]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/varobj.c
Free results of varobj_get_expression
[thirdparty/binutils-gdb.git] / gdb / varobj.c
CommitLineData
8b93c638 1/* Implementation of the GDB variable objects API.
bc8332bb 2
32d0add0 3 Copyright (C) 1999-2015 Free Software Foundation, Inc.
8b93c638
JM
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
a9762ec7 7 the Free Software Foundation; either version 3 of the License, or
8b93c638
JM
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
a9762ec7 16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
8b93c638
JM
17
18#include "defs.h"
19#include "value.h"
20#include "expression.h"
21#include "frame.h"
8b93c638 22#include "language.h"
8b93c638 23#include "gdbcmd.h"
d2353924 24#include "block.h"
79a45b7d 25#include "valprint.h"
0cc7d26f 26#include "gdb_regex.h"
8b93c638
JM
27
28#include "varobj.h"
28335dcc 29#include "vec.h"
6208b47d
VP
30#include "gdbthread.h"
31#include "inferior.h"
827f100c 32#include "varobj-iter.h"
8b93c638 33
b6313243
TT
34#if HAVE_PYTHON
35#include "python/python.h"
36#include "python/python-internal.h"
50389644
PA
37#else
38typedef int PyObject;
b6313243
TT
39#endif
40
8b93c638
JM
41/* Non-zero if we want to see trace of varobj level stuff. */
42
ccce17b0 43unsigned int varobjdebug = 0;
920d2a44
AC
44static void
45show_varobjdebug (struct ui_file *file, int from_tty,
46 struct cmd_list_element *c, const char *value)
47{
48 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
49}
8b93c638 50
581e13c1 51/* String representations of gdb's format codes. */
8b93c638 52char *varobj_format_string[] =
72330bd6 53 { "natural", "binary", "decimal", "hexadecimal", "octal" };
8b93c638 54
0cc7d26f
TT
55/* True if we want to allow Python-based pretty-printing. */
56static int pretty_printing = 0;
57
58void
59varobj_enable_pretty_printing (void)
60{
61 pretty_printing = 1;
62}
63
8b93c638
JM
64/* Data structures */
65
66/* Every root variable has one of these structures saved in its
581e13c1 67 varobj. Members which must be free'd are noted. */
8b93c638 68struct varobj_root
72330bd6 69{
8b93c638 70
581e13c1 71 /* Alloc'd expression for this parent. */
72330bd6 72 struct expression *exp;
8b93c638 73
581e13c1 74 /* Block for which this expression is valid. */
270140bd 75 const struct block *valid_block;
8b93c638 76
44a67aa7
VP
77 /* The frame for this expression. This field is set iff valid_block is
78 not NULL. */
e64d9b3d 79 struct frame_id frame;
8b93c638 80
c5b48eac 81 /* The thread ID that this varobj_root belong to. This field
581e13c1 82 is only valid if valid_block is not NULL.
c5b48eac
VP
83 When not 0, indicates which thread 'frame' belongs to.
84 When 0, indicates that the thread list was empty when the varobj_root
85 was created. */
86 int thread_id;
87
a5defcdc
VP
88 /* If 1, the -var-update always recomputes the value in the
89 current thread and frame. Otherwise, variable object is
581e13c1 90 always updated in the specific scope/thread/frame. */
a5defcdc 91 int floating;
73a93a32 92
8756216b
DP
93 /* Flag that indicates validity: set to 0 when this varobj_root refers
94 to symbols that do not exist anymore. */
95 int is_valid;
96
99ad9427
YQ
97 /* Language-related operations for this variable and its
98 children. */
ca20d462 99 const struct lang_varobj_ops *lang_ops;
8b93c638 100
581e13c1 101 /* The varobj for this root node. */
72330bd6 102 struct varobj *rootvar;
8b93c638 103
72330bd6
AC
104 /* Next root variable */
105 struct varobj_root *next;
106};
8b93c638 107
bb5ce47a 108/* Dynamic part of varobj. */
8b93c638 109
bb5ce47a
YQ
110struct varobj_dynamic
111{
b6313243
TT
112 /* Whether the children of this varobj were requested. This field is
113 used to decide if dynamic varobj should recompute their children.
114 In the event that the frontend never asked for the children, we
115 can avoid that. */
116 int children_requested;
117
0cc7d26f
TT
118 /* The pretty-printer constructor. If NULL, then the default
119 pretty-printer will be looked up. If None, then no
120 pretty-printer will be installed. */
121 PyObject *constructor;
122
b6313243
TT
123 /* The pretty-printer that has been constructed. If NULL, then a
124 new printer object is needed, and one will be constructed. */
125 PyObject *pretty_printer;
0cc7d26f
TT
126
127 /* The iterator returned by the printer's 'children' method, or NULL
128 if not available. */
e5250216 129 struct varobj_iter *child_iter;
0cc7d26f
TT
130
131 /* We request one extra item from the iterator, so that we can
132 report to the caller whether there are more items than we have
133 already reported. However, we don't want to install this value
134 when we read it, because that will mess up future updates. So,
135 we stash it here instead. */
e5250216 136 varobj_item *saved_item;
72330bd6 137};
8b93c638 138
8b93c638 139struct cpstack
72330bd6
AC
140{
141 char *name;
142 struct cpstack *next;
143};
8b93c638
JM
144
145/* A list of varobjs */
146
147struct vlist
72330bd6
AC
148{
149 struct varobj *var;
150 struct vlist *next;
151};
8b93c638
JM
152
153/* Private function prototypes */
154
581e13c1 155/* Helper functions for the above subcommands. */
8b93c638 156
a14ed312 157static int delete_variable (struct cpstack **, struct varobj *, int);
8b93c638 158
a14ed312
KB
159static void delete_variable_1 (struct cpstack **, int *,
160 struct varobj *, int, int);
8b93c638 161
a14ed312 162static int install_variable (struct varobj *);
8b93c638 163
a14ed312 164static void uninstall_variable (struct varobj *);
8b93c638 165
a14ed312 166static struct varobj *create_child (struct varobj *, int, char *);
8b93c638 167
b6313243 168static struct varobj *
5a2e0d6e
YQ
169create_child_with_value (struct varobj *parent, int index,
170 struct varobj_item *item);
b6313243 171
8b93c638
JM
172/* Utility routines */
173
a14ed312 174static struct varobj *new_variable (void);
8b93c638 175
a14ed312 176static struct varobj *new_root_variable (void);
8b93c638 177
a14ed312 178static void free_variable (struct varobj *var);
8b93c638 179
74b7792f
AC
180static struct cleanup *make_cleanup_free_variable (struct varobj *var);
181
a14ed312 182static enum varobj_display_formats variable_default_display (struct varobj *);
8b93c638 183
a14ed312 184static void cppush (struct cpstack **pstack, char *name);
8b93c638 185
a14ed312 186static char *cppop (struct cpstack **pstack);
8b93c638 187
8264ba82
AG
188static int update_type_if_necessary (struct varobj *var,
189 struct value *new_value);
190
acd65feb
VP
191static int install_new_value (struct varobj *var, struct value *value,
192 int initial);
193
581e13c1 194/* Language-specific routines. */
8b93c638 195
a14ed312 196static int number_of_children (struct varobj *);
8b93c638 197
a14ed312 198static char *name_of_variable (struct varobj *);
8b93c638 199
a14ed312 200static char *name_of_child (struct varobj *, int);
8b93c638 201
30b28db1 202static struct value *value_of_root (struct varobj **var_handle, int *);
8b93c638 203
30b28db1 204static struct value *value_of_child (struct varobj *parent, int index);
8b93c638 205
de051565
MK
206static char *my_value_of_variable (struct varobj *var,
207 enum varobj_display_formats format);
8b93c638 208
b2c2bd75 209static int is_root_p (struct varobj *var);
8b93c638 210
9a1edae6 211static struct varobj *varobj_add_child (struct varobj *var,
5a2e0d6e 212 struct varobj_item *item);
b6313243 213
8b93c638
JM
214/* Private data */
215
581e13c1 216/* Mappings of varobj_display_formats enums to gdb's format codes. */
72330bd6 217static int format_code[] = { 0, 't', 'd', 'x', 'o' };
8b93c638 218
581e13c1 219/* Header of the list of root variable objects. */
8b93c638 220static struct varobj_root *rootlist;
8b93c638 221
581e13c1
MS
222/* Prime number indicating the number of buckets in the hash table. */
223/* A prime large enough to avoid too many colisions. */
8b93c638
JM
224#define VAROBJ_TABLE_SIZE 227
225
581e13c1 226/* Pointer to the varobj hash table (built at run time). */
8b93c638
JM
227static struct vlist **varobj_table;
228
8b93c638
JM
229\f
230
231/* API Implementation */
b2c2bd75
VP
232static int
233is_root_p (struct varobj *var)
234{
235 return (var->root->rootvar == var);
236}
8b93c638 237
d452c4bc
UW
238#ifdef HAVE_PYTHON
239/* Helper function to install a Python environment suitable for
240 use during operations on VAR. */
e5250216 241struct cleanup *
d452c4bc
UW
242varobj_ensure_python_env (struct varobj *var)
243{
244 return ensure_python_env (var->root->exp->gdbarch,
245 var->root->exp->language_defn);
246}
247#endif
248
581e13c1 249/* Creates a varobj (not its children). */
8b93c638 250
7d8547c9
AC
251/* Return the full FRAME which corresponds to the given CORE_ADDR
252 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
253
254static struct frame_info *
255find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
256{
257 struct frame_info *frame = NULL;
258
259 if (frame_addr == (CORE_ADDR) 0)
260 return NULL;
261
9d49bdc2
PA
262 for (frame = get_current_frame ();
263 frame != NULL;
264 frame = get_prev_frame (frame))
7d8547c9 265 {
1fac167a
UW
266 /* The CORE_ADDR we get as argument was parsed from a string GDB
267 output as $fp. This output got truncated to gdbarch_addr_bit.
268 Truncate the frame base address in the same manner before
269 comparing it against our argument. */
270 CORE_ADDR frame_base = get_frame_base_address (frame);
271 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
a109c7c1 272
1fac167a
UW
273 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
274 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
275
276 if (frame_base == frame_addr)
7d8547c9
AC
277 return frame;
278 }
9d49bdc2
PA
279
280 return NULL;
7d8547c9
AC
281}
282
8b93c638
JM
283struct varobj *
284varobj_create (char *objname,
72330bd6 285 char *expression, CORE_ADDR frame, enum varobj_type type)
8b93c638
JM
286{
287 struct varobj *var;
8b93c638
JM
288 struct cleanup *old_chain;
289
581e13c1 290 /* Fill out a varobj structure for the (root) variable being constructed. */
8b93c638 291 var = new_root_variable ();
74b7792f 292 old_chain = make_cleanup_free_variable (var);
8b93c638
JM
293
294 if (expression != NULL)
295 {
e4195b40 296 struct frame_info *fi;
35633fef 297 struct frame_id old_id = null_frame_id;
3977b71f 298 const struct block *block;
bbc13ae3 299 const char *p;
e55dccf0 300 struct value *value = NULL;
8e7b59a5 301 volatile struct gdb_exception except;
1bb9788d 302 CORE_ADDR pc;
8b93c638 303
9d49bdc2
PA
304 /* Parse and evaluate the expression, filling in as much of the
305 variable's data as possible. */
306
307 if (has_stack_frames ())
308 {
581e13c1 309 /* Allow creator to specify context of variable. */
9d49bdc2
PA
310 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
311 fi = get_selected_frame (NULL);
312 else
313 /* FIXME: cagney/2002-11-23: This code should be doing a
314 lookup using the frame ID and not just the frame's
315 ``address''. This, of course, means an interface
316 change. However, with out that interface change ISAs,
317 such as the ia64 with its two stacks, won't work.
318 Similar goes for the case where there is a frameless
319 function. */
320 fi = find_frame_addr_in_frame_chain (frame);
321 }
8b93c638 322 else
9d49bdc2 323 fi = NULL;
8b93c638 324
581e13c1 325 /* frame = -2 means always use selected frame. */
73a93a32 326 if (type == USE_SELECTED_FRAME)
a5defcdc 327 var->root->floating = 1;
73a93a32 328
1bb9788d 329 pc = 0;
8b93c638
JM
330 block = NULL;
331 if (fi != NULL)
1bb9788d
TT
332 {
333 block = get_frame_block (fi, 0);
334 pc = get_frame_pc (fi);
335 }
8b93c638
JM
336
337 p = expression;
338 innermost_block = NULL;
73a93a32 339 /* Wrap the call to parse expression, so we can
581e13c1 340 return a sensible error. */
8e7b59a5
KS
341 TRY_CATCH (except, RETURN_MASK_ERROR)
342 {
1bb9788d 343 var->root->exp = parse_exp_1 (&p, pc, block, 0);
8e7b59a5
KS
344 }
345
346 if (except.reason < 0)
73a93a32 347 {
f748fb40 348 do_cleanups (old_chain);
73a93a32
JI
349 return NULL;
350 }
8b93c638 351
581e13c1 352 /* Don't allow variables to be created for types. */
608b4967
TT
353 if (var->root->exp->elts[0].opcode == OP_TYPE
354 || var->root->exp->elts[0].opcode == OP_TYPEOF
355 || var->root->exp->elts[0].opcode == OP_DECLTYPE)
8b93c638
JM
356 {
357 do_cleanups (old_chain);
bc8332bb
AC
358 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
359 " as an expression.\n");
8b93c638
JM
360 return NULL;
361 }
362
363 var->format = variable_default_display (var);
364 var->root->valid_block = innermost_block;
1b36a34b 365 var->name = xstrdup (expression);
02142340 366 /* For a root var, the name and the expr are the same. */
1b36a34b 367 var->path_expr = xstrdup (expression);
8b93c638
JM
368
369 /* When the frame is different from the current frame,
370 we must select the appropriate frame before parsing
371 the expression, otherwise the value will not be current.
581e13c1 372 Since select_frame is so benign, just call it for all cases. */
4e22772d 373 if (innermost_block)
8b93c638 374 {
4e22772d
JK
375 /* User could specify explicit FRAME-ADDR which was not found but
376 EXPRESSION is frame specific and we would not be able to evaluate
377 it correctly next time. With VALID_BLOCK set we must also set
378 FRAME and THREAD_ID. */
379 if (fi == NULL)
380 error (_("Failed to find the specified frame"));
381
7a424e99 382 var->root->frame = get_frame_id (fi);
c5b48eac 383 var->root->thread_id = pid_to_thread_id (inferior_ptid);
35633fef 384 old_id = get_frame_id (get_selected_frame (NULL));
c5b48eac 385 select_frame (fi);
8b93c638
JM
386 }
387
340a7723 388 /* We definitely need to catch errors here.
8b93c638 389 If evaluate_expression succeeds we got the value we wanted.
581e13c1 390 But if it fails, we still go on with a call to evaluate_type(). */
8e7b59a5
KS
391 TRY_CATCH (except, RETURN_MASK_ERROR)
392 {
393 value = evaluate_expression (var->root->exp);
394 }
395
396 if (except.reason < 0)
e55dccf0
VP
397 {
398 /* Error getting the value. Try to at least get the
399 right type. */
400 struct value *type_only_value = evaluate_type (var->root->exp);
a109c7c1 401
e55dccf0
VP
402 var->type = value_type (type_only_value);
403 }
8264ba82
AG
404 else
405 {
406 int real_type_found = 0;
407
408 var->type = value_actual_type (value, 0, &real_type_found);
409 if (real_type_found)
410 value = value_cast (var->type, value);
411 }
acd65feb 412
8b93c638 413 /* Set language info */
ca20d462 414 var->root->lang_ops = var->root->exp->language_defn->la_varobj_ops;
8b93c638 415
d32cafc7
JB
416 install_new_value (var, value, 1 /* Initial assignment */);
417
581e13c1 418 /* Set ourselves as our root. */
8b93c638
JM
419 var->root->rootvar = var;
420
581e13c1 421 /* Reset the selected frame. */
35633fef
JK
422 if (frame_id_p (old_id))
423 select_frame (frame_find_by_id (old_id));
8b93c638
JM
424 }
425
73a93a32 426 /* If the variable object name is null, that means this
581e13c1 427 is a temporary variable, so don't install it. */
73a93a32
JI
428
429 if ((var != NULL) && (objname != NULL))
8b93c638 430 {
1b36a34b 431 var->obj_name = xstrdup (objname);
8b93c638
JM
432
433 /* If a varobj name is duplicated, the install will fail so
581e13c1 434 we must cleanup. */
8b93c638
JM
435 if (!install_variable (var))
436 {
437 do_cleanups (old_chain);
438 return NULL;
439 }
440 }
441
442 discard_cleanups (old_chain);
443 return var;
444}
445
581e13c1 446/* Generates an unique name that can be used for a varobj. */
8b93c638
JM
447
448char *
449varobj_gen_name (void)
450{
451 static int id = 0;
e64d9b3d 452 char *obj_name;
8b93c638 453
581e13c1 454 /* Generate a name for this object. */
8b93c638 455 id++;
b435e160 456 obj_name = xstrprintf ("var%d", id);
8b93c638 457
e64d9b3d 458 return obj_name;
8b93c638
JM
459}
460
61d8f275
JK
461/* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
462 error if OBJNAME cannot be found. */
8b93c638
JM
463
464struct varobj *
465varobj_get_handle (char *objname)
466{
467 struct vlist *cv;
468 const char *chp;
469 unsigned int index = 0;
470 unsigned int i = 1;
471
472 for (chp = objname; *chp; chp++)
473 {
474 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
475 }
476
477 cv = *(varobj_table + index);
478 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
479 cv = cv->next;
480
481 if (cv == NULL)
8a3fe4f8 482 error (_("Variable object not found"));
8b93c638
JM
483
484 return cv->var;
485}
486
581e13c1 487/* Given the handle, return the name of the object. */
8b93c638
JM
488
489char *
490varobj_get_objname (struct varobj *var)
491{
492 return var->obj_name;
493}
494
ca83fa81
SM
495/* Given the handle, return the expression represented by the object. The
496 result must be freed by the caller. */
8b93c638
JM
497
498char *
499varobj_get_expression (struct varobj *var)
500{
501 return name_of_variable (var);
502}
503
504/* Deletes a varobj and all its children if only_children == 0,
3e43a32a
MS
505 otherwise deletes only the children; returns a malloc'ed list of
506 all the (malloc'ed) names of the variables that have been deleted
581e13c1 507 (NULL terminated). */
8b93c638
JM
508
509int
510varobj_delete (struct varobj *var, char ***dellist, int only_children)
511{
512 int delcount;
513 int mycount;
514 struct cpstack *result = NULL;
515 char **cp;
516
581e13c1 517 /* Initialize a stack for temporary results. */
8b93c638
JM
518 cppush (&result, NULL);
519
520 if (only_children)
581e13c1 521 /* Delete only the variable children. */
8b93c638
JM
522 delcount = delete_variable (&result, var, 1 /* only the children */ );
523 else
581e13c1 524 /* Delete the variable and all its children. */
8b93c638
JM
525 delcount = delete_variable (&result, var, 0 /* parent+children */ );
526
581e13c1 527 /* We may have been asked to return a list of what has been deleted. */
8b93c638
JM
528 if (dellist != NULL)
529 {
530 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
531
532 cp = *dellist;
533 mycount = delcount;
534 *cp = cppop (&result);
535 while ((*cp != NULL) && (mycount > 0))
536 {
537 mycount--;
538 cp++;
539 *cp = cppop (&result);
540 }
541
542 if (mycount || (*cp != NULL))
8a3fe4f8 543 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
72330bd6 544 mycount);
8b93c638
JM
545 }
546
547 return delcount;
548}
549
d8b65138
JK
550#if HAVE_PYTHON
551
b6313243
TT
552/* Convenience function for varobj_set_visualizer. Instantiate a
553 pretty-printer for a given value. */
554static PyObject *
555instantiate_pretty_printer (PyObject *constructor, struct value *value)
556{
b6313243
TT
557 PyObject *val_obj = NULL;
558 PyObject *printer;
b6313243 559
b6313243 560 val_obj = value_to_value_object (value);
b6313243
TT
561 if (! val_obj)
562 return NULL;
563
564 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
565 Py_DECREF (val_obj);
566 return printer;
b6313243
TT
567}
568
d8b65138
JK
569#endif
570
581e13c1 571/* Set/Get variable object display format. */
8b93c638
JM
572
573enum varobj_display_formats
574varobj_set_display_format (struct varobj *var,
575 enum varobj_display_formats format)
576{
577 switch (format)
578 {
579 case FORMAT_NATURAL:
580 case FORMAT_BINARY:
581 case FORMAT_DECIMAL:
582 case FORMAT_HEXADECIMAL:
583 case FORMAT_OCTAL:
584 var->format = format;
585 break;
586
587 default:
588 var->format = variable_default_display (var);
589 }
590
ae7d22a6
VP
591 if (varobj_value_is_changeable_p (var)
592 && var->value && !value_lazy (var->value))
593 {
6c761d9c 594 xfree (var->print_value);
99ad9427
YQ
595 var->print_value = varobj_value_get_print_value (var->value,
596 var->format, var);
ae7d22a6
VP
597 }
598
8b93c638
JM
599 return var->format;
600}
601
602enum varobj_display_formats
603varobj_get_display_format (struct varobj *var)
604{
605 return var->format;
606}
607
b6313243
TT
608char *
609varobj_get_display_hint (struct varobj *var)
610{
611 char *result = NULL;
612
613#if HAVE_PYTHON
0646da15
TT
614 struct cleanup *back_to;
615
616 if (!gdb_python_initialized)
617 return NULL;
618
619 back_to = varobj_ensure_python_env (var);
d452c4bc 620
bb5ce47a
YQ
621 if (var->dynamic->pretty_printer != NULL)
622 result = gdbpy_get_display_hint (var->dynamic->pretty_printer);
d452c4bc
UW
623
624 do_cleanups (back_to);
b6313243
TT
625#endif
626
627 return result;
628}
629
0cc7d26f
TT
630/* Return true if the varobj has items after TO, false otherwise. */
631
632int
633varobj_has_more (struct varobj *var, int to)
634{
635 if (VEC_length (varobj_p, var->children) > to)
636 return 1;
637 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
bb5ce47a 638 && (var->dynamic->saved_item != NULL));
0cc7d26f
TT
639}
640
c5b48eac
VP
641/* If the variable object is bound to a specific thread, that
642 is its evaluation can always be done in context of a frame
643 inside that thread, returns GDB id of the thread -- which
581e13c1 644 is always positive. Otherwise, returns -1. */
c5b48eac
VP
645int
646varobj_get_thread_id (struct varobj *var)
647{
648 if (var->root->valid_block && var->root->thread_id > 0)
649 return var->root->thread_id;
650 else
651 return -1;
652}
653
25d5ea92
VP
654void
655varobj_set_frozen (struct varobj *var, int frozen)
656{
657 /* When a variable is unfrozen, we don't fetch its value.
658 The 'not_fetched' flag remains set, so next -var-update
659 won't complain.
660
661 We don't fetch the value, because for structures the client
662 should do -var-update anyway. It would be bad to have different
663 client-size logic for structure and other types. */
664 var->frozen = frozen;
665}
666
667int
668varobj_get_frozen (struct varobj *var)
669{
670 return var->frozen;
671}
672
0cc7d26f
TT
673/* A helper function that restricts a range to what is actually
674 available in a VEC. This follows the usual rules for the meaning
675 of FROM and TO -- if either is negative, the entire range is
676 used. */
677
99ad9427
YQ
678void
679varobj_restrict_range (VEC (varobj_p) *children, int *from, int *to)
0cc7d26f
TT
680{
681 if (*from < 0 || *to < 0)
682 {
683 *from = 0;
684 *to = VEC_length (varobj_p, children);
685 }
686 else
687 {
688 if (*from > VEC_length (varobj_p, children))
689 *from = VEC_length (varobj_p, children);
690 if (*to > VEC_length (varobj_p, children))
691 *to = VEC_length (varobj_p, children);
692 if (*from > *to)
693 *from = *to;
694 }
695}
696
697/* A helper for update_dynamic_varobj_children that installs a new
698 child when needed. */
699
700static void
701install_dynamic_child (struct varobj *var,
702 VEC (varobj_p) **changed,
8264ba82 703 VEC (varobj_p) **type_changed,
0cc7d26f
TT
704 VEC (varobj_p) **new,
705 VEC (varobj_p) **unchanged,
706 int *cchanged,
707 int index,
5a2e0d6e 708 struct varobj_item *item)
0cc7d26f
TT
709{
710 if (VEC_length (varobj_p, var->children) < index + 1)
711 {
712 /* There's no child yet. */
5a2e0d6e 713 struct varobj *child = varobj_add_child (var, item);
a109c7c1 714
0cc7d26f
TT
715 if (new)
716 {
717 VEC_safe_push (varobj_p, *new, child);
718 *cchanged = 1;
719 }
720 }
bf8793bb 721 else
0cc7d26f
TT
722 {
723 varobj_p existing = VEC_index (varobj_p, var->children, index);
5a2e0d6e 724 int type_updated = update_type_if_necessary (existing, item->value);
bf8793bb 725
8264ba82
AG
726 if (type_updated)
727 {
728 if (type_changed)
729 VEC_safe_push (varobj_p, *type_changed, existing);
730 }
5a2e0d6e 731 if (install_new_value (existing, item->value, 0))
0cc7d26f 732 {
8264ba82 733 if (!type_updated && changed)
0cc7d26f
TT
734 VEC_safe_push (varobj_p, *changed, existing);
735 }
8264ba82 736 else if (!type_updated && unchanged)
0cc7d26f
TT
737 VEC_safe_push (varobj_p, *unchanged, existing);
738 }
739}
740
576ea091
YQ
741#if HAVE_PYTHON
742
0cc7d26f
TT
743static int
744dynamic_varobj_has_child_method (struct varobj *var)
745{
746 struct cleanup *back_to;
bb5ce47a 747 PyObject *printer = var->dynamic->pretty_printer;
0cc7d26f
TT
748 int result;
749
0646da15
TT
750 if (!gdb_python_initialized)
751 return 0;
752
0cc7d26f
TT
753 back_to = varobj_ensure_python_env (var);
754 result = PyObject_HasAttr (printer, gdbpy_children_cst);
755 do_cleanups (back_to);
756 return result;
757}
576ea091 758#endif
0cc7d26f 759
e5250216
YQ
760/* A factory for creating dynamic varobj's iterators. Returns an
761 iterator object suitable for iterating over VAR's children. */
762
763static struct varobj_iter *
764varobj_get_iterator (struct varobj *var)
765{
576ea091 766#if HAVE_PYTHON
e5250216
YQ
767 if (var->dynamic->pretty_printer)
768 return py_varobj_get_iterator (var, var->dynamic->pretty_printer);
576ea091 769#endif
e5250216
YQ
770
771 gdb_assert_not_reached (_("\
772requested an iterator from a non-dynamic varobj"));
773}
774
827f100c
YQ
775/* Release and clear VAR's saved item, if any. */
776
777static void
778varobj_clear_saved_item (struct varobj_dynamic *var)
779{
780 if (var->saved_item != NULL)
781 {
782 value_free (var->saved_item->value);
783 xfree (var->saved_item);
784 var->saved_item = NULL;
785 }
786}
0cc7d26f 787
b6313243
TT
788static int
789update_dynamic_varobj_children (struct varobj *var,
790 VEC (varobj_p) **changed,
8264ba82 791 VEC (varobj_p) **type_changed,
0cc7d26f
TT
792 VEC (varobj_p) **new,
793 VEC (varobj_p) **unchanged,
794 int *cchanged,
795 int update_children,
796 int from,
797 int to)
b6313243 798{
b6313243 799 int i;
b6313243 800
b6313243 801 *cchanged = 0;
b6313243 802
bb5ce47a 803 if (update_children || var->dynamic->child_iter == NULL)
b6313243 804 {
e5250216
YQ
805 varobj_iter_delete (var->dynamic->child_iter);
806 var->dynamic->child_iter = varobj_get_iterator (var);
b6313243 807
827f100c 808 varobj_clear_saved_item (var->dynamic);
b6313243 809
e5250216 810 i = 0;
b6313243 811
bb5ce47a 812 if (var->dynamic->child_iter == NULL)
827f100c 813 return 0;
b6313243 814 }
0cc7d26f
TT
815 else
816 i = VEC_length (varobj_p, var->children);
b6313243 817
0cc7d26f
TT
818 /* We ask for one extra child, so that MI can report whether there
819 are more children. */
820 for (; to < 0 || i < to + 1; ++i)
b6313243 821 {
827f100c 822 varobj_item *item;
b6313243 823
0cc7d26f 824 /* See if there was a leftover from last time. */
827f100c 825 if (var->dynamic->saved_item != NULL)
0cc7d26f 826 {
bb5ce47a
YQ
827 item = var->dynamic->saved_item;
828 var->dynamic->saved_item = NULL;
0cc7d26f
TT
829 }
830 else
a4c8e806 831 {
e5250216 832 item = varobj_iter_next (var->dynamic->child_iter);
827f100c
YQ
833 /* Release vitem->value so its lifetime is not bound to the
834 execution of a command. */
835 if (item != NULL && item->value != NULL)
836 release_value_or_incref (item->value);
a4c8e806 837 }
b6313243 838
e5250216
YQ
839 if (item == NULL)
840 {
841 /* Iteration is done. Remove iterator from VAR. */
842 varobj_iter_delete (var->dynamic->child_iter);
843 var->dynamic->child_iter = NULL;
844 break;
845 }
0cc7d26f
TT
846 /* We don't want to push the extra child on any report list. */
847 if (to < 0 || i < to)
b6313243 848 {
0cc7d26f
TT
849 int can_mention = from < 0 || i >= from;
850
0cc7d26f 851 install_dynamic_child (var, can_mention ? changed : NULL,
8264ba82 852 can_mention ? type_changed : NULL,
0cc7d26f
TT
853 can_mention ? new : NULL,
854 can_mention ? unchanged : NULL,
5e5ac9a5 855 can_mention ? cchanged : NULL, i,
827f100c
YQ
856 item);
857
858 xfree (item);
b6313243 859 }
0cc7d26f 860 else
b6313243 861 {
bb5ce47a 862 var->dynamic->saved_item = item;
b6313243 863
0cc7d26f
TT
864 /* We want to truncate the child list just before this
865 element. */
866 break;
867 }
b6313243
TT
868 }
869
870 if (i < VEC_length (varobj_p, var->children))
871 {
0cc7d26f 872 int j;
a109c7c1 873
0cc7d26f
TT
874 *cchanged = 1;
875 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
876 varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0);
877 VEC_truncate (varobj_p, var->children, i);
b6313243 878 }
0cc7d26f
TT
879
880 /* If there are fewer children than requested, note that the list of
881 children changed. */
882 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
883 *cchanged = 1;
884
b6313243 885 var->num_children = VEC_length (varobj_p, var->children);
b6313243 886
b6313243 887 return 1;
b6313243 888}
25d5ea92 889
8b93c638
JM
890int
891varobj_get_num_children (struct varobj *var)
892{
893 if (var->num_children == -1)
b6313243 894 {
31f628ae 895 if (varobj_is_dynamic_p (var))
0cc7d26f
TT
896 {
897 int dummy;
898
899 /* If we have a dynamic varobj, don't report -1 children.
900 So, try to fetch some children first. */
8264ba82 901 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
0cc7d26f
TT
902 0, 0, 0);
903 }
904 else
b6313243
TT
905 var->num_children = number_of_children (var);
906 }
8b93c638 907
0cc7d26f 908 return var->num_children >= 0 ? var->num_children : 0;
8b93c638
JM
909}
910
911/* Creates a list of the immediate children of a variable object;
581e13c1 912 the return code is the number of such children or -1 on error. */
8b93c638 913
d56d46f5 914VEC (varobj_p)*
0cc7d26f 915varobj_list_children (struct varobj *var, int *from, int *to)
8b93c638 916{
8b93c638 917 char *name;
b6313243
TT
918 int i, children_changed;
919
bb5ce47a 920 var->dynamic->children_requested = 1;
b6313243 921
31f628ae 922 if (varobj_is_dynamic_p (var))
0cc7d26f 923 {
b6313243
TT
924 /* This, in theory, can result in the number of children changing without
925 frontend noticing. But well, calling -var-list-children on the same
926 varobj twice is not something a sane frontend would do. */
8264ba82
AG
927 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
928 &children_changed, 0, 0, *to);
99ad9427 929 varobj_restrict_range (var->children, from, to);
0cc7d26f
TT
930 return var->children;
931 }
8b93c638 932
8b93c638
JM
933 if (var->num_children == -1)
934 var->num_children = number_of_children (var);
935
74a44383
DJ
936 /* If that failed, give up. */
937 if (var->num_children == -1)
d56d46f5 938 return var->children;
74a44383 939
28335dcc
VP
940 /* If we're called when the list of children is not yet initialized,
941 allocate enough elements in it. */
942 while (VEC_length (varobj_p, var->children) < var->num_children)
943 VEC_safe_push (varobj_p, var->children, NULL);
944
8b93c638
JM
945 for (i = 0; i < var->num_children; i++)
946 {
d56d46f5 947 varobj_p existing = VEC_index (varobj_p, var->children, i);
28335dcc
VP
948
949 if (existing == NULL)
950 {
951 /* Either it's the first call to varobj_list_children for
952 this variable object, and the child was never created,
953 or it was explicitly deleted by the client. */
954 name = name_of_child (var, i);
955 existing = create_child (var, i, name);
956 VEC_replace (varobj_p, var->children, i, existing);
957 }
8b93c638
JM
958 }
959
99ad9427 960 varobj_restrict_range (var->children, from, to);
d56d46f5 961 return var->children;
8b93c638
JM
962}
963
b6313243 964static struct varobj *
5a2e0d6e 965varobj_add_child (struct varobj *var, struct varobj_item *item)
b6313243 966{
5a2e0d6e 967 varobj_p v = create_child_with_value (var,
b6313243 968 VEC_length (varobj_p, var->children),
5a2e0d6e 969 item);
a109c7c1 970
b6313243 971 VEC_safe_push (varobj_p, var->children, v);
b6313243
TT
972 return v;
973}
974
8b93c638 975/* Obtain the type of an object Variable as a string similar to the one gdb
afa269ae
SM
976 prints on the console. The caller is responsible for freeing the string.
977 */
8b93c638
JM
978
979char *
980varobj_get_type (struct varobj *var)
981{
8ab91b96 982 /* For the "fake" variables, do not return a type. (Its type is
8756216b
DP
983 NULL, too.)
984 Do not return a type for invalid variables as well. */
985 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
8b93c638
JM
986 return NULL;
987
1a4300e9 988 return type_to_string (var->type);
8b93c638
JM
989}
990
1ecb4ee0
DJ
991/* Obtain the type of an object variable. */
992
993struct type *
994varobj_get_gdb_type (struct varobj *var)
995{
996 return var->type;
997}
998
85254831
KS
999/* Is VAR a path expression parent, i.e., can it be used to construct
1000 a valid path expression? */
1001
1002static int
1003is_path_expr_parent (struct varobj *var)
1004{
9a9a7608
AB
1005 gdb_assert (var->root->lang_ops->is_path_expr_parent != NULL);
1006 return var->root->lang_ops->is_path_expr_parent (var);
1007}
85254831 1008
9a9a7608
AB
1009/* Is VAR a path expression parent, i.e., can it be used to construct
1010 a valid path expression? By default we assume any VAR can be a path
1011 parent. */
85254831 1012
9a9a7608
AB
1013int
1014varobj_default_is_path_expr_parent (struct varobj *var)
1015{
1016 return 1;
85254831
KS
1017}
1018
1019/* Return the path expression parent for VAR. */
1020
99ad9427
YQ
1021struct varobj *
1022varobj_get_path_expr_parent (struct varobj *var)
85254831
KS
1023{
1024 struct varobj *parent = var;
1025
1026 while (!is_root_p (parent) && !is_path_expr_parent (parent))
1027 parent = parent->parent;
1028
1029 return parent;
1030}
1031
02142340
VP
1032/* Return a pointer to the full rooted expression of varobj VAR.
1033 If it has not been computed yet, compute it. */
1034char *
1035varobj_get_path_expr (struct varobj *var)
1036{
1037 if (var->path_expr != NULL)
1038 return var->path_expr;
1039 else
1040 {
1041 /* For root varobjs, we initialize path_expr
1042 when creating varobj, so here it should be
1043 child varobj. */
1044 gdb_assert (!is_root_p (var));
ca20d462 1045 return (*var->root->lang_ops->path_expr_of_child) (var);
02142340
VP
1046 }
1047}
1048
fa4d0c40 1049const struct language_defn *
8b93c638
JM
1050varobj_get_language (struct varobj *var)
1051{
fa4d0c40 1052 return var->root->exp->language_defn;
8b93c638
JM
1053}
1054
1055int
1056varobj_get_attributes (struct varobj *var)
1057{
1058 int attributes = 0;
1059
340a7723 1060 if (varobj_editable_p (var))
581e13c1 1061 /* FIXME: define masks for attributes. */
8b93c638
JM
1062 attributes |= 0x00000001; /* Editable */
1063
1064 return attributes;
1065}
1066
cde5ef40
YQ
1067/* Return true if VAR is a dynamic varobj. */
1068
0cc7d26f 1069int
cde5ef40 1070varobj_is_dynamic_p (struct varobj *var)
0cc7d26f 1071{
bb5ce47a 1072 return var->dynamic->pretty_printer != NULL;
0cc7d26f
TT
1073}
1074
de051565
MK
1075char *
1076varobj_get_formatted_value (struct varobj *var,
1077 enum varobj_display_formats format)
1078{
1079 return my_value_of_variable (var, format);
1080}
1081
8b93c638
JM
1082char *
1083varobj_get_value (struct varobj *var)
1084{
de051565 1085 return my_value_of_variable (var, var->format);
8b93c638
JM
1086}
1087
1088/* Set the value of an object variable (if it is editable) to the
581e13c1
MS
1089 value of the given expression. */
1090/* Note: Invokes functions that can call error(). */
8b93c638
JM
1091
1092int
1093varobj_set_value (struct varobj *var, char *expression)
1094{
34365054 1095 struct value *val = NULL; /* Initialize to keep gcc happy. */
8b93c638 1096 /* The argument "expression" contains the variable's new value.
581e13c1
MS
1097 We need to first construct a legal expression for this -- ugh! */
1098 /* Does this cover all the bases? */
8b93c638 1099 struct expression *exp;
34365054 1100 struct value *value = NULL; /* Initialize to keep gcc happy. */
8b93c638 1101 int saved_input_radix = input_radix;
bbc13ae3 1102 const char *s = expression;
8e7b59a5 1103 volatile struct gdb_exception except;
8b93c638 1104
340a7723 1105 gdb_assert (varobj_editable_p (var));
8b93c638 1106
581e13c1 1107 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
1bb9788d 1108 exp = parse_exp_1 (&s, 0, 0, 0);
8e7b59a5
KS
1109 TRY_CATCH (except, RETURN_MASK_ERROR)
1110 {
1111 value = evaluate_expression (exp);
1112 }
1113
1114 if (except.reason < 0)
340a7723 1115 {
581e13c1 1116 /* We cannot proceed without a valid expression. */
340a7723
NR
1117 xfree (exp);
1118 return 0;
8b93c638
JM
1119 }
1120
340a7723
NR
1121 /* All types that are editable must also be changeable. */
1122 gdb_assert (varobj_value_is_changeable_p (var));
1123
1124 /* The value of a changeable variable object must not be lazy. */
1125 gdb_assert (!value_lazy (var->value));
1126
1127 /* Need to coerce the input. We want to check if the
1128 value of the variable object will be different
1129 after assignment, and the first thing value_assign
1130 does is coerce the input.
1131 For example, if we are assigning an array to a pointer variable we
b021a221 1132 should compare the pointer with the array's address, not with the
340a7723
NR
1133 array's content. */
1134 value = coerce_array (value);
1135
8e7b59a5
KS
1136 /* The new value may be lazy. value_assign, or
1137 rather value_contents, will take care of this. */
1138 TRY_CATCH (except, RETURN_MASK_ERROR)
1139 {
1140 val = value_assign (var->value, value);
1141 }
1142
1143 if (except.reason < 0)
340a7723 1144 return 0;
8e7b59a5 1145
340a7723
NR
1146 /* If the value has changed, record it, so that next -var-update can
1147 report this change. If a variable had a value of '1', we've set it
1148 to '333' and then set again to '1', when -var-update will report this
1149 variable as changed -- because the first assignment has set the
1150 'updated' flag. There's no need to optimize that, because return value
1151 of -var-update should be considered an approximation. */
581e13c1 1152 var->updated = install_new_value (var, val, 0 /* Compare values. */);
340a7723
NR
1153 input_radix = saved_input_radix;
1154 return 1;
8b93c638
JM
1155}
1156
0cc7d26f
TT
1157#if HAVE_PYTHON
1158
1159/* A helper function to install a constructor function and visualizer
bb5ce47a 1160 in a varobj_dynamic. */
0cc7d26f
TT
1161
1162static void
bb5ce47a 1163install_visualizer (struct varobj_dynamic *var, PyObject *constructor,
0cc7d26f
TT
1164 PyObject *visualizer)
1165{
1166 Py_XDECREF (var->constructor);
1167 var->constructor = constructor;
1168
1169 Py_XDECREF (var->pretty_printer);
1170 var->pretty_printer = visualizer;
1171
e5250216 1172 varobj_iter_delete (var->child_iter);
0cc7d26f
TT
1173 var->child_iter = NULL;
1174}
1175
1176/* Install the default visualizer for VAR. */
1177
1178static void
1179install_default_visualizer (struct varobj *var)
1180{
d65aec65
PM
1181 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1182 if (CPLUS_FAKE_CHILD (var))
1183 return;
1184
0cc7d26f
TT
1185 if (pretty_printing)
1186 {
1187 PyObject *pretty_printer = NULL;
1188
1189 if (var->value)
1190 {
1191 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1192 if (! pretty_printer)
1193 {
1194 gdbpy_print_stack ();
1195 error (_("Cannot instantiate printer for default visualizer"));
1196 }
1197 }
1198
1199 if (pretty_printer == Py_None)
1200 {
1201 Py_DECREF (pretty_printer);
1202 pretty_printer = NULL;
1203 }
1204
bb5ce47a 1205 install_visualizer (var->dynamic, NULL, pretty_printer);
0cc7d26f
TT
1206 }
1207}
1208
1209/* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1210 make a new object. */
1211
1212static void
1213construct_visualizer (struct varobj *var, PyObject *constructor)
1214{
1215 PyObject *pretty_printer;
1216
d65aec65
PM
1217 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1218 if (CPLUS_FAKE_CHILD (var))
1219 return;
1220
0cc7d26f
TT
1221 Py_INCREF (constructor);
1222 if (constructor == Py_None)
1223 pretty_printer = NULL;
1224 else
1225 {
1226 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1227 if (! pretty_printer)
1228 {
1229 gdbpy_print_stack ();
1230 Py_DECREF (constructor);
1231 constructor = Py_None;
1232 Py_INCREF (constructor);
1233 }
1234
1235 if (pretty_printer == Py_None)
1236 {
1237 Py_DECREF (pretty_printer);
1238 pretty_printer = NULL;
1239 }
1240 }
1241
bb5ce47a 1242 install_visualizer (var->dynamic, constructor, pretty_printer);
0cc7d26f
TT
1243}
1244
1245#endif /* HAVE_PYTHON */
1246
1247/* A helper function for install_new_value. This creates and installs
1248 a visualizer for VAR, if appropriate. */
1249
1250static void
1251install_new_value_visualizer (struct varobj *var)
1252{
1253#if HAVE_PYTHON
1254 /* If the constructor is None, then we want the raw value. If VAR
1255 does not have a value, just skip this. */
0646da15
TT
1256 if (!gdb_python_initialized)
1257 return;
1258
bb5ce47a 1259 if (var->dynamic->constructor != Py_None && var->value != NULL)
0cc7d26f
TT
1260 {
1261 struct cleanup *cleanup;
0cc7d26f
TT
1262
1263 cleanup = varobj_ensure_python_env (var);
1264
bb5ce47a 1265 if (var->dynamic->constructor == NULL)
0cc7d26f
TT
1266 install_default_visualizer (var);
1267 else
bb5ce47a 1268 construct_visualizer (var, var->dynamic->constructor);
0cc7d26f
TT
1269
1270 do_cleanups (cleanup);
1271 }
1272#else
1273 /* Do nothing. */
1274#endif
1275}
1276
8264ba82
AG
1277/* When using RTTI to determine variable type it may be changed in runtime when
1278 the variable value is changed. This function checks whether type of varobj
1279 VAR will change when a new value NEW_VALUE is assigned and if it is so
1280 updates the type of VAR. */
1281
1282static int
1283update_type_if_necessary (struct varobj *var, struct value *new_value)
1284{
1285 if (new_value)
1286 {
1287 struct value_print_options opts;
1288
1289 get_user_print_options (&opts);
1290 if (opts.objectprint)
1291 {
1292 struct type *new_type;
1293 char *curr_type_str, *new_type_str;
afa269ae 1294 int type_name_changed;
8264ba82
AG
1295
1296 new_type = value_actual_type (new_value, 0, 0);
1297 new_type_str = type_to_string (new_type);
1298 curr_type_str = varobj_get_type (var);
afa269ae
SM
1299 type_name_changed = strcmp (curr_type_str, new_type_str) != 0;
1300 xfree (curr_type_str);
1301 xfree (new_type_str);
1302
1303 if (type_name_changed)
8264ba82
AG
1304 {
1305 var->type = new_type;
1306
1307 /* This information may be not valid for a new type. */
1308 varobj_delete (var, NULL, 1);
1309 VEC_free (varobj_p, var->children);
1310 var->num_children = -1;
1311 return 1;
1312 }
1313 }
1314 }
1315
1316 return 0;
1317}
1318
acd65feb
VP
1319/* Assign a new value to a variable object. If INITIAL is non-zero,
1320 this is the first assignement after the variable object was just
1321 created, or changed type. In that case, just assign the value
1322 and return 0.
581e13c1
MS
1323 Otherwise, assign the new value, and return 1 if the value is
1324 different from the current one, 0 otherwise. The comparison is
1325 done on textual representation of value. Therefore, some types
1326 need not be compared. E.g. for structures the reported value is
1327 always "{...}", so no comparison is necessary here. If the old
1328 value was NULL and new one is not, or vice versa, we always return 1.
b26ed50d
VP
1329
1330 The VALUE parameter should not be released -- the function will
1331 take care of releasing it when needed. */
acd65feb
VP
1332static int
1333install_new_value (struct varobj *var, struct value *value, int initial)
1334{
1335 int changeable;
1336 int need_to_fetch;
1337 int changed = 0;
25d5ea92 1338 int intentionally_not_fetched = 0;
7a4d50bf 1339 char *print_value = NULL;
acd65feb 1340
acd65feb 1341 /* We need to know the varobj's type to decide if the value should
3e43a32a 1342 be fetched or not. C++ fake children (public/protected/private)
581e13c1 1343 don't have a type. */
acd65feb 1344 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
b2c2bd75 1345 changeable = varobj_value_is_changeable_p (var);
b6313243
TT
1346
1347 /* If the type has custom visualizer, we consider it to be always
581e13c1 1348 changeable. FIXME: need to make sure this behaviour will not
b6313243 1349 mess up read-sensitive values. */
bb5ce47a 1350 if (var->dynamic->pretty_printer != NULL)
b6313243
TT
1351 changeable = 1;
1352
acd65feb
VP
1353 need_to_fetch = changeable;
1354
b26ed50d
VP
1355 /* We are not interested in the address of references, and given
1356 that in C++ a reference is not rebindable, it cannot
1357 meaningfully change. So, get hold of the real value. */
1358 if (value)
0cc7d26f 1359 value = coerce_ref (value);
b26ed50d 1360
acd65feb
VP
1361 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1362 /* For unions, we need to fetch the value implicitly because
1363 of implementation of union member fetch. When gdb
1364 creates a value for a field and the value of the enclosing
1365 structure is not lazy, it immediately copies the necessary
1366 bytes from the enclosing values. If the enclosing value is
1367 lazy, the call to value_fetch_lazy on the field will read
1368 the data from memory. For unions, that means we'll read the
1369 same memory more than once, which is not desirable. So
1370 fetch now. */
1371 need_to_fetch = 1;
1372
1373 /* The new value might be lazy. If the type is changeable,
1374 that is we'll be comparing values of this type, fetch the
1375 value now. Otherwise, on the next update the old value
1376 will be lazy, which means we've lost that old value. */
1377 if (need_to_fetch && value && value_lazy (value))
1378 {
25d5ea92
VP
1379 struct varobj *parent = var->parent;
1380 int frozen = var->frozen;
a109c7c1 1381
25d5ea92
VP
1382 for (; !frozen && parent; parent = parent->parent)
1383 frozen |= parent->frozen;
1384
1385 if (frozen && initial)
1386 {
1387 /* For variables that are frozen, or are children of frozen
1388 variables, we don't do fetch on initial assignment.
1389 For non-initial assignemnt we do the fetch, since it means we're
1390 explicitly asked to compare the new value with the old one. */
1391 intentionally_not_fetched = 1;
1392 }
8e7b59a5 1393 else
acd65feb 1394 {
8e7b59a5
KS
1395 volatile struct gdb_exception except;
1396
1397 TRY_CATCH (except, RETURN_MASK_ERROR)
1398 {
1399 value_fetch_lazy (value);
1400 }
1401
1402 if (except.reason < 0)
1403 {
1404 /* Set the value to NULL, so that for the next -var-update,
1405 we don't try to compare the new value with this value,
1406 that we couldn't even read. */
1407 value = NULL;
1408 }
acd65feb 1409 }
acd65feb
VP
1410 }
1411
e848a8a5
TT
1412 /* Get a reference now, before possibly passing it to any Python
1413 code that might release it. */
1414 if (value != NULL)
1415 value_incref (value);
b6313243 1416
7a4d50bf
VP
1417 /* Below, we'll be comparing string rendering of old and new
1418 values. Don't get string rendering if the value is
1419 lazy -- if it is, the code above has decided that the value
1420 should not be fetched. */
bb5ce47a
YQ
1421 if (value != NULL && !value_lazy (value)
1422 && var->dynamic->pretty_printer == NULL)
99ad9427 1423 print_value = varobj_value_get_print_value (value, var->format, var);
7a4d50bf 1424
acd65feb
VP
1425 /* If the type is changeable, compare the old and the new values.
1426 If this is the initial assignment, we don't have any old value
1427 to compare with. */
7a4d50bf 1428 if (!initial && changeable)
acd65feb 1429 {
3e43a32a
MS
1430 /* If the value of the varobj was changed by -var-set-value,
1431 then the value in the varobj and in the target is the same.
1432 However, that value is different from the value that the
581e13c1 1433 varobj had after the previous -var-update. So need to the
3e43a32a 1434 varobj as changed. */
acd65feb 1435 if (var->updated)
57e66780 1436 {
57e66780
DJ
1437 changed = 1;
1438 }
bb5ce47a 1439 else if (var->dynamic->pretty_printer == NULL)
acd65feb
VP
1440 {
1441 /* Try to compare the values. That requires that both
1442 values are non-lazy. */
25d5ea92
VP
1443 if (var->not_fetched && value_lazy (var->value))
1444 {
1445 /* This is a frozen varobj and the value was never read.
1446 Presumably, UI shows some "never read" indicator.
1447 Now that we've fetched the real value, we need to report
1448 this varobj as changed so that UI can show the real
1449 value. */
1450 changed = 1;
1451 }
1452 else if (var->value == NULL && value == NULL)
581e13c1 1453 /* Equal. */
acd65feb
VP
1454 ;
1455 else if (var->value == NULL || value == NULL)
57e66780 1456 {
57e66780
DJ
1457 changed = 1;
1458 }
acd65feb
VP
1459 else
1460 {
1461 gdb_assert (!value_lazy (var->value));
1462 gdb_assert (!value_lazy (value));
85265413 1463
57e66780 1464 gdb_assert (var->print_value != NULL && print_value != NULL);
85265413 1465 if (strcmp (var->print_value, print_value) != 0)
7a4d50bf 1466 changed = 1;
acd65feb
VP
1467 }
1468 }
1469 }
85265413 1470
ee342b23
VP
1471 if (!initial && !changeable)
1472 {
1473 /* For values that are not changeable, we don't compare the values.
1474 However, we want to notice if a value was not NULL and now is NULL,
1475 or vise versa, so that we report when top-level varobjs come in scope
1476 and leave the scope. */
1477 changed = (var->value != NULL) != (value != NULL);
1478 }
1479
acd65feb 1480 /* We must always keep the new value, since children depend on it. */
25d5ea92 1481 if (var->value != NULL && var->value != value)
acd65feb
VP
1482 value_free (var->value);
1483 var->value = value;
25d5ea92
VP
1484 if (value && value_lazy (value) && intentionally_not_fetched)
1485 var->not_fetched = 1;
1486 else
1487 var->not_fetched = 0;
acd65feb 1488 var->updated = 0;
85265413 1489
0cc7d26f
TT
1490 install_new_value_visualizer (var);
1491
1492 /* If we installed a pretty-printer, re-compare the printed version
1493 to see if the variable changed. */
bb5ce47a 1494 if (var->dynamic->pretty_printer != NULL)
0cc7d26f
TT
1495 {
1496 xfree (print_value);
99ad9427
YQ
1497 print_value = varobj_value_get_print_value (var->value, var->format,
1498 var);
e8f781e2
TT
1499 if ((var->print_value == NULL && print_value != NULL)
1500 || (var->print_value != NULL && print_value == NULL)
1501 || (var->print_value != NULL && print_value != NULL
1502 && strcmp (var->print_value, print_value) != 0))
0cc7d26f
TT
1503 changed = 1;
1504 }
1505 if (var->print_value)
1506 xfree (var->print_value);
1507 var->print_value = print_value;
1508
b26ed50d 1509 gdb_assert (!var->value || value_type (var->value));
acd65feb
VP
1510
1511 return changed;
1512}
acd65feb 1513
0cc7d26f
TT
1514/* Return the requested range for a varobj. VAR is the varobj. FROM
1515 and TO are out parameters; *FROM and *TO will be set to the
1516 selected sub-range of VAR. If no range was selected using
1517 -var-set-update-range, then both will be -1. */
1518void
1519varobj_get_child_range (struct varobj *var, int *from, int *to)
b6313243 1520{
0cc7d26f
TT
1521 *from = var->from;
1522 *to = var->to;
b6313243
TT
1523}
1524
0cc7d26f
TT
1525/* Set the selected sub-range of children of VAR to start at index
1526 FROM and end at index TO. If either FROM or TO is less than zero,
1527 this is interpreted as a request for all children. */
1528void
1529varobj_set_child_range (struct varobj *var, int from, int to)
b6313243 1530{
0cc7d26f
TT
1531 var->from = from;
1532 var->to = to;
b6313243
TT
1533}
1534
1535void
1536varobj_set_visualizer (struct varobj *var, const char *visualizer)
1537{
1538#if HAVE_PYTHON
34fa1d9d
MS
1539 PyObject *mainmod, *globals, *constructor;
1540 struct cleanup *back_to;
b6313243 1541
0646da15
TT
1542 if (!gdb_python_initialized)
1543 return;
1544
d452c4bc 1545 back_to = varobj_ensure_python_env (var);
b6313243
TT
1546
1547 mainmod = PyImport_AddModule ("__main__");
1548 globals = PyModule_GetDict (mainmod);
1549 Py_INCREF (globals);
1550 make_cleanup_py_decref (globals);
1551
1552 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
b6313243 1553
0cc7d26f 1554 if (! constructor)
b6313243
TT
1555 {
1556 gdbpy_print_stack ();
da1f2771 1557 error (_("Could not evaluate visualizer expression: %s"), visualizer);
b6313243
TT
1558 }
1559
0cc7d26f
TT
1560 construct_visualizer (var, constructor);
1561 Py_XDECREF (constructor);
b6313243 1562
0cc7d26f
TT
1563 /* If there are any children now, wipe them. */
1564 varobj_delete (var, NULL, 1 /* children only */);
1565 var->num_children = -1;
b6313243
TT
1566
1567 do_cleanups (back_to);
1568#else
da1f2771 1569 error (_("Python support required"));
b6313243
TT
1570#endif
1571}
1572
7a290c40
JB
1573/* If NEW_VALUE is the new value of the given varobj (var), return
1574 non-zero if var has mutated. In other words, if the type of
1575 the new value is different from the type of the varobj's old
1576 value.
1577
1578 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1579
1580static int
1581varobj_value_has_mutated (struct varobj *var, struct value *new_value,
1582 struct type *new_type)
1583{
1584 /* If we haven't previously computed the number of children in var,
1585 it does not matter from the front-end's perspective whether
1586 the type has mutated or not. For all intents and purposes,
1587 it has not mutated. */
1588 if (var->num_children < 0)
1589 return 0;
1590
ca20d462 1591 if (var->root->lang_ops->value_has_mutated)
8776cfe9
JB
1592 {
1593 /* The varobj module, when installing new values, explicitly strips
1594 references, saying that we're not interested in those addresses.
1595 But detection of mutation happens before installing the new
1596 value, so our value may be a reference that we need to strip
1597 in order to remain consistent. */
1598 if (new_value != NULL)
1599 new_value = coerce_ref (new_value);
1600 return var->root->lang_ops->value_has_mutated (var, new_value, new_type);
1601 }
7a290c40
JB
1602 else
1603 return 0;
1604}
1605
8b93c638
JM
1606/* Update the values for a variable and its children. This is a
1607 two-pronged attack. First, re-parse the value for the root's
1608 expression to see if it's changed. Then go all the way
1609 through its children, reconstructing them and noting if they've
1610 changed.
1611
25d5ea92
VP
1612 The EXPLICIT parameter specifies if this call is result
1613 of MI request to update this specific variable, or
581e13c1 1614 result of implicit -var-update *. For implicit request, we don't
25d5ea92 1615 update frozen variables.
705da579 1616
581e13c1 1617 NOTE: This function may delete the caller's varobj. If it
8756216b
DP
1618 returns TYPE_CHANGED, then it has done this and VARP will be modified
1619 to point to the new varobj. */
8b93c638 1620
1417b39d
JB
1621VEC(varobj_update_result) *
1622varobj_update (struct varobj **varp, int explicit)
8b93c638 1623{
25d5ea92 1624 int type_changed = 0;
8b93c638 1625 int i;
30b28db1 1626 struct value *new;
b6313243 1627 VEC (varobj_update_result) *stack = NULL;
f7f9ae2c 1628 VEC (varobj_update_result) *result = NULL;
8b93c638 1629
25d5ea92
VP
1630 /* Frozen means frozen -- we don't check for any change in
1631 this varobj, including its going out of scope, or
1632 changing type. One use case for frozen varobjs is
1633 retaining previously evaluated expressions, and we don't
1634 want them to be reevaluated at all. */
1635 if (!explicit && (*varp)->frozen)
f7f9ae2c 1636 return result;
8756216b
DP
1637
1638 if (!(*varp)->root->is_valid)
f7f9ae2c 1639 {
cfce2ea2 1640 varobj_update_result r = {0};
a109c7c1 1641
cfce2ea2 1642 r.varobj = *varp;
f7f9ae2c
VP
1643 r.status = VAROBJ_INVALID;
1644 VEC_safe_push (varobj_update_result, result, &r);
1645 return result;
1646 }
8b93c638 1647
25d5ea92 1648 if ((*varp)->root->rootvar == *varp)
ae093f96 1649 {
cfce2ea2 1650 varobj_update_result r = {0};
a109c7c1 1651
cfce2ea2 1652 r.varobj = *varp;
f7f9ae2c
VP
1653 r.status = VAROBJ_IN_SCOPE;
1654
581e13c1 1655 /* Update the root variable. value_of_root can return NULL
25d5ea92 1656 if the variable is no longer around, i.e. we stepped out of
581e13c1 1657 the frame in which a local existed. We are letting the
25d5ea92
VP
1658 value_of_root variable dispose of the varobj if the type
1659 has changed. */
25d5ea92 1660 new = value_of_root (varp, &type_changed);
8264ba82
AG
1661 if (update_type_if_necessary(*varp, new))
1662 type_changed = 1;
f7f9ae2c 1663 r.varobj = *varp;
f7f9ae2c 1664 r.type_changed = type_changed;
ea56f9c2 1665 if (install_new_value ((*varp), new, type_changed))
f7f9ae2c 1666 r.changed = 1;
ea56f9c2 1667
25d5ea92 1668 if (new == NULL)
f7f9ae2c 1669 r.status = VAROBJ_NOT_IN_SCOPE;
b6313243 1670 r.value_installed = 1;
f7f9ae2c
VP
1671
1672 if (r.status == VAROBJ_NOT_IN_SCOPE)
b6313243 1673 {
0b4bc29a
JK
1674 if (r.type_changed || r.changed)
1675 VEC_safe_push (varobj_update_result, result, &r);
b6313243
TT
1676 return result;
1677 }
1678
1679 VEC_safe_push (varobj_update_result, stack, &r);
1680 }
1681 else
1682 {
cfce2ea2 1683 varobj_update_result r = {0};
a109c7c1 1684
cfce2ea2 1685 r.varobj = *varp;
b6313243 1686 VEC_safe_push (varobj_update_result, stack, &r);
b20d8971 1687 }
8b93c638 1688
8756216b 1689 /* Walk through the children, reconstructing them all. */
b6313243 1690 while (!VEC_empty (varobj_update_result, stack))
8b93c638 1691 {
b6313243
TT
1692 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1693 struct varobj *v = r.varobj;
1694
1695 VEC_pop (varobj_update_result, stack);
1696
1697 /* Update this variable, unless it's a root, which is already
1698 updated. */
1699 if (!r.value_installed)
7a290c40
JB
1700 {
1701 struct type *new_type;
1702
b6313243 1703 new = value_of_child (v->parent, v->index);
8264ba82
AG
1704 if (update_type_if_necessary(v, new))
1705 r.type_changed = 1;
7a290c40
JB
1706 if (new)
1707 new_type = value_type (new);
1708 else
ca20d462 1709 new_type = v->root->lang_ops->type_of_child (v->parent, v->index);
7a290c40
JB
1710
1711 if (varobj_value_has_mutated (v, new, new_type))
1712 {
1713 /* The children are no longer valid; delete them now.
1714 Report the fact that its type changed as well. */
1715 varobj_delete (v, NULL, 1 /* only_children */);
1716 v->num_children = -1;
1717 v->to = -1;
1718 v->from = -1;
1719 v->type = new_type;
1720 r.type_changed = 1;
1721 }
1722
1723 if (install_new_value (v, new, r.type_changed))
b6313243
TT
1724 {
1725 r.changed = 1;
1726 v->updated = 0;
1727 }
1728 }
1729
31f628ae
YQ
1730 /* We probably should not get children of a dynamic varobj, but
1731 for which -var-list-children was never invoked. */
1732 if (varobj_is_dynamic_p (v))
b6313243 1733 {
8264ba82
AG
1734 VEC (varobj_p) *changed = 0, *type_changed = 0, *unchanged = 0;
1735 VEC (varobj_p) *new = 0;
26f9bcee 1736 int i, children_changed = 0;
b6313243
TT
1737
1738 if (v->frozen)
1739 continue;
1740
bb5ce47a 1741 if (!v->dynamic->children_requested)
0cc7d26f
TT
1742 {
1743 int dummy;
1744
1745 /* If we initially did not have potential children, but
1746 now we do, consider the varobj as changed.
1747 Otherwise, if children were never requested, consider
1748 it as unchanged -- presumably, such varobj is not yet
1749 expanded in the UI, so we need not bother getting
1750 it. */
1751 if (!varobj_has_more (v, 0))
1752 {
8264ba82 1753 update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
0cc7d26f
TT
1754 &dummy, 0, 0, 0);
1755 if (varobj_has_more (v, 0))
1756 r.changed = 1;
1757 }
1758
1759 if (r.changed)
1760 VEC_safe_push (varobj_update_result, result, &r);
1761
1762 continue;
1763 }
1764
b6313243
TT
1765 /* If update_dynamic_varobj_children returns 0, then we have
1766 a non-conforming pretty-printer, so we skip it. */
8264ba82
AG
1767 if (update_dynamic_varobj_children (v, &changed, &type_changed, &new,
1768 &unchanged, &children_changed, 1,
0cc7d26f 1769 v->from, v->to))
b6313243 1770 {
0cc7d26f 1771 if (children_changed || new)
b6313243 1772 {
0cc7d26f
TT
1773 r.children_changed = 1;
1774 r.new = new;
b6313243 1775 }
0cc7d26f
TT
1776 /* Push in reverse order so that the first child is
1777 popped from the work stack first, and so will be
1778 added to result first. This does not affect
1779 correctness, just "nicer". */
8264ba82
AG
1780 for (i = VEC_length (varobj_p, type_changed) - 1; i >= 0; --i)
1781 {
1782 varobj_p tmp = VEC_index (varobj_p, type_changed, i);
1783 varobj_update_result r = {0};
1784
1785 /* Type may change only if value was changed. */
1786 r.varobj = tmp;
1787 r.changed = 1;
1788 r.type_changed = 1;
1789 r.value_installed = 1;
1790 VEC_safe_push (varobj_update_result, stack, &r);
1791 }
0cc7d26f 1792 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
b6313243 1793 {
0cc7d26f 1794 varobj_p tmp = VEC_index (varobj_p, changed, i);
cfce2ea2 1795 varobj_update_result r = {0};
a109c7c1 1796
cfce2ea2 1797 r.varobj = tmp;
0cc7d26f 1798 r.changed = 1;
b6313243
TT
1799 r.value_installed = 1;
1800 VEC_safe_push (varobj_update_result, stack, &r);
1801 }
0cc7d26f
TT
1802 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
1803 {
1804 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
a109c7c1 1805
0cc7d26f
TT
1806 if (!tmp->frozen)
1807 {
cfce2ea2 1808 varobj_update_result r = {0};
a109c7c1 1809
cfce2ea2 1810 r.varobj = tmp;
0cc7d26f
TT
1811 r.value_installed = 1;
1812 VEC_safe_push (varobj_update_result, stack, &r);
1813 }
1814 }
b6313243
TT
1815 if (r.changed || r.children_changed)
1816 VEC_safe_push (varobj_update_result, result, &r);
0cc7d26f 1817
8264ba82
AG
1818 /* Free CHANGED, TYPE_CHANGED and UNCHANGED, but not NEW,
1819 because NEW has been put into the result vector. */
0cc7d26f 1820 VEC_free (varobj_p, changed);
8264ba82 1821 VEC_free (varobj_p, type_changed);
0cc7d26f
TT
1822 VEC_free (varobj_p, unchanged);
1823
b6313243
TT
1824 continue;
1825 }
1826 }
28335dcc
VP
1827
1828 /* Push any children. Use reverse order so that the first
1829 child is popped from the work stack first, and so
1830 will be added to result first. This does not
1831 affect correctness, just "nicer". */
1832 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
8b93c638 1833 {
28335dcc 1834 varobj_p c = VEC_index (varobj_p, v->children, i);
a109c7c1 1835
28335dcc 1836 /* Child may be NULL if explicitly deleted by -var-delete. */
25d5ea92 1837 if (c != NULL && !c->frozen)
28335dcc 1838 {
cfce2ea2 1839 varobj_update_result r = {0};
a109c7c1 1840
cfce2ea2 1841 r.varobj = c;
b6313243 1842 VEC_safe_push (varobj_update_result, stack, &r);
28335dcc 1843 }
8b93c638 1844 }
b6313243
TT
1845
1846 if (r.changed || r.type_changed)
1847 VEC_safe_push (varobj_update_result, result, &r);
8b93c638
JM
1848 }
1849
b6313243
TT
1850 VEC_free (varobj_update_result, stack);
1851
f7f9ae2c 1852 return result;
8b93c638
JM
1853}
1854\f
1855
1856/* Helper functions */
1857
1858/*
1859 * Variable object construction/destruction
1860 */
1861
1862static int
fba45db2
KB
1863delete_variable (struct cpstack **resultp, struct varobj *var,
1864 int only_children_p)
8b93c638
JM
1865{
1866 int delcount = 0;
1867
1868 delete_variable_1 (resultp, &delcount, var,
1869 only_children_p, 1 /* remove_from_parent_p */ );
1870
1871 return delcount;
1872}
1873
581e13c1 1874/* Delete the variable object VAR and its children. */
8b93c638
JM
1875/* IMPORTANT NOTE: If we delete a variable which is a child
1876 and the parent is not removed we dump core. It must be always
581e13c1 1877 initially called with remove_from_parent_p set. */
8b93c638 1878static void
72330bd6
AC
1879delete_variable_1 (struct cpstack **resultp, int *delcountp,
1880 struct varobj *var, int only_children_p,
1881 int remove_from_parent_p)
8b93c638 1882{
28335dcc 1883 int i;
8b93c638 1884
581e13c1 1885 /* Delete any children of this variable, too. */
28335dcc
VP
1886 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1887 {
1888 varobj_p child = VEC_index (varobj_p, var->children, i);
a109c7c1 1889
214270ab
VP
1890 if (!child)
1891 continue;
8b93c638 1892 if (!remove_from_parent_p)
28335dcc
VP
1893 child->parent = NULL;
1894 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
8b93c638 1895 }
28335dcc 1896 VEC_free (varobj_p, var->children);
8b93c638 1897
581e13c1 1898 /* if we were called to delete only the children we are done here. */
8b93c638
JM
1899 if (only_children_p)
1900 return;
1901
581e13c1 1902 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
73a93a32 1903 /* If the name is null, this is a temporary variable, that has not
581e13c1 1904 yet been installed, don't report it, it belongs to the caller... */
73a93a32 1905 if (var->obj_name != NULL)
8b93c638 1906 {
5b616ba1 1907 cppush (resultp, xstrdup (var->obj_name));
8b93c638
JM
1908 *delcountp = *delcountp + 1;
1909 }
1910
581e13c1 1911 /* If this variable has a parent, remove it from its parent's list. */
8b93c638
JM
1912 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1913 (as indicated by remove_from_parent_p) we don't bother doing an
1914 expensive list search to find the element to remove when we are
581e13c1 1915 discarding the list afterwards. */
72330bd6 1916 if ((remove_from_parent_p) && (var->parent != NULL))
8b93c638 1917 {
28335dcc 1918 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
8b93c638 1919 }
72330bd6 1920
73a93a32
JI
1921 if (var->obj_name != NULL)
1922 uninstall_variable (var);
8b93c638 1923
581e13c1 1924 /* Free memory associated with this variable. */
8b93c638
JM
1925 free_variable (var);
1926}
1927
581e13c1 1928/* Install the given variable VAR with the object name VAR->OBJ_NAME. */
8b93c638 1929static int
fba45db2 1930install_variable (struct varobj *var)
8b93c638
JM
1931{
1932 struct vlist *cv;
1933 struct vlist *newvl;
1934 const char *chp;
1935 unsigned int index = 0;
1936 unsigned int i = 1;
1937
1938 for (chp = var->obj_name; *chp; chp++)
1939 {
1940 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1941 }
1942
1943 cv = *(varobj_table + index);
1944 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1945 cv = cv->next;
1946
1947 if (cv != NULL)
8a3fe4f8 1948 error (_("Duplicate variable object name"));
8b93c638 1949
581e13c1 1950 /* Add varobj to hash table. */
8b93c638
JM
1951 newvl = xmalloc (sizeof (struct vlist));
1952 newvl->next = *(varobj_table + index);
1953 newvl->var = var;
1954 *(varobj_table + index) = newvl;
1955
581e13c1 1956 /* If root, add varobj to root list. */
b2c2bd75 1957 if (is_root_p (var))
8b93c638 1958 {
581e13c1 1959 /* Add to list of root variables. */
8b93c638
JM
1960 if (rootlist == NULL)
1961 var->root->next = NULL;
1962 else
1963 var->root->next = rootlist;
1964 rootlist = var->root;
8b93c638
JM
1965 }
1966
1967 return 1; /* OK */
1968}
1969
581e13c1 1970/* Unistall the object VAR. */
8b93c638 1971static void
fba45db2 1972uninstall_variable (struct varobj *var)
8b93c638
JM
1973{
1974 struct vlist *cv;
1975 struct vlist *prev;
1976 struct varobj_root *cr;
1977 struct varobj_root *prer;
1978 const char *chp;
1979 unsigned int index = 0;
1980 unsigned int i = 1;
1981
581e13c1 1982 /* Remove varobj from hash table. */
8b93c638
JM
1983 for (chp = var->obj_name; *chp; chp++)
1984 {
1985 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1986 }
1987
1988 cv = *(varobj_table + index);
1989 prev = NULL;
1990 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1991 {
1992 prev = cv;
1993 cv = cv->next;
1994 }
1995
1996 if (varobjdebug)
1997 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
1998
1999 if (cv == NULL)
2000 {
72330bd6
AC
2001 warning
2002 ("Assertion failed: Could not find variable object \"%s\" to delete",
2003 var->obj_name);
8b93c638
JM
2004 return;
2005 }
2006
2007 if (prev == NULL)
2008 *(varobj_table + index) = cv->next;
2009 else
2010 prev->next = cv->next;
2011
b8c9b27d 2012 xfree (cv);
8b93c638 2013
581e13c1 2014 /* If root, remove varobj from root list. */
b2c2bd75 2015 if (is_root_p (var))
8b93c638 2016 {
581e13c1 2017 /* Remove from list of root variables. */
8b93c638
JM
2018 if (rootlist == var->root)
2019 rootlist = var->root->next;
2020 else
2021 {
2022 prer = NULL;
2023 cr = rootlist;
2024 while ((cr != NULL) && (cr->rootvar != var))
2025 {
2026 prer = cr;
2027 cr = cr->next;
2028 }
2029 if (cr == NULL)
2030 {
8f7e195f
JB
2031 warning (_("Assertion failed: Could not find "
2032 "varobj \"%s\" in root list"),
3e43a32a 2033 var->obj_name);
8b93c638
JM
2034 return;
2035 }
2036 if (prer == NULL)
2037 rootlist = NULL;
2038 else
2039 prer->next = cr->next;
2040 }
8b93c638
JM
2041 }
2042
2043}
2044
581e13c1 2045/* Create and install a child of the parent of the given name. */
8b93c638 2046static struct varobj *
fba45db2 2047create_child (struct varobj *parent, int index, char *name)
b6313243 2048{
5a2e0d6e
YQ
2049 struct varobj_item item;
2050
2051 item.name = name;
2052 item.value = value_of_child (parent, index);
2053
2054 return create_child_with_value (parent, index, &item);
b6313243
TT
2055}
2056
2057static struct varobj *
5a2e0d6e
YQ
2058create_child_with_value (struct varobj *parent, int index,
2059 struct varobj_item *item)
8b93c638
JM
2060{
2061 struct varobj *child;
2062 char *childs_name;
2063
2064 child = new_variable ();
2065
5e5ac9a5 2066 /* NAME is allocated by caller. */
5a2e0d6e 2067 child->name = item->name;
8b93c638 2068 child->index = index;
8b93c638
JM
2069 child->parent = parent;
2070 child->root = parent->root;
85254831 2071
99ad9427 2072 if (varobj_is_anonymous_child (child))
85254831
KS
2073 childs_name = xstrprintf ("%s.%d_anonymous", parent->obj_name, index);
2074 else
5a2e0d6e 2075 childs_name = xstrprintf ("%s.%s", parent->obj_name, item->name);
8b93c638 2076 child->obj_name = childs_name;
85254831 2077
8b93c638
JM
2078 install_variable (child);
2079
acd65feb
VP
2080 /* Compute the type of the child. Must do this before
2081 calling install_new_value. */
5a2e0d6e 2082 if (item->value != NULL)
acd65feb 2083 /* If the child had no evaluation errors, var->value
581e13c1 2084 will be non-NULL and contain a valid type. */
5a2e0d6e 2085 child->type = value_actual_type (item->value, 0, NULL);
acd65feb 2086 else
581e13c1 2087 /* Otherwise, we must compute the type. */
ca20d462
YQ
2088 child->type = (*child->root->lang_ops->type_of_child) (child->parent,
2089 child->index);
5a2e0d6e 2090 install_new_value (child, item->value, 1);
acd65feb 2091
8b93c638
JM
2092 return child;
2093}
8b93c638
JM
2094\f
2095
2096/*
2097 * Miscellaneous utility functions.
2098 */
2099
581e13c1 2100/* Allocate memory and initialize a new variable. */
8b93c638
JM
2101static struct varobj *
2102new_variable (void)
2103{
2104 struct varobj *var;
2105
2106 var = (struct varobj *) xmalloc (sizeof (struct varobj));
2107 var->name = NULL;
02142340 2108 var->path_expr = NULL;
8b93c638
JM
2109 var->obj_name = NULL;
2110 var->index = -1;
2111 var->type = NULL;
2112 var->value = NULL;
8b93c638
JM
2113 var->num_children = -1;
2114 var->parent = NULL;
2115 var->children = NULL;
2116 var->format = 0;
2117 var->root = NULL;
fb9b6b35 2118 var->updated = 0;
85265413 2119 var->print_value = NULL;
25d5ea92
VP
2120 var->frozen = 0;
2121 var->not_fetched = 0;
bb5ce47a
YQ
2122 var->dynamic
2123 = (struct varobj_dynamic *) xmalloc (sizeof (struct varobj_dynamic));
2124 var->dynamic->children_requested = 0;
0cc7d26f
TT
2125 var->from = -1;
2126 var->to = -1;
bb5ce47a
YQ
2127 var->dynamic->constructor = 0;
2128 var->dynamic->pretty_printer = 0;
2129 var->dynamic->child_iter = 0;
2130 var->dynamic->saved_item = 0;
8b93c638
JM
2131
2132 return var;
2133}
2134
581e13c1 2135/* Allocate memory and initialize a new root variable. */
8b93c638
JM
2136static struct varobj *
2137new_root_variable (void)
2138{
2139 struct varobj *var = new_variable ();
a109c7c1 2140
3e43a32a 2141 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));
ca20d462 2142 var->root->lang_ops = NULL;
8b93c638
JM
2143 var->root->exp = NULL;
2144 var->root->valid_block = NULL;
7a424e99 2145 var->root->frame = null_frame_id;
a5defcdc 2146 var->root->floating = 0;
8b93c638 2147 var->root->rootvar = NULL;
8756216b 2148 var->root->is_valid = 1;
8b93c638
JM
2149
2150 return var;
2151}
2152
581e13c1 2153/* Free any allocated memory associated with VAR. */
8b93c638 2154static void
fba45db2 2155free_variable (struct varobj *var)
8b93c638 2156{
d452c4bc 2157#if HAVE_PYTHON
bb5ce47a 2158 if (var->dynamic->pretty_printer != NULL)
d452c4bc
UW
2159 {
2160 struct cleanup *cleanup = varobj_ensure_python_env (var);
bb5ce47a
YQ
2161
2162 Py_XDECREF (var->dynamic->constructor);
2163 Py_XDECREF (var->dynamic->pretty_printer);
d452c4bc
UW
2164 do_cleanups (cleanup);
2165 }
2166#endif
2167
827f100c
YQ
2168 varobj_iter_delete (var->dynamic->child_iter);
2169 varobj_clear_saved_item (var->dynamic);
36746093
JK
2170 value_free (var->value);
2171
581e13c1 2172 /* Free the expression if this is a root variable. */
b2c2bd75 2173 if (is_root_p (var))
8b93c638 2174 {
3038237c 2175 xfree (var->root->exp);
8038e1e2 2176 xfree (var->root);
8b93c638
JM
2177 }
2178
8038e1e2
AC
2179 xfree (var->name);
2180 xfree (var->obj_name);
85265413 2181 xfree (var->print_value);
02142340 2182 xfree (var->path_expr);
bb5ce47a 2183 xfree (var->dynamic);
8038e1e2 2184 xfree (var);
8b93c638
JM
2185}
2186
74b7792f
AC
2187static void
2188do_free_variable_cleanup (void *var)
2189{
2190 free_variable (var);
2191}
2192
2193static struct cleanup *
2194make_cleanup_free_variable (struct varobj *var)
2195{
2196 return make_cleanup (do_free_variable_cleanup, var);
2197}
2198
6e2a9270
VP
2199/* Return the type of the value that's stored in VAR,
2200 or that would have being stored there if the
581e13c1 2201 value were accessible.
6e2a9270
VP
2202
2203 This differs from VAR->type in that VAR->type is always
2204 the true type of the expession in the source language.
2205 The return value of this function is the type we're
2206 actually storing in varobj, and using for displaying
2207 the values and for comparing previous and new values.
2208
2209 For example, top-level references are always stripped. */
99ad9427
YQ
2210struct type *
2211varobj_get_value_type (struct varobj *var)
6e2a9270
VP
2212{
2213 struct type *type;
2214
2215 if (var->value)
2216 type = value_type (var->value);
2217 else
2218 type = var->type;
2219
2220 type = check_typedef (type);
2221
2222 if (TYPE_CODE (type) == TYPE_CODE_REF)
2223 type = get_target_type (type);
2224
2225 type = check_typedef (type);
2226
2227 return type;
2228}
2229
8b93c638 2230/* What is the default display for this variable? We assume that
581e13c1 2231 everything is "natural". Any exceptions? */
8b93c638 2232static enum varobj_display_formats
fba45db2 2233variable_default_display (struct varobj *var)
8b93c638
JM
2234{
2235 return FORMAT_NATURAL;
2236}
2237
581e13c1 2238/* FIXME: The following should be generic for any pointer. */
8b93c638 2239static void
fba45db2 2240cppush (struct cpstack **pstack, char *name)
8b93c638
JM
2241{
2242 struct cpstack *s;
2243
2244 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2245 s->name = name;
2246 s->next = *pstack;
2247 *pstack = s;
2248}
2249
581e13c1 2250/* FIXME: The following should be generic for any pointer. */
8b93c638 2251static char *
fba45db2 2252cppop (struct cpstack **pstack)
8b93c638
JM
2253{
2254 struct cpstack *s;
2255 char *v;
2256
2257 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2258 return NULL;
2259
2260 s = *pstack;
2261 v = s->name;
2262 *pstack = (*pstack)->next;
b8c9b27d 2263 xfree (s);
8b93c638
JM
2264
2265 return v;
2266}
2267\f
2268/*
2269 * Language-dependencies
2270 */
2271
2272/* Common entry points */
2273
8b93c638
JM
2274/* Return the number of children for a given variable.
2275 The result of this function is defined by the language
581e13c1 2276 implementation. The number of children returned by this function
8b93c638 2277 is the number of children that the user will see in the variable
581e13c1 2278 display. */
8b93c638 2279static int
fba45db2 2280number_of_children (struct varobj *var)
8b93c638 2281{
ca20d462 2282 return (*var->root->lang_ops->number_of_children) (var);
8b93c638
JM
2283}
2284
3e43a32a 2285/* What is the expression for the root varobj VAR? Returns a malloc'd
581e13c1 2286 string. */
8b93c638 2287static char *
fba45db2 2288name_of_variable (struct varobj *var)
8b93c638 2289{
ca20d462 2290 return (*var->root->lang_ops->name_of_variable) (var);
8b93c638
JM
2291}
2292
3e43a32a 2293/* What is the name of the INDEX'th child of VAR? Returns a malloc'd
581e13c1 2294 string. */
8b93c638 2295static char *
fba45db2 2296name_of_child (struct varobj *var, int index)
8b93c638 2297{
ca20d462 2298 return (*var->root->lang_ops->name_of_child) (var, index);
8b93c638
JM
2299}
2300
2213e2be
YQ
2301/* If frame associated with VAR can be found, switch
2302 to it and return 1. Otherwise, return 0. */
2303
2304static int
2305check_scope (struct varobj *var)
2306{
2307 struct frame_info *fi;
2308 int scope;
2309
2310 fi = frame_find_by_id (var->root->frame);
2311 scope = fi != NULL;
2312
2313 if (fi)
2314 {
2315 CORE_ADDR pc = get_frame_pc (fi);
2316
2317 if (pc < BLOCK_START (var->root->valid_block) ||
2318 pc >= BLOCK_END (var->root->valid_block))
2319 scope = 0;
2320 else
2321 select_frame (fi);
2322 }
2323 return scope;
2324}
2325
2326/* Helper function to value_of_root. */
2327
2328static struct value *
2329value_of_root_1 (struct varobj **var_handle)
2330{
2331 struct value *new_val = NULL;
2332 struct varobj *var = *var_handle;
2333 int within_scope = 0;
2334 struct cleanup *back_to;
2335
2336 /* Only root variables can be updated... */
2337 if (!is_root_p (var))
2338 /* Not a root var. */
2339 return NULL;
2340
2341 back_to = make_cleanup_restore_current_thread ();
2342
2343 /* Determine whether the variable is still around. */
2344 if (var->root->valid_block == NULL || var->root->floating)
2345 within_scope = 1;
2346 else if (var->root->thread_id == 0)
2347 {
2348 /* The program was single-threaded when the variable object was
2349 created. Technically, it's possible that the program became
2350 multi-threaded since then, but we don't support such
2351 scenario yet. */
2352 within_scope = check_scope (var);
2353 }
2354 else
2355 {
2356 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
2357 if (in_thread_list (ptid))
2358 {
2359 switch_to_thread (ptid);
2360 within_scope = check_scope (var);
2361 }
2362 }
2363
2364 if (within_scope)
2365 {
2366 volatile struct gdb_exception except;
2367
2368 /* We need to catch errors here, because if evaluate
2369 expression fails we want to just return NULL. */
2370 TRY_CATCH (except, RETURN_MASK_ERROR)
2371 {
2372 new_val = evaluate_expression (var->root->exp);
2373 }
2374 }
2375
2376 do_cleanups (back_to);
2377
2378 return new_val;
2379}
2380
a5defcdc
VP
2381/* What is the ``struct value *'' of the root variable VAR?
2382 For floating variable object, evaluation can get us a value
2383 of different type from what is stored in varobj already. In
2384 that case:
2385 - *type_changed will be set to 1
2386 - old varobj will be freed, and new one will be
2387 created, with the same name.
2388 - *var_handle will be set to the new varobj
2389 Otherwise, *type_changed will be set to 0. */
30b28db1 2390static struct value *
fba45db2 2391value_of_root (struct varobj **var_handle, int *type_changed)
8b93c638 2392{
73a93a32
JI
2393 struct varobj *var;
2394
2395 if (var_handle == NULL)
2396 return NULL;
2397
2398 var = *var_handle;
2399
2400 /* This should really be an exception, since this should
581e13c1 2401 only get called with a root variable. */
73a93a32 2402
b2c2bd75 2403 if (!is_root_p (var))
73a93a32
JI
2404 return NULL;
2405
a5defcdc 2406 if (var->root->floating)
73a93a32
JI
2407 {
2408 struct varobj *tmp_var;
2409 char *old_type, *new_type;
6225abfa 2410
73a93a32
JI
2411 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2412 USE_SELECTED_FRAME);
2413 if (tmp_var == NULL)
2414 {
2415 return NULL;
2416 }
6225abfa 2417 old_type = varobj_get_type (var);
73a93a32 2418 new_type = varobj_get_type (tmp_var);
72330bd6 2419 if (strcmp (old_type, new_type) == 0)
73a93a32 2420 {
fcacd99f
VP
2421 /* The expression presently stored inside var->root->exp
2422 remembers the locations of local variables relatively to
2423 the frame where the expression was created (in DWARF location
2424 button, for example). Naturally, those locations are not
2425 correct in other frames, so update the expression. */
2426
2427 struct expression *tmp_exp = var->root->exp;
a109c7c1 2428
fcacd99f
VP
2429 var->root->exp = tmp_var->root->exp;
2430 tmp_var->root->exp = tmp_exp;
2431
73a93a32
JI
2432 varobj_delete (tmp_var, NULL, 0);
2433 *type_changed = 0;
2434 }
2435 else
2436 {
1b36a34b 2437 tmp_var->obj_name = xstrdup (var->obj_name);
0cc7d26f
TT
2438 tmp_var->from = var->from;
2439 tmp_var->to = var->to;
a5defcdc
VP
2440 varobj_delete (var, NULL, 0);
2441
73a93a32
JI
2442 install_variable (tmp_var);
2443 *var_handle = tmp_var;
705da579 2444 var = *var_handle;
73a93a32
JI
2445 *type_changed = 1;
2446 }
74dddad3
MS
2447 xfree (old_type);
2448 xfree (new_type);
73a93a32
JI
2449 }
2450 else
2451 {
2452 *type_changed = 0;
2453 }
2454
7a290c40
JB
2455 {
2456 struct value *value;
2457
2213e2be 2458 value = value_of_root_1 (var_handle);
7a290c40
JB
2459 if (var->value == NULL || value == NULL)
2460 {
2461 /* For root varobj-s, a NULL value indicates a scoping issue.
2462 So, nothing to do in terms of checking for mutations. */
2463 }
2464 else if (varobj_value_has_mutated (var, value, value_type (value)))
2465 {
2466 /* The type has mutated, so the children are no longer valid.
2467 Just delete them, and tell our caller that the type has
2468 changed. */
2469 varobj_delete (var, NULL, 1 /* only_children */);
2470 var->num_children = -1;
2471 var->to = -1;
2472 var->from = -1;
2473 *type_changed = 1;
2474 }
2475 return value;
2476 }
8b93c638
JM
2477}
2478
581e13c1 2479/* What is the ``struct value *'' for the INDEX'th child of PARENT? */
30b28db1 2480static struct value *
fba45db2 2481value_of_child (struct varobj *parent, int index)
8b93c638 2482{
30b28db1 2483 struct value *value;
8b93c638 2484
ca20d462 2485 value = (*parent->root->lang_ops->value_of_child) (parent, index);
8b93c638 2486
8b93c638
JM
2487 return value;
2488}
2489
581e13c1 2490/* GDB already has a command called "value_of_variable". Sigh. */
8b93c638 2491static char *
de051565 2492my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 2493{
8756216b 2494 if (var->root->is_valid)
0cc7d26f 2495 {
bb5ce47a 2496 if (var->dynamic->pretty_printer != NULL)
99ad9427 2497 return varobj_value_get_print_value (var->value, var->format, var);
ca20d462 2498 return (*var->root->lang_ops->value_of_variable) (var, format);
0cc7d26f 2499 }
8756216b
DP
2500 else
2501 return NULL;
8b93c638
JM
2502}
2503
99ad9427
YQ
2504void
2505varobj_formatted_print_options (struct value_print_options *opts,
2506 enum varobj_display_formats format)
2507{
2508 get_formatted_print_options (opts, format_code[(int) format]);
2509 opts->deref_ref = 0;
2510 opts->raw = 1;
2511}
2512
2513char *
2514varobj_value_get_print_value (struct value *value,
2515 enum varobj_display_formats format,
2516 struct varobj *var)
85265413 2517{
57e66780 2518 struct ui_file *stb;
621c8364 2519 struct cleanup *old_chain;
ac91cd70 2520 char *thevalue = NULL;
79a45b7d 2521 struct value_print_options opts;
be759fcf
PM
2522 struct type *type = NULL;
2523 long len = 0;
2524 char *encoding = NULL;
2525 struct gdbarch *gdbarch = NULL;
3a182a69
JK
2526 /* Initialize it just to avoid a GCC false warning. */
2527 CORE_ADDR str_addr = 0;
09ca9e2e 2528 int string_print = 0;
57e66780
DJ
2529
2530 if (value == NULL)
2531 return NULL;
2532
621c8364
TT
2533 stb = mem_fileopen ();
2534 old_chain = make_cleanup_ui_file_delete (stb);
2535
be759fcf 2536 gdbarch = get_type_arch (value_type (value));
b6313243 2537#if HAVE_PYTHON
0646da15
TT
2538 if (gdb_python_initialized)
2539 {
bb5ce47a 2540 PyObject *value_formatter = var->dynamic->pretty_printer;
d452c4bc 2541
0646da15 2542 varobj_ensure_python_env (var);
09ca9e2e 2543
0646da15
TT
2544 if (value_formatter)
2545 {
2546 /* First check to see if we have any children at all. If so,
2547 we simply return {...}. */
2548 if (dynamic_varobj_has_child_method (var))
2549 {
2550 do_cleanups (old_chain);
2551 return xstrdup ("{...}");
2552 }
b6313243 2553
0646da15
TT
2554 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2555 {
2556 struct value *replacement;
2557 PyObject *output = NULL;
2558
2559 output = apply_varobj_pretty_printer (value_formatter,
2560 &replacement,
2561 stb);
2562
2563 /* If we have string like output ... */
2564 if (output)
2565 {
2566 make_cleanup_py_decref (output);
2567
2568 /* If this is a lazy string, extract it. For lazy
2569 strings we always print as a string, so set
2570 string_print. */
2571 if (gdbpy_is_lazy_string (output))
2572 {
2573 gdbpy_extract_lazy_string (output, &str_addr, &type,
2574 &len, &encoding);
2575 make_cleanup (free_current_contents, &encoding);
2576 string_print = 1;
2577 }
2578 else
2579 {
2580 /* If it is a regular (non-lazy) string, extract
2581 it and copy the contents into THEVALUE. If the
2582 hint says to print it as a string, set
2583 string_print. Otherwise just return the extracted
2584 string as a value. */
2585
2586 char *s = python_string_to_target_string (output);
2587
2588 if (s)
2589 {
2590 char *hint;
2591
2592 hint = gdbpy_get_display_hint (value_formatter);
2593 if (hint)
2594 {
2595 if (!strcmp (hint, "string"))
2596 string_print = 1;
2597 xfree (hint);
2598 }
2599
2600 len = strlen (s);
2601 thevalue = xmemdup (s, len + 1, len + 1);
2602 type = builtin_type (gdbarch)->builtin_char;
2603 xfree (s);
2604
2605 if (!string_print)
2606 {
2607 do_cleanups (old_chain);
2608 return thevalue;
2609 }
2610
2611 make_cleanup (xfree, thevalue);
2612 }
2613 else
2614 gdbpy_print_stack ();
2615 }
2616 }
2617 /* If the printer returned a replacement value, set VALUE
2618 to REPLACEMENT. If there is not a replacement value,
2619 just use the value passed to this function. */
2620 if (replacement)
2621 value = replacement;
2622 }
2623 }
2624 }
b6313243
TT
2625#endif
2626
99ad9427 2627 varobj_formatted_print_options (&opts, format);
00bd41d6
PM
2628
2629 /* If the THEVALUE has contents, it is a regular string. */
b6313243 2630 if (thevalue)
ac91cd70 2631 LA_PRINT_STRING (stb, type, (gdb_byte *) thevalue, len, encoding, 0, &opts);
09ca9e2e 2632 else if (string_print)
00bd41d6
PM
2633 /* Otherwise, if string_print is set, and it is not a regular
2634 string, it is a lazy string. */
09ca9e2e 2635 val_print_string (type, encoding, str_addr, len, stb, &opts);
b6313243 2636 else
00bd41d6 2637 /* All other cases. */
b6313243 2638 common_val_print (value, stb, 0, &opts, current_language);
00bd41d6 2639
759ef836 2640 thevalue = ui_file_xstrdup (stb, NULL);
57e66780 2641
85265413
NR
2642 do_cleanups (old_chain);
2643 return thevalue;
2644}
2645
340a7723
NR
2646int
2647varobj_editable_p (struct varobj *var)
2648{
2649 struct type *type;
340a7723
NR
2650
2651 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2652 return 0;
2653
99ad9427 2654 type = varobj_get_value_type (var);
340a7723
NR
2655
2656 switch (TYPE_CODE (type))
2657 {
2658 case TYPE_CODE_STRUCT:
2659 case TYPE_CODE_UNION:
2660 case TYPE_CODE_ARRAY:
2661 case TYPE_CODE_FUNC:
2662 case TYPE_CODE_METHOD:
2663 return 0;
2664 break;
2665
2666 default:
2667 return 1;
2668 break;
2669 }
2670}
2671
d32cafc7 2672/* Call VAR's value_is_changeable_p language-specific callback. */
acd65feb 2673
99ad9427 2674int
b2c2bd75 2675varobj_value_is_changeable_p (struct varobj *var)
8b93c638 2676{
ca20d462 2677 return var->root->lang_ops->value_is_changeable_p (var);
8b93c638
JM
2678}
2679
5a413362
VP
2680/* Return 1 if that varobj is floating, that is is always evaluated in the
2681 selected frame, and not bound to thread/frame. Such variable objects
2682 are created using '@' as frame specifier to -var-create. */
2683int
2684varobj_floating_p (struct varobj *var)
2685{
2686 return var->root->floating;
2687}
2688
d32cafc7
JB
2689/* Implement the "value_is_changeable_p" varobj callback for most
2690 languages. */
2691
99ad9427
YQ
2692int
2693varobj_default_value_is_changeable_p (struct varobj *var)
d32cafc7
JB
2694{
2695 int r;
2696 struct type *type;
2697
2698 if (CPLUS_FAKE_CHILD (var))
2699 return 0;
2700
99ad9427 2701 type = varobj_get_value_type (var);
d32cafc7
JB
2702
2703 switch (TYPE_CODE (type))
2704 {
2705 case TYPE_CODE_STRUCT:
2706 case TYPE_CODE_UNION:
2707 case TYPE_CODE_ARRAY:
2708 r = 0;
2709 break;
2710
2711 default:
2712 r = 1;
2713 }
2714
2715 return r;
2716}
2717
54333c3b
JK
2718/* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
2719 with an arbitrary caller supplied DATA pointer. */
2720
2721void
2722all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
2723{
2724 struct varobj_root *var_root, *var_root_next;
2725
2726 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
2727
2728 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
2729 {
2730 var_root_next = var_root->next;
2731
2732 (*func) (var_root->rootvar, data);
2733 }
2734}
8756216b 2735
54333c3b 2736/* Invalidate varobj VAR if it is tied to locals and re-create it if it is
4e969b4f
AB
2737 defined on globals. It is a helper for varobj_invalidate.
2738
2739 This function is called after changing the symbol file, in this case the
2740 pointers to "struct type" stored by the varobj are no longer valid. All
2741 varobj must be either re-evaluated, or marked as invalid here. */
2dbd25e5 2742
54333c3b
JK
2743static void
2744varobj_invalidate_iter (struct varobj *var, void *unused)
8756216b 2745{
4e969b4f
AB
2746 /* global and floating var must be re-evaluated. */
2747 if (var->root->floating || var->root->valid_block == NULL)
2dbd25e5 2748 {
54333c3b 2749 struct varobj *tmp_var;
2dbd25e5 2750
54333c3b
JK
2751 /* Try to create a varobj with same expression. If we succeed
2752 replace the old varobj, otherwise invalidate it. */
2753 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2754 USE_CURRENT_FRAME);
2755 if (tmp_var != NULL)
2756 {
2757 tmp_var->obj_name = xstrdup (var->obj_name);
2758 varobj_delete (var, NULL, 0);
2759 install_variable (tmp_var);
2dbd25e5 2760 }
54333c3b
JK
2761 else
2762 var->root->is_valid = 0;
2dbd25e5 2763 }
54333c3b
JK
2764 else /* locals must be invalidated. */
2765 var->root->is_valid = 0;
2766}
2767
2768/* Invalidate the varobjs that are tied to locals and re-create the ones that
2769 are defined on globals.
2770 Invalidated varobjs will be always printed in_scope="invalid". */
2771
2772void
2773varobj_invalidate (void)
2774{
2775 all_root_varobjs (varobj_invalidate_iter, NULL);
8756216b 2776}
1c3569d4
MR
2777\f
2778extern void _initialize_varobj (void);
2779void
2780_initialize_varobj (void)
2781{
2782 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
2783
2784 varobj_table = xmalloc (sizeof_table);
2785 memset (varobj_table, 0, sizeof_table);
2786
2787 add_setshow_zuinteger_cmd ("varobj", class_maintenance,
2788 &varobjdebug,
2789 _("Set varobj debugging."),
2790 _("Show varobj debugging."),
2791 _("When non-zero, varobj debugging is enabled."),
2792 NULL, show_varobjdebug,
2793 &setdebuglist, &showdebuglist);
2794}