]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/varobj.c
Automatic date update in version.in
[thirdparty/binutils-gdb.git] / gdb / varobj.c
CommitLineData
8b93c638 1/* Implementation of the GDB variable objects API.
bc8332bb 2
32d0add0 3 Copyright (C) 1999-2015 Free Software Foundation, Inc.
8b93c638
JM
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
a9762ec7 7 the Free Software Foundation; either version 3 of the License, or
8b93c638
JM
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
a9762ec7 16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
8b93c638
JM
17
18#include "defs.h"
19#include "value.h"
20#include "expression.h"
21#include "frame.h"
8b93c638 22#include "language.h"
8b93c638 23#include "gdbcmd.h"
d2353924 24#include "block.h"
79a45b7d 25#include "valprint.h"
0cc7d26f 26#include "gdb_regex.h"
8b93c638
JM
27
28#include "varobj.h"
28335dcc 29#include "vec.h"
6208b47d
VP
30#include "gdbthread.h"
31#include "inferior.h"
827f100c 32#include "varobj-iter.h"
8b93c638 33
b6313243
TT
34#if HAVE_PYTHON
35#include "python/python.h"
36#include "python/python-internal.h"
50389644
PA
37#else
38typedef int PyObject;
b6313243
TT
39#endif
40
8b93c638
JM
41/* Non-zero if we want to see trace of varobj level stuff. */
42
ccce17b0 43unsigned int varobjdebug = 0;
920d2a44
AC
44static void
45show_varobjdebug (struct ui_file *file, int from_tty,
46 struct cmd_list_element *c, const char *value)
47{
48 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
49}
8b93c638 50
581e13c1 51/* String representations of gdb's format codes. */
8b93c638 52char *varobj_format_string[] =
72330bd6 53 { "natural", "binary", "decimal", "hexadecimal", "octal" };
8b93c638 54
0cc7d26f
TT
55/* True if we want to allow Python-based pretty-printing. */
56static int pretty_printing = 0;
57
58void
59varobj_enable_pretty_printing (void)
60{
61 pretty_printing = 1;
62}
63
8b93c638
JM
64/* Data structures */
65
66/* Every root variable has one of these structures saved in its
581e13c1 67 varobj. Members which must be free'd are noted. */
8b93c638 68struct varobj_root
72330bd6 69{
8b93c638 70
581e13c1 71 /* Alloc'd expression for this parent. */
72330bd6 72 struct expression *exp;
8b93c638 73
581e13c1 74 /* Block for which this expression is valid. */
270140bd 75 const struct block *valid_block;
8b93c638 76
44a67aa7
VP
77 /* The frame for this expression. This field is set iff valid_block is
78 not NULL. */
e64d9b3d 79 struct frame_id frame;
8b93c638 80
c5b48eac 81 /* The thread ID that this varobj_root belong to. This field
581e13c1 82 is only valid if valid_block is not NULL.
c5b48eac
VP
83 When not 0, indicates which thread 'frame' belongs to.
84 When 0, indicates that the thread list was empty when the varobj_root
85 was created. */
86 int thread_id;
87
a5defcdc
VP
88 /* If 1, the -var-update always recomputes the value in the
89 current thread and frame. Otherwise, variable object is
581e13c1 90 always updated in the specific scope/thread/frame. */
a5defcdc 91 int floating;
73a93a32 92
8756216b
DP
93 /* Flag that indicates validity: set to 0 when this varobj_root refers
94 to symbols that do not exist anymore. */
95 int is_valid;
96
99ad9427
YQ
97 /* Language-related operations for this variable and its
98 children. */
ca20d462 99 const struct lang_varobj_ops *lang_ops;
8b93c638 100
581e13c1 101 /* The varobj for this root node. */
72330bd6 102 struct varobj *rootvar;
8b93c638 103
72330bd6
AC
104 /* Next root variable */
105 struct varobj_root *next;
106};
8b93c638 107
bb5ce47a 108/* Dynamic part of varobj. */
8b93c638 109
bb5ce47a
YQ
110struct varobj_dynamic
111{
b6313243
TT
112 /* Whether the children of this varobj were requested. This field is
113 used to decide if dynamic varobj should recompute their children.
114 In the event that the frontend never asked for the children, we
115 can avoid that. */
116 int children_requested;
117
0cc7d26f
TT
118 /* The pretty-printer constructor. If NULL, then the default
119 pretty-printer will be looked up. If None, then no
120 pretty-printer will be installed. */
121 PyObject *constructor;
122
b6313243
TT
123 /* The pretty-printer that has been constructed. If NULL, then a
124 new printer object is needed, and one will be constructed. */
125 PyObject *pretty_printer;
0cc7d26f
TT
126
127 /* The iterator returned by the printer's 'children' method, or NULL
128 if not available. */
e5250216 129 struct varobj_iter *child_iter;
0cc7d26f
TT
130
131 /* We request one extra item from the iterator, so that we can
132 report to the caller whether there are more items than we have
133 already reported. However, we don't want to install this value
134 when we read it, because that will mess up future updates. So,
135 we stash it here instead. */
e5250216 136 varobj_item *saved_item;
72330bd6 137};
8b93c638 138
8b93c638 139struct cpstack
72330bd6
AC
140{
141 char *name;
142 struct cpstack *next;
143};
8b93c638
JM
144
145/* A list of varobjs */
146
147struct vlist
72330bd6
AC
148{
149 struct varobj *var;
150 struct vlist *next;
151};
8b93c638
JM
152
153/* Private function prototypes */
154
581e13c1 155/* Helper functions for the above subcommands. */
8b93c638 156
a14ed312 157static int delete_variable (struct cpstack **, struct varobj *, int);
8b93c638 158
a14ed312
KB
159static void delete_variable_1 (struct cpstack **, int *,
160 struct varobj *, int, int);
8b93c638 161
a14ed312 162static int install_variable (struct varobj *);
8b93c638 163
a14ed312 164static void uninstall_variable (struct varobj *);
8b93c638 165
a14ed312 166static struct varobj *create_child (struct varobj *, int, char *);
8b93c638 167
b6313243 168static struct varobj *
5a2e0d6e
YQ
169create_child_with_value (struct varobj *parent, int index,
170 struct varobj_item *item);
b6313243 171
8b93c638
JM
172/* Utility routines */
173
a14ed312 174static struct varobj *new_variable (void);
8b93c638 175
a14ed312 176static struct varobj *new_root_variable (void);
8b93c638 177
a14ed312 178static void free_variable (struct varobj *var);
8b93c638 179
74b7792f
AC
180static struct cleanup *make_cleanup_free_variable (struct varobj *var);
181
a14ed312 182static enum varobj_display_formats variable_default_display (struct varobj *);
8b93c638 183
a14ed312 184static void cppush (struct cpstack **pstack, char *name);
8b93c638 185
a14ed312 186static char *cppop (struct cpstack **pstack);
8b93c638 187
8264ba82
AG
188static int update_type_if_necessary (struct varobj *var,
189 struct value *new_value);
190
acd65feb
VP
191static int install_new_value (struct varobj *var, struct value *value,
192 int initial);
193
581e13c1 194/* Language-specific routines. */
8b93c638 195
a14ed312 196static int number_of_children (struct varobj *);
8b93c638 197
a14ed312 198static char *name_of_variable (struct varobj *);
8b93c638 199
a14ed312 200static char *name_of_child (struct varobj *, int);
8b93c638 201
30b28db1 202static struct value *value_of_root (struct varobj **var_handle, int *);
8b93c638 203
30b28db1 204static struct value *value_of_child (struct varobj *parent, int index);
8b93c638 205
de051565
MK
206static char *my_value_of_variable (struct varobj *var,
207 enum varobj_display_formats format);
8b93c638 208
b2c2bd75 209static int is_root_p (struct varobj *var);
8b93c638 210
9a1edae6 211static struct varobj *varobj_add_child (struct varobj *var,
5a2e0d6e 212 struct varobj_item *item);
b6313243 213
8b93c638
JM
214/* Private data */
215
581e13c1 216/* Mappings of varobj_display_formats enums to gdb's format codes. */
72330bd6 217static int format_code[] = { 0, 't', 'd', 'x', 'o' };
8b93c638 218
581e13c1 219/* Header of the list of root variable objects. */
8b93c638 220static struct varobj_root *rootlist;
8b93c638 221
581e13c1
MS
222/* Prime number indicating the number of buckets in the hash table. */
223/* A prime large enough to avoid too many colisions. */
8b93c638
JM
224#define VAROBJ_TABLE_SIZE 227
225
581e13c1 226/* Pointer to the varobj hash table (built at run time). */
8b93c638
JM
227static struct vlist **varobj_table;
228
8b93c638
JM
229\f
230
231/* API Implementation */
b2c2bd75
VP
232static int
233is_root_p (struct varobj *var)
234{
235 return (var->root->rootvar == var);
236}
8b93c638 237
d452c4bc
UW
238#ifdef HAVE_PYTHON
239/* Helper function to install a Python environment suitable for
240 use during operations on VAR. */
e5250216 241struct cleanup *
d452c4bc
UW
242varobj_ensure_python_env (struct varobj *var)
243{
244 return ensure_python_env (var->root->exp->gdbarch,
245 var->root->exp->language_defn);
246}
247#endif
248
581e13c1 249/* Creates a varobj (not its children). */
8b93c638 250
7d8547c9
AC
251/* Return the full FRAME which corresponds to the given CORE_ADDR
252 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
253
254static struct frame_info *
255find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
256{
257 struct frame_info *frame = NULL;
258
259 if (frame_addr == (CORE_ADDR) 0)
260 return NULL;
261
9d49bdc2
PA
262 for (frame = get_current_frame ();
263 frame != NULL;
264 frame = get_prev_frame (frame))
7d8547c9 265 {
1fac167a
UW
266 /* The CORE_ADDR we get as argument was parsed from a string GDB
267 output as $fp. This output got truncated to gdbarch_addr_bit.
268 Truncate the frame base address in the same manner before
269 comparing it against our argument. */
270 CORE_ADDR frame_base = get_frame_base_address (frame);
271 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
a109c7c1 272
1fac167a
UW
273 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
274 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
275
276 if (frame_base == frame_addr)
7d8547c9
AC
277 return frame;
278 }
9d49bdc2
PA
279
280 return NULL;
7d8547c9
AC
281}
282
8b93c638
JM
283struct varobj *
284varobj_create (char *objname,
72330bd6 285 char *expression, CORE_ADDR frame, enum varobj_type type)
8b93c638
JM
286{
287 struct varobj *var;
8b93c638
JM
288 struct cleanup *old_chain;
289
581e13c1 290 /* Fill out a varobj structure for the (root) variable being constructed. */
8b93c638 291 var = new_root_variable ();
74b7792f 292 old_chain = make_cleanup_free_variable (var);
8b93c638
JM
293
294 if (expression != NULL)
295 {
e4195b40 296 struct frame_info *fi;
35633fef 297 struct frame_id old_id = null_frame_id;
3977b71f 298 const struct block *block;
bbc13ae3 299 const char *p;
e55dccf0 300 struct value *value = NULL;
8e7b59a5 301 volatile struct gdb_exception except;
1bb9788d 302 CORE_ADDR pc;
8b93c638 303
9d49bdc2
PA
304 /* Parse and evaluate the expression, filling in as much of the
305 variable's data as possible. */
306
307 if (has_stack_frames ())
308 {
581e13c1 309 /* Allow creator to specify context of variable. */
9d49bdc2
PA
310 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
311 fi = get_selected_frame (NULL);
312 else
313 /* FIXME: cagney/2002-11-23: This code should be doing a
314 lookup using the frame ID and not just the frame's
315 ``address''. This, of course, means an interface
316 change. However, with out that interface change ISAs,
317 such as the ia64 with its two stacks, won't work.
318 Similar goes for the case where there is a frameless
319 function. */
320 fi = find_frame_addr_in_frame_chain (frame);
321 }
8b93c638 322 else
9d49bdc2 323 fi = NULL;
8b93c638 324
581e13c1 325 /* frame = -2 means always use selected frame. */
73a93a32 326 if (type == USE_SELECTED_FRAME)
a5defcdc 327 var->root->floating = 1;
73a93a32 328
1bb9788d 329 pc = 0;
8b93c638
JM
330 block = NULL;
331 if (fi != NULL)
1bb9788d
TT
332 {
333 block = get_frame_block (fi, 0);
334 pc = get_frame_pc (fi);
335 }
8b93c638
JM
336
337 p = expression;
338 innermost_block = NULL;
73a93a32 339 /* Wrap the call to parse expression, so we can
581e13c1 340 return a sensible error. */
8e7b59a5
KS
341 TRY_CATCH (except, RETURN_MASK_ERROR)
342 {
1bb9788d 343 var->root->exp = parse_exp_1 (&p, pc, block, 0);
8e7b59a5
KS
344 }
345
346 if (except.reason < 0)
73a93a32 347 {
f748fb40 348 do_cleanups (old_chain);
73a93a32
JI
349 return NULL;
350 }
8b93c638 351
581e13c1 352 /* Don't allow variables to be created for types. */
608b4967
TT
353 if (var->root->exp->elts[0].opcode == OP_TYPE
354 || var->root->exp->elts[0].opcode == OP_TYPEOF
355 || var->root->exp->elts[0].opcode == OP_DECLTYPE)
8b93c638
JM
356 {
357 do_cleanups (old_chain);
bc8332bb
AC
358 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
359 " as an expression.\n");
8b93c638
JM
360 return NULL;
361 }
362
363 var->format = variable_default_display (var);
364 var->root->valid_block = innermost_block;
1b36a34b 365 var->name = xstrdup (expression);
02142340 366 /* For a root var, the name and the expr are the same. */
1b36a34b 367 var->path_expr = xstrdup (expression);
8b93c638
JM
368
369 /* When the frame is different from the current frame,
370 we must select the appropriate frame before parsing
371 the expression, otherwise the value will not be current.
581e13c1 372 Since select_frame is so benign, just call it for all cases. */
4e22772d 373 if (innermost_block)
8b93c638 374 {
4e22772d
JK
375 /* User could specify explicit FRAME-ADDR which was not found but
376 EXPRESSION is frame specific and we would not be able to evaluate
377 it correctly next time. With VALID_BLOCK set we must also set
378 FRAME and THREAD_ID. */
379 if (fi == NULL)
380 error (_("Failed to find the specified frame"));
381
7a424e99 382 var->root->frame = get_frame_id (fi);
c5b48eac 383 var->root->thread_id = pid_to_thread_id (inferior_ptid);
35633fef 384 old_id = get_frame_id (get_selected_frame (NULL));
c5b48eac 385 select_frame (fi);
8b93c638
JM
386 }
387
340a7723 388 /* We definitely need to catch errors here.
8b93c638 389 If evaluate_expression succeeds we got the value we wanted.
581e13c1 390 But if it fails, we still go on with a call to evaluate_type(). */
8e7b59a5
KS
391 TRY_CATCH (except, RETURN_MASK_ERROR)
392 {
393 value = evaluate_expression (var->root->exp);
394 }
395
396 if (except.reason < 0)
e55dccf0
VP
397 {
398 /* Error getting the value. Try to at least get the
399 right type. */
400 struct value *type_only_value = evaluate_type (var->root->exp);
a109c7c1 401
e55dccf0
VP
402 var->type = value_type (type_only_value);
403 }
8264ba82
AG
404 else
405 {
406 int real_type_found = 0;
407
408 var->type = value_actual_type (value, 0, &real_type_found);
409 if (real_type_found)
410 value = value_cast (var->type, value);
411 }
acd65feb 412
8b93c638 413 /* Set language info */
ca20d462 414 var->root->lang_ops = var->root->exp->language_defn->la_varobj_ops;
8b93c638 415
d32cafc7
JB
416 install_new_value (var, value, 1 /* Initial assignment */);
417
581e13c1 418 /* Set ourselves as our root. */
8b93c638
JM
419 var->root->rootvar = var;
420
581e13c1 421 /* Reset the selected frame. */
35633fef
JK
422 if (frame_id_p (old_id))
423 select_frame (frame_find_by_id (old_id));
8b93c638
JM
424 }
425
73a93a32 426 /* If the variable object name is null, that means this
581e13c1 427 is a temporary variable, so don't install it. */
73a93a32
JI
428
429 if ((var != NULL) && (objname != NULL))
8b93c638 430 {
1b36a34b 431 var->obj_name = xstrdup (objname);
8b93c638
JM
432
433 /* If a varobj name is duplicated, the install will fail so
581e13c1 434 we must cleanup. */
8b93c638
JM
435 if (!install_variable (var))
436 {
437 do_cleanups (old_chain);
438 return NULL;
439 }
440 }
441
442 discard_cleanups (old_chain);
443 return var;
444}
445
581e13c1 446/* Generates an unique name that can be used for a varobj. */
8b93c638
JM
447
448char *
449varobj_gen_name (void)
450{
451 static int id = 0;
e64d9b3d 452 char *obj_name;
8b93c638 453
581e13c1 454 /* Generate a name for this object. */
8b93c638 455 id++;
b435e160 456 obj_name = xstrprintf ("var%d", id);
8b93c638 457
e64d9b3d 458 return obj_name;
8b93c638
JM
459}
460
61d8f275
JK
461/* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
462 error if OBJNAME cannot be found. */
8b93c638
JM
463
464struct varobj *
465varobj_get_handle (char *objname)
466{
467 struct vlist *cv;
468 const char *chp;
469 unsigned int index = 0;
470 unsigned int i = 1;
471
472 for (chp = objname; *chp; chp++)
473 {
474 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
475 }
476
477 cv = *(varobj_table + index);
478 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
479 cv = cv->next;
480
481 if (cv == NULL)
8a3fe4f8 482 error (_("Variable object not found"));
8b93c638
JM
483
484 return cv->var;
485}
486
581e13c1 487/* Given the handle, return the name of the object. */
8b93c638
JM
488
489char *
490varobj_get_objname (struct varobj *var)
491{
492 return var->obj_name;
493}
494
581e13c1 495/* Given the handle, return the expression represented by the object. */
8b93c638
JM
496
497char *
498varobj_get_expression (struct varobj *var)
499{
500 return name_of_variable (var);
501}
502
503/* Deletes a varobj and all its children if only_children == 0,
3e43a32a
MS
504 otherwise deletes only the children; returns a malloc'ed list of
505 all the (malloc'ed) names of the variables that have been deleted
581e13c1 506 (NULL terminated). */
8b93c638
JM
507
508int
509varobj_delete (struct varobj *var, char ***dellist, int only_children)
510{
511 int delcount;
512 int mycount;
513 struct cpstack *result = NULL;
514 char **cp;
515
581e13c1 516 /* Initialize a stack for temporary results. */
8b93c638
JM
517 cppush (&result, NULL);
518
519 if (only_children)
581e13c1 520 /* Delete only the variable children. */
8b93c638
JM
521 delcount = delete_variable (&result, var, 1 /* only the children */ );
522 else
581e13c1 523 /* Delete the variable and all its children. */
8b93c638
JM
524 delcount = delete_variable (&result, var, 0 /* parent+children */ );
525
581e13c1 526 /* We may have been asked to return a list of what has been deleted. */
8b93c638
JM
527 if (dellist != NULL)
528 {
529 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
530
531 cp = *dellist;
532 mycount = delcount;
533 *cp = cppop (&result);
534 while ((*cp != NULL) && (mycount > 0))
535 {
536 mycount--;
537 cp++;
538 *cp = cppop (&result);
539 }
540
541 if (mycount || (*cp != NULL))
8a3fe4f8 542 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
72330bd6 543 mycount);
8b93c638
JM
544 }
545
546 return delcount;
547}
548
d8b65138
JK
549#if HAVE_PYTHON
550
b6313243
TT
551/* Convenience function for varobj_set_visualizer. Instantiate a
552 pretty-printer for a given value. */
553static PyObject *
554instantiate_pretty_printer (PyObject *constructor, struct value *value)
555{
b6313243
TT
556 PyObject *val_obj = NULL;
557 PyObject *printer;
b6313243 558
b6313243 559 val_obj = value_to_value_object (value);
b6313243
TT
560 if (! val_obj)
561 return NULL;
562
563 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
564 Py_DECREF (val_obj);
565 return printer;
b6313243
TT
566}
567
d8b65138
JK
568#endif
569
581e13c1 570/* Set/Get variable object display format. */
8b93c638
JM
571
572enum varobj_display_formats
573varobj_set_display_format (struct varobj *var,
574 enum varobj_display_formats format)
575{
576 switch (format)
577 {
578 case FORMAT_NATURAL:
579 case FORMAT_BINARY:
580 case FORMAT_DECIMAL:
581 case FORMAT_HEXADECIMAL:
582 case FORMAT_OCTAL:
583 var->format = format;
584 break;
585
586 default:
587 var->format = variable_default_display (var);
588 }
589
ae7d22a6
VP
590 if (varobj_value_is_changeable_p (var)
591 && var->value && !value_lazy (var->value))
592 {
6c761d9c 593 xfree (var->print_value);
99ad9427
YQ
594 var->print_value = varobj_value_get_print_value (var->value,
595 var->format, var);
ae7d22a6
VP
596 }
597
8b93c638
JM
598 return var->format;
599}
600
601enum varobj_display_formats
602varobj_get_display_format (struct varobj *var)
603{
604 return var->format;
605}
606
b6313243
TT
607char *
608varobj_get_display_hint (struct varobj *var)
609{
610 char *result = NULL;
611
612#if HAVE_PYTHON
0646da15
TT
613 struct cleanup *back_to;
614
615 if (!gdb_python_initialized)
616 return NULL;
617
618 back_to = varobj_ensure_python_env (var);
d452c4bc 619
bb5ce47a
YQ
620 if (var->dynamic->pretty_printer != NULL)
621 result = gdbpy_get_display_hint (var->dynamic->pretty_printer);
d452c4bc
UW
622
623 do_cleanups (back_to);
b6313243
TT
624#endif
625
626 return result;
627}
628
0cc7d26f
TT
629/* Return true if the varobj has items after TO, false otherwise. */
630
631int
632varobj_has_more (struct varobj *var, int to)
633{
634 if (VEC_length (varobj_p, var->children) > to)
635 return 1;
636 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
bb5ce47a 637 && (var->dynamic->saved_item != NULL));
0cc7d26f
TT
638}
639
c5b48eac
VP
640/* If the variable object is bound to a specific thread, that
641 is its evaluation can always be done in context of a frame
642 inside that thread, returns GDB id of the thread -- which
581e13c1 643 is always positive. Otherwise, returns -1. */
c5b48eac
VP
644int
645varobj_get_thread_id (struct varobj *var)
646{
647 if (var->root->valid_block && var->root->thread_id > 0)
648 return var->root->thread_id;
649 else
650 return -1;
651}
652
25d5ea92
VP
653void
654varobj_set_frozen (struct varobj *var, int frozen)
655{
656 /* When a variable is unfrozen, we don't fetch its value.
657 The 'not_fetched' flag remains set, so next -var-update
658 won't complain.
659
660 We don't fetch the value, because for structures the client
661 should do -var-update anyway. It would be bad to have different
662 client-size logic for structure and other types. */
663 var->frozen = frozen;
664}
665
666int
667varobj_get_frozen (struct varobj *var)
668{
669 return var->frozen;
670}
671
0cc7d26f
TT
672/* A helper function that restricts a range to what is actually
673 available in a VEC. This follows the usual rules for the meaning
674 of FROM and TO -- if either is negative, the entire range is
675 used. */
676
99ad9427
YQ
677void
678varobj_restrict_range (VEC (varobj_p) *children, int *from, int *to)
0cc7d26f
TT
679{
680 if (*from < 0 || *to < 0)
681 {
682 *from = 0;
683 *to = VEC_length (varobj_p, children);
684 }
685 else
686 {
687 if (*from > VEC_length (varobj_p, children))
688 *from = VEC_length (varobj_p, children);
689 if (*to > VEC_length (varobj_p, children))
690 *to = VEC_length (varobj_p, children);
691 if (*from > *to)
692 *from = *to;
693 }
694}
695
696/* A helper for update_dynamic_varobj_children that installs a new
697 child when needed. */
698
699static void
700install_dynamic_child (struct varobj *var,
701 VEC (varobj_p) **changed,
8264ba82 702 VEC (varobj_p) **type_changed,
0cc7d26f
TT
703 VEC (varobj_p) **new,
704 VEC (varobj_p) **unchanged,
705 int *cchanged,
706 int index,
5a2e0d6e 707 struct varobj_item *item)
0cc7d26f
TT
708{
709 if (VEC_length (varobj_p, var->children) < index + 1)
710 {
711 /* There's no child yet. */
5a2e0d6e 712 struct varobj *child = varobj_add_child (var, item);
a109c7c1 713
0cc7d26f
TT
714 if (new)
715 {
716 VEC_safe_push (varobj_p, *new, child);
717 *cchanged = 1;
718 }
719 }
bf8793bb 720 else
0cc7d26f
TT
721 {
722 varobj_p existing = VEC_index (varobj_p, var->children, index);
5a2e0d6e 723 int type_updated = update_type_if_necessary (existing, item->value);
bf8793bb 724
8264ba82
AG
725 if (type_updated)
726 {
727 if (type_changed)
728 VEC_safe_push (varobj_p, *type_changed, existing);
729 }
5a2e0d6e 730 if (install_new_value (existing, item->value, 0))
0cc7d26f 731 {
8264ba82 732 if (!type_updated && changed)
0cc7d26f
TT
733 VEC_safe_push (varobj_p, *changed, existing);
734 }
8264ba82 735 else if (!type_updated && unchanged)
0cc7d26f
TT
736 VEC_safe_push (varobj_p, *unchanged, existing);
737 }
738}
739
576ea091
YQ
740#if HAVE_PYTHON
741
0cc7d26f
TT
742static int
743dynamic_varobj_has_child_method (struct varobj *var)
744{
745 struct cleanup *back_to;
bb5ce47a 746 PyObject *printer = var->dynamic->pretty_printer;
0cc7d26f
TT
747 int result;
748
0646da15
TT
749 if (!gdb_python_initialized)
750 return 0;
751
0cc7d26f
TT
752 back_to = varobj_ensure_python_env (var);
753 result = PyObject_HasAttr (printer, gdbpy_children_cst);
754 do_cleanups (back_to);
755 return result;
756}
576ea091 757#endif
0cc7d26f 758
e5250216
YQ
759/* A factory for creating dynamic varobj's iterators. Returns an
760 iterator object suitable for iterating over VAR's children. */
761
762static struct varobj_iter *
763varobj_get_iterator (struct varobj *var)
764{
576ea091 765#if HAVE_PYTHON
e5250216
YQ
766 if (var->dynamic->pretty_printer)
767 return py_varobj_get_iterator (var, var->dynamic->pretty_printer);
576ea091 768#endif
e5250216
YQ
769
770 gdb_assert_not_reached (_("\
771requested an iterator from a non-dynamic varobj"));
772}
773
827f100c
YQ
774/* Release and clear VAR's saved item, if any. */
775
776static void
777varobj_clear_saved_item (struct varobj_dynamic *var)
778{
779 if (var->saved_item != NULL)
780 {
781 value_free (var->saved_item->value);
782 xfree (var->saved_item);
783 var->saved_item = NULL;
784 }
785}
0cc7d26f 786
b6313243
TT
787static int
788update_dynamic_varobj_children (struct varobj *var,
789 VEC (varobj_p) **changed,
8264ba82 790 VEC (varobj_p) **type_changed,
0cc7d26f
TT
791 VEC (varobj_p) **new,
792 VEC (varobj_p) **unchanged,
793 int *cchanged,
794 int update_children,
795 int from,
796 int to)
b6313243 797{
b6313243 798 int i;
b6313243 799
b6313243 800 *cchanged = 0;
b6313243 801
bb5ce47a 802 if (update_children || var->dynamic->child_iter == NULL)
b6313243 803 {
e5250216
YQ
804 varobj_iter_delete (var->dynamic->child_iter);
805 var->dynamic->child_iter = varobj_get_iterator (var);
b6313243 806
827f100c 807 varobj_clear_saved_item (var->dynamic);
b6313243 808
e5250216 809 i = 0;
b6313243 810
bb5ce47a 811 if (var->dynamic->child_iter == NULL)
827f100c 812 return 0;
b6313243 813 }
0cc7d26f
TT
814 else
815 i = VEC_length (varobj_p, var->children);
b6313243 816
0cc7d26f
TT
817 /* We ask for one extra child, so that MI can report whether there
818 are more children. */
819 for (; to < 0 || i < to + 1; ++i)
b6313243 820 {
827f100c 821 varobj_item *item;
b6313243 822
0cc7d26f 823 /* See if there was a leftover from last time. */
827f100c 824 if (var->dynamic->saved_item != NULL)
0cc7d26f 825 {
bb5ce47a
YQ
826 item = var->dynamic->saved_item;
827 var->dynamic->saved_item = NULL;
0cc7d26f
TT
828 }
829 else
a4c8e806 830 {
e5250216 831 item = varobj_iter_next (var->dynamic->child_iter);
827f100c
YQ
832 /* Release vitem->value so its lifetime is not bound to the
833 execution of a command. */
834 if (item != NULL && item->value != NULL)
835 release_value_or_incref (item->value);
a4c8e806 836 }
b6313243 837
e5250216
YQ
838 if (item == NULL)
839 {
840 /* Iteration is done. Remove iterator from VAR. */
841 varobj_iter_delete (var->dynamic->child_iter);
842 var->dynamic->child_iter = NULL;
843 break;
844 }
0cc7d26f
TT
845 /* We don't want to push the extra child on any report list. */
846 if (to < 0 || i < to)
b6313243 847 {
0cc7d26f
TT
848 int can_mention = from < 0 || i >= from;
849
0cc7d26f 850 install_dynamic_child (var, can_mention ? changed : NULL,
8264ba82 851 can_mention ? type_changed : NULL,
0cc7d26f
TT
852 can_mention ? new : NULL,
853 can_mention ? unchanged : NULL,
5e5ac9a5 854 can_mention ? cchanged : NULL, i,
827f100c
YQ
855 item);
856
857 xfree (item);
b6313243 858 }
0cc7d26f 859 else
b6313243 860 {
bb5ce47a 861 var->dynamic->saved_item = item;
b6313243 862
0cc7d26f
TT
863 /* We want to truncate the child list just before this
864 element. */
865 break;
866 }
b6313243
TT
867 }
868
869 if (i < VEC_length (varobj_p, var->children))
870 {
0cc7d26f 871 int j;
a109c7c1 872
0cc7d26f
TT
873 *cchanged = 1;
874 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
875 varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0);
876 VEC_truncate (varobj_p, var->children, i);
b6313243 877 }
0cc7d26f
TT
878
879 /* If there are fewer children than requested, note that the list of
880 children changed. */
881 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
882 *cchanged = 1;
883
b6313243 884 var->num_children = VEC_length (varobj_p, var->children);
b6313243 885
b6313243 886 return 1;
b6313243 887}
25d5ea92 888
8b93c638
JM
889int
890varobj_get_num_children (struct varobj *var)
891{
892 if (var->num_children == -1)
b6313243 893 {
31f628ae 894 if (varobj_is_dynamic_p (var))
0cc7d26f
TT
895 {
896 int dummy;
897
898 /* If we have a dynamic varobj, don't report -1 children.
899 So, try to fetch some children first. */
8264ba82 900 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
0cc7d26f
TT
901 0, 0, 0);
902 }
903 else
b6313243
TT
904 var->num_children = number_of_children (var);
905 }
8b93c638 906
0cc7d26f 907 return var->num_children >= 0 ? var->num_children : 0;
8b93c638
JM
908}
909
910/* Creates a list of the immediate children of a variable object;
581e13c1 911 the return code is the number of such children or -1 on error. */
8b93c638 912
d56d46f5 913VEC (varobj_p)*
0cc7d26f 914varobj_list_children (struct varobj *var, int *from, int *to)
8b93c638 915{
8b93c638 916 char *name;
b6313243
TT
917 int i, children_changed;
918
bb5ce47a 919 var->dynamic->children_requested = 1;
b6313243 920
31f628ae 921 if (varobj_is_dynamic_p (var))
0cc7d26f 922 {
b6313243
TT
923 /* This, in theory, can result in the number of children changing without
924 frontend noticing. But well, calling -var-list-children on the same
925 varobj twice is not something a sane frontend would do. */
8264ba82
AG
926 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
927 &children_changed, 0, 0, *to);
99ad9427 928 varobj_restrict_range (var->children, from, to);
0cc7d26f
TT
929 return var->children;
930 }
8b93c638 931
8b93c638
JM
932 if (var->num_children == -1)
933 var->num_children = number_of_children (var);
934
74a44383
DJ
935 /* If that failed, give up. */
936 if (var->num_children == -1)
d56d46f5 937 return var->children;
74a44383 938
28335dcc
VP
939 /* If we're called when the list of children is not yet initialized,
940 allocate enough elements in it. */
941 while (VEC_length (varobj_p, var->children) < var->num_children)
942 VEC_safe_push (varobj_p, var->children, NULL);
943
8b93c638
JM
944 for (i = 0; i < var->num_children; i++)
945 {
d56d46f5 946 varobj_p existing = VEC_index (varobj_p, var->children, i);
28335dcc
VP
947
948 if (existing == NULL)
949 {
950 /* Either it's the first call to varobj_list_children for
951 this variable object, and the child was never created,
952 or it was explicitly deleted by the client. */
953 name = name_of_child (var, i);
954 existing = create_child (var, i, name);
955 VEC_replace (varobj_p, var->children, i, existing);
956 }
8b93c638
JM
957 }
958
99ad9427 959 varobj_restrict_range (var->children, from, to);
d56d46f5 960 return var->children;
8b93c638
JM
961}
962
b6313243 963static struct varobj *
5a2e0d6e 964varobj_add_child (struct varobj *var, struct varobj_item *item)
b6313243 965{
5a2e0d6e 966 varobj_p v = create_child_with_value (var,
b6313243 967 VEC_length (varobj_p, var->children),
5a2e0d6e 968 item);
a109c7c1 969
b6313243 970 VEC_safe_push (varobj_p, var->children, v);
b6313243
TT
971 return v;
972}
973
8b93c638 974/* Obtain the type of an object Variable as a string similar to the one gdb
581e13c1 975 prints on the console. */
8b93c638
JM
976
977char *
978varobj_get_type (struct varobj *var)
979{
8ab91b96 980 /* For the "fake" variables, do not return a type. (Its type is
8756216b
DP
981 NULL, too.)
982 Do not return a type for invalid variables as well. */
983 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
8b93c638
JM
984 return NULL;
985
1a4300e9 986 return type_to_string (var->type);
8b93c638
JM
987}
988
1ecb4ee0
DJ
989/* Obtain the type of an object variable. */
990
991struct type *
992varobj_get_gdb_type (struct varobj *var)
993{
994 return var->type;
995}
996
85254831
KS
997/* Is VAR a path expression parent, i.e., can it be used to construct
998 a valid path expression? */
999
1000static int
1001is_path_expr_parent (struct varobj *var)
1002{
9a9a7608
AB
1003 gdb_assert (var->root->lang_ops->is_path_expr_parent != NULL);
1004 return var->root->lang_ops->is_path_expr_parent (var);
1005}
85254831 1006
9a9a7608
AB
1007/* Is VAR a path expression parent, i.e., can it be used to construct
1008 a valid path expression? By default we assume any VAR can be a path
1009 parent. */
85254831 1010
9a9a7608
AB
1011int
1012varobj_default_is_path_expr_parent (struct varobj *var)
1013{
1014 return 1;
85254831
KS
1015}
1016
1017/* Return the path expression parent for VAR. */
1018
99ad9427
YQ
1019struct varobj *
1020varobj_get_path_expr_parent (struct varobj *var)
85254831
KS
1021{
1022 struct varobj *parent = var;
1023
1024 while (!is_root_p (parent) && !is_path_expr_parent (parent))
1025 parent = parent->parent;
1026
1027 return parent;
1028}
1029
02142340
VP
1030/* Return a pointer to the full rooted expression of varobj VAR.
1031 If it has not been computed yet, compute it. */
1032char *
1033varobj_get_path_expr (struct varobj *var)
1034{
1035 if (var->path_expr != NULL)
1036 return var->path_expr;
1037 else
1038 {
1039 /* For root varobjs, we initialize path_expr
1040 when creating varobj, so here it should be
1041 child varobj. */
1042 gdb_assert (!is_root_p (var));
ca20d462 1043 return (*var->root->lang_ops->path_expr_of_child) (var);
02142340
VP
1044 }
1045}
1046
fa4d0c40 1047const struct language_defn *
8b93c638
JM
1048varobj_get_language (struct varobj *var)
1049{
fa4d0c40 1050 return var->root->exp->language_defn;
8b93c638
JM
1051}
1052
1053int
1054varobj_get_attributes (struct varobj *var)
1055{
1056 int attributes = 0;
1057
340a7723 1058 if (varobj_editable_p (var))
581e13c1 1059 /* FIXME: define masks for attributes. */
8b93c638
JM
1060 attributes |= 0x00000001; /* Editable */
1061
1062 return attributes;
1063}
1064
cde5ef40
YQ
1065/* Return true if VAR is a dynamic varobj. */
1066
0cc7d26f 1067int
cde5ef40 1068varobj_is_dynamic_p (struct varobj *var)
0cc7d26f 1069{
bb5ce47a 1070 return var->dynamic->pretty_printer != NULL;
0cc7d26f
TT
1071}
1072
de051565
MK
1073char *
1074varobj_get_formatted_value (struct varobj *var,
1075 enum varobj_display_formats format)
1076{
1077 return my_value_of_variable (var, format);
1078}
1079
8b93c638
JM
1080char *
1081varobj_get_value (struct varobj *var)
1082{
de051565 1083 return my_value_of_variable (var, var->format);
8b93c638
JM
1084}
1085
1086/* Set the value of an object variable (if it is editable) to the
581e13c1
MS
1087 value of the given expression. */
1088/* Note: Invokes functions that can call error(). */
8b93c638
JM
1089
1090int
1091varobj_set_value (struct varobj *var, char *expression)
1092{
34365054 1093 struct value *val = NULL; /* Initialize to keep gcc happy. */
8b93c638 1094 /* The argument "expression" contains the variable's new value.
581e13c1
MS
1095 We need to first construct a legal expression for this -- ugh! */
1096 /* Does this cover all the bases? */
8b93c638 1097 struct expression *exp;
34365054 1098 struct value *value = NULL; /* Initialize to keep gcc happy. */
8b93c638 1099 int saved_input_radix = input_radix;
bbc13ae3 1100 const char *s = expression;
8e7b59a5 1101 volatile struct gdb_exception except;
8b93c638 1102
340a7723 1103 gdb_assert (varobj_editable_p (var));
8b93c638 1104
581e13c1 1105 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
1bb9788d 1106 exp = parse_exp_1 (&s, 0, 0, 0);
8e7b59a5
KS
1107 TRY_CATCH (except, RETURN_MASK_ERROR)
1108 {
1109 value = evaluate_expression (exp);
1110 }
1111
1112 if (except.reason < 0)
340a7723 1113 {
581e13c1 1114 /* We cannot proceed without a valid expression. */
340a7723
NR
1115 xfree (exp);
1116 return 0;
8b93c638
JM
1117 }
1118
340a7723
NR
1119 /* All types that are editable must also be changeable. */
1120 gdb_assert (varobj_value_is_changeable_p (var));
1121
1122 /* The value of a changeable variable object must not be lazy. */
1123 gdb_assert (!value_lazy (var->value));
1124
1125 /* Need to coerce the input. We want to check if the
1126 value of the variable object will be different
1127 after assignment, and the first thing value_assign
1128 does is coerce the input.
1129 For example, if we are assigning an array to a pointer variable we
b021a221 1130 should compare the pointer with the array's address, not with the
340a7723
NR
1131 array's content. */
1132 value = coerce_array (value);
1133
8e7b59a5
KS
1134 /* The new value may be lazy. value_assign, or
1135 rather value_contents, will take care of this. */
1136 TRY_CATCH (except, RETURN_MASK_ERROR)
1137 {
1138 val = value_assign (var->value, value);
1139 }
1140
1141 if (except.reason < 0)
340a7723 1142 return 0;
8e7b59a5 1143
340a7723
NR
1144 /* If the value has changed, record it, so that next -var-update can
1145 report this change. If a variable had a value of '1', we've set it
1146 to '333' and then set again to '1', when -var-update will report this
1147 variable as changed -- because the first assignment has set the
1148 'updated' flag. There's no need to optimize that, because return value
1149 of -var-update should be considered an approximation. */
581e13c1 1150 var->updated = install_new_value (var, val, 0 /* Compare values. */);
340a7723
NR
1151 input_radix = saved_input_radix;
1152 return 1;
8b93c638
JM
1153}
1154
0cc7d26f
TT
1155#if HAVE_PYTHON
1156
1157/* A helper function to install a constructor function and visualizer
bb5ce47a 1158 in a varobj_dynamic. */
0cc7d26f
TT
1159
1160static void
bb5ce47a 1161install_visualizer (struct varobj_dynamic *var, PyObject *constructor,
0cc7d26f
TT
1162 PyObject *visualizer)
1163{
1164 Py_XDECREF (var->constructor);
1165 var->constructor = constructor;
1166
1167 Py_XDECREF (var->pretty_printer);
1168 var->pretty_printer = visualizer;
1169
e5250216 1170 varobj_iter_delete (var->child_iter);
0cc7d26f
TT
1171 var->child_iter = NULL;
1172}
1173
1174/* Install the default visualizer for VAR. */
1175
1176static void
1177install_default_visualizer (struct varobj *var)
1178{
d65aec65
PM
1179 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1180 if (CPLUS_FAKE_CHILD (var))
1181 return;
1182
0cc7d26f
TT
1183 if (pretty_printing)
1184 {
1185 PyObject *pretty_printer = NULL;
1186
1187 if (var->value)
1188 {
1189 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1190 if (! pretty_printer)
1191 {
1192 gdbpy_print_stack ();
1193 error (_("Cannot instantiate printer for default visualizer"));
1194 }
1195 }
1196
1197 if (pretty_printer == Py_None)
1198 {
1199 Py_DECREF (pretty_printer);
1200 pretty_printer = NULL;
1201 }
1202
bb5ce47a 1203 install_visualizer (var->dynamic, NULL, pretty_printer);
0cc7d26f
TT
1204 }
1205}
1206
1207/* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1208 make a new object. */
1209
1210static void
1211construct_visualizer (struct varobj *var, PyObject *constructor)
1212{
1213 PyObject *pretty_printer;
1214
d65aec65
PM
1215 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1216 if (CPLUS_FAKE_CHILD (var))
1217 return;
1218
0cc7d26f
TT
1219 Py_INCREF (constructor);
1220 if (constructor == Py_None)
1221 pretty_printer = NULL;
1222 else
1223 {
1224 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1225 if (! pretty_printer)
1226 {
1227 gdbpy_print_stack ();
1228 Py_DECREF (constructor);
1229 constructor = Py_None;
1230 Py_INCREF (constructor);
1231 }
1232
1233 if (pretty_printer == Py_None)
1234 {
1235 Py_DECREF (pretty_printer);
1236 pretty_printer = NULL;
1237 }
1238 }
1239
bb5ce47a 1240 install_visualizer (var->dynamic, constructor, pretty_printer);
0cc7d26f
TT
1241}
1242
1243#endif /* HAVE_PYTHON */
1244
1245/* A helper function for install_new_value. This creates and installs
1246 a visualizer for VAR, if appropriate. */
1247
1248static void
1249install_new_value_visualizer (struct varobj *var)
1250{
1251#if HAVE_PYTHON
1252 /* If the constructor is None, then we want the raw value. If VAR
1253 does not have a value, just skip this. */
0646da15
TT
1254 if (!gdb_python_initialized)
1255 return;
1256
bb5ce47a 1257 if (var->dynamic->constructor != Py_None && var->value != NULL)
0cc7d26f
TT
1258 {
1259 struct cleanup *cleanup;
0cc7d26f
TT
1260
1261 cleanup = varobj_ensure_python_env (var);
1262
bb5ce47a 1263 if (var->dynamic->constructor == NULL)
0cc7d26f
TT
1264 install_default_visualizer (var);
1265 else
bb5ce47a 1266 construct_visualizer (var, var->dynamic->constructor);
0cc7d26f
TT
1267
1268 do_cleanups (cleanup);
1269 }
1270#else
1271 /* Do nothing. */
1272#endif
1273}
1274
8264ba82
AG
1275/* When using RTTI to determine variable type it may be changed in runtime when
1276 the variable value is changed. This function checks whether type of varobj
1277 VAR will change when a new value NEW_VALUE is assigned and if it is so
1278 updates the type of VAR. */
1279
1280static int
1281update_type_if_necessary (struct varobj *var, struct value *new_value)
1282{
1283 if (new_value)
1284 {
1285 struct value_print_options opts;
1286
1287 get_user_print_options (&opts);
1288 if (opts.objectprint)
1289 {
1290 struct type *new_type;
1291 char *curr_type_str, *new_type_str;
1292
1293 new_type = value_actual_type (new_value, 0, 0);
1294 new_type_str = type_to_string (new_type);
1295 curr_type_str = varobj_get_type (var);
1296 if (strcmp (curr_type_str, new_type_str) != 0)
1297 {
1298 var->type = new_type;
1299
1300 /* This information may be not valid for a new type. */
1301 varobj_delete (var, NULL, 1);
1302 VEC_free (varobj_p, var->children);
1303 var->num_children = -1;
1304 return 1;
1305 }
1306 }
1307 }
1308
1309 return 0;
1310}
1311
acd65feb
VP
1312/* Assign a new value to a variable object. If INITIAL is non-zero,
1313 this is the first assignement after the variable object was just
1314 created, or changed type. In that case, just assign the value
1315 and return 0.
581e13c1
MS
1316 Otherwise, assign the new value, and return 1 if the value is
1317 different from the current one, 0 otherwise. The comparison is
1318 done on textual representation of value. Therefore, some types
1319 need not be compared. E.g. for structures the reported value is
1320 always "{...}", so no comparison is necessary here. If the old
1321 value was NULL and new one is not, or vice versa, we always return 1.
b26ed50d
VP
1322
1323 The VALUE parameter should not be released -- the function will
1324 take care of releasing it when needed. */
acd65feb
VP
1325static int
1326install_new_value (struct varobj *var, struct value *value, int initial)
1327{
1328 int changeable;
1329 int need_to_fetch;
1330 int changed = 0;
25d5ea92 1331 int intentionally_not_fetched = 0;
7a4d50bf 1332 char *print_value = NULL;
acd65feb 1333
acd65feb 1334 /* We need to know the varobj's type to decide if the value should
3e43a32a 1335 be fetched or not. C++ fake children (public/protected/private)
581e13c1 1336 don't have a type. */
acd65feb 1337 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
b2c2bd75 1338 changeable = varobj_value_is_changeable_p (var);
b6313243
TT
1339
1340 /* If the type has custom visualizer, we consider it to be always
581e13c1 1341 changeable. FIXME: need to make sure this behaviour will not
b6313243 1342 mess up read-sensitive values. */
bb5ce47a 1343 if (var->dynamic->pretty_printer != NULL)
b6313243
TT
1344 changeable = 1;
1345
acd65feb
VP
1346 need_to_fetch = changeable;
1347
b26ed50d
VP
1348 /* We are not interested in the address of references, and given
1349 that in C++ a reference is not rebindable, it cannot
1350 meaningfully change. So, get hold of the real value. */
1351 if (value)
0cc7d26f 1352 value = coerce_ref (value);
b26ed50d 1353
acd65feb
VP
1354 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1355 /* For unions, we need to fetch the value implicitly because
1356 of implementation of union member fetch. When gdb
1357 creates a value for a field and the value of the enclosing
1358 structure is not lazy, it immediately copies the necessary
1359 bytes from the enclosing values. If the enclosing value is
1360 lazy, the call to value_fetch_lazy on the field will read
1361 the data from memory. For unions, that means we'll read the
1362 same memory more than once, which is not desirable. So
1363 fetch now. */
1364 need_to_fetch = 1;
1365
1366 /* The new value might be lazy. If the type is changeable,
1367 that is we'll be comparing values of this type, fetch the
1368 value now. Otherwise, on the next update the old value
1369 will be lazy, which means we've lost that old value. */
1370 if (need_to_fetch && value && value_lazy (value))
1371 {
25d5ea92
VP
1372 struct varobj *parent = var->parent;
1373 int frozen = var->frozen;
a109c7c1 1374
25d5ea92
VP
1375 for (; !frozen && parent; parent = parent->parent)
1376 frozen |= parent->frozen;
1377
1378 if (frozen && initial)
1379 {
1380 /* For variables that are frozen, or are children of frozen
1381 variables, we don't do fetch on initial assignment.
1382 For non-initial assignemnt we do the fetch, since it means we're
1383 explicitly asked to compare the new value with the old one. */
1384 intentionally_not_fetched = 1;
1385 }
8e7b59a5 1386 else
acd65feb 1387 {
8e7b59a5
KS
1388 volatile struct gdb_exception except;
1389
1390 TRY_CATCH (except, RETURN_MASK_ERROR)
1391 {
1392 value_fetch_lazy (value);
1393 }
1394
1395 if (except.reason < 0)
1396 {
1397 /* Set the value to NULL, so that for the next -var-update,
1398 we don't try to compare the new value with this value,
1399 that we couldn't even read. */
1400 value = NULL;
1401 }
acd65feb 1402 }
acd65feb
VP
1403 }
1404
e848a8a5
TT
1405 /* Get a reference now, before possibly passing it to any Python
1406 code that might release it. */
1407 if (value != NULL)
1408 value_incref (value);
b6313243 1409
7a4d50bf
VP
1410 /* Below, we'll be comparing string rendering of old and new
1411 values. Don't get string rendering if the value is
1412 lazy -- if it is, the code above has decided that the value
1413 should not be fetched. */
bb5ce47a
YQ
1414 if (value != NULL && !value_lazy (value)
1415 && var->dynamic->pretty_printer == NULL)
99ad9427 1416 print_value = varobj_value_get_print_value (value, var->format, var);
7a4d50bf 1417
acd65feb
VP
1418 /* If the type is changeable, compare the old and the new values.
1419 If this is the initial assignment, we don't have any old value
1420 to compare with. */
7a4d50bf 1421 if (!initial && changeable)
acd65feb 1422 {
3e43a32a
MS
1423 /* If the value of the varobj was changed by -var-set-value,
1424 then the value in the varobj and in the target is the same.
1425 However, that value is different from the value that the
581e13c1 1426 varobj had after the previous -var-update. So need to the
3e43a32a 1427 varobj as changed. */
acd65feb 1428 if (var->updated)
57e66780 1429 {
57e66780
DJ
1430 changed = 1;
1431 }
bb5ce47a 1432 else if (var->dynamic->pretty_printer == NULL)
acd65feb
VP
1433 {
1434 /* Try to compare the values. That requires that both
1435 values are non-lazy. */
25d5ea92
VP
1436 if (var->not_fetched && value_lazy (var->value))
1437 {
1438 /* This is a frozen varobj and the value was never read.
1439 Presumably, UI shows some "never read" indicator.
1440 Now that we've fetched the real value, we need to report
1441 this varobj as changed so that UI can show the real
1442 value. */
1443 changed = 1;
1444 }
1445 else if (var->value == NULL && value == NULL)
581e13c1 1446 /* Equal. */
acd65feb
VP
1447 ;
1448 else if (var->value == NULL || value == NULL)
57e66780 1449 {
57e66780
DJ
1450 changed = 1;
1451 }
acd65feb
VP
1452 else
1453 {
1454 gdb_assert (!value_lazy (var->value));
1455 gdb_assert (!value_lazy (value));
85265413 1456
57e66780 1457 gdb_assert (var->print_value != NULL && print_value != NULL);
85265413 1458 if (strcmp (var->print_value, print_value) != 0)
7a4d50bf 1459 changed = 1;
acd65feb
VP
1460 }
1461 }
1462 }
85265413 1463
ee342b23
VP
1464 if (!initial && !changeable)
1465 {
1466 /* For values that are not changeable, we don't compare the values.
1467 However, we want to notice if a value was not NULL and now is NULL,
1468 or vise versa, so that we report when top-level varobjs come in scope
1469 and leave the scope. */
1470 changed = (var->value != NULL) != (value != NULL);
1471 }
1472
acd65feb 1473 /* We must always keep the new value, since children depend on it. */
25d5ea92 1474 if (var->value != NULL && var->value != value)
acd65feb
VP
1475 value_free (var->value);
1476 var->value = value;
25d5ea92
VP
1477 if (value && value_lazy (value) && intentionally_not_fetched)
1478 var->not_fetched = 1;
1479 else
1480 var->not_fetched = 0;
acd65feb 1481 var->updated = 0;
85265413 1482
0cc7d26f
TT
1483 install_new_value_visualizer (var);
1484
1485 /* If we installed a pretty-printer, re-compare the printed version
1486 to see if the variable changed. */
bb5ce47a 1487 if (var->dynamic->pretty_printer != NULL)
0cc7d26f
TT
1488 {
1489 xfree (print_value);
99ad9427
YQ
1490 print_value = varobj_value_get_print_value (var->value, var->format,
1491 var);
e8f781e2
TT
1492 if ((var->print_value == NULL && print_value != NULL)
1493 || (var->print_value != NULL && print_value == NULL)
1494 || (var->print_value != NULL && print_value != NULL
1495 && strcmp (var->print_value, print_value) != 0))
0cc7d26f
TT
1496 changed = 1;
1497 }
1498 if (var->print_value)
1499 xfree (var->print_value);
1500 var->print_value = print_value;
1501
b26ed50d 1502 gdb_assert (!var->value || value_type (var->value));
acd65feb
VP
1503
1504 return changed;
1505}
acd65feb 1506
0cc7d26f
TT
1507/* Return the requested range for a varobj. VAR is the varobj. FROM
1508 and TO are out parameters; *FROM and *TO will be set to the
1509 selected sub-range of VAR. If no range was selected using
1510 -var-set-update-range, then both will be -1. */
1511void
1512varobj_get_child_range (struct varobj *var, int *from, int *to)
b6313243 1513{
0cc7d26f
TT
1514 *from = var->from;
1515 *to = var->to;
b6313243
TT
1516}
1517
0cc7d26f
TT
1518/* Set the selected sub-range of children of VAR to start at index
1519 FROM and end at index TO. If either FROM or TO is less than zero,
1520 this is interpreted as a request for all children. */
1521void
1522varobj_set_child_range (struct varobj *var, int from, int to)
b6313243 1523{
0cc7d26f
TT
1524 var->from = from;
1525 var->to = to;
b6313243
TT
1526}
1527
1528void
1529varobj_set_visualizer (struct varobj *var, const char *visualizer)
1530{
1531#if HAVE_PYTHON
34fa1d9d
MS
1532 PyObject *mainmod, *globals, *constructor;
1533 struct cleanup *back_to;
b6313243 1534
0646da15
TT
1535 if (!gdb_python_initialized)
1536 return;
1537
d452c4bc 1538 back_to = varobj_ensure_python_env (var);
b6313243
TT
1539
1540 mainmod = PyImport_AddModule ("__main__");
1541 globals = PyModule_GetDict (mainmod);
1542 Py_INCREF (globals);
1543 make_cleanup_py_decref (globals);
1544
1545 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
b6313243 1546
0cc7d26f 1547 if (! constructor)
b6313243
TT
1548 {
1549 gdbpy_print_stack ();
da1f2771 1550 error (_("Could not evaluate visualizer expression: %s"), visualizer);
b6313243
TT
1551 }
1552
0cc7d26f
TT
1553 construct_visualizer (var, constructor);
1554 Py_XDECREF (constructor);
b6313243 1555
0cc7d26f
TT
1556 /* If there are any children now, wipe them. */
1557 varobj_delete (var, NULL, 1 /* children only */);
1558 var->num_children = -1;
b6313243
TT
1559
1560 do_cleanups (back_to);
1561#else
da1f2771 1562 error (_("Python support required"));
b6313243
TT
1563#endif
1564}
1565
7a290c40
JB
1566/* If NEW_VALUE is the new value of the given varobj (var), return
1567 non-zero if var has mutated. In other words, if the type of
1568 the new value is different from the type of the varobj's old
1569 value.
1570
1571 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1572
1573static int
1574varobj_value_has_mutated (struct varobj *var, struct value *new_value,
1575 struct type *new_type)
1576{
1577 /* If we haven't previously computed the number of children in var,
1578 it does not matter from the front-end's perspective whether
1579 the type has mutated or not. For all intents and purposes,
1580 it has not mutated. */
1581 if (var->num_children < 0)
1582 return 0;
1583
ca20d462 1584 if (var->root->lang_ops->value_has_mutated)
8776cfe9
JB
1585 {
1586 /* The varobj module, when installing new values, explicitly strips
1587 references, saying that we're not interested in those addresses.
1588 But detection of mutation happens before installing the new
1589 value, so our value may be a reference that we need to strip
1590 in order to remain consistent. */
1591 if (new_value != NULL)
1592 new_value = coerce_ref (new_value);
1593 return var->root->lang_ops->value_has_mutated (var, new_value, new_type);
1594 }
7a290c40
JB
1595 else
1596 return 0;
1597}
1598
8b93c638
JM
1599/* Update the values for a variable and its children. This is a
1600 two-pronged attack. First, re-parse the value for the root's
1601 expression to see if it's changed. Then go all the way
1602 through its children, reconstructing them and noting if they've
1603 changed.
1604
25d5ea92
VP
1605 The EXPLICIT parameter specifies if this call is result
1606 of MI request to update this specific variable, or
581e13c1 1607 result of implicit -var-update *. For implicit request, we don't
25d5ea92 1608 update frozen variables.
705da579 1609
581e13c1 1610 NOTE: This function may delete the caller's varobj. If it
8756216b
DP
1611 returns TYPE_CHANGED, then it has done this and VARP will be modified
1612 to point to the new varobj. */
8b93c638 1613
1417b39d
JB
1614VEC(varobj_update_result) *
1615varobj_update (struct varobj **varp, int explicit)
8b93c638 1616{
25d5ea92 1617 int type_changed = 0;
8b93c638 1618 int i;
30b28db1 1619 struct value *new;
b6313243 1620 VEC (varobj_update_result) *stack = NULL;
f7f9ae2c 1621 VEC (varobj_update_result) *result = NULL;
8b93c638 1622
25d5ea92
VP
1623 /* Frozen means frozen -- we don't check for any change in
1624 this varobj, including its going out of scope, or
1625 changing type. One use case for frozen varobjs is
1626 retaining previously evaluated expressions, and we don't
1627 want them to be reevaluated at all. */
1628 if (!explicit && (*varp)->frozen)
f7f9ae2c 1629 return result;
8756216b
DP
1630
1631 if (!(*varp)->root->is_valid)
f7f9ae2c 1632 {
cfce2ea2 1633 varobj_update_result r = {0};
a109c7c1 1634
cfce2ea2 1635 r.varobj = *varp;
f7f9ae2c
VP
1636 r.status = VAROBJ_INVALID;
1637 VEC_safe_push (varobj_update_result, result, &r);
1638 return result;
1639 }
8b93c638 1640
25d5ea92 1641 if ((*varp)->root->rootvar == *varp)
ae093f96 1642 {
cfce2ea2 1643 varobj_update_result r = {0};
a109c7c1 1644
cfce2ea2 1645 r.varobj = *varp;
f7f9ae2c
VP
1646 r.status = VAROBJ_IN_SCOPE;
1647
581e13c1 1648 /* Update the root variable. value_of_root can return NULL
25d5ea92 1649 if the variable is no longer around, i.e. we stepped out of
581e13c1 1650 the frame in which a local existed. We are letting the
25d5ea92
VP
1651 value_of_root variable dispose of the varobj if the type
1652 has changed. */
25d5ea92 1653 new = value_of_root (varp, &type_changed);
8264ba82
AG
1654 if (update_type_if_necessary(*varp, new))
1655 type_changed = 1;
f7f9ae2c 1656 r.varobj = *varp;
f7f9ae2c 1657 r.type_changed = type_changed;
ea56f9c2 1658 if (install_new_value ((*varp), new, type_changed))
f7f9ae2c 1659 r.changed = 1;
ea56f9c2 1660
25d5ea92 1661 if (new == NULL)
f7f9ae2c 1662 r.status = VAROBJ_NOT_IN_SCOPE;
b6313243 1663 r.value_installed = 1;
f7f9ae2c
VP
1664
1665 if (r.status == VAROBJ_NOT_IN_SCOPE)
b6313243 1666 {
0b4bc29a
JK
1667 if (r.type_changed || r.changed)
1668 VEC_safe_push (varobj_update_result, result, &r);
b6313243
TT
1669 return result;
1670 }
1671
1672 VEC_safe_push (varobj_update_result, stack, &r);
1673 }
1674 else
1675 {
cfce2ea2 1676 varobj_update_result r = {0};
a109c7c1 1677
cfce2ea2 1678 r.varobj = *varp;
b6313243 1679 VEC_safe_push (varobj_update_result, stack, &r);
b20d8971 1680 }
8b93c638 1681
8756216b 1682 /* Walk through the children, reconstructing them all. */
b6313243 1683 while (!VEC_empty (varobj_update_result, stack))
8b93c638 1684 {
b6313243
TT
1685 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1686 struct varobj *v = r.varobj;
1687
1688 VEC_pop (varobj_update_result, stack);
1689
1690 /* Update this variable, unless it's a root, which is already
1691 updated. */
1692 if (!r.value_installed)
7a290c40
JB
1693 {
1694 struct type *new_type;
1695
b6313243 1696 new = value_of_child (v->parent, v->index);
8264ba82
AG
1697 if (update_type_if_necessary(v, new))
1698 r.type_changed = 1;
7a290c40
JB
1699 if (new)
1700 new_type = value_type (new);
1701 else
ca20d462 1702 new_type = v->root->lang_ops->type_of_child (v->parent, v->index);
7a290c40
JB
1703
1704 if (varobj_value_has_mutated (v, new, new_type))
1705 {
1706 /* The children are no longer valid; delete them now.
1707 Report the fact that its type changed as well. */
1708 varobj_delete (v, NULL, 1 /* only_children */);
1709 v->num_children = -1;
1710 v->to = -1;
1711 v->from = -1;
1712 v->type = new_type;
1713 r.type_changed = 1;
1714 }
1715
1716 if (install_new_value (v, new, r.type_changed))
b6313243
TT
1717 {
1718 r.changed = 1;
1719 v->updated = 0;
1720 }
1721 }
1722
31f628ae
YQ
1723 /* We probably should not get children of a dynamic varobj, but
1724 for which -var-list-children was never invoked. */
1725 if (varobj_is_dynamic_p (v))
b6313243 1726 {
8264ba82
AG
1727 VEC (varobj_p) *changed = 0, *type_changed = 0, *unchanged = 0;
1728 VEC (varobj_p) *new = 0;
26f9bcee 1729 int i, children_changed = 0;
b6313243
TT
1730
1731 if (v->frozen)
1732 continue;
1733
bb5ce47a 1734 if (!v->dynamic->children_requested)
0cc7d26f
TT
1735 {
1736 int dummy;
1737
1738 /* If we initially did not have potential children, but
1739 now we do, consider the varobj as changed.
1740 Otherwise, if children were never requested, consider
1741 it as unchanged -- presumably, such varobj is not yet
1742 expanded in the UI, so we need not bother getting
1743 it. */
1744 if (!varobj_has_more (v, 0))
1745 {
8264ba82 1746 update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
0cc7d26f
TT
1747 &dummy, 0, 0, 0);
1748 if (varobj_has_more (v, 0))
1749 r.changed = 1;
1750 }
1751
1752 if (r.changed)
1753 VEC_safe_push (varobj_update_result, result, &r);
1754
1755 continue;
1756 }
1757
b6313243
TT
1758 /* If update_dynamic_varobj_children returns 0, then we have
1759 a non-conforming pretty-printer, so we skip it. */
8264ba82
AG
1760 if (update_dynamic_varobj_children (v, &changed, &type_changed, &new,
1761 &unchanged, &children_changed, 1,
0cc7d26f 1762 v->from, v->to))
b6313243 1763 {
0cc7d26f 1764 if (children_changed || new)
b6313243 1765 {
0cc7d26f
TT
1766 r.children_changed = 1;
1767 r.new = new;
b6313243 1768 }
0cc7d26f
TT
1769 /* Push in reverse order so that the first child is
1770 popped from the work stack first, and so will be
1771 added to result first. This does not affect
1772 correctness, just "nicer". */
8264ba82
AG
1773 for (i = VEC_length (varobj_p, type_changed) - 1; i >= 0; --i)
1774 {
1775 varobj_p tmp = VEC_index (varobj_p, type_changed, i);
1776 varobj_update_result r = {0};
1777
1778 /* Type may change only if value was changed. */
1779 r.varobj = tmp;
1780 r.changed = 1;
1781 r.type_changed = 1;
1782 r.value_installed = 1;
1783 VEC_safe_push (varobj_update_result, stack, &r);
1784 }
0cc7d26f 1785 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
b6313243 1786 {
0cc7d26f 1787 varobj_p tmp = VEC_index (varobj_p, changed, i);
cfce2ea2 1788 varobj_update_result r = {0};
a109c7c1 1789
cfce2ea2 1790 r.varobj = tmp;
0cc7d26f 1791 r.changed = 1;
b6313243
TT
1792 r.value_installed = 1;
1793 VEC_safe_push (varobj_update_result, stack, &r);
1794 }
0cc7d26f
TT
1795 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
1796 {
1797 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
a109c7c1 1798
0cc7d26f
TT
1799 if (!tmp->frozen)
1800 {
cfce2ea2 1801 varobj_update_result r = {0};
a109c7c1 1802
cfce2ea2 1803 r.varobj = tmp;
0cc7d26f
TT
1804 r.value_installed = 1;
1805 VEC_safe_push (varobj_update_result, stack, &r);
1806 }
1807 }
b6313243
TT
1808 if (r.changed || r.children_changed)
1809 VEC_safe_push (varobj_update_result, result, &r);
0cc7d26f 1810
8264ba82
AG
1811 /* Free CHANGED, TYPE_CHANGED and UNCHANGED, but not NEW,
1812 because NEW has been put into the result vector. */
0cc7d26f 1813 VEC_free (varobj_p, changed);
8264ba82 1814 VEC_free (varobj_p, type_changed);
0cc7d26f
TT
1815 VEC_free (varobj_p, unchanged);
1816
b6313243
TT
1817 continue;
1818 }
1819 }
28335dcc
VP
1820
1821 /* Push any children. Use reverse order so that the first
1822 child is popped from the work stack first, and so
1823 will be added to result first. This does not
1824 affect correctness, just "nicer". */
1825 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
8b93c638 1826 {
28335dcc 1827 varobj_p c = VEC_index (varobj_p, v->children, i);
a109c7c1 1828
28335dcc 1829 /* Child may be NULL if explicitly deleted by -var-delete. */
25d5ea92 1830 if (c != NULL && !c->frozen)
28335dcc 1831 {
cfce2ea2 1832 varobj_update_result r = {0};
a109c7c1 1833
cfce2ea2 1834 r.varobj = c;
b6313243 1835 VEC_safe_push (varobj_update_result, stack, &r);
28335dcc 1836 }
8b93c638 1837 }
b6313243
TT
1838
1839 if (r.changed || r.type_changed)
1840 VEC_safe_push (varobj_update_result, result, &r);
8b93c638
JM
1841 }
1842
b6313243
TT
1843 VEC_free (varobj_update_result, stack);
1844
f7f9ae2c 1845 return result;
8b93c638
JM
1846}
1847\f
1848
1849/* Helper functions */
1850
1851/*
1852 * Variable object construction/destruction
1853 */
1854
1855static int
fba45db2
KB
1856delete_variable (struct cpstack **resultp, struct varobj *var,
1857 int only_children_p)
8b93c638
JM
1858{
1859 int delcount = 0;
1860
1861 delete_variable_1 (resultp, &delcount, var,
1862 only_children_p, 1 /* remove_from_parent_p */ );
1863
1864 return delcount;
1865}
1866
581e13c1 1867/* Delete the variable object VAR and its children. */
8b93c638
JM
1868/* IMPORTANT NOTE: If we delete a variable which is a child
1869 and the parent is not removed we dump core. It must be always
581e13c1 1870 initially called with remove_from_parent_p set. */
8b93c638 1871static void
72330bd6
AC
1872delete_variable_1 (struct cpstack **resultp, int *delcountp,
1873 struct varobj *var, int only_children_p,
1874 int remove_from_parent_p)
8b93c638 1875{
28335dcc 1876 int i;
8b93c638 1877
581e13c1 1878 /* Delete any children of this variable, too. */
28335dcc
VP
1879 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1880 {
1881 varobj_p child = VEC_index (varobj_p, var->children, i);
a109c7c1 1882
214270ab
VP
1883 if (!child)
1884 continue;
8b93c638 1885 if (!remove_from_parent_p)
28335dcc
VP
1886 child->parent = NULL;
1887 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
8b93c638 1888 }
28335dcc 1889 VEC_free (varobj_p, var->children);
8b93c638 1890
581e13c1 1891 /* if we were called to delete only the children we are done here. */
8b93c638
JM
1892 if (only_children_p)
1893 return;
1894
581e13c1 1895 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
73a93a32 1896 /* If the name is null, this is a temporary variable, that has not
581e13c1 1897 yet been installed, don't report it, it belongs to the caller... */
73a93a32 1898 if (var->obj_name != NULL)
8b93c638 1899 {
5b616ba1 1900 cppush (resultp, xstrdup (var->obj_name));
8b93c638
JM
1901 *delcountp = *delcountp + 1;
1902 }
1903
581e13c1 1904 /* If this variable has a parent, remove it from its parent's list. */
8b93c638
JM
1905 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1906 (as indicated by remove_from_parent_p) we don't bother doing an
1907 expensive list search to find the element to remove when we are
581e13c1 1908 discarding the list afterwards. */
72330bd6 1909 if ((remove_from_parent_p) && (var->parent != NULL))
8b93c638 1910 {
28335dcc 1911 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
8b93c638 1912 }
72330bd6 1913
73a93a32
JI
1914 if (var->obj_name != NULL)
1915 uninstall_variable (var);
8b93c638 1916
581e13c1 1917 /* Free memory associated with this variable. */
8b93c638
JM
1918 free_variable (var);
1919}
1920
581e13c1 1921/* Install the given variable VAR with the object name VAR->OBJ_NAME. */
8b93c638 1922static int
fba45db2 1923install_variable (struct varobj *var)
8b93c638
JM
1924{
1925 struct vlist *cv;
1926 struct vlist *newvl;
1927 const char *chp;
1928 unsigned int index = 0;
1929 unsigned int i = 1;
1930
1931 for (chp = var->obj_name; *chp; chp++)
1932 {
1933 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1934 }
1935
1936 cv = *(varobj_table + index);
1937 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1938 cv = cv->next;
1939
1940 if (cv != NULL)
8a3fe4f8 1941 error (_("Duplicate variable object name"));
8b93c638 1942
581e13c1 1943 /* Add varobj to hash table. */
8b93c638
JM
1944 newvl = xmalloc (sizeof (struct vlist));
1945 newvl->next = *(varobj_table + index);
1946 newvl->var = var;
1947 *(varobj_table + index) = newvl;
1948
581e13c1 1949 /* If root, add varobj to root list. */
b2c2bd75 1950 if (is_root_p (var))
8b93c638 1951 {
581e13c1 1952 /* Add to list of root variables. */
8b93c638
JM
1953 if (rootlist == NULL)
1954 var->root->next = NULL;
1955 else
1956 var->root->next = rootlist;
1957 rootlist = var->root;
8b93c638
JM
1958 }
1959
1960 return 1; /* OK */
1961}
1962
581e13c1 1963/* Unistall the object VAR. */
8b93c638 1964static void
fba45db2 1965uninstall_variable (struct varobj *var)
8b93c638
JM
1966{
1967 struct vlist *cv;
1968 struct vlist *prev;
1969 struct varobj_root *cr;
1970 struct varobj_root *prer;
1971 const char *chp;
1972 unsigned int index = 0;
1973 unsigned int i = 1;
1974
581e13c1 1975 /* Remove varobj from hash table. */
8b93c638
JM
1976 for (chp = var->obj_name; *chp; chp++)
1977 {
1978 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1979 }
1980
1981 cv = *(varobj_table + index);
1982 prev = NULL;
1983 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1984 {
1985 prev = cv;
1986 cv = cv->next;
1987 }
1988
1989 if (varobjdebug)
1990 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
1991
1992 if (cv == NULL)
1993 {
72330bd6
AC
1994 warning
1995 ("Assertion failed: Could not find variable object \"%s\" to delete",
1996 var->obj_name);
8b93c638
JM
1997 return;
1998 }
1999
2000 if (prev == NULL)
2001 *(varobj_table + index) = cv->next;
2002 else
2003 prev->next = cv->next;
2004
b8c9b27d 2005 xfree (cv);
8b93c638 2006
581e13c1 2007 /* If root, remove varobj from root list. */
b2c2bd75 2008 if (is_root_p (var))
8b93c638 2009 {
581e13c1 2010 /* Remove from list of root variables. */
8b93c638
JM
2011 if (rootlist == var->root)
2012 rootlist = var->root->next;
2013 else
2014 {
2015 prer = NULL;
2016 cr = rootlist;
2017 while ((cr != NULL) && (cr->rootvar != var))
2018 {
2019 prer = cr;
2020 cr = cr->next;
2021 }
2022 if (cr == NULL)
2023 {
8f7e195f
JB
2024 warning (_("Assertion failed: Could not find "
2025 "varobj \"%s\" in root list"),
3e43a32a 2026 var->obj_name);
8b93c638
JM
2027 return;
2028 }
2029 if (prer == NULL)
2030 rootlist = NULL;
2031 else
2032 prer->next = cr->next;
2033 }
8b93c638
JM
2034 }
2035
2036}
2037
581e13c1 2038/* Create and install a child of the parent of the given name. */
8b93c638 2039static struct varobj *
fba45db2 2040create_child (struct varobj *parent, int index, char *name)
b6313243 2041{
5a2e0d6e
YQ
2042 struct varobj_item item;
2043
2044 item.name = name;
2045 item.value = value_of_child (parent, index);
2046
2047 return create_child_with_value (parent, index, &item);
b6313243
TT
2048}
2049
2050static struct varobj *
5a2e0d6e
YQ
2051create_child_with_value (struct varobj *parent, int index,
2052 struct varobj_item *item)
8b93c638
JM
2053{
2054 struct varobj *child;
2055 char *childs_name;
2056
2057 child = new_variable ();
2058
5e5ac9a5 2059 /* NAME is allocated by caller. */
5a2e0d6e 2060 child->name = item->name;
8b93c638 2061 child->index = index;
8b93c638
JM
2062 child->parent = parent;
2063 child->root = parent->root;
85254831 2064
99ad9427 2065 if (varobj_is_anonymous_child (child))
85254831
KS
2066 childs_name = xstrprintf ("%s.%d_anonymous", parent->obj_name, index);
2067 else
5a2e0d6e 2068 childs_name = xstrprintf ("%s.%s", parent->obj_name, item->name);
8b93c638 2069 child->obj_name = childs_name;
85254831 2070
8b93c638
JM
2071 install_variable (child);
2072
acd65feb
VP
2073 /* Compute the type of the child. Must do this before
2074 calling install_new_value. */
5a2e0d6e 2075 if (item->value != NULL)
acd65feb 2076 /* If the child had no evaluation errors, var->value
581e13c1 2077 will be non-NULL and contain a valid type. */
5a2e0d6e 2078 child->type = value_actual_type (item->value, 0, NULL);
acd65feb 2079 else
581e13c1 2080 /* Otherwise, we must compute the type. */
ca20d462
YQ
2081 child->type = (*child->root->lang_ops->type_of_child) (child->parent,
2082 child->index);
5a2e0d6e 2083 install_new_value (child, item->value, 1);
acd65feb 2084
8b93c638
JM
2085 return child;
2086}
8b93c638
JM
2087\f
2088
2089/*
2090 * Miscellaneous utility functions.
2091 */
2092
581e13c1 2093/* Allocate memory and initialize a new variable. */
8b93c638
JM
2094static struct varobj *
2095new_variable (void)
2096{
2097 struct varobj *var;
2098
2099 var = (struct varobj *) xmalloc (sizeof (struct varobj));
2100 var->name = NULL;
02142340 2101 var->path_expr = NULL;
8b93c638
JM
2102 var->obj_name = NULL;
2103 var->index = -1;
2104 var->type = NULL;
2105 var->value = NULL;
8b93c638
JM
2106 var->num_children = -1;
2107 var->parent = NULL;
2108 var->children = NULL;
2109 var->format = 0;
2110 var->root = NULL;
fb9b6b35 2111 var->updated = 0;
85265413 2112 var->print_value = NULL;
25d5ea92
VP
2113 var->frozen = 0;
2114 var->not_fetched = 0;
bb5ce47a
YQ
2115 var->dynamic
2116 = (struct varobj_dynamic *) xmalloc (sizeof (struct varobj_dynamic));
2117 var->dynamic->children_requested = 0;
0cc7d26f
TT
2118 var->from = -1;
2119 var->to = -1;
bb5ce47a
YQ
2120 var->dynamic->constructor = 0;
2121 var->dynamic->pretty_printer = 0;
2122 var->dynamic->child_iter = 0;
2123 var->dynamic->saved_item = 0;
8b93c638
JM
2124
2125 return var;
2126}
2127
581e13c1 2128/* Allocate memory and initialize a new root variable. */
8b93c638
JM
2129static struct varobj *
2130new_root_variable (void)
2131{
2132 struct varobj *var = new_variable ();
a109c7c1 2133
3e43a32a 2134 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));
ca20d462 2135 var->root->lang_ops = NULL;
8b93c638
JM
2136 var->root->exp = NULL;
2137 var->root->valid_block = NULL;
7a424e99 2138 var->root->frame = null_frame_id;
a5defcdc 2139 var->root->floating = 0;
8b93c638 2140 var->root->rootvar = NULL;
8756216b 2141 var->root->is_valid = 1;
8b93c638
JM
2142
2143 return var;
2144}
2145
581e13c1 2146/* Free any allocated memory associated with VAR. */
8b93c638 2147static void
fba45db2 2148free_variable (struct varobj *var)
8b93c638 2149{
d452c4bc 2150#if HAVE_PYTHON
bb5ce47a 2151 if (var->dynamic->pretty_printer != NULL)
d452c4bc
UW
2152 {
2153 struct cleanup *cleanup = varobj_ensure_python_env (var);
bb5ce47a
YQ
2154
2155 Py_XDECREF (var->dynamic->constructor);
2156 Py_XDECREF (var->dynamic->pretty_printer);
d452c4bc
UW
2157 do_cleanups (cleanup);
2158 }
2159#endif
2160
827f100c
YQ
2161 varobj_iter_delete (var->dynamic->child_iter);
2162 varobj_clear_saved_item (var->dynamic);
36746093
JK
2163 value_free (var->value);
2164
581e13c1 2165 /* Free the expression if this is a root variable. */
b2c2bd75 2166 if (is_root_p (var))
8b93c638 2167 {
3038237c 2168 xfree (var->root->exp);
8038e1e2 2169 xfree (var->root);
8b93c638
JM
2170 }
2171
8038e1e2
AC
2172 xfree (var->name);
2173 xfree (var->obj_name);
85265413 2174 xfree (var->print_value);
02142340 2175 xfree (var->path_expr);
bb5ce47a 2176 xfree (var->dynamic);
8038e1e2 2177 xfree (var);
8b93c638
JM
2178}
2179
74b7792f
AC
2180static void
2181do_free_variable_cleanup (void *var)
2182{
2183 free_variable (var);
2184}
2185
2186static struct cleanup *
2187make_cleanup_free_variable (struct varobj *var)
2188{
2189 return make_cleanup (do_free_variable_cleanup, var);
2190}
2191
6e2a9270
VP
2192/* Return the type of the value that's stored in VAR,
2193 or that would have being stored there if the
581e13c1 2194 value were accessible.
6e2a9270
VP
2195
2196 This differs from VAR->type in that VAR->type is always
2197 the true type of the expession in the source language.
2198 The return value of this function is the type we're
2199 actually storing in varobj, and using for displaying
2200 the values and for comparing previous and new values.
2201
2202 For example, top-level references are always stripped. */
99ad9427
YQ
2203struct type *
2204varobj_get_value_type (struct varobj *var)
6e2a9270
VP
2205{
2206 struct type *type;
2207
2208 if (var->value)
2209 type = value_type (var->value);
2210 else
2211 type = var->type;
2212
2213 type = check_typedef (type);
2214
2215 if (TYPE_CODE (type) == TYPE_CODE_REF)
2216 type = get_target_type (type);
2217
2218 type = check_typedef (type);
2219
2220 return type;
2221}
2222
8b93c638 2223/* What is the default display for this variable? We assume that
581e13c1 2224 everything is "natural". Any exceptions? */
8b93c638 2225static enum varobj_display_formats
fba45db2 2226variable_default_display (struct varobj *var)
8b93c638
JM
2227{
2228 return FORMAT_NATURAL;
2229}
2230
581e13c1 2231/* FIXME: The following should be generic for any pointer. */
8b93c638 2232static void
fba45db2 2233cppush (struct cpstack **pstack, char *name)
8b93c638
JM
2234{
2235 struct cpstack *s;
2236
2237 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2238 s->name = name;
2239 s->next = *pstack;
2240 *pstack = s;
2241}
2242
581e13c1 2243/* FIXME: The following should be generic for any pointer. */
8b93c638 2244static char *
fba45db2 2245cppop (struct cpstack **pstack)
8b93c638
JM
2246{
2247 struct cpstack *s;
2248 char *v;
2249
2250 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2251 return NULL;
2252
2253 s = *pstack;
2254 v = s->name;
2255 *pstack = (*pstack)->next;
b8c9b27d 2256 xfree (s);
8b93c638
JM
2257
2258 return v;
2259}
2260\f
2261/*
2262 * Language-dependencies
2263 */
2264
2265/* Common entry points */
2266
8b93c638
JM
2267/* Return the number of children for a given variable.
2268 The result of this function is defined by the language
581e13c1 2269 implementation. The number of children returned by this function
8b93c638 2270 is the number of children that the user will see in the variable
581e13c1 2271 display. */
8b93c638 2272static int
fba45db2 2273number_of_children (struct varobj *var)
8b93c638 2274{
ca20d462 2275 return (*var->root->lang_ops->number_of_children) (var);
8b93c638
JM
2276}
2277
3e43a32a 2278/* What is the expression for the root varobj VAR? Returns a malloc'd
581e13c1 2279 string. */
8b93c638 2280static char *
fba45db2 2281name_of_variable (struct varobj *var)
8b93c638 2282{
ca20d462 2283 return (*var->root->lang_ops->name_of_variable) (var);
8b93c638
JM
2284}
2285
3e43a32a 2286/* What is the name of the INDEX'th child of VAR? Returns a malloc'd
581e13c1 2287 string. */
8b93c638 2288static char *
fba45db2 2289name_of_child (struct varobj *var, int index)
8b93c638 2290{
ca20d462 2291 return (*var->root->lang_ops->name_of_child) (var, index);
8b93c638
JM
2292}
2293
2213e2be
YQ
2294/* If frame associated with VAR can be found, switch
2295 to it and return 1. Otherwise, return 0. */
2296
2297static int
2298check_scope (struct varobj *var)
2299{
2300 struct frame_info *fi;
2301 int scope;
2302
2303 fi = frame_find_by_id (var->root->frame);
2304 scope = fi != NULL;
2305
2306 if (fi)
2307 {
2308 CORE_ADDR pc = get_frame_pc (fi);
2309
2310 if (pc < BLOCK_START (var->root->valid_block) ||
2311 pc >= BLOCK_END (var->root->valid_block))
2312 scope = 0;
2313 else
2314 select_frame (fi);
2315 }
2316 return scope;
2317}
2318
2319/* Helper function to value_of_root. */
2320
2321static struct value *
2322value_of_root_1 (struct varobj **var_handle)
2323{
2324 struct value *new_val = NULL;
2325 struct varobj *var = *var_handle;
2326 int within_scope = 0;
2327 struct cleanup *back_to;
2328
2329 /* Only root variables can be updated... */
2330 if (!is_root_p (var))
2331 /* Not a root var. */
2332 return NULL;
2333
2334 back_to = make_cleanup_restore_current_thread ();
2335
2336 /* Determine whether the variable is still around. */
2337 if (var->root->valid_block == NULL || var->root->floating)
2338 within_scope = 1;
2339 else if (var->root->thread_id == 0)
2340 {
2341 /* The program was single-threaded when the variable object was
2342 created. Technically, it's possible that the program became
2343 multi-threaded since then, but we don't support such
2344 scenario yet. */
2345 within_scope = check_scope (var);
2346 }
2347 else
2348 {
2349 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
2350 if (in_thread_list (ptid))
2351 {
2352 switch_to_thread (ptid);
2353 within_scope = check_scope (var);
2354 }
2355 }
2356
2357 if (within_scope)
2358 {
2359 volatile struct gdb_exception except;
2360
2361 /* We need to catch errors here, because if evaluate
2362 expression fails we want to just return NULL. */
2363 TRY_CATCH (except, RETURN_MASK_ERROR)
2364 {
2365 new_val = evaluate_expression (var->root->exp);
2366 }
2367 }
2368
2369 do_cleanups (back_to);
2370
2371 return new_val;
2372}
2373
a5defcdc
VP
2374/* What is the ``struct value *'' of the root variable VAR?
2375 For floating variable object, evaluation can get us a value
2376 of different type from what is stored in varobj already. In
2377 that case:
2378 - *type_changed will be set to 1
2379 - old varobj will be freed, and new one will be
2380 created, with the same name.
2381 - *var_handle will be set to the new varobj
2382 Otherwise, *type_changed will be set to 0. */
30b28db1 2383static struct value *
fba45db2 2384value_of_root (struct varobj **var_handle, int *type_changed)
8b93c638 2385{
73a93a32
JI
2386 struct varobj *var;
2387
2388 if (var_handle == NULL)
2389 return NULL;
2390
2391 var = *var_handle;
2392
2393 /* This should really be an exception, since this should
581e13c1 2394 only get called with a root variable. */
73a93a32 2395
b2c2bd75 2396 if (!is_root_p (var))
73a93a32
JI
2397 return NULL;
2398
a5defcdc 2399 if (var->root->floating)
73a93a32
JI
2400 {
2401 struct varobj *tmp_var;
2402 char *old_type, *new_type;
6225abfa 2403
73a93a32
JI
2404 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2405 USE_SELECTED_FRAME);
2406 if (tmp_var == NULL)
2407 {
2408 return NULL;
2409 }
6225abfa 2410 old_type = varobj_get_type (var);
73a93a32 2411 new_type = varobj_get_type (tmp_var);
72330bd6 2412 if (strcmp (old_type, new_type) == 0)
73a93a32 2413 {
fcacd99f
VP
2414 /* The expression presently stored inside var->root->exp
2415 remembers the locations of local variables relatively to
2416 the frame where the expression was created (in DWARF location
2417 button, for example). Naturally, those locations are not
2418 correct in other frames, so update the expression. */
2419
2420 struct expression *tmp_exp = var->root->exp;
a109c7c1 2421
fcacd99f
VP
2422 var->root->exp = tmp_var->root->exp;
2423 tmp_var->root->exp = tmp_exp;
2424
73a93a32
JI
2425 varobj_delete (tmp_var, NULL, 0);
2426 *type_changed = 0;
2427 }
2428 else
2429 {
1b36a34b 2430 tmp_var->obj_name = xstrdup (var->obj_name);
0cc7d26f
TT
2431 tmp_var->from = var->from;
2432 tmp_var->to = var->to;
a5defcdc
VP
2433 varobj_delete (var, NULL, 0);
2434
73a93a32
JI
2435 install_variable (tmp_var);
2436 *var_handle = tmp_var;
705da579 2437 var = *var_handle;
73a93a32
JI
2438 *type_changed = 1;
2439 }
74dddad3
MS
2440 xfree (old_type);
2441 xfree (new_type);
73a93a32
JI
2442 }
2443 else
2444 {
2445 *type_changed = 0;
2446 }
2447
7a290c40
JB
2448 {
2449 struct value *value;
2450
2213e2be 2451 value = value_of_root_1 (var_handle);
7a290c40
JB
2452 if (var->value == NULL || value == NULL)
2453 {
2454 /* For root varobj-s, a NULL value indicates a scoping issue.
2455 So, nothing to do in terms of checking for mutations. */
2456 }
2457 else if (varobj_value_has_mutated (var, value, value_type (value)))
2458 {
2459 /* The type has mutated, so the children are no longer valid.
2460 Just delete them, and tell our caller that the type has
2461 changed. */
2462 varobj_delete (var, NULL, 1 /* only_children */);
2463 var->num_children = -1;
2464 var->to = -1;
2465 var->from = -1;
2466 *type_changed = 1;
2467 }
2468 return value;
2469 }
8b93c638
JM
2470}
2471
581e13c1 2472/* What is the ``struct value *'' for the INDEX'th child of PARENT? */
30b28db1 2473static struct value *
fba45db2 2474value_of_child (struct varobj *parent, int index)
8b93c638 2475{
30b28db1 2476 struct value *value;
8b93c638 2477
ca20d462 2478 value = (*parent->root->lang_ops->value_of_child) (parent, index);
8b93c638 2479
8b93c638
JM
2480 return value;
2481}
2482
581e13c1 2483/* GDB already has a command called "value_of_variable". Sigh. */
8b93c638 2484static char *
de051565 2485my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 2486{
8756216b 2487 if (var->root->is_valid)
0cc7d26f 2488 {
bb5ce47a 2489 if (var->dynamic->pretty_printer != NULL)
99ad9427 2490 return varobj_value_get_print_value (var->value, var->format, var);
ca20d462 2491 return (*var->root->lang_ops->value_of_variable) (var, format);
0cc7d26f 2492 }
8756216b
DP
2493 else
2494 return NULL;
8b93c638
JM
2495}
2496
99ad9427
YQ
2497void
2498varobj_formatted_print_options (struct value_print_options *opts,
2499 enum varobj_display_formats format)
2500{
2501 get_formatted_print_options (opts, format_code[(int) format]);
2502 opts->deref_ref = 0;
2503 opts->raw = 1;
2504}
2505
2506char *
2507varobj_value_get_print_value (struct value *value,
2508 enum varobj_display_formats format,
2509 struct varobj *var)
85265413 2510{
57e66780 2511 struct ui_file *stb;
621c8364 2512 struct cleanup *old_chain;
ac91cd70 2513 char *thevalue = NULL;
79a45b7d 2514 struct value_print_options opts;
be759fcf
PM
2515 struct type *type = NULL;
2516 long len = 0;
2517 char *encoding = NULL;
2518 struct gdbarch *gdbarch = NULL;
3a182a69
JK
2519 /* Initialize it just to avoid a GCC false warning. */
2520 CORE_ADDR str_addr = 0;
09ca9e2e 2521 int string_print = 0;
57e66780
DJ
2522
2523 if (value == NULL)
2524 return NULL;
2525
621c8364
TT
2526 stb = mem_fileopen ();
2527 old_chain = make_cleanup_ui_file_delete (stb);
2528
be759fcf 2529 gdbarch = get_type_arch (value_type (value));
b6313243 2530#if HAVE_PYTHON
0646da15
TT
2531 if (gdb_python_initialized)
2532 {
bb5ce47a 2533 PyObject *value_formatter = var->dynamic->pretty_printer;
d452c4bc 2534
0646da15 2535 varobj_ensure_python_env (var);
09ca9e2e 2536
0646da15
TT
2537 if (value_formatter)
2538 {
2539 /* First check to see if we have any children at all. If so,
2540 we simply return {...}. */
2541 if (dynamic_varobj_has_child_method (var))
2542 {
2543 do_cleanups (old_chain);
2544 return xstrdup ("{...}");
2545 }
b6313243 2546
0646da15
TT
2547 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2548 {
2549 struct value *replacement;
2550 PyObject *output = NULL;
2551
2552 output = apply_varobj_pretty_printer (value_formatter,
2553 &replacement,
2554 stb);
2555
2556 /* If we have string like output ... */
2557 if (output)
2558 {
2559 make_cleanup_py_decref (output);
2560
2561 /* If this is a lazy string, extract it. For lazy
2562 strings we always print as a string, so set
2563 string_print. */
2564 if (gdbpy_is_lazy_string (output))
2565 {
2566 gdbpy_extract_lazy_string (output, &str_addr, &type,
2567 &len, &encoding);
2568 make_cleanup (free_current_contents, &encoding);
2569 string_print = 1;
2570 }
2571 else
2572 {
2573 /* If it is a regular (non-lazy) string, extract
2574 it and copy the contents into THEVALUE. If the
2575 hint says to print it as a string, set
2576 string_print. Otherwise just return the extracted
2577 string as a value. */
2578
2579 char *s = python_string_to_target_string (output);
2580
2581 if (s)
2582 {
2583 char *hint;
2584
2585 hint = gdbpy_get_display_hint (value_formatter);
2586 if (hint)
2587 {
2588 if (!strcmp (hint, "string"))
2589 string_print = 1;
2590 xfree (hint);
2591 }
2592
2593 len = strlen (s);
2594 thevalue = xmemdup (s, len + 1, len + 1);
2595 type = builtin_type (gdbarch)->builtin_char;
2596 xfree (s);
2597
2598 if (!string_print)
2599 {
2600 do_cleanups (old_chain);
2601 return thevalue;
2602 }
2603
2604 make_cleanup (xfree, thevalue);
2605 }
2606 else
2607 gdbpy_print_stack ();
2608 }
2609 }
2610 /* If the printer returned a replacement value, set VALUE
2611 to REPLACEMENT. If there is not a replacement value,
2612 just use the value passed to this function. */
2613 if (replacement)
2614 value = replacement;
2615 }
2616 }
2617 }
b6313243
TT
2618#endif
2619
99ad9427 2620 varobj_formatted_print_options (&opts, format);
00bd41d6
PM
2621
2622 /* If the THEVALUE has contents, it is a regular string. */
b6313243 2623 if (thevalue)
ac91cd70 2624 LA_PRINT_STRING (stb, type, (gdb_byte *) thevalue, len, encoding, 0, &opts);
09ca9e2e 2625 else if (string_print)
00bd41d6
PM
2626 /* Otherwise, if string_print is set, and it is not a regular
2627 string, it is a lazy string. */
09ca9e2e 2628 val_print_string (type, encoding, str_addr, len, stb, &opts);
b6313243 2629 else
00bd41d6 2630 /* All other cases. */
b6313243 2631 common_val_print (value, stb, 0, &opts, current_language);
00bd41d6 2632
759ef836 2633 thevalue = ui_file_xstrdup (stb, NULL);
57e66780 2634
85265413
NR
2635 do_cleanups (old_chain);
2636 return thevalue;
2637}
2638
340a7723
NR
2639int
2640varobj_editable_p (struct varobj *var)
2641{
2642 struct type *type;
340a7723
NR
2643
2644 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2645 return 0;
2646
99ad9427 2647 type = varobj_get_value_type (var);
340a7723
NR
2648
2649 switch (TYPE_CODE (type))
2650 {
2651 case TYPE_CODE_STRUCT:
2652 case TYPE_CODE_UNION:
2653 case TYPE_CODE_ARRAY:
2654 case TYPE_CODE_FUNC:
2655 case TYPE_CODE_METHOD:
2656 return 0;
2657 break;
2658
2659 default:
2660 return 1;
2661 break;
2662 }
2663}
2664
d32cafc7 2665/* Call VAR's value_is_changeable_p language-specific callback. */
acd65feb 2666
99ad9427 2667int
b2c2bd75 2668varobj_value_is_changeable_p (struct varobj *var)
8b93c638 2669{
ca20d462 2670 return var->root->lang_ops->value_is_changeable_p (var);
8b93c638
JM
2671}
2672
5a413362
VP
2673/* Return 1 if that varobj is floating, that is is always evaluated in the
2674 selected frame, and not bound to thread/frame. Such variable objects
2675 are created using '@' as frame specifier to -var-create. */
2676int
2677varobj_floating_p (struct varobj *var)
2678{
2679 return var->root->floating;
2680}
2681
d32cafc7
JB
2682/* Implement the "value_is_changeable_p" varobj callback for most
2683 languages. */
2684
99ad9427
YQ
2685int
2686varobj_default_value_is_changeable_p (struct varobj *var)
d32cafc7
JB
2687{
2688 int r;
2689 struct type *type;
2690
2691 if (CPLUS_FAKE_CHILD (var))
2692 return 0;
2693
99ad9427 2694 type = varobj_get_value_type (var);
d32cafc7
JB
2695
2696 switch (TYPE_CODE (type))
2697 {
2698 case TYPE_CODE_STRUCT:
2699 case TYPE_CODE_UNION:
2700 case TYPE_CODE_ARRAY:
2701 r = 0;
2702 break;
2703
2704 default:
2705 r = 1;
2706 }
2707
2708 return r;
2709}
2710
54333c3b
JK
2711/* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
2712 with an arbitrary caller supplied DATA pointer. */
2713
2714void
2715all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
2716{
2717 struct varobj_root *var_root, *var_root_next;
2718
2719 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
2720
2721 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
2722 {
2723 var_root_next = var_root->next;
2724
2725 (*func) (var_root->rootvar, data);
2726 }
2727}
8756216b 2728
54333c3b 2729/* Invalidate varobj VAR if it is tied to locals and re-create it if it is
4e969b4f
AB
2730 defined on globals. It is a helper for varobj_invalidate.
2731
2732 This function is called after changing the symbol file, in this case the
2733 pointers to "struct type" stored by the varobj are no longer valid. All
2734 varobj must be either re-evaluated, or marked as invalid here. */
2dbd25e5 2735
54333c3b
JK
2736static void
2737varobj_invalidate_iter (struct varobj *var, void *unused)
8756216b 2738{
4e969b4f
AB
2739 /* global and floating var must be re-evaluated. */
2740 if (var->root->floating || var->root->valid_block == NULL)
2dbd25e5 2741 {
54333c3b 2742 struct varobj *tmp_var;
2dbd25e5 2743
54333c3b
JK
2744 /* Try to create a varobj with same expression. If we succeed
2745 replace the old varobj, otherwise invalidate it. */
2746 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2747 USE_CURRENT_FRAME);
2748 if (tmp_var != NULL)
2749 {
2750 tmp_var->obj_name = xstrdup (var->obj_name);
2751 varobj_delete (var, NULL, 0);
2752 install_variable (tmp_var);
2dbd25e5 2753 }
54333c3b
JK
2754 else
2755 var->root->is_valid = 0;
2dbd25e5 2756 }
54333c3b
JK
2757 else /* locals must be invalidated. */
2758 var->root->is_valid = 0;
2759}
2760
2761/* Invalidate the varobjs that are tied to locals and re-create the ones that
2762 are defined on globals.
2763 Invalidated varobjs will be always printed in_scope="invalid". */
2764
2765void
2766varobj_invalidate (void)
2767{
2768 all_root_varobjs (varobj_invalidate_iter, NULL);
8756216b 2769}
1c3569d4
MR
2770\f
2771extern void _initialize_varobj (void);
2772void
2773_initialize_varobj (void)
2774{
2775 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
2776
2777 varobj_table = xmalloc (sizeof_table);
2778 memset (varobj_table, 0, sizeof_table);
2779
2780 add_setshow_zuinteger_cmd ("varobj", class_maintenance,
2781 &varobjdebug,
2782 _("Set varobj debugging."),
2783 _("Show varobj debugging."),
2784 _("When non-zero, varobj debugging is enabled."),
2785 NULL, show_varobjdebug,
2786 &setdebuglist, &showdebuglist);
2787}