]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/z8k-tdep.c
import gdb-1999-09-08 snapshot
[thirdparty/binutils-gdb.git] / gdb / z8k-tdep.c
CommitLineData
c906108c
SS
1/* Target-machine dependent code for Zilog Z8000, for GDB.
2 Copyright (C) 1992, 1993, 1994 Free Software Foundation, Inc.
3
c5aa993b 4 This file is part of GDB.
c906108c 5
c5aa993b
JM
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
c906108c 10
c5aa993b
JM
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
c906108c 15
c5aa993b
JM
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
c906108c
SS
20
21/*
c5aa993b
JM
22 Contributed by Steve Chamberlain
23 sac@cygnus.com
c906108c
SS
24 */
25
26#include "defs.h"
27#include "frame.h"
28#include "obstack.h"
29#include "symtab.h"
30#include "gdbcmd.h"
31#include "gdbtypes.h"
32#include "dis-asm.h"
33#include "gdbcore.h"
34
d4f3574e
SS
35#include "value.h" /* For read_register() */
36
37
38static int read_memory_pointer (CORE_ADDR x);
c906108c
SS
39
40/* Return the saved PC from this frame.
41
42 If the frame has a memory copy of SRP_REGNUM, use that. If not,
43 just use the register SRP_REGNUM itself. */
44
45CORE_ADDR
d4f3574e 46z8k_frame_saved_pc (frame)
c906108c
SS
47 struct frame_info *frame;
48{
49 return read_memory_pointer (frame->frame + (BIG ? 4 : 2));
50}
51
52#define IS_PUSHL(x) (BIG ? ((x & 0xfff0) == 0x91e0):((x & 0xfff0) == 0x91F0))
53#define IS_PUSHW(x) (BIG ? ((x & 0xfff0) == 0x93e0):((x & 0xfff0)==0x93f0))
54#define IS_MOVE_FP(x) (BIG ? x == 0xa1ea : x == 0xa1fa)
55#define IS_MOV_SP_FP(x) (BIG ? x == 0x94ea : x == 0x0d76)
56#define IS_SUB2_SP(x) (x==0x1b87)
57#define IS_MOVK_R5(x) (x==0x7905)
58#define IS_SUB_SP(x) ((x & 0xffff) == 0x020f)
59#define IS_PUSH_FP(x) (BIG ? (x == 0x93ea) : (x == 0x93fa))
60
61/* work out how much local space is on the stack and
62 return the pc pointing to the first push */
63
64static CORE_ADDR
65skip_adjust (pc, size)
66 CORE_ADDR pc;
67 int *size;
68{
69 *size = 0;
70
71 if (IS_PUSH_FP (read_memory_short (pc))
72 && IS_MOV_SP_FP (read_memory_short (pc + 2)))
73 {
74 /* This is a function with an explict frame pointer */
75 pc += 4;
76 *size += 2; /* remember the frame pointer */
77 }
78
79 /* remember any stack adjustment */
80 if (IS_SUB_SP (read_memory_short (pc)))
81 {
82 *size += read_memory_short (pc + 2);
83 pc += 4;
84 }
85 return pc;
86}
87
c5aa993b 88static CORE_ADDR examine_frame PARAMS ((CORE_ADDR, CORE_ADDR * regs, CORE_ADDR));
c906108c
SS
89static CORE_ADDR
90examine_frame (pc, regs, sp)
91 CORE_ADDR pc;
92 CORE_ADDR *regs;
93 CORE_ADDR sp;
94{
95 int w = read_memory_short (pc);
96 int offset = 0;
97 int regno;
98
99 for (regno = 0; regno < NUM_REGS; regno++)
100 regs[regno] = 0;
101
102 while (IS_PUSHW (w) || IS_PUSHL (w))
103 {
104 /* work out which register is being pushed to where */
105 if (IS_PUSHL (w))
106 {
107 regs[w & 0xf] = offset;
108 regs[(w & 0xf) + 1] = offset + 2;
109 offset += 4;
110 }
111 else
112 {
113 regs[w & 0xf] = offset;
114 offset += 2;
115 }
116 pc += 2;
117 w = read_memory_short (pc);
118 }
119
120 if (IS_MOVE_FP (w))
121 {
122 /* We know the fp */
123
124 }
125 else if (IS_SUB_SP (w))
126 {
127 /* Subtracting a value from the sp, so were in a function
c5aa993b
JM
128 which needs stack space for locals, but has no fp. We fake up
129 the values as if we had an fp */
c906108c
SS
130 regs[FP_REGNUM] = sp;
131 }
132 else
133 {
134 /* This one didn't have an fp, we'll fake it up */
135 regs[SP_REGNUM] = sp;
136 }
137 /* stack pointer contains address of next frame */
c5aa993b 138 /* regs[fp_regnum()] = fp; */
c906108c
SS
139 regs[SP_REGNUM] = sp;
140 return pc;
141}
142
143CORE_ADDR
144z8k_skip_prologue (start_pc)
145 CORE_ADDR start_pc;
146{
147 CORE_ADDR dummy[NUM_REGS];
148
149 return examine_frame (start_pc, dummy, 0);
150}
151
152CORE_ADDR
153z8k_addr_bits_remove (addr)
154 CORE_ADDR addr;
155{
156 return (addr & PTR_MASK);
157}
158
d4f3574e
SS
159static int
160read_memory_pointer (CORE_ADDR x)
c906108c
SS
161{
162 return read_memory_integer (ADDR_BITS_REMOVE (x), BIG ? 4 : 2);
163}
164
165CORE_ADDR
d4f3574e 166z8k_frame_chain (thisframe)
c906108c
SS
167 struct frame_info *thisframe;
168{
169 if (thisframe->prev == 0)
170 {
171 /* This is the top of the stack, let's get the sp for real */
172 }
173 if (!inside_entry_file (thisframe->pc))
174 {
175 return read_memory_pointer (thisframe->frame);
176 }
177 return 0;
178}
179
180void
181init_frame_pc ()
182{
183 abort ();
184}
185
186/* Put here the code to store, into a struct frame_saved_regs,
187 the addresses of the saved registers of frame described by FRAME_INFO.
188 This includes special registers such as pc and fp saved in special
189 ways in the stack frame. sp is even more special:
190 the address we return for it IS the sp for the next frame. */
191
192void
193z8k_frame_init_saved_regs (frame_info)
194 struct frame_info *frame_info;
195{
196 CORE_ADDR pc;
197 int w;
198
199 frame_saved_regs_zalloc (frame_info);
200 pc = get_pc_function_start (frame_info->pc);
201
202 /* wander down the instruction stream */
203 examine_frame (pc, frame_info->saved_regs, frame_info->frame);
204
205}
206
207void
208z8k_push_dummy_frame ()
209{
210 abort ();
211}
212
213int
214gdb_print_insn_z8k (memaddr, info)
215 bfd_vma memaddr;
216 disassemble_info *info;
217{
218 if (BIG)
219 return print_insn_z8001 (memaddr, info);
220 else
221 return print_insn_z8002 (memaddr, info);
222}
223
224/* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
225 is not the address of a valid instruction, the address of the next
226 instruction beyond ADDR otherwise. *PWORD1 receives the first word
c5aa993b 227 of the instruction. */
c906108c
SS
228
229CORE_ADDR
230NEXT_PROLOGUE_INSN (addr, lim, pword1)
231 CORE_ADDR addr;
232 CORE_ADDR lim;
233 short *pword1;
234{
235 char buf[2];
236 if (addr < lim + 8)
237 {
238 read_memory (addr, buf, 2);
239 *pword1 = extract_signed_integer (buf, 2);
240
241 return addr + 2;
242 }
243 return 0;
244}
245
246#if 0
247/* Put here the code to store, into a struct frame_saved_regs,
248 the addresses of the saved registers of frame described by FRAME_INFO.
249 This includes special registers such as pc and fp saved in special
250 ways in the stack frame. sp is even more special:
251 the address we return for it IS the sp for the next frame.
252
253 We cache the result of doing this in the frame_cache_obstack, since
254 it is fairly expensive. */
255
256void
257frame_find_saved_regs (fip, fsrp)
258 struct frame_info *fip;
259 struct frame_saved_regs *fsrp;
260{
261 int locals;
262 CORE_ADDR pc;
263 CORE_ADDR adr;
264 int i;
265
266 memset (fsrp, 0, sizeof *fsrp);
267
268 pc = skip_adjust (get_pc_function_start (fip->pc), &locals);
269
270 {
271 adr = FRAME_FP (fip) - locals;
272 for (i = 0; i < 8; i++)
273 {
274 int word = read_memory_short (pc);
275
276 pc += 2;
277 if (IS_PUSHL (word))
278 {
279 fsrp->regs[word & 0xf] = adr;
280 fsrp->regs[(word & 0xf) + 1] = adr - 2;
281 adr -= 4;
282 }
283 else if (IS_PUSHW (word))
284 {
285 fsrp->regs[word & 0xf] = adr;
286 adr -= 2;
287 }
288 else
289 break;
290 }
291
292 }
293
294 fsrp->regs[PC_REGNUM] = fip->frame + 4;
295 fsrp->regs[FP_REGNUM] = fip->frame;
296
297}
298#endif
299
300int
d4f3574e 301z8k_saved_pc_after_call (struct frame_info *frame)
c906108c 302{
c5aa993b 303 return ADDR_BITS_REMOVE
c906108c
SS
304 (read_memory_integer (read_register (SP_REGNUM), PTR_SIZE));
305}
306
307
308void
309extract_return_value (type, regbuf, valbuf)
310 struct type *type;
311 char *regbuf;
312 char *valbuf;
313{
314 int b;
315 int len = TYPE_LENGTH (type);
316
317 for (b = 0; b < len; b += 2)
318 {
319 int todo = len - b;
320
321 if (todo > 2)
322 todo = 2;
323 memcpy (valbuf + b, regbuf + b, todo);
324 }
325}
326
327void
328write_return_value (type, valbuf)
329 struct type *type;
330 char *valbuf;
331{
332 int reg;
333 int len;
334
335 for (len = 0; len < TYPE_LENGTH (type); len += 2)
c5aa993b 336 write_register_bytes (REGISTER_BYTE (len / 2 + 2), valbuf + len, 2);
c906108c
SS
337}
338
339void
340store_struct_return (addr, sp)
341 CORE_ADDR addr;
342 CORE_ADDR sp;
343{
344 write_register (2, addr);
345}
346
347
348void
d4f3574e 349z8k_print_register_hook (regno)
c906108c
SS
350 int regno;
351{
352 if ((regno & 1) == 0 && regno < 16)
353 {
354 unsigned short l[2];
355
356 read_relative_register_raw_bytes (regno, (char *) (l + 0));
357 read_relative_register_raw_bytes (regno + 1, (char *) (l + 1));
358 printf_unfiltered ("\t");
359 printf_unfiltered ("%04x%04x", l[0], l[1]);
360 }
361
362 if ((regno & 3) == 0 && regno < 16)
363 {
364 unsigned short l[4];
365
366 read_relative_register_raw_bytes (regno, (char *) (l + 0));
367 read_relative_register_raw_bytes (regno + 1, (char *) (l + 1));
368 read_relative_register_raw_bytes (regno + 2, (char *) (l + 2));
369 read_relative_register_raw_bytes (regno + 3, (char *) (l + 3));
370
371 printf_unfiltered ("\t");
372 printf_unfiltered ("%04x%04x%04x%04x", l[0], l[1], l[2], l[3]);
373 }
374 if (regno == 15)
375 {
376 unsigned short rval;
377 int i;
378
379 read_relative_register_raw_bytes (regno, (char *) (&rval));
380
381 printf_unfiltered ("\n");
382 for (i = 0; i < 10; i += 2)
383 {
d4f3574e
SS
384 printf_unfiltered ("(sp+%d=%04x)", i,
385 (unsigned int)read_memory_short (rval + i));
c906108c
SS
386 }
387 }
388
389}
390
391void
392z8k_pop_frame ()
393{
394}
395
396struct cmd_list_element *setmemorylist;
397
398void
399z8k_set_pointer_size (newsize)
400 int newsize;
401{
402 static int oldsize = 0;
403
404 if (oldsize != newsize)
405 {
406 printf_unfiltered ("pointer size set to %d bits\n", newsize);
407 oldsize = newsize;
408 if (newsize == 32)
409 {
410 BIG = 1;
411 }
412 else
413 {
414 BIG = 0;
415 }
d4f3574e
SS
416 /* FIXME: This code should be using the GDBARCH framework to
417 handle changed type sizes. If this problem is ever fixed
418 (the direct reference to _initialize_gdbtypes() below
419 eliminated) then Makefile.in should be updated so that
420 z8k-tdep.c is again compiled with -Werror. */
c906108c
SS
421 _initialize_gdbtypes ();
422 }
423}
424
425static void
426segmented_command (args, from_tty)
427 char *args;
428 int from_tty;
429{
430 z8k_set_pointer_size (32);
431}
432
433static void
434unsegmented_command (args, from_tty)
435 char *args;
436 int from_tty;
437{
438 z8k_set_pointer_size (16);
439}
440
441static void
442set_memory (args, from_tty)
443 char *args;
444 int from_tty;
445{
446 printf_unfiltered ("\"set memory\" must be followed by the name of a memory subcommand.\n");
447 help_list (setmemorylist, "set memory ", -1, gdb_stdout);
448}
449
450void
451_initialize_z8ktdep ()
452{
453 tm_print_insn = gdb_print_insn_z8k;
454
455 add_prefix_cmd ("memory", no_class, set_memory,
456 "set the memory model", &setmemorylist, "set memory ", 0,
457 &setlist);
458 add_cmd ("segmented", class_support, segmented_command,
459 "Set segmented memory model.", &setmemorylist);
460 add_cmd ("unsegmented", class_support, unsegmented_command,
461 "Set unsegmented memory model.", &setmemorylist);
462
463}