]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/varobj.c
*** empty log message ***
[thirdparty/binutils-gdb.git] / gdb / varobj.c
CommitLineData
8b93c638 1/* Implementation of the GDB variable objects API.
bc8332bb 2
0fb0cc75 3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
7b6bb8da 4 2009, 2010, 2011 Free Software Foundation, Inc.
8b93c638
JM
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
a9762ec7 8 the Free Software Foundation; either version 3 of the License, or
8b93c638
JM
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
a9762ec7 17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
8b93c638
JM
18
19#include "defs.h"
a6c442d8 20#include "exceptions.h"
8b93c638
JM
21#include "value.h"
22#include "expression.h"
23#include "frame.h"
8b93c638
JM
24#include "language.h"
25#include "wrapper.h"
26#include "gdbcmd.h"
d2353924 27#include "block.h"
79a45b7d 28#include "valprint.h"
a6c442d8
MK
29
30#include "gdb_assert.h"
b66d6d2e 31#include "gdb_string.h"
0cc7d26f 32#include "gdb_regex.h"
8b93c638
JM
33
34#include "varobj.h"
28335dcc 35#include "vec.h"
6208b47d
VP
36#include "gdbthread.h"
37#include "inferior.h"
8b93c638 38
b6313243
TT
39#if HAVE_PYTHON
40#include "python/python.h"
41#include "python/python-internal.h"
50389644
PA
42#else
43typedef int PyObject;
b6313243
TT
44#endif
45
8b93c638
JM
46/* Non-zero if we want to see trace of varobj level stuff. */
47
48int varobjdebug = 0;
920d2a44
AC
49static void
50show_varobjdebug (struct ui_file *file, int from_tty,
51 struct cmd_list_element *c, const char *value)
52{
53 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
54}
8b93c638
JM
55
56/* String representations of gdb's format codes */
57char *varobj_format_string[] =
72330bd6 58 { "natural", "binary", "decimal", "hexadecimal", "octal" };
8b93c638
JM
59
60/* String representations of gdb's known languages */
72330bd6 61char *varobj_language_string[] = { "unknown", "C", "C++", "Java" };
8b93c638 62
0cc7d26f
TT
63/* True if we want to allow Python-based pretty-printing. */
64static int pretty_printing = 0;
65
66void
67varobj_enable_pretty_printing (void)
68{
69 pretty_printing = 1;
70}
71
8b93c638
JM
72/* Data structures */
73
74/* Every root variable has one of these structures saved in its
75 varobj. Members which must be free'd are noted. */
76struct varobj_root
72330bd6 77{
8b93c638 78
72330bd6
AC
79 /* Alloc'd expression for this parent. */
80 struct expression *exp;
8b93c638 81
72330bd6
AC
82 /* Block for which this expression is valid */
83 struct block *valid_block;
8b93c638 84
44a67aa7
VP
85 /* The frame for this expression. This field is set iff valid_block is
86 not NULL. */
e64d9b3d 87 struct frame_id frame;
8b93c638 88
c5b48eac
VP
89 /* The thread ID that this varobj_root belong to. This field
90 is only valid if valid_block is not NULL.
91 When not 0, indicates which thread 'frame' belongs to.
92 When 0, indicates that the thread list was empty when the varobj_root
93 was created. */
94 int thread_id;
95
a5defcdc
VP
96 /* If 1, the -var-update always recomputes the value in the
97 current thread and frame. Otherwise, variable object is
98 always updated in the specific scope/thread/frame */
99 int floating;
73a93a32 100
8756216b
DP
101 /* Flag that indicates validity: set to 0 when this varobj_root refers
102 to symbols that do not exist anymore. */
103 int is_valid;
104
72330bd6
AC
105 /* Language info for this variable and its children */
106 struct language_specific *lang;
8b93c638 107
72330bd6
AC
108 /* The varobj for this root node. */
109 struct varobj *rootvar;
8b93c638 110
72330bd6
AC
111 /* Next root variable */
112 struct varobj_root *next;
113};
8b93c638
JM
114
115/* Every variable in the system has a structure of this type defined
116 for it. This structure holds all information necessary to manipulate
117 a particular object variable. Members which must be freed are noted. */
118struct varobj
72330bd6 119{
8b93c638 120
72330bd6
AC
121 /* Alloc'd name of the variable for this object.. If this variable is a
122 child, then this name will be the child's source name.
123 (bar, not foo.bar) */
124 /* NOTE: This is the "expression" */
125 char *name;
8b93c638 126
02142340
VP
127 /* Alloc'd expression for this child. Can be used to create a
128 root variable corresponding to this child. */
129 char *path_expr;
130
72330bd6
AC
131 /* The alloc'd name for this variable's object. This is here for
132 convenience when constructing this object's children. */
133 char *obj_name;
8b93c638 134
72330bd6
AC
135 /* Index of this variable in its parent or -1 */
136 int index;
8b93c638 137
202ddcaa
VP
138 /* The type of this variable. This can be NULL
139 for artifial variable objects -- currently, the "accessibility"
140 variable objects in C++. */
72330bd6 141 struct type *type;
8b93c638 142
b20d8971
VP
143 /* The value of this expression or subexpression. A NULL value
144 indicates there was an error getting this value.
b2c2bd75
VP
145 Invariant: if varobj_value_is_changeable_p (this) is non-zero,
146 the value is either NULL, or not lazy. */
30b28db1 147 struct value *value;
8b93c638 148
72330bd6
AC
149 /* The number of (immediate) children this variable has */
150 int num_children;
8b93c638 151
72330bd6
AC
152 /* If this object is a child, this points to its immediate parent. */
153 struct varobj *parent;
8b93c638 154
28335dcc
VP
155 /* Children of this object. */
156 VEC (varobj_p) *children;
8b93c638 157
b6313243
TT
158 /* Whether the children of this varobj were requested. This field is
159 used to decide if dynamic varobj should recompute their children.
160 In the event that the frontend never asked for the children, we
161 can avoid that. */
162 int children_requested;
163
72330bd6
AC
164 /* Description of the root variable. Points to root variable for children. */
165 struct varobj_root *root;
8b93c638 166
72330bd6
AC
167 /* The format of the output for this object */
168 enum varobj_display_formats format;
fb9b6b35
JJ
169
170 /* Was this variable updated via a varobj_set_value operation */
171 int updated;
85265413
NR
172
173 /* Last print value. */
174 char *print_value;
25d5ea92
VP
175
176 /* Is this variable frozen. Frozen variables are never implicitly
177 updated by -var-update *
178 or -var-update <direct-or-indirect-parent>. */
179 int frozen;
180
181 /* Is the value of this variable intentionally not fetched? It is
182 not fetched if either the variable is frozen, or any parents is
183 frozen. */
184 int not_fetched;
b6313243 185
0cc7d26f
TT
186 /* Sub-range of children which the MI consumer has requested. If
187 FROM < 0 or TO < 0, means that all children have been
188 requested. */
189 int from;
190 int to;
191
192 /* The pretty-printer constructor. If NULL, then the default
193 pretty-printer will be looked up. If None, then no
194 pretty-printer will be installed. */
195 PyObject *constructor;
196
b6313243
TT
197 /* The pretty-printer that has been constructed. If NULL, then a
198 new printer object is needed, and one will be constructed. */
199 PyObject *pretty_printer;
0cc7d26f
TT
200
201 /* The iterator returned by the printer's 'children' method, or NULL
202 if not available. */
203 PyObject *child_iter;
204
205 /* We request one extra item from the iterator, so that we can
206 report to the caller whether there are more items than we have
207 already reported. However, we don't want to install this value
208 when we read it, because that will mess up future updates. So,
209 we stash it here instead. */
210 PyObject *saved_item;
72330bd6 211};
8b93c638 212
8b93c638 213struct cpstack
72330bd6
AC
214{
215 char *name;
216 struct cpstack *next;
217};
8b93c638
JM
218
219/* A list of varobjs */
220
221struct vlist
72330bd6
AC
222{
223 struct varobj *var;
224 struct vlist *next;
225};
8b93c638
JM
226
227/* Private function prototypes */
228
229/* Helper functions for the above subcommands. */
230
a14ed312 231static int delete_variable (struct cpstack **, struct varobj *, int);
8b93c638 232
a14ed312
KB
233static void delete_variable_1 (struct cpstack **, int *,
234 struct varobj *, int, int);
8b93c638 235
a14ed312 236static int install_variable (struct varobj *);
8b93c638 237
a14ed312 238static void uninstall_variable (struct varobj *);
8b93c638 239
a14ed312 240static struct varobj *create_child (struct varobj *, int, char *);
8b93c638 241
b6313243
TT
242static struct varobj *
243create_child_with_value (struct varobj *parent, int index, const char *name,
244 struct value *value);
245
8b93c638
JM
246/* Utility routines */
247
a14ed312 248static struct varobj *new_variable (void);
8b93c638 249
a14ed312 250static struct varobj *new_root_variable (void);
8b93c638 251
a14ed312 252static void free_variable (struct varobj *var);
8b93c638 253
74b7792f
AC
254static struct cleanup *make_cleanup_free_variable (struct varobj *var);
255
a14ed312 256static struct type *get_type (struct varobj *var);
8b93c638 257
6e2a9270
VP
258static struct type *get_value_type (struct varobj *var);
259
a14ed312 260static struct type *get_target_type (struct type *);
8b93c638 261
a14ed312 262static enum varobj_display_formats variable_default_display (struct varobj *);
8b93c638 263
a14ed312 264static void cppush (struct cpstack **pstack, char *name);
8b93c638 265
a14ed312 266static char *cppop (struct cpstack **pstack);
8b93c638 267
acd65feb
VP
268static int install_new_value (struct varobj *var, struct value *value,
269 int initial);
270
8b93c638
JM
271/* Language-specific routines. */
272
a14ed312 273static enum varobj_languages variable_language (struct varobj *var);
8b93c638 274
a14ed312 275static int number_of_children (struct varobj *);
8b93c638 276
a14ed312 277static char *name_of_variable (struct varobj *);
8b93c638 278
a14ed312 279static char *name_of_child (struct varobj *, int);
8b93c638 280
30b28db1 281static struct value *value_of_root (struct varobj **var_handle, int *);
8b93c638 282
30b28db1 283static struct value *value_of_child (struct varobj *parent, int index);
8b93c638 284
de051565
MK
285static char *my_value_of_variable (struct varobj *var,
286 enum varobj_display_formats format);
8b93c638 287
85265413 288static char *value_get_print_value (struct value *value,
b6313243 289 enum varobj_display_formats format,
d452c4bc 290 struct varobj *var);
85265413 291
b2c2bd75
VP
292static int varobj_value_is_changeable_p (struct varobj *var);
293
294static int is_root_p (struct varobj *var);
8b93c638 295
d8b65138
JK
296#if HAVE_PYTHON
297
b6313243
TT
298static struct varobj *
299varobj_add_child (struct varobj *var, const char *name, struct value *value);
300
d8b65138
JK
301#endif /* HAVE_PYTHON */
302
8b93c638
JM
303/* C implementation */
304
a14ed312 305static int c_number_of_children (struct varobj *var);
8b93c638 306
a14ed312 307static char *c_name_of_variable (struct varobj *parent);
8b93c638 308
a14ed312 309static char *c_name_of_child (struct varobj *parent, int index);
8b93c638 310
02142340
VP
311static char *c_path_expr_of_child (struct varobj *child);
312
30b28db1 313static struct value *c_value_of_root (struct varobj **var_handle);
8b93c638 314
30b28db1 315static struct value *c_value_of_child (struct varobj *parent, int index);
8b93c638 316
a14ed312 317static struct type *c_type_of_child (struct varobj *parent, int index);
8b93c638 318
de051565
MK
319static char *c_value_of_variable (struct varobj *var,
320 enum varobj_display_formats format);
8b93c638
JM
321
322/* C++ implementation */
323
a14ed312 324static int cplus_number_of_children (struct varobj *var);
8b93c638 325
a14ed312 326static void cplus_class_num_children (struct type *type, int children[3]);
8b93c638 327
a14ed312 328static char *cplus_name_of_variable (struct varobj *parent);
8b93c638 329
a14ed312 330static char *cplus_name_of_child (struct varobj *parent, int index);
8b93c638 331
02142340
VP
332static char *cplus_path_expr_of_child (struct varobj *child);
333
30b28db1 334static struct value *cplus_value_of_root (struct varobj **var_handle);
8b93c638 335
30b28db1 336static struct value *cplus_value_of_child (struct varobj *parent, int index);
8b93c638 337
a14ed312 338static struct type *cplus_type_of_child (struct varobj *parent, int index);
8b93c638 339
de051565
MK
340static char *cplus_value_of_variable (struct varobj *var,
341 enum varobj_display_formats format);
8b93c638
JM
342
343/* Java implementation */
344
a14ed312 345static int java_number_of_children (struct varobj *var);
8b93c638 346
a14ed312 347static char *java_name_of_variable (struct varobj *parent);
8b93c638 348
a14ed312 349static char *java_name_of_child (struct varobj *parent, int index);
8b93c638 350
02142340
VP
351static char *java_path_expr_of_child (struct varobj *child);
352
30b28db1 353static struct value *java_value_of_root (struct varobj **var_handle);
8b93c638 354
30b28db1 355static struct value *java_value_of_child (struct varobj *parent, int index);
8b93c638 356
a14ed312 357static struct type *java_type_of_child (struct varobj *parent, int index);
8b93c638 358
de051565
MK
359static char *java_value_of_variable (struct varobj *var,
360 enum varobj_display_formats format);
8b93c638
JM
361
362/* The language specific vector */
363
364struct language_specific
72330bd6 365{
8b93c638 366
72330bd6
AC
367 /* The language of this variable */
368 enum varobj_languages language;
8b93c638 369
72330bd6
AC
370 /* The number of children of PARENT. */
371 int (*number_of_children) (struct varobj * parent);
8b93c638 372
72330bd6
AC
373 /* The name (expression) of a root varobj. */
374 char *(*name_of_variable) (struct varobj * parent);
8b93c638 375
72330bd6
AC
376 /* The name of the INDEX'th child of PARENT. */
377 char *(*name_of_child) (struct varobj * parent, int index);
8b93c638 378
02142340
VP
379 /* Returns the rooted expression of CHILD, which is a variable
380 obtain that has some parent. */
381 char *(*path_expr_of_child) (struct varobj * child);
382
30b28db1
AC
383 /* The ``struct value *'' of the root variable ROOT. */
384 struct value *(*value_of_root) (struct varobj ** root_handle);
8b93c638 385
30b28db1
AC
386 /* The ``struct value *'' of the INDEX'th child of PARENT. */
387 struct value *(*value_of_child) (struct varobj * parent, int index);
8b93c638 388
72330bd6
AC
389 /* The type of the INDEX'th child of PARENT. */
390 struct type *(*type_of_child) (struct varobj * parent, int index);
8b93c638 391
72330bd6 392 /* The current value of VAR. */
de051565
MK
393 char *(*value_of_variable) (struct varobj * var,
394 enum varobj_display_formats format);
72330bd6 395};
8b93c638
JM
396
397/* Array of known source language routines. */
d5d6fca5 398static struct language_specific languages[vlang_end] = {
8b93c638
JM
399 /* Unknown (try treating as C */
400 {
72330bd6
AC
401 vlang_unknown,
402 c_number_of_children,
403 c_name_of_variable,
404 c_name_of_child,
02142340 405 c_path_expr_of_child,
72330bd6
AC
406 c_value_of_root,
407 c_value_of_child,
408 c_type_of_child,
72330bd6 409 c_value_of_variable}
8b93c638
JM
410 ,
411 /* C */
412 {
72330bd6
AC
413 vlang_c,
414 c_number_of_children,
415 c_name_of_variable,
416 c_name_of_child,
02142340 417 c_path_expr_of_child,
72330bd6
AC
418 c_value_of_root,
419 c_value_of_child,
420 c_type_of_child,
72330bd6 421 c_value_of_variable}
8b93c638
JM
422 ,
423 /* C++ */
424 {
72330bd6
AC
425 vlang_cplus,
426 cplus_number_of_children,
427 cplus_name_of_variable,
428 cplus_name_of_child,
02142340 429 cplus_path_expr_of_child,
72330bd6
AC
430 cplus_value_of_root,
431 cplus_value_of_child,
432 cplus_type_of_child,
72330bd6 433 cplus_value_of_variable}
8b93c638
JM
434 ,
435 /* Java */
436 {
72330bd6
AC
437 vlang_java,
438 java_number_of_children,
439 java_name_of_variable,
440 java_name_of_child,
02142340 441 java_path_expr_of_child,
72330bd6
AC
442 java_value_of_root,
443 java_value_of_child,
444 java_type_of_child,
72330bd6 445 java_value_of_variable}
8b93c638
JM
446};
447
448/* A little convenience enum for dealing with C++/Java */
449enum vsections
72330bd6
AC
450{
451 v_public = 0, v_private, v_protected
452};
8b93c638
JM
453
454/* Private data */
455
456/* Mappings of varobj_display_formats enums to gdb's format codes */
72330bd6 457static int format_code[] = { 0, 't', 'd', 'x', 'o' };
8b93c638
JM
458
459/* Header of the list of root variable objects */
460static struct varobj_root *rootlist;
8b93c638
JM
461
462/* Prime number indicating the number of buckets in the hash table */
463/* A prime large enough to avoid too many colisions */
464#define VAROBJ_TABLE_SIZE 227
465
466/* Pointer to the varobj hash table (built at run time) */
467static struct vlist **varobj_table;
468
8b93c638
JM
469/* Is the variable X one of our "fake" children? */
470#define CPLUS_FAKE_CHILD(x) \
471((x) != NULL && (x)->type == NULL && (x)->value == NULL)
472\f
473
474/* API Implementation */
b2c2bd75
VP
475static int
476is_root_p (struct varobj *var)
477{
478 return (var->root->rootvar == var);
479}
8b93c638 480
d452c4bc
UW
481#ifdef HAVE_PYTHON
482/* Helper function to install a Python environment suitable for
483 use during operations on VAR. */
484struct cleanup *
485varobj_ensure_python_env (struct varobj *var)
486{
487 return ensure_python_env (var->root->exp->gdbarch,
488 var->root->exp->language_defn);
489}
490#endif
491
8b93c638
JM
492/* Creates a varobj (not its children) */
493
7d8547c9
AC
494/* Return the full FRAME which corresponds to the given CORE_ADDR
495 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
496
497static struct frame_info *
498find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
499{
500 struct frame_info *frame = NULL;
501
502 if (frame_addr == (CORE_ADDR) 0)
503 return NULL;
504
9d49bdc2
PA
505 for (frame = get_current_frame ();
506 frame != NULL;
507 frame = get_prev_frame (frame))
7d8547c9 508 {
1fac167a
UW
509 /* The CORE_ADDR we get as argument was parsed from a string GDB
510 output as $fp. This output got truncated to gdbarch_addr_bit.
511 Truncate the frame base address in the same manner before
512 comparing it against our argument. */
513 CORE_ADDR frame_base = get_frame_base_address (frame);
514 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
a109c7c1 515
1fac167a
UW
516 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
517 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
518
519 if (frame_base == frame_addr)
7d8547c9
AC
520 return frame;
521 }
9d49bdc2
PA
522
523 return NULL;
7d8547c9
AC
524}
525
8b93c638
JM
526struct varobj *
527varobj_create (char *objname,
72330bd6 528 char *expression, CORE_ADDR frame, enum varobj_type type)
8b93c638
JM
529{
530 struct varobj *var;
8b93c638
JM
531 struct cleanup *old_chain;
532
533 /* Fill out a varobj structure for the (root) variable being constructed. */
534 var = new_root_variable ();
74b7792f 535 old_chain = make_cleanup_free_variable (var);
8b93c638
JM
536
537 if (expression != NULL)
538 {
e4195b40 539 struct frame_info *fi;
35633fef 540 struct frame_id old_id = null_frame_id;
e4195b40 541 struct block *block;
8b93c638
JM
542 char *p;
543 enum varobj_languages lang;
e55dccf0 544 struct value *value = NULL;
8b93c638 545
9d49bdc2
PA
546 /* Parse and evaluate the expression, filling in as much of the
547 variable's data as possible. */
548
549 if (has_stack_frames ())
550 {
551 /* Allow creator to specify context of variable */
552 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
553 fi = get_selected_frame (NULL);
554 else
555 /* FIXME: cagney/2002-11-23: This code should be doing a
556 lookup using the frame ID and not just the frame's
557 ``address''. This, of course, means an interface
558 change. However, with out that interface change ISAs,
559 such as the ia64 with its two stacks, won't work.
560 Similar goes for the case where there is a frameless
561 function. */
562 fi = find_frame_addr_in_frame_chain (frame);
563 }
8b93c638 564 else
9d49bdc2 565 fi = NULL;
8b93c638 566
73a93a32
JI
567 /* frame = -2 means always use selected frame */
568 if (type == USE_SELECTED_FRAME)
a5defcdc 569 var->root->floating = 1;
73a93a32 570
8b93c638
JM
571 block = NULL;
572 if (fi != NULL)
ae767bfb 573 block = get_frame_block (fi, 0);
8b93c638
JM
574
575 p = expression;
576 innermost_block = NULL;
73a93a32
JI
577 /* Wrap the call to parse expression, so we can
578 return a sensible error. */
579 if (!gdb_parse_exp_1 (&p, block, 0, &var->root->exp))
580 {
581 return NULL;
582 }
8b93c638
JM
583
584 /* Don't allow variables to be created for types. */
585 if (var->root->exp->elts[0].opcode == OP_TYPE)
586 {
587 do_cleanups (old_chain);
bc8332bb
AC
588 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
589 " as an expression.\n");
8b93c638
JM
590 return NULL;
591 }
592
593 var->format = variable_default_display (var);
594 var->root->valid_block = innermost_block;
1b36a34b 595 var->name = xstrdup (expression);
02142340 596 /* For a root var, the name and the expr are the same. */
1b36a34b 597 var->path_expr = xstrdup (expression);
8b93c638
JM
598
599 /* When the frame is different from the current frame,
600 we must select the appropriate frame before parsing
601 the expression, otherwise the value will not be current.
602 Since select_frame is so benign, just call it for all cases. */
4e22772d 603 if (innermost_block)
8b93c638 604 {
4e22772d
JK
605 /* User could specify explicit FRAME-ADDR which was not found but
606 EXPRESSION is frame specific and we would not be able to evaluate
607 it correctly next time. With VALID_BLOCK set we must also set
608 FRAME and THREAD_ID. */
609 if (fi == NULL)
610 error (_("Failed to find the specified frame"));
611
7a424e99 612 var->root->frame = get_frame_id (fi);
c5b48eac 613 var->root->thread_id = pid_to_thread_id (inferior_ptid);
35633fef 614 old_id = get_frame_id (get_selected_frame (NULL));
c5b48eac 615 select_frame (fi);
8b93c638
JM
616 }
617
340a7723 618 /* We definitely need to catch errors here.
8b93c638
JM
619 If evaluate_expression succeeds we got the value we wanted.
620 But if it fails, we still go on with a call to evaluate_type() */
acd65feb 621 if (!gdb_evaluate_expression (var->root->exp, &value))
e55dccf0
VP
622 {
623 /* Error getting the value. Try to at least get the
624 right type. */
625 struct value *type_only_value = evaluate_type (var->root->exp);
a109c7c1 626
e55dccf0
VP
627 var->type = value_type (type_only_value);
628 }
629 else
630 var->type = value_type (value);
acd65feb 631
acd65feb 632 install_new_value (var, value, 1 /* Initial assignment */);
8b93c638
JM
633
634 /* Set language info */
635 lang = variable_language (var);
d5d6fca5 636 var->root->lang = &languages[lang];
8b93c638
JM
637
638 /* Set ourselves as our root */
639 var->root->rootvar = var;
640
641 /* Reset the selected frame */
35633fef
JK
642 if (frame_id_p (old_id))
643 select_frame (frame_find_by_id (old_id));
8b93c638
JM
644 }
645
73a93a32
JI
646 /* If the variable object name is null, that means this
647 is a temporary variable, so don't install it. */
648
649 if ((var != NULL) && (objname != NULL))
8b93c638 650 {
1b36a34b 651 var->obj_name = xstrdup (objname);
8b93c638
JM
652
653 /* If a varobj name is duplicated, the install will fail so
654 we must clenup */
655 if (!install_variable (var))
656 {
657 do_cleanups (old_chain);
658 return NULL;
659 }
660 }
661
662 discard_cleanups (old_chain);
663 return var;
664}
665
666/* Generates an unique name that can be used for a varobj */
667
668char *
669varobj_gen_name (void)
670{
671 static int id = 0;
e64d9b3d 672 char *obj_name;
8b93c638
JM
673
674 /* generate a name for this object */
675 id++;
b435e160 676 obj_name = xstrprintf ("var%d", id);
8b93c638 677
e64d9b3d 678 return obj_name;
8b93c638
JM
679}
680
61d8f275
JK
681/* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
682 error if OBJNAME cannot be found. */
8b93c638
JM
683
684struct varobj *
685varobj_get_handle (char *objname)
686{
687 struct vlist *cv;
688 const char *chp;
689 unsigned int index = 0;
690 unsigned int i = 1;
691
692 for (chp = objname; *chp; chp++)
693 {
694 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
695 }
696
697 cv = *(varobj_table + index);
698 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
699 cv = cv->next;
700
701 if (cv == NULL)
8a3fe4f8 702 error (_("Variable object not found"));
8b93c638
JM
703
704 return cv->var;
705}
706
707/* Given the handle, return the name of the object */
708
709char *
710varobj_get_objname (struct varobj *var)
711{
712 return var->obj_name;
713}
714
715/* Given the handle, return the expression represented by the object */
716
717char *
718varobj_get_expression (struct varobj *var)
719{
720 return name_of_variable (var);
721}
722
723/* Deletes a varobj and all its children if only_children == 0,
3e43a32a
MS
724 otherwise deletes only the children; returns a malloc'ed list of
725 all the (malloc'ed) names of the variables that have been deleted
726 (NULL terminated) */
8b93c638
JM
727
728int
729varobj_delete (struct varobj *var, char ***dellist, int only_children)
730{
731 int delcount;
732 int mycount;
733 struct cpstack *result = NULL;
734 char **cp;
735
736 /* Initialize a stack for temporary results */
737 cppush (&result, NULL);
738
739 if (only_children)
740 /* Delete only the variable children */
741 delcount = delete_variable (&result, var, 1 /* only the children */ );
742 else
743 /* Delete the variable and all its children */
744 delcount = delete_variable (&result, var, 0 /* parent+children */ );
745
746 /* We may have been asked to return a list of what has been deleted */
747 if (dellist != NULL)
748 {
749 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
750
751 cp = *dellist;
752 mycount = delcount;
753 *cp = cppop (&result);
754 while ((*cp != NULL) && (mycount > 0))
755 {
756 mycount--;
757 cp++;
758 *cp = cppop (&result);
759 }
760
761 if (mycount || (*cp != NULL))
8a3fe4f8 762 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
72330bd6 763 mycount);
8b93c638
JM
764 }
765
766 return delcount;
767}
768
d8b65138
JK
769#if HAVE_PYTHON
770
b6313243
TT
771/* Convenience function for varobj_set_visualizer. Instantiate a
772 pretty-printer for a given value. */
773static PyObject *
774instantiate_pretty_printer (PyObject *constructor, struct value *value)
775{
b6313243
TT
776 PyObject *val_obj = NULL;
777 PyObject *printer;
b6313243 778
b6313243 779 val_obj = value_to_value_object (value);
b6313243
TT
780 if (! val_obj)
781 return NULL;
782
783 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
784 Py_DECREF (val_obj);
785 return printer;
b6313243
TT
786 return NULL;
787}
788
d8b65138
JK
789#endif
790
8b93c638
JM
791/* Set/Get variable object display format */
792
793enum varobj_display_formats
794varobj_set_display_format (struct varobj *var,
795 enum varobj_display_formats format)
796{
797 switch (format)
798 {
799 case FORMAT_NATURAL:
800 case FORMAT_BINARY:
801 case FORMAT_DECIMAL:
802 case FORMAT_HEXADECIMAL:
803 case FORMAT_OCTAL:
804 var->format = format;
805 break;
806
807 default:
808 var->format = variable_default_display (var);
809 }
810
ae7d22a6
VP
811 if (varobj_value_is_changeable_p (var)
812 && var->value && !value_lazy (var->value))
813 {
6c761d9c 814 xfree (var->print_value);
d452c4bc 815 var->print_value = value_get_print_value (var->value, var->format, var);
ae7d22a6
VP
816 }
817
8b93c638
JM
818 return var->format;
819}
820
821enum varobj_display_formats
822varobj_get_display_format (struct varobj *var)
823{
824 return var->format;
825}
826
b6313243
TT
827char *
828varobj_get_display_hint (struct varobj *var)
829{
830 char *result = NULL;
831
832#if HAVE_PYTHON
d452c4bc
UW
833 struct cleanup *back_to = varobj_ensure_python_env (var);
834
b6313243
TT
835 if (var->pretty_printer)
836 result = gdbpy_get_display_hint (var->pretty_printer);
d452c4bc
UW
837
838 do_cleanups (back_to);
b6313243
TT
839#endif
840
841 return result;
842}
843
0cc7d26f
TT
844/* Return true if the varobj has items after TO, false otherwise. */
845
846int
847varobj_has_more (struct varobj *var, int to)
848{
849 if (VEC_length (varobj_p, var->children) > to)
850 return 1;
851 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
852 && var->saved_item != NULL);
853}
854
c5b48eac
VP
855/* If the variable object is bound to a specific thread, that
856 is its evaluation can always be done in context of a frame
857 inside that thread, returns GDB id of the thread -- which
858 is always positive. Otherwise, returns -1. */
859int
860varobj_get_thread_id (struct varobj *var)
861{
862 if (var->root->valid_block && var->root->thread_id > 0)
863 return var->root->thread_id;
864 else
865 return -1;
866}
867
25d5ea92
VP
868void
869varobj_set_frozen (struct varobj *var, int frozen)
870{
871 /* When a variable is unfrozen, we don't fetch its value.
872 The 'not_fetched' flag remains set, so next -var-update
873 won't complain.
874
875 We don't fetch the value, because for structures the client
876 should do -var-update anyway. It would be bad to have different
877 client-size logic for structure and other types. */
878 var->frozen = frozen;
879}
880
881int
882varobj_get_frozen (struct varobj *var)
883{
884 return var->frozen;
885}
886
0cc7d26f
TT
887/* A helper function that restricts a range to what is actually
888 available in a VEC. This follows the usual rules for the meaning
889 of FROM and TO -- if either is negative, the entire range is
890 used. */
891
892static void
893restrict_range (VEC (varobj_p) *children, int *from, int *to)
894{
895 if (*from < 0 || *to < 0)
896 {
897 *from = 0;
898 *to = VEC_length (varobj_p, children);
899 }
900 else
901 {
902 if (*from > VEC_length (varobj_p, children))
903 *from = VEC_length (varobj_p, children);
904 if (*to > VEC_length (varobj_p, children))
905 *to = VEC_length (varobj_p, children);
906 if (*from > *to)
907 *from = *to;
908 }
909}
910
d8b65138
JK
911#if HAVE_PYTHON
912
0cc7d26f
TT
913/* A helper for update_dynamic_varobj_children that installs a new
914 child when needed. */
915
916static void
917install_dynamic_child (struct varobj *var,
918 VEC (varobj_p) **changed,
919 VEC (varobj_p) **new,
920 VEC (varobj_p) **unchanged,
921 int *cchanged,
922 int index,
923 const char *name,
924 struct value *value)
925{
926 if (VEC_length (varobj_p, var->children) < index + 1)
927 {
928 /* There's no child yet. */
929 struct varobj *child = varobj_add_child (var, name, value);
a109c7c1 930
0cc7d26f
TT
931 if (new)
932 {
933 VEC_safe_push (varobj_p, *new, child);
934 *cchanged = 1;
935 }
936 }
937 else
938 {
939 varobj_p existing = VEC_index (varobj_p, var->children, index);
a109c7c1 940
0cc7d26f
TT
941 if (install_new_value (existing, value, 0))
942 {
943 if (changed)
944 VEC_safe_push (varobj_p, *changed, existing);
945 }
946 else if (unchanged)
947 VEC_safe_push (varobj_p, *unchanged, existing);
948 }
949}
950
0cc7d26f
TT
951static int
952dynamic_varobj_has_child_method (struct varobj *var)
953{
954 struct cleanup *back_to;
955 PyObject *printer = var->pretty_printer;
956 int result;
957
958 back_to = varobj_ensure_python_env (var);
959 result = PyObject_HasAttr (printer, gdbpy_children_cst);
960 do_cleanups (back_to);
961 return result;
962}
963
964#endif
965
b6313243
TT
966static int
967update_dynamic_varobj_children (struct varobj *var,
968 VEC (varobj_p) **changed,
0cc7d26f
TT
969 VEC (varobj_p) **new,
970 VEC (varobj_p) **unchanged,
971 int *cchanged,
972 int update_children,
973 int from,
974 int to)
b6313243
TT
975{
976#if HAVE_PYTHON
b6313243
TT
977 struct cleanup *back_to;
978 PyObject *children;
b6313243 979 int i;
b6313243 980 PyObject *printer = var->pretty_printer;
b6313243 981
d452c4bc 982 back_to = varobj_ensure_python_env (var);
b6313243
TT
983
984 *cchanged = 0;
985 if (!PyObject_HasAttr (printer, gdbpy_children_cst))
986 {
987 do_cleanups (back_to);
988 return 0;
989 }
990
0cc7d26f 991 if (update_children || !var->child_iter)
b6313243 992 {
0cc7d26f
TT
993 children = PyObject_CallMethodObjArgs (printer, gdbpy_children_cst,
994 NULL);
b6313243 995
0cc7d26f
TT
996 if (!children)
997 {
998 gdbpy_print_stack ();
999 error (_("Null value returned for children"));
1000 }
b6313243 1001
0cc7d26f 1002 make_cleanup_py_decref (children);
b6313243 1003
0cc7d26f
TT
1004 if (!PyIter_Check (children))
1005 error (_("Returned value is not iterable"));
1006
1007 Py_XDECREF (var->child_iter);
1008 var->child_iter = PyObject_GetIter (children);
1009 if (!var->child_iter)
1010 {
1011 gdbpy_print_stack ();
1012 error (_("Could not get children iterator"));
1013 }
1014
1015 Py_XDECREF (var->saved_item);
1016 var->saved_item = NULL;
1017
1018 i = 0;
b6313243 1019 }
0cc7d26f
TT
1020 else
1021 i = VEC_length (varobj_p, var->children);
b6313243 1022
0cc7d26f
TT
1023 /* We ask for one extra child, so that MI can report whether there
1024 are more children. */
1025 for (; to < 0 || i < to + 1; ++i)
b6313243 1026 {
0cc7d26f 1027 PyObject *item;
b6313243 1028
0cc7d26f
TT
1029 /* See if there was a leftover from last time. */
1030 if (var->saved_item)
1031 {
1032 item = var->saved_item;
1033 var->saved_item = NULL;
1034 }
1035 else
1036 item = PyIter_Next (var->child_iter);
b6313243 1037
0cc7d26f
TT
1038 if (!item)
1039 break;
b6313243 1040
0cc7d26f
TT
1041 /* We don't want to push the extra child on any report list. */
1042 if (to < 0 || i < to)
b6313243 1043 {
0cc7d26f
TT
1044 PyObject *py_v;
1045 char *name;
1046 struct value *v;
1047 struct cleanup *inner;
1048 int can_mention = from < 0 || i >= from;
1049
1050 inner = make_cleanup_py_decref (item);
1051
1052 if (!PyArg_ParseTuple (item, "sO", &name, &py_v))
1053 error (_("Invalid item from the child list"));
1054
1055 v = convert_value_from_python (py_v);
8dc78533
JK
1056 if (v == NULL)
1057 gdbpy_print_stack ();
0cc7d26f
TT
1058 install_dynamic_child (var, can_mention ? changed : NULL,
1059 can_mention ? new : NULL,
1060 can_mention ? unchanged : NULL,
1061 can_mention ? cchanged : NULL, i, name, v);
1062 do_cleanups (inner);
b6313243 1063 }
0cc7d26f 1064 else
b6313243 1065 {
0cc7d26f
TT
1066 Py_XDECREF (var->saved_item);
1067 var->saved_item = item;
b6313243 1068
0cc7d26f
TT
1069 /* We want to truncate the child list just before this
1070 element. */
1071 break;
1072 }
b6313243
TT
1073 }
1074
1075 if (i < VEC_length (varobj_p, var->children))
1076 {
0cc7d26f 1077 int j;
a109c7c1 1078
0cc7d26f
TT
1079 *cchanged = 1;
1080 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
1081 varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0);
1082 VEC_truncate (varobj_p, var->children, i);
b6313243 1083 }
0cc7d26f
TT
1084
1085 /* If there are fewer children than requested, note that the list of
1086 children changed. */
1087 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
1088 *cchanged = 1;
1089
b6313243
TT
1090 var->num_children = VEC_length (varobj_p, var->children);
1091
1092 do_cleanups (back_to);
1093
b6313243
TT
1094 return 1;
1095#else
1096 gdb_assert (0 && "should never be called if Python is not enabled");
1097#endif
1098}
25d5ea92 1099
8b93c638
JM
1100int
1101varobj_get_num_children (struct varobj *var)
1102{
1103 if (var->num_children == -1)
b6313243 1104 {
0cc7d26f
TT
1105 if (var->pretty_printer)
1106 {
1107 int dummy;
1108
1109 /* If we have a dynamic varobj, don't report -1 children.
1110 So, try to fetch some children first. */
1111 update_dynamic_varobj_children (var, NULL, NULL, NULL, &dummy,
1112 0, 0, 0);
1113 }
1114 else
b6313243
TT
1115 var->num_children = number_of_children (var);
1116 }
8b93c638 1117
0cc7d26f 1118 return var->num_children >= 0 ? var->num_children : 0;
8b93c638
JM
1119}
1120
1121/* Creates a list of the immediate children of a variable object;
1122 the return code is the number of such children or -1 on error */
1123
d56d46f5 1124VEC (varobj_p)*
0cc7d26f 1125varobj_list_children (struct varobj *var, int *from, int *to)
8b93c638 1126{
8b93c638 1127 char *name;
b6313243
TT
1128 int i, children_changed;
1129
1130 var->children_requested = 1;
1131
0cc7d26f
TT
1132 if (var->pretty_printer)
1133 {
b6313243
TT
1134 /* This, in theory, can result in the number of children changing without
1135 frontend noticing. But well, calling -var-list-children on the same
1136 varobj twice is not something a sane frontend would do. */
0cc7d26f
TT
1137 update_dynamic_varobj_children (var, NULL, NULL, NULL, &children_changed,
1138 0, 0, *to);
1139 restrict_range (var->children, from, to);
1140 return var->children;
1141 }
8b93c638 1142
8b93c638
JM
1143 if (var->num_children == -1)
1144 var->num_children = number_of_children (var);
1145
74a44383
DJ
1146 /* If that failed, give up. */
1147 if (var->num_children == -1)
d56d46f5 1148 return var->children;
74a44383 1149
28335dcc
VP
1150 /* If we're called when the list of children is not yet initialized,
1151 allocate enough elements in it. */
1152 while (VEC_length (varobj_p, var->children) < var->num_children)
1153 VEC_safe_push (varobj_p, var->children, NULL);
1154
8b93c638
JM
1155 for (i = 0; i < var->num_children; i++)
1156 {
d56d46f5 1157 varobj_p existing = VEC_index (varobj_p, var->children, i);
28335dcc
VP
1158
1159 if (existing == NULL)
1160 {
1161 /* Either it's the first call to varobj_list_children for
1162 this variable object, and the child was never created,
1163 or it was explicitly deleted by the client. */
1164 name = name_of_child (var, i);
1165 existing = create_child (var, i, name);
1166 VEC_replace (varobj_p, var->children, i, existing);
1167 }
8b93c638
JM
1168 }
1169
0cc7d26f 1170 restrict_range (var->children, from, to);
d56d46f5 1171 return var->children;
8b93c638
JM
1172}
1173
d8b65138
JK
1174#if HAVE_PYTHON
1175
b6313243
TT
1176static struct varobj *
1177varobj_add_child (struct varobj *var, const char *name, struct value *value)
1178{
1179 varobj_p v = create_child_with_value (var,
1180 VEC_length (varobj_p, var->children),
1181 name, value);
a109c7c1 1182
b6313243 1183 VEC_safe_push (varobj_p, var->children, v);
b6313243
TT
1184 return v;
1185}
1186
d8b65138
JK
1187#endif /* HAVE_PYTHON */
1188
8b93c638
JM
1189/* Obtain the type of an object Variable as a string similar to the one gdb
1190 prints on the console */
1191
1192char *
1193varobj_get_type (struct varobj *var)
1194{
8b93c638 1195 /* For the "fake" variables, do not return a type. (It's type is
8756216b
DP
1196 NULL, too.)
1197 Do not return a type for invalid variables as well. */
1198 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
8b93c638
JM
1199 return NULL;
1200
1a4300e9 1201 return type_to_string (var->type);
8b93c638
JM
1202}
1203
1ecb4ee0
DJ
1204/* Obtain the type of an object variable. */
1205
1206struct type *
1207varobj_get_gdb_type (struct varobj *var)
1208{
1209 return var->type;
1210}
1211
02142340
VP
1212/* Return a pointer to the full rooted expression of varobj VAR.
1213 If it has not been computed yet, compute it. */
1214char *
1215varobj_get_path_expr (struct varobj *var)
1216{
1217 if (var->path_expr != NULL)
1218 return var->path_expr;
1219 else
1220 {
1221 /* For root varobjs, we initialize path_expr
1222 when creating varobj, so here it should be
1223 child varobj. */
1224 gdb_assert (!is_root_p (var));
1225 return (*var->root->lang->path_expr_of_child) (var);
1226 }
1227}
1228
8b93c638
JM
1229enum varobj_languages
1230varobj_get_language (struct varobj *var)
1231{
1232 return variable_language (var);
1233}
1234
1235int
1236varobj_get_attributes (struct varobj *var)
1237{
1238 int attributes = 0;
1239
340a7723 1240 if (varobj_editable_p (var))
8b93c638
JM
1241 /* FIXME: define masks for attributes */
1242 attributes |= 0x00000001; /* Editable */
1243
1244 return attributes;
1245}
1246
0cc7d26f
TT
1247int
1248varobj_pretty_printed_p (struct varobj *var)
1249{
1250 return var->pretty_printer != NULL;
1251}
1252
de051565
MK
1253char *
1254varobj_get_formatted_value (struct varobj *var,
1255 enum varobj_display_formats format)
1256{
1257 return my_value_of_variable (var, format);
1258}
1259
8b93c638
JM
1260char *
1261varobj_get_value (struct varobj *var)
1262{
de051565 1263 return my_value_of_variable (var, var->format);
8b93c638
JM
1264}
1265
1266/* Set the value of an object variable (if it is editable) to the
1267 value of the given expression */
1268/* Note: Invokes functions that can call error() */
1269
1270int
1271varobj_set_value (struct varobj *var, char *expression)
1272{
30b28db1 1273 struct value *val;
8b93c638
JM
1274
1275 /* The argument "expression" contains the variable's new value.
1276 We need to first construct a legal expression for this -- ugh! */
1277 /* Does this cover all the bases? */
1278 struct expression *exp;
30b28db1 1279 struct value *value;
8b93c638 1280 int saved_input_radix = input_radix;
340a7723 1281 char *s = expression;
8b93c638 1282
340a7723 1283 gdb_assert (varobj_editable_p (var));
8b93c638 1284
340a7723
NR
1285 input_radix = 10; /* ALWAYS reset to decimal temporarily */
1286 exp = parse_exp_1 (&s, 0, 0);
1287 if (!gdb_evaluate_expression (exp, &value))
1288 {
1289 /* We cannot proceed without a valid expression. */
1290 xfree (exp);
1291 return 0;
8b93c638
JM
1292 }
1293
340a7723
NR
1294 /* All types that are editable must also be changeable. */
1295 gdb_assert (varobj_value_is_changeable_p (var));
1296
1297 /* The value of a changeable variable object must not be lazy. */
1298 gdb_assert (!value_lazy (var->value));
1299
1300 /* Need to coerce the input. We want to check if the
1301 value of the variable object will be different
1302 after assignment, and the first thing value_assign
1303 does is coerce the input.
1304 For example, if we are assigning an array to a pointer variable we
1305 should compare the pointer with the the array's address, not with the
1306 array's content. */
1307 value = coerce_array (value);
1308
1309 /* The new value may be lazy. gdb_value_assign, or
1310 rather value_contents, will take care of this.
1311 If fetching of the new value will fail, gdb_value_assign
1312 with catch the exception. */
1313 if (!gdb_value_assign (var->value, value, &val))
1314 return 0;
1315
1316 /* If the value has changed, record it, so that next -var-update can
1317 report this change. If a variable had a value of '1', we've set it
1318 to '333' and then set again to '1', when -var-update will report this
1319 variable as changed -- because the first assignment has set the
1320 'updated' flag. There's no need to optimize that, because return value
1321 of -var-update should be considered an approximation. */
1322 var->updated = install_new_value (var, val, 0 /* Compare values. */);
1323 input_radix = saved_input_radix;
1324 return 1;
8b93c638
JM
1325}
1326
0cc7d26f
TT
1327#if HAVE_PYTHON
1328
1329/* A helper function to install a constructor function and visualizer
1330 in a varobj. */
1331
1332static void
1333install_visualizer (struct varobj *var, PyObject *constructor,
1334 PyObject *visualizer)
1335{
1336 Py_XDECREF (var->constructor);
1337 var->constructor = constructor;
1338
1339 Py_XDECREF (var->pretty_printer);
1340 var->pretty_printer = visualizer;
1341
1342 Py_XDECREF (var->child_iter);
1343 var->child_iter = NULL;
1344}
1345
1346/* Install the default visualizer for VAR. */
1347
1348static void
1349install_default_visualizer (struct varobj *var)
1350{
1351 if (pretty_printing)
1352 {
1353 PyObject *pretty_printer = NULL;
1354
1355 if (var->value)
1356 {
1357 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1358 if (! pretty_printer)
1359 {
1360 gdbpy_print_stack ();
1361 error (_("Cannot instantiate printer for default visualizer"));
1362 }
1363 }
1364
1365 if (pretty_printer == Py_None)
1366 {
1367 Py_DECREF (pretty_printer);
1368 pretty_printer = NULL;
1369 }
1370
1371 install_visualizer (var, NULL, pretty_printer);
1372 }
1373}
1374
1375/* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1376 make a new object. */
1377
1378static void
1379construct_visualizer (struct varobj *var, PyObject *constructor)
1380{
1381 PyObject *pretty_printer;
1382
1383 Py_INCREF (constructor);
1384 if (constructor == Py_None)
1385 pretty_printer = NULL;
1386 else
1387 {
1388 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1389 if (! pretty_printer)
1390 {
1391 gdbpy_print_stack ();
1392 Py_DECREF (constructor);
1393 constructor = Py_None;
1394 Py_INCREF (constructor);
1395 }
1396
1397 if (pretty_printer == Py_None)
1398 {
1399 Py_DECREF (pretty_printer);
1400 pretty_printer = NULL;
1401 }
1402 }
1403
1404 install_visualizer (var, constructor, pretty_printer);
1405}
1406
1407#endif /* HAVE_PYTHON */
1408
1409/* A helper function for install_new_value. This creates and installs
1410 a visualizer for VAR, if appropriate. */
1411
1412static void
1413install_new_value_visualizer (struct varobj *var)
1414{
1415#if HAVE_PYTHON
1416 /* If the constructor is None, then we want the raw value. If VAR
1417 does not have a value, just skip this. */
1418 if (var->constructor != Py_None && var->value)
1419 {
1420 struct cleanup *cleanup;
0cc7d26f
TT
1421
1422 cleanup = varobj_ensure_python_env (var);
1423
1424 if (!var->constructor)
1425 install_default_visualizer (var);
1426 else
1427 construct_visualizer (var, var->constructor);
1428
1429 do_cleanups (cleanup);
1430 }
1431#else
1432 /* Do nothing. */
1433#endif
1434}
1435
acd65feb
VP
1436/* Assign a new value to a variable object. If INITIAL is non-zero,
1437 this is the first assignement after the variable object was just
1438 created, or changed type. In that case, just assign the value
1439 and return 0.
ee342b23
VP
1440 Otherwise, assign the new value, and return 1 if the value is different
1441 from the current one, 0 otherwise. The comparison is done on textual
1442 representation of value. Therefore, some types need not be compared. E.g.
1443 for structures the reported value is always "{...}", so no comparison is
1444 necessary here. If the old value was NULL and new one is not, or vice versa,
1445 we always return 1.
b26ed50d
VP
1446
1447 The VALUE parameter should not be released -- the function will
1448 take care of releasing it when needed. */
acd65feb
VP
1449static int
1450install_new_value (struct varobj *var, struct value *value, int initial)
1451{
1452 int changeable;
1453 int need_to_fetch;
1454 int changed = 0;
25d5ea92 1455 int intentionally_not_fetched = 0;
7a4d50bf 1456 char *print_value = NULL;
acd65feb 1457
acd65feb 1458 /* We need to know the varobj's type to decide if the value should
3e43a32a
MS
1459 be fetched or not. C++ fake children (public/protected/private)
1460 don't have a type. */
acd65feb 1461 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
b2c2bd75 1462 changeable = varobj_value_is_changeable_p (var);
b6313243
TT
1463
1464 /* If the type has custom visualizer, we consider it to be always
1465 changeable. FIXME: need to make sure this behaviour will not
1466 mess up read-sensitive values. */
1467 if (var->pretty_printer)
1468 changeable = 1;
1469
acd65feb
VP
1470 need_to_fetch = changeable;
1471
b26ed50d
VP
1472 /* We are not interested in the address of references, and given
1473 that in C++ a reference is not rebindable, it cannot
1474 meaningfully change. So, get hold of the real value. */
1475 if (value)
0cc7d26f 1476 value = coerce_ref (value);
b26ed50d 1477
acd65feb
VP
1478 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1479 /* For unions, we need to fetch the value implicitly because
1480 of implementation of union member fetch. When gdb
1481 creates a value for a field and the value of the enclosing
1482 structure is not lazy, it immediately copies the necessary
1483 bytes from the enclosing values. If the enclosing value is
1484 lazy, the call to value_fetch_lazy on the field will read
1485 the data from memory. For unions, that means we'll read the
1486 same memory more than once, which is not desirable. So
1487 fetch now. */
1488 need_to_fetch = 1;
1489
1490 /* The new value might be lazy. If the type is changeable,
1491 that is we'll be comparing values of this type, fetch the
1492 value now. Otherwise, on the next update the old value
1493 will be lazy, which means we've lost that old value. */
1494 if (need_to_fetch && value && value_lazy (value))
1495 {
25d5ea92
VP
1496 struct varobj *parent = var->parent;
1497 int frozen = var->frozen;
a109c7c1 1498
25d5ea92
VP
1499 for (; !frozen && parent; parent = parent->parent)
1500 frozen |= parent->frozen;
1501
1502 if (frozen && initial)
1503 {
1504 /* For variables that are frozen, or are children of frozen
1505 variables, we don't do fetch on initial assignment.
1506 For non-initial assignemnt we do the fetch, since it means we're
1507 explicitly asked to compare the new value with the old one. */
1508 intentionally_not_fetched = 1;
1509 }
1510 else if (!gdb_value_fetch_lazy (value))
acd65feb 1511 {
acd65feb
VP
1512 /* Set the value to NULL, so that for the next -var-update,
1513 we don't try to compare the new value with this value,
1514 that we couldn't even read. */
1515 value = NULL;
1516 }
acd65feb
VP
1517 }
1518
b6313243 1519
7a4d50bf
VP
1520 /* Below, we'll be comparing string rendering of old and new
1521 values. Don't get string rendering if the value is
1522 lazy -- if it is, the code above has decided that the value
1523 should not be fetched. */
0cc7d26f 1524 if (value && !value_lazy (value) && !var->pretty_printer)
d452c4bc 1525 print_value = value_get_print_value (value, var->format, var);
7a4d50bf 1526
acd65feb
VP
1527 /* If the type is changeable, compare the old and the new values.
1528 If this is the initial assignment, we don't have any old value
1529 to compare with. */
7a4d50bf 1530 if (!initial && changeable)
acd65feb 1531 {
3e43a32a
MS
1532 /* If the value of the varobj was changed by -var-set-value,
1533 then the value in the varobj and in the target is the same.
1534 However, that value is different from the value that the
1535 varobj had after the previous -var-update. So need to the
1536 varobj as changed. */
acd65feb 1537 if (var->updated)
57e66780 1538 {
57e66780
DJ
1539 changed = 1;
1540 }
0cc7d26f 1541 else if (! var->pretty_printer)
acd65feb
VP
1542 {
1543 /* Try to compare the values. That requires that both
1544 values are non-lazy. */
25d5ea92
VP
1545 if (var->not_fetched && value_lazy (var->value))
1546 {
1547 /* This is a frozen varobj and the value was never read.
1548 Presumably, UI shows some "never read" indicator.
1549 Now that we've fetched the real value, we need to report
1550 this varobj as changed so that UI can show the real
1551 value. */
1552 changed = 1;
1553 }
1554 else if (var->value == NULL && value == NULL)
acd65feb
VP
1555 /* Equal. */
1556 ;
1557 else if (var->value == NULL || value == NULL)
57e66780 1558 {
57e66780
DJ
1559 changed = 1;
1560 }
acd65feb
VP
1561 else
1562 {
1563 gdb_assert (!value_lazy (var->value));
1564 gdb_assert (!value_lazy (value));
85265413 1565
57e66780 1566 gdb_assert (var->print_value != NULL && print_value != NULL);
85265413 1567 if (strcmp (var->print_value, print_value) != 0)
7a4d50bf 1568 changed = 1;
acd65feb
VP
1569 }
1570 }
1571 }
85265413 1572
ee342b23
VP
1573 if (!initial && !changeable)
1574 {
1575 /* For values that are not changeable, we don't compare the values.
1576 However, we want to notice if a value was not NULL and now is NULL,
1577 or vise versa, so that we report when top-level varobjs come in scope
1578 and leave the scope. */
1579 changed = (var->value != NULL) != (value != NULL);
1580 }
1581
acd65feb 1582 /* We must always keep the new value, since children depend on it. */
25d5ea92 1583 if (var->value != NULL && var->value != value)
acd65feb
VP
1584 value_free (var->value);
1585 var->value = value;
0cc7d26f
TT
1586 if (value != NULL)
1587 value_incref (value);
25d5ea92
VP
1588 if (value && value_lazy (value) && intentionally_not_fetched)
1589 var->not_fetched = 1;
1590 else
1591 var->not_fetched = 0;
acd65feb 1592 var->updated = 0;
85265413 1593
0cc7d26f
TT
1594 install_new_value_visualizer (var);
1595
1596 /* If we installed a pretty-printer, re-compare the printed version
1597 to see if the variable changed. */
1598 if (var->pretty_printer)
1599 {
1600 xfree (print_value);
1601 print_value = value_get_print_value (var->value, var->format, var);
e8f781e2
TT
1602 if ((var->print_value == NULL && print_value != NULL)
1603 || (var->print_value != NULL && print_value == NULL)
1604 || (var->print_value != NULL && print_value != NULL
1605 && strcmp (var->print_value, print_value) != 0))
0cc7d26f
TT
1606 changed = 1;
1607 }
1608 if (var->print_value)
1609 xfree (var->print_value);
1610 var->print_value = print_value;
1611
b26ed50d 1612 gdb_assert (!var->value || value_type (var->value));
acd65feb
VP
1613
1614 return changed;
1615}
acd65feb 1616
0cc7d26f
TT
1617/* Return the requested range for a varobj. VAR is the varobj. FROM
1618 and TO are out parameters; *FROM and *TO will be set to the
1619 selected sub-range of VAR. If no range was selected using
1620 -var-set-update-range, then both will be -1. */
1621void
1622varobj_get_child_range (struct varobj *var, int *from, int *to)
b6313243 1623{
0cc7d26f
TT
1624 *from = var->from;
1625 *to = var->to;
b6313243
TT
1626}
1627
0cc7d26f
TT
1628/* Set the selected sub-range of children of VAR to start at index
1629 FROM and end at index TO. If either FROM or TO is less than zero,
1630 this is interpreted as a request for all children. */
1631void
1632varobj_set_child_range (struct varobj *var, int from, int to)
b6313243 1633{
0cc7d26f
TT
1634 var->from = from;
1635 var->to = to;
b6313243
TT
1636}
1637
1638void
1639varobj_set_visualizer (struct varobj *var, const char *visualizer)
1640{
1641#if HAVE_PYTHON
34fa1d9d
MS
1642 PyObject *mainmod, *globals, *constructor;
1643 struct cleanup *back_to;
b6313243 1644
d452c4bc 1645 back_to = varobj_ensure_python_env (var);
b6313243
TT
1646
1647 mainmod = PyImport_AddModule ("__main__");
1648 globals = PyModule_GetDict (mainmod);
1649 Py_INCREF (globals);
1650 make_cleanup_py_decref (globals);
1651
1652 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
b6313243 1653
0cc7d26f 1654 if (! constructor)
b6313243
TT
1655 {
1656 gdbpy_print_stack ();
da1f2771 1657 error (_("Could not evaluate visualizer expression: %s"), visualizer);
b6313243
TT
1658 }
1659
0cc7d26f
TT
1660 construct_visualizer (var, constructor);
1661 Py_XDECREF (constructor);
b6313243 1662
0cc7d26f
TT
1663 /* If there are any children now, wipe them. */
1664 varobj_delete (var, NULL, 1 /* children only */);
1665 var->num_children = -1;
b6313243
TT
1666
1667 do_cleanups (back_to);
1668#else
da1f2771 1669 error (_("Python support required"));
b6313243
TT
1670#endif
1671}
1672
8b93c638
JM
1673/* Update the values for a variable and its children. This is a
1674 two-pronged attack. First, re-parse the value for the root's
1675 expression to see if it's changed. Then go all the way
1676 through its children, reconstructing them and noting if they've
1677 changed.
1678
25d5ea92
VP
1679 The EXPLICIT parameter specifies if this call is result
1680 of MI request to update this specific variable, or
1681 result of implicit -var-update *. For implicit request, we don't
1682 update frozen variables.
705da579
KS
1683
1684 NOTE: This function may delete the caller's varobj. If it
8756216b
DP
1685 returns TYPE_CHANGED, then it has done this and VARP will be modified
1686 to point to the new varobj. */
8b93c638 1687
f7f9ae2c 1688VEC(varobj_update_result) *varobj_update (struct varobj **varp, int explicit)
8b93c638
JM
1689{
1690 int changed = 0;
25d5ea92 1691 int type_changed = 0;
8b93c638 1692 int i;
30b28db1 1693 struct value *new;
b6313243 1694 VEC (varobj_update_result) *stack = NULL;
f7f9ae2c 1695 VEC (varobj_update_result) *result = NULL;
8b93c638 1696
25d5ea92
VP
1697 /* Frozen means frozen -- we don't check for any change in
1698 this varobj, including its going out of scope, or
1699 changing type. One use case for frozen varobjs is
1700 retaining previously evaluated expressions, and we don't
1701 want them to be reevaluated at all. */
1702 if (!explicit && (*varp)->frozen)
f7f9ae2c 1703 return result;
8756216b
DP
1704
1705 if (!(*varp)->root->is_valid)
f7f9ae2c 1706 {
cfce2ea2 1707 varobj_update_result r = {0};
a109c7c1 1708
cfce2ea2 1709 r.varobj = *varp;
f7f9ae2c
VP
1710 r.status = VAROBJ_INVALID;
1711 VEC_safe_push (varobj_update_result, result, &r);
1712 return result;
1713 }
8b93c638 1714
25d5ea92 1715 if ((*varp)->root->rootvar == *varp)
ae093f96 1716 {
cfce2ea2 1717 varobj_update_result r = {0};
a109c7c1 1718
cfce2ea2 1719 r.varobj = *varp;
f7f9ae2c
VP
1720 r.status = VAROBJ_IN_SCOPE;
1721
25d5ea92
VP
1722 /* Update the root variable. value_of_root can return NULL
1723 if the variable is no longer around, i.e. we stepped out of
1724 the frame in which a local existed. We are letting the
1725 value_of_root variable dispose of the varobj if the type
1726 has changed. */
25d5ea92 1727 new = value_of_root (varp, &type_changed);
f7f9ae2c
VP
1728 r.varobj = *varp;
1729
1730 r.type_changed = type_changed;
ea56f9c2 1731 if (install_new_value ((*varp), new, type_changed))
f7f9ae2c 1732 r.changed = 1;
ea56f9c2 1733
25d5ea92 1734 if (new == NULL)
f7f9ae2c 1735 r.status = VAROBJ_NOT_IN_SCOPE;
b6313243 1736 r.value_installed = 1;
f7f9ae2c
VP
1737
1738 if (r.status == VAROBJ_NOT_IN_SCOPE)
b6313243 1739 {
0b4bc29a
JK
1740 if (r.type_changed || r.changed)
1741 VEC_safe_push (varobj_update_result, result, &r);
b6313243
TT
1742 return result;
1743 }
1744
1745 VEC_safe_push (varobj_update_result, stack, &r);
1746 }
1747 else
1748 {
cfce2ea2 1749 varobj_update_result r = {0};
a109c7c1 1750
cfce2ea2 1751 r.varobj = *varp;
b6313243 1752 VEC_safe_push (varobj_update_result, stack, &r);
b20d8971 1753 }
8b93c638 1754
8756216b 1755 /* Walk through the children, reconstructing them all. */
b6313243 1756 while (!VEC_empty (varobj_update_result, stack))
8b93c638 1757 {
b6313243
TT
1758 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1759 struct varobj *v = r.varobj;
1760
1761 VEC_pop (varobj_update_result, stack);
1762
1763 /* Update this variable, unless it's a root, which is already
1764 updated. */
1765 if (!r.value_installed)
1766 {
1767 new = value_of_child (v->parent, v->index);
1768 if (install_new_value (v, new, 0 /* type not changed */))
1769 {
1770 r.changed = 1;
1771 v->updated = 0;
1772 }
1773 }
1774
1775 /* We probably should not get children of a varobj that has a
1776 pretty-printer, but for which -var-list-children was never
0cc7d26f 1777 invoked. */
b6313243
TT
1778 if (v->pretty_printer)
1779 {
0cc7d26f 1780 VEC (varobj_p) *changed = 0, *new = 0, *unchanged = 0;
26f9bcee 1781 int i, children_changed = 0;
b6313243
TT
1782
1783 if (v->frozen)
1784 continue;
1785
0cc7d26f
TT
1786 if (!v->children_requested)
1787 {
1788 int dummy;
1789
1790 /* If we initially did not have potential children, but
1791 now we do, consider the varobj as changed.
1792 Otherwise, if children were never requested, consider
1793 it as unchanged -- presumably, such varobj is not yet
1794 expanded in the UI, so we need not bother getting
1795 it. */
1796 if (!varobj_has_more (v, 0))
1797 {
1798 update_dynamic_varobj_children (v, NULL, NULL, NULL,
1799 &dummy, 0, 0, 0);
1800 if (varobj_has_more (v, 0))
1801 r.changed = 1;
1802 }
1803
1804 if (r.changed)
1805 VEC_safe_push (varobj_update_result, result, &r);
1806
1807 continue;
1808 }
1809
b6313243
TT
1810 /* If update_dynamic_varobj_children returns 0, then we have
1811 a non-conforming pretty-printer, so we skip it. */
0cc7d26f
TT
1812 if (update_dynamic_varobj_children (v, &changed, &new, &unchanged,
1813 &children_changed, 1,
1814 v->from, v->to))
b6313243 1815 {
0cc7d26f 1816 if (children_changed || new)
b6313243 1817 {
0cc7d26f
TT
1818 r.children_changed = 1;
1819 r.new = new;
b6313243 1820 }
0cc7d26f
TT
1821 /* Push in reverse order so that the first child is
1822 popped from the work stack first, and so will be
1823 added to result first. This does not affect
1824 correctness, just "nicer". */
1825 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
b6313243 1826 {
0cc7d26f 1827 varobj_p tmp = VEC_index (varobj_p, changed, i);
cfce2ea2 1828 varobj_update_result r = {0};
a109c7c1 1829
cfce2ea2 1830 r.varobj = tmp;
0cc7d26f 1831 r.changed = 1;
b6313243
TT
1832 r.value_installed = 1;
1833 VEC_safe_push (varobj_update_result, stack, &r);
1834 }
0cc7d26f
TT
1835 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
1836 {
1837 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
a109c7c1 1838
0cc7d26f
TT
1839 if (!tmp->frozen)
1840 {
cfce2ea2 1841 varobj_update_result r = {0};
a109c7c1 1842
cfce2ea2 1843 r.varobj = tmp;
0cc7d26f
TT
1844 r.value_installed = 1;
1845 VEC_safe_push (varobj_update_result, stack, &r);
1846 }
1847 }
b6313243
TT
1848 if (r.changed || r.children_changed)
1849 VEC_safe_push (varobj_update_result, result, &r);
0cc7d26f
TT
1850
1851 /* Free CHANGED and UNCHANGED, but not NEW, because NEW
1852 has been put into the result vector. */
1853 VEC_free (varobj_p, changed);
1854 VEC_free (varobj_p, unchanged);
1855
b6313243
TT
1856 continue;
1857 }
1858 }
28335dcc
VP
1859
1860 /* Push any children. Use reverse order so that the first
1861 child is popped from the work stack first, and so
1862 will be added to result first. This does not
1863 affect correctness, just "nicer". */
1864 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
8b93c638 1865 {
28335dcc 1866 varobj_p c = VEC_index (varobj_p, v->children, i);
a109c7c1 1867
28335dcc 1868 /* Child may be NULL if explicitly deleted by -var-delete. */
25d5ea92 1869 if (c != NULL && !c->frozen)
28335dcc 1870 {
cfce2ea2 1871 varobj_update_result r = {0};
a109c7c1 1872
cfce2ea2 1873 r.varobj = c;
b6313243 1874 VEC_safe_push (varobj_update_result, stack, &r);
28335dcc 1875 }
8b93c638 1876 }
b6313243
TT
1877
1878 if (r.changed || r.type_changed)
1879 VEC_safe_push (varobj_update_result, result, &r);
8b93c638
JM
1880 }
1881
b6313243
TT
1882 VEC_free (varobj_update_result, stack);
1883
f7f9ae2c 1884 return result;
8b93c638
JM
1885}
1886\f
1887
1888/* Helper functions */
1889
1890/*
1891 * Variable object construction/destruction
1892 */
1893
1894static int
fba45db2
KB
1895delete_variable (struct cpstack **resultp, struct varobj *var,
1896 int only_children_p)
8b93c638
JM
1897{
1898 int delcount = 0;
1899
1900 delete_variable_1 (resultp, &delcount, var,
1901 only_children_p, 1 /* remove_from_parent_p */ );
1902
1903 return delcount;
1904}
1905
1906/* Delete the variable object VAR and its children */
1907/* IMPORTANT NOTE: If we delete a variable which is a child
1908 and the parent is not removed we dump core. It must be always
1909 initially called with remove_from_parent_p set */
1910static void
72330bd6
AC
1911delete_variable_1 (struct cpstack **resultp, int *delcountp,
1912 struct varobj *var, int only_children_p,
1913 int remove_from_parent_p)
8b93c638 1914{
28335dcc 1915 int i;
8b93c638
JM
1916
1917 /* Delete any children of this variable, too. */
28335dcc
VP
1918 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1919 {
1920 varobj_p child = VEC_index (varobj_p, var->children, i);
a109c7c1 1921
214270ab
VP
1922 if (!child)
1923 continue;
8b93c638 1924 if (!remove_from_parent_p)
28335dcc
VP
1925 child->parent = NULL;
1926 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
8b93c638 1927 }
28335dcc 1928 VEC_free (varobj_p, var->children);
8b93c638
JM
1929
1930 /* if we were called to delete only the children we are done here */
1931 if (only_children_p)
1932 return;
1933
1934 /* Otherwise, add it to the list of deleted ones and proceed to do so */
73a93a32
JI
1935 /* If the name is null, this is a temporary variable, that has not
1936 yet been installed, don't report it, it belongs to the caller... */
1937 if (var->obj_name != NULL)
8b93c638 1938 {
5b616ba1 1939 cppush (resultp, xstrdup (var->obj_name));
8b93c638
JM
1940 *delcountp = *delcountp + 1;
1941 }
1942
1943 /* If this variable has a parent, remove it from its parent's list */
1944 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1945 (as indicated by remove_from_parent_p) we don't bother doing an
1946 expensive list search to find the element to remove when we are
1947 discarding the list afterwards */
72330bd6 1948 if ((remove_from_parent_p) && (var->parent != NULL))
8b93c638 1949 {
28335dcc 1950 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
8b93c638 1951 }
72330bd6 1952
73a93a32
JI
1953 if (var->obj_name != NULL)
1954 uninstall_variable (var);
8b93c638
JM
1955
1956 /* Free memory associated with this variable */
1957 free_variable (var);
1958}
1959
1960/* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1961static int
fba45db2 1962install_variable (struct varobj *var)
8b93c638
JM
1963{
1964 struct vlist *cv;
1965 struct vlist *newvl;
1966 const char *chp;
1967 unsigned int index = 0;
1968 unsigned int i = 1;
1969
1970 for (chp = var->obj_name; *chp; chp++)
1971 {
1972 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1973 }
1974
1975 cv = *(varobj_table + index);
1976 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1977 cv = cv->next;
1978
1979 if (cv != NULL)
8a3fe4f8 1980 error (_("Duplicate variable object name"));
8b93c638
JM
1981
1982 /* Add varobj to hash table */
1983 newvl = xmalloc (sizeof (struct vlist));
1984 newvl->next = *(varobj_table + index);
1985 newvl->var = var;
1986 *(varobj_table + index) = newvl;
1987
1988 /* If root, add varobj to root list */
b2c2bd75 1989 if (is_root_p (var))
8b93c638
JM
1990 {
1991 /* Add to list of root variables */
1992 if (rootlist == NULL)
1993 var->root->next = NULL;
1994 else
1995 var->root->next = rootlist;
1996 rootlist = var->root;
8b93c638
JM
1997 }
1998
1999 return 1; /* OK */
2000}
2001
2002/* Unistall the object VAR. */
2003static void
fba45db2 2004uninstall_variable (struct varobj *var)
8b93c638
JM
2005{
2006 struct vlist *cv;
2007 struct vlist *prev;
2008 struct varobj_root *cr;
2009 struct varobj_root *prer;
2010 const char *chp;
2011 unsigned int index = 0;
2012 unsigned int i = 1;
2013
2014 /* Remove varobj from hash table */
2015 for (chp = var->obj_name; *chp; chp++)
2016 {
2017 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
2018 }
2019
2020 cv = *(varobj_table + index);
2021 prev = NULL;
2022 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
2023 {
2024 prev = cv;
2025 cv = cv->next;
2026 }
2027
2028 if (varobjdebug)
2029 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
2030
2031 if (cv == NULL)
2032 {
72330bd6
AC
2033 warning
2034 ("Assertion failed: Could not find variable object \"%s\" to delete",
2035 var->obj_name);
8b93c638
JM
2036 return;
2037 }
2038
2039 if (prev == NULL)
2040 *(varobj_table + index) = cv->next;
2041 else
2042 prev->next = cv->next;
2043
b8c9b27d 2044 xfree (cv);
8b93c638
JM
2045
2046 /* If root, remove varobj from root list */
b2c2bd75 2047 if (is_root_p (var))
8b93c638
JM
2048 {
2049 /* Remove from list of root variables */
2050 if (rootlist == var->root)
2051 rootlist = var->root->next;
2052 else
2053 {
2054 prer = NULL;
2055 cr = rootlist;
2056 while ((cr != NULL) && (cr->rootvar != var))
2057 {
2058 prer = cr;
2059 cr = cr->next;
2060 }
2061 if (cr == NULL)
2062 {
8f7e195f
JB
2063 warning (_("Assertion failed: Could not find "
2064 "varobj \"%s\" in root list"),
3e43a32a 2065 var->obj_name);
8b93c638
JM
2066 return;
2067 }
2068 if (prer == NULL)
2069 rootlist = NULL;
2070 else
2071 prer->next = cr->next;
2072 }
8b93c638
JM
2073 }
2074
2075}
2076
8b93c638
JM
2077/* Create and install a child of the parent of the given name */
2078static struct varobj *
fba45db2 2079create_child (struct varobj *parent, int index, char *name)
b6313243
TT
2080{
2081 return create_child_with_value (parent, index, name,
2082 value_of_child (parent, index));
2083}
2084
2085static struct varobj *
2086create_child_with_value (struct varobj *parent, int index, const char *name,
2087 struct value *value)
8b93c638
JM
2088{
2089 struct varobj *child;
2090 char *childs_name;
2091
2092 child = new_variable ();
2093
2094 /* name is allocated by name_of_child */
b6313243
TT
2095 /* FIXME: xstrdup should not be here. */
2096 child->name = xstrdup (name);
8b93c638 2097 child->index = index;
8b93c638
JM
2098 child->parent = parent;
2099 child->root = parent->root;
b435e160 2100 childs_name = xstrprintf ("%s.%s", parent->obj_name, name);
8b93c638
JM
2101 child->obj_name = childs_name;
2102 install_variable (child);
2103
acd65feb
VP
2104 /* Compute the type of the child. Must do this before
2105 calling install_new_value. */
2106 if (value != NULL)
2107 /* If the child had no evaluation errors, var->value
2108 will be non-NULL and contain a valid type. */
2109 child->type = value_type (value);
2110 else
2111 /* Otherwise, we must compute the type. */
2112 child->type = (*child->root->lang->type_of_child) (child->parent,
2113 child->index);
2114 install_new_value (child, value, 1);
2115
8b93c638
JM
2116 return child;
2117}
8b93c638
JM
2118\f
2119
2120/*
2121 * Miscellaneous utility functions.
2122 */
2123
2124/* Allocate memory and initialize a new variable */
2125static struct varobj *
2126new_variable (void)
2127{
2128 struct varobj *var;
2129
2130 var = (struct varobj *) xmalloc (sizeof (struct varobj));
2131 var->name = NULL;
02142340 2132 var->path_expr = NULL;
8b93c638
JM
2133 var->obj_name = NULL;
2134 var->index = -1;
2135 var->type = NULL;
2136 var->value = NULL;
8b93c638
JM
2137 var->num_children = -1;
2138 var->parent = NULL;
2139 var->children = NULL;
2140 var->format = 0;
2141 var->root = NULL;
fb9b6b35 2142 var->updated = 0;
85265413 2143 var->print_value = NULL;
25d5ea92
VP
2144 var->frozen = 0;
2145 var->not_fetched = 0;
b6313243 2146 var->children_requested = 0;
0cc7d26f
TT
2147 var->from = -1;
2148 var->to = -1;
2149 var->constructor = 0;
b6313243 2150 var->pretty_printer = 0;
0cc7d26f
TT
2151 var->child_iter = 0;
2152 var->saved_item = 0;
8b93c638
JM
2153
2154 return var;
2155}
2156
2157/* Allocate memory and initialize a new root variable */
2158static struct varobj *
2159new_root_variable (void)
2160{
2161 struct varobj *var = new_variable ();
a109c7c1 2162
3e43a32a 2163 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));
8b93c638
JM
2164 var->root->lang = NULL;
2165 var->root->exp = NULL;
2166 var->root->valid_block = NULL;
7a424e99 2167 var->root->frame = null_frame_id;
a5defcdc 2168 var->root->floating = 0;
8b93c638 2169 var->root->rootvar = NULL;
8756216b 2170 var->root->is_valid = 1;
8b93c638
JM
2171
2172 return var;
2173}
2174
2175/* Free any allocated memory associated with VAR. */
2176static void
fba45db2 2177free_variable (struct varobj *var)
8b93c638 2178{
d452c4bc
UW
2179#if HAVE_PYTHON
2180 if (var->pretty_printer)
2181 {
2182 struct cleanup *cleanup = varobj_ensure_python_env (var);
0cc7d26f
TT
2183 Py_XDECREF (var->constructor);
2184 Py_XDECREF (var->pretty_printer);
2185 Py_XDECREF (var->child_iter);
2186 Py_XDECREF (var->saved_item);
d452c4bc
UW
2187 do_cleanups (cleanup);
2188 }
2189#endif
2190
36746093
JK
2191 value_free (var->value);
2192
8b93c638 2193 /* Free the expression if this is a root variable. */
b2c2bd75 2194 if (is_root_p (var))
8b93c638 2195 {
3038237c 2196 xfree (var->root->exp);
8038e1e2 2197 xfree (var->root);
8b93c638
JM
2198 }
2199
8038e1e2
AC
2200 xfree (var->name);
2201 xfree (var->obj_name);
85265413 2202 xfree (var->print_value);
02142340 2203 xfree (var->path_expr);
8038e1e2 2204 xfree (var);
8b93c638
JM
2205}
2206
74b7792f
AC
2207static void
2208do_free_variable_cleanup (void *var)
2209{
2210 free_variable (var);
2211}
2212
2213static struct cleanup *
2214make_cleanup_free_variable (struct varobj *var)
2215{
2216 return make_cleanup (do_free_variable_cleanup, var);
2217}
2218
6766a268
DJ
2219/* This returns the type of the variable. It also skips past typedefs
2220 to return the real type of the variable.
94b66fa7
KS
2221
2222 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
2223 except within get_target_type and get_type. */
8b93c638 2224static struct type *
fba45db2 2225get_type (struct varobj *var)
8b93c638
JM
2226{
2227 struct type *type;
8b93c638 2228
a109c7c1 2229 type = var->type;
6766a268
DJ
2230 if (type != NULL)
2231 type = check_typedef (type);
8b93c638
JM
2232
2233 return type;
2234}
2235
6e2a9270
VP
2236/* Return the type of the value that's stored in VAR,
2237 or that would have being stored there if the
2238 value were accessible.
2239
2240 This differs from VAR->type in that VAR->type is always
2241 the true type of the expession in the source language.
2242 The return value of this function is the type we're
2243 actually storing in varobj, and using for displaying
2244 the values and for comparing previous and new values.
2245
2246 For example, top-level references are always stripped. */
2247static struct type *
2248get_value_type (struct varobj *var)
2249{
2250 struct type *type;
2251
2252 if (var->value)
2253 type = value_type (var->value);
2254 else
2255 type = var->type;
2256
2257 type = check_typedef (type);
2258
2259 if (TYPE_CODE (type) == TYPE_CODE_REF)
2260 type = get_target_type (type);
2261
2262 type = check_typedef (type);
2263
2264 return type;
2265}
2266
8b93c638 2267/* This returns the target type (or NULL) of TYPE, also skipping
94b66fa7
KS
2268 past typedefs, just like get_type ().
2269
2270 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
2271 except within get_target_type and get_type. */
8b93c638 2272static struct type *
fba45db2 2273get_target_type (struct type *type)
8b93c638
JM
2274{
2275 if (type != NULL)
2276 {
2277 type = TYPE_TARGET_TYPE (type);
6766a268
DJ
2278 if (type != NULL)
2279 type = check_typedef (type);
8b93c638
JM
2280 }
2281
2282 return type;
2283}
2284
2285/* What is the default display for this variable? We assume that
2286 everything is "natural". Any exceptions? */
2287static enum varobj_display_formats
fba45db2 2288variable_default_display (struct varobj *var)
8b93c638
JM
2289{
2290 return FORMAT_NATURAL;
2291}
2292
8b93c638
JM
2293/* FIXME: The following should be generic for any pointer */
2294static void
fba45db2 2295cppush (struct cpstack **pstack, char *name)
8b93c638
JM
2296{
2297 struct cpstack *s;
2298
2299 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2300 s->name = name;
2301 s->next = *pstack;
2302 *pstack = s;
2303}
2304
2305/* FIXME: The following should be generic for any pointer */
2306static char *
fba45db2 2307cppop (struct cpstack **pstack)
8b93c638
JM
2308{
2309 struct cpstack *s;
2310 char *v;
2311
2312 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2313 return NULL;
2314
2315 s = *pstack;
2316 v = s->name;
2317 *pstack = (*pstack)->next;
b8c9b27d 2318 xfree (s);
8b93c638
JM
2319
2320 return v;
2321}
2322\f
2323/*
2324 * Language-dependencies
2325 */
2326
2327/* Common entry points */
2328
2329/* Get the language of variable VAR. */
2330static enum varobj_languages
fba45db2 2331variable_language (struct varobj *var)
8b93c638
JM
2332{
2333 enum varobj_languages lang;
2334
2335 switch (var->root->exp->language_defn->la_language)
2336 {
2337 default:
2338 case language_c:
2339 lang = vlang_c;
2340 break;
2341 case language_cplus:
2342 lang = vlang_cplus;
2343 break;
2344 case language_java:
2345 lang = vlang_java;
2346 break;
2347 }
2348
2349 return lang;
2350}
2351
2352/* Return the number of children for a given variable.
2353 The result of this function is defined by the language
2354 implementation. The number of children returned by this function
2355 is the number of children that the user will see in the variable
2356 display. */
2357static int
fba45db2 2358number_of_children (struct varobj *var)
8b93c638
JM
2359{
2360 return (*var->root->lang->number_of_children) (var);;
2361}
2362
3e43a32a
MS
2363/* What is the expression for the root varobj VAR? Returns a malloc'd
2364 string. */
8b93c638 2365static char *
fba45db2 2366name_of_variable (struct varobj *var)
8b93c638
JM
2367{
2368 return (*var->root->lang->name_of_variable) (var);
2369}
2370
3e43a32a
MS
2371/* What is the name of the INDEX'th child of VAR? Returns a malloc'd
2372 string. */
8b93c638 2373static char *
fba45db2 2374name_of_child (struct varobj *var, int index)
8b93c638
JM
2375{
2376 return (*var->root->lang->name_of_child) (var, index);
2377}
2378
a5defcdc
VP
2379/* What is the ``struct value *'' of the root variable VAR?
2380 For floating variable object, evaluation can get us a value
2381 of different type from what is stored in varobj already. In
2382 that case:
2383 - *type_changed will be set to 1
2384 - old varobj will be freed, and new one will be
2385 created, with the same name.
2386 - *var_handle will be set to the new varobj
2387 Otherwise, *type_changed will be set to 0. */
30b28db1 2388static struct value *
fba45db2 2389value_of_root (struct varobj **var_handle, int *type_changed)
8b93c638 2390{
73a93a32
JI
2391 struct varobj *var;
2392
2393 if (var_handle == NULL)
2394 return NULL;
2395
2396 var = *var_handle;
2397
2398 /* This should really be an exception, since this should
2399 only get called with a root variable. */
2400
b2c2bd75 2401 if (!is_root_p (var))
73a93a32
JI
2402 return NULL;
2403
a5defcdc 2404 if (var->root->floating)
73a93a32
JI
2405 {
2406 struct varobj *tmp_var;
2407 char *old_type, *new_type;
6225abfa 2408
73a93a32
JI
2409 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2410 USE_SELECTED_FRAME);
2411 if (tmp_var == NULL)
2412 {
2413 return NULL;
2414 }
6225abfa 2415 old_type = varobj_get_type (var);
73a93a32 2416 new_type = varobj_get_type (tmp_var);
72330bd6 2417 if (strcmp (old_type, new_type) == 0)
73a93a32 2418 {
fcacd99f
VP
2419 /* The expression presently stored inside var->root->exp
2420 remembers the locations of local variables relatively to
2421 the frame where the expression was created (in DWARF location
2422 button, for example). Naturally, those locations are not
2423 correct in other frames, so update the expression. */
2424
2425 struct expression *tmp_exp = var->root->exp;
a109c7c1 2426
fcacd99f
VP
2427 var->root->exp = tmp_var->root->exp;
2428 tmp_var->root->exp = tmp_exp;
2429
73a93a32
JI
2430 varobj_delete (tmp_var, NULL, 0);
2431 *type_changed = 0;
2432 }
2433 else
2434 {
1b36a34b 2435 tmp_var->obj_name = xstrdup (var->obj_name);
0cc7d26f
TT
2436 tmp_var->from = var->from;
2437 tmp_var->to = var->to;
a5defcdc
VP
2438 varobj_delete (var, NULL, 0);
2439
73a93a32
JI
2440 install_variable (tmp_var);
2441 *var_handle = tmp_var;
705da579 2442 var = *var_handle;
73a93a32
JI
2443 *type_changed = 1;
2444 }
74dddad3
MS
2445 xfree (old_type);
2446 xfree (new_type);
73a93a32
JI
2447 }
2448 else
2449 {
2450 *type_changed = 0;
2451 }
2452
2453 return (*var->root->lang->value_of_root) (var_handle);
8b93c638
JM
2454}
2455
30b28db1
AC
2456/* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2457static struct value *
fba45db2 2458value_of_child (struct varobj *parent, int index)
8b93c638 2459{
30b28db1 2460 struct value *value;
8b93c638
JM
2461
2462 value = (*parent->root->lang->value_of_child) (parent, index);
2463
8b93c638
JM
2464 return value;
2465}
2466
8b93c638
JM
2467/* GDB already has a command called "value_of_variable". Sigh. */
2468static char *
de051565 2469my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 2470{
8756216b 2471 if (var->root->is_valid)
0cc7d26f
TT
2472 {
2473 if (var->pretty_printer)
2474 return value_get_print_value (var->value, var->format, var);
2475 return (*var->root->lang->value_of_variable) (var, format);
2476 }
8756216b
DP
2477 else
2478 return NULL;
8b93c638
JM
2479}
2480
85265413 2481static char *
b6313243 2482value_get_print_value (struct value *value, enum varobj_display_formats format,
d452c4bc 2483 struct varobj *var)
85265413 2484{
57e66780 2485 struct ui_file *stb;
621c8364 2486 struct cleanup *old_chain;
fbb8f299 2487 gdb_byte *thevalue = NULL;
79a45b7d 2488 struct value_print_options opts;
be759fcf
PM
2489 struct type *type = NULL;
2490 long len = 0;
2491 char *encoding = NULL;
2492 struct gdbarch *gdbarch = NULL;
3a182a69
JK
2493 /* Initialize it just to avoid a GCC false warning. */
2494 CORE_ADDR str_addr = 0;
09ca9e2e 2495 int string_print = 0;
57e66780
DJ
2496
2497 if (value == NULL)
2498 return NULL;
2499
621c8364
TT
2500 stb = mem_fileopen ();
2501 old_chain = make_cleanup_ui_file_delete (stb);
2502
be759fcf 2503 gdbarch = get_type_arch (value_type (value));
b6313243
TT
2504#if HAVE_PYTHON
2505 {
d452c4bc
UW
2506 PyObject *value_formatter = var->pretty_printer;
2507
09ca9e2e
TT
2508 varobj_ensure_python_env (var);
2509
0cc7d26f 2510 if (value_formatter)
b6313243 2511 {
0cc7d26f
TT
2512 /* First check to see if we have any children at all. If so,
2513 we simply return {...}. */
2514 if (dynamic_varobj_has_child_method (var))
621c8364
TT
2515 {
2516 do_cleanups (old_chain);
2517 return xstrdup ("{...}");
2518 }
b6313243 2519
0cc7d26f 2520 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
b6313243 2521 {
0cc7d26f
TT
2522 char *hint;
2523 struct value *replacement;
0cc7d26f
TT
2524 PyObject *output = NULL;
2525
2526 hint = gdbpy_get_display_hint (value_formatter);
2527 if (hint)
2528 {
2529 if (!strcmp (hint, "string"))
2530 string_print = 1;
2531 xfree (hint);
2532 }
b6313243 2533
0cc7d26f 2534 output = apply_varobj_pretty_printer (value_formatter,
621c8364
TT
2535 &replacement,
2536 stb);
0cc7d26f
TT
2537 if (output)
2538 {
09ca9e2e
TT
2539 make_cleanup_py_decref (output);
2540
be759fcf 2541 if (gdbpy_is_lazy_string (output))
0cc7d26f 2542 {
09ca9e2e
TT
2543 gdbpy_extract_lazy_string (output, &str_addr, &type,
2544 &len, &encoding);
2545 make_cleanup (free_current_contents, &encoding);
be759fcf
PM
2546 string_print = 1;
2547 }
2548 else
2549 {
2550 PyObject *py_str
2551 = python_string_to_target_python_string (output);
a109c7c1 2552
be759fcf
PM
2553 if (py_str)
2554 {
2555 char *s = PyString_AsString (py_str);
a109c7c1 2556
be759fcf
PM
2557 len = PyString_Size (py_str);
2558 thevalue = xmemdup (s, len + 1, len + 1);
2559 type = builtin_type (gdbarch)->builtin_char;
2560 Py_DECREF (py_str);
09ca9e2e
TT
2561
2562 if (!string_print)
2563 {
2564 do_cleanups (old_chain);
2565 return thevalue;
2566 }
2567
2568 make_cleanup (xfree, thevalue);
be759fcf 2569 }
8dc78533
JK
2570 else
2571 gdbpy_print_stack ();
0cc7d26f 2572 }
0cc7d26f
TT
2573 }
2574 if (replacement)
2575 value = replacement;
b6313243 2576 }
b6313243 2577 }
b6313243
TT
2578 }
2579#endif
2580
79a45b7d
TT
2581 get_formatted_print_options (&opts, format_code[(int) format]);
2582 opts.deref_ref = 0;
b6313243
TT
2583 opts.raw = 1;
2584 if (thevalue)
09ca9e2e
TT
2585 LA_PRINT_STRING (stb, type, thevalue, len, encoding, 0, &opts);
2586 else if (string_print)
2587 val_print_string (type, encoding, str_addr, len, stb, &opts);
b6313243
TT
2588 else
2589 common_val_print (value, stb, 0, &opts, current_language);
759ef836 2590 thevalue = ui_file_xstrdup (stb, NULL);
57e66780 2591
85265413
NR
2592 do_cleanups (old_chain);
2593 return thevalue;
2594}
2595
340a7723
NR
2596int
2597varobj_editable_p (struct varobj *var)
2598{
2599 struct type *type;
340a7723
NR
2600
2601 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2602 return 0;
2603
2604 type = get_value_type (var);
2605
2606 switch (TYPE_CODE (type))
2607 {
2608 case TYPE_CODE_STRUCT:
2609 case TYPE_CODE_UNION:
2610 case TYPE_CODE_ARRAY:
2611 case TYPE_CODE_FUNC:
2612 case TYPE_CODE_METHOD:
2613 return 0;
2614 break;
2615
2616 default:
2617 return 1;
2618 break;
2619 }
2620}
2621
acd65feb
VP
2622/* Return non-zero if changes in value of VAR
2623 must be detected and reported by -var-update.
2624 Return zero is -var-update should never report
2625 changes of such values. This makes sense for structures
2626 (since the changes in children values will be reported separately),
2627 or for artifical objects (like 'public' pseudo-field in C++).
2628
2629 Return value of 0 means that gdb need not call value_fetch_lazy
2630 for the value of this variable object. */
8b93c638 2631static int
b2c2bd75 2632varobj_value_is_changeable_p (struct varobj *var)
8b93c638
JM
2633{
2634 int r;
2635 struct type *type;
2636
2637 if (CPLUS_FAKE_CHILD (var))
2638 return 0;
2639
6e2a9270 2640 type = get_value_type (var);
8b93c638
JM
2641
2642 switch (TYPE_CODE (type))
2643 {
72330bd6
AC
2644 case TYPE_CODE_STRUCT:
2645 case TYPE_CODE_UNION:
2646 case TYPE_CODE_ARRAY:
2647 r = 0;
2648 break;
8b93c638 2649
72330bd6
AC
2650 default:
2651 r = 1;
8b93c638
JM
2652 }
2653
2654 return r;
2655}
2656
5a413362
VP
2657/* Return 1 if that varobj is floating, that is is always evaluated in the
2658 selected frame, and not bound to thread/frame. Such variable objects
2659 are created using '@' as frame specifier to -var-create. */
2660int
2661varobj_floating_p (struct varobj *var)
2662{
2663 return var->root->floating;
2664}
2665
2024f65a
VP
2666/* Given the value and the type of a variable object,
2667 adjust the value and type to those necessary
2668 for getting children of the variable object.
2669 This includes dereferencing top-level references
2670 to all types and dereferencing pointers to
2671 structures.
2672
2673 Both TYPE and *TYPE should be non-null. VALUE
2674 can be null if we want to only translate type.
2675 *VALUE can be null as well -- if the parent
02142340
VP
2676 value is not known.
2677
2678 If WAS_PTR is not NULL, set *WAS_PTR to 0 or 1
b6313243 2679 depending on whether pointer was dereferenced
02142340 2680 in this function. */
2024f65a
VP
2681static void
2682adjust_value_for_child_access (struct value **value,
02142340
VP
2683 struct type **type,
2684 int *was_ptr)
2024f65a
VP
2685{
2686 gdb_assert (type && *type);
2687
02142340
VP
2688 if (was_ptr)
2689 *was_ptr = 0;
2690
2024f65a
VP
2691 *type = check_typedef (*type);
2692
2693 /* The type of value stored in varobj, that is passed
2694 to us, is already supposed to be
2695 reference-stripped. */
2696
2697 gdb_assert (TYPE_CODE (*type) != TYPE_CODE_REF);
2698
2699 /* Pointers to structures are treated just like
2700 structures when accessing children. Don't
2701 dererences pointers to other types. */
2702 if (TYPE_CODE (*type) == TYPE_CODE_PTR)
2703 {
2704 struct type *target_type = get_target_type (*type);
2705 if (TYPE_CODE (target_type) == TYPE_CODE_STRUCT
2706 || TYPE_CODE (target_type) == TYPE_CODE_UNION)
2707 {
2708 if (value && *value)
3f4178d6 2709 {
a109c7c1
MS
2710 int success = gdb_value_ind (*value, value);
2711
3f4178d6
DJ
2712 if (!success)
2713 *value = NULL;
2714 }
2024f65a 2715 *type = target_type;
02142340
VP
2716 if (was_ptr)
2717 *was_ptr = 1;
2024f65a
VP
2718 }
2719 }
2720
2721 /* The 'get_target_type' function calls check_typedef on
2722 result, so we can immediately check type code. No
2723 need to call check_typedef here. */
2724}
2725
8b93c638
JM
2726/* C */
2727static int
fba45db2 2728c_number_of_children (struct varobj *var)
8b93c638 2729{
2024f65a
VP
2730 struct type *type = get_value_type (var);
2731 int children = 0;
8b93c638 2732 struct type *target;
8b93c638 2733
02142340 2734 adjust_value_for_child_access (NULL, &type, NULL);
8b93c638 2735 target = get_target_type (type);
8b93c638
JM
2736
2737 switch (TYPE_CODE (type))
2738 {
2739 case TYPE_CODE_ARRAY:
2740 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0
d78df370 2741 && !TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
8b93c638
JM
2742 children = TYPE_LENGTH (type) / TYPE_LENGTH (target);
2743 else
74a44383
DJ
2744 /* If we don't know how many elements there are, don't display
2745 any. */
2746 children = 0;
8b93c638
JM
2747 break;
2748
2749 case TYPE_CODE_STRUCT:
2750 case TYPE_CODE_UNION:
2751 children = TYPE_NFIELDS (type);
2752 break;
2753
2754 case TYPE_CODE_PTR:
2024f65a
VP
2755 /* The type here is a pointer to non-struct. Typically, pointers
2756 have one child, except for function ptrs, which have no children,
2757 and except for void*, as we don't know what to show.
2758
0755e6c1
FN
2759 We can show char* so we allow it to be dereferenced. If you decide
2760 to test for it, please mind that a little magic is necessary to
2761 properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and
2762 TYPE_NAME == "char" */
2024f65a
VP
2763 if (TYPE_CODE (target) == TYPE_CODE_FUNC
2764 || TYPE_CODE (target) == TYPE_CODE_VOID)
2765 children = 0;
2766 else
2767 children = 1;
8b93c638
JM
2768 break;
2769
2770 default:
2771 /* Other types have no children */
2772 break;
2773 }
2774
2775 return children;
2776}
2777
2778static char *
fba45db2 2779c_name_of_variable (struct varobj *parent)
8b93c638 2780{
1b36a34b 2781 return xstrdup (parent->name);
8b93c638
JM
2782}
2783
bbec2603
VP
2784/* Return the value of element TYPE_INDEX of a structure
2785 value VALUE. VALUE's type should be a structure,
2786 or union, or a typedef to struct/union.
2787
2788 Returns NULL if getting the value fails. Never throws. */
2789static struct value *
2790value_struct_element_index (struct value *value, int type_index)
8b93c638 2791{
bbec2603
VP
2792 struct value *result = NULL;
2793 volatile struct gdb_exception e;
bbec2603 2794 struct type *type = value_type (value);
a109c7c1 2795
bbec2603
VP
2796 type = check_typedef (type);
2797
2798 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
2799 || TYPE_CODE (type) == TYPE_CODE_UNION);
8b93c638 2800
bbec2603
VP
2801 TRY_CATCH (e, RETURN_MASK_ERROR)
2802 {
d6a843b5 2803 if (field_is_static (&TYPE_FIELD (type, type_index)))
bbec2603
VP
2804 result = value_static_field (type, type_index);
2805 else
2806 result = value_primitive_field (value, 0, type_index, type);
2807 }
2808 if (e.reason < 0)
2809 {
2810 return NULL;
2811 }
2812 else
2813 {
2814 return result;
2815 }
2816}
2817
2818/* Obtain the information about child INDEX of the variable
2819 object PARENT.
2820 If CNAME is not null, sets *CNAME to the name of the child relative
2821 to the parent.
2822 If CVALUE is not null, sets *CVALUE to the value of the child.
2823 If CTYPE is not null, sets *CTYPE to the type of the child.
2824
2825 If any of CNAME, CVALUE, or CTYPE is not null, but the corresponding
2826 information cannot be determined, set *CNAME, *CVALUE, or *CTYPE
2827 to NULL. */
2828static void
2829c_describe_child (struct varobj *parent, int index,
02142340
VP
2830 char **cname, struct value **cvalue, struct type **ctype,
2831 char **cfull_expression)
bbec2603
VP
2832{
2833 struct value *value = parent->value;
2024f65a 2834 struct type *type = get_value_type (parent);
02142340
VP
2835 char *parent_expression = NULL;
2836 int was_ptr;
bbec2603
VP
2837
2838 if (cname)
2839 *cname = NULL;
2840 if (cvalue)
2841 *cvalue = NULL;
2842 if (ctype)
2843 *ctype = NULL;
02142340
VP
2844 if (cfull_expression)
2845 {
2846 *cfull_expression = NULL;
2847 parent_expression = varobj_get_path_expr (parent);
2848 }
2849 adjust_value_for_child_access (&value, &type, &was_ptr);
bbec2603 2850
8b93c638
JM
2851 switch (TYPE_CODE (type))
2852 {
2853 case TYPE_CODE_ARRAY:
bbec2603 2854 if (cname)
3e43a32a
MS
2855 *cname
2856 = xstrdup (int_string (index
2857 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
2858 10, 1, 0, 0));
bbec2603
VP
2859
2860 if (cvalue && value)
2861 {
2862 int real_index = index + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type));
a109c7c1 2863
2497b498 2864 gdb_value_subscript (value, real_index, cvalue);
bbec2603
VP
2865 }
2866
2867 if (ctype)
2868 *ctype = get_target_type (type);
2869
02142340 2870 if (cfull_expression)
43bbcdc2
PH
2871 *cfull_expression =
2872 xstrprintf ("(%s)[%s]", parent_expression,
2873 int_string (index
2874 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
2875 10, 1, 0, 0));
02142340
VP
2876
2877
8b93c638
JM
2878 break;
2879
2880 case TYPE_CODE_STRUCT:
2881 case TYPE_CODE_UNION:
bbec2603 2882 if (cname)
1b36a34b 2883 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
bbec2603
VP
2884
2885 if (cvalue && value)
2886 {
2887 /* For C, varobj index is the same as type index. */
2888 *cvalue = value_struct_element_index (value, index);
2889 }
2890
2891 if (ctype)
2892 *ctype = TYPE_FIELD_TYPE (type, index);
2893
02142340
VP
2894 if (cfull_expression)
2895 {
2896 char *join = was_ptr ? "->" : ".";
a109c7c1 2897
02142340
VP
2898 *cfull_expression = xstrprintf ("(%s)%s%s", parent_expression, join,
2899 TYPE_FIELD_NAME (type, index));
2900 }
2901
8b93c638
JM
2902 break;
2903
2904 case TYPE_CODE_PTR:
bbec2603
VP
2905 if (cname)
2906 *cname = xstrprintf ("*%s", parent->name);
8b93c638 2907
bbec2603 2908 if (cvalue && value)
3f4178d6
DJ
2909 {
2910 int success = gdb_value_ind (value, cvalue);
a109c7c1 2911
3f4178d6
DJ
2912 if (!success)
2913 *cvalue = NULL;
2914 }
bbec2603 2915
2024f65a
VP
2916 /* Don't use get_target_type because it calls
2917 check_typedef and here, we want to show the true
2918 declared type of the variable. */
bbec2603 2919 if (ctype)
2024f65a 2920 *ctype = TYPE_TARGET_TYPE (type);
02142340
VP
2921
2922 if (cfull_expression)
2923 *cfull_expression = xstrprintf ("*(%s)", parent_expression);
bbec2603 2924
8b93c638
JM
2925 break;
2926
2927 default:
2928 /* This should not happen */
bbec2603
VP
2929 if (cname)
2930 *cname = xstrdup ("???");
02142340
VP
2931 if (cfull_expression)
2932 *cfull_expression = xstrdup ("???");
bbec2603 2933 /* Don't set value and type, we don't know then. */
8b93c638 2934 }
bbec2603 2935}
8b93c638 2936
bbec2603
VP
2937static char *
2938c_name_of_child (struct varobj *parent, int index)
2939{
2940 char *name;
a109c7c1 2941
02142340 2942 c_describe_child (parent, index, &name, NULL, NULL, NULL);
8b93c638
JM
2943 return name;
2944}
2945
02142340
VP
2946static char *
2947c_path_expr_of_child (struct varobj *child)
2948{
2949 c_describe_child (child->parent, child->index, NULL, NULL, NULL,
2950 &child->path_expr);
2951 return child->path_expr;
2952}
2953
c5b48eac
VP
2954/* If frame associated with VAR can be found, switch
2955 to it and return 1. Otherwise, return 0. */
2956static int
2957check_scope (struct varobj *var)
2958{
2959 struct frame_info *fi;
2960 int scope;
2961
2962 fi = frame_find_by_id (var->root->frame);
2963 scope = fi != NULL;
2964
2965 if (fi)
2966 {
2967 CORE_ADDR pc = get_frame_pc (fi);
a109c7c1 2968
c5b48eac
VP
2969 if (pc < BLOCK_START (var->root->valid_block) ||
2970 pc >= BLOCK_END (var->root->valid_block))
2971 scope = 0;
2972 else
2973 select_frame (fi);
2974 }
2975 return scope;
2976}
2977
30b28db1 2978static struct value *
fba45db2 2979c_value_of_root (struct varobj **var_handle)
8b93c638 2980{
5e572bb4 2981 struct value *new_val = NULL;
73a93a32 2982 struct varobj *var = *var_handle;
c5b48eac 2983 int within_scope = 0;
6208b47d
VP
2984 struct cleanup *back_to;
2985
73a93a32 2986 /* Only root variables can be updated... */
b2c2bd75 2987 if (!is_root_p (var))
73a93a32
JI
2988 /* Not a root var */
2989 return NULL;
2990
4f8d22e3 2991 back_to = make_cleanup_restore_current_thread ();
72330bd6 2992
8b93c638 2993 /* Determine whether the variable is still around. */
a5defcdc 2994 if (var->root->valid_block == NULL || var->root->floating)
8b93c638 2995 within_scope = 1;
c5b48eac
VP
2996 else if (var->root->thread_id == 0)
2997 {
2998 /* The program was single-threaded when the variable object was
2999 created. Technically, it's possible that the program became
3000 multi-threaded since then, but we don't support such
3001 scenario yet. */
3002 within_scope = check_scope (var);
3003 }
8b93c638
JM
3004 else
3005 {
c5b48eac
VP
3006 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
3007 if (in_thread_list (ptid))
d2353924 3008 {
c5b48eac
VP
3009 switch_to_thread (ptid);
3010 within_scope = check_scope (var);
3011 }
8b93c638 3012 }
72330bd6 3013
8b93c638
JM
3014 if (within_scope)
3015 {
73a93a32 3016 /* We need to catch errors here, because if evaluate
85d93f1d
VP
3017 expression fails we want to just return NULL. */
3018 gdb_evaluate_expression (var->root->exp, &new_val);
8b93c638
JM
3019 return new_val;
3020 }
3021
6208b47d
VP
3022 do_cleanups (back_to);
3023
8b93c638
JM
3024 return NULL;
3025}
3026
30b28db1 3027static struct value *
fba45db2 3028c_value_of_child (struct varobj *parent, int index)
8b93c638 3029{
bbec2603 3030 struct value *value = NULL;
8b93c638 3031
a109c7c1 3032 c_describe_child (parent, index, NULL, &value, NULL, NULL);
8b93c638
JM
3033 return value;
3034}
3035
3036static struct type *
fba45db2 3037c_type_of_child (struct varobj *parent, int index)
8b93c638 3038{
bbec2603 3039 struct type *type = NULL;
a109c7c1 3040
02142340 3041 c_describe_child (parent, index, NULL, NULL, &type, NULL);
8b93c638
JM
3042 return type;
3043}
3044
8b93c638 3045static char *
de051565 3046c_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 3047{
14b3d9c9
JB
3048 /* BOGUS: if val_print sees a struct/class, or a reference to one,
3049 it will print out its children instead of "{...}". So we need to
3050 catch that case explicitly. */
3051 struct type *type = get_type (var);
e64d9b3d 3052
b6313243
TT
3053 /* If we have a custom formatter, return whatever string it has
3054 produced. */
3055 if (var->pretty_printer && var->print_value)
3056 return xstrdup (var->print_value);
3057
14b3d9c9
JB
3058 /* Strip top-level references. */
3059 while (TYPE_CODE (type) == TYPE_CODE_REF)
3060 type = check_typedef (TYPE_TARGET_TYPE (type));
3061
3062 switch (TYPE_CODE (type))
8b93c638
JM
3063 {
3064 case TYPE_CODE_STRUCT:
3065 case TYPE_CODE_UNION:
3066 return xstrdup ("{...}");
3067 /* break; */
3068
3069 case TYPE_CODE_ARRAY:
3070 {
e64d9b3d 3071 char *number;
a109c7c1 3072
b435e160 3073 number = xstrprintf ("[%d]", var->num_children);
e64d9b3d 3074 return (number);
8b93c638
JM
3075 }
3076 /* break; */
3077
3078 default:
3079 {
575bbeb6
KS
3080 if (var->value == NULL)
3081 {
3082 /* This can happen if we attempt to get the value of a struct
3083 member when the parent is an invalid pointer. This is an
3084 error condition, so we should tell the caller. */
3085 return NULL;
3086 }
3087 else
3088 {
25d5ea92
VP
3089 if (var->not_fetched && value_lazy (var->value))
3090 /* Frozen variable and no value yet. We don't
3091 implicitly fetch the value. MI response will
3092 use empty string for the value, which is OK. */
3093 return NULL;
3094
b2c2bd75 3095 gdb_assert (varobj_value_is_changeable_p (var));
acd65feb 3096 gdb_assert (!value_lazy (var->value));
de051565
MK
3097
3098 /* If the specified format is the current one,
3099 we can reuse print_value */
3100 if (format == var->format)
3101 return xstrdup (var->print_value);
3102 else
d452c4bc 3103 return value_get_print_value (var->value, format, var);
85265413 3104 }
e64d9b3d 3105 }
8b93c638
JM
3106 }
3107}
3108\f
3109
3110/* C++ */
3111
3112static int
fba45db2 3113cplus_number_of_children (struct varobj *var)
8b93c638
JM
3114{
3115 struct type *type;
3116 int children, dont_know;
3117
3118 dont_know = 1;
3119 children = 0;
3120
3121 if (!CPLUS_FAKE_CHILD (var))
3122 {
2024f65a 3123 type = get_value_type (var);
02142340 3124 adjust_value_for_child_access (NULL, &type, NULL);
8b93c638
JM
3125
3126 if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) ||
72330bd6 3127 ((TYPE_CODE (type)) == TYPE_CODE_UNION))
8b93c638
JM
3128 {
3129 int kids[3];
3130
3131 cplus_class_num_children (type, kids);
3132 if (kids[v_public] != 0)
3133 children++;
3134 if (kids[v_private] != 0)
3135 children++;
3136 if (kids[v_protected] != 0)
3137 children++;
3138
3139 /* Add any baseclasses */
3140 children += TYPE_N_BASECLASSES (type);
3141 dont_know = 0;
3142
3143 /* FIXME: save children in var */
3144 }
3145 }
3146 else
3147 {
3148 int kids[3];
3149
2024f65a 3150 type = get_value_type (var->parent);
02142340 3151 adjust_value_for_child_access (NULL, &type, NULL);
8b93c638
JM
3152
3153 cplus_class_num_children (type, kids);
6e382aa3 3154 if (strcmp (var->name, "public") == 0)
8b93c638 3155 children = kids[v_public];
6e382aa3 3156 else if (strcmp (var->name, "private") == 0)
8b93c638
JM
3157 children = kids[v_private];
3158 else
3159 children = kids[v_protected];
3160 dont_know = 0;
3161 }
3162
3163 if (dont_know)
3164 children = c_number_of_children (var);
3165
3166 return children;
3167}
3168
3169/* Compute # of public, private, and protected variables in this class.
3170 That means we need to descend into all baseclasses and find out
3171 how many are there, too. */
3172static void
1669605f 3173cplus_class_num_children (struct type *type, int children[3])
8b93c638 3174{
d48cc9dd
DJ
3175 int i, vptr_fieldno;
3176 struct type *basetype = NULL;
8b93c638
JM
3177
3178 children[v_public] = 0;
3179 children[v_private] = 0;
3180 children[v_protected] = 0;
3181
d48cc9dd 3182 vptr_fieldno = get_vptr_fieldno (type, &basetype);
8b93c638
JM
3183 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++)
3184 {
d48cc9dd
DJ
3185 /* If we have a virtual table pointer, omit it. Even if virtual
3186 table pointers are not specifically marked in the debug info,
3187 they should be artificial. */
3188 if ((type == basetype && i == vptr_fieldno)
3189 || TYPE_FIELD_ARTIFICIAL (type, i))
8b93c638
JM
3190 continue;
3191
3192 if (TYPE_FIELD_PROTECTED (type, i))
3193 children[v_protected]++;
3194 else if (TYPE_FIELD_PRIVATE (type, i))
3195 children[v_private]++;
3196 else
3197 children[v_public]++;
3198 }
3199}
3200
3201static char *
fba45db2 3202cplus_name_of_variable (struct varobj *parent)
8b93c638
JM
3203{
3204 return c_name_of_variable (parent);
3205}
3206
2024f65a
VP
3207enum accessibility { private_field, protected_field, public_field };
3208
3209/* Check if field INDEX of TYPE has the specified accessibility.
3210 Return 0 if so and 1 otherwise. */
3211static int
3212match_accessibility (struct type *type, int index, enum accessibility acc)
8b93c638 3213{
2024f65a
VP
3214 if (acc == private_field && TYPE_FIELD_PRIVATE (type, index))
3215 return 1;
3216 else if (acc == protected_field && TYPE_FIELD_PROTECTED (type, index))
3217 return 1;
3218 else if (acc == public_field && !TYPE_FIELD_PRIVATE (type, index)
3219 && !TYPE_FIELD_PROTECTED (type, index))
3220 return 1;
3221 else
3222 return 0;
3223}
3224
3225static void
3226cplus_describe_child (struct varobj *parent, int index,
02142340
VP
3227 char **cname, struct value **cvalue, struct type **ctype,
3228 char **cfull_expression)
2024f65a 3229{
2024f65a 3230 struct value *value;
8b93c638 3231 struct type *type;
02142340
VP
3232 int was_ptr;
3233 char *parent_expression = NULL;
8b93c638 3234
2024f65a
VP
3235 if (cname)
3236 *cname = NULL;
3237 if (cvalue)
3238 *cvalue = NULL;
3239 if (ctype)
3240 *ctype = NULL;
02142340
VP
3241 if (cfull_expression)
3242 *cfull_expression = NULL;
2024f65a 3243
8b93c638
JM
3244 if (CPLUS_FAKE_CHILD (parent))
3245 {
2024f65a
VP
3246 value = parent->parent->value;
3247 type = get_value_type (parent->parent);
02142340
VP
3248 if (cfull_expression)
3249 parent_expression = varobj_get_path_expr (parent->parent);
8b93c638
JM
3250 }
3251 else
2024f65a
VP
3252 {
3253 value = parent->value;
3254 type = get_value_type (parent);
02142340
VP
3255 if (cfull_expression)
3256 parent_expression = varobj_get_path_expr (parent);
2024f65a 3257 }
8b93c638 3258
02142340 3259 adjust_value_for_child_access (&value, &type, &was_ptr);
2024f65a
VP
3260
3261 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3f4178d6 3262 || TYPE_CODE (type) == TYPE_CODE_UNION)
8b93c638 3263 {
02142340 3264 char *join = was_ptr ? "->" : ".";
a109c7c1 3265
8b93c638
JM
3266 if (CPLUS_FAKE_CHILD (parent))
3267 {
6e382aa3
JJ
3268 /* The fields of the class type are ordered as they
3269 appear in the class. We are given an index for a
3270 particular access control type ("public","protected",
3271 or "private"). We must skip over fields that don't
3272 have the access control we are looking for to properly
3273 find the indexed field. */
3274 int type_index = TYPE_N_BASECLASSES (type);
2024f65a 3275 enum accessibility acc = public_field;
d48cc9dd
DJ
3276 int vptr_fieldno;
3277 struct type *basetype = NULL;
3278
3279 vptr_fieldno = get_vptr_fieldno (type, &basetype);
6e382aa3 3280 if (strcmp (parent->name, "private") == 0)
2024f65a 3281 acc = private_field;
6e382aa3 3282 else if (strcmp (parent->name, "protected") == 0)
2024f65a
VP
3283 acc = protected_field;
3284
3285 while (index >= 0)
6e382aa3 3286 {
d48cc9dd
DJ
3287 if ((type == basetype && type_index == vptr_fieldno)
3288 || TYPE_FIELD_ARTIFICIAL (type, type_index))
2024f65a
VP
3289 ; /* ignore vptr */
3290 else if (match_accessibility (type, type_index, acc))
6e382aa3
JJ
3291 --index;
3292 ++type_index;
6e382aa3 3293 }
2024f65a
VP
3294 --type_index;
3295
3296 if (cname)
3297 *cname = xstrdup (TYPE_FIELD_NAME (type, type_index));
3298
3299 if (cvalue && value)
3300 *cvalue = value_struct_element_index (value, type_index);
3301
3302 if (ctype)
3303 *ctype = TYPE_FIELD_TYPE (type, type_index);
02142340
VP
3304
3305 if (cfull_expression)
3e43a32a
MS
3306 *cfull_expression
3307 = xstrprintf ("((%s)%s%s)", parent_expression,
3308 join,
3309 TYPE_FIELD_NAME (type, type_index));
2024f65a
VP
3310 }
3311 else if (index < TYPE_N_BASECLASSES (type))
3312 {
3313 /* This is a baseclass. */
3314 if (cname)
3315 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
3316
3317 if (cvalue && value)
0cc7d26f 3318 *cvalue = value_cast (TYPE_FIELD_TYPE (type, index), value);
6e382aa3 3319
2024f65a
VP
3320 if (ctype)
3321 {
3322 *ctype = TYPE_FIELD_TYPE (type, index);
3323 }
02142340
VP
3324
3325 if (cfull_expression)
3326 {
3327 char *ptr = was_ptr ? "*" : "";
a109c7c1 3328
02142340
VP
3329 /* Cast the parent to the base' type. Note that in gdb,
3330 expression like
3331 (Base1)d
3332 will create an lvalue, for all appearences, so we don't
3333 need to use more fancy:
3334 *(Base1*)(&d)
3335 construct. */
3336 *cfull_expression = xstrprintf ("(%s(%s%s) %s)",
3337 ptr,
3338 TYPE_FIELD_NAME (type, index),
3339 ptr,
3340 parent_expression);
3341 }
8b93c638 3342 }
8b93c638
JM
3343 else
3344 {
348144ba 3345 char *access = NULL;
6e382aa3 3346 int children[3];
a109c7c1 3347
2024f65a 3348 cplus_class_num_children (type, children);
6e382aa3 3349
8b93c638 3350 /* Everything beyond the baseclasses can
6e382aa3
JJ
3351 only be "public", "private", or "protected"
3352
3353 The special "fake" children are always output by varobj in
3354 this order. So if INDEX == 2, it MUST be "protected". */
8b93c638
JM
3355 index -= TYPE_N_BASECLASSES (type);
3356 switch (index)
3357 {
3358 case 0:
6e382aa3 3359 if (children[v_public] > 0)
2024f65a 3360 access = "public";
6e382aa3 3361 else if (children[v_private] > 0)
2024f65a 3362 access = "private";
6e382aa3 3363 else
2024f65a 3364 access = "protected";
6e382aa3 3365 break;
8b93c638 3366 case 1:
6e382aa3 3367 if (children[v_public] > 0)
8b93c638 3368 {
6e382aa3 3369 if (children[v_private] > 0)
2024f65a 3370 access = "private";
6e382aa3 3371 else
2024f65a 3372 access = "protected";
8b93c638 3373 }
6e382aa3 3374 else if (children[v_private] > 0)
2024f65a 3375 access = "protected";
6e382aa3 3376 break;
8b93c638 3377 case 2:
6e382aa3 3378 /* Must be protected */
2024f65a 3379 access = "protected";
6e382aa3 3380 break;
8b93c638
JM
3381 default:
3382 /* error! */
3383 break;
3384 }
348144ba
MS
3385
3386 gdb_assert (access);
2024f65a
VP
3387 if (cname)
3388 *cname = xstrdup (access);
8b93c638 3389
02142340 3390 /* Value and type and full expression are null here. */
2024f65a 3391 }
8b93c638 3392 }
8b93c638
JM
3393 else
3394 {
02142340 3395 c_describe_child (parent, index, cname, cvalue, ctype, cfull_expression);
2024f65a
VP
3396 }
3397}
8b93c638 3398
2024f65a
VP
3399static char *
3400cplus_name_of_child (struct varobj *parent, int index)
3401{
3402 char *name = NULL;
a109c7c1 3403
02142340 3404 cplus_describe_child (parent, index, &name, NULL, NULL, NULL);
8b93c638
JM
3405 return name;
3406}
3407
02142340
VP
3408static char *
3409cplus_path_expr_of_child (struct varobj *child)
3410{
3411 cplus_describe_child (child->parent, child->index, NULL, NULL, NULL,
3412 &child->path_expr);
3413 return child->path_expr;
3414}
3415
30b28db1 3416static struct value *
fba45db2 3417cplus_value_of_root (struct varobj **var_handle)
8b93c638 3418{
73a93a32 3419 return c_value_of_root (var_handle);
8b93c638
JM
3420}
3421
30b28db1 3422static struct value *
fba45db2 3423cplus_value_of_child (struct varobj *parent, int index)
8b93c638 3424{
2024f65a 3425 struct value *value = NULL;
a109c7c1 3426
02142340 3427 cplus_describe_child (parent, index, NULL, &value, NULL, NULL);
8b93c638
JM
3428 return value;
3429}
3430
3431static struct type *
fba45db2 3432cplus_type_of_child (struct varobj *parent, int index)
8b93c638 3433{
2024f65a 3434 struct type *type = NULL;
a109c7c1 3435
02142340 3436 cplus_describe_child (parent, index, NULL, NULL, &type, NULL);
8b93c638
JM
3437 return type;
3438}
3439
8b93c638 3440static char *
a109c7c1
MS
3441cplus_value_of_variable (struct varobj *var,
3442 enum varobj_display_formats format)
8b93c638
JM
3443{
3444
3445 /* If we have one of our special types, don't print out
3446 any value. */
3447 if (CPLUS_FAKE_CHILD (var))
3448 return xstrdup ("");
3449
de051565 3450 return c_value_of_variable (var, format);
8b93c638
JM
3451}
3452\f
3453/* Java */
3454
3455static int
fba45db2 3456java_number_of_children (struct varobj *var)
8b93c638
JM
3457{
3458 return cplus_number_of_children (var);
3459}
3460
3461static char *
fba45db2 3462java_name_of_variable (struct varobj *parent)
8b93c638
JM
3463{
3464 char *p, *name;
3465
3466 name = cplus_name_of_variable (parent);
3467 /* If the name has "-" in it, it is because we
3468 needed to escape periods in the name... */
3469 p = name;
3470
3471 while (*p != '\000')
3472 {
3473 if (*p == '-')
3474 *p = '.';
3475 p++;
3476 }
3477
3478 return name;
3479}
3480
3481static char *
fba45db2 3482java_name_of_child (struct varobj *parent, int index)
8b93c638
JM
3483{
3484 char *name, *p;
3485
3486 name = cplus_name_of_child (parent, index);
3487 /* Escape any periods in the name... */
3488 p = name;
3489
3490 while (*p != '\000')
3491 {
3492 if (*p == '.')
3493 *p = '-';
3494 p++;
3495 }
3496
3497 return name;
3498}
3499
02142340
VP
3500static char *
3501java_path_expr_of_child (struct varobj *child)
3502{
3503 return NULL;
3504}
3505
30b28db1 3506static struct value *
fba45db2 3507java_value_of_root (struct varobj **var_handle)
8b93c638 3508{
73a93a32 3509 return cplus_value_of_root (var_handle);
8b93c638
JM
3510}
3511
30b28db1 3512static struct value *
fba45db2 3513java_value_of_child (struct varobj *parent, int index)
8b93c638
JM
3514{
3515 return cplus_value_of_child (parent, index);
3516}
3517
3518static struct type *
fba45db2 3519java_type_of_child (struct varobj *parent, int index)
8b93c638
JM
3520{
3521 return cplus_type_of_child (parent, index);
3522}
3523
8b93c638 3524static char *
de051565 3525java_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 3526{
de051565 3527 return cplus_value_of_variable (var, format);
8b93c638 3528}
54333c3b
JK
3529
3530/* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
3531 with an arbitrary caller supplied DATA pointer. */
3532
3533void
3534all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
3535{
3536 struct varobj_root *var_root, *var_root_next;
3537
3538 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
3539
3540 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
3541 {
3542 var_root_next = var_root->next;
3543
3544 (*func) (var_root->rootvar, data);
3545 }
3546}
8b93c638
JM
3547\f
3548extern void _initialize_varobj (void);
3549void
3550_initialize_varobj (void)
3551{
3552 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
3553
3554 varobj_table = xmalloc (sizeof_table);
3555 memset (varobj_table, 0, sizeof_table);
3556
85c07804 3557 add_setshow_zinteger_cmd ("debugvarobj", class_maintenance,
3e43a32a
MS
3558 &varobjdebug,
3559 _("Set varobj debugging."),
3560 _("Show varobj debugging."),
3561 _("When non-zero, varobj debugging is enabled."),
3562 NULL, show_varobjdebug,
85c07804 3563 &setlist, &showlist);
8b93c638 3564}
8756216b 3565
54333c3b
JK
3566/* Invalidate varobj VAR if it is tied to locals and re-create it if it is
3567 defined on globals. It is a helper for varobj_invalidate. */
2dbd25e5 3568
54333c3b
JK
3569static void
3570varobj_invalidate_iter (struct varobj *var, void *unused)
8756216b 3571{
54333c3b
JK
3572 /* Floating varobjs are reparsed on each stop, so we don't care if the
3573 presently parsed expression refers to something that's gone. */
3574 if (var->root->floating)
3575 return;
8756216b 3576
54333c3b
JK
3577 /* global var must be re-evaluated. */
3578 if (var->root->valid_block == NULL)
2dbd25e5 3579 {
54333c3b 3580 struct varobj *tmp_var;
2dbd25e5 3581
54333c3b
JK
3582 /* Try to create a varobj with same expression. If we succeed
3583 replace the old varobj, otherwise invalidate it. */
3584 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
3585 USE_CURRENT_FRAME);
3586 if (tmp_var != NULL)
3587 {
3588 tmp_var->obj_name = xstrdup (var->obj_name);
3589 varobj_delete (var, NULL, 0);
3590 install_variable (tmp_var);
2dbd25e5 3591 }
54333c3b
JK
3592 else
3593 var->root->is_valid = 0;
2dbd25e5 3594 }
54333c3b
JK
3595 else /* locals must be invalidated. */
3596 var->root->is_valid = 0;
3597}
3598
3599/* Invalidate the varobjs that are tied to locals and re-create the ones that
3600 are defined on globals.
3601 Invalidated varobjs will be always printed in_scope="invalid". */
3602
3603void
3604varobj_invalidate (void)
3605{
3606 all_root_varobjs (varobj_invalidate_iter, NULL);
8756216b 3607}