup (objname);
8b93c638
JM
440
441 /* If a varobj name is duplicated, the install will fail so
581e13c1 442 we must cleanup. */
8b93c638
JM
443 if (!install_variable (var))
444 {
445 do_cleanups (old_chain);
446 return NULL;
447 }
448 }
449
450 discard_cleanups (old_chain);
451 return var;
452}
453
581e13c1 454/* Generates an unique name that can be used for a varobj. */
8b93c638
JM
455
456char *
457varobj_gen_name (void)
458{
459 static int id = 0;
e64d9b3d 460 char *obj_name;
8b93c638 461
581e13c1 462 /* Generate a name for this object. */
8b93c638 463 id++;
b435e160 464 obj_name = xstrprintf ("var%d", id);
8b93c638 465
e64d9b3d 466 return obj_name;
8b93c638
JM
467}
468
61d8f275
JK
469/* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
470 error if OBJNAME cannot be found. */
8b93c638
JM
471
472struct varobj *
473varobj_get_handle (char *objname)
474{
475 struct vlist *cv;
476 const char *chp;
477 unsigned int index = 0;
478 unsigned int i = 1;
479
480 for (chp = objname; *chp; chp++)
481 {
482 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
483 }
484
485 cv = *(varobj_table + index);
486 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
487 cv = cv->next;
488
489 if (cv == NULL)
8a3fe4f8 490 error (_("Variable object not found"));
8b93c638
JM
491
492 return cv->var;
493}
494
581e13c1 495/* Given the handle, return the name of the object. */
8b93c638
JM
496
497char *
498varobj_get_objname (struct varobj *var)
499{
500 return var->obj_name;
501}
502
581e13c1 503/* Given the handle, return the expression represented by the object. */
8b93c638
JM
504
505char *
506varobj_get_expression (struct varobj *var)
507{
508 return name_of_variable (var);
509}
510
511/* Deletes a varobj and all its children if only_children == 0,
3e43a32a
MS
512 otherwise deletes only the children; returns a malloc'ed list of
513 all the (malloc'ed) names of the variables that have been deleted
581e13c1 514 (NULL terminated). */
8b93c638
JM
515
516int
517varobj_delete (struct varobj *var, char ***dellist, int only_children)
518{
519 int delcount;
520 int mycount;
521 struct cpstack *result = NULL;
522 char **cp;
523
581e13c1 524 /* Initialize a stack for temporary results. */
8b93c638
JM
525 cppush (&result, NULL);
526
527 if (only_children)
581e13c1 528 /* Delete only the variable children. */
8b93c638
JM
529 delcount = delete_variable (&result, var, 1 /* only the children */ );
530 else
581e13c1 531 /* Delete the variable and all its children. */
8b93c638
JM
532 delcount = delete_variable (&result, var, 0 /* parent+children */ );
533
581e13c1 534 /* We may have been asked to return a list of what has been deleted. */
8b93c638
JM
535 if (dellist != NULL)
536 {
537 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
538
539 cp = *dellist;
540 mycount = delcount;
541 *cp = cppop (&result);
542 while ((*cp != NULL) && (mycount > 0))
543 {
544 mycount--;
545 cp++;
546 *cp = cppop (&result);
547 }
548
549 if (mycount || (*cp != NULL))
8a3fe4f8 550 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
72330bd6 551 mycount);
8b93c638
JM
552 }
553
554 return delcount;
555}
556
d8b65138
JK
557#if HAVE_PYTHON
558
b6313243
TT
559/* Convenience function for varobj_set_visualizer. Instantiate a
560 pretty-printer for a given value. */
561static PyObject *
562instantiate_pretty_printer (PyObject *constructor, struct value *value)
563{
b6313243
TT
564 PyObject *val_obj = NULL;
565 PyObject *printer;
b6313243 566
b6313243 567 val_obj = value_to_value_object (value);
b6313243
TT
568 if (! val_obj)
569 return NULL;
570
571 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
572 Py_DECREF (val_obj);
573 return printer;
b6313243
TT
574}
575
d8b65138
JK
576#endif
577
581e13c1 578/* Set/Get variable object display format. */
8b93c638
JM
579
580enum varobj_display_formats
581varobj_set_display_format (struct varobj *var,
582 enum varobj_display_formats format)
583{
584 switch (format)
585 {
586 case FORMAT_NATURAL:
587 case FORMAT_BINARY:
588 case FORMAT_DECIMAL:
589 case FORMAT_HEXADECIMAL:
590 case FORMAT_OCTAL:
591 var->format = format;
592 break;
593
594 default:
595 var->format = variable_default_display (var);
596 }
597
ae7d22a6
VP
598 if (varobj_value_is_changeable_p (var)
599 && var->value && !value_lazy (var->value))
600 {
6c761d9c 601 xfree (var->print_value);
99ad9427
YQ
602 var->print_value = varobj_value_get_print_value (var->value,
603 var->format, var);
ae7d22a6
VP
604 }
605
8b93c638
JM
606 return var->format;
607}
608
609enum varobj_display_formats
610varobj_get_display_format (struct varobj *var)
611{
612 return var->format;
613}
614
b6313243
TT
615char *
616varobj_get_display_hint (struct varobj *var)
617{
618 char *result = NULL;
619
620#if HAVE_PYTHON
0646da15
TT
621 struct cleanup *back_to;
622
623 if (!gdb_python_initialized)
624 return NULL;
625
626 back_to = varobj_ensure_python_env (var);
d452c4bc 627
bb5ce47a
YQ
628 if (var->dynamic->pretty_printer != NULL)
629 result = gdbpy_get_display_hint (var->dynamic->pretty_printer);
d452c4bc
UW
630
631 do_cleanups (back_to);
b6313243
TT
632#endif
633
634 return result;
635}
636
0cc7d26f
TT
637/* Return true if the varobj has items after TO, false otherwise. */
638
639int
640varobj_has_more (struct varobj *var, int to)
641{
642 if (VEC_length (varobj_p, var->children) > to)
643 return 1;
644 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
bb5ce47a 645 && (var->dynamic->saved_item != NULL));
0cc7d26f
TT
646}
647
c5b48eac
VP
648/* If the variable object is bound to a specific thread, that
649 is its evaluation can always be done in context of a frame
650 inside that thread, returns GDB id of the thread -- which
581e13c1 651 is always positive. Otherwise, returns -1. */
c5b48eac
VP
652int
653varobj_get_thread_id (struct varobj *var)
654{
655 if (var->root->valid_block && var->root->thread_id > 0)
656 return var->root->thread_id;
657 else
658 return -1;
659}
660
25d5ea92
VP
661void
662varobj_set_frozen (struct varobj *var, int frozen)
663{
664 /* When a variable is unfrozen, we don't fetch its value.
665 The 'not_fetched' flag remains set, so next -var-update
666 won't complain.
667
668 We don't fetch the value, because for structures the client
669 should do -var-update anyway. It would be bad to have different
670 client-size logic for structure and other types. */
671 var->frozen = frozen;
672}
673
674int
675varobj_get_frozen (struct varobj *var)
676{
677 return var->frozen;
678}
679
0cc7d26f
TT
680/* A helper function that restricts a range to what is actually
681 available in a VEC. This follows the usual rules for the meaning
682 of FROM and TO -- if either is negative, the entire range is
683 used. */
684
99ad9427
YQ
685void
686varobj_restrict_range (VEC (varobj_p) *children, int *from, int *to)
0cc7d26f
TT
687{
688 if (*from < 0 || *to < 0)
689 {
690 *from = 0;
691 *to = VEC_length (varobj_p, children);
692 }
693 else
694 {
695 if (*from > VEC_length (varobj_p, children))
696 *from = VEC_length (varobj_p, children);
697 if (*to > VEC_length (varobj_p, children))
698 *to = VEC_length (varobj_p, children);
699 if (*from > *to)
700 *from = *to;
701 }
702}
703
d8b65138
JK
704#if HAVE_PYTHON
705
0cc7d26f
TT
706/* A helper for update_dynamic_varobj_children that installs a new
707 child when needed. */
708
709static void
710install_dynamic_child (struct varobj *var,
711 VEC (varobj_p) **changed,
8264ba82 712 VEC (varobj_p) **type_changed,
0cc7d26f
TT
713 VEC (varobj_p) **new,
714 VEC (varobj_p) **unchanged,
715 int *cchanged,
716 int index,
5a2e0d6e 717 struct varobj_item *item)
0cc7d26f
TT
718{
719 if (VEC_length (varobj_p, var->children) < index + 1)
720 {
721 /* There's no child yet. */
5a2e0d6e 722 struct varobj *child = varobj_add_child (var, item);
a109c7c1 723
0cc7d26f
TT
724 if (new)
725 {
726 VEC_safe_push (varobj_p, *new, child);
727 *cchanged = 1;
728 }
729 }
bf8793bb 730 else
0cc7d26f
TT
731 {
732 varobj_p existing = VEC_index (varobj_p, var->children, index);
5a2e0d6e 733 int type_updated = update_type_if_necessary (existing, item->value);
bf8793bb 734
8264ba82
AG
735 if (type_updated)
736 {
737 if (type_changed)
738 VEC_safe_push (varobj_p, *type_changed, existing);
739 }
5a2e0d6e 740 if (install_new_value (existing, item->value, 0))
0cc7d26f 741 {
8264ba82 742 if (!type_updated && changed)
0cc7d26f
TT
743 VEC_safe_push (varobj_p, *changed, existing);
744 }
8264ba82 745 else if (!type_updated && unchanged)
0cc7d26f
TT
746 VEC_safe_push (varobj_p, *unchanged, existing);
747 }
748}
749
0cc7d26f
TT
750static int
751dynamic_varobj_has_child_method (struct varobj *var)
752{
753 struct cleanup *back_to;
bb5ce47a 754 PyObject *printer = var->dynamic->pretty_printer;
0cc7d26f
TT
755 int result;
756
0646da15
TT
757 if (!gdb_python_initialized)
758 return 0;
759
0cc7d26f
TT
760 back_to = varobj_ensure_python_env (var);
761 result = PyObject_HasAttr (printer, gdbpy_children_cst);
762 do_cleanups (back_to);
763 return result;
764}
765
e5250216
YQ
766/* A factory for creating dynamic varobj's iterators. Returns an
767 iterator object suitable for iterating over VAR's children. */
768
769static struct varobj_iter *
770varobj_get_iterator (struct varobj *var)
771{
772 if (var->dynamic->pretty_printer)
773 return py_varobj_get_iterator (var, var->dynamic->pretty_printer);
774
775 gdb_assert_not_reached (_("\
776requested an iterator from a non-dynamic varobj"));
777}
778
827f100c
YQ
779/* Release and clear VAR's saved item, if any. */
780
781static void
782varobj_clear_saved_item (struct varobj_dynamic *var)
783{
784 if (var->saved_item != NULL)
785 {
786 value_free (var->saved_item->value);
787 xfree (var->saved_item);
788 var->saved_item = NULL;
789 }
790}
0cc7d26f
TT
791#endif
792
b6313243
TT
793static int
794update_dynamic_varobj_children (struct varobj *var,
795 VEC (varobj_p) **changed,
8264ba82 796 VEC (varobj_p) **type_changed,
0cc7d26f
TT
797 VEC (varobj_p) **new,
798 VEC (varobj_p) **unchanged,
799 int *cchanged,
800 int update_children,
801 int from,
802 int to)
b6313243
TT
803{
804#if HAVE_PYTHON
b6313243 805 int i;
b6313243 806
b6313243 807 *cchanged = 0;
b6313243 808
bb5ce47a 809 if (update_children || var->dynamic->child_iter == NULL)
b6313243 810 {
e5250216
YQ
811 varobj_iter_delete (var->dynamic->child_iter);
812 var->dynamic->child_iter = varobj_get_iterator (var);
b6313243 813
827f100c 814 varobj_clear_saved_item (var->dynamic);
b6313243 815
e5250216 816 i = 0;
b6313243 817
bb5ce47a 818 if (var->dynamic->child_iter == NULL)
827f100c 819 return 0;
b6313243 820 }
0cc7d26f
TT
821 else
822 i = VEC_length (varobj_p, var->children);
b6313243 823
0cc7d26f
TT
824 /* We ask for one extra child, so that MI can report whether there
825 are more children. */
826 for (; to < 0 || i < to + 1; ++i)
b6313243 827 {
827f100c 828 varobj_item *item;
b6313243 829
0cc7d26f 830 /* See if there was a leftover from last time. */
827f100c 831 if (var->dynamic->saved_item != NULL)
0cc7d26f 832 {
bb5ce47a
YQ
833 item = var->dynamic->saved_item;
834 var->dynamic->saved_item = NULL;
0cc7d26f
TT
835 }
836 else
a4c8e806 837 {
e5250216 838 item = varobj_iter_next (var->dynamic->child_iter);
827f100c
YQ
839 /* Release vitem->value so its lifetime is not bound to the
840 execution of a command. */
841 if (item != NULL && item->value != NULL)
842 release_value_or_incref (item->value);
a4c8e806 843 }
b6313243 844
e5250216
YQ
845 if (item == NULL)
846 {
847 /* Iteration is done. Remove iterator from VAR. */
848 varobj_iter_delete (var->dynamic->child_iter);
849 var->dynamic->child_iter = NULL;
850 break;
851 }
0cc7d26f
TT
852 /* We don't want to push the extra child on any report list. */
853 if (to < 0 || i < to)
b6313243 854 {
0cc7d26f
TT
855 int can_mention = from < 0 || i >= from;
856
0cc7d26f 857 install_dynamic_child (var, can_mention ? changed : NULL,
8264ba82 858 can_mention ? type_changed : NULL,
0cc7d26f
TT
859 can_mention ? new : NULL,
860 can_mention ? unchanged : NULL,
5e5ac9a5 861 can_mention ? cchanged : NULL, i,
827f100c
YQ
862 item);
863
864 xfree (item);
b6313243 865 }
0cc7d26f 866 else
b6313243 867 {
bb5ce47a 868 var->dynamic->saved_item = item;
b6313243 869
0cc7d26f
TT
870 /* We want to truncate the child list just before this
871 element. */
872 break;
873 }
b6313243
TT
874 }
875
876 if (i < VEC_length (varobj_p, var->children))
877 {
0cc7d26f 878 int j;
a109c7c1 879
0cc7d26f
TT
880 *cchanged = 1;
881 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
882 varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0);
883 VEC_truncate (varobj_p, var->children, i);
b6313243 884 }
0cc7d26f
TT
885
886 /* If there are fewer children than requested, note that the list of
887 children changed. */
888 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
889 *cchanged = 1;
890
b6313243 891 var->num_children = VEC_length (varobj_p, var->children);
b6313243 892
b6313243
TT
893 return 1;
894#else
9e77999c 895 gdb_assert_not_reached ("should never be called if Python is not enabled");
b6313243
TT
896#endif
897}
25d5ea92 898
8b93c638
JM
899int
900varobj_get_num_children (struct varobj *var)
901{
902 if (var->num_children == -1)
b6313243 903 {
bb5ce47a 904 if (var->dynamic->pretty_printer != NULL)
0cc7d26f
TT
905 {
906 int dummy;
907
908 /* If we have a dynamic varobj, don't report -1 children.
909 So, try to fetch some children first. */
8264ba82 910 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
0cc7d26f
TT
911 0, 0, 0);
912 }
913 else
b6313243
TT
914 var->num_children = number_of_children (var);
915 }
8b93c638 916
0cc7d26f 917 return var->num_children >= 0 ? var->num_children : 0;
8b93c638
JM
918}
919
920/* Creates a list of the immediate children of a variable object;
581e13c1 921 the return code is the number of such children or -1 on error. */
8b93c638 922
d56d46f5 923VEC (varobj_p)*
0cc7d26f 924varobj_list_children (struct varobj *var, int *from, int *to)
8b93c638 925{
8b93c638 926 char *name;
b6313243
TT
927 int i, children_changed;
928
bb5ce47a 929 var->dynamic->children_requested = 1;
b6313243 930
bb5ce47a 931 if (var->dynamic->pretty_printer != NULL)
0cc7d26f 932 {
b6313243
TT
933 /* This, in theory, can result in the number of children changing without
934 frontend noticing. But well, calling -var-list-children on the same
935 varobj twice is not something a sane frontend would do. */
8264ba82
AG
936 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
937 &children_changed, 0, 0, *to);
99ad9427 938 varobj_restrict_range (var->children, from, to);
0cc7d26f
TT
939 return var->children;
940 }
8b93c638 941
8b93c638
JM
942 if (var->num_children == -1)
943 var->num_children = number_of_children (var);
944
74a44383
DJ
945 /* If that failed, give up. */
946 if (var->num_children == -1)
d56d46f5 947 return var->children;
74a44383 948
28335dcc
VP
949 /* If we're called when the list of children is not yet initialized,
950 allocate enough elements in it. */
951 while (VEC_length (varobj_p, var->children) < var->num_children)
952 VEC_safe_push (varobj_p, var->children, NULL);
953
8b93c638
JM
954 for (i = 0; i < var->num_children; i++)
955 {
d56d46f5 956 varobj_p existing = VEC_index (varobj_p, var->children, i);
28335dcc
VP
957
958 if (existing == NULL)
959 {
960 /* Either it's the first call to varobj_list_children for
961 this variable object, and the child was never created,
962 or it was explicitly deleted by the client. */
963 name = name_of_child (var, i);
964 existing = create_child (var, i, name);
965 VEC_replace (varobj_p, var->children, i, existing);
966 }
8b93c638
JM
967 }
968
99ad9427 969 varobj_restrict_range (var->children, from, to);
d56d46f5 970 return var->children;
8b93c638
JM
971}
972
d8b65138
JK
973#if HAVE_PYTHON
974
b6313243 975static struct varobj *
5a2e0d6e 976varobj_add_child (struct varobj *var, struct varobj_item *item)
b6313243 977{
5a2e0d6e 978 varobj_p v = create_child_with_value (var,
b6313243 979 VEC_length (varobj_p, var->children),
5a2e0d6e 980 item);
a109c7c1 981
b6313243 982 VEC_safe_push (varobj_p, var->children, v);
b6313243
TT
983 return v;
984}
985
d8b65138
JK
986#endif /* HAVE_PYTHON */
987
8b93c638 988/* Obtain the type of an object Variable as a string similar to the one gdb
581e13c1 989 prints on the console. */
8b93c638
JM
990
991char *
992varobj_get_type (struct varobj *var)
993{
8ab91b96 994 /* For the "fake" variables, do not return a type. (Its type is
8756216b
DP
995 NULL, too.)
996 Do not return a type for invalid variables as well. */
997 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
8b93c638
JM
998 return NULL;
999
1a4300e9 1000 return type_to_string (var->type);
8b93c638
JM
1001}
1002
1ecb4ee0
DJ
1003/* Obtain the type of an object variable. */
1004
1005struct type *
1006varobj_get_gdb_type (struct varobj *var)
1007{
1008 return var->type;
1009}
1010
85254831
KS
1011/* Is VAR a path expression parent, i.e., can it be used to construct
1012 a valid path expression? */
1013
1014static int
1015is_path_expr_parent (struct varobj *var)
1016{
1017 struct type *type;
1018
1019 /* "Fake" children are not path_expr parents. */
1020 if (CPLUS_FAKE_CHILD (var))
1021 return 0;
1022
99ad9427 1023 type = varobj_get_value_type (var);
85254831
KS
1024
1025 /* Anonymous unions and structs are also not path_expr parents. */
1026 return !((TYPE_CODE (type) == TYPE_CODE_STRUCT
1027 || TYPE_CODE (type) == TYPE_CODE_UNION)
1028 && TYPE_NAME (type) == NULL);
1029}
1030
1031/* Return the path expression parent for VAR. */
1032
99ad9427
YQ
1033struct varobj *
1034varobj_get_path_expr_parent (struct varobj *var)
85254831
KS
1035{
1036 struct varobj *parent = var;
1037
1038 while (!is_root_p (parent) && !is_path_expr_parent (parent))
1039 parent = parent->parent;
1040
1041 return parent;
1042}
1043
02142340
VP
1044/* Return a pointer to the full rooted expression of varobj VAR.
1045 If it has not been computed yet, compute it. */
1046char *
1047varobj_get_path_expr (struct varobj *var)
1048{
1049 if (var->path_expr != NULL)
1050 return var->path_expr;
1051 else
1052 {
1053 /* For root varobjs, we initialize path_expr
1054 when creating varobj, so here it should be
1055 child varobj. */
1056 gdb_assert (!is_root_p (var));
ca20d462 1057 return (*var->root->lang_ops->path_expr_of_child) (var);
02142340
VP
1058 }
1059}
1060
fa4d0c40 1061const struct language_defn *
8b93c638
JM
1062varobj_get_language (struct varobj *var)
1063{
fa4d0c40 1064 return var->root->exp->language_defn;
8b93c638
JM
1065}
1066
1067int
1068varobj_get_attributes (struct varobj *var)
1069{
1070 int attributes = 0;
1071
340a7723 1072 if (varobj_editable_p (var))
581e13c1 1073 /* FIXME: define masks for attributes. */
8b93c638
JM
1074 attributes |= 0x00000001; /* Editable */
1075
1076 return attributes;
1077}
1078
0cc7d26f
TT
1079int
1080varobj_pretty_printed_p (struct varobj *var)
1081{
bb5ce47a 1082 return var->dynamic->pretty_printer != NULL;
0cc7d26f
TT
1083}
1084
de051565
MK
1085char *
1086varobj_get_formatted_value (struct varobj *var,
1087 enum varobj_display_formats format)
1088{
1089 return my_value_of_variable (var, format);
1090}
1091
8b93c638
JM
1092char *
1093varobj_get_value (struct varobj *var)
1094{
de051565 1095 return my_value_of_variable (var, var->format);
8b93c638
JM
1096}
1097
1098/* Set the value of an object variable (if it is editable) to the
581e13c1
MS
1099 value of the given expression. */
1100/* Note: Invokes functions that can call error(). */
8b93c638
JM
1101
1102int
1103varobj_set_value (struct varobj *var, char *expression)
1104{
34365054 1105 struct value *val = NULL; /* Initialize to keep gcc happy. */
8b93c638 1106 /* The argument "expression" contains the variable's new value.
581e13c1
MS
1107 We need to first construct a legal expression for this -- ugh! */
1108 /* Does this cover all the bases? */
8b93c638 1109 struct expression *exp;
34365054 1110 struct value *value = NULL; /* Initialize to keep gcc happy. */
8b93c638 1111 int saved_input_radix = input_radix;
bbc13ae3 1112 const char *s = expression;
8e7b59a5 1113 volatile struct gdb_exception except;
8b93c638 1114
340a7723 1115 gdb_assert (varobj_editable_p (var));
8b93c638 1116
581e13c1 1117 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
1bb9788d 1118 exp = parse_exp_1 (&s, 0, 0, 0);
8e7b59a5
KS
1119 TRY_CATCH (except, RETURN_MASK_ERROR)
1120 {
1121 value = evaluate_expression (exp);
1122 }
1123
1124 if (except.reason < 0)
340a7723 1125 {
581e13c1 1126 /* We cannot proceed without a valid expression. */
340a7723
NR
1127 xfree (exp);
1128 return 0;
8b93c638
JM
1129 }
1130
340a7723
NR
1131 /* All types that are editable must also be changeable. */
1132 gdb_assert (varobj_value_is_changeable_p (var));
1133
1134 /* The value of a changeable variable object must not be lazy. */
1135 gdb_assert (!value_lazy (var->value));
1136
1137 /* Need to coerce the input. We want to check if the
1138 value of the variable object will be different
1139 after assignment, and the first thing value_assign
1140 does is coerce the input.
1141 For example, if we are assigning an array to a pointer variable we
b021a221 1142 should compare the pointer with the array's address, not with the
340a7723
NR
1143 array's content. */
1144 value = coerce_array (value);
1145
8e7b59a5
KS
1146 /* The new value may be lazy. value_assign, or
1147 rather value_contents, will take care of this. */
1148 TRY_CATCH (except, RETURN_MASK_ERROR)
1149 {
1150 val = value_assign (var->value, value);
1151 }
1152
1153 if (except.reason < 0)
340a7723 1154 return 0;
8e7b59a5 1155
340a7723
NR
1156 /* If the value has changed, record it, so that next -var-update can
1157 report this change. If a variable had a value of '1', we've set it
1158 to '333' and then set again to '1', when -var-update will report this
1159 variable as changed -- because the first assignment has set the
1160 'updated' flag. There's no need to optimize that, because return value
1161 of -var-update should be considered an approximation. */
581e13c1 1162 var->updated = install_new_value (var, val, 0 /* Compare values. */);
340a7723
NR
1163 input_radix = saved_input_radix;
1164 return 1;
8b93c638
JM
1165}
1166
0cc7d26f
TT
1167#if HAVE_PYTHON
1168
1169/* A helper function to install a constructor function and visualizer
bb5ce47a 1170 in a varobj_dynamic. */
0cc7d26f
TT
1171
1172static void
bb5ce47a 1173install_visualizer (struct varobj_dynamic *var, PyObject *constructor,
0cc7d26f
TT
1174 PyObject *visualizer)
1175{
1176 Py_XDECREF (var->constructor);
1177 var->constructor = constructor;
1178
1179 Py_XDECREF (var->pretty_printer);
1180 var->pretty_printer = visualizer;
1181
e5250216 1182 varobj_iter_delete (var->child_iter);
0cc7d26f
TT
1183 var->child_iter = NULL;
1184}
1185
1186/* Install the default visualizer for VAR. */
1187
1188static void
1189install_default_visualizer (struct varobj *var)
1190{
d65aec65
PM
1191 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1192 if (CPLUS_FAKE_CHILD (var))
1193 return;
1194
0cc7d26f
TT
1195 if (pretty_printing)
1196 {
1197 PyObject *pretty_printer = NULL;
1198
1199 if (var->value)
1200 {
1201 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1202 if (! pretty_printer)
1203 {
1204 gdbpy_print_stack ();
1205 error (_("Cannot instantiate printer for default visualizer"));
1206 }
1207 }
1208
1209 if (pretty_printer == Py_None)
1210 {
1211 Py_DECREF (pretty_printer);
1212 pretty_printer = NULL;
1213 }
1214
bb5ce47a 1215 install_visualizer (var->dynamic, NULL, pretty_printer);
0cc7d26f
TT
1216 }
1217}
1218
1219/* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1220 make a new object. */
1221
1222static void
1223construct_visualizer (struct varobj *var, PyObject *constructor)
1224{
1225 PyObject *pretty_printer;
1226
d65aec65
PM
1227 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1228 if (CPLUS_FAKE_CHILD (var))
1229 return;
1230
0cc7d26f
TT
1231 Py_INCREF (constructor);
1232 if (constructor == Py_None)
1233 pretty_printer = NULL;
1234 else
1235 {
1236 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1237 if (! pretty_printer)
1238 {
1239 gdbpy_print_stack ();
1240 Py_DECREF (constructor);
1241 constructor = Py_None;
1242 Py_INCREF (constructor);
1243 }
1244
1245 if (pretty_printer == Py_None)
1246 {
1247 Py_DECREF (pretty_printer);
1248 pretty_printer = NULL;
1249 }
1250 }
1251
bb5ce47a 1252 install_visualizer (var->dynamic, constructor, pretty_printer);
0cc7d26f
TT
1253}
1254
1255#endif /* HAVE_PYTHON */
1256
1257/* A helper function for install_new_value. This creates and installs
1258 a visualizer for VAR, if appropriate. */
1259
1260static void
1261install_new_value_visualizer (struct varobj *var)
1262{
1263#if HAVE_PYTHON
1264 /* If the constructor is None, then we want the raw value. If VAR
1265 does not have a value, just skip this. */
0646da15
TT
1266 if (!gdb_python_initialized)
1267 return;
1268
bb5ce47a 1269 if (var->dynamic->constructor != Py_None && var->value != NULL)
0cc7d26f
TT
1270 {
1271 struct cleanup *cleanup;
0cc7d26f
TT
1272
1273 cleanup = varobj_ensure_python_env (var);
1274
bb5ce47a 1275 if (var->dynamic->constructor == NULL)
0cc7d26f
TT
1276 install_default_visualizer (var);
1277 else
bb5ce47a 1278 construct_visualizer (var, var->dynamic->constructor);
0cc7d26f
TT
1279
1280 do_cleanups (cleanup);
1281 }
1282#else
1283 /* Do nothing. */
1284#endif
1285}
1286
8264ba82
AG
1287/* When using RTTI to determine variable type it may be changed in runtime when
1288 the variable value is changed. This function checks whether type of varobj
1289 VAR will change when a new value NEW_VALUE is assigned and if it is so
1290 updates the type of VAR. */
1291
1292static int
1293update_type_if_necessary (struct varobj *var, struct value *new_value)
1294{
1295 if (new_value)
1296 {
1297 struct value_print_options opts;
1298
1299 get_user_print_options (&opts);
1300 if (opts.objectprint)
1301 {
1302 struct type *new_type;
1303 char *curr_type_str, *new_type_str;
1304
1305 new_type = value_actual_type (new_value, 0, 0);
1306 new_type_str = type_to_string (new_type);
1307 curr_type_str = varobj_get_type (var);
1308 if (strcmp (curr_type_str, new_type_str) != 0)
1309 {
1310 var->type = new_type;
1311
1312 /* This information may be not valid for a new type. */
1313 varobj_delete (var, NULL, 1);
1314 VEC_free (varobj_p, var->children);
1315 var->num_children = -1;
1316 return 1;
1317 }
1318 }
1319 }
1320
1321 return 0;
1322}
1323
acd65feb
VP
1324/* Assign a new value to a variable object. If INITIAL is non-zero,
1325 this is the first assignement after the variable object was just
1326 created, or changed type. In that case, just assign the value
1327 and return 0.
581e13c1
MS
1328 Otherwise, assign the new value, and return 1 if the value is
1329 different from the current one, 0 otherwise. The comparison is
1330 done on textual representation of value. Therefore, some types
1331 need not be compared. E.g. for structures the reported value is
1332 always "{...}", so no comparison is necessary here. If the old
1333 value was NULL and new one is not, or vice versa, we always return 1.
b26ed50d
VP
1334
1335 The VALUE parameter should not be released -- the function will
1336 take care of releasing it when needed. */
acd65feb
VP
1337static int
1338install_new_value (struct varobj *var, struct value *value, int initial)
1339{
1340 int changeable;
1341 int need_to_fetch;
1342 int changed = 0;
25d5ea92 1343 int intentionally_not_fetched = 0;
7a4d50bf 1344 char *print_value = NULL;
acd65feb 1345
acd65feb 1346 /* We need to know the varobj's type to decide if the value should
3e43a32a 1347 be fetched or not. C++ fake children (public/protected/private)
581e13c1 1348 don't have a type. */
acd65feb 1349 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
b2c2bd75 1350 changeable = varobj_value_is_changeable_p (var);
b6313243
TT
1351
1352 /* If the type has custom visualizer, we consider it to be always
581e13c1 1353 changeable. FIXME: need to make sure this behaviour will not
b6313243 1354 mess up read-sensitive values. */
bb5ce47a 1355 if (var->dynamic->pretty_printer != NULL)
b6313243
TT
1356 changeable = 1;
1357
acd65feb
VP
1358 need_to_fetch = changeable;
1359
b26ed50d
VP
1360 /* We are not interested in the address of references, and given
1361 that in C++ a reference is not rebindable, it cannot
1362 meaningfully change. So, get hold of the real value. */
1363 if (value)
0cc7d26f 1364 value = coerce_ref (value);
b26ed50d 1365
acd65feb
VP
1366 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1367 /* For unions, we need to fetch the value implicitly because
1368 of implementation of union member fetch. When gdb
1369 creates a value for a field and the value of the enclosing
1370 structure is not lazy, it immediately copies the necessary
1371 bytes from the enclosing values. If the enclosing value is
1372 lazy, the call to value_fetch_lazy on the field will read
1373 the data from memory. For unions, that means we'll read the
1374 same memory more than once, which is not desirable. So
1375 fetch now. */
1376 need_to_fetch = 1;
1377
1378 /* The new value might be lazy. If the type is changeable,
1379 that is we'll be comparing values of this type, fetch the
1380 value now. Otherwise, on the next update the old value
1381 will be lazy, which means we've lost that old value. */
1382 if (need_to_fetch && value && value_lazy (value))
1383 {
25d5ea92
VP
1384 struct varobj *parent = var->parent;
1385 int frozen = var->frozen;
a109c7c1 1386
25d5ea92
VP
1387 for (; !frozen && parent; parent = parent->parent)
1388 frozen |= parent->frozen;
1389
1390 if (frozen && initial)
1391 {
1392 /* For variables that are frozen, or are children of frozen
1393 variables, we don't do fetch on initial assignment.
1394 For non-initial assignemnt we do the fetch, since it means we're
1395 explicitly asked to compare the new value with the old one. */
1396 intentionally_not_fetched = 1;
1397 }
8e7b59a5 1398 else
acd65feb 1399 {
8e7b59a5
KS
1400 volatile struct gdb_exception except;
1401
1402 TRY_CATCH (except, RETURN_MASK_ERROR)
1403 {
1404 value_fetch_lazy (value);
1405 }
1406
1407 if (except.reason < 0)
1408 {
1409 /* Set the value to NULL, so that for the next -var-update,
1410 we don't try to compare the new value with this value,
1411 that we couldn't even read. */
1412 value = NULL;
1413 }
acd65feb 1414 }
acd65feb
VP
1415 }
1416
e848a8a5
TT
1417 /* Get a reference now, before possibly passing it to any Python
1418 code that might release it. */
1419 if (value != NULL)
1420 value_incref (value);
b6313243 1421
7a4d50bf
VP
1422 /* Below, we'll be comparing string rendering of old and new
1423 values. Don't get string rendering if the value is
1424 lazy -- if it is, the code above has decided that the value
1425 should not be fetched. */
bb5ce47a
YQ
1426 if (value != NULL && !value_lazy (value)
1427 && var->dynamic->pretty_printer == NULL)
99ad9427 1428 print_value = varobj_value_get_print_value (value, var->format, var);
7a4d50bf 1429
acd65feb
VP
1430 /* If the type is changeable, compare the old and the new values.
1431 If this is the initial assignment, we don't have any old value
1432 to compare with. */
7a4d50bf 1433 if (!initial && changeable)
acd65feb 1434 {
3e43a32a
MS
1435 /* If the value of the varobj was changed by -var-set-value,
1436 then the value in the varobj and in the target is the same.
1437 However, that value is different from the value that the
581e13c1 1438 varobj had after the previous -var-update. So need to the
3e43a32a 1439 varobj as changed. */
acd65feb 1440 if (var->updated)
57e66780 1441 {
57e66780
DJ
1442 changed = 1;
1443 }
bb5ce47a 1444 else if (var->dynamic->pretty_printer == NULL)
acd65feb
VP
1445 {
1446 /* Try to compare the values. That requires that both
1447 values are non-lazy. */
25d5ea92
VP
1448 if (var->not_fetched && value_lazy (var->value))
1449 {
1450 /* This is a frozen varobj and the value was never read.
1451 Presumably, UI shows some "never read" indicator.
1452 Now that we've fetched the real value, we need to report
1453 this varobj as changed so that UI can show the real
1454 value. */
1455 changed = 1;
1456 }
1457 else if (var->value == NULL && value == NULL)
581e13c1 1458 /* Equal. */
acd65feb
VP
1459 ;
1460 else if (var->value == NULL || value == NULL)
57e66780 1461 {
57e66780
DJ
1462 changed = 1;
1463 }
acd65feb
VP
1464 else
1465 {
1466 gdb_assert (!value_lazy (var->value));
1467 gdb_assert (!value_lazy (value));
85265413 1468
57e66780 1469 gdb_assert (var->print_value != NULL && print_value != NULL);
85265413 1470 if (strcmp (var->print_value, print_value) != 0)
7a4d50bf 1471 changed = 1;
acd65feb
VP
1472 }
1473 }
1474 }
85265413 1475
ee342b23
VP
1476 if (!initial && !changeable)
1477 {
1478 /* For values that are not changeable, we don't compare the values.
1479 However, we want to notice if a value was not NULL and now is NULL,
1480 or vise versa, so that we report when top-level varobjs come in scope
1481 and leave the scope. */
1482 changed = (var->value != NULL) != (value != NULL);
1483 }
1484
acd65feb 1485 /* We must always keep the new value, since children depend on it. */
25d5ea92 1486 if (var->value != NULL && var->value != value)
acd65feb
VP
1487 value_free (var->value);
1488 var->value = value;
25d5ea92
VP
1489 if (value && value_lazy (value) && intentionally_not_fetched)
1490 var->not_fetched = 1;
1491 else
1492 var->not_fetched = 0;
acd65feb 1493 var->updated = 0;
85265413 1494
0cc7d26f
TT
1495 install_new_value_visualizer (var);
1496
1497 /* If we installed a pretty-printer, re-compare the printed version
1498 to see if the variable changed. */
bb5ce47a 1499 if (var->dynamic->pretty_printer != NULL)
0cc7d26f
TT
1500 {
1501 xfree (print_value);
99ad9427
YQ
1502 print_value = varobj_value_get_print_value (var->value, var->format,
1503 var);
e8f781e2
TT
1504 if ((var->print_value == NULL && print_value != NULL)
1505 || (var->print_value != NULL && print_value == NULL)
1506 || (var->print_value != NULL && print_value != NULL
1507 && strcmp (var->print_value, print_value) != 0))
0cc7d26f
TT
1508 changed = 1;
1509 }
1510 if (var->print_value)
1511 xfree (var->print_value);
1512 var->print_value = print_value;
1513
b26ed50d 1514 gdb_assert (!var->value || value_type (var->value));
acd65feb
VP
1515
1516 return changed;
1517}
acd65feb 1518
0cc7d26f
TT
1519/* Return the requested range for a varobj. VAR is the varobj. FROM
1520 and TO are out parameters; *FROM and *TO will be set to the
1521 selected sub-range of VAR. If no range was selected using
1522 -var-set-update-range, then both will be -1. */
1523void
1524varobj_get_child_range (struct varobj *var, int *from, int *to)
b6313243 1525{
0cc7d26f
TT
1526 *from = var->from;
1527 *to = var->to;
b6313243
TT
1528}
1529
0cc7d26f
TT
1530/* Set the selected sub-range of children of VAR to start at index
1531 FROM and end at index TO. If either FROM or TO is less than zero,
1532 this is interpreted as a request for all children. */
1533void
1534varobj_set_child_range (struct varobj *var, int from, int to)
b6313243 1535{
0cc7d26f
TT
1536 var->from = from;
1537 var->to = to;
b6313243
TT
1538}
1539
1540void
1541varobj_set_visualizer (struct varobj *var, const char *visualizer)
1542{
1543#if HAVE_PYTHON
34fa1d9d
MS
1544 PyObject *mainmod, *globals, *constructor;
1545 struct cleanup *back_to;
b6313243 1546
0646da15
TT
1547 if (!gdb_python_initialized)
1548 return;
1549
d452c4bc 1550 back_to = varobj_ensure_python_env (var);
b6313243
TT
1551
1552 mainmod = PyImport_AddModule ("__main__");
1553 globals = PyModule_GetDict (mainmod);
1554 Py_INCREF (globals);
1555 make_cleanup_py_decref (globals);
1556
1557 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
b6313243 1558
0cc7d26f 1559 if (! constructor)
b6313243
TT
1560 {
1561 gdbpy_print_stack ();
da1f2771 1562 error (_("Could not evaluate visualizer expression: %s"), visualizer);
b6313243
TT
1563 }
1564
0cc7d26f
TT
1565 construct_visualizer (var, constructor);
1566 Py_XDECREF (constructor);
b6313243 1567
0cc7d26f
TT
1568 /* If there are any children now, wipe them. */
1569 varobj_delete (var, NULL, 1 /* children only */);
1570 var->num_children = -1;
b6313243
TT
1571
1572 do_cleanups (back_to);
1573#else
da1f2771 1574 error (_("Python support required"));
b6313243
TT
1575#endif
1576}
1577
7a290c40
JB
1578/* If NEW_VALUE is the new value of the given varobj (var), return
1579 non-zero if var has mutated. In other words, if the type of
1580 the new value is different from the type of the varobj's old
1581 value.
1582
1583 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1584
1585static int
1586varobj_value_has_mutated (struct varobj *var, struct value *new_value,
1587 struct type *new_type)
1588{
1589 /* If we haven't previously computed the number of children in var,
1590 it does not matter from the front-end's perspective whether
1591 the type has mutated or not. For all intents and purposes,
1592 it has not mutated. */
1593 if (var->num_children < 0)
1594 return 0;
1595
ca20d462 1596 if (var->root->lang_ops->value_has_mutated)
8776cfe9
JB
1597 {
1598 /* The varobj module, when installing new values, explicitly strips
1599 references, saying that we're not interested in those addresses.
1600 But detection of mutation happens before installing the new
1601 value, so our value may be a reference that we need to strip
1602 in order to remain consistent. */
1603 if (new_value != NULL)
1604 new_value = coerce_ref (new_value);
1605 return var->root->lang_ops->value_has_mutated (var, new_value, new_type);
1606 }
7a290c40
JB
1607 else
1608 return 0;
1609}
1610
8b93c638
JM
1611/* Update the values for a variable and its children. This is a
1612 two-pronged attack. First, re-parse the value for the root's
1613 expression to see if it's changed. Then go all the way
1614 through its children, reconstructing them and noting if they've
1615 changed.
1616
25d5ea92
VP
1617 The EXPLICIT parameter specifies if this call is result
1618 of MI request to update this specific variable, or
581e13c1 1619 result of implicit -var-update *. For implicit request, we don't
25d5ea92 1620 update frozen variables.
705da579 1621
581e13c1 1622 NOTE: This function may delete the caller's varobj. If it
8756216b
DP
1623 returns TYPE_CHANGED, then it has done this and VARP will be modified
1624 to point to the new varobj. */
8b93c638 1625
1417b39d
JB
1626VEC(varobj_update_result) *
1627varobj_update (struct varobj **varp, int explicit)
8b93c638 1628{
25d5ea92 1629 int type_changed = 0;
8b93c638 1630 int i;
30b28db1 1631 struct value *new;
b6313243 1632 VEC (varobj_update_result) *stack = NULL;
f7f9ae2c 1633 VEC (varobj_update_result) *result = NULL;
8b93c638 1634
25d5ea92
VP
1635 /* Frozen means frozen -- we don't check for any change in
1636 this varobj, including its going out of scope, or
1637 changing type. One use case for frozen varobjs is
1638 retaining previously evaluated expressions, and we don't
1639 want them to be reevaluated at all. */
1640 if (!explicit && (*varp)->frozen)
f7f9ae2c 1641 return result;
8756216b
DP
1642
1643 if (!(*varp)->root->is_valid)
f7f9ae2c 1644 {
cfce2ea2 1645 varobj_update_result r = {0};
a109c7c1 1646
cfce2ea2 1647 r.varobj = *varp;
f7f9ae2c
VP
1648 r.status = VAROBJ_INVALID;
1649 VEC_safe_push (varobj_update_result, result, &r);
1650 return result;
1651 }
8b93c638 1652
25d5ea92 1653 if ((*varp)->root->rootvar == *varp)
ae093f96 1654 {
cfce2ea2 1655 varobj_update_result r = {0};
a109c7c1 1656
cfce2ea2 1657 r.varobj = *varp;
f7f9ae2c
VP
1658 r.status = VAROBJ_IN_SCOPE;
1659
581e13c1 1660 /* Update the root variable. value_of_root can return NULL
25d5ea92 1661 if the variable is no longer around, i.e. we stepped out of
581e13c1 1662 the frame in which a local existed. We are letting the
25d5ea92
VP
1663 value_of_root variable dispose of the varobj if the type
1664 has changed. */
25d5ea92 1665 new = value_of_root (varp, &type_changed);
8264ba82
AG
1666 if (update_type_if_necessary(*varp, new))
1667 type_changed = 1;
f7f9ae2c 1668 r.varobj = *varp;
f7f9ae2c 1669 r.type_changed = type_changed;
ea56f9c2 1670 if (install_new_value ((*varp), new, type_changed))
f7f9ae2c 1671 r.changed = 1;
ea56f9c2 1672
25d5ea92 1673 if (new == NULL)
f7f9ae2c 1674 r.status = VAROBJ_NOT_IN_SCOPE;
b6313243 1675 r.value_installed = 1;
f7f9ae2c
VP
1676
1677 if (r.status == VAROBJ_NOT_IN_SCOPE)
b6313243 1678 {
0b4bc29a
JK
1679 if (r.type_changed || r.changed)
1680 VEC_safe_push (varobj_update_result, result, &r);
b6313243
TT
1681 return result;
1682 }
1683
1684 VEC_safe_push (varobj_update_result, stack, &r);
1685 }
1686 else
1687 {
cfce2ea2 1688 varobj_update_result r = {0};
a109c7c1 1689
cfce2ea2 1690 r.varobj = *varp;
b6313243 1691 VEC_safe_push (varobj_update_result, stack, &r);
b20d8971 1692 }
8b93c638 1693
8756216b 1694 /* Walk through the children, reconstructing them all. */
b6313243 1695 while (!VEC_empty (varobj_update_result, stack))
8b93c638 1696 {
b6313243
TT
1697 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1698 struct varobj *v = r.varobj;
1699
1700 VEC_pop (varobj_update_result, stack);
1701
1702 /* Update this variable, unless it's a root, which is already
1703 updated. */
1704 if (!r.value_installed)
7a290c40
JB
1705 {
1706 struct type *new_type;
1707
b6313243 1708 new = value_of_child (v->parent, v->index);
8264ba82
AG
1709 if (update_type_if_necessary(v, new))
1710 r.type_changed = 1;
7a290c40
JB
1711 if (new)
1712 new_type = value_type (new);
1713 else
ca20d462 1714 new_type = v->root->lang_ops->type_of_child (v->parent, v->index);
7a290c40
JB
1715
1716 if (varobj_value_has_mutated (v, new, new_type))
1717 {
1718 /* The children are no longer valid; delete them now.
1719 Report the fact that its type changed as well. */
1720 varobj_delete (v, NULL, 1 /* only_children */);
1721 v->num_children = -1;
1722 v->to = -1;
1723 v->from = -1;
1724 v->type = new_type;
1725 r.type_changed = 1;
1726 }
1727
1728 if (install_new_value (v, new, r.type_changed))
b6313243
TT
1729 {
1730 r.changed = 1;
1731 v->updated = 0;
1732 }
1733 }
1734
1735 /* We probably should not get children of a varobj that has a
1736 pretty-printer, but for which -var-list-children was never
581e13c1 1737 invoked. */
bb5ce47a 1738 if (v->dynamic->pretty_printer != NULL)
b6313243 1739 {
8264ba82
AG
1740 VEC (varobj_p) *changed = 0, *type_changed = 0, *unchanged = 0;
1741 VEC (varobj_p) *new = 0;
26f9bcee 1742 int i, children_changed = 0;
b6313243
TT
1743
1744 if (v->frozen)
1745 continue;
1746
bb5ce47a 1747 if (!v->dynamic->children_requested)
0cc7d26f
TT
1748 {
1749 int dummy;
1750
1751 /* If we initially did not have potential children, but
1752 now we do, consider the varobj as changed.
1753 Otherwise, if children were never requested, consider
1754 it as unchanged -- presumably, such varobj is not yet
1755 expanded in the UI, so we need not bother getting
1756 it. */
1757 if (!varobj_has_more (v, 0))
1758 {
8264ba82 1759 update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
0cc7d26f
TT
1760 &dummy, 0, 0, 0);
1761 if (varobj_has_more (v, 0))
1762 r.changed = 1;
1763 }
1764
1765 if (r.changed)
1766 VEC_safe_push (varobj_update_result, result, &r);
1767
1768 continue;
1769 }
1770
b6313243
TT
1771 /* If update_dynamic_varobj_children returns 0, then we have
1772 a non-conforming pretty-printer, so we skip it. */
8264ba82
AG
1773 if (update_dynamic_varobj_children (v, &changed, &type_changed, &new,
1774 &unchanged, &children_changed, 1,
0cc7d26f 1775 v->from, v->to))
b6313243 1776 {
0cc7d26f 1777 if (children_changed || new)
b6313243 1778 {
0cc7d26f
TT
1779 r.children_changed = 1;
1780 r.new = new;
b6313243 1781 }
0cc7d26f
TT
1782 /* Push in reverse order so that the first child is
1783 popped from the work stack first, and so will be
1784 added to result first. This does not affect
1785 correctness, just "nicer". */
8264ba82
AG
1786 for (i = VEC_length (varobj_p, type_changed) - 1; i >= 0; --i)
1787 {
1788 varobj_p tmp = VEC_index (varobj_p, type_changed, i);
1789 varobj_update_result r = {0};
1790
1791 /* Type may change only if value was changed. */
1792 r.varobj = tmp;
1793 r.changed = 1;
1794 r.type_changed = 1;
1795 r.value_installed = 1;
1796 VEC_safe_push (varobj_update_result, stack, &r);
1797 }
0cc7d26f 1798 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
b6313243 1799 {
0cc7d26f 1800 varobj_p tmp = VEC_index (varobj_p, changed, i);
cfce2ea2 1801 varobj_update_result r = {0};
a109c7c1 1802
cfce2ea2 1803 r.varobj = tmp;
0cc7d26f 1804 r.changed = 1;
b6313243
TT
1805 r.value_installed = 1;
1806 VEC_safe_push (varobj_update_result, stack, &r);
1807 }
0cc7d26f
TT
1808 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
1809 {
1810 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
a109c7c1 1811
0cc7d26f
TT
1812 if (!tmp->frozen)
1813 {
cfce2ea2 1814 varobj_update_result r = {0};
a109c7c1 1815
cfce2ea2 1816 r.varobj = tmp;
0cc7d26f
TT
1817 r.value_installed = 1;
1818 VEC_safe_push (varobj_update_result, stack, &r);
1819 }
1820 }
b6313243
TT
1821 if (r.changed || r.children_changed)
1822 VEC_safe_push (varobj_update_result, result, &r);
0cc7d26f 1823
8264ba82
AG
1824 /* Free CHANGED, TYPE_CHANGED and UNCHANGED, but not NEW,
1825 because NEW has been put into the result vector. */
0cc7d26f 1826 VEC_free (varobj_p, changed);
8264ba82 1827 VEC_free (varobj_p, type_changed);
0cc7d26f
TT
1828 VEC_free (varobj_p, unchanged);
1829
b6313243
TT
1830 continue;
1831 }
1832 }
28335dcc
VP
1833
1834 /* Push any children. Use reverse order so that the first
1835 child is popped from the work stack first, and so
1836 will be added to result first. This does not
1837 affect correctness, just "nicer". */
1838 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
8b93c638 1839 {
28335dcc 1840 varobj_p c = VEC_index (varobj_p, v->children, i);
a109c7c1 1841
28335dcc 1842 /* Child may be NULL if explicitly deleted by -var-delete. */
25d5ea92 1843 if (c != NULL && !c->frozen)
28335dcc 1844 {
cfce2ea2 1845 varobj_update_result r = {0};
a109c7c1 1846
cfce2ea2 1847 r.varobj = c;
b6313243 1848 VEC_safe_push (varobj_update_result, stack, &r);
28335dcc 1849 }
8b93c638 1850 }
b6313243
TT
1851
1852 if (r.changed || r.type_changed)
1853 VEC_safe_push (varobj_update_result, result, &r);
8b93c638
JM
1854 }
1855
b6313243
TT
1856 VEC_free (varobj_update_result, stack);
1857
f7f9ae2c 1858 return result;
8b93c638
JM
1859}
1860\f
1861
1862/* Helper functions */
1863
1864/*
1865 * Variable object construction/destruction
1866 */
1867
1868static int
fba45db2
KB
1869delete_variable (struct cpstack **resultp, struct varobj *var,
1870 int only_children_p)
8b93c638
JM
1871{
1872 int delcount = 0;
1873
1874 delete_variable_1 (resultp, &delcount, var,
1875 only_children_p, 1 /* remove_from_parent_p */ );
1876
1877 return delcount;
1878}
1879
581e13c1 1880/* Delete the variable object VAR and its children. */
8b93c638
JM
1881/* IMPORTANT NOTE: If we delete a variable which is a child
1882 and the parent is not removed we dump core. It must be always
581e13c1 1883 initially called with remove_from_parent_p set. */
8b93c638 1884static void
72330bd6
AC
1885delete_variable_1 (struct cpstack **resultp, int *delcountp,
1886 struct varobj *var, int only_children_p,
1887 int remove_from_parent_p)
8b93c638 1888{
28335dcc 1889 int i;
8b93c638 1890
581e13c1 1891 /* Delete any children of this variable, too. */
28335dcc
VP
1892 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1893 {
1894 varobj_p child = VEC_index (varobj_p, var->children, i);
a109c7c1 1895
214270ab
VP
1896 if (!child)
1897 continue;
8b93c638 1898 if (!remove_from_parent_p)
28335dcc
VP
1899 child->parent = NULL;
1900 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
8b93c638 1901 }
28335dcc 1902 VEC_free (varobj_p, var->children);
8b93c638 1903
581e13c1 1904 /* if we were called to delete only the children we are done here. */
8b93c638
JM
1905 if (only_children_p)
1906 return;
1907
581e13c1 1908 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
73a93a32 1909 /* If the name is null, this is a temporary variable, that has not
581e13c1 1910 yet been installed, don't report it, it belongs to the caller... */
73a93a32 1911 if (var->obj_name != NULL)
8b93c638 1912 {
5b616ba1 1913 cppush (resultp, xstrdup (var->obj_name));
8b93c638
JM
1914 *delcountp = *delcountp + 1;
1915 }
1916
581e13c1 1917 /* If this variable has a parent, remove it from its parent's list. */
8b93c638
JM
1918 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1919 (as indicated by remove_from_parent_p) we don't bother doing an
1920 expensive list search to find the element to remove when we are
581e13c1 1921 discarding the list afterwards. */
72330bd6 1922 if ((remove_from_parent_p) && (var->parent != NULL))
8b93c638 1923 {
28335dcc 1924 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
8b93c638 1925 }
72330bd6 1926
73a93a32
JI
1927 if (var->obj_name != NULL)
1928 uninstall_variable (var);
8b93c638 1929
581e13c1 1930 /* Free memory associated with this variable. */
8b93c638
JM
1931 free_variable (var);
1932}
1933
581e13c1 1934/* Install the given variable VAR with the object name VAR->OBJ_NAME. */
8b93c638 1935static int
fba45db2 1936install_variable (struct varobj *var)
8b93c638
JM
1937{
1938 struct vlist *cv;
1939 struct vlist *newvl;
1940 const char *chp;
1941 unsigned int index = 0;
1942 unsigned int i = 1;
1943
1944 for (chp = var->obj_name; *chp; chp++)
1945 {
1946 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1947 }
1948
1949 cv = *(varobj_table + index);
1950 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1951 cv = cv->next;
1952
1953 if (cv != NULL)
8a3fe4f8 1954 error (_("Duplicate variable object name"));
8b93c638 1955
581e13c1 1956 /* Add varobj to hash table. */
8b93c638
JM
1957 newvl = xmalloc (sizeof (struct vlist));
1958 newvl->next = *(varobj_table + index);
1959 newvl->var = var;
1960 *(varobj_table + index) = newvl;
1961
581e13c1 1962 /* If root, add varobj to root list. */
b2c2bd75 1963 if (is_root_p (var))
8b93c638 1964 {
581e13c1 1965 /* Add to list of root variables. */
8b93c638
JM
1966 if (rootlist == NULL)
1967 var->root->next = NULL;
1968 else
1969 var->root->next = rootlist;
1970 rootlist = var->root;
8b93c638
JM
1971 }
1972
1973 return 1; /* OK */
1974}
1975
581e13c1 1976/* Unistall the object VAR. */
8b93c638 1977static void
fba45db2 1978uninstall_variable (struct varobj *var)
8b93c638
JM
1979{
1980 struct vlist *cv;
1981 struct vlist *prev;
1982 struct varobj_root *cr;
1983 struct varobj_root *prer;
1984 const char *chp;
1985 unsigned int index = 0;
1986 unsigned int i = 1;
1987
581e13c1 1988 /* Remove varobj from hash table. */
8b93c638
JM
1989 for (chp = var->obj_name; *chp; chp++)
1990 {
1991 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1992 }
1993
1994 cv = *(varobj_table + index);
1995 prev = NULL;
1996 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1997 {
1998 prev = cv;
1999 cv = cv->next;
2000 }
2001
2002 if (varobjdebug)
2003 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
2004
2005 if (cv == NULL)
2006 {
72330bd6
AC
2007 warning
2008 ("Assertion failed: Could not find variable object \"%s\" to delete",
2009 var->obj_name);
8b93c638
JM
2010 return;
2011 }
2012
2013 if (prev == NULL)
2014 *(varobj_table + index) = cv->next;
2015 else
2016 prev->next = cv->next;
2017
b8c9b27d 2018 xfree (cv);
8b93c638 2019
581e13c1 2020 /* If root, remove varobj from root list. */
b2c2bd75 2021 if (is_root_p (var))
8b93c638 2022 {
581e13c1 2023 /* Remove from list of root variables. */
8b93c638
JM
2024 if (rootlist == var->root)
2025 rootlist = var->root->next;
2026 else
2027 {
2028 prer = NULL;
2029 cr = rootlist;
2030 while ((cr != NULL) && (cr->rootvar != var))
2031 {
2032 prer = cr;
2033 cr = cr->next;
2034 }
2035 if (cr == NULL)
2036 {
8f7e195f
JB
2037 warning (_("Assertion failed: Could not find "
2038 "varobj \"%s\" in root list"),
3e43a32a 2039 var->obj_name);
8b93c638
JM
2040 return;
2041 }
2042 if (prer == NULL)
2043 rootlist = NULL;
2044 else
2045 prer->next = cr->next;
2046 }
8b93c638
JM
2047 }
2048
2049}
2050
581e13c1 2051/* Create and install a child of the parent of the given name. */
8b93c638 2052static struct varobj *
fba45db2 2053create_child (struct varobj *parent, int index, char *name)
b6313243 2054{
5a2e0d6e
YQ
2055 struct varobj_item item;
2056
2057 item.name = name;
2058 item.value = value_of_child (parent, index);
2059
2060 return create_child_with_value (parent, index, &item);
b6313243
TT
2061}
2062
2063static struct varobj *
5a2e0d6e
YQ
2064create_child_with_value (struct varobj *parent, int index,
2065 struct varobj_item *item)
8b93c638
JM
2066{
2067 struct varobj *child;
2068 char *childs_name;
2069
2070 child = new_variable ();
2071
5e5ac9a5 2072 /* NAME is allocated by caller. */
5a2e0d6e 2073 child->name = item->name;
8b93c638 2074 child->index = index;
8b93c638
JM
2075 child->parent = parent;
2076 child->root = parent->root;
85254831 2077
99ad9427 2078 if (varobj_is_anonymous_child (child))
85254831
KS
2079 childs_name = xstrprintf ("%s.%d_anonymous", parent->obj_name, index);
2080 else
5a2e0d6e 2081 childs_name = xstrprintf ("%s.%s", parent->obj_name, item->name);
8b93c638 2082 child->obj_name = childs_name;
85254831 2083
8b93c638
JM
2084 install_variable (child);
2085
acd65feb
VP
2086 /* Compute the type of the child. Must do this before
2087 calling install_new_value. */
5a2e0d6e 2088 if (item->value != NULL)
acd65feb 2089 /* If the child had no evaluation errors, var->value
581e13c1 2090 will be non-NULL and contain a valid type. */
5a2e0d6e 2091 child->type = value_actual_type (item->value, 0, NULL);
acd65feb 2092 else
581e13c1 2093 /* Otherwise, we must compute the type. */
ca20d462
YQ
2094 child->type = (*child->root->lang_ops->type_of_child) (child->parent,
2095 child->index);
5a2e0d6e 2096 install_new_value (child, item->value, 1);
acd65feb 2097
8b93c638
JM
2098 return child;
2099}
8b93c638
JM
2100\f
2101
2102/*
2103 * Miscellaneous utility functions.
2104 */
2105
581e13c1 2106/* Allocate memory and initialize a new variable. */
8b93c638
JM
2107static struct varobj *
2108new_variable (void)
2109{
2110 struct varobj *var;
2111
2112 var = (struct varobj *) xmalloc (sizeof (struct varobj));
2113 var->name = NULL;
02142340 2114 var->path_expr = NULL;
8b93c638
JM
2115 var->obj_name = NULL;
2116 var->index = -1;
2117 var->type = NULL;
2118 var->value = NULL;
8b93c638
JM
2119 var->num_children = -1;
2120 var->parent = NULL;
2121 var->children = NULL;
2122 var->format = 0;
2123 var->root = NULL;
fb9b6b35 2124 var->updated = 0;
85265413 2125 var->print_value = NULL;
25d5ea92
VP
2126 var->frozen = 0;
2127 var->not_fetched = 0;
bb5ce47a
YQ
2128 var->dynamic
2129 = (struct varobj_dynamic *) xmalloc (sizeof (struct varobj_dynamic));
2130 var->dynamic->children_requested = 0;
0cc7d26f
TT
2131 var->from = -1;
2132 var->to = -1;
bb5ce47a
YQ
2133 var->dynamic->constructor = 0;
2134 var->dynamic->pretty_printer = 0;
2135 var->dynamic->child_iter = 0;
2136 var->dynamic->saved_item = 0;
8b93c638
JM
2137
2138 return var;
2139}
2140
581e13c1 2141/* Allocate memory and initialize a new root variable. */
8b93c638
JM
2142static struct varobj *
2143new_root_variable (void)
2144{
2145 struct varobj *var = new_variable ();
a109c7c1 2146
3e43a32a 2147 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));
ca20d462 2148 var->root->lang_ops = NULL;
8b93c638
JM
2149 var->root->exp = NULL;
2150 var->root->valid_block = NULL;
7a424e99 2151 var->root->frame = null_frame_id;
a5defcdc 2152 var->root->floating = 0;
8b93c638 2153 var->root->rootvar = NULL;
8756216b 2154 var->root->is_valid = 1;
8b93c638
JM
2155
2156 return var;
2157}
2158
581e13c1 2159/* Free any allocated memory associated with VAR. */
8b93c638 2160static void
fba45db2 2161free_variable (struct varobj *var)
8b93c638 2162{
d452c4bc 2163#if HAVE_PYTHON
bb5ce47a 2164 if (var->dynamic->pretty_printer != NULL)
d452c4bc
UW
2165 {
2166 struct cleanup *cleanup = varobj_ensure_python_env (var);
bb5ce47a
YQ
2167
2168 Py_XDECREF (var->dynamic->constructor);
2169 Py_XDECREF (var->dynamic->pretty_printer);
d452c4bc
UW
2170 do_cleanups (cleanup);
2171 }
2172#endif
2173
827f100c
YQ
2174 varobj_iter_delete (var->dynamic->child_iter);
2175 varobj_clear_saved_item (var->dynamic);
36746093
JK
2176 value_free (var->value);
2177
581e13c1 2178 /* Free the expression if this is a root variable. */
b2c2bd75 2179 if (is_root_p (var))
8b93c638 2180 {
3038237c 2181 xfree (var->root->exp);
8038e1e2 2182 xfree (var->root);
8b93c638
JM
2183 }
2184
8038e1e2
AC
2185 xfree (var->name);
2186 xfree (var->obj_name);
85265413 2187 xfree (var->print_value);
02142340 2188 xfree (var->path_expr);
bb5ce47a 2189 xfree (var->dynamic);
8038e1e2 2190 xfree (var);
8b93c638
JM
2191}
2192
74b7792f
AC
2193static void
2194do_free_variable_cleanup (void *var)
2195{
2196 free_variable (var);
2197}
2198
2199static struct cleanup *
2200make_cleanup_free_variable (struct varobj *var)
2201{
2202 return make_cleanup (do_free_variable_cleanup, var);
2203}
2204
6e2a9270
VP
2205/* Return the type of the value that's stored in VAR,
2206 or that would have being stored there if the
581e13c1 2207 value were accessible.
6e2a9270
VP
2208
2209 This differs from VAR->type in that VAR->type is always
2210 the true type of the expession in the source language.
2211 The return value of this function is the type we're
2212 actually storing in varobj, and using for displaying
2213 the values and for comparing previous and new values.
2214
2215 For example, top-level references are always stripped. */
99ad9427
YQ
2216struct type *
2217varobj_get_value_type (struct varobj *var)
6e2a9270
VP
2218{
2219 struct type *type;
2220
2221 if (var->value)
2222 type = value_type (var->value);
2223 else
2224 type = var->type;
2225
2226 type = check_typedef (type);
2227
2228 if (TYPE_CODE (type) == TYPE_CODE_REF)
2229 type = get_target_type (type);
2230
2231 type = check_typedef (type);
2232
2233 return type;
2234}
2235
8b93c638 2236/* What is the default display for this variable? We assume that
581e13c1 2237 everything is "natural". Any exceptions? */
8b93c638 2238static enum varobj_display_formats
fba45db2 2239variable_default_display (struct varobj *var)
8b93c638
JM
2240{
2241 return FORMAT_NATURAL;
2242}
2243
581e13c1 2244/* FIXME: The following should be generic for any pointer. */
8b93c638 2245static void
fba45db2 2246cppush (struct cpstack **pstack, char *name)
8b93c638
JM
2247{
2248 struct cpstack *s;
2249
2250 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2251 s->name = name;
2252 s->next = *pstack;
2253 *pstack = s;
2254}
2255
581e13c1 2256/* FIXME: The following should be generic for any pointer. */
8b93c638 2257static char *
fba45db2 2258cppop (struct cpstack **pstack)
8b93c638
JM
2259{
2260 struct cpstack *s;
2261 char *v;
2262
2263 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2264 return NULL;
2265
2266 s = *pstack;
2267 v = s->name;
2268 *pstack = (*pstack)->next;
b8c9b27d 2269 xfree (s);
8b93c638
JM
2270
2271 return v;
2272}
2273\f
2274/*
2275 * Language-dependencies
2276 */
2277
2278/* Common entry points */
2279
8b93c638
JM
2280/* Return the number of children for a given variable.
2281 The result of this function is defined by the language
581e13c1 2282 implementation. The number of children returned by this function
8b93c638 2283 is the number of children that the user will see in the variable
581e13c1 2284 display. */
8b93c638 2285static int
fba45db2 2286number_of_children (struct varobj *var)
8b93c638 2287{
ca20d462 2288 return (*var->root->lang_ops->number_of_children) (var);
8b93c638
JM
2289}
2290
3e43a32a 2291/* What is the expression for the root varobj VAR? Returns a malloc'd
581e13c1 2292 string. */
8b93c638 2293static char *
fba45db2 2294name_of_variable (struct varobj *var)
8b93c638 2295{
ca20d462 2296 return (*var->root->lang_ops->name_of_variable) (var);
8b93c638
JM
2297}
2298
3e43a32a 2299/* What is the name of the INDEX'th child of VAR? Returns a malloc'd
581e13c1 2300 string. */
8b93c638 2301static char *
fba45db2 2302name_of_child (struct varobj *var, int index)
8b93c638 2303{
ca20d462 2304 return (*var->root->lang_ops->name_of_child) (var, index);
8b93c638
JM
2305}
2306
2213e2be
YQ
2307/* If frame associated with VAR can be found, switch
2308 to it and return 1. Otherwise, return 0. */
2309
2310static int
2311check_scope (struct varobj *var)
2312{
2313 struct frame_info *fi;
2314 int scope;
2315
2316 fi = frame_find_by_id (var->root->frame);
2317 scope = fi != NULL;
2318
2319 if (fi)
2320 {
2321 CORE_ADDR pc = get_frame_pc (fi);
2322
2323 if (pc < BLOCK_START (var->root->valid_block) ||
2324 pc >= BLOCK_END (var->root->valid_block))
2325 scope = 0;
2326 else
2327 select_frame (fi);
2328 }
2329 return scope;
2330}
2331
2332/* Helper function to value_of_root. */
2333
2334static struct value *
2335value_of_root_1 (struct varobj **var_handle)
2336{
2337 struct value *new_val = NULL;
2338 struct varobj *var = *var_handle;
2339 int within_scope = 0;
2340 struct cleanup *back_to;
2341
2342 /* Only root variables can be updated... */
2343 if (!is_root_p (var))
2344 /* Not a root var. */
2345 return NULL;
2346
2347 back_to = make_cleanup_restore_current_thread ();
2348
2349 /* Determine whether the variable is still around. */
2350 if (var->root->valid_block == NULL || var->root->floating)
2351 within_scope = 1;
2352 else if (var->root->thread_id == 0)
2353 {
2354 /* The program was single-threaded when the variable object was
2355 created. Technically, it's possible that the program became
2356 multi-threaded since then, but we don't support such
2357 scenario yet. */
2358 within_scope = check_scope (var);
2359 }
2360 else
2361 {
2362 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
2363 if (in_thread_list (ptid))
2364 {
2365 switch_to_thread (ptid);
2366 within_scope = check_scope (var);
2367 }
2368 }
2369
2370 if (within_scope)
2371 {
2372 volatile struct gdb_exception except;
2373
2374 /* We need to catch errors here, because if evaluate
2375 expression fails we want to just return NULL. */
2376 TRY_CATCH (except, RETURN_MASK_ERROR)
2377 {
2378 new_val = evaluate_expression (var->root->exp);
2379 }
2380 }
2381
2382 do_cleanups (back_to);
2383
2384 return new_val;
2385}
2386
a5defcdc
VP
2387/* What is the ``struct value *'' of the root variable VAR?
2388 For floating variable object, evaluation can get us a value
2389 of different type from what is stored in varobj already. In
2390 that case:
2391 - *type_changed will be set to 1
2392 - old varobj will be freed, and new one will be
2393 created, with the same name.
2394 - *var_handle will be set to the new varobj
2395 Otherwise, *type_changed will be set to 0. */
30b28db1 2396static struct value *
fba45db2 2397value_of_root (struct varobj **var_handle, int *type_changed)
8b93c638 2398{
73a93a32
JI
2399 struct varobj *var;
2400
2401 if (var_handle == NULL)
2402 return NULL;
2403
2404 var = *var_handle;
2405
2406 /* This should really be an exception, since this should
581e13c1 2407 only get called with a root variable. */
73a93a32 2408
b2c2bd75 2409 if (!is_root_p (var))
73a93a32
JI
2410 return NULL;
2411
a5defcdc 2412 if (var->root->floating)
73a93a32
JI
2413 {
2414 struct varobj *tmp_var;
2415 char *old_type, *new_type;
6225abfa 2416
73a93a32
JI
2417 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2418 USE_SELECTED_FRAME);
2419 if (tmp_var == NULL)
2420 {
2421 return NULL;
2422 }
6225abfa 2423 old_type = varobj_get_type (var);
73a93a32 2424 new_type = varobj_get_type (tmp_var);
72330bd6 2425 if (strcmp (old_type, new_type) == 0)
73a93a32 2426 {
fcacd99f
VP
2427 /* The expression presently stored inside var->root->exp
2428 remembers the locations of local variables relatively to
2429 the frame where the expression was created (in DWARF location
2430 button, for example). Naturally, those locations are not
2431 correct in other frames, so update the expression. */
2432
2433 struct expression *tmp_exp = var->root->exp;
a109c7c1 2434
fcacd99f
VP
2435 var->root->exp = tmp_var->root->exp;
2436 tmp_var->root->exp = tmp_exp;
2437
73a93a32
JI
2438 varobj_delete (tmp_var, NULL, 0);
2439 *type_changed = 0;
2440 }
2441 else
2442 {
1b36a34b 2443 tmp_var->obj_name = xstrdup (var->obj_name);
0cc7d26f
TT
2444 tmp_var->from = var->from;
2445 tmp_var->to = var->to;
a5defcdc
VP
2446 varobj_delete (var, NULL, 0);
2447
73a93a32
JI
2448 install_variable (tmp_var);
2449 *var_handle = tmp_var;
705da579 2450 var = *var_handle;
73a93a32
JI
2451 *type_changed = 1;
2452 }
74dddad3
MS
2453 xfree (old_type);
2454 xfree (new_type);
73a93a32
JI
2455 }
2456 else
2457 {
2458 *type_changed = 0;
2459 }
2460
7a290c40
JB
2461 {
2462 struct value *value;
2463
2213e2be 2464 value = value_of_root_1 (var_handle);
7a290c40
JB
2465 if (var->value == NULL || value == NULL)
2466 {
2467 /* For root varobj-s, a NULL value indicates a scoping issue.
2468 So, nothing to do in terms of checking for mutations. */
2469 }
2470 else if (varobj_value_has_mutated (var, value, value_type (value)))
2471 {
2472 /* The type has mutated, so the children are no longer valid.
2473 Just delete them, and tell our caller that the type has
2474 changed. */
2475 varobj_delete (var, NULL, 1 /* only_children */);
2476 var->num_children = -1;
2477 var->to = -1;
2478 var->from = -1;
2479 *type_changed = 1;
2480 }
2481 return value;
2482 }
8b93c638
JM
2483}
2484
581e13c1 2485/* What is the ``struct value *'' for the INDEX'th child of PARENT? */
30b28db1 2486static struct value *
fba45db2 2487value_of_child (struct varobj *parent, int index)
8b93c638 2488{
30b28db1 2489 struct value *value;
8b93c638 2490
ca20d462 2491 value = (*parent->root->lang_ops->value_of_child) (parent, index);
8b93c638 2492
8b93c638
JM
2493 return value;
2494}
2495
581e13c1 2496/* GDB already has a command called "value_of_variable". Sigh. */
8b93c638 2497static char *
de051565 2498my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 2499{
8756216b 2500 if (var->root->is_valid)
0cc7d26f 2501 {
bb5ce47a 2502 if (var->dynamic->pretty_printer != NULL)
99ad9427 2503 return varobj_value_get_print_value (var->value, var->format, var);
ca20d462 2504 return (*var->root->lang_ops->value_of_variable) (var, format);
0cc7d26f 2505 }
8756216b
DP
2506 else
2507 return NULL;
8b93c638
JM
2508}
2509
99ad9427
YQ
2510void
2511varobj_formatted_print_options (struct value_print_options *opts,
2512 enum varobj_display_formats format)
2513{
2514 get_formatted_print_options (opts, format_code[(int) format]);
2515 opts->deref_ref = 0;
2516 opts->raw = 1;
2517}
2518
2519char *
2520varobj_value_get_print_value (struct value *value,
2521 enum varobj_display_formats format,
2522 struct varobj *var)
85265413 2523{
57e66780 2524 struct ui_file *stb;
621c8364 2525 struct cleanup *old_chain;
ac91cd70 2526 char *thevalue = NULL;
79a45b7d 2527 struct value_print_options opts;
be759fcf
PM
2528 struct type *type = NULL;
2529 long len = 0;
2530 char *encoding = NULL;
2531 struct gdbarch *gdbarch = NULL;
3a182a69
JK
2532 /* Initialize it just to avoid a GCC false warning. */
2533 CORE_ADDR str_addr = 0;
09ca9e2e 2534 int string_print = 0;
57e66780
DJ
2535
2536 if (value == NULL)
2537 return NULL;
2538
621c8364
TT
2539 stb = mem_fileopen ();
2540 old_chain = make_cleanup_ui_file_delete (stb);
2541
be759fcf 2542 gdbarch = get_type_arch (value_type (value));
b6313243 2543#if HAVE_PYTHON
0646da15
TT
2544 if (gdb_python_initialized)
2545 {
bb5ce47a 2546 PyObject *value_formatter = var->dynamic->pretty_printer;
d452c4bc 2547
0646da15 2548 varobj_ensure_python_env (var);
09ca9e2e 2549
0646da15
TT
2550 if (value_formatter)
2551 {
2552 /* First check to see if we have any children at all. If so,
2553 we simply return {...}. */
2554 if (dynamic_varobj_has_child_method (var))
2555 {
2556 do_cleanups (old_chain);
2557 return xstrdup ("{...}");
2558 }
b6313243 2559
0646da15
TT
2560 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2561 {
2562 struct value *replacement;
2563 PyObject *output = NULL;
2564
2565 output = apply_varobj_pretty_printer (value_formatter,
2566 &replacement,
2567 stb);
2568
2569 /* If we have string like output ... */
2570 if (output)
2571 {
2572 make_cleanup_py_decref (output);
2573
2574 /* If this is a lazy string, extract it. For lazy
2575 strings we always print as a string, so set
2576 string_print. */
2577 if (gdbpy_is_lazy_string (output))
2578 {
2579 gdbpy_extract_lazy_string (output, &str_addr, &type,
2580 &len, &encoding);
2581 make_cleanup (free_current_contents, &encoding);
2582 string_print = 1;
2583 }
2584 else
2585 {
2586 /* If it is a regular (non-lazy) string, extract
2587 it and copy the contents into THEVALUE. If the
2588 hint says to print it as a string, set
2589 string_print. Otherwise just return the extracted
2590 string as a value. */
2591
2592 char *s = python_string_to_target_string (output);
2593
2594 if (s)
2595 {
2596 char *hint;
2597
2598 hint = gdbpy_get_display_hint (value_formatter);
2599 if (hint)
2600 {
2601 if (!strcmp (hint, "string"))
2602 string_print = 1;
2603 xfree (hint);
2604 }
2605
2606 len = strlen (s);
2607 thevalue = xmemdup (s, len + 1, len + 1);
2608 type = builtin_type (gdbarch)->builtin_char;
2609 xfree (s);
2610
2611 if (!string_print)
2612 {
2613 do_cleanups (old_chain);
2614 return thevalue;
2615 }
2616
2617 make_cleanup (xfree, thevalue);
2618 }
2619 else
2620 gdbpy_print_stack ();
2621 }
2622 }
2623 /* If the printer returned a replacement value, set VALUE
2624 to REPLACEMENT. If there is not a replacement value,
2625 just use the value passed to this function. */
2626 if (replacement)
2627 value = replacement;
2628 }
2629 }
2630 }
b6313243
TT
2631#endif
2632
99ad9427 2633 varobj_formatted_print_options (&opts, format);
00bd41d6
PM
2634
2635 /* If the THEVALUE has contents, it is a regular string. */
b6313243 2636 if (thevalue)
ac91cd70 2637 LA_PRINT_STRING (stb, type, (gdb_byte *) thevalue, len, encoding, 0, &opts);
09ca9e2e 2638 else if (string_print)
00bd41d6
PM
2639 /* Otherwise, if string_print is set, and it is not a regular
2640 string, it is a lazy string. */
09ca9e2e 2641 val_print_string (type, encoding, str_addr, len, stb, &opts);
b6313243 2642 else
00bd41d6 2643 /* All other cases. */
b6313243 2644 common_val_print (value, stb, 0, &opts, current_language);
00bd41d6 2645
759ef836 2646 thevalue = ui_file_xstrdup (stb, NULL);
57e66780 2647
85265413
NR
2648 do_cleanups (old_chain);
2649 return thevalue;
2650}
2651
340a7723
NR
2652int
2653varobj_editable_p (struct varobj *var)
2654{
2655 struct type *type;
340a7723
NR
2656
2657 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2658 return 0;
2659
99ad9427 2660 type = varobj_get_value_type (var);
340a7723
NR
2661
2662 switch (TYPE_CODE (type))
2663 {
2664 case TYPE_CODE_STRUCT:
2665 case TYPE_CODE_UNION:
2666 case TYPE_CODE_ARRAY:
2667 case TYPE_CODE_FUNC:
2668 case TYPE_CODE_METHOD:
2669 return 0;
2670 break;
2671
2672 default:
2673 return 1;
2674 break;
2675 }
2676}
2677
d32cafc7 2678/* Call VAR's value_is_changeable_p language-specific callback. */
acd65feb 2679
99ad9427 2680int
b2c2bd75 2681varobj_value_is_changeable_p (struct varobj *var)
8b93c638 2682{
ca20d462 2683 return var->root->lang_ops->value_is_changeable_p (var);
8b93c638
JM
2684}
2685
5a413362
VP
2686/* Return 1 if that varobj is floating, that is is always evaluated in the
2687 selected frame, and not bound to thread/frame. Such variable objects
2688 are created using '@' as frame specifier to -var-create. */
2689int
2690varobj_floating_p (struct varobj *var)
2691{
2692 return var->root->floating;
2693}
2694
d32cafc7
JB
2695/* Implement the "value_is_changeable_p" varobj callback for most
2696 languages. */
2697
99ad9427
YQ
2698int
2699varobj_default_value_is_changeable_p (struct varobj *var)
d32cafc7
JB
2700{
2701 int r;
2702 struct type *type;
2703
2704 if (CPLUS_FAKE_CHILD (var))
2705 return 0;
2706
99ad9427 2707 type = varobj_get_value_type (var);
d32cafc7
JB
2708
2709 switch (TYPE_CODE (type))
2710 {
2711 case TYPE_CODE_STRUCT:
2712 case TYPE_CODE_UNION:
2713 case TYPE_CODE_ARRAY:
2714 r = 0;
2715 break;
2716
2717 default:
2718 r = 1;
2719 }
2720
2721 return r;
2722}
2723
54333c3b
JK
2724/* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
2725 with an arbitrary caller supplied DATA pointer. */
2726
2727void
2728all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
2729{
2730 struct varobj_root *var_root, *var_root_next;
2731
2732 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
2733
2734 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
2735 {
2736 var_root_next = var_root->next;
2737
2738 (*func) (var_root->rootvar, data);
2739 }
2740}
8b93c638
JM
2741\f
2742extern void _initialize_varobj (void);
2743void
2744_initialize_varobj (void)
2745{
2746 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
2747
2748 varobj_table = xmalloc (sizeof_table);
2749 memset (varobj_table, 0, sizeof_table);
2750
f989a1c8 2751 add_setshow_zuinteger_cmd ("varobj", class_maintenance,
ccce17b0
YQ
2752 &varobjdebug,
2753 _("Set varobj debugging."),
2754 _("Show varobj debugging."),
2755 _("When non-zero, varobj debugging is enabled."),
2756 NULL, show_varobjdebug,
f989a1c8 2757 &setdebuglist, &showdebuglist);
8b93c638 2758}
8756216b 2759
54333c3b 2760/* Invalidate varobj VAR if it is tied to locals and re-create it if it is
4e969b4f
AB
2761 defined on globals. It is a helper for varobj_invalidate.
2762
2763 This function is called after changing the symbol file, in this case the
2764 pointers to "struct type" stored by the varobj are no longer valid. All
2765 varobj must be either re-evaluated, or marked as invalid here. */
2dbd25e5 2766
54333c3b
JK
2767static void
2768varobj_invalidate_iter (struct varobj *var, void *unused)
8756216b 2769{
4e969b4f
AB
2770 /* global and floating var must be re-evaluated. */
2771 if (var->root->floating || var->root->valid_block == NULL)
2dbd25e5 2772 {
54333c3b 2773 struct varobj *tmp_var;
2dbd25e5 2774
54333c3b
JK
2775 /* Try to create a varobj with same expression. If we succeed
2776 replace the old varobj, otherwise invalidate it. */
2777 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2778 USE_CURRENT_FRAME);
2779 if (tmp_var != NULL)
2780 {
2781 tmp_var->obj_name = xstrdup (var->obj_name);
2782 varobj_delete (var, NULL, 0);
2783 install_variable (tmp_var);
2dbd25e5 2784 }
54333c3b
JK
2785 else
2786 var->root->is_valid = 0;
2dbd25e5 2787 }
54333c3b
JK
2788 else /* locals must be invalidated. */
2789 var->root->is_valid = 0;
2790}
2791
2792/* Invalidate the varobjs that are tied to locals and re-create the ones that
2793 are defined on globals.
2794 Invalidated varobjs will be always printed in_scope="invalid". */
2795
2796void
2797varobj_invalidate (void)
2798{
2799 all_root_varobjs (varobj_invalidate_iter, NULL);
8756216b 2800}