]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/xtensa-tdep.c
gdbserver: xtensa: add call0 support
[thirdparty/binutils-gdb.git] / gdb / xtensa-tdep.c
CommitLineData
ca3bf3bd
DJ
1/* Target-dependent code for the Xtensa port of GDB, the GNU debugger.
2
61baf725 3 Copyright (C) 2003-2017 Free Software Foundation, Inc.
ca3bf3bd
DJ
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
ca3bf3bd
DJ
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
ca3bf3bd
DJ
19
20#include "defs.h"
21#include "frame.h"
ee967b5f 22#include "solib-svr4.h"
ca3bf3bd
DJ
23#include "symtab.h"
24#include "symfile.h"
25#include "objfiles.h"
26#include "gdbtypes.h"
27#include "gdbcore.h"
28#include "value.h"
29#include "dis-asm.h"
30#include "inferior.h"
40045d91 31#include "osabi.h"
ca3bf3bd
DJ
32#include "floatformat.h"
33#include "regcache.h"
34#include "reggroups.h"
35#include "regset.h"
36
37#include "dummy-frame.h"
fa8f86ff 38#include "dwarf2.h"
ca3bf3bd
DJ
39#include "dwarf2-frame.h"
40#include "dwarf2loc.h"
ca3bf3bd
DJ
41#include "frame-base.h"
42#include "frame-unwind.h"
43
44#include "arch-utils.h"
45#include "gdbarch.h"
46#include "remote.h"
47#include "serial.h"
48
49#include "command.h"
50#include "gdbcmd.h"
ca3bf3bd 51
bdb4c075 52#include "xtensa-isa.h"
ca3bf3bd 53#include "xtensa-tdep.h"
94a0e877 54#include "xtensa-config.h"
325fac50 55#include <algorithm>
ca3bf3bd
DJ
56
57
ccce17b0 58static unsigned int xtensa_debug_level = 0;
ca3bf3bd
DJ
59
60#define DEBUGWARN(args...) \
61 if (xtensa_debug_level > 0) \
62 fprintf_unfiltered (gdb_stdlog, "(warn ) " args)
63
64#define DEBUGINFO(args...) \
65 if (xtensa_debug_level > 1) \
66 fprintf_unfiltered (gdb_stdlog, "(info ) " args)
67
68#define DEBUGTRACE(args...) \
69 if (xtensa_debug_level > 2) \
70 fprintf_unfiltered (gdb_stdlog, "(trace) " args)
71
72#define DEBUGVERB(args...) \
73 if (xtensa_debug_level > 3) \
74 fprintf_unfiltered (gdb_stdlog, "(verb ) " args)
75
76
77/* According to the ABI, the SP must be aligned to 16-byte boundaries. */
ca3bf3bd
DJ
78#define SP_ALIGNMENT 16
79
80
bdb4c075
MG
81/* On Windowed ABI, we use a6 through a11 for passing arguments
82 to a function called by GDB because CALL4 is used. */
bdb4c075
MG
83#define ARGS_NUM_REGS 6
84#define REGISTER_SIZE 4
ca3bf3bd 85
ca3bf3bd 86
bdb4c075
MG
87/* Extract the call size from the return address or PS register. */
88#define PS_CALLINC_SHIFT 16
89#define PS_CALLINC_MASK 0x00030000
90#define CALLINC(ps) (((ps) & PS_CALLINC_MASK) >> PS_CALLINC_SHIFT)
91#define WINSIZE(ra) (4 * (( (ra) >> 30) & 0x3))
ca3bf3bd 92
98689b25
MG
93/* On TX, hardware can be configured without Exception Option.
94 There is no PS register in this case. Inside XT-GDB, let us treat
95 it as a virtual read-only register always holding the same value. */
96#define TX_PS 0x20
97
bdb4c075 98/* ABI-independent macros. */
91d8eb23
MD
99#define ARG_NOF(gdbarch) \
100 (gdbarch_tdep (gdbarch)->call_abi \
101 == CallAbiCall0Only ? C0_NARGS : (ARGS_NUM_REGS))
102#define ARG_1ST(gdbarch) \
103 (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only \
94a0e877 104 ? (gdbarch_tdep (gdbarch)->a0_base + C0_ARGS) \
91d8eb23 105 : (gdbarch_tdep (gdbarch)->a0_base + 6))
ca3bf3bd 106
ca3bf3bd
DJ
107/* XTENSA_IS_ENTRY tests whether the first byte of an instruction
108 indicates that the instruction is an ENTRY instruction. */
109
91d8eb23
MD
110#define XTENSA_IS_ENTRY(gdbarch, op1) \
111 ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) \
4c6b5505 112 ? ((op1) == 0x6c) : ((op1) == 0x36))
ca3bf3bd 113
bdb4c075 114#define XTENSA_ENTRY_LENGTH 3
ca3bf3bd
DJ
115
116/* windowing_enabled() returns true, if windowing is enabled.
117 WOE must be set to 1; EXCM to 0.
118 Note: We assume that EXCM is always 0 for XEA1. */
119
bdb4c075
MG
120#define PS_WOE (1<<18)
121#define PS_EXC (1<<4)
122
b801de47 123static int
98689b25
MG
124windowing_enabled (struct gdbarch *gdbarch, unsigned int ps)
125{
126 /* If we know CALL0 ABI is set explicitly, say it is Call0. */
127 if (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only)
128 return 0;
129
130 return ((ps & PS_EXC) == 0 && (ps & PS_WOE) != 0);
131}
132
581e13c1
MS
133/* Convert a live A-register number to the corresponding AR-register
134 number. */
91d8eb23 135static int
ee967b5f 136arreg_number (struct gdbarch *gdbarch, int a_regnum, ULONGEST wb)
91d8eb23
MD
137{
138 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
ee967b5f 139 int arreg;
91d8eb23 140
ee967b5f
MG
141 arreg = a_regnum - tdep->a0_base;
142 arreg += (wb & ((tdep->num_aregs - 1) >> 2)) << WB_SHIFT;
143 arreg &= tdep->num_aregs - 1;
91d8eb23 144
ee967b5f
MG
145 return arreg + tdep->ar_base;
146}
147
148/* Convert a live AR-register number to the corresponding A-register order
149 number in a range [0..15]. Return -1, if AR_REGNUM is out of WB window. */
150static int
151areg_number (struct gdbarch *gdbarch, int ar_regnum, unsigned int wb)
152{
153 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
154 int areg;
155
156 areg = ar_regnum - tdep->ar_base;
157 if (areg < 0 || areg >= tdep->num_aregs)
158 return -1;
159 areg = (areg - wb * 4) & (tdep->num_aregs - 1);
160 return (areg > 15) ? -1 : areg;
91d8eb23
MD
161}
162
68d6df83 163/* Read Xtensa register directly from the hardware. */
b801de47 164static unsigned long
08b9c608
MG
165xtensa_read_register (int regnum)
166{
167 ULONGEST value;
168
169 regcache_raw_read_unsigned (get_current_regcache (), regnum, &value);
170 return (unsigned long) value;
171}
172
68d6df83 173/* Write Xtensa register directly to the hardware. */
b801de47 174static void
08b9c608
MG
175xtensa_write_register (int regnum, ULONGEST value)
176{
177 regcache_raw_write_unsigned (get_current_regcache (), regnum, value);
178}
179
ca3bf3bd
DJ
180/* Return the window size of the previous call to the function from which we
181 have just returned.
182
183 This function is used to extract the return value after a called function
bdb4c075 184 has returned to the caller. On Xtensa, the register that holds the return
ca3bf3bd
DJ
185 value (from the perspective of the caller) depends on what call
186 instruction was used. For now, we are assuming that the call instruction
187 precedes the current address, so we simply analyze the call instruction.
188 If we are in a dummy frame, we simply return 4 as we used a 'pseudo-call4'
189 method to call the inferior function. */
190
191static int
91d8eb23 192extract_call_winsize (struct gdbarch *gdbarch, CORE_ADDR pc)
ca3bf3bd 193{
e17a4113 194 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
bdb4c075 195 int winsize = 4;
ca3bf3bd 196 int insn;
ff7a4c00 197 gdb_byte buf[4];
ca3bf3bd
DJ
198
199 DEBUGTRACE ("extract_call_winsize (pc = 0x%08x)\n", (int) pc);
200
201 /* Read the previous instruction (should be a call[x]{4|8|12}. */
202 read_memory (pc-3, buf, 3);
e17a4113 203 insn = extract_unsigned_integer (buf, 3, byte_order);
ca3bf3bd
DJ
204
205 /* Decode call instruction:
206 Little Endian
207 call{0,4,8,12} OFFSET || {00,01,10,11} || 0101
208 callx{0,4,8,12} OFFSET || 11 || {00,01,10,11} || 0000
209 Big Endian
210 call{0,4,8,12} 0101 || {00,01,10,11} || OFFSET
211 callx{0,4,8,12} 0000 || {00,01,10,11} || 11 || OFFSET. */
212
e17a4113 213 if (byte_order == BFD_ENDIAN_LITTLE)
ca3bf3bd
DJ
214 {
215 if (((insn & 0xf) == 0x5) || ((insn & 0xcf) == 0xc0))
bdb4c075 216 winsize = (insn & 0x30) >> 2; /* 0, 4, 8, 12. */
ca3bf3bd
DJ
217 }
218 else
219 {
220 if (((insn >> 20) == 0x5) || (((insn >> 16) & 0xf3) == 0x03))
bdb4c075 221 winsize = (insn >> 16) & 0xc; /* 0, 4, 8, 12. */
ca3bf3bd
DJ
222 }
223 return winsize;
224}
225
226
227/* REGISTER INFORMATION */
228
08b9c608
MG
229/* Find register by name. */
230static int
231xtensa_find_register_by_name (struct gdbarch *gdbarch, char *name)
232{
233 int i;
234
235 for (i = 0; i < gdbarch_num_regs (gdbarch)
236 + gdbarch_num_pseudo_regs (gdbarch);
237 i++)
238
239 if (strcasecmp (gdbarch_tdep (gdbarch)->regmap[i].name, name) == 0)
240 return i;
241
242 return -1;
243}
244
ca3bf3bd 245/* Returns the name of a register. */
ca3bf3bd 246static const char *
d93859e2 247xtensa_register_name (struct gdbarch *gdbarch, int regnum)
ca3bf3bd
DJ
248{
249 /* Return the name stored in the register map. */
d93859e2
UW
250 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
251 + gdbarch_num_pseudo_regs (gdbarch))
252 return gdbarch_tdep (gdbarch)->regmap[regnum].name;
ca3bf3bd 253
ca3bf3bd
DJ
254 internal_error (__FILE__, __LINE__, _("invalid register %d"), regnum);
255 return 0;
256}
257
ca3bf3bd
DJ
258/* Return the type of a register. Create a new type, if necessary. */
259
ca3bf3bd
DJ
260static struct type *
261xtensa_register_type (struct gdbarch *gdbarch, int regnum)
262{
df4df182
UW
263 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
264
ca3bf3bd 265 /* Return signed integer for ARx and Ax registers. */
df4df182
UW
266 if ((regnum >= tdep->ar_base
267 && regnum < tdep->ar_base + tdep->num_aregs)
268 || (regnum >= tdep->a0_base
269 && regnum < tdep->a0_base + 16))
0dfff4cb 270 return builtin_type (gdbarch)->builtin_int;
ca3bf3bd 271
6b50c0b0 272 if (regnum == gdbarch_pc_regnum (gdbarch)
df4df182 273 || regnum == tdep->a0_base + 1)
fde6c819 274 return builtin_type (gdbarch)->builtin_data_ptr;
ca3bf3bd
DJ
275
276 /* Return the stored type for all other registers. */
6b50c0b0
UW
277 else if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
278 + gdbarch_num_pseudo_regs (gdbarch))
ca3bf3bd 279 {
df4df182 280 xtensa_register_t* reg = &tdep->regmap[regnum];
ca3bf3bd 281
bdb4c075 282 /* Set ctype for this register (only the first time). */
ca3bf3bd
DJ
283
284 if (reg->ctype == 0)
285 {
286 struct ctype_cache *tp;
287 int size = reg->byte_size;
288
bdb4c075
MG
289 /* We always use the memory representation,
290 even if the register width is smaller. */
ca3bf3bd
DJ
291 switch (size)
292 {
293 case 1:
df4df182 294 reg->ctype = builtin_type (gdbarch)->builtin_uint8;
ca3bf3bd
DJ
295 break;
296
297 case 2:
df4df182 298 reg->ctype = builtin_type (gdbarch)->builtin_uint16;
ca3bf3bd
DJ
299 break;
300
301 case 4:
df4df182 302 reg->ctype = builtin_type (gdbarch)->builtin_uint32;
ca3bf3bd
DJ
303 break;
304
305 case 8:
df4df182 306 reg->ctype = builtin_type (gdbarch)->builtin_uint64;
ca3bf3bd
DJ
307 break;
308
309 case 16:
df4df182 310 reg->ctype = builtin_type (gdbarch)->builtin_uint128;
ca3bf3bd
DJ
311 break;
312
313 default:
df4df182 314 for (tp = tdep->type_entries; tp != NULL; tp = tp->next)
ca3bf3bd
DJ
315 if (tp->size == size)
316 break;
317
318 if (tp == NULL)
319 {
1448a0a2 320 char *name = xstrprintf ("int%d", size * 8);
8d749320
SM
321
322 tp = XNEW (struct ctype_cache);
df4df182
UW
323 tp->next = tdep->type_entries;
324 tdep->type_entries = tp;
ca3bf3bd 325 tp->size = size;
e9bb382b 326 tp->virtual_type
1448a0a2
PM
327 = arch_integer_type (gdbarch, size * 8, 1, name);
328 xfree (name);
ca3bf3bd
DJ
329 }
330
331 reg->ctype = tp->virtual_type;
332 }
333 }
334 return reg->ctype;
335 }
336
ca3bf3bd
DJ
337 internal_error (__FILE__, __LINE__, _("invalid register number %d"), regnum);
338 return 0;
339}
340
341
bdb4c075 342/* Return the 'local' register number for stubs, dwarf2, etc.
ca3bf3bd
DJ
343 The debugging information enumerates registers starting from 0 for A0
344 to n for An. So, we only have to add the base number for A0. */
345
346static int
d3f73121 347xtensa_reg_to_regnum (struct gdbarch *gdbarch, int regnum)
ca3bf3bd
DJ
348{
349 int i;
350
351 if (regnum >= 0 && regnum < 16)
d3f73121 352 return gdbarch_tdep (gdbarch)->a0_base + regnum;
ca3bf3bd 353
f57d151a 354 for (i = 0;
d3f73121 355 i < gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
f57d151a 356 i++)
d3f73121 357 if (regnum == gdbarch_tdep (gdbarch)->regmap[i].target_number)
ca3bf3bd
DJ
358 return i;
359
0fde2c53 360 return -1;
ca3bf3bd
DJ
361}
362
363
bdb4c075
MG
364/* Write the bits of a masked register to the various registers.
365 Only the masked areas of these registers are modified; the other
366 fields are untouched. The size of masked registers is always less
367 than or equal to 32 bits. */
ca3bf3bd
DJ
368
369static void
9c9acae0
UW
370xtensa_register_write_masked (struct regcache *regcache,
371 xtensa_register_t *reg, const gdb_byte *buffer)
ca3bf3bd
DJ
372{
373 unsigned int value[(MAX_REGISTER_SIZE + 3) / 4];
ca3bf3bd
DJ
374 const xtensa_mask_t *mask = reg->mask;
375
376 int shift = 0; /* Shift for next mask (mod 32). */
377 int start, size; /* Start bit and size of current mask. */
378
379 unsigned int *ptr = value;
380 unsigned int regval, m, mem = 0;
381
382 int bytesize = reg->byte_size;
383 int bitsize = bytesize * 8;
384 int i, r;
385
386 DEBUGTRACE ("xtensa_register_write_masked ()\n");
387
388 /* Copy the masked register to host byte-order. */
6b50c0b0 389 if (gdbarch_byte_order (get_regcache_arch (regcache)) == BFD_ENDIAN_BIG)
ca3bf3bd
DJ
390 for (i = 0; i < bytesize; i++)
391 {
392 mem >>= 8;
393 mem |= (buffer[bytesize - i - 1] << 24);
394 if ((i & 3) == 3)
395 *ptr++ = mem;
396 }
397 else
398 for (i = 0; i < bytesize; i++)
399 {
400 mem >>= 8;
401 mem |= (buffer[i] << 24);
402 if ((i & 3) == 3)
403 *ptr++ = mem;
404 }
405
406 /* We might have to shift the final value:
407 bytesize & 3 == 0 -> nothing to do, we use the full 32 bits,
408 bytesize & 3 == x -> shift (4-x) * 8. */
409
410 *ptr = mem >> (((0 - bytesize) & 3) * 8);
411 ptr = value;
412 mem = *ptr;
413
414 /* Write the bits to the masked areas of the other registers. */
415 for (i = 0; i < mask->count; i++)
416 {
417 start = mask->mask[i].bit_start;
418 size = mask->mask[i].bit_size;
419 regval = mem >> shift;
420
421 if ((shift += size) > bitsize)
422 error (_("size of all masks is larger than the register"));
423
424 if (shift >= 32)
425 {
426 mem = *(++ptr);
427 shift -= 32;
428 bitsize -= 32;
429
430 if (shift > 0)
431 regval |= mem << (size - shift);
432 }
433
434 /* Make sure we have a valid register. */
435 r = mask->mask[i].reg_num;
436 if (r >= 0 && size > 0)
437 {
438 /* Don't overwrite the unmasked areas. */
9c9acae0
UW
439 ULONGEST old_val;
440 regcache_cooked_read_unsigned (regcache, r, &old_val);
ca3bf3bd
DJ
441 m = 0xffffffff >> (32 - size) << start;
442 regval <<= start;
9c9acae0
UW
443 regval = (regval & m) | (old_val & ~m);
444 regcache_cooked_write_unsigned (regcache, r, regval);
ca3bf3bd
DJ
445 }
446 }
447}
448
449
bdb4c075
MG
450/* Read a tie state or mapped registers. Read the masked areas
451 of the registers and assemble them into a single value. */
ca3bf3bd 452
05d1431c 453static enum register_status
9c9acae0
UW
454xtensa_register_read_masked (struct regcache *regcache,
455 xtensa_register_t *reg, gdb_byte *buffer)
ca3bf3bd
DJ
456{
457 unsigned int value[(MAX_REGISTER_SIZE + 3) / 4];
ca3bf3bd
DJ
458 const xtensa_mask_t *mask = reg->mask;
459
460 int shift = 0;
461 int start, size;
462
463 unsigned int *ptr = value;
464 unsigned int regval, mem = 0;
465
466 int bytesize = reg->byte_size;
467 int bitsize = bytesize * 8;
468 int i;
469
470 DEBUGTRACE ("xtensa_register_read_masked (reg \"%s\", ...)\n",
471 reg->name == 0 ? "" : reg->name);
472
473 /* Assemble the register from the masked areas of other registers. */
474 for (i = 0; i < mask->count; i++)
475 {
476 int r = mask->mask[i].reg_num;
9c9acae0
UW
477 if (r >= 0)
478 {
05d1431c 479 enum register_status status;
9c9acae0 480 ULONGEST val;
05d1431c
PA
481
482 status = regcache_cooked_read_unsigned (regcache, r, &val);
483 if (status != REG_VALID)
484 return status;
9c9acae0
UW
485 regval = (unsigned int) val;
486 }
487 else
488 regval = 0;
489
ca3bf3bd
DJ
490 start = mask->mask[i].bit_start;
491 size = mask->mask[i].bit_size;
492
493 regval >>= start;
494
495 if (size < 32)
496 regval &= (0xffffffff >> (32 - size));
497
498 mem |= regval << shift;
499
500 if ((shift += size) > bitsize)
501 error (_("size of all masks is larger than the register"));
502
503 if (shift >= 32)
504 {
505 *ptr++ = mem;
506 bitsize -= 32;
507 shift -= 32;
508
509 if (shift == 0)
510 mem = 0;
511 else
512 mem = regval >> (size - shift);
513 }
514 }
515
516 if (shift > 0)
517 *ptr = mem;
518
519 /* Copy value to target byte order. */
520 ptr = value;
521 mem = *ptr;
522
6b50c0b0 523 if (gdbarch_byte_order (get_regcache_arch (regcache)) == BFD_ENDIAN_BIG)
ca3bf3bd
DJ
524 for (i = 0; i < bytesize; i++)
525 {
526 if ((i & 3) == 0)
527 mem = *ptr++;
528 buffer[bytesize - i - 1] = mem & 0xff;
529 mem >>= 8;
530 }
531 else
532 for (i = 0; i < bytesize; i++)
533 {
534 if ((i & 3) == 0)
535 mem = *ptr++;
536 buffer[i] = mem & 0xff;
537 mem >>= 8;
538 }
05d1431c
PA
539
540 return REG_VALID;
ca3bf3bd
DJ
541}
542
543
544/* Read pseudo registers. */
545
05d1431c 546static enum register_status
ca3bf3bd
DJ
547xtensa_pseudo_register_read (struct gdbarch *gdbarch,
548 struct regcache *regcache,
549 int regnum,
550 gdb_byte *buffer)
551{
e17a4113
UW
552 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
553
ca3bf3bd 554 DEBUGTRACE ("xtensa_pseudo_register_read (... regnum = %d (%s) ...)\n",
d93859e2 555 regnum, xtensa_register_name (gdbarch, regnum));
ca3bf3bd 556
bdb4c075 557 /* Read aliases a0..a15, if this is a Windowed ABI. */
6b50c0b0 558 if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
94a0e877 559 && (regnum >= gdbarch_tdep (gdbarch)->a0_base)
6b50c0b0 560 && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
ca3bf3bd 561 {
ff7a4c00 562 gdb_byte *buf = (gdb_byte *) alloca (MAX_REGISTER_SIZE);
05d1431c 563 enum register_status status;
ca3bf3bd 564
05d1431c
PA
565 status = regcache_raw_read (regcache,
566 gdbarch_tdep (gdbarch)->wb_regnum,
567 buf);
568 if (status != REG_VALID)
569 return status;
ee967b5f 570 regnum = arreg_number (gdbarch, regnum,
e17a4113 571 extract_unsigned_integer (buf, 4, byte_order));
ca3bf3bd
DJ
572 }
573
bdb4c075 574 /* We can always read non-pseudo registers. */
6b50c0b0 575 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
05d1431c 576 return regcache_raw_read (regcache, regnum, buffer);
94a0e877
MG
577
578 /* We have to find out how to deal with priveleged registers.
579 Let's treat them as pseudo-registers, but we cannot read/write them. */
580
581 else if (regnum < gdbarch_tdep (gdbarch)->a0_base)
582 {
583 buffer[0] = (gdb_byte)0;
584 buffer[1] = (gdb_byte)0;
585 buffer[2] = (gdb_byte)0;
586 buffer[3] = (gdb_byte)0;
05d1431c 587 return REG_VALID;
94a0e877 588 }
ca3bf3bd 589 /* Pseudo registers. */
f57d151a 590 else if (regnum >= 0
6b50c0b0
UW
591 && regnum < gdbarch_num_regs (gdbarch)
592 + gdbarch_num_pseudo_regs (gdbarch))
ca3bf3bd 593 {
6b50c0b0 594 xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
ca3bf3bd 595 xtensa_register_type_t type = reg->type;
6b50c0b0 596 int flags = gdbarch_tdep (gdbarch)->target_flags;
ca3bf3bd 597
bdb4c075 598 /* We cannot read Unknown or Unmapped registers. */
ca3bf3bd
DJ
599 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
600 {
601 if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
602 {
603 warning (_("cannot read register %s"),
d93859e2 604 xtensa_register_name (gdbarch, regnum));
05d1431c 605 return REG_VALID;
ca3bf3bd
DJ
606 }
607 }
608
609 /* Some targets cannot read TIE register files. */
610 else if (type == xtRegisterTypeTieRegfile)
611 {
612 /* Use 'fetch' to get register? */
613 if (flags & xtTargetFlagsUseFetchStore)
614 {
615 warning (_("cannot read register"));
05d1431c 616 return REG_VALID;
ca3bf3bd
DJ
617 }
618
619 /* On some targets (esp. simulators), we can always read the reg. */
620 else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
621 {
622 warning (_("cannot read register"));
05d1431c 623 return REG_VALID;
ca3bf3bd
DJ
624 }
625 }
626
627 /* We can always read mapped registers. */
628 else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
05d1431c 629 return xtensa_register_read_masked (regcache, reg, buffer);
ca3bf3bd
DJ
630
631 /* Assume that we can read the register. */
05d1431c 632 return regcache_raw_read (regcache, regnum, buffer);
ca3bf3bd 633 }
ca3bf3bd
DJ
634 else
635 internal_error (__FILE__, __LINE__,
636 _("invalid register number %d"), regnum);
637}
638
639
640/* Write pseudo registers. */
641
642static void
643xtensa_pseudo_register_write (struct gdbarch *gdbarch,
644 struct regcache *regcache,
645 int regnum,
646 const gdb_byte *buffer)
647{
e17a4113
UW
648 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
649
ca3bf3bd 650 DEBUGTRACE ("xtensa_pseudo_register_write (... regnum = %d (%s) ...)\n",
d93859e2 651 regnum, xtensa_register_name (gdbarch, regnum));
ca3bf3bd 652
bdb4c075 653 /* Renumber register, if aliase a0..a15 on Windowed ABI. */
6b50c0b0 654 if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
94a0e877 655 && (regnum >= gdbarch_tdep (gdbarch)->a0_base)
6b50c0b0 656 && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
ca3bf3bd 657 {
ff7a4c00 658 gdb_byte *buf = (gdb_byte *) alloca (MAX_REGISTER_SIZE);
ca3bf3bd 659
304fe255 660 regcache_raw_read (regcache,
6b50c0b0 661 gdbarch_tdep (gdbarch)->wb_regnum, buf);
ee967b5f 662 regnum = arreg_number (gdbarch, regnum,
e17a4113 663 extract_unsigned_integer (buf, 4, byte_order));
ca3bf3bd
DJ
664 }
665
666 /* We can always write 'core' registers.
667 Note: We might have converted Ax->ARy. */
6b50c0b0 668 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
ca3bf3bd
DJ
669 regcache_raw_write (regcache, regnum, buffer);
670
94a0e877
MG
671 /* We have to find out how to deal with priveleged registers.
672 Let's treat them as pseudo-registers, but we cannot read/write them. */
673
674 else if (regnum < gdbarch_tdep (gdbarch)->a0_base)
675 {
676 return;
677 }
ca3bf3bd 678 /* Pseudo registers. */
f57d151a 679 else if (regnum >= 0
6b50c0b0
UW
680 && regnum < gdbarch_num_regs (gdbarch)
681 + gdbarch_num_pseudo_regs (gdbarch))
ca3bf3bd 682 {
6b50c0b0 683 xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
ca3bf3bd 684 xtensa_register_type_t type = reg->type;
6b50c0b0 685 int flags = gdbarch_tdep (gdbarch)->target_flags;
ca3bf3bd 686
bdb4c075
MG
687 /* On most targets, we cannot write registers
688 of type "Unknown" or "Unmapped". */
ca3bf3bd
DJ
689 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
690 {
691 if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
692 {
693 warning (_("cannot write register %s"),
d93859e2 694 xtensa_register_name (gdbarch, regnum));
ca3bf3bd
DJ
695 return;
696 }
697 }
698
699 /* Some targets cannot read TIE register files. */
700 else if (type == xtRegisterTypeTieRegfile)
701 {
702 /* Use 'store' to get register? */
703 if (flags & xtTargetFlagsUseFetchStore)
704 {
705 warning (_("cannot write register"));
706 return;
707 }
708
709 /* On some targets (esp. simulators), we can always write
710 the register. */
ca3bf3bd
DJ
711 else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
712 {
713 warning (_("cannot write register"));
714 return;
715 }
716 }
717
718 /* We can always write mapped registers. */
719 else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
720 {
9c9acae0 721 xtensa_register_write_masked (regcache, reg, buffer);
ca3bf3bd
DJ
722 return;
723 }
724
725 /* Assume that we can write the register. */
726 regcache_raw_write (regcache, regnum, buffer);
727 }
ca3bf3bd
DJ
728 else
729 internal_error (__FILE__, __LINE__,
730 _("invalid register number %d"), regnum);
731}
732
ca3bf3bd
DJ
733static struct reggroup *xtensa_ar_reggroup;
734static struct reggroup *xtensa_user_reggroup;
735static struct reggroup *xtensa_vectra_reggroup;
7b871568 736static struct reggroup *xtensa_cp[XTENSA_MAX_COPROCESSOR];
ca3bf3bd
DJ
737
738static void
739xtensa_init_reggroups (void)
740{
98689b25
MG
741 int i;
742 char cpname[] = "cp0";
743
ca3bf3bd
DJ
744 xtensa_ar_reggroup = reggroup_new ("ar", USER_REGGROUP);
745 xtensa_user_reggroup = reggroup_new ("user", USER_REGGROUP);
746 xtensa_vectra_reggroup = reggroup_new ("vectra", USER_REGGROUP);
ca3bf3bd 747
98689b25
MG
748 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
749 {
b801de47 750 cpname[2] = '0' + i;
98689b25
MG
751 xtensa_cp[i] = reggroup_new (cpname, USER_REGGROUP);
752 }
7b871568 753}
ca3bf3bd
DJ
754
755static void
756xtensa_add_reggroups (struct gdbarch *gdbarch)
757{
7b871568
MG
758 int i;
759
760 /* Predefined groups. */
ca3bf3bd
DJ
761 reggroup_add (gdbarch, all_reggroup);
762 reggroup_add (gdbarch, save_reggroup);
763 reggroup_add (gdbarch, restore_reggroup);
764 reggroup_add (gdbarch, system_reggroup);
7b871568
MG
765 reggroup_add (gdbarch, vector_reggroup);
766 reggroup_add (gdbarch, general_reggroup);
767 reggroup_add (gdbarch, float_reggroup);
768
769 /* Xtensa-specific groups. */
770 reggroup_add (gdbarch, xtensa_ar_reggroup);
771 reggroup_add (gdbarch, xtensa_user_reggroup);
772 reggroup_add (gdbarch, xtensa_vectra_reggroup);
ca3bf3bd 773
7b871568
MG
774 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
775 reggroup_add (gdbarch, xtensa_cp[i]);
ca3bf3bd
DJ
776}
777
7b871568
MG
778static int
779xtensa_coprocessor_register_group (struct reggroup *group)
780{
781 int i;
782
783 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
784 if (group == xtensa_cp[i])
785 return i;
786
787 return -1;
788}
ca3bf3bd
DJ
789
790#define SAVE_REST_FLAGS (XTENSA_REGISTER_FLAGS_READABLE \
791 | XTENSA_REGISTER_FLAGS_WRITABLE \
792 | XTENSA_REGISTER_FLAGS_VOLATILE)
793
794#define SAVE_REST_VALID (XTENSA_REGISTER_FLAGS_READABLE \
795 | XTENSA_REGISTER_FLAGS_WRITABLE)
796
797static int
798xtensa_register_reggroup_p (struct gdbarch *gdbarch,
799 int regnum,
800 struct reggroup *group)
801{
6b50c0b0 802 xtensa_register_t* reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
ca3bf3bd
DJ
803 xtensa_register_type_t type = reg->type;
804 xtensa_register_group_t rg = reg->group;
7b871568 805 int cp_number;
ca3bf3bd 806
57041825
MG
807 if (group == save_reggroup)
808 /* Every single register should be included into the list of registers
809 to be watched for changes while using -data-list-changed-registers. */
810 return 1;
811
ca3bf3bd
DJ
812 /* First, skip registers that are not visible to this target
813 (unknown and unmapped registers when not using ISS). */
814
815 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
816 return 0;
817 if (group == all_reggroup)
818 return 1;
819 if (group == xtensa_ar_reggroup)
820 return rg & xtRegisterGroupAddrReg;
821 if (group == xtensa_user_reggroup)
822 return rg & xtRegisterGroupUser;
823 if (group == float_reggroup)
824 return rg & xtRegisterGroupFloat;
825 if (group == general_reggroup)
826 return rg & xtRegisterGroupGeneral;
ca3bf3bd
DJ
827 if (group == system_reggroup)
828 return rg & xtRegisterGroupState;
829 if (group == vector_reggroup || group == xtensa_vectra_reggroup)
830 return rg & xtRegisterGroupVectra;
57041825 831 if (group == restore_reggroup)
6b50c0b0 832 return (regnum < gdbarch_num_regs (gdbarch)
ca3bf3bd 833 && (reg->flags & SAVE_REST_FLAGS) == SAVE_REST_VALID);
1448a0a2
PM
834 cp_number = xtensa_coprocessor_register_group (group);
835 if (cp_number >= 0)
7b871568 836 return rg & (xtRegisterGroupCP0 << cp_number);
ca3bf3bd
DJ
837 else
838 return 1;
839}
840
841
ca3bf3bd
DJ
842/* Supply register REGNUM from the buffer specified by GREGS and LEN
843 in the general-purpose register set REGSET to register cache
bdb4c075 844 REGCACHE. If REGNUM is -1 do this for all registers in REGSET. */
ca3bf3bd
DJ
845
846static void
847xtensa_supply_gregset (const struct regset *regset,
848 struct regcache *rc,
849 int regnum,
850 const void *gregs,
851 size_t len)
852{
19ba03f4 853 const xtensa_elf_gregset_t *regs = (const xtensa_elf_gregset_t *) gregs;
6b50c0b0 854 struct gdbarch *gdbarch = get_regcache_arch (rc);
ca3bf3bd
DJ
855 int i;
856
cce7e648 857 DEBUGTRACE ("xtensa_supply_gregset (..., regnum==%d, ...)\n", regnum);
ca3bf3bd 858
6b50c0b0
UW
859 if (regnum == gdbarch_pc_regnum (gdbarch) || regnum == -1)
860 regcache_raw_supply (rc, gdbarch_pc_regnum (gdbarch), (char *) &regs->pc);
861 if (regnum == gdbarch_ps_regnum (gdbarch) || regnum == -1)
862 regcache_raw_supply (rc, gdbarch_ps_regnum (gdbarch), (char *) &regs->ps);
863 if (regnum == gdbarch_tdep (gdbarch)->wb_regnum || regnum == -1)
864 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->wb_regnum,
304fe255 865 (char *) &regs->windowbase);
6b50c0b0
UW
866 if (regnum == gdbarch_tdep (gdbarch)->ws_regnum || regnum == -1)
867 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->ws_regnum,
304fe255 868 (char *) &regs->windowstart);
6b50c0b0
UW
869 if (regnum == gdbarch_tdep (gdbarch)->lbeg_regnum || regnum == -1)
870 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lbeg_regnum,
304fe255 871 (char *) &regs->lbeg);
6b50c0b0
UW
872 if (regnum == gdbarch_tdep (gdbarch)->lend_regnum || regnum == -1)
873 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lend_regnum,
304fe255 874 (char *) &regs->lend);
6b50c0b0
UW
875 if (regnum == gdbarch_tdep (gdbarch)->lcount_regnum || regnum == -1)
876 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lcount_regnum,
304fe255 877 (char *) &regs->lcount);
6b50c0b0
UW
878 if (regnum == gdbarch_tdep (gdbarch)->sar_regnum || regnum == -1)
879 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->sar_regnum,
304fe255 880 (char *) &regs->sar);
6b50c0b0
UW
881 if (regnum >=gdbarch_tdep (gdbarch)->ar_base
882 && regnum < gdbarch_tdep (gdbarch)->ar_base
883 + gdbarch_tdep (gdbarch)->num_aregs)
304fe255
UW
884 regcache_raw_supply (rc, regnum,
885 (char *) &regs->ar[regnum - gdbarch_tdep
6b50c0b0 886 (gdbarch)->ar_base]);
ca3bf3bd
DJ
887 else if (regnum == -1)
888 {
6b50c0b0
UW
889 for (i = 0; i < gdbarch_tdep (gdbarch)->num_aregs; ++i)
890 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->ar_base + i,
304fe255 891 (char *) &regs->ar[i]);
ca3bf3bd
DJ
892 }
893}
894
895
896/* Xtensa register set. */
897
898static struct regset
899xtensa_gregset =
900{
901 NULL,
902 xtensa_supply_gregset
903};
904
905
97094034 906/* Iterate over supported core file register note sections. */
ca3bf3bd 907
97094034
AA
908static void
909xtensa_iterate_over_regset_sections (struct gdbarch *gdbarch,
910 iterate_over_regset_sections_cb *cb,
911 void *cb_data,
912 const struct regcache *regcache)
ca3bf3bd 913{
97094034 914 DEBUGTRACE ("xtensa_iterate_over_regset_sections\n");
ca3bf3bd 915
97094034
AA
916 cb (".reg", sizeof (xtensa_elf_gregset_t), &xtensa_gregset,
917 NULL, cb_data);
ca3bf3bd
DJ
918}
919
920
bdb4c075 921/* Handling frames. */
ca3bf3bd 922
bdb4c075
MG
923/* Number of registers to save in case of Windowed ABI. */
924#define XTENSA_NUM_SAVED_AREGS 12
ca3bf3bd 925
bdb4c075
MG
926/* Frame cache part for Windowed ABI. */
927typedef struct xtensa_windowed_frame_cache
ca3bf3bd 928{
ee967b5f
MG
929 int wb; /* WINDOWBASE of the previous frame. */
930 int callsize; /* Call size of this frame. */
08b9c608
MG
931 int ws; /* WINDOWSTART of the previous frame. It keeps track of
932 life windows only. If there is no bit set for the
933 window, that means it had been already spilled
934 because of window overflow. */
935
936 /* Addresses of spilled A-registers.
937 AREGS[i] == -1, if corresponding AR is alive. */
ca3bf3bd 938 CORE_ADDR aregs[XTENSA_NUM_SAVED_AREGS];
bdb4c075
MG
939} xtensa_windowed_frame_cache_t;
940
941/* Call0 ABI Definitions. */
942
581e13c1
MS
943#define C0_MAXOPDS 3 /* Maximum number of operands for prologue
944 analysis. */
bdb4c075
MG
945#define C0_CLESV 12 /* Callee-saved registers are here and up. */
946#define C0_SP 1 /* Register used as SP. */
947#define C0_FP 15 /* Register used as FP. */
948#define C0_RA 0 /* Register used as return address. */
949#define C0_ARGS 2 /* Register used as first arg/retval. */
950#define C0_NARGS 6 /* Number of A-regs for args/retvals. */
951
952/* Each element of xtensa_call0_frame_cache.c0_rt[] describes for each
953 A-register where the current content of the reg came from (in terms
954 of an original reg and a constant). Negative values of c0_rt[n].fp_reg
955 mean that the orignal content of the register was saved to the stack.
956 c0_rt[n].fr.ofs is NOT the offset from the frame base because we don't
957 know where SP will end up until the entire prologue has been analyzed. */
958
959#define C0_CONST -1 /* fr_reg value if register contains a constant. */
960#define C0_INEXP -2 /* fr_reg value if inexpressible as reg + offset. */
961#define C0_NOSTK -1 /* to_stk value if register has not been stored. */
962
963extern xtensa_isa xtensa_default_isa;
964
965typedef struct xtensa_c0reg
966{
dbab50de
MG
967 int fr_reg; /* original register from which register content
968 is derived, or C0_CONST, or C0_INEXP. */
969 int fr_ofs; /* constant offset from reg, or immediate value. */
970 int to_stk; /* offset from original SP to register (4-byte aligned),
971 or C0_NOSTK if register has not been saved. */
bdb4c075
MG
972} xtensa_c0reg_t;
973
bdb4c075
MG
974/* Frame cache part for Call0 ABI. */
975typedef struct xtensa_call0_frame_cache
976{
dbab50de
MG
977 int c0_frmsz; /* Stack frame size. */
978 int c0_hasfp; /* Current frame uses frame pointer. */
979 int fp_regnum; /* A-register used as FP. */
980 int c0_fp; /* Actual value of frame pointer. */
981 int c0_fpalign; /* Dinamic adjustment for the stack
982 pointer. It's an AND mask. Zero,
983 if alignment was not adjusted. */
984 int c0_old_sp; /* In case of dynamic adjustment, it is
985 a register holding unaligned sp.
986 C0_INEXP, when undefined. */
987 int c0_sp_ofs; /* If "c0_old_sp" was spilled it's a
988 stack offset. C0_NOSTK otherwise. */
989
990 xtensa_c0reg_t c0_rt[C0_NREGS]; /* Register tracking information. */
bdb4c075
MG
991} xtensa_call0_frame_cache_t;
992
993typedef struct xtensa_frame_cache
994{
ee967b5f 995 CORE_ADDR base; /* Stack pointer of this frame. */
08b9c608
MG
996 CORE_ADDR pc; /* PC of this frame at the function entry point. */
997 CORE_ADDR ra; /* The raw return address of this frame. */
998 CORE_ADDR ps; /* The PS register of the previous (older) frame. */
999 CORE_ADDR prev_sp; /* Stack Pointer of the previous (older) frame. */
bdb4c075
MG
1000 int call0; /* It's a call0 framework (else windowed). */
1001 union
1002 {
1003 xtensa_windowed_frame_cache_t wd; /* call0 == false. */
1004 xtensa_call0_frame_cache_t c0; /* call0 == true. */
1005 };
ca3bf3bd
DJ
1006} xtensa_frame_cache_t;
1007
1008
1009static struct xtensa_frame_cache *
bdb4c075 1010xtensa_alloc_frame_cache (int windowed)
ca3bf3bd
DJ
1011{
1012 xtensa_frame_cache_t *cache;
1013 int i;
1014
1015 DEBUGTRACE ("xtensa_alloc_frame_cache ()\n");
1016
1017 cache = FRAME_OBSTACK_ZALLOC (xtensa_frame_cache_t);
1018
1019 cache->base = 0;
1020 cache->pc = 0;
1021 cache->ra = 0;
ca3bf3bd 1022 cache->ps = 0;
ca3bf3bd 1023 cache->prev_sp = 0;
bdb4c075
MG
1024 cache->call0 = !windowed;
1025 if (cache->call0)
1026 {
1027 cache->c0.c0_frmsz = -1;
1028 cache->c0.c0_hasfp = 0;
1029 cache->c0.fp_regnum = -1;
1030 cache->c0.c0_fp = -1;
dbab50de
MG
1031 cache->c0.c0_fpalign = 0;
1032 cache->c0.c0_old_sp = C0_INEXP;
1033 cache->c0.c0_sp_ofs = C0_NOSTK;
ca3bf3bd 1034
bdb4c075
MG
1035 for (i = 0; i < C0_NREGS; i++)
1036 {
1037 cache->c0.c0_rt[i].fr_reg = i;
1038 cache->c0.c0_rt[i].fr_ofs = 0;
1039 cache->c0.c0_rt[i].to_stk = C0_NOSTK;
1040 }
1041 }
1042 else
1043 {
1044 cache->wd.wb = 0;
ee967b5f 1045 cache->wd.ws = 0;
bdb4c075 1046 cache->wd.callsize = -1;
ca3bf3bd 1047
bdb4c075
MG
1048 for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
1049 cache->wd.aregs[i] = -1;
1050 }
ca3bf3bd
DJ
1051 return cache;
1052}
1053
1054
1055static CORE_ADDR
1056xtensa_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
1057{
1058 return address & ~15;
1059}
1060
1061
1062static CORE_ADDR
1063xtensa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1064{
ff7a4c00 1065 gdb_byte buf[8];
0dfff4cb 1066 CORE_ADDR pc;
ca3bf3bd 1067
a74ce742
PM
1068 DEBUGTRACE ("xtensa_unwind_pc (next_frame = %s)\n",
1069 host_address_to_string (next_frame));
ca3bf3bd 1070
6b50c0b0 1071 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
0dfff4cb 1072 pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
ca3bf3bd 1073
0dfff4cb 1074 DEBUGINFO ("[xtensa_unwind_pc] pc = 0x%08x\n", (unsigned int) pc);
ca3bf3bd 1075
0dfff4cb 1076 return pc;
ca3bf3bd
DJ
1077}
1078
1079
1080static struct frame_id
5142f611 1081xtensa_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
ca3bf3bd
DJ
1082{
1083 CORE_ADDR pc, fp;
ca3bf3bd 1084
5142f611 1085 /* THIS-FRAME is a dummy frame. Return a frame ID of that frame. */
ca3bf3bd 1086
5142f611
MG
1087 pc = get_frame_pc (this_frame);
1088 fp = get_frame_register_unsigned
1089 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
ca3bf3bd
DJ
1090
1091 /* Make dummy frame ID unique by adding a constant. */
bdb4c075 1092 return frame_id_build (fp + SP_ALIGNMENT, pc);
ca3bf3bd
DJ
1093}
1094
08b9c608
MG
1095/* Returns true, if instruction to execute next is unique to Xtensa Window
1096 Interrupt Handlers. It can only be one of L32E, S32E, RFWO, or RFWU. */
1097
1098static int
1099xtensa_window_interrupt_insn (struct gdbarch *gdbarch, CORE_ADDR pc)
1100{
1101 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1102 unsigned int insn = read_memory_integer (pc, 4, byte_order);
1103 unsigned int code;
1104
1105 if (byte_order == BFD_ENDIAN_BIG)
1106 {
1107 /* Check, if this is L32E or S32E. */
1108 code = insn & 0xf000ff00;
1109 if ((code == 0x00009000) || (code == 0x00009400))
1110 return 1;
1111 /* Check, if this is RFWU or RFWO. */
1112 code = insn & 0xffffff00;
1113 return ((code == 0x00430000) || (code == 0x00530000));
1114 }
1115 else
1116 {
1117 /* Check, if this is L32E or S32E. */
1118 code = insn & 0x00ff000f;
1119 if ((code == 0x090000) || (code == 0x490000))
1120 return 1;
1121 /* Check, if this is RFWU or RFWO. */
1122 code = insn & 0x00ffffff;
1123 return ((code == 0x00003400) || (code == 0x00003500));
1124 }
1125}
1126
ee967b5f
MG
1127/* Returns the best guess about which register is a frame pointer
1128 for the function containing CURRENT_PC. */
1129
d4709618
MG
1130#define XTENSA_ISA_BSZ 32 /* Instruction buffer size. */
1131#define XTENSA_ISA_BADPC ((CORE_ADDR)0) /* Bad PC value. */
ee967b5f
MG
1132
1133static unsigned int
1134xtensa_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR current_pc)
1135{
1136#define RETURN_FP goto done
1137
1138 unsigned int fp_regnum = gdbarch_tdep (gdbarch)->a0_base + 1;
1139 CORE_ADDR start_addr;
1140 xtensa_isa isa;
1141 xtensa_insnbuf ins, slot;
948f8e3d 1142 gdb_byte ibuf[XTENSA_ISA_BSZ];
ee967b5f
MG
1143 CORE_ADDR ia, bt, ba;
1144 xtensa_format ifmt;
1145 int ilen, islots, is;
1146 xtensa_opcode opc;
1147 const char *opcname;
1148
1149 find_pc_partial_function (current_pc, NULL, &start_addr, NULL);
1150 if (start_addr == 0)
1151 return fp_regnum;
1152
ee967b5f
MG
1153 isa = xtensa_default_isa;
1154 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
1155 ins = xtensa_insnbuf_alloc (isa);
1156 slot = xtensa_insnbuf_alloc (isa);
1157 ba = 0;
1158
1159 for (ia = start_addr, bt = ia; ia < current_pc ; ia += ilen)
1160 {
1161 if (ia + xtensa_isa_maxlength (isa) > bt)
1162 {
1163 ba = ia;
1164 bt = (ba + XTENSA_ISA_BSZ) < current_pc
1165 ? ba + XTENSA_ISA_BSZ : current_pc;
d4709618
MG
1166 if (target_read_memory (ba, ibuf, bt - ba) != 0)
1167 RETURN_FP;
ee967b5f
MG
1168 }
1169
1170 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
1171 ifmt = xtensa_format_decode (isa, ins);
1172 if (ifmt == XTENSA_UNDEFINED)
1173 RETURN_FP;
1174 ilen = xtensa_format_length (isa, ifmt);
1175 if (ilen == XTENSA_UNDEFINED)
1176 RETURN_FP;
1177 islots = xtensa_format_num_slots (isa, ifmt);
1178 if (islots == XTENSA_UNDEFINED)
1179 RETURN_FP;
1180
1181 for (is = 0; is < islots; ++is)
1182 {
1183 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
1184 RETURN_FP;
1185
1186 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
1187 if (opc == XTENSA_UNDEFINED)
1188 RETURN_FP;
1189
1190 opcname = xtensa_opcode_name (isa, opc);
1191
1192 if (strcasecmp (opcname, "mov.n") == 0
1193 || strcasecmp (opcname, "or") == 0)
1194 {
1195 unsigned int register_operand;
1196
1197 /* Possible candidate for setting frame pointer
581e13c1 1198 from A1. This is what we are looking for. */
ee967b5f
MG
1199
1200 if (xtensa_operand_get_field (isa, opc, 1, ifmt,
1201 is, slot, &register_operand) != 0)
1202 RETURN_FP;
1203 if (xtensa_operand_decode (isa, opc, 1, &register_operand) != 0)
1204 RETURN_FP;
1205 if (register_operand == 1) /* Mov{.n} FP A1. */
1206 {
1207 if (xtensa_operand_get_field (isa, opc, 0, ifmt, is, slot,
1208 &register_operand) != 0)
1209 RETURN_FP;
1210 if (xtensa_operand_decode (isa, opc, 0,
1211 &register_operand) != 0)
1212 RETURN_FP;
1213
581e13c1
MS
1214 fp_regnum
1215 = gdbarch_tdep (gdbarch)->a0_base + register_operand;
ee967b5f
MG
1216 RETURN_FP;
1217 }
1218 }
1219
1220 if (
1221 /* We have problems decoding the memory. */
1222 opcname == NULL
1223 || strcasecmp (opcname, "ill") == 0
1224 || strcasecmp (opcname, "ill.n") == 0
1225 /* Hit planted breakpoint. */
1226 || strcasecmp (opcname, "break") == 0
1227 || strcasecmp (opcname, "break.n") == 0
1228 /* Flow control instructions finish prologue. */
1229 || xtensa_opcode_is_branch (isa, opc) > 0
1230 || xtensa_opcode_is_jump (isa, opc) > 0
1231 || xtensa_opcode_is_loop (isa, opc) > 0
1232 || xtensa_opcode_is_call (isa, opc) > 0
1233 || strcasecmp (opcname, "simcall") == 0
1234 || strcasecmp (opcname, "syscall") == 0)
1235 /* Can not continue analysis. */
1236 RETURN_FP;
1237 }
1238 }
1239done:
1240 xtensa_insnbuf_free(isa, slot);
1241 xtensa_insnbuf_free(isa, ins);
1242 return fp_regnum;
1243}
1244
bdb4c075
MG
1245/* The key values to identify the frame using "cache" are
1246
ee967b5f 1247 cache->base = SP (or best guess about FP) of this frame;
bdb4c075 1248 cache->pc = entry-PC (entry point of the frame function);
581e13c1 1249 cache->prev_sp = SP of the previous frame. */
bdb4c075
MG
1250
1251static void
5142f611 1252call0_frame_cache (struct frame_info *this_frame,
dbab50de 1253 xtensa_frame_cache_t *cache, CORE_ADDR pc);
ca3bf3bd 1254
08b9c608
MG
1255static void
1256xtensa_window_interrupt_frame_cache (struct frame_info *this_frame,
1257 xtensa_frame_cache_t *cache,
1258 CORE_ADDR pc);
1259
ca3bf3bd 1260static struct xtensa_frame_cache *
5142f611 1261xtensa_frame_cache (struct frame_info *this_frame, void **this_cache)
ca3bf3bd
DJ
1262{
1263 xtensa_frame_cache_t *cache;
ca3bf3bd 1264 CORE_ADDR ra, wb, ws, pc, sp, ps;
5142f611 1265 struct gdbarch *gdbarch = get_frame_arch (this_frame);
e17a4113 1266 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
ee967b5f 1267 unsigned int fp_regnum;
98689b25 1268 int windowed, ps_regnum;
ca3bf3bd 1269
ca3bf3bd 1270 if (*this_cache)
19ba03f4 1271 return (struct xtensa_frame_cache *) *this_cache;
ca3bf3bd 1272
98689b25
MG
1273 pc = get_frame_register_unsigned (this_frame, gdbarch_pc_regnum (gdbarch));
1274 ps_regnum = gdbarch_ps_regnum (gdbarch);
68d6df83
MG
1275 ps = (ps_regnum >= 0
1276 ? get_frame_register_unsigned (this_frame, ps_regnum) : TX_PS);
98689b25
MG
1277
1278 windowed = windowing_enabled (gdbarch, ps);
bdb4c075 1279
ca3bf3bd 1280 /* Get pristine xtensa-frame. */
bdb4c075 1281 cache = xtensa_alloc_frame_cache (windowed);
ca3bf3bd
DJ
1282 *this_cache = cache;
1283
bdb4c075 1284 if (windowed)
ca3bf3bd 1285 {
a08b52b5 1286 LONGEST op1;
98689b25 1287
bdb4c075 1288 /* Get WINDOWBASE, WINDOWSTART, and PS registers. */
5142f611
MG
1289 wb = get_frame_register_unsigned (this_frame,
1290 gdbarch_tdep (gdbarch)->wb_regnum);
1291 ws = get_frame_register_unsigned (this_frame,
1292 gdbarch_tdep (gdbarch)->ws_regnum);
ca3bf3bd 1293
a08b52b5
MF
1294 if (safe_read_memory_integer (pc, 1, byte_order, &op1)
1295 && XTENSA_IS_ENTRY (gdbarch, op1))
ca3bf3bd 1296 {
bdb4c075 1297 int callinc = CALLINC (ps);
5142f611
MG
1298 ra = get_frame_register_unsigned
1299 (this_frame, gdbarch_tdep (gdbarch)->a0_base + callinc * 4);
bdb4c075
MG
1300
1301 /* ENTRY hasn't been executed yet, therefore callsize is still 0. */
1302 cache->wd.callsize = 0;
1303 cache->wd.wb = wb;
1304 cache->wd.ws = ws;
5142f611
MG
1305 cache->prev_sp = get_frame_register_unsigned
1306 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
ee967b5f
MG
1307
1308 /* This only can be the outermost frame since we are
1309 just about to execute ENTRY. SP hasn't been set yet.
1310 We can assume any frame size, because it does not
1311 matter, and, let's fake frame base in cache. */
98689b25 1312 cache->base = cache->prev_sp - 16;
ee967b5f
MG
1313
1314 cache->pc = pc;
1315 cache->ra = (cache->pc & 0xc0000000) | (ra & 0x3fffffff);
1316 cache->ps = (ps & ~PS_CALLINC_MASK)
1317 | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
1318
1319 return cache;
bdb4c075
MG
1320 }
1321 else
1322 {
ee967b5f 1323 fp_regnum = xtensa_scan_prologue (gdbarch, pc);
5142f611
MG
1324 ra = get_frame_register_unsigned (this_frame,
1325 gdbarch_tdep (gdbarch)->a0_base);
bdb4c075 1326 cache->wd.callsize = WINSIZE (ra);
304fe255 1327 cache->wd.wb = (wb - cache->wd.callsize / 4)
6b50c0b0 1328 & (gdbarch_tdep (gdbarch)->num_aregs / 4 - 1);
bdb4c075 1329 cache->wd.ws = ws & ~(1 << wb);
ca3bf3bd 1330
5142f611 1331 cache->pc = get_frame_func (this_frame);
f6402f18 1332 cache->ra = (pc & 0xc0000000) | (ra & 0x3fffffff);
ee967b5f
MG
1333 cache->ps = (ps & ~PS_CALLINC_MASK)
1334 | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
1335 }
bdb4c075
MG
1336
1337 if (cache->wd.ws == 0)
ca3bf3bd 1338 {
bdb4c075 1339 int i;
ca3bf3bd 1340
bdb4c075 1341 /* Set A0...A3. */
5142f611
MG
1342 sp = get_frame_register_unsigned
1343 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1) - 16;
bdb4c075
MG
1344
1345 for (i = 0; i < 4; i++, sp += 4)
1346 {
1347 cache->wd.aregs[i] = sp;
1348 }
ca3bf3bd 1349
bdb4c075 1350 if (cache->wd.callsize > 4)
ca3bf3bd 1351 {
bdb4c075 1352 /* Set A4...A7/A11. */
ee967b5f
MG
1353 /* Get the SP of the frame previous to the previous one.
1354 To achieve this, we have to dereference SP twice. */
e17a4113
UW
1355 sp = (CORE_ADDR) read_memory_integer (sp - 12, 4, byte_order);
1356 sp = (CORE_ADDR) read_memory_integer (sp - 12, 4, byte_order);
bdb4c075
MG
1357 sp -= cache->wd.callsize * 4;
1358
ee967b5f 1359 for ( i = 4; i < cache->wd.callsize; i++, sp += 4)
bdb4c075
MG
1360 {
1361 cache->wd.aregs[i] = sp;
1362 }
ca3bf3bd
DJ
1363 }
1364 }
ca3bf3bd 1365
bdb4c075 1366 if ((cache->prev_sp == 0) && ( ra != 0 ))
08b9c608
MG
1367 /* If RA is equal to 0 this frame is an outermost frame. Leave
1368 cache->prev_sp unchanged marking the boundary of the frame stack. */
ca3bf3bd 1369 {
ee967b5f 1370 if ((cache->wd.ws & (1 << cache->wd.wb)) == 0)
bdb4c075
MG
1371 {
1372 /* Register window overflow already happened.
1373 We can read caller's SP from the proper spill loction. */
5142f611
MG
1374 sp = get_frame_register_unsigned
1375 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
e17a4113 1376 cache->prev_sp = read_memory_integer (sp - 12, 4, byte_order);
bdb4c075
MG
1377 }
1378 else
1379 {
1380 /* Read caller's frame SP directly from the previous window. */
ee967b5f 1381 int regnum = arreg_number
91d8eb23 1382 (gdbarch, gdbarch_tdep (gdbarch)->a0_base + 1,
304fe255 1383 cache->wd.wb);
ca3bf3bd 1384
08b9c608 1385 cache->prev_sp = xtensa_read_register (regnum);
bdb4c075 1386 }
ca3bf3bd
DJ
1387 }
1388 }
08b9c608
MG
1389 else if (xtensa_window_interrupt_insn (gdbarch, pc))
1390 {
1391 /* Execution stopped inside Xtensa Window Interrupt Handler. */
1392
1393 xtensa_window_interrupt_frame_cache (this_frame, cache, pc);
1394 /* Everything was set already, including cache->base. */
1395 return cache;
1396 }
bdb4c075
MG
1397 else /* Call0 framework. */
1398 {
dbab50de 1399 call0_frame_cache (this_frame, cache, pc);
ee967b5f 1400 fp_regnum = cache->c0.fp_regnum;
bdb4c075 1401 }
ca3bf3bd 1402
5142f611 1403 cache->base = get_frame_register_unsigned (this_frame, fp_regnum);
ca3bf3bd 1404
ca3bf3bd
DJ
1405 return cache;
1406}
1407
dbab50de
MG
1408static int xtensa_session_once_reported = 1;
1409
1410/* Report a problem with prologue analysis while doing backtracing.
1411 But, do it only once to avoid annoyng repeated messages. */
1412
4e6ca6d5
MG
1413static void
1414warning_once (void)
dbab50de
MG
1415{
1416 if (xtensa_session_once_reported == 0)
1417 warning (_("\
1418\nUnrecognised function prologue. Stack trace cannot be resolved. \
1419This message will not be repeated in this session.\n"));
1420
1421 xtensa_session_once_reported = 1;
1422}
1423
1424
ca3bf3bd 1425static void
5142f611 1426xtensa_frame_this_id (struct frame_info *this_frame,
ca3bf3bd
DJ
1427 void **this_cache,
1428 struct frame_id *this_id)
1429{
1430 struct xtensa_frame_cache *cache =
5142f611 1431 xtensa_frame_cache (this_frame, this_cache);
ca3bf3bd
DJ
1432
1433 if (cache->prev_sp == 0)
1434 return;
1435
5142f611 1436 (*this_id) = frame_id_build (cache->prev_sp, cache->pc);
bdb4c075 1437}
ca3bf3bd 1438
5142f611
MG
1439static struct value *
1440xtensa_frame_prev_register (struct frame_info *this_frame,
ca3bf3bd 1441 void **this_cache,
5142f611 1442 int regnum)
ca3bf3bd 1443{
5142f611
MG
1444 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1445 struct xtensa_frame_cache *cache;
1446 ULONGEST saved_reg = 0;
ca3bf3bd
DJ
1447 int done = 1;
1448
5142f611
MG
1449 if (*this_cache == NULL)
1450 *this_cache = xtensa_frame_cache (this_frame, this_cache);
19ba03f4 1451 cache = (struct xtensa_frame_cache *) *this_cache;
ca3bf3bd 1452
6b50c0b0 1453 if (regnum ==gdbarch_pc_regnum (gdbarch))
bdb4c075 1454 saved_reg = cache->ra;
6b50c0b0 1455 else if (regnum == gdbarch_tdep (gdbarch)->a0_base + 1)
bdb4c075
MG
1456 saved_reg = cache->prev_sp;
1457 else if (!cache->call0)
ca3bf3bd 1458 {
6b50c0b0 1459 if (regnum == gdbarch_tdep (gdbarch)->ws_regnum)
ee967b5f 1460 saved_reg = cache->wd.ws;
6b50c0b0 1461 else if (regnum == gdbarch_tdep (gdbarch)->wb_regnum)
bdb4c075 1462 saved_reg = cache->wd.wb;
6b50c0b0 1463 else if (regnum == gdbarch_ps_regnum (gdbarch))
bdb4c075 1464 saved_reg = cache->ps;
ca3bf3bd 1465 else
bdb4c075 1466 done = 0;
ca3bf3bd 1467 }
ca3bf3bd
DJ
1468 else
1469 done = 0;
1470
1471 if (done)
5142f611 1472 return frame_unwind_got_constant (this_frame, regnum, saved_reg);
ca3bf3bd 1473
bdb4c075 1474 if (!cache->call0) /* Windowed ABI. */
ca3bf3bd 1475 {
ee967b5f
MG
1476 /* Convert A-register numbers to AR-register numbers,
1477 if we deal with A-register. */
94a0e877 1478 if (regnum >= gdbarch_tdep (gdbarch)->a0_base
6b50c0b0 1479 && regnum <= gdbarch_tdep (gdbarch)->a0_base + 15)
ee967b5f 1480 regnum = arreg_number (gdbarch, regnum, cache->wd.wb);
ca3bf3bd 1481
ee967b5f 1482 /* Check, if we deal with AR-register saved on stack. */
6b50c0b0
UW
1483 if (regnum >= gdbarch_tdep (gdbarch)->ar_base
1484 && regnum <= (gdbarch_tdep (gdbarch)->ar_base
1485 + gdbarch_tdep (gdbarch)->num_aregs))
bdb4c075 1486 {
ee967b5f 1487 int areg = areg_number (gdbarch, regnum, cache->wd.wb);
ca3bf3bd 1488
bdb4c075
MG
1489 if (areg >= 0
1490 && areg < XTENSA_NUM_SAVED_AREGS
1491 && cache->wd.aregs[areg] != -1)
5142f611
MG
1492 return frame_unwind_got_memory (this_frame, regnum,
1493 cache->wd.aregs[areg]);
ca3bf3bd
DJ
1494 }
1495 }
bdb4c075
MG
1496 else /* Call0 ABI. */
1497 {
6b50c0b0
UW
1498 int reg = (regnum >= gdbarch_tdep (gdbarch)->ar_base
1499 && regnum <= (gdbarch_tdep (gdbarch)->ar_base
304fe255 1500 + C0_NREGS))
6b50c0b0 1501 ? regnum - gdbarch_tdep (gdbarch)->ar_base : regnum;
ca3bf3bd 1502
bdb4c075
MG
1503 if (reg < C0_NREGS)
1504 {
1505 CORE_ADDR spe;
1506 int stkofs;
1507
1508 /* If register was saved in the prologue, retrieve it. */
1509 stkofs = cache->c0.c0_rt[reg].to_stk;
1510 if (stkofs != C0_NOSTK)
1511 {
1512 /* Determine SP on entry based on FP. */
1513 spe = cache->c0.c0_fp
1514 - cache->c0.c0_rt[cache->c0.fp_regnum].fr_ofs;
5142f611 1515
581e13c1
MS
1516 return frame_unwind_got_memory (this_frame, regnum,
1517 spe + stkofs);
bdb4c075
MG
1518 }
1519 }
1520 }
1521
1522 /* All other registers have been either saved to
1523 the stack or are still alive in the processor. */
ca3bf3bd 1524
5142f611 1525 return frame_unwind_got_register (this_frame, regnum, regnum);
ca3bf3bd
DJ
1526}
1527
1528
1529static const struct frame_unwind
5142f611 1530xtensa_unwind =
ca3bf3bd
DJ
1531{
1532 NORMAL_FRAME,
8fbca658 1533 default_frame_unwind_stop_reason,
ca3bf3bd 1534 xtensa_frame_this_id,
5142f611
MG
1535 xtensa_frame_prev_register,
1536 NULL,
1537 default_frame_sniffer
ca3bf3bd
DJ
1538};
1539
ca3bf3bd 1540static CORE_ADDR
5142f611 1541xtensa_frame_base_address (struct frame_info *this_frame, void **this_cache)
ca3bf3bd
DJ
1542{
1543 struct xtensa_frame_cache *cache =
5142f611 1544 xtensa_frame_cache (this_frame, this_cache);
ca3bf3bd
DJ
1545
1546 return cache->base;
1547}
1548
1549static const struct frame_base
1550xtensa_frame_base =
1551{
5142f611 1552 &xtensa_unwind,
ca3bf3bd
DJ
1553 xtensa_frame_base_address,
1554 xtensa_frame_base_address,
1555 xtensa_frame_base_address
1556};
1557
1558
1559static void
1560xtensa_extract_return_value (struct type *type,
1561 struct regcache *regcache,
1562 void *dst)
1563{
6b50c0b0 1564 struct gdbarch *gdbarch = get_regcache_arch (regcache);
19ba03f4 1565 bfd_byte *valbuf = (bfd_byte *) dst;
ca3bf3bd
DJ
1566 int len = TYPE_LENGTH (type);
1567 ULONGEST pc, wb;
1568 int callsize, areg;
1569 int offset = 0;
1570
1571 DEBUGTRACE ("xtensa_extract_return_value (...)\n");
1572
1573 gdb_assert(len > 0);
1574
6b50c0b0 1575 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
bdb4c075
MG
1576 {
1577 /* First, we have to find the caller window in the register file. */
6b50c0b0 1578 regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
91d8eb23 1579 callsize = extract_call_winsize (gdbarch, pc);
ca3bf3bd 1580
bdb4c075
MG
1581 /* On Xtensa, we can return up to 4 words (or 2 for call12). */
1582 if (len > (callsize > 8 ? 8 : 16))
1583 internal_error (__FILE__, __LINE__,
581e13c1
MS
1584 _("cannot extract return value of %d bytes long"),
1585 len);
ca3bf3bd 1586
bdb4c075
MG
1587 /* Get the register offset of the return
1588 register (A2) in the caller window. */
304fe255 1589 regcache_raw_read_unsigned
6b50c0b0 1590 (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
ee967b5f 1591 areg = arreg_number (gdbarch,
91d8eb23 1592 gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
bdb4c075
MG
1593 }
1594 else
1595 {
1596 /* No windowing hardware - Call0 ABI. */
94a0e877 1597 areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
bdb4c075 1598 }
ca3bf3bd
DJ
1599
1600 DEBUGINFO ("[xtensa_extract_return_value] areg %d len %d\n", areg, len);
1601
6b50c0b0 1602 if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
ca3bf3bd
DJ
1603 offset = 4 - len;
1604
1605 for (; len > 0; len -= 4, areg++, valbuf += 4)
1606 {
1607 if (len < 4)
1608 regcache_raw_read_part (regcache, areg, offset, len, valbuf);
1609 else
1610 regcache_raw_read (regcache, areg, valbuf);
1611 }
1612}
1613
1614
1615static void
1616xtensa_store_return_value (struct type *type,
1617 struct regcache *regcache,
1618 const void *dst)
1619{
6b50c0b0 1620 struct gdbarch *gdbarch = get_regcache_arch (regcache);
19ba03f4 1621 const bfd_byte *valbuf = (const bfd_byte *) dst;
ca3bf3bd
DJ
1622 unsigned int areg;
1623 ULONGEST pc, wb;
1624 int callsize;
1625 int len = TYPE_LENGTH (type);
1626 int offset = 0;
1627
1628 DEBUGTRACE ("xtensa_store_return_value (...)\n");
1629
6b50c0b0 1630 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
bdb4c075 1631 {
6b50c0b0
UW
1632 regcache_raw_read_unsigned
1633 (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
1634 regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
91d8eb23 1635 callsize = extract_call_winsize (gdbarch, pc);
ca3bf3bd 1636
bdb4c075
MG
1637 if (len > (callsize > 8 ? 8 : 16))
1638 internal_error (__FILE__, __LINE__,
1639 _("unimplemented for this length: %d"),
1640 TYPE_LENGTH (type));
ee967b5f
MG
1641 areg = arreg_number (gdbarch,
1642 gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
ca3bf3bd 1643
bdb4c075 1644 DEBUGTRACE ("[xtensa_store_return_value] callsize %d wb %d\n",
ca3bf3bd 1645 callsize, (int) wb);
bdb4c075
MG
1646 }
1647 else
1648 {
94a0e877 1649 areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
bdb4c075 1650 }
ca3bf3bd 1651
6b50c0b0 1652 if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
ca3bf3bd
DJ
1653 offset = 4 - len;
1654
ca3bf3bd
DJ
1655 for (; len > 0; len -= 4, areg++, valbuf += 4)
1656 {
1657 if (len < 4)
1658 regcache_raw_write_part (regcache, areg, offset, len, valbuf);
1659 else
1660 regcache_raw_write (regcache, areg, valbuf);
1661 }
1662}
1663
1664
bdb4c075 1665static enum return_value_convention
ca3bf3bd 1666xtensa_return_value (struct gdbarch *gdbarch,
6a3a010b 1667 struct value *function,
ca3bf3bd
DJ
1668 struct type *valtype,
1669 struct regcache *regcache,
1670 gdb_byte *readbuf,
1671 const gdb_byte *writebuf)
1672{
bdb4c075 1673 /* Structures up to 16 bytes are returned in registers. */
ca3bf3bd
DJ
1674
1675 int struct_return = ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1676 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1677 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
1678 && TYPE_LENGTH (valtype) > 16);
1679
1680 if (struct_return)
1681 return RETURN_VALUE_STRUCT_CONVENTION;
1682
1683 DEBUGTRACE ("xtensa_return_value(...)\n");
1684
1685 if (writebuf != NULL)
1686 {
1687 xtensa_store_return_value (valtype, regcache, writebuf);
1688 }
1689
1690 if (readbuf != NULL)
1691 {
1692 gdb_assert (!struct_return);
1693 xtensa_extract_return_value (valtype, regcache, readbuf);
1694 }
1695 return RETURN_VALUE_REGISTER_CONVENTION;
1696}
1697
1698
1699/* DUMMY FRAME */
1700
1701static CORE_ADDR
1702xtensa_push_dummy_call (struct gdbarch *gdbarch,
1703 struct value *function,
1704 struct regcache *regcache,
1705 CORE_ADDR bp_addr,
1706 int nargs,
1707 struct value **args,
1708 CORE_ADDR sp,
1709 int struct_return,
1710 CORE_ADDR struct_addr)
1711{
e17a4113 1712 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
ca3bf3bd
DJ
1713 int i;
1714 int size, onstack_size;
ff7a4c00 1715 gdb_byte *buf = (gdb_byte *) alloca (16);
ca3bf3bd
DJ
1716 CORE_ADDR ra, ps;
1717 struct argument_info
1718 {
1719 const bfd_byte *contents;
1720 int length;
1721 int onstack; /* onstack == 0 => in reg */
1722 int align; /* alignment */
1723 union
1724 {
581e13c1
MS
1725 int offset; /* stack offset if on stack. */
1726 int regno; /* regno if in register. */
ca3bf3bd
DJ
1727 } u;
1728 };
1729
1730 struct argument_info *arg_info =
1731 (struct argument_info *) alloca (nargs * sizeof (struct argument_info));
1732
1733 CORE_ADDR osp = sp;
1734
1735 DEBUGTRACE ("xtensa_push_dummy_call (...)\n");
1736
1737 if (xtensa_debug_level > 3)
1738 {
1739 int i;
1740 DEBUGINFO ("[xtensa_push_dummy_call] nargs = %d\n", nargs);
1741 DEBUGINFO ("[xtensa_push_dummy_call] sp=0x%x, struct_return=%d, "
1742 "struct_addr=0x%x\n",
1743 (int) sp, (int) struct_return, (int) struct_addr);
1744
1745 for (i = 0; i < nargs; i++)
1746 {
1747 struct value *arg = args[i];
1748 struct type *arg_type = check_typedef (value_type (arg));
3329c4b5
PM
1749 fprintf_unfiltered (gdb_stdlog, "%2d: %s %3d ", i,
1750 host_address_to_string (arg),
1751 TYPE_LENGTH (arg_type));
ca3bf3bd
DJ
1752 switch (TYPE_CODE (arg_type))
1753 {
1754 case TYPE_CODE_INT:
1755 fprintf_unfiltered (gdb_stdlog, "int");
1756 break;
1757 case TYPE_CODE_STRUCT:
1758 fprintf_unfiltered (gdb_stdlog, "struct");
1759 break;
1760 default:
1761 fprintf_unfiltered (gdb_stdlog, "%3d", TYPE_CODE (arg_type));
1762 break;
1763 }
3329c4b5
PM
1764 fprintf_unfiltered (gdb_stdlog, " %s\n",
1765 host_address_to_string (value_contents (arg)));
ca3bf3bd
DJ
1766 }
1767 }
1768
1769 /* First loop: collect information.
1770 Cast into type_long. (This shouldn't happen often for C because
1771 GDB already does this earlier.) It's possible that GDB could
1772 do it all the time but it's harmless to leave this code here. */
1773
1774 size = 0;
1775 onstack_size = 0;
1776 i = 0;
1777
1778 if (struct_return)
1779 size = REGISTER_SIZE;
1780
1781 for (i = 0; i < nargs; i++)
1782 {
1783 struct argument_info *info = &arg_info[i];
1784 struct value *arg = args[i];
1785 struct type *arg_type = check_typedef (value_type (arg));
1786
1787 switch (TYPE_CODE (arg_type))
1788 {
1789 case TYPE_CODE_INT:
1790 case TYPE_CODE_BOOL:
1791 case TYPE_CODE_CHAR:
1792 case TYPE_CODE_RANGE:
1793 case TYPE_CODE_ENUM:
1794
1795 /* Cast argument to long if necessary as the mask does it too. */
0dfff4cb
UW
1796 if (TYPE_LENGTH (arg_type)
1797 < TYPE_LENGTH (builtin_type (gdbarch)->builtin_long))
ca3bf3bd 1798 {
0dfff4cb 1799 arg_type = builtin_type (gdbarch)->builtin_long;
ca3bf3bd
DJ
1800 arg = value_cast (arg_type, arg);
1801 }
bdb4c075
MG
1802 /* Aligment is equal to the type length for the basic types. */
1803 info->align = TYPE_LENGTH (arg_type);
ca3bf3bd
DJ
1804 break;
1805
1806 case TYPE_CODE_FLT:
1807
1808 /* Align doubles correctly. */
0dfff4cb
UW
1809 if (TYPE_LENGTH (arg_type)
1810 == TYPE_LENGTH (builtin_type (gdbarch)->builtin_double))
1811 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_double);
ca3bf3bd 1812 else
0dfff4cb 1813 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_long);
ca3bf3bd
DJ
1814 break;
1815
1816 case TYPE_CODE_STRUCT:
1817 default:
0dfff4cb 1818 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_long);
ca3bf3bd
DJ
1819 break;
1820 }
1821 info->length = TYPE_LENGTH (arg_type);
1822 info->contents = value_contents (arg);
1823
1824 /* Align size and onstack_size. */
1825 size = (size + info->align - 1) & ~(info->align - 1);
1826 onstack_size = (onstack_size + info->align - 1) & ~(info->align - 1);
1827
91d8eb23 1828 if (size + info->length > REGISTER_SIZE * ARG_NOF (gdbarch))
ca3bf3bd
DJ
1829 {
1830 info->onstack = 1;
1831 info->u.offset = onstack_size;
1832 onstack_size += info->length;
1833 }
1834 else
1835 {
1836 info->onstack = 0;
91d8eb23 1837 info->u.regno = ARG_1ST (gdbarch) + size / REGISTER_SIZE;
ca3bf3bd
DJ
1838 }
1839 size += info->length;
1840 }
1841
1842 /* Adjust the stack pointer and align it. */
1843 sp = align_down (sp - onstack_size, SP_ALIGNMENT);
1844
bdb4c075 1845 /* Simulate MOVSP, if Windowed ABI. */
6b50c0b0 1846 if ((gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
304fe255 1847 && (sp != osp))
ca3bf3bd
DJ
1848 {
1849 read_memory (osp - 16, buf, 16);
1850 write_memory (sp - 16, buf, 16);
1851 }
1852
1853 /* Second Loop: Load arguments. */
1854
1855 if (struct_return)
1856 {
e17a4113 1857 store_unsigned_integer (buf, REGISTER_SIZE, byte_order, struct_addr);
91d8eb23 1858 regcache_cooked_write (regcache, ARG_1ST (gdbarch), buf);
ca3bf3bd
DJ
1859 }
1860
1861 for (i = 0; i < nargs; i++)
1862 {
1863 struct argument_info *info = &arg_info[i];
1864
1865 if (info->onstack)
1866 {
1867 int n = info->length;
1868 CORE_ADDR offset = sp + info->u.offset;
1869
1870 /* Odd-sized structs are aligned to the lower side of a memory
1871 word in big-endian mode and require a shift. This only
1872 applies for structures smaller than one word. */
1873
4c6b5505 1874 if (n < REGISTER_SIZE
6b50c0b0 1875 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
ca3bf3bd
DJ
1876 offset += (REGISTER_SIZE - n);
1877
1878 write_memory (offset, info->contents, info->length);
1879
1880 }
1881 else
1882 {
1883 int n = info->length;
1884 const bfd_byte *cp = info->contents;
1885 int r = info->u.regno;
1886
1887 /* Odd-sized structs are aligned to the lower side of registers in
1888 big-endian mode and require a shift. The odd-sized leftover will
1889 be at the end. Note that this is only true for structures smaller
1890 than REGISTER_SIZE; for larger odd-sized structures the excess
1891 will be left-aligned in the register on both endiannesses. */
1892
e17a4113 1893 if (n < REGISTER_SIZE && byte_order == BFD_ENDIAN_BIG)
ca3bf3bd 1894 {
e17a4113
UW
1895 ULONGEST v;
1896 v = extract_unsigned_integer (cp, REGISTER_SIZE, byte_order);
ca3bf3bd
DJ
1897 v = v >> ((REGISTER_SIZE - n) * TARGET_CHAR_BIT);
1898
e17a4113 1899 store_unsigned_integer (buf, REGISTER_SIZE, byte_order, v);
ca3bf3bd
DJ
1900 regcache_cooked_write (regcache, r, buf);
1901
1902 cp += REGISTER_SIZE;
1903 n -= REGISTER_SIZE;
1904 r++;
1905 }
1906 else
1907 while (n > 0)
1908 {
ca3bf3bd
DJ
1909 regcache_cooked_write (regcache, r, cp);
1910
ca3bf3bd
DJ
1911 cp += REGISTER_SIZE;
1912 n -= REGISTER_SIZE;
1913 r++;
1914 }
1915 }
1916 }
1917
ca3bf3bd 1918 /* Set the return address of dummy frame to the dummy address.
bdb4c075 1919 The return address for the current function (in A0) is
ca3bf3bd
DJ
1920 saved in the dummy frame, so we can savely overwrite A0 here. */
1921
6b50c0b0 1922 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
bdb4c075 1923 {
98689b25 1924 ULONGEST val;
68d6df83 1925
bdb4c075 1926 ra = (bp_addr & 0x3fffffff) | 0x40000000;
98689b25
MG
1927 regcache_raw_read_unsigned (regcache, gdbarch_ps_regnum (gdbarch), &val);
1928 ps = (unsigned long) val & ~0x00030000;
304fe255 1929 regcache_cooked_write_unsigned
6b50c0b0 1930 (regcache, gdbarch_tdep (gdbarch)->a0_base + 4, ra);
bdb4c075 1931 regcache_cooked_write_unsigned (regcache,
6b50c0b0 1932 gdbarch_ps_regnum (gdbarch),
bdb4c075 1933 ps | 0x00010000);
94a0e877
MG
1934
1935 /* All the registers have been saved. After executing
1936 dummy call, they all will be restored. So it's safe
1937 to modify WINDOWSTART register to make it look like there
1938 is only one register window corresponding to WINDOWEBASE. */
1939
1940 regcache_raw_read (regcache, gdbarch_tdep (gdbarch)->wb_regnum, buf);
e17a4113
UW
1941 regcache_cooked_write_unsigned
1942 (regcache, gdbarch_tdep (gdbarch)->ws_regnum,
1943 1 << extract_unsigned_integer (buf, 4, byte_order));
bdb4c075
MG
1944 }
1945 else
1946 {
1947 /* Simulate CALL0: write RA into A0 register. */
304fe255 1948 regcache_cooked_write_unsigned
94a0e877 1949 (regcache, gdbarch_tdep (gdbarch)->a0_base, bp_addr);
bdb4c075 1950 }
ca3bf3bd
DJ
1951
1952 /* Set new stack pointer and return it. */
304fe255 1953 regcache_cooked_write_unsigned (regcache,
6b50c0b0 1954 gdbarch_tdep (gdbarch)->a0_base + 1, sp);
ca3bf3bd
DJ
1955 /* Make dummy frame ID unique by adding a constant. */
1956 return sp + SP_ALIGNMENT;
1957}
1958
cd6c3b4f
YQ
1959/* Implement the breakpoint_kind_from_pc gdbarch method. */
1960
d19280ad
YQ
1961static int
1962xtensa_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
1963{
1964 if (gdbarch_tdep (gdbarch)->isa_use_density_instructions)
1965 return 2;
1966 else
1967 return 4;
1968}
ca3bf3bd
DJ
1969
1970/* Return a breakpoint for the current location of PC. We always use
1971 the density version if we have density instructions (regardless of the
1972 current instruction at PC), and use regular instructions otherwise. */
1973
1974#define BIG_BREAKPOINT { 0x00, 0x04, 0x00 }
1975#define LITTLE_BREAKPOINT { 0x00, 0x40, 0x00 }
1976#define DENSITY_BIG_BREAKPOINT { 0xd2, 0x0f }
1977#define DENSITY_LITTLE_BREAKPOINT { 0x2d, 0xf0 }
1978
cd6c3b4f
YQ
1979/* Implement the sw_breakpoint_from_kind gdbarch method. */
1980
d19280ad
YQ
1981static const gdb_byte *
1982xtensa_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
ca3bf3bd 1983{
d19280ad 1984 *size = kind;
ca3bf3bd 1985
d19280ad 1986 if (kind == 4)
ca3bf3bd 1987 {
d19280ad
YQ
1988 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
1989 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
1990
67d57894 1991 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
d19280ad 1992 return big_breakpoint;
ca3bf3bd 1993 else
d19280ad 1994 return little_breakpoint;
ca3bf3bd
DJ
1995 }
1996 else
1997 {
d19280ad
YQ
1998 static unsigned char density_big_breakpoint[] = DENSITY_BIG_BREAKPOINT;
1999 static unsigned char density_little_breakpoint[]
2000 = DENSITY_LITTLE_BREAKPOINT;
2001
67d57894 2002 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
d19280ad 2003 return density_big_breakpoint;
ca3bf3bd 2004 else
d19280ad 2005 return density_little_breakpoint;
ca3bf3bd
DJ
2006 }
2007}
2008
bdb4c075
MG
2009/* Call0 ABI support routines. */
2010
f976a05d
MG
2011/* Return true, if PC points to "ret" or "ret.n". */
2012
2013static int
2014call0_ret (CORE_ADDR start_pc, CORE_ADDR finish_pc)
2015{
2016#define RETURN_RET goto done
2017 xtensa_isa isa;
2018 xtensa_insnbuf ins, slot;
948f8e3d 2019 gdb_byte ibuf[XTENSA_ISA_BSZ];
f976a05d
MG
2020 CORE_ADDR ia, bt, ba;
2021 xtensa_format ifmt;
2022 int ilen, islots, is;
2023 xtensa_opcode opc;
2024 const char *opcname;
2025 int found_ret = 0;
2026
2027 isa = xtensa_default_isa;
2028 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2029 ins = xtensa_insnbuf_alloc (isa);
2030 slot = xtensa_insnbuf_alloc (isa);
2031 ba = 0;
2032
2033 for (ia = start_pc, bt = ia; ia < finish_pc ; ia += ilen)
2034 {
2035 if (ia + xtensa_isa_maxlength (isa) > bt)
2036 {
2037 ba = ia;
2038 bt = (ba + XTENSA_ISA_BSZ) < finish_pc
2039 ? ba + XTENSA_ISA_BSZ : finish_pc;
2040 if (target_read_memory (ba, ibuf, bt - ba) != 0 )
2041 RETURN_RET;
2042 }
2043
2044 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2045 ifmt = xtensa_format_decode (isa, ins);
2046 if (ifmt == XTENSA_UNDEFINED)
2047 RETURN_RET;
2048 ilen = xtensa_format_length (isa, ifmt);
2049 if (ilen == XTENSA_UNDEFINED)
2050 RETURN_RET;
2051 islots = xtensa_format_num_slots (isa, ifmt);
2052 if (islots == XTENSA_UNDEFINED)
2053 RETURN_RET;
2054
2055 for (is = 0; is < islots; ++is)
2056 {
2057 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
2058 RETURN_RET;
2059
2060 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2061 if (opc == XTENSA_UNDEFINED)
2062 RETURN_RET;
2063
2064 opcname = xtensa_opcode_name (isa, opc);
2065
2066 if ((strcasecmp (opcname, "ret.n") == 0)
2067 || (strcasecmp (opcname, "ret") == 0))
2068 {
2069 found_ret = 1;
2070 RETURN_RET;
2071 }
2072 }
2073 }
2074 done:
2075 xtensa_insnbuf_free(isa, slot);
2076 xtensa_insnbuf_free(isa, ins);
2077 return found_ret;
2078}
2079
bdb4c075
MG
2080/* Call0 opcode class. Opcodes are preclassified according to what they
2081 mean for Call0 prologue analysis, and their number of significant operands.
2082 The purpose of this is to simplify prologue analysis by separating
2083 instruction decoding (libisa) from the semantics of prologue analysis. */
2084
68d6df83
MG
2085typedef enum
2086{
bdb4c075
MG
2087 c0opc_illegal, /* Unknown to libisa (invalid) or 'ill' opcode. */
2088 c0opc_uninteresting, /* Not interesting for Call0 prologue analysis. */
2089 c0opc_flow, /* Flow control insn. */
2090 c0opc_entry, /* ENTRY indicates non-Call0 prologue. */
2091 c0opc_break, /* Debugger software breakpoints. */
2092 c0opc_add, /* Adding two registers. */
2093 c0opc_addi, /* Adding a register and an immediate. */
dbab50de 2094 c0opc_and, /* Bitwise "and"-ing two registers. */
bdb4c075
MG
2095 c0opc_sub, /* Subtracting a register from a register. */
2096 c0opc_mov, /* Moving a register to a register. */
2097 c0opc_movi, /* Moving an immediate to a register. */
2098 c0opc_l32r, /* Loading a literal. */
08b9c608
MG
2099 c0opc_s32i, /* Storing word at fixed offset from a base register. */
2100 c0opc_rwxsr, /* RSR, WRS, or XSR instructions. */
2101 c0opc_l32e, /* L32E instruction. */
2102 c0opc_s32e, /* S32E instruction. */
2103 c0opc_rfwo, /* RFWO instruction. */
2104 c0opc_rfwu, /* RFWU instruction. */
bdb4c075
MG
2105 c0opc_NrOf /* Number of opcode classifications. */
2106} xtensa_insn_kind;
2107
08b9c608
MG
2108/* Return true, if OPCNAME is RSR, WRS, or XSR instruction. */
2109
2110static int
2111rwx_special_register (const char *opcname)
2112{
2113 char ch = *opcname++;
2114
2115 if ((ch != 'r') && (ch != 'w') && (ch != 'x'))
2116 return 0;
2117 if (*opcname++ != 's')
2118 return 0;
2119 if (*opcname++ != 'r')
2120 return 0;
2121 if (*opcname++ != '.')
2122 return 0;
2123
2124 return 1;
2125}
bdb4c075
MG
2126
2127/* Classify an opcode based on what it means for Call0 prologue analysis. */
2128
2129static xtensa_insn_kind
2130call0_classify_opcode (xtensa_isa isa, xtensa_opcode opc)
2131{
2132 const char *opcname;
2133 xtensa_insn_kind opclass = c0opc_uninteresting;
2134
2135 DEBUGTRACE ("call0_classify_opcode (..., opc = %d)\n", opc);
2136
2137 /* Get opcode name and handle special classifications. */
2138
2139 opcname = xtensa_opcode_name (isa, opc);
2140
2141 if (opcname == NULL
2142 || strcasecmp (opcname, "ill") == 0
2143 || strcasecmp (opcname, "ill.n") == 0)
2144 opclass = c0opc_illegal;
2145 else if (strcasecmp (opcname, "break") == 0
2146 || strcasecmp (opcname, "break.n") == 0)
2147 opclass = c0opc_break;
2148 else if (strcasecmp (opcname, "entry") == 0)
2149 opclass = c0opc_entry;
08b9c608
MG
2150 else if (strcasecmp (opcname, "rfwo") == 0)
2151 opclass = c0opc_rfwo;
2152 else if (strcasecmp (opcname, "rfwu") == 0)
2153 opclass = c0opc_rfwu;
bdb4c075
MG
2154 else if (xtensa_opcode_is_branch (isa, opc) > 0
2155 || xtensa_opcode_is_jump (isa, opc) > 0
2156 || xtensa_opcode_is_loop (isa, opc) > 0
2157 || xtensa_opcode_is_call (isa, opc) > 0
2158 || strcasecmp (opcname, "simcall") == 0
2159 || strcasecmp (opcname, "syscall") == 0)
2160 opclass = c0opc_flow;
2161
2162 /* Also, classify specific opcodes that need to be tracked. */
2163 else if (strcasecmp (opcname, "add") == 0
2164 || strcasecmp (opcname, "add.n") == 0)
2165 opclass = c0opc_add;
dbab50de
MG
2166 else if (strcasecmp (opcname, "and") == 0)
2167 opclass = c0opc_and;
bdb4c075
MG
2168 else if (strcasecmp (opcname, "addi") == 0
2169 || strcasecmp (opcname, "addi.n") == 0
2170 || strcasecmp (opcname, "addmi") == 0)
2171 opclass = c0opc_addi;
2172 else if (strcasecmp (opcname, "sub") == 0)
2173 opclass = c0opc_sub;
2174 else if (strcasecmp (opcname, "mov.n") == 0
2175 || strcasecmp (opcname, "or") == 0) /* Could be 'mov' asm macro. */
2176 opclass = c0opc_mov;
2177 else if (strcasecmp (opcname, "movi") == 0
2178 || strcasecmp (opcname, "movi.n") == 0)
2179 opclass = c0opc_movi;
2180 else if (strcasecmp (opcname, "l32r") == 0)
2181 opclass = c0opc_l32r;
2182 else if (strcasecmp (opcname, "s32i") == 0
2183 || strcasecmp (opcname, "s32i.n") == 0)
2184 opclass = c0opc_s32i;
08b9c608
MG
2185 else if (strcasecmp (opcname, "l32e") == 0)
2186 opclass = c0opc_l32e;
2187 else if (strcasecmp (opcname, "s32e") == 0)
2188 opclass = c0opc_s32e;
2189 else if (rwx_special_register (opcname))
2190 opclass = c0opc_rwxsr;
bdb4c075
MG
2191
2192 return opclass;
2193}
2194
2195/* Tracks register movement/mutation for a given operation, which may
2196 be within a bundle. Updates the destination register tracking info
2197 accordingly. The pc is needed only for pc-relative load instructions
2198 (eg. l32r). The SP register number is needed to identify stores to
dbab50de
MG
2199 the stack frame. Returns 0, if analysis was succesfull, non-zero
2200 otherwise. */
bdb4c075 2201
dbab50de
MG
2202static int
2203call0_track_op (struct gdbarch *gdbarch, xtensa_c0reg_t dst[], xtensa_c0reg_t src[],
bdb4c075 2204 xtensa_insn_kind opclass, int nods, unsigned odv[],
dbab50de 2205 CORE_ADDR pc, int spreg, xtensa_frame_cache_t *cache)
bdb4c075 2206{
e17a4113 2207 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
dbab50de 2208 unsigned litbase, litaddr, litval;
bdb4c075
MG
2209
2210 switch (opclass)
2211 {
2212 case c0opc_addi:
2213 /* 3 operands: dst, src, imm. */
2214 gdb_assert (nods == 3);
2215 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2216 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + odv[2];
2217 break;
2218 case c0opc_add:
2219 /* 3 operands: dst, src1, src2. */
08b9c608 2220 gdb_assert (nods == 3);
bdb4c075
MG
2221 if (src[odv[1]].fr_reg == C0_CONST)
2222 {
2223 dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
2224 dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs + src[odv[1]].fr_ofs;
2225 }
2226 else if (src[odv[2]].fr_reg == C0_CONST)
2227 {
2228 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2229 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + src[odv[2]].fr_ofs;
2230 }
2231 else dst[odv[0]].fr_reg = C0_INEXP;
2232 break;
dbab50de
MG
2233 case c0opc_and:
2234 /* 3 operands: dst, src1, src2. */
2235 gdb_assert (nods == 3);
2236 if (cache->c0.c0_fpalign == 0)
2237 {
2238 /* Handle dynamic stack alignment. */
2239 if ((src[odv[0]].fr_reg == spreg) && (src[odv[1]].fr_reg == spreg))
2240 {
2241 if (src[odv[2]].fr_reg == C0_CONST)
2242 cache->c0.c0_fpalign = src[odv[2]].fr_ofs;
2243 break;
2244 }
2245 else if ((src[odv[0]].fr_reg == spreg)
2246 && (src[odv[2]].fr_reg == spreg))
2247 {
2248 if (src[odv[1]].fr_reg == C0_CONST)
2249 cache->c0.c0_fpalign = src[odv[1]].fr_ofs;
2250 break;
2251 }
2252 /* else fall through. */
2253 }
2254 if (src[odv[1]].fr_reg == C0_CONST)
2255 {
2256 dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
2257 dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs & src[odv[1]].fr_ofs;
2258 }
2259 else if (src[odv[2]].fr_reg == C0_CONST)
2260 {
2261 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2262 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs & src[odv[2]].fr_ofs;
2263 }
2264 else dst[odv[0]].fr_reg = C0_INEXP;
2265 break;
bdb4c075
MG
2266 case c0opc_sub:
2267 /* 3 operands: dst, src1, src2. */
2268 gdb_assert (nods == 3);
2269 if (src[odv[2]].fr_reg == C0_CONST)
2270 {
2271 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2272 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs - src[odv[2]].fr_ofs;
2273 }
2274 else dst[odv[0]].fr_reg = C0_INEXP;
2275 break;
2276 case c0opc_mov:
2277 /* 2 operands: dst, src [, src]. */
2278 gdb_assert (nods == 2);
dbab50de
MG
2279 /* First, check if it's a special case of saving unaligned SP
2280 to a spare register in case of dynamic stack adjustment.
2281 But, only do it one time. The second time could be initializing
2282 frame pointer. We don't want to overwrite the first one. */
2283 if ((odv[1] == spreg) && (cache->c0.c0_old_sp == C0_INEXP))
2284 cache->c0.c0_old_sp = odv[0];
2285
bdb4c075
MG
2286 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2287 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs;
2288 break;
2289 case c0opc_movi:
2290 /* 2 operands: dst, imm. */
2291 gdb_assert (nods == 2);
2292 dst[odv[0]].fr_reg = C0_CONST;
2293 dst[odv[0]].fr_ofs = odv[1];
2294 break;
2295 case c0opc_l32r:
2296 /* 2 operands: dst, literal offset. */
2297 gdb_assert (nods == 2);
dbab50de
MG
2298 /* litbase = xtensa_get_litbase (pc); can be also used. */
2299 litbase = (gdbarch_tdep (gdbarch)->litbase_regnum == -1)
2300 ? 0 : xtensa_read_register
2301 (gdbarch_tdep (gdbarch)->litbase_regnum);
bdb4c075
MG
2302 litaddr = litbase & 1
2303 ? (litbase & ~1) + (signed)odv[1]
2304 : (pc + 3 + (signed)odv[1]) & ~3;
e17a4113 2305 litval = read_memory_integer (litaddr, 4, byte_order);
bdb4c075
MG
2306 dst[odv[0]].fr_reg = C0_CONST;
2307 dst[odv[0]].fr_ofs = litval;
2308 break;
2309 case c0opc_s32i:
2310 /* 3 operands: value, base, offset. */
2311 gdb_assert (nods == 3 && spreg >= 0 && spreg < C0_NREGS);
dbab50de
MG
2312 /* First, check if it's a spill for saved unaligned SP,
2313 when dynamic stack adjustment was applied to this frame. */
2314 if ((cache->c0.c0_fpalign != 0) /* Dynamic stack adjustment. */
2315 && (odv[1] == spreg) /* SP usage indicates spill. */
2316 && (odv[0] == cache->c0.c0_old_sp)) /* Old SP register spilled. */
2317 cache->c0.c0_sp_ofs = odv[2];
2318
bdb4c075
MG
2319 if (src[odv[1]].fr_reg == spreg /* Store to stack frame. */
2320 && (src[odv[1]].fr_ofs & 3) == 0 /* Alignment preserved. */
2321 && src[odv[0]].fr_reg >= 0 /* Value is from a register. */
2322 && src[odv[0]].fr_ofs == 0 /* Value hasn't been modified. */
2323 && src[src[odv[0]].fr_reg].to_stk == C0_NOSTK) /* First time. */
2324 {
2325 /* ISA encoding guarantees alignment. But, check it anyway. */
2326 gdb_assert ((odv[2] & 3) == 0);
2327 dst[src[odv[0]].fr_reg].to_stk = src[odv[1]].fr_ofs + odv[2];
2328 }
2329 break;
dbab50de
MG
2330 /* If we end up inside Window Overflow / Underflow interrupt handler
2331 report an error because these handlers should have been handled
2332 already in a different way. */
2333 case c0opc_l32e:
2334 case c0opc_s32e:
2335 case c0opc_rfwo:
2336 case c0opc_rfwu:
2337 return 1;
bdb4c075 2338 default:
dbab50de 2339 return 1;
bdb4c075 2340 }
dbab50de 2341 return 0;
bdb4c075
MG
2342}
2343
dbab50de 2344/* Analyze prologue of the function at start address to determine if it uses
bdb4c075 2345 the Call0 ABI, and if so track register moves and linear modifications
dbab50de
MG
2346 in the prologue up to the PC or just beyond the prologue, whichever is
2347 first. An 'entry' instruction indicates non-Call0 ABI and the end of the
2348 prologue. The prologue may overlap non-prologue instructions but is
2349 guaranteed to end by the first flow-control instruction (jump, branch,
2350 call or return). Since an optimized function may move information around
2351 and change the stack frame arbitrarily during the prologue, the information
2352 is guaranteed valid only at the point in the function indicated by the PC.
bdb4c075
MG
2353 May be used to skip the prologue or identify the ABI, w/o tracking.
2354
2355 Returns: Address of first instruction after prologue, or PC (whichever
2356 is first), or 0, if decoding failed (in libisa).
2357 Input args:
2358 start Start address of function/prologue.
2359 pc Program counter to stop at. Use 0 to continue to end of prologue.
2360 If 0, avoids infinite run-on in corrupt code memory by bounding
2361 the scan to the end of the function if that can be determined.
dbab50de 2362 nregs Number of general registers to track.
bdb4c075 2363 InOut args:
dbab50de 2364 cache Xtensa frame cache.
bdb4c075
MG
2365
2366 Note that these may produce useful results even if decoding fails
2367 because they begin with default assumptions that analysis may change. */
2368
2369static CORE_ADDR
e17a4113 2370call0_analyze_prologue (struct gdbarch *gdbarch,
dbab50de
MG
2371 CORE_ADDR start, CORE_ADDR pc,
2372 int nregs, xtensa_frame_cache_t *cache)
bdb4c075
MG
2373{
2374 CORE_ADDR ia; /* Current insn address in prologue. */
2375 CORE_ADDR ba = 0; /* Current address at base of insn buffer. */
2376 CORE_ADDR bt; /* Current address at top+1 of insn buffer. */
948f8e3d 2377 gdb_byte ibuf[XTENSA_ISA_BSZ];/* Instruction buffer for decoding prologue. */
bdb4c075
MG
2378 xtensa_isa isa; /* libisa ISA handle. */
2379 xtensa_insnbuf ins, slot; /* libisa handle to decoded insn, slot. */
2380 xtensa_format ifmt; /* libisa instruction format. */
2381 int ilen, islots, is; /* Instruction length, nbr slots, current slot. */
2382 xtensa_opcode opc; /* Opcode in current slot. */
2383 xtensa_insn_kind opclass; /* Opcode class for Call0 prologue analysis. */
2384 int nods; /* Opcode number of operands. */
2385 unsigned odv[C0_MAXOPDS]; /* Operand values in order provided by libisa. */
2386 xtensa_c0reg_t *rtmp; /* Register tracking info snapshot. */
2387 int j; /* General loop counter. */
2388 int fail = 0; /* Set non-zero and exit, if decoding fails. */
2389 CORE_ADDR body_pc; /* The PC for the first non-prologue insn. */
2390 CORE_ADDR end_pc; /* The PC for the lust function insn. */
2391
2392 struct symtab_and_line prologue_sal;
2393
2394 DEBUGTRACE ("call0_analyze_prologue (start = 0x%08x, pc = 0x%08x, ...)\n",
2395 (int)start, (int)pc);
2396
2397 /* Try to limit the scan to the end of the function if a non-zero pc
2398 arg was not supplied to avoid probing beyond the end of valid memory.
2399 If memory is full of garbage that classifies as c0opc_uninteresting.
2400 If this fails (eg. if no symbols) pc ends up 0 as it was.
26c4b26f 2401 Initialize the Call0 frame and register tracking info.
bdb4c075
MG
2402 Assume it's Call0 until an 'entry' instruction is encountered.
2403 Assume we may be in the prologue until we hit a flow control instr. */
2404
2405 rtmp = NULL;
8179e739 2406 body_pc = UINT_MAX;
bdb4c075
MG
2407 end_pc = 0;
2408
2409 /* Find out, if we have an information about the prologue from DWARF. */
2410 prologue_sal = find_pc_line (start, 0);
2411 if (prologue_sal.line != 0) /* Found debug info. */
2412 body_pc = prologue_sal.end;
2413
2414 /* If we are going to analyze the prologue in general without knowing about
2415 the current PC, make the best assumtion for the end of the prologue. */
2416 if (pc == 0)
2417 {
2418 find_pc_partial_function (start, 0, NULL, &end_pc);
325fac50 2419 body_pc = std::min (end_pc, body_pc);
bdb4c075
MG
2420 }
2421 else
325fac50 2422 body_pc = std::min (pc, body_pc);
bdb4c075 2423
dbab50de
MG
2424 cache->call0 = 1;
2425 rtmp = (xtensa_c0reg_t*) alloca(nregs * sizeof(xtensa_c0reg_t));
bdb4c075
MG
2426
2427 isa = xtensa_default_isa;
2ff5e605 2428 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
bdb4c075
MG
2429 ins = xtensa_insnbuf_alloc (isa);
2430 slot = xtensa_insnbuf_alloc (isa);
2431
2432 for (ia = start, bt = ia; ia < body_pc ; ia += ilen)
2433 {
2434 /* (Re)fill instruction buffer from memory if necessary, but do not
2435 read memory beyond PC to be sure we stay within text section
2436 (this protection only works if a non-zero pc is supplied). */
2437
2438 if (ia + xtensa_isa_maxlength (isa) > bt)
2439 {
2440 ba = ia;
2ff5e605 2441 bt = (ba + XTENSA_ISA_BSZ) < body_pc ? ba + XTENSA_ISA_BSZ : body_pc;
dbab50de
MG
2442 if (target_read_memory (ba, ibuf, bt - ba) != 0 )
2443 error (_("Unable to read target memory ..."));
bdb4c075
MG
2444 }
2445
2446 /* Decode format information. */
2447
2448 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2449 ifmt = xtensa_format_decode (isa, ins);
2450 if (ifmt == XTENSA_UNDEFINED)
2451 {
2452 fail = 1;
2453 goto done;
2454 }
2455 ilen = xtensa_format_length (isa, ifmt);
2456 if (ilen == XTENSA_UNDEFINED)
2457 {
2458 fail = 1;
2459 goto done;
2460 }
2461 islots = xtensa_format_num_slots (isa, ifmt);
2462 if (islots == XTENSA_UNDEFINED)
2463 {
2464 fail = 1;
2465 goto done;
2466 }
2467
2468 /* Analyze a bundle or a single instruction, using a snapshot of
2469 the register tracking info as input for the entire bundle so that
2470 register changes do not take effect within this bundle. */
ca3bf3bd 2471
bdb4c075 2472 for (j = 0; j < nregs; ++j)
dbab50de 2473 rtmp[j] = cache->c0.c0_rt[j];
bdb4c075
MG
2474
2475 for (is = 0; is < islots; ++is)
2476 {
2477 /* Decode a slot and classify the opcode. */
2478
2479 fail = xtensa_format_get_slot (isa, ifmt, is, ins, slot);
2480 if (fail)
2481 goto done;
2482
2483 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
dbab50de 2484 DEBUGVERB ("[call0_analyze_prologue] instr addr = 0x%08x, opc = %d\n",
bdb4c075
MG
2485 (unsigned)ia, opc);
2486 if (opc == XTENSA_UNDEFINED)
2487 opclass = c0opc_illegal;
2488 else
2489 opclass = call0_classify_opcode (isa, opc);
2490
2491 /* Decide whether to track this opcode, ignore it, or bail out. */
2492
2493 switch (opclass)
2494 {
2495 case c0opc_illegal:
2496 case c0opc_break:
2497 fail = 1;
2498 goto done;
2499
2500 case c0opc_uninteresting:
2501 continue;
2502
dbab50de
MG
2503 case c0opc_flow: /* Flow control instructions stop analysis. */
2504 case c0opc_rwxsr: /* RSR, WSR, XSR instructions stop analysis. */
bdb4c075
MG
2505 goto done;
2506
2507 case c0opc_entry:
dbab50de 2508 cache->call0 = 0;
bdb4c075
MG
2509 ia += ilen; /* Skip over 'entry' insn. */
2510 goto done;
2511
2512 default:
dbab50de 2513 cache->call0 = 1;
bdb4c075
MG
2514 }
2515
2516 /* Only expected opcodes should get this far. */
bdb4c075
MG
2517
2518 /* Extract and decode the operands. */
2519 nods = xtensa_opcode_num_operands (isa, opc);
2520 if (nods == XTENSA_UNDEFINED)
2521 {
2522 fail = 1;
2523 goto done;
2524 }
2525
2526 for (j = 0; j < nods && j < C0_MAXOPDS; ++j)
2527 {
2528 fail = xtensa_operand_get_field (isa, opc, j, ifmt,
2529 is, slot, &odv[j]);
2530 if (fail)
2531 goto done;
2532
2533 fail = xtensa_operand_decode (isa, opc, j, &odv[j]);
2534 if (fail)
2535 goto done;
2536 }
2537
2538 /* Check operands to verify use of 'mov' assembler macro. */
2539 if (opclass == c0opc_mov && nods == 3)
2540 {
2541 if (odv[2] == odv[1])
dbab50de
MG
2542 {
2543 nods = 2;
2544 if ((odv[0] == 1) && (odv[1] != 1))
2545 /* OR A1, An, An , where n != 1.
2546 This means we are inside epilogue already. */
2547 goto done;
2548 }
bdb4c075
MG
2549 else
2550 {
2551 opclass = c0opc_uninteresting;
2552 continue;
2553 }
2554 }
2555
2556 /* Track register movement and modification for this operation. */
dbab50de
MG
2557 fail = call0_track_op (gdbarch, cache->c0.c0_rt, rtmp,
2558 opclass, nods, odv, ia, 1, cache);
2559 if (fail)
2560 goto done;
bdb4c075
MG
2561 }
2562 }
2563done:
2564 DEBUGVERB ("[call0_analyze_prologue] stopped at instr addr 0x%08x, %s\n",
2565 (unsigned)ia, fail ? "failed" : "succeeded");
2566 xtensa_insnbuf_free(isa, slot);
2567 xtensa_insnbuf_free(isa, ins);
d4709618 2568 return fail ? XTENSA_ISA_BADPC : ia;
bdb4c075
MG
2569}
2570
5142f611 2571/* Initialize frame cache for the current frame in CALL0 ABI. */
bdb4c075
MG
2572
2573static void
5142f611 2574call0_frame_cache (struct frame_info *this_frame,
dbab50de 2575 xtensa_frame_cache_t *cache, CORE_ADDR pc)
bdb4c075 2576{
5142f611 2577 struct gdbarch *gdbarch = get_frame_arch (this_frame);
e17a4113 2578 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
bdb4c075
MG
2579 CORE_ADDR start_pc; /* The beginning of the function. */
2580 CORE_ADDR body_pc=UINT_MAX; /* PC, where prologue analysis stopped. */
2581 CORE_ADDR sp, fp, ra;
dbab50de 2582 int fp_regnum = C0_SP, c0_hasfp = 0, c0_frmsz = 0, prev_sp = 0, to_stk;
bdb4c075 2583
dbab50de
MG
2584 sp = get_frame_register_unsigned
2585 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
2586 fp = sp; /* Assume FP == SP until proven otherwise. */
2587
bdb4c075
MG
2588 /* Find the beginning of the prologue of the function containing the PC
2589 and analyze it up to the PC or the end of the prologue. */
2590
2591 if (find_pc_partial_function (pc, NULL, &start_pc, NULL))
2592 {
dbab50de 2593 body_pc = call0_analyze_prologue (gdbarch, start_pc, pc, C0_NREGS, cache);
d4709618
MG
2594
2595 if (body_pc == XTENSA_ISA_BADPC)
dbab50de
MG
2596 {
2597 warning_once ();
2598 ra = 0;
2599 goto finish_frame_analysis;
2600 }
bdb4c075
MG
2601 }
2602
bdb4c075
MG
2603 /* Get the frame information and FP (if used) at the current PC.
2604 If PC is in the prologue, the prologue analysis is more reliable
dbab50de
MG
2605 than DWARF info. We don't not know for sure, if PC is in the prologue,
2606 but we do know no calls have yet taken place, so we can almost
bdb4c075
MG
2607 certainly rely on the prologue analysis. */
2608
2609 if (body_pc <= pc)
2610 {
2611 /* Prologue analysis was successful up to the PC.
2612 It includes the cases when PC == START_PC. */
2613 c0_hasfp = cache->c0.c0_rt[C0_FP].fr_reg == C0_SP;
2614 /* c0_hasfp == true means there is a frame pointer because
2615 we analyzed the prologue and found that cache->c0.c0_rt[C0_FP]
2616 was derived from SP. Otherwise, it would be C0_FP. */
2617 fp_regnum = c0_hasfp ? C0_FP : C0_SP;
2618 c0_frmsz = - cache->c0.c0_rt[fp_regnum].fr_ofs;
6b50c0b0 2619 fp_regnum += gdbarch_tdep (gdbarch)->a0_base;
bdb4c075
MG
2620 }
2621 else /* No data from the prologue analysis. */
2622 {
2623 c0_hasfp = 0;
6b50c0b0 2624 fp_regnum = gdbarch_tdep (gdbarch)->a0_base + C0_SP;
bdb4c075
MG
2625 c0_frmsz = 0;
2626 start_pc = pc;
2627 }
2628
dbab50de
MG
2629 if (cache->c0.c0_fpalign)
2630 {
2631 /* This frame has a special prologue with a dynamic stack adjustment
2632 to force an alignment, which is bigger than standard 16 bytes. */
2633
2634 CORE_ADDR unaligned_sp;
2635
2636 if (cache->c0.c0_old_sp == C0_INEXP)
2637 /* This can't be. Prologue code should be consistent.
2638 Unaligned stack pointer should be saved in a spare register. */
2639 {
2640 warning_once ();
2641 ra = 0;
2642 goto finish_frame_analysis;
2643 }
2644
2645 if (cache->c0.c0_sp_ofs == C0_NOSTK)
2646 /* Saved unaligned value of SP is kept in a register. */
2647 unaligned_sp = get_frame_register_unsigned
2648 (this_frame, gdbarch_tdep (gdbarch)->a0_base + cache->c0.c0_old_sp);
2649 else
2650 /* Get the value from stack. */
2651 unaligned_sp = (CORE_ADDR)
2652 read_memory_integer (fp + cache->c0.c0_sp_ofs, 4, byte_order);
2653
2654 prev_sp = unaligned_sp + c0_frmsz;
2655 }
2656 else
2657 prev_sp = fp + c0_frmsz;
bdb4c075
MG
2658
2659 /* Frame size from debug info or prologue tracking does not account for
2660 alloca() and other dynamic allocations. Adjust frame size by FP - SP. */
2661 if (c0_hasfp)
2662 {
5142f611 2663 fp = get_frame_register_unsigned (this_frame, fp_regnum);
bdb4c075 2664
bdb4c075
MG
2665 /* Update the stack frame size. */
2666 c0_frmsz += fp - sp;
2667 }
2668
2669 /* Get the return address (RA) from the stack if saved,
2670 or try to get it from a register. */
2671
2672 to_stk = cache->c0.c0_rt[C0_RA].to_stk;
2673 if (to_stk != C0_NOSTK)
2674 ra = (CORE_ADDR)
e17a4113
UW
2675 read_memory_integer (sp + c0_frmsz + cache->c0.c0_rt[C0_RA].to_stk,
2676 4, byte_order);
bdb4c075
MG
2677
2678 else if (cache->c0.c0_rt[C0_RA].fr_reg == C0_CONST
2679 && cache->c0.c0_rt[C0_RA].fr_ofs == 0)
2680 {
dbab50de
MG
2681 /* Special case for terminating backtrace at a function that wants to
2682 be seen as the outermost one. Such a function will clear it's RA (A0)
2683 register to 0 in the prologue instead of saving its original value. */
bdb4c075
MG
2684 ra = 0;
2685 }
2686 else
2687 {
dbab50de
MG
2688 /* RA was copied to another register or (before any function call) may
2689 still be in the original RA register. This is not always reliable:
2690 even in a leaf function, register tracking stops after prologue, and
2691 even in prologue, non-prologue instructions (not tracked) may overwrite
2692 RA or any register it was copied to. If likely in prologue or before
2693 any call, use retracking info and hope for the best (compiler should
2694 have saved RA in stack if not in a leaf function). If not in prologue,
2695 too bad. */
bdb4c075
MG
2696
2697 int i;
1448a0a2
PM
2698 for (i = 0;
2699 (i < C0_NREGS)
2700 && (i == C0_RA || cache->c0.c0_rt[i].fr_reg != C0_RA);
bdb4c075
MG
2701 ++i);
2702 if (i >= C0_NREGS && cache->c0.c0_rt[C0_RA].fr_reg == C0_RA)
2703 i = C0_RA;
5142f611 2704 if (i < C0_NREGS)
bdb4c075 2705 {
5142f611
MG
2706 ra = get_frame_register_unsigned
2707 (this_frame,
2708 gdbarch_tdep (gdbarch)->a0_base + cache->c0.c0_rt[i].fr_reg);
bdb4c075
MG
2709 }
2710 else ra = 0;
2711 }
2712
dbab50de 2713 finish_frame_analysis:
bdb4c075
MG
2714 cache->pc = start_pc;
2715 cache->ra = ra;
2716 /* RA == 0 marks the outermost frame. Do not go past it. */
2717 cache->prev_sp = (ra != 0) ? prev_sp : 0;
2718 cache->c0.fp_regnum = fp_regnum;
2719 cache->c0.c0_frmsz = c0_frmsz;
2720 cache->c0.c0_hasfp = c0_hasfp;
2721 cache->c0.c0_fp = fp;
2722}
2723
08b9c608
MG
2724static CORE_ADDR a0_saved;
2725static CORE_ADDR a7_saved;
2726static CORE_ADDR a11_saved;
2727static int a0_was_saved;
2728static int a7_was_saved;
2729static int a11_was_saved;
2730
68d6df83 2731/* Simulate L32E instruction: AT <-- ref (AS + offset). */
08b9c608
MG
2732static void
2733execute_l32e (struct gdbarch *gdbarch, int at, int as, int offset, CORE_ADDR wb)
2734{
2735 int atreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + at, wb);
2736 int asreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + as, wb);
2737 CORE_ADDR addr = xtensa_read_register (asreg) + offset;
2738 unsigned int spilled_value
2739 = read_memory_unsigned_integer (addr, 4, gdbarch_byte_order (gdbarch));
2740
2741 if ((at == 0) && !a0_was_saved)
2742 {
2743 a0_saved = xtensa_read_register (atreg);
2744 a0_was_saved = 1;
2745 }
2746 else if ((at == 7) && !a7_was_saved)
2747 {
2748 a7_saved = xtensa_read_register (atreg);
2749 a7_was_saved = 1;
2750 }
2751 else if ((at == 11) && !a11_was_saved)
2752 {
2753 a11_saved = xtensa_read_register (atreg);
2754 a11_was_saved = 1;
2755 }
2756
2757 xtensa_write_register (atreg, spilled_value);
2758}
2759
68d6df83 2760/* Simulate S32E instruction: AT --> ref (AS + offset). */
08b9c608
MG
2761static void
2762execute_s32e (struct gdbarch *gdbarch, int at, int as, int offset, CORE_ADDR wb)
2763{
2764 int atreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + at, wb);
2765 int asreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + as, wb);
2766 CORE_ADDR addr = xtensa_read_register (asreg) + offset;
2767 ULONGEST spilled_value = xtensa_read_register (atreg);
2768
2769 write_memory_unsigned_integer (addr, 4,
2770 gdbarch_byte_order (gdbarch),
2771 spilled_value);
2772}
2773
2774#define XTENSA_MAX_WINDOW_INTERRUPT_HANDLER_LEN 200
2775
68d6df83
MG
2776typedef enum
2777{
08b9c608
MG
2778 xtWindowOverflow,
2779 xtWindowUnderflow,
2780 xtNoExceptionHandler
2781} xtensa_exception_handler_t;
2782
68d6df83 2783/* Execute instruction stream from current PC until hitting RFWU or RFWO.
08b9c608
MG
2784 Return type of Xtensa Window Interrupt Handler on success. */
2785static xtensa_exception_handler_t
2786execute_code (struct gdbarch *gdbarch, CORE_ADDR current_pc, CORE_ADDR wb)
2787{
2788 xtensa_isa isa;
2789 xtensa_insnbuf ins, slot;
948f8e3d 2790 gdb_byte ibuf[XTENSA_ISA_BSZ];
08b9c608
MG
2791 CORE_ADDR ia, bt, ba;
2792 xtensa_format ifmt;
2793 int ilen, islots, is;
2794 xtensa_opcode opc;
2795 int insn_num = 0;
08b9c608
MG
2796 void (*func) (struct gdbarch *, int, int, int, CORE_ADDR);
2797
19afdd07 2798 uint32_t at, as, offset;
08b9c608
MG
2799
2800 /* WindowUnderflow12 = true, when inside _WindowUnderflow12. */
2801 int WindowUnderflow12 = (current_pc & 0x1ff) >= 0x140;
2802
2803 isa = xtensa_default_isa;
2804 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2805 ins = xtensa_insnbuf_alloc (isa);
2806 slot = xtensa_insnbuf_alloc (isa);
2807 ba = 0;
2808 ia = current_pc;
2809 bt = ia;
2810
2811 a0_was_saved = 0;
2812 a7_was_saved = 0;
2813 a11_was_saved = 0;
2814
2815 while (insn_num++ < XTENSA_MAX_WINDOW_INTERRUPT_HANDLER_LEN)
2816 {
2817 if (ia + xtensa_isa_maxlength (isa) > bt)
2818 {
2819 ba = ia;
2820 bt = (ba + XTENSA_ISA_BSZ);
2821 if (target_read_memory (ba, ibuf, bt - ba) != 0)
2822 return xtNoExceptionHandler;
2823 }
2824 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2825 ifmt = xtensa_format_decode (isa, ins);
2826 if (ifmt == XTENSA_UNDEFINED)
2827 return xtNoExceptionHandler;
2828 ilen = xtensa_format_length (isa, ifmt);
2829 if (ilen == XTENSA_UNDEFINED)
2830 return xtNoExceptionHandler;
2831 islots = xtensa_format_num_slots (isa, ifmt);
2832 if (islots == XTENSA_UNDEFINED)
2833 return xtNoExceptionHandler;
2834 for (is = 0; is < islots; ++is)
2835 {
2836 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
2837 return xtNoExceptionHandler;
2838 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2839 if (opc == XTENSA_UNDEFINED)
2840 return xtNoExceptionHandler;
2841 switch (call0_classify_opcode (isa, opc))
2842 {
2843 case c0opc_illegal:
2844 case c0opc_flow:
2845 case c0opc_entry:
2846 case c0opc_break:
2847 /* We expect none of them here. */
2848 return xtNoExceptionHandler;
2849 case c0opc_l32e:
2850 func = execute_l32e;
2851 break;
2852 case c0opc_s32e:
2853 func = execute_s32e;
2854 break;
2855 case c0opc_rfwo: /* RFWO. */
2856 /* Here, we return from WindowOverflow handler and,
2857 if we stopped at the very beginning, which means
2858 A0 was saved, we have to restore it now. */
2859 if (a0_was_saved)
2860 {
2861 int arreg = arreg_number (gdbarch,
2862 gdbarch_tdep (gdbarch)->a0_base,
2863 wb);
2864 xtensa_write_register (arreg, a0_saved);
2865 }
2866 return xtWindowOverflow;
2867 case c0opc_rfwu: /* RFWU. */
2868 /* Here, we return from WindowUnderflow handler.
2869 Let's see if either A7 or A11 has to be restored. */
2870 if (WindowUnderflow12)
2871 {
2872 if (a11_was_saved)
2873 {
2874 int arreg = arreg_number (gdbarch,
2875 gdbarch_tdep (gdbarch)->a0_base + 11,
2876 wb);
2877 xtensa_write_register (arreg, a11_saved);
2878 }
2879 }
2880 else if (a7_was_saved)
2881 {
2882 int arreg = arreg_number (gdbarch,
2883 gdbarch_tdep (gdbarch)->a0_base + 7,
2884 wb);
2885 xtensa_write_register (arreg, a7_saved);
2886 }
2887 return xtWindowUnderflow;
2888 default: /* Simply skip this insns. */
2889 continue;
2890 }
2891
2892 /* Decode arguments for L32E / S32E and simulate their execution. */
2893 if ( xtensa_opcode_num_operands (isa, opc) != 3 )
2894 return xtNoExceptionHandler;
2895 if (xtensa_operand_get_field (isa, opc, 0, ifmt, is, slot, &at))
2896 return xtNoExceptionHandler;
2897 if (xtensa_operand_decode (isa, opc, 0, &at))
2898 return xtNoExceptionHandler;
2899 if (xtensa_operand_get_field (isa, opc, 1, ifmt, is, slot, &as))
2900 return xtNoExceptionHandler;
2901 if (xtensa_operand_decode (isa, opc, 1, &as))
2902 return xtNoExceptionHandler;
2903 if (xtensa_operand_get_field (isa, opc, 2, ifmt, is, slot, &offset))
2904 return xtNoExceptionHandler;
2905 if (xtensa_operand_decode (isa, opc, 2, &offset))
2906 return xtNoExceptionHandler;
2907
2908 (*func) (gdbarch, at, as, offset, wb);
2909 }
2910
2911 ia += ilen;
2912 }
2913 return xtNoExceptionHandler;
2914}
2915
2916/* Handle Window Overflow / Underflow exception frames. */
2917
2918static void
2919xtensa_window_interrupt_frame_cache (struct frame_info *this_frame,
2920 xtensa_frame_cache_t *cache,
2921 CORE_ADDR pc)
2922{
2923 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2924 CORE_ADDR ps, wb, ws, ra;
2925 int epc1_regnum, i, regnum;
2926 xtensa_exception_handler_t eh_type;
2927
2928 /* Read PS, WB, and WS from the hardware. Note that PS register
2929 must be present, if Windowed ABI is supported. */
2930 ps = xtensa_read_register (gdbarch_ps_regnum (gdbarch));
2931 wb = xtensa_read_register (gdbarch_tdep (gdbarch)->wb_regnum);
2932 ws = xtensa_read_register (gdbarch_tdep (gdbarch)->ws_regnum);
2933
2934 /* Execute all the remaining instructions from Window Interrupt Handler
2935 by simulating them on the remote protocol level. On return, set the
2936 type of Xtensa Window Interrupt Handler, or report an error. */
2937 eh_type = execute_code (gdbarch, pc, wb);
2938 if (eh_type == xtNoExceptionHandler)
2939 error (_("\
2940Unable to decode Xtensa Window Interrupt Handler's code."));
2941
2942 cache->ps = ps ^ PS_EXC; /* Clear the exception bit in PS. */
2943 cache->call0 = 0; /* It's Windowed ABI. */
2944
2945 /* All registers for the cached frame will be alive. */
2946 for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
2947 cache->wd.aregs[i] = -1;
2948
2949 if (eh_type == xtWindowOverflow)
2950 cache->wd.ws = ws ^ (1 << wb);
2951 else /* eh_type == xtWindowUnderflow. */
2952 cache->wd.ws = ws | (1 << wb);
2953
2954 cache->wd.wb = (ps & 0xf00) >> 8; /* Set WB to OWB. */
2955 regnum = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base,
2956 cache->wd.wb);
2957 ra = xtensa_read_register (regnum);
2958 cache->wd.callsize = WINSIZE (ra);
2959 cache->prev_sp = xtensa_read_register (regnum + 1);
2960 /* Set regnum to a frame pointer of the frame being cached. */
2961 regnum = xtensa_scan_prologue (gdbarch, pc);
2962 regnum = arreg_number (gdbarch,
2963 gdbarch_tdep (gdbarch)->a0_base + regnum,
2964 cache->wd.wb);
2965 cache->base = get_frame_register_unsigned (this_frame, regnum);
2966
2967 /* Read PC of interrupted function from EPC1 register. */
2968 epc1_regnum = xtensa_find_register_by_name (gdbarch,"epc1");
2969 if (epc1_regnum < 0)
2970 error(_("Unable to read Xtensa register EPC1"));
2971 cache->ra = xtensa_read_register (epc1_regnum);
2972 cache->pc = get_frame_func (this_frame);
2973}
2974
bdb4c075
MG
2975
2976/* Skip function prologue.
2977
2978 Return the pc of the first instruction after prologue. GDB calls this to
2979 find the address of the first line of the function or (if there is no line
2980 number information) to skip the prologue for planting breakpoints on
2981 function entries. Use debug info (if present) or prologue analysis to skip
2982 the prologue to achieve reliable debugging behavior. For windowed ABI,
2983 only the 'entry' instruction is skipped. It is not strictly necessary to
2984 skip the prologue (Call0) or 'entry' (Windowed) because xt-gdb knows how to
2985 backtrace at any point in the prologue, however certain potential hazards
2986 are avoided and a more "normal" debugging experience is ensured by
2987 skipping the prologue (can be disabled by defining DONT_SKIP_PROLOG).
2988 For example, if we don't skip the prologue:
2989 - Some args may not yet have been saved to the stack where the debug
2990 info expects to find them (true anyway when only 'entry' is skipped);
2991 - Software breakpoints ('break' instrs) may not have been unplanted
2992 when the prologue analysis is done on initializing the frame cache,
2993 and breaks in the prologue will throw off the analysis.
ca3bf3bd
DJ
2994
2995 If we have debug info ( line-number info, in particular ) we simply skip
2996 the code associated with the first function line effectively skipping
bdb4c075 2997 the prologue code. It works even in cases like
ca3bf3bd
DJ
2998
2999 int main()
3000 { int local_var = 1;
3001 ....
3002 }
3003
3004 because, for this source code, both Xtensa compilers will generate two
3005 separate entries ( with the same line number ) in dwarf line-number
3006 section to make sure there is a boundary between the prologue code and
3007 the rest of the function.
3008
bdb4c075
MG
3009 If there is no debug info, we need to analyze the code. */
3010
3011/* #define DONT_SKIP_PROLOGUE */
ca3bf3bd 3012
63807e1d 3013static CORE_ADDR
6093d2eb 3014xtensa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
ca3bf3bd 3015{
bdb4c075
MG
3016 struct symtab_and_line prologue_sal;
3017 CORE_ADDR body_pc;
3018
ca3bf3bd
DJ
3019 DEBUGTRACE ("xtensa_skip_prologue (start_pc = 0x%08x)\n", (int) start_pc);
3020
bdb4c075
MG
3021#if DONT_SKIP_PROLOGUE
3022 return start_pc;
3023#endif
3024
3025 /* Try to find first body line from debug info. */
3026
3027 prologue_sal = find_pc_line (start_pc, 0);
3028 if (prologue_sal.line != 0) /* Found debug info. */
ca3bf3bd 3029 {
f976a05d
MG
3030 /* In Call0, it is possible to have a function with only one instruction
3031 ('ret') resulting from a one-line optimized function that does nothing.
3032 In that case, prologue_sal.end may actually point to the start of the
3033 next function in the text section, causing a breakpoint to be set at
3034 the wrong place. Check, if the end address is within a different
3035 function, and if so return the start PC. We know we have symbol
3036 information. */
ca3bf3bd 3037
bdb4c075
MG
3038 CORE_ADDR end_func;
3039
f976a05d
MG
3040 if ((gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only)
3041 && call0_ret (start_pc, prologue_sal.end))
3042 return start_pc;
3043
bdb4c075
MG
3044 find_pc_partial_function (prologue_sal.end, NULL, &end_func, NULL);
3045 if (end_func != start_pc)
ca3bf3bd
DJ
3046 return start_pc;
3047
bdb4c075 3048 return prologue_sal.end;
ca3bf3bd 3049 }
ca3bf3bd 3050
bdb4c075 3051 /* No debug line info. Analyze prologue for Call0 or simply skip ENTRY. */
dbab50de
MG
3052 body_pc = call0_analyze_prologue (gdbarch, start_pc, 0, 0,
3053 xtensa_alloc_frame_cache (0));
bdb4c075
MG
3054 return body_pc != 0 ? body_pc : start_pc;
3055}
ca3bf3bd
DJ
3056
3057/* Verify the current configuration. */
ca3bf3bd
DJ
3058static void
3059xtensa_verify_config (struct gdbarch *gdbarch)
3060{
d7e74731
PA
3061 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3062 string_file log;
ca3bf3bd
DJ
3063
3064 /* Verify that we got a reasonable number of AREGS. */
3065 if ((tdep->num_aregs & -tdep->num_aregs) != tdep->num_aregs)
d7e74731 3066 log.printf (_("\
bdb4c075 3067\n\tnum_aregs: Number of AR registers (%d) is not a power of two!"),
d7e74731 3068 tdep->num_aregs);
ca3bf3bd
DJ
3069
3070 /* Verify that certain registers exist. */
bdb4c075 3071
ca3bf3bd 3072 if (tdep->pc_regnum == -1)
d7e74731 3073 log.printf (_("\n\tpc_regnum: No PC register"));
bdb4c075 3074 if (tdep->isa_use_exceptions && tdep->ps_regnum == -1)
d7e74731 3075 log.printf (_("\n\tps_regnum: No PS register"));
bdb4c075
MG
3076
3077 if (tdep->isa_use_windowed_registers)
3078 {
3079 if (tdep->wb_regnum == -1)
d7e74731 3080 log.printf (_("\n\twb_regnum: No WB register"));
bdb4c075 3081 if (tdep->ws_regnum == -1)
d7e74731 3082 log.printf (_("\n\tws_regnum: No WS register"));
bdb4c075 3083 if (tdep->ar_base == -1)
d7e74731 3084 log.printf (_("\n\tar_base: No AR registers"));
bdb4c075
MG
3085 }
3086
ca3bf3bd 3087 if (tdep->a0_base == -1)
d7e74731 3088 log.printf (_("\n\ta0_base: No Ax registers"));
ca3bf3bd 3089
d7e74731 3090 if (!log.empty ())
ca3bf3bd 3091 internal_error (__FILE__, __LINE__,
d7e74731 3092 _("the following are invalid: %s"), log.c_str ());
ca3bf3bd
DJ
3093}
3094
94a0e877
MG
3095
3096/* Derive specific register numbers from the array of registers. */
3097
63807e1d 3098static void
94a0e877
MG
3099xtensa_derive_tdep (struct gdbarch_tdep *tdep)
3100{
3101 xtensa_register_t* rmap;
3102 int n, max_size = 4;
3103
3104 tdep->num_regs = 0;
3105 tdep->num_nopriv_regs = 0;
3106
3107/* Special registers 0..255 (core). */
3108#define XTENSA_DBREGN_SREG(n) (0x0200+(n))
3109
3110 for (rmap = tdep->regmap, n = 0; rmap->target_number != -1; n++, rmap++)
3111 {
3112 if (rmap->target_number == 0x0020)
3113 tdep->pc_regnum = n;
3114 else if (rmap->target_number == 0x0100)
3115 tdep->ar_base = n;
3116 else if (rmap->target_number == 0x0000)
3117 tdep->a0_base = n;
3118 else if (rmap->target_number == XTENSA_DBREGN_SREG(72))
3119 tdep->wb_regnum = n;
3120 else if (rmap->target_number == XTENSA_DBREGN_SREG(73))
3121 tdep->ws_regnum = n;
3122 else if (rmap->target_number == XTENSA_DBREGN_SREG(233))
3123 tdep->debugcause_regnum = n;
3124 else if (rmap->target_number == XTENSA_DBREGN_SREG(232))
3125 tdep->exccause_regnum = n;
3126 else if (rmap->target_number == XTENSA_DBREGN_SREG(238))
3127 tdep->excvaddr_regnum = n;
3128 else if (rmap->target_number == XTENSA_DBREGN_SREG(0))
3129 tdep->lbeg_regnum = n;
3130 else if (rmap->target_number == XTENSA_DBREGN_SREG(1))
3131 tdep->lend_regnum = n;
3132 else if (rmap->target_number == XTENSA_DBREGN_SREG(2))
3133 tdep->lcount_regnum = n;
3134 else if (rmap->target_number == XTENSA_DBREGN_SREG(3))
3135 tdep->sar_regnum = n;
3136 else if (rmap->target_number == XTENSA_DBREGN_SREG(5))
3137 tdep->litbase_regnum = n;
3138 else if (rmap->target_number == XTENSA_DBREGN_SREG(230))
3139 tdep->ps_regnum = n;
3140#if 0
3141 else if (rmap->target_number == XTENSA_DBREGN_SREG(226))
3142 tdep->interrupt_regnum = n;
3143 else if (rmap->target_number == XTENSA_DBREGN_SREG(227))
3144 tdep->interrupt2_regnum = n;
3145 else if (rmap->target_number == XTENSA_DBREGN_SREG(224))
3146 tdep->cpenable_regnum = n;
3147#endif
3148
3149 if (rmap->byte_size > max_size)
3150 max_size = rmap->byte_size;
3151 if (rmap->mask != 0 && tdep->num_regs == 0)
3152 tdep->num_regs = n;
3153 /* Find out out how to deal with priveleged registers.
3154
3155 if ((rmap->flags & XTENSA_REGISTER_FLAGS_PRIVILEGED) != 0
3156 && tdep->num_nopriv_regs == 0)
3157 tdep->num_nopriv_regs = n;
3158 */
3159 if ((rmap->flags & XTENSA_REGISTER_FLAGS_PRIVILEGED) != 0
3160 && tdep->num_regs == 0)
3161 tdep->num_regs = n;
3162 }
3163
3164 /* Number of pseudo registers. */
3165 tdep->num_pseudo_regs = n - tdep->num_regs;
3166
3167 /* Empirically determined maximum sizes. */
3168 tdep->max_register_raw_size = max_size;
3169 tdep->max_register_virtual_size = max_size;
3170}
3171
ca3bf3bd
DJ
3172/* Module "constructor" function. */
3173
94a0e877
MG
3174extern struct gdbarch_tdep xtensa_tdep;
3175
ca3bf3bd
DJ
3176static struct gdbarch *
3177xtensa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3178{
3179 struct gdbarch_tdep *tdep;
3180 struct gdbarch *gdbarch;
ca3bf3bd
DJ
3181
3182 DEBUGTRACE ("gdbarch_init()\n");
3183
a4398628
MF
3184 if (!xtensa_default_isa)
3185 xtensa_default_isa = xtensa_isa_init (0, 0);
3186
ca3bf3bd 3187 /* We have to set the byte order before we call gdbarch_alloc. */
94a0e877 3188 info.byte_order = XCHAL_HAVE_BE ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
ca3bf3bd 3189
94a0e877 3190 tdep = &xtensa_tdep;
ca3bf3bd 3191 gdbarch = gdbarch_alloc (&info, tdep);
94a0e877 3192 xtensa_derive_tdep (tdep);
ca3bf3bd
DJ
3193
3194 /* Verify our configuration. */
3195 xtensa_verify_config (gdbarch);
dbab50de 3196 xtensa_session_once_reported = 0;
ca3bf3bd 3197
bdb4c075 3198 /* Pseudo-Register read/write. */
ca3bf3bd
DJ
3199 set_gdbarch_pseudo_register_read (gdbarch, xtensa_pseudo_register_read);
3200 set_gdbarch_pseudo_register_write (gdbarch, xtensa_pseudo_register_write);
3201
3202 /* Set target information. */
3203 set_gdbarch_num_regs (gdbarch, tdep->num_regs);
3204 set_gdbarch_num_pseudo_regs (gdbarch, tdep->num_pseudo_regs);
3205 set_gdbarch_sp_regnum (gdbarch, tdep->a0_base + 1);
3206 set_gdbarch_pc_regnum (gdbarch, tdep->pc_regnum);
3207 set_gdbarch_ps_regnum (gdbarch, tdep->ps_regnum);
3208
ba2b1c56 3209 /* Renumber registers for known formats (stabs and dwarf2). */
ca3bf3bd 3210 set_gdbarch_stab_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
ca3bf3bd
DJ
3211 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
3212
3213 /* We provide our own function to get register information. */
3214 set_gdbarch_register_name (gdbarch, xtensa_register_name);
3215 set_gdbarch_register_type (gdbarch, xtensa_register_type);
3216
581e13c1 3217 /* To call functions from GDB using dummy frame. */
ca3bf3bd
DJ
3218 set_gdbarch_push_dummy_call (gdbarch, xtensa_push_dummy_call);
3219
3220 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3221
3222 set_gdbarch_return_value (gdbarch, xtensa_return_value);
3223
3224 /* Advance PC across any prologue instructions to reach "real" code. */
3225 set_gdbarch_skip_prologue (gdbarch, xtensa_skip_prologue);
3226
3227 /* Stack grows downward. */
3228 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3229
3230 /* Set breakpoints. */
04180708
YQ
3231 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
3232 xtensa_breakpoint_kind_from_pc);
3233 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
3234 xtensa_sw_breakpoint_from_kind);
ca3bf3bd
DJ
3235
3236 /* After breakpoint instruction or illegal instruction, pc still
3237 points at break instruction, so don't decrement. */
3238 set_gdbarch_decr_pc_after_break (gdbarch, 0);
3239
3240 /* We don't skip args. */
3241 set_gdbarch_frame_args_skip (gdbarch, 0);
3242
3243 set_gdbarch_unwind_pc (gdbarch, xtensa_unwind_pc);
3244
3245 set_gdbarch_frame_align (gdbarch, xtensa_frame_align);
3246
5142f611 3247 set_gdbarch_dummy_id (gdbarch, xtensa_dummy_id);
ca3bf3bd
DJ
3248
3249 /* Frame handling. */
3250 frame_base_set_default (gdbarch, &xtensa_frame_base);
5142f611
MG
3251 frame_unwind_append_unwinder (gdbarch, &xtensa_unwind);
3252 dwarf2_append_unwinders (gdbarch);
ca3bf3bd
DJ
3253
3254 set_gdbarch_print_insn (gdbarch, print_insn_xtensa);
3255
3256 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3257
3258 xtensa_add_reggroups (gdbarch);
3259 set_gdbarch_register_reggroup_p (gdbarch, xtensa_register_reggroup_p);
3260
97094034
AA
3261 set_gdbarch_iterate_over_regset_sections
3262 (gdbarch, xtensa_iterate_over_regset_sections);
ca3bf3bd 3263
ee967b5f
MG
3264 set_solib_svr4_fetch_link_map_offsets
3265 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
3266
40045d91
MF
3267 /* Hook in the ABI-specific overrides, if they have been registered. */
3268 gdbarch_init_osabi (info, gdbarch);
3269
ca3bf3bd
DJ
3270 return gdbarch;
3271}
3272
ca3bf3bd 3273static void
6b50c0b0 3274xtensa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
ca3bf3bd
DJ
3275{
3276 error (_("xtensa_dump_tdep(): not implemented"));
3277}
3278
63807e1d
PA
3279/* Provide a prototype to silence -Wmissing-prototypes. */
3280extern initialize_file_ftype _initialize_xtensa_tdep;
3281
ca3bf3bd
DJ
3282void
3283_initialize_xtensa_tdep (void)
3284{
ca3bf3bd
DJ
3285 gdbarch_register (bfd_arch_xtensa, xtensa_gdbarch_init, xtensa_dump_tdep);
3286 xtensa_init_reggroups ();
3287
ccce17b0
YQ
3288 add_setshow_zuinteger_cmd ("xtensa",
3289 class_maintenance,
3290 &xtensa_debug_level,
581e13c1
MS
3291 _("Set Xtensa debugging."),
3292 _("Show Xtensa debugging."), _("\
ca3bf3bd
DJ
3293When non-zero, Xtensa-specific debugging is enabled. \
3294Can be 1, 2, 3, or 4 indicating the level of debugging."),
ccce17b0
YQ
3295 NULL,
3296 NULL,
3297 &setdebuglist, &showdebuglist);
ca3bf3bd 3298}