]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/varobj.c
gdb: Add test for some error cases of @entry usage
[thirdparty/binutils-gdb.git] / gdb / varobj.c
CommitLineData
8b93c638 1/* Implementation of the GDB variable objects API.
bc8332bb 2
e2882c85 3 Copyright (C) 1999-2018 Free Software Foundation, Inc.
8b93c638
JM
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
a9762ec7 7 the Free Software Foundation; either version 3 of the License, or
8b93c638
JM
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
a9762ec7 16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
8b93c638
JM
17
18#include "defs.h"
19#include "value.h"
20#include "expression.h"
21#include "frame.h"
8b93c638 22#include "language.h"
8b93c638 23#include "gdbcmd.h"
d2353924 24#include "block.h"
79a45b7d 25#include "valprint.h"
0cc7d26f 26#include "gdb_regex.h"
8b93c638
JM
27
28#include "varobj.h"
28335dcc 29#include "vec.h"
6208b47d
VP
30#include "gdbthread.h"
31#include "inferior.h"
827f100c 32#include "varobj-iter.h"
8b93c638 33
b6313243
TT
34#if HAVE_PYTHON
35#include "python/python.h"
36#include "python/python-internal.h"
bde7b3e3 37#include "python/py-ref.h"
50389644
PA
38#else
39typedef int PyObject;
b6313243
TT
40#endif
41
8b93c638
JM
42/* Non-zero if we want to see trace of varobj level stuff. */
43
ccce17b0 44unsigned int varobjdebug = 0;
920d2a44
AC
45static void
46show_varobjdebug (struct ui_file *file, int from_tty,
47 struct cmd_list_element *c, const char *value)
48{
49 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
50}
8b93c638 51
581e13c1 52/* String representations of gdb's format codes. */
a121b7c1 53const char *varobj_format_string[] =
1c35a88f 54 { "natural", "binary", "decimal", "hexadecimal", "octal", "zero-hexadecimal" };
8b93c638 55
0cc7d26f 56/* True if we want to allow Python-based pretty-printing. */
4c37490d 57static bool pretty_printing = false;
0cc7d26f
TT
58
59void
60varobj_enable_pretty_printing (void)
61{
4c37490d 62 pretty_printing = true;
0cc7d26f
TT
63}
64
8b93c638
JM
65/* Data structures */
66
67/* Every root variable has one of these structures saved in its
4d01a485 68 varobj. */
8b93c638 69struct varobj_root
72330bd6 70{
4d01a485
PA
71 /* The expression for this parent. */
72 expression_up exp;
8b93c638 73
581e13c1 74 /* Block for which this expression is valid. */
9e5b9d2b 75 const struct block *valid_block = NULL;
8b93c638 76
44a67aa7
VP
77 /* The frame for this expression. This field is set iff valid_block is
78 not NULL. */
9e5b9d2b 79 struct frame_id frame = null_frame_id;
8b93c638 80
5d5658a1 81 /* The global thread ID that this varobj_root belongs to. This field
581e13c1 82 is only valid if valid_block is not NULL.
c5b48eac
VP
83 When not 0, indicates which thread 'frame' belongs to.
84 When 0, indicates that the thread list was empty when the varobj_root
85 was created. */
9e5b9d2b 86 int thread_id = 0;
c5b48eac 87
4c37490d 88 /* If true, the -var-update always recomputes the value in the
a5defcdc 89 current thread and frame. Otherwise, variable object is
581e13c1 90 always updated in the specific scope/thread/frame. */
4c37490d 91 bool floating = false;
73a93a32 92
4c37490d 93 /* Flag that indicates validity: set to false when this varobj_root refers
8756216b 94 to symbols that do not exist anymore. */
4c37490d 95 bool is_valid = true;
8756216b 96
99ad9427
YQ
97 /* Language-related operations for this variable and its
98 children. */
9e5b9d2b 99 const struct lang_varobj_ops *lang_ops = NULL;
8b93c638 100
581e13c1 101 /* The varobj for this root node. */
9e5b9d2b 102 struct varobj *rootvar = NULL;
8b93c638 103
72330bd6 104 /* Next root variable */
9e5b9d2b 105 struct varobj_root *next = NULL;
72330bd6 106};
8b93c638 107
bb5ce47a 108/* Dynamic part of varobj. */
8b93c638 109
bb5ce47a
YQ
110struct varobj_dynamic
111{
b6313243
TT
112 /* Whether the children of this varobj were requested. This field is
113 used to decide if dynamic varobj should recompute their children.
114 In the event that the frontend never asked for the children, we
115 can avoid that. */
bd046f64 116 bool children_requested = false;
b6313243 117
0cc7d26f
TT
118 /* The pretty-printer constructor. If NULL, then the default
119 pretty-printer will be looked up. If None, then no
120 pretty-printer will be installed. */
9e5b9d2b 121 PyObject *constructor = NULL;
0cc7d26f 122
b6313243
TT
123 /* The pretty-printer that has been constructed. If NULL, then a
124 new printer object is needed, and one will be constructed. */
9e5b9d2b 125 PyObject *pretty_printer = NULL;
0cc7d26f
TT
126
127 /* The iterator returned by the printer's 'children' method, or NULL
128 if not available. */
9e5b9d2b 129 struct varobj_iter *child_iter = NULL;
0cc7d26f
TT
130
131 /* We request one extra item from the iterator, so that we can
132 report to the caller whether there are more items than we have
133 already reported. However, we don't want to install this value
134 when we read it, because that will mess up future updates. So,
135 we stash it here instead. */
9e5b9d2b 136 varobj_item *saved_item = NULL;
72330bd6 137};
8b93c638 138
8b93c638
JM
139/* A list of varobjs */
140
141struct vlist
72330bd6
AC
142{
143 struct varobj *var;
144 struct vlist *next;
145};
8b93c638
JM
146
147/* Private function prototypes */
148
581e13c1 149/* Helper functions for the above subcommands. */
8b93c638 150
4c37490d 151static int delete_variable (struct varobj *, bool);
8b93c638 152
4c37490d 153static void delete_variable_1 (int *, struct varobj *, bool, bool);
8b93c638 154
4c37490d 155static bool install_variable (struct varobj *);
8b93c638 156
a14ed312 157static void uninstall_variable (struct varobj *);
8b93c638 158
2f408ecb 159static struct varobj *create_child (struct varobj *, int, std::string &);
8b93c638 160
b6313243 161static struct varobj *
5a2e0d6e
YQ
162create_child_with_value (struct varobj *parent, int index,
163 struct varobj_item *item);
b6313243 164
8b93c638
JM
165/* Utility routines */
166
a14ed312 167static enum varobj_display_formats variable_default_display (struct varobj *);
8b93c638 168
4c37490d
SM
169static bool update_type_if_necessary (struct varobj *var,
170 struct value *new_value);
8264ba82 171
4c37490d
SM
172static bool install_new_value (struct varobj *var, struct value *value,
173 bool initial);
acd65feb 174
581e13c1 175/* Language-specific routines. */
8b93c638 176
b09e2c59 177static int number_of_children (const struct varobj *);
8b93c638 178
2f408ecb 179static std::string name_of_variable (const struct varobj *);
8b93c638 180
2f408ecb 181static std::string name_of_child (struct varobj *, int);
8b93c638 182
4c37490d 183static struct value *value_of_root (struct varobj **var_handle, bool *);
8b93c638 184
c1cc6152 185static struct value *value_of_child (const struct varobj *parent, int index);
8b93c638 186
2f408ecb
PA
187static std::string my_value_of_variable (struct varobj *var,
188 enum varobj_display_formats format);
8b93c638 189
4c37490d 190static bool is_root_p (const struct varobj *var);
8b93c638 191
9a1edae6 192static struct varobj *varobj_add_child (struct varobj *var,
5a2e0d6e 193 struct varobj_item *item);
b6313243 194
8b93c638
JM
195/* Private data */
196
581e13c1 197/* Mappings of varobj_display_formats enums to gdb's format codes. */
1c35a88f 198static int format_code[] = { 0, 't', 'd', 'x', 'o', 'z' };
8b93c638 199
581e13c1 200/* Header of the list of root variable objects. */
8b93c638 201static struct varobj_root *rootlist;
8b93c638 202
581e13c1 203/* Prime number indicating the number of buckets in the hash table. */
5fa13070 204/* A prime large enough to avoid too many collisions. */
8b93c638
JM
205#define VAROBJ_TABLE_SIZE 227
206
581e13c1 207/* Pointer to the varobj hash table (built at run time). */
8b93c638
JM
208static struct vlist **varobj_table;
209
8b93c638
JM
210\f
211
212/* API Implementation */
4c37490d 213static bool
b09e2c59 214is_root_p (const struct varobj *var)
b2c2bd75
VP
215{
216 return (var->root->rootvar == var);
217}
8b93c638 218
d452c4bc 219#ifdef HAVE_PYTHON
6cd67bea
TT
220
221/* See python-internal.h. */
222gdbpy_enter_varobj::gdbpy_enter_varobj (const struct varobj *var)
223: gdbpy_enter (var->root->exp->gdbarch, var->root->exp->language_defn)
224{
225}
226
d452c4bc
UW
227#endif
228
7d8547c9
AC
229/* Return the full FRAME which corresponds to the given CORE_ADDR
230 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
231
232static struct frame_info *
233find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
234{
235 struct frame_info *frame = NULL;
236
237 if (frame_addr == (CORE_ADDR) 0)
238 return NULL;
239
9d49bdc2
PA
240 for (frame = get_current_frame ();
241 frame != NULL;
242 frame = get_prev_frame (frame))
7d8547c9 243 {
1fac167a
UW
244 /* The CORE_ADDR we get as argument was parsed from a string GDB
245 output as $fp. This output got truncated to gdbarch_addr_bit.
246 Truncate the frame base address in the same manner before
247 comparing it against our argument. */
248 CORE_ADDR frame_base = get_frame_base_address (frame);
249 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
a109c7c1 250
1fac167a
UW
251 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
252 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
253
254 if (frame_base == frame_addr)
7d8547c9
AC
255 return frame;
256 }
9d49bdc2
PA
257
258 return NULL;
7d8547c9
AC
259}
260
5fa13070
SM
261/* Creates a varobj (not its children). */
262
8b93c638 263struct varobj *
2f408ecb
PA
264varobj_create (const char *objname,
265 const char *expression, CORE_ADDR frame, enum varobj_type type)
8b93c638 266{
581e13c1 267 /* Fill out a varobj structure for the (root) variable being constructed. */
9e5b9d2b 268 std::unique_ptr<varobj> var (new varobj (new varobj_root));
8b93c638
JM
269
270 if (expression != NULL)
271 {
e4195b40 272 struct frame_info *fi;
35633fef 273 struct frame_id old_id = null_frame_id;
3977b71f 274 const struct block *block;
bbc13ae3 275 const char *p;
e55dccf0 276 struct value *value = NULL;
1bb9788d 277 CORE_ADDR pc;
8b93c638 278
9d49bdc2
PA
279 /* Parse and evaluate the expression, filling in as much of the
280 variable's data as possible. */
281
282 if (has_stack_frames ())
283 {
581e13c1 284 /* Allow creator to specify context of variable. */
9d49bdc2
PA
285 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
286 fi = get_selected_frame (NULL);
287 else
288 /* FIXME: cagney/2002-11-23: This code should be doing a
289 lookup using the frame ID and not just the frame's
290 ``address''. This, of course, means an interface
291 change. However, with out that interface change ISAs,
292 such as the ia64 with its two stacks, won't work.
293 Similar goes for the case where there is a frameless
294 function. */
295 fi = find_frame_addr_in_frame_chain (frame);
296 }
8b93c638 297 else
9d49bdc2 298 fi = NULL;
8b93c638 299
581e13c1 300 /* frame = -2 means always use selected frame. */
73a93a32 301 if (type == USE_SELECTED_FRAME)
4c37490d 302 var->root->floating = true;
73a93a32 303
1bb9788d 304 pc = 0;
8b93c638
JM
305 block = NULL;
306 if (fi != NULL)
1bb9788d
TT
307 {
308 block = get_frame_block (fi, 0);
309 pc = get_frame_pc (fi);
310 }
8b93c638
JM
311
312 p = expression;
313 innermost_block = NULL;
73a93a32 314 /* Wrap the call to parse expression, so we can
581e13c1 315 return a sensible error. */
492d29ea 316 TRY
8e7b59a5 317 {
1bb9788d 318 var->root->exp = parse_exp_1 (&p, pc, block, 0);
8e7b59a5
KS
319 }
320
492d29ea 321 CATCH (except, RETURN_MASK_ERROR)
73a93a32
JI
322 {
323 return NULL;
324 }
492d29ea 325 END_CATCH
8b93c638 326
581e13c1 327 /* Don't allow variables to be created for types. */
608b4967
TT
328 if (var->root->exp->elts[0].opcode == OP_TYPE
329 || var->root->exp->elts[0].opcode == OP_TYPEOF
330 || var->root->exp->elts[0].opcode == OP_DECLTYPE)
8b93c638 331 {
bc8332bb
AC
332 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
333 " as an expression.\n");
8b93c638
JM
334 return NULL;
335 }
336
9e5b9d2b 337 var->format = variable_default_display (var.get ());
8b93c638 338 var->root->valid_block = innermost_block;
2f408ecb 339 var->name = expression;
02142340 340 /* For a root var, the name and the expr are the same. */
2f408ecb 341 var->path_expr = expression;
8b93c638
JM
342
343 /* When the frame is different from the current frame,
344 we must select the appropriate frame before parsing
345 the expression, otherwise the value will not be current.
581e13c1 346 Since select_frame is so benign, just call it for all cases. */
4e22772d 347 if (innermost_block)
8b93c638 348 {
4e22772d
JK
349 /* User could specify explicit FRAME-ADDR which was not found but
350 EXPRESSION is frame specific and we would not be able to evaluate
351 it correctly next time. With VALID_BLOCK set we must also set
352 FRAME and THREAD_ID. */
353 if (fi == NULL)
354 error (_("Failed to find the specified frame"));
355
7a424e99 356 var->root->frame = get_frame_id (fi);
5d5658a1 357 var->root->thread_id = ptid_to_global_thread_id (inferior_ptid);
35633fef 358 old_id = get_frame_id (get_selected_frame (NULL));
c5b48eac 359 select_frame (fi);
8b93c638
JM
360 }
361
340a7723 362 /* We definitely need to catch errors here.
8b93c638 363 If evaluate_expression succeeds we got the value we wanted.
581e13c1 364 But if it fails, we still go on with a call to evaluate_type(). */
492d29ea 365 TRY
8e7b59a5 366 {
4d01a485 367 value = evaluate_expression (var->root->exp.get ());
8e7b59a5 368 }
492d29ea 369 CATCH (except, RETURN_MASK_ERROR)
e55dccf0
VP
370 {
371 /* Error getting the value. Try to at least get the
372 right type. */
4d01a485 373 struct value *type_only_value = evaluate_type (var->root->exp.get ());
a109c7c1 374
e55dccf0
VP
375 var->type = value_type (type_only_value);
376 }
492d29ea 377 END_CATCH
8264ba82 378
492d29ea
PA
379 if (value != NULL)
380 {
381 int real_type_found = 0;
382
383 var->type = value_actual_type (value, 0, &real_type_found);
384 if (real_type_found)
385 value = value_cast (var->type, value);
386 }
acd65feb 387
8b93c638 388 /* Set language info */
ca20d462 389 var->root->lang_ops = var->root->exp->language_defn->la_varobj_ops;
8b93c638 390
9e5b9d2b 391 install_new_value (var.get (), value, 1 /* Initial assignment */);
d32cafc7 392
581e13c1 393 /* Set ourselves as our root. */
9e5b9d2b 394 var->root->rootvar = var.get ();
8b93c638 395
581e13c1 396 /* Reset the selected frame. */
35633fef
JK
397 if (frame_id_p (old_id))
398 select_frame (frame_find_by_id (old_id));
8b93c638
JM
399 }
400
73a93a32 401 /* If the variable object name is null, that means this
581e13c1 402 is a temporary variable, so don't install it. */
73a93a32
JI
403
404 if ((var != NULL) && (objname != NULL))
8b93c638 405 {
2f408ecb 406 var->obj_name = objname;
8b93c638
JM
407
408 /* If a varobj name is duplicated, the install will fail so
581e13c1 409 we must cleanup. */
9e5b9d2b
SM
410 if (!install_variable (var.get ()))
411 return NULL;
8b93c638
JM
412 }
413
9e5b9d2b 414 return var.release ();
8b93c638
JM
415}
416
581e13c1 417/* Generates an unique name that can be used for a varobj. */
8b93c638 418
2d6960b4 419std::string
8b93c638
JM
420varobj_gen_name (void)
421{
422 static int id = 0;
8b93c638 423
581e13c1 424 /* Generate a name for this object. */
8b93c638 425 id++;
2d6960b4 426 return string_printf ("var%d", id);
8b93c638
JM
427}
428
61d8f275
JK
429/* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
430 error if OBJNAME cannot be found. */
8b93c638
JM
431
432struct varobj *
2f408ecb 433varobj_get_handle (const char *objname)
8b93c638
JM
434{
435 struct vlist *cv;
436 const char *chp;
437 unsigned int index = 0;
438 unsigned int i = 1;
439
440 for (chp = objname; *chp; chp++)
441 {
442 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
443 }
444
445 cv = *(varobj_table + index);
2f408ecb 446 while (cv != NULL && cv->var->obj_name != objname)
8b93c638
JM
447 cv = cv->next;
448
449 if (cv == NULL)
8a3fe4f8 450 error (_("Variable object not found"));
8b93c638
JM
451
452 return cv->var;
453}
454
581e13c1 455/* Given the handle, return the name of the object. */
8b93c638 456
2f408ecb 457const char *
b09e2c59 458varobj_get_objname (const struct varobj *var)
8b93c638 459{
2f408ecb 460 return var->obj_name.c_str ();
8b93c638
JM
461}
462
2f408ecb
PA
463/* Given the handle, return the expression represented by the
464 object. */
8b93c638 465
2f408ecb 466std::string
b09e2c59 467varobj_get_expression (const struct varobj *var)
8b93c638
JM
468{
469 return name_of_variable (var);
470}
471
30914ca8 472/* See varobj.h. */
8b93c638
JM
473
474int
4c37490d 475varobj_delete (struct varobj *var, bool only_children)
8b93c638 476{
30914ca8 477 return delete_variable (var, only_children);
8b93c638
JM
478}
479
d8b65138
JK
480#if HAVE_PYTHON
481
b6313243
TT
482/* Convenience function for varobj_set_visualizer. Instantiate a
483 pretty-printer for a given value. */
484static PyObject *
485instantiate_pretty_printer (PyObject *constructor, struct value *value)
486{
b6313243
TT
487 PyObject *val_obj = NULL;
488 PyObject *printer;
b6313243 489
b6313243 490 val_obj = value_to_value_object (value);
b6313243
TT
491 if (! val_obj)
492 return NULL;
493
494 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
495 Py_DECREF (val_obj);
496 return printer;
b6313243
TT
497}
498
d8b65138
JK
499#endif
500
581e13c1 501/* Set/Get variable object display format. */
8b93c638
JM
502
503enum varobj_display_formats
504varobj_set_display_format (struct varobj *var,
505 enum varobj_display_formats format)
506{
507 switch (format)
508 {
509 case FORMAT_NATURAL:
510 case FORMAT_BINARY:
511 case FORMAT_DECIMAL:
512 case FORMAT_HEXADECIMAL:
513 case FORMAT_OCTAL:
1c35a88f 514 case FORMAT_ZHEXADECIMAL:
8b93c638
JM
515 var->format = format;
516 break;
517
518 default:
519 var->format = variable_default_display (var);
520 }
521
ae7d22a6
VP
522 if (varobj_value_is_changeable_p (var)
523 && var->value && !value_lazy (var->value))
524 {
99ad9427
YQ
525 var->print_value = varobj_value_get_print_value (var->value,
526 var->format, var);
ae7d22a6
VP
527 }
528
8b93c638
JM
529 return var->format;
530}
531
532enum varobj_display_formats
b09e2c59 533varobj_get_display_format (const struct varobj *var)
8b93c638
JM
534{
535 return var->format;
536}
537
9b972014 538gdb::unique_xmalloc_ptr<char>
b09e2c59 539varobj_get_display_hint (const struct varobj *var)
b6313243 540{
9b972014 541 gdb::unique_xmalloc_ptr<char> result;
b6313243
TT
542
543#if HAVE_PYTHON
0646da15
TT
544 if (!gdb_python_initialized)
545 return NULL;
546
bde7b3e3 547 gdbpy_enter_varobj enter_py (var);
d452c4bc 548
bb5ce47a
YQ
549 if (var->dynamic->pretty_printer != NULL)
550 result = gdbpy_get_display_hint (var->dynamic->pretty_printer);
b6313243
TT
551#endif
552
553 return result;
554}
555
0cc7d26f
TT
556/* Return true if the varobj has items after TO, false otherwise. */
557
4c37490d 558bool
b09e2c59 559varobj_has_more (const struct varobj *var, int to)
0cc7d26f 560{
ddf0ea08 561 if (var->children.size () > to)
4c37490d 562 return true;
ddf0ea08
SM
563
564 return ((to == -1 || var->children.size () == to)
bb5ce47a 565 && (var->dynamic->saved_item != NULL));
0cc7d26f
TT
566}
567
c5b48eac
VP
568/* If the variable object is bound to a specific thread, that
569 is its evaluation can always be done in context of a frame
570 inside that thread, returns GDB id of the thread -- which
581e13c1 571 is always positive. Otherwise, returns -1. */
c5b48eac 572int
b09e2c59 573varobj_get_thread_id (const struct varobj *var)
c5b48eac
VP
574{
575 if (var->root->valid_block && var->root->thread_id > 0)
576 return var->root->thread_id;
577 else
578 return -1;
579}
580
25d5ea92 581void
4c37490d 582varobj_set_frozen (struct varobj *var, bool frozen)
25d5ea92
VP
583{
584 /* When a variable is unfrozen, we don't fetch its value.
585 The 'not_fetched' flag remains set, so next -var-update
586 won't complain.
587
588 We don't fetch the value, because for structures the client
589 should do -var-update anyway. It would be bad to have different
590 client-size logic for structure and other types. */
591 var->frozen = frozen;
592}
593
4c37490d 594bool
b09e2c59 595varobj_get_frozen (const struct varobj *var)
25d5ea92
VP
596{
597 return var->frozen;
598}
599
0cc7d26f
TT
600/* A helper function that restricts a range to what is actually
601 available in a VEC. This follows the usual rules for the meaning
602 of FROM and TO -- if either is negative, the entire range is
603 used. */
604
99ad9427 605void
ddf0ea08
SM
606varobj_restrict_range (const std::vector<varobj *> &children,
607 int *from, int *to)
0cc7d26f 608{
ddf0ea08
SM
609 int len = children.size ();
610
0cc7d26f
TT
611 if (*from < 0 || *to < 0)
612 {
613 *from = 0;
ddf0ea08 614 *to = len;
0cc7d26f
TT
615 }
616 else
617 {
ddf0ea08
SM
618 if (*from > len)
619 *from = len;
620 if (*to > len)
621 *to = len;
0cc7d26f
TT
622 if (*from > *to)
623 *from = *to;
624 }
625}
626
627/* A helper for update_dynamic_varobj_children that installs a new
628 child when needed. */
629
630static void
631install_dynamic_child (struct varobj *var,
0604393c
SM
632 std::vector<varobj *> *changed,
633 std::vector<varobj *> *type_changed,
634 std::vector<varobj *> *newobj,
635 std::vector<varobj *> *unchanged,
4c37490d 636 bool *cchanged,
0cc7d26f 637 int index,
5a2e0d6e 638 struct varobj_item *item)
0cc7d26f 639{
ddf0ea08 640 if (var->children.size () < index + 1)
0cc7d26f
TT
641 {
642 /* There's no child yet. */
5a2e0d6e 643 struct varobj *child = varobj_add_child (var, item);
a109c7c1 644
0604393c 645 if (newobj != NULL)
0cc7d26f 646 {
0604393c 647 newobj->push_back (child);
4c37490d 648 *cchanged = true;
0cc7d26f
TT
649 }
650 }
bf8793bb 651 else
0cc7d26f 652 {
ddf0ea08 653 varobj *existing = var->children[index];
4c37490d 654 bool type_updated = update_type_if_necessary (existing, item->value);
bf8793bb 655
8264ba82
AG
656 if (type_updated)
657 {
0604393c
SM
658 if (type_changed != NULL)
659 type_changed->push_back (existing);
8264ba82 660 }
5a2e0d6e 661 if (install_new_value (existing, item->value, 0))
0cc7d26f 662 {
0604393c
SM
663 if (!type_updated && changed != NULL)
664 changed->push_back (existing);
0cc7d26f 665 }
0604393c
SM
666 else if (!type_updated && unchanged != NULL)
667 unchanged->push_back (existing);
0cc7d26f
TT
668 }
669}
670
576ea091
YQ
671#if HAVE_PYTHON
672
4c37490d 673static bool
b09e2c59 674dynamic_varobj_has_child_method (const struct varobj *var)
0cc7d26f 675{
bb5ce47a 676 PyObject *printer = var->dynamic->pretty_printer;
0cc7d26f 677
0646da15 678 if (!gdb_python_initialized)
4c37490d 679 return false;
0646da15 680
bde7b3e3
TT
681 gdbpy_enter_varobj enter_py (var);
682 return PyObject_HasAttr (printer, gdbpy_children_cst);
0cc7d26f 683}
576ea091 684#endif
0cc7d26f 685
e5250216
YQ
686/* A factory for creating dynamic varobj's iterators. Returns an
687 iterator object suitable for iterating over VAR's children. */
688
689static struct varobj_iter *
690varobj_get_iterator (struct varobj *var)
691{
576ea091 692#if HAVE_PYTHON
e5250216
YQ
693 if (var->dynamic->pretty_printer)
694 return py_varobj_get_iterator (var, var->dynamic->pretty_printer);
576ea091 695#endif
e5250216
YQ
696
697 gdb_assert_not_reached (_("\
698requested an iterator from a non-dynamic varobj"));
699}
700
827f100c
YQ
701/* Release and clear VAR's saved item, if any. */
702
703static void
704varobj_clear_saved_item (struct varobj_dynamic *var)
705{
706 if (var->saved_item != NULL)
707 {
708 value_free (var->saved_item->value);
0a8beaba 709 delete var->saved_item;
827f100c
YQ
710 var->saved_item = NULL;
711 }
712}
0cc7d26f 713
4c37490d 714static bool
b6313243 715update_dynamic_varobj_children (struct varobj *var,
0604393c
SM
716 std::vector<varobj *> *changed,
717 std::vector<varobj *> *type_changed,
718 std::vector<varobj *> *newobj,
719 std::vector<varobj *> *unchanged,
4c37490d
SM
720 bool *cchanged,
721 bool update_children,
0cc7d26f
TT
722 int from,
723 int to)
b6313243 724{
b6313243 725 int i;
b6313243 726
4c37490d 727 *cchanged = false;
b6313243 728
bb5ce47a 729 if (update_children || var->dynamic->child_iter == NULL)
b6313243 730 {
e5250216
YQ
731 varobj_iter_delete (var->dynamic->child_iter);
732 var->dynamic->child_iter = varobj_get_iterator (var);
b6313243 733
827f100c 734 varobj_clear_saved_item (var->dynamic);
b6313243 735
e5250216 736 i = 0;
b6313243 737
bb5ce47a 738 if (var->dynamic->child_iter == NULL)
4c37490d 739 return false;
b6313243 740 }
0cc7d26f 741 else
ddf0ea08 742 i = var->children.size ();
b6313243 743
0cc7d26f
TT
744 /* We ask for one extra child, so that MI can report whether there
745 are more children. */
746 for (; to < 0 || i < to + 1; ++i)
b6313243 747 {
827f100c 748 varobj_item *item;
b6313243 749
0cc7d26f 750 /* See if there was a leftover from last time. */
827f100c 751 if (var->dynamic->saved_item != NULL)
0cc7d26f 752 {
bb5ce47a
YQ
753 item = var->dynamic->saved_item;
754 var->dynamic->saved_item = NULL;
0cc7d26f
TT
755 }
756 else
a4c8e806 757 {
e5250216 758 item = varobj_iter_next (var->dynamic->child_iter);
827f100c
YQ
759 /* Release vitem->value so its lifetime is not bound to the
760 execution of a command. */
761 if (item != NULL && item->value != NULL)
762 release_value_or_incref (item->value);
a4c8e806 763 }
b6313243 764
e5250216
YQ
765 if (item == NULL)
766 {
767 /* Iteration is done. Remove iterator from VAR. */
768 varobj_iter_delete (var->dynamic->child_iter);
769 var->dynamic->child_iter = NULL;
770 break;
771 }
0cc7d26f
TT
772 /* We don't want to push the extra child on any report list. */
773 if (to < 0 || i < to)
b6313243 774 {
4c37490d 775 bool can_mention = from < 0 || i >= from;
0cc7d26f 776
0cc7d26f 777 install_dynamic_child (var, can_mention ? changed : NULL,
8264ba82 778 can_mention ? type_changed : NULL,
fe978cb0 779 can_mention ? newobj : NULL,
0cc7d26f 780 can_mention ? unchanged : NULL,
5e5ac9a5 781 can_mention ? cchanged : NULL, i,
827f100c
YQ
782 item);
783
0a8beaba 784 delete item;
b6313243 785 }
0cc7d26f 786 else
b6313243 787 {
bb5ce47a 788 var->dynamic->saved_item = item;
b6313243 789
0cc7d26f
TT
790 /* We want to truncate the child list just before this
791 element. */
792 break;
793 }
b6313243
TT
794 }
795
ddf0ea08 796 if (i < var->children.size ())
b6313243 797 {
4c37490d 798 *cchanged = true;
ddf0ea08
SM
799 for (int j = i; j < var->children.size (); ++j)
800 varobj_delete (var->children[j], 0);
801
802 var->children.resize (i);
b6313243 803 }
0cc7d26f
TT
804
805 /* If there are fewer children than requested, note that the list of
806 children changed. */
ddf0ea08 807 if (to >= 0 && var->children.size () < to)
4c37490d 808 *cchanged = true;
0cc7d26f 809
ddf0ea08 810 var->num_children = var->children.size ();
b6313243 811
4c37490d 812 return true;
b6313243 813}
25d5ea92 814
8b93c638
JM
815int
816varobj_get_num_children (struct varobj *var)
817{
818 if (var->num_children == -1)
b6313243 819 {
31f628ae 820 if (varobj_is_dynamic_p (var))
0cc7d26f 821 {
4c37490d 822 bool dummy;
0cc7d26f
TT
823
824 /* If we have a dynamic varobj, don't report -1 children.
825 So, try to fetch some children first. */
8264ba82 826 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
4c37490d 827 false, 0, 0);
0cc7d26f
TT
828 }
829 else
b6313243
TT
830 var->num_children = number_of_children (var);
831 }
8b93c638 832
0cc7d26f 833 return var->num_children >= 0 ? var->num_children : 0;
8b93c638
JM
834}
835
836/* Creates a list of the immediate children of a variable object;
581e13c1 837 the return code is the number of such children or -1 on error. */
8b93c638 838
ddf0ea08 839const std::vector<varobj *> &
0cc7d26f 840varobj_list_children (struct varobj *var, int *from, int *to)
8b93c638 841{
bd046f64 842 var->dynamic->children_requested = true;
b6313243 843
31f628ae 844 if (varobj_is_dynamic_p (var))
0cc7d26f 845 {
4c37490d
SM
846 bool children_changed;
847
b6313243
TT
848 /* This, in theory, can result in the number of children changing without
849 frontend noticing. But well, calling -var-list-children on the same
850 varobj twice is not something a sane frontend would do. */
8264ba82 851 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
4c37490d 852 &children_changed, false, 0, *to);
99ad9427 853 varobj_restrict_range (var->children, from, to);
0cc7d26f
TT
854 return var->children;
855 }
8b93c638 856
8b93c638
JM
857 if (var->num_children == -1)
858 var->num_children = number_of_children (var);
859
74a44383
DJ
860 /* If that failed, give up. */
861 if (var->num_children == -1)
d56d46f5 862 return var->children;
74a44383 863
28335dcc
VP
864 /* If we're called when the list of children is not yet initialized,
865 allocate enough elements in it. */
ddf0ea08
SM
866 while (var->children.size () < var->num_children)
867 var->children.push_back (NULL);
28335dcc 868
ddf0ea08 869 for (int i = 0; i < var->num_children; i++)
8b93c638 870 {
ddf0ea08 871 if (var->children[i] == NULL)
28335dcc
VP
872 {
873 /* Either it's the first call to varobj_list_children for
874 this variable object, and the child was never created,
875 or it was explicitly deleted by the client. */
2f408ecb 876 std::string name = name_of_child (var, i);
ddf0ea08 877 var->children[i] = create_child (var, i, name);
28335dcc 878 }
8b93c638
JM
879 }
880
99ad9427 881 varobj_restrict_range (var->children, from, to);
d56d46f5 882 return var->children;
8b93c638
JM
883}
884
b6313243 885static struct varobj *
5a2e0d6e 886varobj_add_child (struct varobj *var, struct varobj_item *item)
b6313243 887{
ddf0ea08
SM
888 varobj *v = create_child_with_value (var, var->children.size (), item);
889
890 var->children.push_back (v);
a109c7c1 891
b6313243
TT
892 return v;
893}
894
8b93c638 895/* Obtain the type of an object Variable as a string similar to the one gdb
afa269ae
SM
896 prints on the console. The caller is responsible for freeing the string.
897 */
8b93c638 898
2f408ecb 899std::string
8b93c638
JM
900varobj_get_type (struct varobj *var)
901{
8ab91b96 902 /* For the "fake" variables, do not return a type. (Its type is
8756216b
DP
903 NULL, too.)
904 Do not return a type for invalid variables as well. */
905 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
2f408ecb 906 return std::string ();
8b93c638 907
1a4300e9 908 return type_to_string (var->type);
8b93c638
JM
909}
910
1ecb4ee0
DJ
911/* Obtain the type of an object variable. */
912
913struct type *
b09e2c59 914varobj_get_gdb_type (const struct varobj *var)
1ecb4ee0
DJ
915{
916 return var->type;
917}
918
85254831
KS
919/* Is VAR a path expression parent, i.e., can it be used to construct
920 a valid path expression? */
921
4c37490d 922static bool
b09e2c59 923is_path_expr_parent (const struct varobj *var)
85254831 924{
9a9a7608
AB
925 gdb_assert (var->root->lang_ops->is_path_expr_parent != NULL);
926 return var->root->lang_ops->is_path_expr_parent (var);
927}
85254831 928
9a9a7608
AB
929/* Is VAR a path expression parent, i.e., can it be used to construct
930 a valid path expression? By default we assume any VAR can be a path
931 parent. */
85254831 932
4c37490d 933bool
b09e2c59 934varobj_default_is_path_expr_parent (const struct varobj *var)
9a9a7608 935{
4c37490d 936 return true;
85254831
KS
937}
938
939/* Return the path expression parent for VAR. */
940
c1cc6152
SM
941const struct varobj *
942varobj_get_path_expr_parent (const struct varobj *var)
85254831 943{
c1cc6152 944 const struct varobj *parent = var;
85254831
KS
945
946 while (!is_root_p (parent) && !is_path_expr_parent (parent))
947 parent = parent->parent;
948
949 return parent;
950}
951
02142340
VP
952/* Return a pointer to the full rooted expression of varobj VAR.
953 If it has not been computed yet, compute it. */
2f408ecb
PA
954
955const char *
c1cc6152 956varobj_get_path_expr (const struct varobj *var)
02142340 957{
2f408ecb 958 if (var->path_expr.empty ())
02142340
VP
959 {
960 /* For root varobjs, we initialize path_expr
961 when creating varobj, so here it should be
962 child varobj. */
c1cc6152 963 struct varobj *mutable_var = (struct varobj *) var;
02142340 964 gdb_assert (!is_root_p (var));
2568868e 965
c1cc6152 966 mutable_var->path_expr = (*var->root->lang_ops->path_expr_of_child) (var);
02142340 967 }
2568868e 968
2f408ecb 969 return var->path_expr.c_str ();
02142340
VP
970}
971
fa4d0c40 972const struct language_defn *
b09e2c59 973varobj_get_language (const struct varobj *var)
8b93c638 974{
fa4d0c40 975 return var->root->exp->language_defn;
8b93c638
JM
976}
977
978int
b09e2c59 979varobj_get_attributes (const struct varobj *var)
8b93c638
JM
980{
981 int attributes = 0;
982
340a7723 983 if (varobj_editable_p (var))
581e13c1 984 /* FIXME: define masks for attributes. */
8b93c638
JM
985 attributes |= 0x00000001; /* Editable */
986
987 return attributes;
988}
989
cde5ef40
YQ
990/* Return true if VAR is a dynamic varobj. */
991
4c37490d 992bool
b09e2c59 993varobj_is_dynamic_p (const struct varobj *var)
0cc7d26f 994{
bb5ce47a 995 return var->dynamic->pretty_printer != NULL;
0cc7d26f
TT
996}
997
2f408ecb 998std::string
de051565
MK
999varobj_get_formatted_value (struct varobj *var,
1000 enum varobj_display_formats format)
1001{
1002 return my_value_of_variable (var, format);
1003}
1004
2f408ecb 1005std::string
8b93c638
JM
1006varobj_get_value (struct varobj *var)
1007{
de051565 1008 return my_value_of_variable (var, var->format);
8b93c638
JM
1009}
1010
1011/* Set the value of an object variable (if it is editable) to the
581e13c1
MS
1012 value of the given expression. */
1013/* Note: Invokes functions that can call error(). */
8b93c638 1014
4c37490d 1015bool
2f408ecb 1016varobj_set_value (struct varobj *var, const char *expression)
8b93c638 1017{
34365054 1018 struct value *val = NULL; /* Initialize to keep gcc happy. */
8b93c638 1019 /* The argument "expression" contains the variable's new value.
581e13c1
MS
1020 We need to first construct a legal expression for this -- ugh! */
1021 /* Does this cover all the bases? */
34365054 1022 struct value *value = NULL; /* Initialize to keep gcc happy. */
8b93c638 1023 int saved_input_radix = input_radix;
bbc13ae3 1024 const char *s = expression;
8b93c638 1025
340a7723 1026 gdb_assert (varobj_editable_p (var));
8b93c638 1027
581e13c1 1028 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
4d01a485 1029 expression_up exp = parse_exp_1 (&s, 0, 0, 0);
492d29ea 1030 TRY
8e7b59a5 1031 {
4d01a485 1032 value = evaluate_expression (exp.get ());
8e7b59a5
KS
1033 }
1034
492d29ea 1035 CATCH (except, RETURN_MASK_ERROR)
340a7723 1036 {
581e13c1 1037 /* We cannot proceed without a valid expression. */
4c37490d 1038 return false;
8b93c638 1039 }
492d29ea 1040 END_CATCH
8b93c638 1041
340a7723
NR
1042 /* All types that are editable must also be changeable. */
1043 gdb_assert (varobj_value_is_changeable_p (var));
1044
1045 /* The value of a changeable variable object must not be lazy. */
1046 gdb_assert (!value_lazy (var->value));
1047
1048 /* Need to coerce the input. We want to check if the
1049 value of the variable object will be different
1050 after assignment, and the first thing value_assign
1051 does is coerce the input.
1052 For example, if we are assigning an array to a pointer variable we
b021a221 1053 should compare the pointer with the array's address, not with the
340a7723
NR
1054 array's content. */
1055 value = coerce_array (value);
1056
8e7b59a5
KS
1057 /* The new value may be lazy. value_assign, or
1058 rather value_contents, will take care of this. */
492d29ea 1059 TRY
8e7b59a5
KS
1060 {
1061 val = value_assign (var->value, value);
1062 }
1063
492d29ea
PA
1064 CATCH (except, RETURN_MASK_ERROR)
1065 {
4c37490d 1066 return false;
492d29ea
PA
1067 }
1068 END_CATCH
8e7b59a5 1069
340a7723
NR
1070 /* If the value has changed, record it, so that next -var-update can
1071 report this change. If a variable had a value of '1', we've set it
1072 to '333' and then set again to '1', when -var-update will report this
1073 variable as changed -- because the first assignment has set the
1074 'updated' flag. There's no need to optimize that, because return value
1075 of -var-update should be considered an approximation. */
4c37490d 1076 var->updated = install_new_value (var, val, false /* Compare values. */);
340a7723 1077 input_radix = saved_input_radix;
4c37490d 1078 return true;
8b93c638
JM
1079}
1080
0cc7d26f
TT
1081#if HAVE_PYTHON
1082
1083/* A helper function to install a constructor function and visualizer
bb5ce47a 1084 in a varobj_dynamic. */
0cc7d26f
TT
1085
1086static void
bb5ce47a 1087install_visualizer (struct varobj_dynamic *var, PyObject *constructor,
0cc7d26f
TT
1088 PyObject *visualizer)
1089{
1090 Py_XDECREF (var->constructor);
1091 var->constructor = constructor;
1092
1093 Py_XDECREF (var->pretty_printer);
1094 var->pretty_printer = visualizer;
1095
e5250216 1096 varobj_iter_delete (var->child_iter);
0cc7d26f
TT
1097 var->child_iter = NULL;
1098}
1099
1100/* Install the default visualizer for VAR. */
1101
1102static void
1103install_default_visualizer (struct varobj *var)
1104{
d65aec65
PM
1105 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1106 if (CPLUS_FAKE_CHILD (var))
1107 return;
1108
0cc7d26f
TT
1109 if (pretty_printing)
1110 {
1111 PyObject *pretty_printer = NULL;
1112
1113 if (var->value)
1114 {
1115 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1116 if (! pretty_printer)
1117 {
1118 gdbpy_print_stack ();
1119 error (_("Cannot instantiate printer for default visualizer"));
1120 }
1121 }
1122
1123 if (pretty_printer == Py_None)
1124 {
1125 Py_DECREF (pretty_printer);
1126 pretty_printer = NULL;
1127 }
1128
bb5ce47a 1129 install_visualizer (var->dynamic, NULL, pretty_printer);
0cc7d26f
TT
1130 }
1131}
1132
1133/* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1134 make a new object. */
1135
1136static void
1137construct_visualizer (struct varobj *var, PyObject *constructor)
1138{
1139 PyObject *pretty_printer;
1140
d65aec65
PM
1141 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1142 if (CPLUS_FAKE_CHILD (var))
1143 return;
1144
0cc7d26f
TT
1145 Py_INCREF (constructor);
1146 if (constructor == Py_None)
1147 pretty_printer = NULL;
1148 else
1149 {
1150 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1151 if (! pretty_printer)
1152 {
1153 gdbpy_print_stack ();
1154 Py_DECREF (constructor);
1155 constructor = Py_None;
1156 Py_INCREF (constructor);
1157 }
1158
1159 if (pretty_printer == Py_None)
1160 {
1161 Py_DECREF (pretty_printer);
1162 pretty_printer = NULL;
1163 }
1164 }
1165
bb5ce47a 1166 install_visualizer (var->dynamic, constructor, pretty_printer);
0cc7d26f
TT
1167}
1168
1169#endif /* HAVE_PYTHON */
1170
1171/* A helper function for install_new_value. This creates and installs
1172 a visualizer for VAR, if appropriate. */
1173
1174static void
1175install_new_value_visualizer (struct varobj *var)
1176{
1177#if HAVE_PYTHON
1178 /* If the constructor is None, then we want the raw value. If VAR
1179 does not have a value, just skip this. */
0646da15
TT
1180 if (!gdb_python_initialized)
1181 return;
1182
bb5ce47a 1183 if (var->dynamic->constructor != Py_None && var->value != NULL)
0cc7d26f 1184 {
bde7b3e3 1185 gdbpy_enter_varobj enter_py (var);
0cc7d26f 1186
bb5ce47a 1187 if (var->dynamic->constructor == NULL)
0cc7d26f
TT
1188 install_default_visualizer (var);
1189 else
bb5ce47a 1190 construct_visualizer (var, var->dynamic->constructor);
0cc7d26f
TT
1191 }
1192#else
1193 /* Do nothing. */
1194#endif
1195}
1196
8264ba82
AG
1197/* When using RTTI to determine variable type it may be changed in runtime when
1198 the variable value is changed. This function checks whether type of varobj
1199 VAR will change when a new value NEW_VALUE is assigned and if it is so
1200 updates the type of VAR. */
1201
4c37490d 1202static bool
8264ba82
AG
1203update_type_if_necessary (struct varobj *var, struct value *new_value)
1204{
1205 if (new_value)
1206 {
1207 struct value_print_options opts;
1208
1209 get_user_print_options (&opts);
1210 if (opts.objectprint)
1211 {
2f408ecb
PA
1212 struct type *new_type = value_actual_type (new_value, 0, 0);
1213 std::string new_type_str = type_to_string (new_type);
1214 std::string curr_type_str = varobj_get_type (var);
8264ba82 1215
2f408ecb
PA
1216 /* Did the type name change? */
1217 if (curr_type_str != new_type_str)
8264ba82
AG
1218 {
1219 var->type = new_type;
1220
1221 /* This information may be not valid for a new type. */
30914ca8 1222 varobj_delete (var, 1);
ddf0ea08 1223 var->children.clear ();
8264ba82 1224 var->num_children = -1;
4c37490d 1225 return true;
8264ba82
AG
1226 }
1227 }
1228 }
1229
4c37490d 1230 return false;
8264ba82
AG
1231}
1232
4c37490d
SM
1233/* Assign a new value to a variable object. If INITIAL is true,
1234 this is the first assignment after the variable object was just
acd65feb 1235 created, or changed type. In that case, just assign the value
4c37490d
SM
1236 and return false.
1237 Otherwise, assign the new value, and return true if the value is
1238 different from the current one, false otherwise. The comparison is
581e13c1
MS
1239 done on textual representation of value. Therefore, some types
1240 need not be compared. E.g. for structures the reported value is
1241 always "{...}", so no comparison is necessary here. If the old
4c37490d 1242 value was NULL and new one is not, or vice versa, we always return true.
b26ed50d
VP
1243
1244 The VALUE parameter should not be released -- the function will
1245 take care of releasing it when needed. */
4c37490d
SM
1246static bool
1247install_new_value (struct varobj *var, struct value *value, bool initial)
acd65feb 1248{
4c37490d
SM
1249 bool changeable;
1250 bool need_to_fetch;
1251 bool changed = false;
1252 bool intentionally_not_fetched = false;
acd65feb 1253
acd65feb 1254 /* We need to know the varobj's type to decide if the value should
3e43a32a 1255 be fetched or not. C++ fake children (public/protected/private)
581e13c1 1256 don't have a type. */
acd65feb 1257 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
b2c2bd75 1258 changeable = varobj_value_is_changeable_p (var);
b6313243
TT
1259
1260 /* If the type has custom visualizer, we consider it to be always
581e13c1 1261 changeable. FIXME: need to make sure this behaviour will not
b6313243 1262 mess up read-sensitive values. */
bb5ce47a 1263 if (var->dynamic->pretty_printer != NULL)
4c37490d 1264 changeable = true;
b6313243 1265
acd65feb
VP
1266 need_to_fetch = changeable;
1267
b26ed50d
VP
1268 /* We are not interested in the address of references, and given
1269 that in C++ a reference is not rebindable, it cannot
1270 meaningfully change. So, get hold of the real value. */
1271 if (value)
0cc7d26f 1272 value = coerce_ref (value);
b26ed50d 1273
acd65feb
VP
1274 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1275 /* For unions, we need to fetch the value implicitly because
1276 of implementation of union member fetch. When gdb
1277 creates a value for a field and the value of the enclosing
1278 structure is not lazy, it immediately copies the necessary
1279 bytes from the enclosing values. If the enclosing value is
1280 lazy, the call to value_fetch_lazy on the field will read
1281 the data from memory. For unions, that means we'll read the
1282 same memory more than once, which is not desirable. So
1283 fetch now. */
4c37490d 1284 need_to_fetch = true;
acd65feb
VP
1285
1286 /* The new value might be lazy. If the type is changeable,
1287 that is we'll be comparing values of this type, fetch the
1288 value now. Otherwise, on the next update the old value
1289 will be lazy, which means we've lost that old value. */
1290 if (need_to_fetch && value && value_lazy (value))
1291 {
c1cc6152 1292 const struct varobj *parent = var->parent;
4c37490d 1293 bool frozen = var->frozen;
a109c7c1 1294
25d5ea92
VP
1295 for (; !frozen && parent; parent = parent->parent)
1296 frozen |= parent->frozen;
1297
1298 if (frozen && initial)
1299 {
1300 /* For variables that are frozen, or are children of frozen
1301 variables, we don't do fetch on initial assignment.
1302 For non-initial assignemnt we do the fetch, since it means we're
1303 explicitly asked to compare the new value with the old one. */
4c37490d 1304 intentionally_not_fetched = true;
25d5ea92 1305 }
8e7b59a5 1306 else
acd65feb 1307 {
8e7b59a5 1308
492d29ea 1309 TRY
8e7b59a5
KS
1310 {
1311 value_fetch_lazy (value);
1312 }
1313
492d29ea 1314 CATCH (except, RETURN_MASK_ERROR)
8e7b59a5
KS
1315 {
1316 /* Set the value to NULL, so that for the next -var-update,
1317 we don't try to compare the new value with this value,
1318 that we couldn't even read. */
1319 value = NULL;
1320 }
492d29ea 1321 END_CATCH
acd65feb 1322 }
acd65feb
VP
1323 }
1324
e848a8a5
TT
1325 /* Get a reference now, before possibly passing it to any Python
1326 code that might release it. */
1327 if (value != NULL)
1328 value_incref (value);
b6313243 1329
7a4d50bf
VP
1330 /* Below, we'll be comparing string rendering of old and new
1331 values. Don't get string rendering if the value is
1332 lazy -- if it is, the code above has decided that the value
1333 should not be fetched. */
2f408ecb 1334 std::string print_value;
bb5ce47a
YQ
1335 if (value != NULL && !value_lazy (value)
1336 && var->dynamic->pretty_printer == NULL)
99ad9427 1337 print_value = varobj_value_get_print_value (value, var->format, var);
7a4d50bf 1338
acd65feb
VP
1339 /* If the type is changeable, compare the old and the new values.
1340 If this is the initial assignment, we don't have any old value
1341 to compare with. */
7a4d50bf 1342 if (!initial && changeable)
acd65feb 1343 {
3e43a32a
MS
1344 /* If the value of the varobj was changed by -var-set-value,
1345 then the value in the varobj and in the target is the same.
1346 However, that value is different from the value that the
581e13c1 1347 varobj had after the previous -var-update. So need to the
3e43a32a 1348 varobj as changed. */
acd65feb 1349 if (var->updated)
4c37490d 1350 changed = true;
bb5ce47a 1351 else if (var->dynamic->pretty_printer == NULL)
acd65feb
VP
1352 {
1353 /* Try to compare the values. That requires that both
1354 values are non-lazy. */
25d5ea92
VP
1355 if (var->not_fetched && value_lazy (var->value))
1356 {
1357 /* This is a frozen varobj and the value was never read.
1358 Presumably, UI shows some "never read" indicator.
1359 Now that we've fetched the real value, we need to report
1360 this varobj as changed so that UI can show the real
1361 value. */
4c37490d 1362 changed = true;
25d5ea92
VP
1363 }
1364 else if (var->value == NULL && value == NULL)
581e13c1 1365 /* Equal. */
acd65feb
VP
1366 ;
1367 else if (var->value == NULL || value == NULL)
57e66780 1368 {
4c37490d 1369 changed = true;
57e66780 1370 }
acd65feb
VP
1371 else
1372 {
1373 gdb_assert (!value_lazy (var->value));
1374 gdb_assert (!value_lazy (value));
85265413 1375
2f408ecb
PA
1376 gdb_assert (!var->print_value.empty () && !print_value.empty ());
1377 if (var->print_value != print_value)
4c37490d 1378 changed = true;
acd65feb
VP
1379 }
1380 }
1381 }
85265413 1382
ee342b23
VP
1383 if (!initial && !changeable)
1384 {
1385 /* For values that are not changeable, we don't compare the values.
1386 However, we want to notice if a value was not NULL and now is NULL,
1387 or vise versa, so that we report when top-level varobjs come in scope
1388 and leave the scope. */
1389 changed = (var->value != NULL) != (value != NULL);
1390 }
1391
acd65feb 1392 /* We must always keep the new value, since children depend on it. */
25d5ea92 1393 if (var->value != NULL && var->value != value)
acd65feb
VP
1394 value_free (var->value);
1395 var->value = value;
25d5ea92 1396 if (value && value_lazy (value) && intentionally_not_fetched)
4c37490d 1397 var->not_fetched = true;
25d5ea92 1398 else
4c37490d
SM
1399 var->not_fetched = false;
1400 var->updated = false;
85265413 1401
0cc7d26f
TT
1402 install_new_value_visualizer (var);
1403
1404 /* If we installed a pretty-printer, re-compare the printed version
1405 to see if the variable changed. */
bb5ce47a 1406 if (var->dynamic->pretty_printer != NULL)
0cc7d26f 1407 {
99ad9427
YQ
1408 print_value = varobj_value_get_print_value (var->value, var->format,
1409 var);
2f408ecb
PA
1410 if ((var->print_value.empty () && !print_value.empty ())
1411 || (!var->print_value.empty () && print_value.empty ())
1412 || (!var->print_value.empty () && !print_value.empty ()
1413 && var->print_value != print_value))
4c37490d 1414 changed = true;
0cc7d26f 1415 }
0cc7d26f
TT
1416 var->print_value = print_value;
1417
b26ed50d 1418 gdb_assert (!var->value || value_type (var->value));
acd65feb
VP
1419
1420 return changed;
1421}
acd65feb 1422
0cc7d26f
TT
1423/* Return the requested range for a varobj. VAR is the varobj. FROM
1424 and TO are out parameters; *FROM and *TO will be set to the
1425 selected sub-range of VAR. If no range was selected using
1426 -var-set-update-range, then both will be -1. */
1427void
b09e2c59 1428varobj_get_child_range (const struct varobj *var, int *from, int *to)
b6313243 1429{
0cc7d26f
TT
1430 *from = var->from;
1431 *to = var->to;
b6313243
TT
1432}
1433
0cc7d26f
TT
1434/* Set the selected sub-range of children of VAR to start at index
1435 FROM and end at index TO. If either FROM or TO is less than zero,
1436 this is interpreted as a request for all children. */
1437void
1438varobj_set_child_range (struct varobj *var, int from, int to)
b6313243 1439{
0cc7d26f
TT
1440 var->from = from;
1441 var->to = to;
b6313243
TT
1442}
1443
1444void
1445varobj_set_visualizer (struct varobj *var, const char *visualizer)
1446{
1447#if HAVE_PYTHON
bde7b3e3 1448 PyObject *mainmod;
b6313243 1449
0646da15
TT
1450 if (!gdb_python_initialized)
1451 return;
1452
bde7b3e3 1453 gdbpy_enter_varobj enter_py (var);
b6313243
TT
1454
1455 mainmod = PyImport_AddModule ("__main__");
7780f186 1456 gdbpy_ref<> globals (PyModule_GetDict (mainmod));
bde7b3e3 1457 Py_INCREF (globals.get ());
b6313243 1458
7780f186
TT
1459 gdbpy_ref<> constructor (PyRun_String (visualizer, Py_eval_input,
1460 globals.get (), globals.get ()));
b6313243 1461
bde7b3e3 1462 if (constructor == NULL)
b6313243
TT
1463 {
1464 gdbpy_print_stack ();
da1f2771 1465 error (_("Could not evaluate visualizer expression: %s"), visualizer);
b6313243
TT
1466 }
1467
bde7b3e3 1468 construct_visualizer (var, constructor.get ());
b6313243 1469
0cc7d26f 1470 /* If there are any children now, wipe them. */
30914ca8 1471 varobj_delete (var, 1 /* children only */);
0cc7d26f 1472 var->num_children = -1;
b6313243 1473#else
da1f2771 1474 error (_("Python support required"));
b6313243
TT
1475#endif
1476}
1477
7a290c40 1478/* If NEW_VALUE is the new value of the given varobj (var), return
4c37490d 1479 true if var has mutated. In other words, if the type of
7a290c40
JB
1480 the new value is different from the type of the varobj's old
1481 value.
1482
1483 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1484
4c37490d 1485static bool
b09e2c59 1486varobj_value_has_mutated (const struct varobj *var, struct value *new_value,
7a290c40
JB
1487 struct type *new_type)
1488{
1489 /* If we haven't previously computed the number of children in var,
1490 it does not matter from the front-end's perspective whether
1491 the type has mutated or not. For all intents and purposes,
1492 it has not mutated. */
1493 if (var->num_children < 0)
4c37490d 1494 return false;
7a290c40 1495
4c37490d 1496 if (var->root->lang_ops->value_has_mutated != NULL)
8776cfe9
JB
1497 {
1498 /* The varobj module, when installing new values, explicitly strips
1499 references, saying that we're not interested in those addresses.
1500 But detection of mutation happens before installing the new
1501 value, so our value may be a reference that we need to strip
1502 in order to remain consistent. */
1503 if (new_value != NULL)
1504 new_value = coerce_ref (new_value);
1505 return var->root->lang_ops->value_has_mutated (var, new_value, new_type);
1506 }
7a290c40 1507 else
4c37490d 1508 return false;
7a290c40
JB
1509}
1510
8b93c638
JM
1511/* Update the values for a variable and its children. This is a
1512 two-pronged attack. First, re-parse the value for the root's
1513 expression to see if it's changed. Then go all the way
1514 through its children, reconstructing them and noting if they've
1515 changed.
1516
4c37490d 1517 The IS_EXPLICIT parameter specifies if this call is result
25d5ea92 1518 of MI request to update this specific variable, or
581e13c1 1519 result of implicit -var-update *. For implicit request, we don't
25d5ea92 1520 update frozen variables.
705da579 1521
581e13c1 1522 NOTE: This function may delete the caller's varobj. If it
8756216b
DP
1523 returns TYPE_CHANGED, then it has done this and VARP will be modified
1524 to point to the new varobj. */
8b93c638 1525
0604393c 1526std::vector<varobj_update_result>
4c37490d 1527varobj_update (struct varobj **varp, bool is_explicit)
8b93c638 1528{
4c37490d 1529 bool type_changed = false;
fe978cb0 1530 struct value *newobj;
0604393c
SM
1531 std::vector<varobj_update_result> stack;
1532 std::vector<varobj_update_result> result;
8b93c638 1533
25d5ea92
VP
1534 /* Frozen means frozen -- we don't check for any change in
1535 this varobj, including its going out of scope, or
1536 changing type. One use case for frozen varobjs is
1537 retaining previously evaluated expressions, and we don't
1538 want them to be reevaluated at all. */
fe978cb0 1539 if (!is_explicit && (*varp)->frozen)
f7f9ae2c 1540 return result;
8756216b
DP
1541
1542 if (!(*varp)->root->is_valid)
f7f9ae2c 1543 {
0604393c 1544 result.emplace_back (*varp, VAROBJ_INVALID);
f7f9ae2c
VP
1545 return result;
1546 }
8b93c638 1547
25d5ea92 1548 if ((*varp)->root->rootvar == *varp)
ae093f96 1549 {
0604393c 1550 varobj_update_result r (*varp);
f7f9ae2c 1551
581e13c1 1552 /* Update the root variable. value_of_root can return NULL
25d5ea92 1553 if the variable is no longer around, i.e. we stepped out of
581e13c1 1554 the frame in which a local existed. We are letting the
25d5ea92
VP
1555 value_of_root variable dispose of the varobj if the type
1556 has changed. */
fe978cb0 1557 newobj = value_of_root (varp, &type_changed);
4c37490d
SM
1558 if (update_type_if_necessary (*varp, newobj))
1559 type_changed = true;
f7f9ae2c 1560 r.varobj = *varp;
f7f9ae2c 1561 r.type_changed = type_changed;
fe978cb0 1562 if (install_new_value ((*varp), newobj, type_changed))
4c37490d 1563 r.changed = true;
ea56f9c2 1564
fe978cb0 1565 if (newobj == NULL)
f7f9ae2c 1566 r.status = VAROBJ_NOT_IN_SCOPE;
4c37490d 1567 r.value_installed = true;
f7f9ae2c
VP
1568
1569 if (r.status == VAROBJ_NOT_IN_SCOPE)
b6313243 1570 {
0b4bc29a 1571 if (r.type_changed || r.changed)
0604393c
SM
1572 result.push_back (std::move (r));
1573
b6313243
TT
1574 return result;
1575 }
a109c7c1 1576
0604393c 1577 stack.push_back (std::move (r));
b20d8971 1578 }
0604393c
SM
1579 else
1580 stack.emplace_back (*varp);
8b93c638 1581
8756216b 1582 /* Walk through the children, reconstructing them all. */
0604393c 1583 while (!stack.empty ())
8b93c638 1584 {
0604393c
SM
1585 varobj_update_result r = std::move (stack.back ());
1586 stack.pop_back ();
b6313243
TT
1587 struct varobj *v = r.varobj;
1588
b6313243
TT
1589 /* Update this variable, unless it's a root, which is already
1590 updated. */
1591 if (!r.value_installed)
7a290c40
JB
1592 {
1593 struct type *new_type;
1594
fe978cb0 1595 newobj = value_of_child (v->parent, v->index);
4c37490d
SM
1596 if (update_type_if_necessary (v, newobj))
1597 r.type_changed = true;
fe978cb0
PA
1598 if (newobj)
1599 new_type = value_type (newobj);
7a290c40 1600 else
ca20d462 1601 new_type = v->root->lang_ops->type_of_child (v->parent, v->index);
7a290c40 1602
fe978cb0 1603 if (varobj_value_has_mutated (v, newobj, new_type))
7a290c40
JB
1604 {
1605 /* The children are no longer valid; delete them now.
1606 Report the fact that its type changed as well. */
30914ca8 1607 varobj_delete (v, 1 /* only_children */);
7a290c40
JB
1608 v->num_children = -1;
1609 v->to = -1;
1610 v->from = -1;
1611 v->type = new_type;
4c37490d 1612 r.type_changed = true;
7a290c40
JB
1613 }
1614
fe978cb0 1615 if (install_new_value (v, newobj, r.type_changed))
b6313243 1616 {
4c37490d
SM
1617 r.changed = true;
1618 v->updated = false;
b6313243
TT
1619 }
1620 }
1621
31f628ae
YQ
1622 /* We probably should not get children of a dynamic varobj, but
1623 for which -var-list-children was never invoked. */
1624 if (varobj_is_dynamic_p (v))
b6313243 1625 {
0604393c 1626 std::vector<varobj *> changed, type_changed, unchanged, newobj;
4c37490d 1627 bool children_changed = false;
b6313243
TT
1628
1629 if (v->frozen)
1630 continue;
1631
bd046f64 1632 if (!v->dynamic->children_requested)
0cc7d26f 1633 {
4c37490d 1634 bool dummy;
0cc7d26f
TT
1635
1636 /* If we initially did not have potential children, but
1637 now we do, consider the varobj as changed.
1638 Otherwise, if children were never requested, consider
1639 it as unchanged -- presumably, such varobj is not yet
1640 expanded in the UI, so we need not bother getting
1641 it. */
1642 if (!varobj_has_more (v, 0))
1643 {
8264ba82 1644 update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
4c37490d 1645 &dummy, false, 0, 0);
0cc7d26f 1646 if (varobj_has_more (v, 0))
4c37490d 1647 r.changed = true;
0cc7d26f
TT
1648 }
1649
1650 if (r.changed)
0604393c 1651 result.push_back (std::move (r));
0cc7d26f
TT
1652
1653 continue;
1654 }
1655
4c37490d 1656 /* If update_dynamic_varobj_children returns false, then we have
b6313243 1657 a non-conforming pretty-printer, so we skip it. */
fe978cb0 1658 if (update_dynamic_varobj_children (v, &changed, &type_changed, &newobj,
4c37490d 1659 &unchanged, &children_changed, true,
0cc7d26f 1660 v->from, v->to))
b6313243 1661 {
0604393c 1662 if (children_changed || !newobj.empty ())
b6313243 1663 {
4c37490d 1664 r.children_changed = true;
0604393c 1665 r.newobj = std::move (newobj);
b6313243 1666 }
0cc7d26f
TT
1667 /* Push in reverse order so that the first child is
1668 popped from the work stack first, and so will be
1669 added to result first. This does not affect
1670 correctness, just "nicer". */
0604393c 1671 for (int i = type_changed.size () - 1; i >= 0; --i)
8264ba82 1672 {
0604393c 1673 varobj_update_result r (type_changed[i]);
8264ba82
AG
1674
1675 /* Type may change only if value was changed. */
4c37490d
SM
1676 r.changed = true;
1677 r.type_changed = true;
1678 r.value_installed = true;
0604393c
SM
1679
1680 stack.push_back (std::move (r));
8264ba82 1681 }
0604393c 1682 for (int i = changed.size () - 1; i >= 0; --i)
b6313243 1683 {
0604393c 1684 varobj_update_result r (changed[i]);
a109c7c1 1685
4c37490d
SM
1686 r.changed = true;
1687 r.value_installed = true;
0604393c
SM
1688
1689 stack.push_back (std::move (r));
b6313243 1690 }
0604393c
SM
1691 for (int i = unchanged.size () - 1; i >= 0; --i)
1692 {
1693 if (!unchanged[i]->frozen)
1694 {
1695 varobj_update_result r (unchanged[i]);
1696
4c37490d 1697 r.value_installed = true;
0cc7d26f 1698
0604393c
SM
1699 stack.push_back (std::move (r));
1700 }
1701 }
1702 if (r.changed || r.children_changed)
1703 result.push_back (std::move (r));
0cc7d26f 1704
b6313243
TT
1705 continue;
1706 }
1707 }
28335dcc
VP
1708
1709 /* Push any children. Use reverse order so that the first
1710 child is popped from the work stack first, and so
1711 will be added to result first. This does not
1712 affect correctness, just "nicer". */
0604393c 1713 for (int i = v->children.size () - 1; i >= 0; --i)
8b93c638 1714 {
ddf0ea08 1715 varobj *c = v->children[i];
a109c7c1 1716
28335dcc 1717 /* Child may be NULL if explicitly deleted by -var-delete. */
25d5ea92 1718 if (c != NULL && !c->frozen)
0604393c 1719 stack.emplace_back (c);
8b93c638 1720 }
b6313243
TT
1721
1722 if (r.changed || r.type_changed)
0604393c 1723 result.push_back (std::move (r));
8b93c638
JM
1724 }
1725
f7f9ae2c 1726 return result;
8b93c638 1727}
8b93c638
JM
1728
1729/* Helper functions */
1730
1731/*
1732 * Variable object construction/destruction
1733 */
1734
1735static int
4c37490d 1736delete_variable (struct varobj *var, bool only_children_p)
8b93c638
JM
1737{
1738 int delcount = 0;
1739
30914ca8 1740 delete_variable_1 (&delcount, var, only_children_p,
4c37490d 1741 true /* remove_from_parent_p */ );
8b93c638
JM
1742
1743 return delcount;
1744}
1745
581e13c1 1746/* Delete the variable object VAR and its children. */
8b93c638
JM
1747/* IMPORTANT NOTE: If we delete a variable which is a child
1748 and the parent is not removed we dump core. It must be always
581e13c1 1749 initially called with remove_from_parent_p set. */
8b93c638 1750static void
4c37490d
SM
1751delete_variable_1 (int *delcountp, struct varobj *var, bool only_children_p,
1752 bool remove_from_parent_p)
8b93c638 1753{
581e13c1 1754 /* Delete any children of this variable, too. */
ddf0ea08 1755 for (varobj *child : var->children)
28335dcc 1756 {
214270ab
VP
1757 if (!child)
1758 continue;
ddf0ea08 1759
8b93c638 1760 if (!remove_from_parent_p)
28335dcc 1761 child->parent = NULL;
ddf0ea08 1762
4c37490d 1763 delete_variable_1 (delcountp, child, false, only_children_p);
8b93c638 1764 }
ddf0ea08 1765 var->children.clear ();
8b93c638 1766
581e13c1 1767 /* if we were called to delete only the children we are done here. */
8b93c638
JM
1768 if (only_children_p)
1769 return;
1770
581e13c1 1771 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
2f408ecb 1772 /* If the name is empty, this is a temporary variable, that has not
581e13c1 1773 yet been installed, don't report it, it belongs to the caller... */
2f408ecb 1774 if (!var->obj_name.empty ())
8b93c638 1775 {
8b93c638
JM
1776 *delcountp = *delcountp + 1;
1777 }
1778
581e13c1 1779 /* If this variable has a parent, remove it from its parent's list. */
8b93c638
JM
1780 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1781 (as indicated by remove_from_parent_p) we don't bother doing an
1782 expensive list search to find the element to remove when we are
581e13c1 1783 discarding the list afterwards. */
72330bd6 1784 if ((remove_from_parent_p) && (var->parent != NULL))
ddf0ea08 1785 var->parent->children[var->index] = NULL;
72330bd6 1786
2f408ecb 1787 if (!var->obj_name.empty ())
73a93a32 1788 uninstall_variable (var);
8b93c638 1789
581e13c1 1790 /* Free memory associated with this variable. */
9e5b9d2b 1791 delete var;
8b93c638
JM
1792}
1793
581e13c1 1794/* Install the given variable VAR with the object name VAR->OBJ_NAME. */
4c37490d 1795static bool
fba45db2 1796install_variable (struct varobj *var)
8b93c638
JM
1797{
1798 struct vlist *cv;
1799 struct vlist *newvl;
1800 const char *chp;
1801 unsigned int index = 0;
1802 unsigned int i = 1;
1803
2f408ecb 1804 for (chp = var->obj_name.c_str (); *chp; chp++)
8b93c638
JM
1805 {
1806 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1807 }
1808
1809 cv = *(varobj_table + index);
2f408ecb 1810 while (cv != NULL && cv->var->obj_name != var->obj_name)
8b93c638
JM
1811 cv = cv->next;
1812
1813 if (cv != NULL)
8a3fe4f8 1814 error (_("Duplicate variable object name"));
8b93c638 1815
581e13c1 1816 /* Add varobj to hash table. */
8d749320 1817 newvl = XNEW (struct vlist);
8b93c638
JM
1818 newvl->next = *(varobj_table + index);
1819 newvl->var = var;
1820 *(varobj_table + index) = newvl;
1821
581e13c1 1822 /* If root, add varobj to root list. */
b2c2bd75 1823 if (is_root_p (var))
8b93c638 1824 {
581e13c1 1825 /* Add to list of root variables. */
8b93c638
JM
1826 if (rootlist == NULL)
1827 var->root->next = NULL;
1828 else
1829 var->root->next = rootlist;
1830 rootlist = var->root;
8b93c638
JM
1831 }
1832
4c37490d 1833 return true; /* OK */
8b93c638
JM
1834}
1835
581e13c1 1836/* Unistall the object VAR. */
8b93c638 1837static void
fba45db2 1838uninstall_variable (struct varobj *var)
8b93c638
JM
1839{
1840 struct vlist *cv;
1841 struct vlist *prev;
1842 struct varobj_root *cr;
1843 struct varobj_root *prer;
1844 const char *chp;
1845 unsigned int index = 0;
1846 unsigned int i = 1;
1847
581e13c1 1848 /* Remove varobj from hash table. */
2f408ecb 1849 for (chp = var->obj_name.c_str (); *chp; chp++)
8b93c638
JM
1850 {
1851 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1852 }
1853
1854 cv = *(varobj_table + index);
1855 prev = NULL;
2f408ecb 1856 while (cv != NULL && cv->var->obj_name != var->obj_name)
8b93c638
JM
1857 {
1858 prev = cv;
1859 cv = cv->next;
1860 }
1861
1862 if (varobjdebug)
2f408ecb 1863 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name.c_str ());
8b93c638
JM
1864
1865 if (cv == NULL)
1866 {
72330bd6
AC
1867 warning
1868 ("Assertion failed: Could not find variable object \"%s\" to delete",
2f408ecb 1869 var->obj_name.c_str ());
8b93c638
JM
1870 return;
1871 }
1872
1873 if (prev == NULL)
1874 *(varobj_table + index) = cv->next;
1875 else
1876 prev->next = cv->next;
1877
b8c9b27d 1878 xfree (cv);
8b93c638 1879
581e13c1 1880 /* If root, remove varobj from root list. */
b2c2bd75 1881 if (is_root_p (var))
8b93c638 1882 {
581e13c1 1883 /* Remove from list of root variables. */
8b93c638
JM
1884 if (rootlist == var->root)
1885 rootlist = var->root->next;
1886 else
1887 {
1888 prer = NULL;
1889 cr = rootlist;
1890 while ((cr != NULL) && (cr->rootvar != var))
1891 {
1892 prer = cr;
1893 cr = cr->next;
1894 }
1895 if (cr == NULL)
1896 {
8f7e195f
JB
1897 warning (_("Assertion failed: Could not find "
1898 "varobj \"%s\" in root list"),
2f408ecb 1899 var->obj_name.c_str ());
8b93c638
JM
1900 return;
1901 }
1902 if (prer == NULL)
1903 rootlist = NULL;
1904 else
1905 prer->next = cr->next;
1906 }
8b93c638
JM
1907 }
1908
1909}
1910
837ce252
SM
1911/* Create and install a child of the parent of the given name.
1912
1913 The created VAROBJ takes ownership of the allocated NAME. */
1914
8b93c638 1915static struct varobj *
2f408ecb 1916create_child (struct varobj *parent, int index, std::string &name)
b6313243 1917{
5a2e0d6e
YQ
1918 struct varobj_item item;
1919
2f408ecb 1920 std::swap (item.name, name);
5a2e0d6e
YQ
1921 item.value = value_of_child (parent, index);
1922
1923 return create_child_with_value (parent, index, &item);
b6313243
TT
1924}
1925
1926static struct varobj *
5a2e0d6e
YQ
1927create_child_with_value (struct varobj *parent, int index,
1928 struct varobj_item *item)
8b93c638 1929{
9e5b9d2b 1930 varobj *child = new varobj (parent->root);
8b93c638 1931
5e5ac9a5 1932 /* NAME is allocated by caller. */
2f408ecb 1933 std::swap (child->name, item->name);
8b93c638 1934 child->index = index;
8b93c638 1935 child->parent = parent;
85254831 1936
99ad9427 1937 if (varobj_is_anonymous_child (child))
2f408ecb
PA
1938 child->obj_name = string_printf ("%s.%d_anonymous",
1939 parent->obj_name.c_str (), index);
85254831 1940 else
2f408ecb
PA
1941 child->obj_name = string_printf ("%s.%s",
1942 parent->obj_name.c_str (),
1943 child->name.c_str ());
85254831 1944
8b93c638
JM
1945 install_variable (child);
1946
acd65feb
VP
1947 /* Compute the type of the child. Must do this before
1948 calling install_new_value. */
5a2e0d6e 1949 if (item->value != NULL)
acd65feb 1950 /* If the child had no evaluation errors, var->value
581e13c1 1951 will be non-NULL and contain a valid type. */
5a2e0d6e 1952 child->type = value_actual_type (item->value, 0, NULL);
acd65feb 1953 else
581e13c1 1954 /* Otherwise, we must compute the type. */
ca20d462
YQ
1955 child->type = (*child->root->lang_ops->type_of_child) (child->parent,
1956 child->index);
5a2e0d6e 1957 install_new_value (child, item->value, 1);
acd65feb 1958
8b93c638
JM
1959 return child;
1960}
8b93c638
JM
1961\f
1962
1963/*
1964 * Miscellaneous utility functions.
1965 */
1966
581e13c1 1967/* Allocate memory and initialize a new variable. */
9e5b9d2b
SM
1968varobj::varobj (varobj_root *root_)
1969: root (root_), dynamic (new varobj_dynamic)
8b93c638 1970{
8b93c638
JM
1971}
1972
581e13c1 1973/* Free any allocated memory associated with VAR. */
9e5b9d2b
SM
1974
1975varobj::~varobj ()
8b93c638 1976{
9e5b9d2b
SM
1977 varobj *var = this;
1978
d452c4bc 1979#if HAVE_PYTHON
bb5ce47a 1980 if (var->dynamic->pretty_printer != NULL)
d452c4bc 1981 {
bde7b3e3 1982 gdbpy_enter_varobj enter_py (var);
bb5ce47a
YQ
1983
1984 Py_XDECREF (var->dynamic->constructor);
1985 Py_XDECREF (var->dynamic->pretty_printer);
d452c4bc
UW
1986 }
1987#endif
1988
827f100c
YQ
1989 varobj_iter_delete (var->dynamic->child_iter);
1990 varobj_clear_saved_item (var->dynamic);
36746093
JK
1991 value_free (var->value);
1992
b2c2bd75 1993 if (is_root_p (var))
4d01a485 1994 delete var->root;
8b93c638 1995
9e5b9d2b 1996 delete var->dynamic;
74b7792f
AC
1997}
1998
6e2a9270
VP
1999/* Return the type of the value that's stored in VAR,
2000 or that would have being stored there if the
581e13c1 2001 value were accessible.
6e2a9270
VP
2002
2003 This differs from VAR->type in that VAR->type is always
2004 the true type of the expession in the source language.
2005 The return value of this function is the type we're
2006 actually storing in varobj, and using for displaying
2007 the values and for comparing previous and new values.
2008
2009 For example, top-level references are always stripped. */
99ad9427 2010struct type *
b09e2c59 2011varobj_get_value_type (const struct varobj *var)
6e2a9270
VP
2012{
2013 struct type *type;
2014
2015 if (var->value)
2016 type = value_type (var->value);
2017 else
2018 type = var->type;
2019
2020 type = check_typedef (type);
2021
aa006118 2022 if (TYPE_IS_REFERENCE (type))
6e2a9270
VP
2023 type = get_target_type (type);
2024
2025 type = check_typedef (type);
2026
2027 return type;
2028}
2029
8b93c638 2030/* What is the default display for this variable? We assume that
581e13c1 2031 everything is "natural". Any exceptions? */
8b93c638 2032static enum varobj_display_formats
fba45db2 2033variable_default_display (struct varobj *var)
8b93c638
JM
2034{
2035 return FORMAT_NATURAL;
2036}
2037
8b93c638
JM
2038/*
2039 * Language-dependencies
2040 */
2041
2042/* Common entry points */
2043
8b93c638
JM
2044/* Return the number of children for a given variable.
2045 The result of this function is defined by the language
581e13c1 2046 implementation. The number of children returned by this function
8b93c638 2047 is the number of children that the user will see in the variable
581e13c1 2048 display. */
8b93c638 2049static int
b09e2c59 2050number_of_children (const struct varobj *var)
8b93c638 2051{
ca20d462 2052 return (*var->root->lang_ops->number_of_children) (var);
8b93c638
JM
2053}
2054
2f408ecb
PA
2055/* What is the expression for the root varobj VAR? */
2056
2057static std::string
b09e2c59 2058name_of_variable (const struct varobj *var)
8b93c638 2059{
ca20d462 2060 return (*var->root->lang_ops->name_of_variable) (var);
8b93c638
JM
2061}
2062
2f408ecb
PA
2063/* What is the name of the INDEX'th child of VAR? */
2064
2065static std::string
fba45db2 2066name_of_child (struct varobj *var, int index)
8b93c638 2067{
ca20d462 2068 return (*var->root->lang_ops->name_of_child) (var, index);
8b93c638
JM
2069}
2070
2213e2be 2071/* If frame associated with VAR can be found, switch
4c37490d 2072 to it and return true. Otherwise, return false. */
2213e2be 2073
4c37490d 2074static bool
b09e2c59 2075check_scope (const struct varobj *var)
2213e2be
YQ
2076{
2077 struct frame_info *fi;
4c37490d 2078 bool scope;
2213e2be
YQ
2079
2080 fi = frame_find_by_id (var->root->frame);
2081 scope = fi != NULL;
2082
2083 if (fi)
2084 {
2085 CORE_ADDR pc = get_frame_pc (fi);
2086
2087 if (pc < BLOCK_START (var->root->valid_block) ||
2088 pc >= BLOCK_END (var->root->valid_block))
4c37490d 2089 scope = false;
2213e2be
YQ
2090 else
2091 select_frame (fi);
2092 }
2093 return scope;
2094}
2095
2096/* Helper function to value_of_root. */
2097
2098static struct value *
2099value_of_root_1 (struct varobj **var_handle)
2100{
2101 struct value *new_val = NULL;
2102 struct varobj *var = *var_handle;
4c37490d 2103 bool within_scope = false;
2213e2be
YQ
2104
2105 /* Only root variables can be updated... */
2106 if (!is_root_p (var))
2107 /* Not a root var. */
2108 return NULL;
2109
5ed8105e 2110 scoped_restore_current_thread restore_thread;
2213e2be
YQ
2111
2112 /* Determine whether the variable is still around. */
2113 if (var->root->valid_block == NULL || var->root->floating)
4c37490d 2114 within_scope = true;
2213e2be
YQ
2115 else if (var->root->thread_id == 0)
2116 {
2117 /* The program was single-threaded when the variable object was
2118 created. Technically, it's possible that the program became
2119 multi-threaded since then, but we don't support such
2120 scenario yet. */
2121 within_scope = check_scope (var);
2122 }
2123 else
2124 {
5d5658a1
PA
2125 ptid_t ptid = global_thread_id_to_ptid (var->root->thread_id);
2126
2127 if (!ptid_equal (minus_one_ptid, ptid))
2213e2be
YQ
2128 {
2129 switch_to_thread (ptid);
2130 within_scope = check_scope (var);
2131 }
2132 }
2133
2134 if (within_scope)
2135 {
2213e2be
YQ
2136
2137 /* We need to catch errors here, because if evaluate
2138 expression fails we want to just return NULL. */
492d29ea 2139 TRY
2213e2be 2140 {
4d01a485 2141 new_val = evaluate_expression (var->root->exp.get ());
2213e2be 2142 }
492d29ea
PA
2143 CATCH (except, RETURN_MASK_ERROR)
2144 {
2145 }
2146 END_CATCH
2213e2be
YQ
2147 }
2148
2213e2be
YQ
2149 return new_val;
2150}
2151
a5defcdc
VP
2152/* What is the ``struct value *'' of the root variable VAR?
2153 For floating variable object, evaluation can get us a value
2154 of different type from what is stored in varobj already. In
2155 that case:
2156 - *type_changed will be set to 1
2157 - old varobj will be freed, and new one will be
2158 created, with the same name.
2159 - *var_handle will be set to the new varobj
2160 Otherwise, *type_changed will be set to 0. */
30b28db1 2161static struct value *
4c37490d 2162value_of_root (struct varobj **var_handle, bool *type_changed)
8b93c638 2163{
73a93a32
JI
2164 struct varobj *var;
2165
2166 if (var_handle == NULL)
2167 return NULL;
2168
2169 var = *var_handle;
2170
2171 /* This should really be an exception, since this should
581e13c1 2172 only get called with a root variable. */
73a93a32 2173
b2c2bd75 2174 if (!is_root_p (var))
73a93a32
JI
2175 return NULL;
2176
a5defcdc 2177 if (var->root->floating)
73a93a32
JI
2178 {
2179 struct varobj *tmp_var;
6225abfa 2180
2f408ecb 2181 tmp_var = varobj_create (NULL, var->name.c_str (), (CORE_ADDR) 0,
73a93a32
JI
2182 USE_SELECTED_FRAME);
2183 if (tmp_var == NULL)
2184 {
2185 return NULL;
2186 }
2f408ecb
PA
2187 std::string old_type = varobj_get_type (var);
2188 std::string new_type = varobj_get_type (tmp_var);
2189 if (old_type == new_type)
73a93a32 2190 {
fcacd99f
VP
2191 /* The expression presently stored inside var->root->exp
2192 remembers the locations of local variables relatively to
2193 the frame where the expression was created (in DWARF location
2194 button, for example). Naturally, those locations are not
2195 correct in other frames, so update the expression. */
2196
4d01a485 2197 std::swap (var->root->exp, tmp_var->root->exp);
fcacd99f 2198
30914ca8 2199 varobj_delete (tmp_var, 0);
73a93a32
JI
2200 *type_changed = 0;
2201 }
2202 else
2203 {
2f408ecb 2204 tmp_var->obj_name = var->obj_name;
0cc7d26f
TT
2205 tmp_var->from = var->from;
2206 tmp_var->to = var->to;
30914ca8 2207 varobj_delete (var, 0);
a5defcdc 2208
73a93a32
JI
2209 install_variable (tmp_var);
2210 *var_handle = tmp_var;
705da579 2211 var = *var_handle;
4c37490d 2212 *type_changed = true;
73a93a32
JI
2213 }
2214 }
2215 else
2216 {
2217 *type_changed = 0;
2218 }
2219
7a290c40
JB
2220 {
2221 struct value *value;
2222
2213e2be 2223 value = value_of_root_1 (var_handle);
7a290c40
JB
2224 if (var->value == NULL || value == NULL)
2225 {
2226 /* For root varobj-s, a NULL value indicates a scoping issue.
2227 So, nothing to do in terms of checking for mutations. */
2228 }
2229 else if (varobj_value_has_mutated (var, value, value_type (value)))
2230 {
2231 /* The type has mutated, so the children are no longer valid.
2232 Just delete them, and tell our caller that the type has
2233 changed. */
30914ca8 2234 varobj_delete (var, 1 /* only_children */);
7a290c40
JB
2235 var->num_children = -1;
2236 var->to = -1;
2237 var->from = -1;
4c37490d 2238 *type_changed = true;
7a290c40
JB
2239 }
2240 return value;
2241 }
8b93c638
JM
2242}
2243
581e13c1 2244/* What is the ``struct value *'' for the INDEX'th child of PARENT? */
30b28db1 2245static struct value *
c1cc6152 2246value_of_child (const struct varobj *parent, int index)
8b93c638 2247{
30b28db1 2248 struct value *value;
8b93c638 2249
ca20d462 2250 value = (*parent->root->lang_ops->value_of_child) (parent, index);
8b93c638 2251
8b93c638
JM
2252 return value;
2253}
2254
581e13c1 2255/* GDB already has a command called "value_of_variable". Sigh. */
2f408ecb 2256static std::string
de051565 2257my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 2258{
8756216b 2259 if (var->root->is_valid)
0cc7d26f 2260 {
bb5ce47a 2261 if (var->dynamic->pretty_printer != NULL)
99ad9427 2262 return varobj_value_get_print_value (var->value, var->format, var);
ca20d462 2263 return (*var->root->lang_ops->value_of_variable) (var, format);
0cc7d26f 2264 }
8756216b 2265 else
2f408ecb 2266 return std::string ();
8b93c638
JM
2267}
2268
99ad9427
YQ
2269void
2270varobj_formatted_print_options (struct value_print_options *opts,
2271 enum varobj_display_formats format)
2272{
2273 get_formatted_print_options (opts, format_code[(int) format]);
2274 opts->deref_ref = 0;
2275 opts->raw = 1;
2276}
2277
2f408ecb 2278std::string
99ad9427
YQ
2279varobj_value_get_print_value (struct value *value,
2280 enum varobj_display_formats format,
b09e2c59 2281 const struct varobj *var)
85265413 2282{
79a45b7d 2283 struct value_print_options opts;
be759fcf
PM
2284 struct type *type = NULL;
2285 long len = 0;
1eba6383 2286 gdb::unique_xmalloc_ptr<char> encoding;
3a182a69
JK
2287 /* Initialize it just to avoid a GCC false warning. */
2288 CORE_ADDR str_addr = 0;
4c37490d 2289 bool string_print = false;
57e66780
DJ
2290
2291 if (value == NULL)
2f408ecb 2292 return std::string ();
57e66780 2293
d7e74731 2294 string_file stb;
2f408ecb
PA
2295 std::string thevalue;
2296
b6313243 2297#if HAVE_PYTHON
0646da15
TT
2298 if (gdb_python_initialized)
2299 {
bb5ce47a 2300 PyObject *value_formatter = var->dynamic->pretty_printer;
d452c4bc 2301
68cdc557 2302 gdbpy_enter_varobj enter_py (var);
09ca9e2e 2303
0646da15
TT
2304 if (value_formatter)
2305 {
2306 /* First check to see if we have any children at all. If so,
2307 we simply return {...}. */
2308 if (dynamic_varobj_has_child_method (var))
d7e74731 2309 return "{...}";
b6313243 2310
0646da15
TT
2311 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2312 {
2313 struct value *replacement;
0646da15 2314
7780f186
TT
2315 gdbpy_ref<> output (apply_varobj_pretty_printer (value_formatter,
2316 &replacement,
2317 &stb));
0646da15
TT
2318
2319 /* If we have string like output ... */
68cdc557 2320 if (output != NULL)
0646da15 2321 {
0646da15
TT
2322 /* If this is a lazy string, extract it. For lazy
2323 strings we always print as a string, so set
2324 string_print. */
68cdc557 2325 if (gdbpy_is_lazy_string (output.get ()))
0646da15 2326 {
68cdc557
TT
2327 gdbpy_extract_lazy_string (output.get (), &str_addr,
2328 &type, &len, &encoding);
4c37490d 2329 string_print = true;
0646da15
TT
2330 }
2331 else
2332 {
2333 /* If it is a regular (non-lazy) string, extract
2334 it and copy the contents into THEVALUE. If the
2335 hint says to print it as a string, set
2336 string_print. Otherwise just return the extracted
2337 string as a value. */
2338
9b972014 2339 gdb::unique_xmalloc_ptr<char> s
68cdc557 2340 = python_string_to_target_string (output.get ());
0646da15
TT
2341
2342 if (s)
2343 {
e3821cca 2344 struct gdbarch *gdbarch;
0646da15 2345
9b972014
TT
2346 gdb::unique_xmalloc_ptr<char> hint
2347 = gdbpy_get_display_hint (value_formatter);
0646da15
TT
2348 if (hint)
2349 {
9b972014 2350 if (!strcmp (hint.get (), "string"))
4c37490d 2351 string_print = true;
0646da15
TT
2352 }
2353
9b972014 2354 thevalue = std::string (s.get ());
2f408ecb 2355 len = thevalue.size ();
e3821cca 2356 gdbarch = get_type_arch (value_type (value));
0646da15 2357 type = builtin_type (gdbarch)->builtin_char;
0646da15
TT
2358
2359 if (!string_print)
d7e74731 2360 return thevalue;
0646da15
TT
2361 }
2362 else
2363 gdbpy_print_stack ();
2364 }
2365 }
2366 /* If the printer returned a replacement value, set VALUE
2367 to REPLACEMENT. If there is not a replacement value,
2368 just use the value passed to this function. */
2369 if (replacement)
2370 value = replacement;
2371 }
2372 }
2373 }
b6313243
TT
2374#endif
2375
99ad9427 2376 varobj_formatted_print_options (&opts, format);
00bd41d6
PM
2377
2378 /* If the THEVALUE has contents, it is a regular string. */
2f408ecb 2379 if (!thevalue.empty ())
d7e74731 2380 LA_PRINT_STRING (&stb, type, (gdb_byte *) thevalue.c_str (),
1eba6383 2381 len, encoding.get (), 0, &opts);
09ca9e2e 2382 else if (string_print)
00bd41d6
PM
2383 /* Otherwise, if string_print is set, and it is not a regular
2384 string, it is a lazy string. */
d7e74731 2385 val_print_string (type, encoding.get (), str_addr, len, &stb, &opts);
b6313243 2386 else
00bd41d6 2387 /* All other cases. */
d7e74731 2388 common_val_print (value, &stb, 0, &opts, current_language);
57e66780 2389
d7e74731 2390 return std::move (stb.string ());
85265413
NR
2391}
2392
4c37490d 2393bool
b09e2c59 2394varobj_editable_p (const struct varobj *var)
340a7723
NR
2395{
2396 struct type *type;
340a7723
NR
2397
2398 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
4c37490d 2399 return false;
340a7723 2400
99ad9427 2401 type = varobj_get_value_type (var);
340a7723
NR
2402
2403 switch (TYPE_CODE (type))
2404 {
2405 case TYPE_CODE_STRUCT:
2406 case TYPE_CODE_UNION:
2407 case TYPE_CODE_ARRAY:
2408 case TYPE_CODE_FUNC:
2409 case TYPE_CODE_METHOD:
4c37490d 2410 return false;
340a7723
NR
2411 break;
2412
2413 default:
4c37490d 2414 return true;
340a7723
NR
2415 break;
2416 }
2417}
2418
d32cafc7 2419/* Call VAR's value_is_changeable_p language-specific callback. */
acd65feb 2420
4c37490d 2421bool
b09e2c59 2422varobj_value_is_changeable_p (const struct varobj *var)
8b93c638 2423{
ca20d462 2424 return var->root->lang_ops->value_is_changeable_p (var);
8b93c638
JM
2425}
2426
4c37490d 2427/* Return true if that varobj is floating, that is is always evaluated in the
5a413362
VP
2428 selected frame, and not bound to thread/frame. Such variable objects
2429 are created using '@' as frame specifier to -var-create. */
4c37490d 2430bool
b09e2c59 2431varobj_floating_p (const struct varobj *var)
5a413362
VP
2432{
2433 return var->root->floating;
2434}
2435
d32cafc7
JB
2436/* Implement the "value_is_changeable_p" varobj callback for most
2437 languages. */
2438
4c37490d 2439bool
b09e2c59 2440varobj_default_value_is_changeable_p (const struct varobj *var)
d32cafc7 2441{
4c37490d 2442 bool r;
d32cafc7
JB
2443 struct type *type;
2444
2445 if (CPLUS_FAKE_CHILD (var))
4c37490d 2446 return false;
d32cafc7 2447
99ad9427 2448 type = varobj_get_value_type (var);
d32cafc7
JB
2449
2450 switch (TYPE_CODE (type))
2451 {
2452 case TYPE_CODE_STRUCT:
2453 case TYPE_CODE_UNION:
2454 case TYPE_CODE_ARRAY:
4c37490d 2455 r = false;
d32cafc7
JB
2456 break;
2457
2458 default:
4c37490d 2459 r = true;
d32cafc7
JB
2460 }
2461
2462 return r;
2463}
2464
54333c3b
JK
2465/* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
2466 with an arbitrary caller supplied DATA pointer. */
2467
2468void
2469all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
2470{
2471 struct varobj_root *var_root, *var_root_next;
2472
2473 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
2474
2475 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
2476 {
2477 var_root_next = var_root->next;
2478
2479 (*func) (var_root->rootvar, data);
2480 }
2481}
8756216b 2482
54333c3b 2483/* Invalidate varobj VAR if it is tied to locals and re-create it if it is
4e969b4f
AB
2484 defined on globals. It is a helper for varobj_invalidate.
2485
2486 This function is called after changing the symbol file, in this case the
2487 pointers to "struct type" stored by the varobj are no longer valid. All
2488 varobj must be either re-evaluated, or marked as invalid here. */
2dbd25e5 2489
54333c3b
JK
2490static void
2491varobj_invalidate_iter (struct varobj *var, void *unused)
8756216b 2492{
4e969b4f
AB
2493 /* global and floating var must be re-evaluated. */
2494 if (var->root->floating || var->root->valid_block == NULL)
2dbd25e5 2495 {
54333c3b 2496 struct varobj *tmp_var;
2dbd25e5 2497
54333c3b
JK
2498 /* Try to create a varobj with same expression. If we succeed
2499 replace the old varobj, otherwise invalidate it. */
2f408ecb 2500 tmp_var = varobj_create (NULL, var->name.c_str (), (CORE_ADDR) 0,
54333c3b
JK
2501 USE_CURRENT_FRAME);
2502 if (tmp_var != NULL)
2503 {
2f408ecb 2504 tmp_var->obj_name = var->obj_name;
30914ca8 2505 varobj_delete (var, 0);
54333c3b 2506 install_variable (tmp_var);
2dbd25e5 2507 }
54333c3b 2508 else
4c37490d 2509 var->root->is_valid = false;
2dbd25e5 2510 }
54333c3b 2511 else /* locals must be invalidated. */
4c37490d 2512 var->root->is_valid = false;
54333c3b
JK
2513}
2514
2515/* Invalidate the varobjs that are tied to locals and re-create the ones that
2516 are defined on globals.
2517 Invalidated varobjs will be always printed in_scope="invalid". */
2518
2519void
2520varobj_invalidate (void)
2521{
2522 all_root_varobjs (varobj_invalidate_iter, NULL);
8756216b 2523}
481695ed 2524
1c3569d4
MR
2525void
2526_initialize_varobj (void)
2527{
8d749320 2528 varobj_table = XCNEWVEC (struct vlist *, VAROBJ_TABLE_SIZE);
1c3569d4
MR
2529
2530 add_setshow_zuinteger_cmd ("varobj", class_maintenance,
2531 &varobjdebug,
2532 _("Set varobj debugging."),
2533 _("Show varobj debugging."),
2534 _("When non-zero, varobj debugging is enabled."),
2535 NULL, show_varobjdebug,
2536 &setdebuglist, &showdebuglist);
2537}