]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gold/arm.cc
Automatic date update in version.in
[thirdparty/binutils-gdb.git] / gold / arm.cc
CommitLineData
4a657b0d
DK
1// arm.cc -- arm target support for gold.
2
b90efa5b 3// Copyright (C) 2009-2015 Free Software Foundation, Inc.
4a657b0d
DK
4// Written by Doug Kwan <dougkwan@google.com> based on the i386 code
5// by Ian Lance Taylor <iant@google.com>.
b569affa
DK
6// This file also contains borrowed and adapted code from
7// bfd/elf32-arm.c.
4a657b0d
DK
8
9// This file is part of gold.
10
11// This program is free software; you can redistribute it and/or modify
12// it under the terms of the GNU General Public License as published by
13// the Free Software Foundation; either version 3 of the License, or
14// (at your option) any later version.
15
16// This program is distributed in the hope that it will be useful,
17// but WITHOUT ANY WARRANTY; without even the implied warranty of
18// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19// GNU General Public License for more details.
20
21// You should have received a copy of the GNU General Public License
22// along with this program; if not, write to the Free Software
23// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
24// MA 02110-1301, USA.
25
26#include "gold.h"
27
28#include <cstring>
29#include <limits>
30#include <cstdio>
31#include <string>
56ee5e00 32#include <algorithm>
41263c05
DK
33#include <map>
34#include <utility>
2b328d4e 35#include <set>
4a657b0d
DK
36
37#include "elfcpp.h"
38#include "parameters.h"
39#include "reloc.h"
40#include "arm.h"
41#include "object.h"
42#include "symtab.h"
43#include "layout.h"
44#include "output.h"
45#include "copy-relocs.h"
46#include "target.h"
47#include "target-reloc.h"
48#include "target-select.h"
49#include "tls.h"
50#include "defstd.h"
f345227a 51#include "gc.h"
a0351a69 52#include "attributes.h"
0d31c79d 53#include "arm-reloc-property.h"
2e702c99 54#include "nacl.h"
4a657b0d
DK
55
56namespace
57{
58
59using namespace gold;
60
94cdfcff
DK
61template<bool big_endian>
62class Output_data_plt_arm;
63
2e702c99
RM
64template<bool big_endian>
65class Output_data_plt_arm_standard;
66
56ee5e00
DK
67template<bool big_endian>
68class Stub_table;
69
70template<bool big_endian>
71class Arm_input_section;
72
af2cdeae
DK
73class Arm_exidx_cantunwind;
74
75class Arm_exidx_merged_section;
76
80d0d023
DK
77class Arm_exidx_fixup;
78
07f508a2
DK
79template<bool big_endian>
80class Arm_output_section;
81
993d07c1
DK
82class Arm_exidx_input_section;
83
07f508a2
DK
84template<bool big_endian>
85class Arm_relobj;
86
f96accdf
DK
87template<bool big_endian>
88class Arm_relocate_functions;
89
4a54abbb
DK
90template<bool big_endian>
91class Arm_output_data_got;
92
b569affa
DK
93template<bool big_endian>
94class Target_arm;
95
96// For convenience.
97typedef elfcpp::Elf_types<32>::Elf_Addr Arm_address;
98
99// Maximum branch offsets for ARM, THUMB and THUMB2.
100const int32_t ARM_MAX_FWD_BRANCH_OFFSET = ((((1 << 23) - 1) << 2) + 8);
101const int32_t ARM_MAX_BWD_BRANCH_OFFSET = ((-((1 << 23) << 2)) + 8);
102const int32_t THM_MAX_FWD_BRANCH_OFFSET = ((1 << 22) -2 + 4);
103const int32_t THM_MAX_BWD_BRANCH_OFFSET = (-(1 << 22) + 4);
104const int32_t THM2_MAX_FWD_BRANCH_OFFSET = (((1 << 24) - 2) + 4);
105const int32_t THM2_MAX_BWD_BRANCH_OFFSET = (-(1 << 24) + 4);
106
4a54abbb
DK
107// Thread Control Block size.
108const size_t ARM_TCB_SIZE = 8;
109
4a657b0d
DK
110// The arm target class.
111//
112// This is a very simple port of gold for ARM-EABI. It is intended for
b10d2873 113// supporting Android only for the time being.
2e702c99 114//
4a657b0d 115// TODOs:
0d31c79d 116// - Implement all static relocation types documented in arm-reloc.def.
94cdfcff
DK
117// - Make PLTs more flexible for different architecture features like
118// Thumb-2 and BE8.
11af873f 119// There are probably a lot more.
4a657b0d 120
0d31c79d
DK
121// Ideally we would like to avoid using global variables but this is used
122// very in many places and sometimes in loops. If we use a function
9b547ce6 123// returning a static instance of Arm_reloc_property_table, it will be very
0d31c79d
DK
124// slow in an threaded environment since the static instance needs to be
125// locked. The pointer is below initialized in the
126// Target::do_select_as_default_target() hook so that we do not spend time
127// building the table if we are not linking ARM objects.
128//
129// An alternative is to to process the information in arm-reloc.def in
130// compilation time and generate a representation of it in PODs only. That
131// way we can avoid initialization when the linker starts.
132
ca09d69a 133Arm_reloc_property_table* arm_reloc_property_table = NULL;
0d31c79d 134
b569affa
DK
135// Instruction template class. This class is similar to the insn_sequence
136// struct in bfd/elf32-arm.c.
137
138class Insn_template
139{
140 public:
141 // Types of instruction templates.
142 enum Type
143 {
144 THUMB16_TYPE = 1,
2e702c99 145 // THUMB16_SPECIAL_TYPE is used by sub-classes of Stub for instruction
bb0d3eb0
DK
146 // templates with class-specific semantics. Currently this is used
147 // only by the Cortex_a8_stub class for handling condition codes in
148 // conditional branches.
149 THUMB16_SPECIAL_TYPE,
b569affa
DK
150 THUMB32_TYPE,
151 ARM_TYPE,
152 DATA_TYPE
153 };
154
bb0d3eb0 155 // Factory methods to create instruction templates in different formats.
b569affa
DK
156
157 static const Insn_template
158 thumb16_insn(uint32_t data)
2e702c99 159 { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 0); }
b569affa 160
bb0d3eb0
DK
161 // A Thumb conditional branch, in which the proper condition is inserted
162 // when we build the stub.
b569affa
DK
163 static const Insn_template
164 thumb16_bcond_insn(uint32_t data)
2e702c99 165 { return Insn_template(data, THUMB16_SPECIAL_TYPE, elfcpp::R_ARM_NONE, 1); }
b569affa
DK
166
167 static const Insn_template
168 thumb32_insn(uint32_t data)
2e702c99 169 { return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_NONE, 0); }
b569affa
DK
170
171 static const Insn_template
172 thumb32_b_insn(uint32_t data, int reloc_addend)
173 {
174 return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_THM_JUMP24,
175 reloc_addend);
2e702c99 176 }
b569affa
DK
177
178 static const Insn_template
179 arm_insn(uint32_t data)
180 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_NONE, 0); }
181
182 static const Insn_template
183 arm_rel_insn(unsigned data, int reloc_addend)
184 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_JUMP24, reloc_addend); }
185
186 static const Insn_template
187 data_word(unsigned data, unsigned int r_type, int reloc_addend)
2e702c99 188 { return Insn_template(data, DATA_TYPE, r_type, reloc_addend); }
b569affa
DK
189
190 // Accessors. This class is used for read-only objects so no modifiers
191 // are provided.
192
193 uint32_t
194 data() const
195 { return this->data_; }
196
197 // Return the instruction sequence type of this.
198 Type
199 type() const
200 { return this->type_; }
201
202 // Return the ARM relocation type of this.
203 unsigned int
204 r_type() const
205 { return this->r_type_; }
206
207 int32_t
208 reloc_addend() const
209 { return this->reloc_addend_; }
210
bb0d3eb0 211 // Return size of instruction template in bytes.
b569affa
DK
212 size_t
213 size() const;
214
bb0d3eb0 215 // Return byte-alignment of instruction template.
b569affa
DK
216 unsigned
217 alignment() const;
218
219 private:
220 // We make the constructor private to ensure that only the factory
221 // methods are used.
222 inline
2ea97941
ILT
223 Insn_template(unsigned data, Type type, unsigned int r_type, int reloc_addend)
224 : data_(data), type_(type), r_type_(r_type), reloc_addend_(reloc_addend)
b569affa
DK
225 { }
226
227 // Instruction specific data. This is used to store information like
228 // some of the instruction bits.
229 uint32_t data_;
230 // Instruction template type.
231 Type type_;
232 // Relocation type if there is a relocation or R_ARM_NONE otherwise.
233 unsigned int r_type_;
234 // Relocation addend.
235 int32_t reloc_addend_;
236};
237
238// Macro for generating code to stub types. One entry per long/short
239// branch stub
240
241#define DEF_STUBS \
242 DEF_STUB(long_branch_any_any) \
243 DEF_STUB(long_branch_v4t_arm_thumb) \
244 DEF_STUB(long_branch_thumb_only) \
245 DEF_STUB(long_branch_v4t_thumb_thumb) \
246 DEF_STUB(long_branch_v4t_thumb_arm) \
247 DEF_STUB(short_branch_v4t_thumb_arm) \
248 DEF_STUB(long_branch_any_arm_pic) \
249 DEF_STUB(long_branch_any_thumb_pic) \
250 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
251 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
252 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
253 DEF_STUB(long_branch_thumb_only_pic) \
254 DEF_STUB(a8_veneer_b_cond) \
255 DEF_STUB(a8_veneer_b) \
256 DEF_STUB(a8_veneer_bl) \
a2162063
ILT
257 DEF_STUB(a8_veneer_blx) \
258 DEF_STUB(v4_veneer_bx)
b569affa
DK
259
260// Stub types.
261
262#define DEF_STUB(x) arm_stub_##x,
263typedef enum
264 {
265 arm_stub_none,
266 DEF_STUBS
267
268 // First reloc stub type.
269 arm_stub_reloc_first = arm_stub_long_branch_any_any,
270 // Last reloc stub type.
271 arm_stub_reloc_last = arm_stub_long_branch_thumb_only_pic,
272
273 // First Cortex-A8 stub type.
274 arm_stub_cortex_a8_first = arm_stub_a8_veneer_b_cond,
275 // Last Cortex-A8 stub type.
276 arm_stub_cortex_a8_last = arm_stub_a8_veneer_blx,
2e702c99 277
b569affa 278 // Last stub type.
a2162063 279 arm_stub_type_last = arm_stub_v4_veneer_bx
b569affa
DK
280 } Stub_type;
281#undef DEF_STUB
282
283// Stub template class. Templates are meant to be read-only objects.
284// A stub template for a stub type contains all read-only attributes
285// common to all stubs of the same type.
286
287class Stub_template
288{
289 public:
290 Stub_template(Stub_type, const Insn_template*, size_t);
291
292 ~Stub_template()
293 { }
294
295 // Return stub type.
296 Stub_type
297 type() const
298 { return this->type_; }
299
300 // Return an array of instruction templates.
301 const Insn_template*
302 insns() const
303 { return this->insns_; }
304
305 // Return size of template in number of instructions.
306 size_t
307 insn_count() const
308 { return this->insn_count_; }
309
310 // Return size of template in bytes.
311 size_t
312 size() const
313 { return this->size_; }
314
315 // Return alignment of the stub template.
316 unsigned
317 alignment() const
318 { return this->alignment_; }
2e702c99 319
b569affa
DK
320 // Return whether entry point is in thumb mode.
321 bool
322 entry_in_thumb_mode() const
323 { return this->entry_in_thumb_mode_; }
324
325 // Return number of relocations in this template.
326 size_t
327 reloc_count() const
328 { return this->relocs_.size(); }
329
330 // Return index of the I-th instruction with relocation.
331 size_t
332 reloc_insn_index(size_t i) const
333 {
334 gold_assert(i < this->relocs_.size());
335 return this->relocs_[i].first;
336 }
337
338 // Return the offset of the I-th instruction with relocation from the
339 // beginning of the stub.
340 section_size_type
341 reloc_offset(size_t i) const
342 {
343 gold_assert(i < this->relocs_.size());
344 return this->relocs_[i].second;
345 }
346
347 private:
348 // This contains information about an instruction template with a relocation
349 // and its offset from start of stub.
350 typedef std::pair<size_t, section_size_type> Reloc;
351
352 // A Stub_template may not be copied. We want to share templates as much
353 // as possible.
354 Stub_template(const Stub_template&);
355 Stub_template& operator=(const Stub_template&);
2e702c99 356
b569affa
DK
357 // Stub type.
358 Stub_type type_;
359 // Points to an array of Insn_templates.
360 const Insn_template* insns_;
361 // Number of Insn_templates in insns_[].
362 size_t insn_count_;
363 // Size of templated instructions in bytes.
364 size_t size_;
365 // Alignment of templated instructions.
366 unsigned alignment_;
367 // Flag to indicate if entry is in thumb mode.
368 bool entry_in_thumb_mode_;
369 // A table of reloc instruction indices and offsets. We can find these by
370 // looking at the instruction templates but we pre-compute and then stash
2e702c99 371 // them here for speed.
b569affa
DK
372 std::vector<Reloc> relocs_;
373};
374
375//
376// A class for code stubs. This is a base class for different type of
377// stubs used in the ARM target.
378//
379
380class Stub
381{
382 private:
383 static const section_offset_type invalid_offset =
384 static_cast<section_offset_type>(-1);
385
386 public:
2ea97941
ILT
387 Stub(const Stub_template* stub_template)
388 : stub_template_(stub_template), offset_(invalid_offset)
b569affa
DK
389 { }
390
391 virtual
392 ~Stub()
393 { }
394
395 // Return the stub template.
396 const Stub_template*
397 stub_template() const
398 { return this->stub_template_; }
399
400 // Return offset of code stub from beginning of its containing stub table.
401 section_offset_type
402 offset() const
403 {
404 gold_assert(this->offset_ != invalid_offset);
405 return this->offset_;
406 }
407
408 // Set offset of code stub from beginning of its containing stub table.
409 void
2ea97941
ILT
410 set_offset(section_offset_type offset)
411 { this->offset_ = offset; }
2e702c99 412
b569affa
DK
413 // Return the relocation target address of the i-th relocation in the
414 // stub. This must be defined in a child class.
415 Arm_address
416 reloc_target(size_t i)
417 { return this->do_reloc_target(i); }
418
419 // Write a stub at output VIEW. BIG_ENDIAN select how a stub is written.
420 void
421 write(unsigned char* view, section_size_type view_size, bool big_endian)
422 { this->do_write(view, view_size, big_endian); }
423
bb0d3eb0
DK
424 // Return the instruction for THUMB16_SPECIAL_TYPE instruction template
425 // for the i-th instruction.
426 uint16_t
427 thumb16_special(size_t i)
428 { return this->do_thumb16_special(i); }
429
b569affa
DK
430 protected:
431 // This must be defined in the child class.
432 virtual Arm_address
433 do_reloc_target(size_t) = 0;
434
bb0d3eb0 435 // This may be overridden in the child class.
b569affa 436 virtual void
bb0d3eb0
DK
437 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
438 {
439 if (big_endian)
440 this->do_fixed_endian_write<true>(view, view_size);
441 else
442 this->do_fixed_endian_write<false>(view, view_size);
443 }
2e702c99 444
bb0d3eb0
DK
445 // This must be overridden if a child class uses the THUMB16_SPECIAL_TYPE
446 // instruction template.
447 virtual uint16_t
448 do_thumb16_special(size_t)
449 { gold_unreachable(); }
450
b569affa 451 private:
bb0d3eb0
DK
452 // A template to implement do_write.
453 template<bool big_endian>
454 void inline
455 do_fixed_endian_write(unsigned char*, section_size_type);
456
b569affa
DK
457 // Its template.
458 const Stub_template* stub_template_;
459 // Offset within the section of containing this stub.
460 section_offset_type offset_;
461};
462
463// Reloc stub class. These are stubs we use to fix up relocation because
464// of limited branch ranges.
465
466class Reloc_stub : public Stub
467{
468 public:
469 static const unsigned int invalid_index = static_cast<unsigned int>(-1);
470 // We assume we never jump to this address.
471 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
472
473 // Return destination address.
474 Arm_address
475 destination_address() const
476 {
477 gold_assert(this->destination_address_ != this->invalid_address);
478 return this->destination_address_;
479 }
480
481 // Set destination address.
482 void
483 set_destination_address(Arm_address address)
484 {
485 gold_assert(address != this->invalid_address);
486 this->destination_address_ = address;
487 }
488
489 // Reset destination address.
490 void
491 reset_destination_address()
492 { this->destination_address_ = this->invalid_address; }
493
494 // Determine stub type for a branch of a relocation of R_TYPE going
495 // from BRANCH_ADDRESS to BRANCH_TARGET. If TARGET_IS_THUMB is set,
496 // the branch target is a thumb instruction. TARGET is used for look
497 // up ARM-specific linker settings.
498 static Stub_type
499 stub_type_for_reloc(unsigned int r_type, Arm_address branch_address,
500 Arm_address branch_target, bool target_is_thumb);
501
502 // Reloc_stub key. A key is logically a triplet of a stub type, a symbol
503 // and an addend. Since we treat global and local symbol differently, we
504 // use a Symbol object for a global symbol and a object-index pair for
505 // a local symbol.
506 class Key
507 {
508 public:
509 // If SYMBOL is not null, this is a global symbol, we ignore RELOBJ and
510 // R_SYM. Otherwise, this is a local symbol and RELOBJ must non-NULL
511 // and R_SYM must not be invalid_index.
2ea97941
ILT
512 Key(Stub_type stub_type, const Symbol* symbol, const Relobj* relobj,
513 unsigned int r_sym, int32_t addend)
514 : stub_type_(stub_type), addend_(addend)
b569affa 515 {
2ea97941 516 if (symbol != NULL)
b569affa
DK
517 {
518 this->r_sym_ = Reloc_stub::invalid_index;
2ea97941 519 this->u_.symbol = symbol;
b569affa
DK
520 }
521 else
522 {
2ea97941
ILT
523 gold_assert(relobj != NULL && r_sym != invalid_index);
524 this->r_sym_ = r_sym;
525 this->u_.relobj = relobj;
b569affa
DK
526 }
527 }
528
529 ~Key()
530 { }
531
532 // Accessors: Keys are meant to be read-only object so no modifiers are
533 // provided.
534
535 // Return stub type.
536 Stub_type
537 stub_type() const
538 { return this->stub_type_; }
539
540 // Return the local symbol index or invalid_index.
541 unsigned int
542 r_sym() const
543 { return this->r_sym_; }
544
545 // Return the symbol if there is one.
546 const Symbol*
547 symbol() const
548 { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
549
550 // Return the relobj if there is one.
551 const Relobj*
552 relobj() const
553 { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
554
555 // Whether this equals to another key k.
556 bool
2e702c99 557 eq(const Key& k) const
b569affa
DK
558 {
559 return ((this->stub_type_ == k.stub_type_)
560 && (this->r_sym_ == k.r_sym_)
561 && ((this->r_sym_ != Reloc_stub::invalid_index)
562 ? (this->u_.relobj == k.u_.relobj)
563 : (this->u_.symbol == k.u_.symbol))
564 && (this->addend_ == k.addend_));
565 }
566
567 // Return a hash value.
568 size_t
569 hash_value() const
570 {
571 return (this->stub_type_
572 ^ this->r_sym_
573 ^ gold::string_hash<char>(
574 (this->r_sym_ != Reloc_stub::invalid_index)
575 ? this->u_.relobj->name().c_str()
576 : this->u_.symbol->name())
577 ^ this->addend_);
578 }
579
580 // Functors for STL associative containers.
581 struct hash
582 {
583 size_t
584 operator()(const Key& k) const
585 { return k.hash_value(); }
586 };
587
588 struct equal_to
589 {
590 bool
591 operator()(const Key& k1, const Key& k2) const
592 { return k1.eq(k2); }
593 };
594
595 // Name of key. This is mainly for debugging.
596 std::string
597 name() const;
598
599 private:
600 // Stub type.
601 Stub_type stub_type_;
602 // If this is a local symbol, this is the index in the defining object.
603 // Otherwise, it is invalid_index for a global symbol.
604 unsigned int r_sym_;
9b547ce6
RW
605 // If r_sym_ is an invalid index, this points to a global symbol.
606 // Otherwise, it points to a relobj. We used the unsized and target
2e702c99 607 // independent Symbol and Relobj classes instead of Sized_symbol<32> and
9b547ce6 608 // Arm_relobj, in order to avoid making the stub class a template
7296d933 609 // as most of the stub machinery is endianness-neutral. However, it
b569affa
DK
610 // may require a bit of casting done by users of this class.
611 union
612 {
613 const Symbol* symbol;
614 const Relobj* relobj;
615 } u_;
616 // Addend associated with a reloc.
617 int32_t addend_;
618 };
619
620 protected:
621 // Reloc_stubs are created via a stub factory. So these are protected.
2ea97941
ILT
622 Reloc_stub(const Stub_template* stub_template)
623 : Stub(stub_template), destination_address_(invalid_address)
b569affa
DK
624 { }
625
626 ~Reloc_stub()
627 { }
628
629 friend class Stub_factory;
630
b569affa
DK
631 // Return the relocation target address of the i-th relocation in the
632 // stub.
633 Arm_address
634 do_reloc_target(size_t i)
635 {
636 // All reloc stub have only one relocation.
637 gold_assert(i == 0);
638 return this->destination_address_;
639 }
640
bb0d3eb0
DK
641 private:
642 // Address of destination.
643 Arm_address destination_address_;
644};
b569affa 645
bb0d3eb0
DK
646// Cortex-A8 stub class. We need a Cortex-A8 stub to redirect any 32-bit
647// THUMB branch that meets the following conditions:
2e702c99 648//
bb0d3eb0
DK
649// 1. The branch straddles across a page boundary. i.e. lower 12-bit of
650// branch address is 0xffe.
651// 2. The branch target address is in the same page as the first word of the
652// branch.
653// 3. The branch follows a 32-bit instruction which is not a branch.
654//
655// To do the fix up, we need to store the address of the branch instruction
656// and its target at least. We also need to store the original branch
657// instruction bits for the condition code in a conditional branch. The
658// condition code is used in a special instruction template. We also want
659// to identify input sections needing Cortex-A8 workaround quickly. We store
660// extra information about object and section index of the code section
661// containing a branch being fixed up. The information is used to mark
662// the code section when we finalize the Cortex-A8 stubs.
663//
b569affa 664
bb0d3eb0
DK
665class Cortex_a8_stub : public Stub
666{
667 public:
668 ~Cortex_a8_stub()
669 { }
670
671 // Return the object of the code section containing the branch being fixed
672 // up.
673 Relobj*
674 relobj() const
675 { return this->relobj_; }
676
677 // Return the section index of the code section containing the branch being
678 // fixed up.
679 unsigned int
680 shndx() const
681 { return this->shndx_; }
682
683 // Return the source address of stub. This is the address of the original
684 // branch instruction. LSB is 1 always set to indicate that it is a THUMB
685 // instruction.
686 Arm_address
687 source_address() const
688 { return this->source_address_; }
689
690 // Return the destination address of the stub. This is the branch taken
691 // address of the original branch instruction. LSB is 1 if it is a THUMB
692 // instruction address.
693 Arm_address
694 destination_address() const
695 { return this->destination_address_; }
696
697 // Return the instruction being fixed up.
698 uint32_t
699 original_insn() const
700 { return this->original_insn_; }
701
702 protected:
703 // Cortex_a8_stubs are created via a stub factory. So these are protected.
704 Cortex_a8_stub(const Stub_template* stub_template, Relobj* relobj,
705 unsigned int shndx, Arm_address source_address,
706 Arm_address destination_address, uint32_t original_insn)
707 : Stub(stub_template), relobj_(relobj), shndx_(shndx),
708 source_address_(source_address | 1U),
709 destination_address_(destination_address),
710 original_insn_(original_insn)
711 { }
712
713 friend class Stub_factory;
714
715 // Return the relocation target address of the i-th relocation in the
716 // stub.
717 Arm_address
718 do_reloc_target(size_t i)
719 {
720 if (this->stub_template()->type() == arm_stub_a8_veneer_b_cond)
721 {
2e702c99
RM
722 // The conditional branch veneer has two relocations.
723 gold_assert(i < 2);
bb0d3eb0
DK
724 return i == 0 ? this->source_address_ + 4 : this->destination_address_;
725 }
726 else
727 {
2e702c99
RM
728 // All other Cortex-A8 stubs have only one relocation.
729 gold_assert(i == 0);
730 return this->destination_address_;
bb0d3eb0
DK
731 }
732 }
733
734 // Return an instruction for the THUMB16_SPECIAL_TYPE instruction template.
735 uint16_t
736 do_thumb16_special(size_t);
737
738 private:
739 // Object of the code section containing the branch being fixed up.
740 Relobj* relobj_;
741 // Section index of the code section containing the branch begin fixed up.
742 unsigned int shndx_;
743 // Source address of original branch.
744 Arm_address source_address_;
745 // Destination address of the original branch.
b569affa 746 Arm_address destination_address_;
bb0d3eb0
DK
747 // Original branch instruction. This is needed for copying the condition
748 // code from a condition branch to its stub.
749 uint32_t original_insn_;
b569affa
DK
750};
751
a2162063
ILT
752// ARMv4 BX Rx branch relocation stub class.
753class Arm_v4bx_stub : public Stub
754{
755 public:
756 ~Arm_v4bx_stub()
757 { }
758
759 // Return the associated register.
760 uint32_t
761 reg() const
762 { return this->reg_; }
763
764 protected:
765 // Arm V4BX stubs are created via a stub factory. So these are protected.
766 Arm_v4bx_stub(const Stub_template* stub_template, const uint32_t reg)
767 : Stub(stub_template), reg_(reg)
768 { }
769
770 friend class Stub_factory;
771
772 // Return the relocation target address of the i-th relocation in the
773 // stub.
774 Arm_address
775 do_reloc_target(size_t)
776 { gold_unreachable(); }
777
778 // This may be overridden in the child class.
779 virtual void
780 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
781 {
782 if (big_endian)
783 this->do_fixed_endian_v4bx_write<true>(view, view_size);
784 else
785 this->do_fixed_endian_v4bx_write<false>(view, view_size);
786 }
787
788 private:
789 // A template to implement do_write.
790 template<bool big_endian>
791 void inline
792 do_fixed_endian_v4bx_write(unsigned char* view, section_size_type)
793 {
794 const Insn_template* insns = this->stub_template()->insns();
795 elfcpp::Swap<32, big_endian>::writeval(view,
796 (insns[0].data()
797 + (this->reg_ << 16)));
798 view += insns[0].size();
799 elfcpp::Swap<32, big_endian>::writeval(view,
800 (insns[1].data() + this->reg_));
801 view += insns[1].size();
802 elfcpp::Swap<32, big_endian>::writeval(view,
803 (insns[2].data() + this->reg_));
804 }
805
806 // A register index (r0-r14), which is associated with the stub.
807 uint32_t reg_;
808};
809
b569affa
DK
810// Stub factory class.
811
812class Stub_factory
813{
814 public:
815 // Return the unique instance of this class.
816 static const Stub_factory&
817 get_instance()
818 {
819 static Stub_factory singleton;
820 return singleton;
821 }
822
823 // Make a relocation stub.
824 Reloc_stub*
825 make_reloc_stub(Stub_type stub_type) const
826 {
827 gold_assert(stub_type >= arm_stub_reloc_first
828 && stub_type <= arm_stub_reloc_last);
829 return new Reloc_stub(this->stub_templates_[stub_type]);
830 }
831
bb0d3eb0
DK
832 // Make a Cortex-A8 stub.
833 Cortex_a8_stub*
834 make_cortex_a8_stub(Stub_type stub_type, Relobj* relobj, unsigned int shndx,
835 Arm_address source, Arm_address destination,
836 uint32_t original_insn) const
837 {
838 gold_assert(stub_type >= arm_stub_cortex_a8_first
839 && stub_type <= arm_stub_cortex_a8_last);
840 return new Cortex_a8_stub(this->stub_templates_[stub_type], relobj, shndx,
841 source, destination, original_insn);
842 }
843
a2162063
ILT
844 // Make an ARM V4BX relocation stub.
845 // This method creates a stub from the arm_stub_v4_veneer_bx template only.
846 Arm_v4bx_stub*
847 make_arm_v4bx_stub(uint32_t reg) const
848 {
849 gold_assert(reg < 0xf);
850 return new Arm_v4bx_stub(this->stub_templates_[arm_stub_v4_veneer_bx],
851 reg);
852 }
853
b569affa
DK
854 private:
855 // Constructor and destructor are protected since we only return a single
856 // instance created in Stub_factory::get_instance().
2e702c99 857
b569affa
DK
858 Stub_factory();
859
860 // A Stub_factory may not be copied since it is a singleton.
861 Stub_factory(const Stub_factory&);
862 Stub_factory& operator=(Stub_factory&);
2e702c99 863
b569affa
DK
864 // Stub templates. These are initialized in the constructor.
865 const Stub_template* stub_templates_[arm_stub_type_last+1];
866};
867
56ee5e00
DK
868// A class to hold stubs for the ARM target.
869
870template<bool big_endian>
871class Stub_table : public Output_data
872{
873 public:
2ea97941 874 Stub_table(Arm_input_section<big_endian>* owner)
d099120c
DK
875 : Output_data(), owner_(owner), reloc_stubs_(), reloc_stubs_size_(0),
876 reloc_stubs_addralign_(1), cortex_a8_stubs_(), arm_v4bx_stubs_(0xf),
877 prev_data_size_(0), prev_addralign_(1)
56ee5e00
DK
878 { }
879
880 ~Stub_table()
881 { }
882
883 // Owner of this stub table.
884 Arm_input_section<big_endian>*
885 owner() const
886 { return this->owner_; }
887
888 // Whether this stub table is empty.
889 bool
890 empty() const
a2162063
ILT
891 {
892 return (this->reloc_stubs_.empty()
893 && this->cortex_a8_stubs_.empty()
894 && this->arm_v4bx_stubs_.empty());
895 }
56ee5e00
DK
896
897 // Return the current data size.
898 off_t
899 current_data_size() const
900 { return this->current_data_size_for_child(); }
901
9b547ce6
RW
902 // Add a STUB using KEY. The caller is responsible for avoiding addition
903 // if a STUB with the same key has already been added.
56ee5e00 904 void
2fb7225c
DK
905 add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key)
906 {
907 const Stub_template* stub_template = stub->stub_template();
908 gold_assert(stub_template->type() == key.stub_type());
909 this->reloc_stubs_[key] = stub;
d099120c
DK
910
911 // Assign stub offset early. We can do this because we never remove
912 // reloc stubs and they are in the beginning of the stub table.
913 uint64_t align = stub_template->alignment();
914 this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_, align);
915 stub->set_offset(this->reloc_stubs_size_);
916 this->reloc_stubs_size_ += stub_template->size();
917 this->reloc_stubs_addralign_ =
918 std::max(this->reloc_stubs_addralign_, align);
2fb7225c
DK
919 }
920
921 // Add a Cortex-A8 STUB that fixes up a THUMB branch at ADDRESS.
9b547ce6
RW
922 // The caller is responsible for avoiding addition if a STUB with the same
923 // address has already been added.
2fb7225c
DK
924 void
925 add_cortex_a8_stub(Arm_address address, Cortex_a8_stub* stub)
926 {
927 std::pair<Arm_address, Cortex_a8_stub*> value(address, stub);
928 this->cortex_a8_stubs_.insert(value);
929 }
930
a2162063
ILT
931 // Add an ARM V4BX relocation stub. A register index will be retrieved
932 // from the stub.
933 void
934 add_arm_v4bx_stub(Arm_v4bx_stub* stub)
935 {
936 gold_assert(stub != NULL && this->arm_v4bx_stubs_[stub->reg()] == NULL);
937 this->arm_v4bx_stubs_[stub->reg()] = stub;
938 }
939
2fb7225c
DK
940 // Remove all Cortex-A8 stubs.
941 void
942 remove_all_cortex_a8_stubs();
56ee5e00
DK
943
944 // Look up a relocation stub using KEY. Return NULL if there is none.
945 Reloc_stub*
946 find_reloc_stub(const Reloc_stub::Key& key) const
947 {
948 typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.find(key);
949 return (p != this->reloc_stubs_.end()) ? p->second : NULL;
950 }
951
a2162063
ILT
952 // Look up an arm v4bx relocation stub using the register index.
953 // Return NULL if there is none.
954 Arm_v4bx_stub*
955 find_arm_v4bx_stub(const uint32_t reg) const
956 {
957 gold_assert(reg < 0xf);
958 return this->arm_v4bx_stubs_[reg];
959 }
960
56ee5e00
DK
961 // Relocate stubs in this stub table.
962 void
963 relocate_stubs(const Relocate_info<32, big_endian>*,
964 Target_arm<big_endian>*, Output_section*,
965 unsigned char*, Arm_address, section_size_type);
966
2fb7225c
DK
967 // Update data size and alignment at the end of a relaxation pass. Return
968 // true if either data size or alignment is different from that of the
969 // previous relaxation pass.
970 bool
971 update_data_size_and_addralign();
972
973 // Finalize stubs. Set the offsets of all stubs and mark input sections
974 // needing the Cortex-A8 workaround.
975 void
976 finalize_stubs();
2e702c99 977
2fb7225c
DK
978 // Apply Cortex-A8 workaround to an address range.
979 void
980 apply_cortex_a8_workaround_to_address_range(Target_arm<big_endian>*,
981 unsigned char*, Arm_address,
982 section_size_type);
983
56ee5e00
DK
984 protected:
985 // Write out section contents.
986 void
987 do_write(Output_file*);
2e702c99 988
56ee5e00
DK
989 // Return the required alignment.
990 uint64_t
991 do_addralign() const
2fb7225c 992 { return this->prev_addralign_; }
56ee5e00
DK
993
994 // Reset address and file offset.
995 void
2fb7225c
DK
996 do_reset_address_and_file_offset()
997 { this->set_current_data_size_for_child(this->prev_data_size_); }
56ee5e00 998
2fb7225c
DK
999 // Set final data size.
1000 void
1001 set_final_data_size()
1002 { this->set_data_size(this->current_data_size()); }
2e702c99 1003
56ee5e00 1004 private:
2fb7225c
DK
1005 // Relocate one stub.
1006 void
1007 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
1008 Target_arm<big_endian>*, Output_section*,
1009 unsigned char*, Arm_address, section_size_type);
1010
1011 // Unordered map of relocation stubs.
56ee5e00
DK
1012 typedef
1013 Unordered_map<Reloc_stub::Key, Reloc_stub*, Reloc_stub::Key::hash,
1014 Reloc_stub::Key::equal_to>
1015 Reloc_stub_map;
1016
2fb7225c
DK
1017 // List of Cortex-A8 stubs ordered by addresses of branches being
1018 // fixed up in output.
1019 typedef std::map<Arm_address, Cortex_a8_stub*> Cortex_a8_stub_list;
a2162063
ILT
1020 // List of Arm V4BX relocation stubs ordered by associated registers.
1021 typedef std::vector<Arm_v4bx_stub*> Arm_v4bx_stub_list;
2fb7225c 1022
56ee5e00
DK
1023 // Owner of this stub table.
1024 Arm_input_section<big_endian>* owner_;
56ee5e00
DK
1025 // The relocation stubs.
1026 Reloc_stub_map reloc_stubs_;
d099120c
DK
1027 // Size of reloc stubs.
1028 off_t reloc_stubs_size_;
1029 // Maximum address alignment of reloc stubs.
1030 uint64_t reloc_stubs_addralign_;
2fb7225c
DK
1031 // The cortex_a8_stubs.
1032 Cortex_a8_stub_list cortex_a8_stubs_;
a2162063
ILT
1033 // The Arm V4BX relocation stubs.
1034 Arm_v4bx_stub_list arm_v4bx_stubs_;
2fb7225c
DK
1035 // data size of this in the previous pass.
1036 off_t prev_data_size_;
1037 // address alignment of this in the previous pass.
1038 uint64_t prev_addralign_;
56ee5e00
DK
1039};
1040
af2cdeae
DK
1041// Arm_exidx_cantunwind class. This represents an EXIDX_CANTUNWIND entry
1042// we add to the end of an EXIDX input section that goes into the output.
1043
1044class Arm_exidx_cantunwind : public Output_section_data
1045{
1046 public:
1047 Arm_exidx_cantunwind(Relobj* relobj, unsigned int shndx)
1048 : Output_section_data(8, 4, true), relobj_(relobj), shndx_(shndx)
1049 { }
1050
1051 // Return the object containing the section pointed by this.
1052 Relobj*
1053 relobj() const
1054 { return this->relobj_; }
1055
1056 // Return the section index of the section pointed by this.
1057 unsigned int
1058 shndx() const
1059 { return this->shndx_; }
1060
1061 protected:
1062 void
1063 do_write(Output_file* of)
1064 {
1065 if (parameters->target().is_big_endian())
1066 this->do_fixed_endian_write<true>(of);
1067 else
1068 this->do_fixed_endian_write<false>(of);
1069 }
1070
aa98ff75
DK
1071 // Write to a map file.
1072 void
1073 do_print_to_mapfile(Mapfile* mapfile) const
1074 { mapfile->print_output_data(this, _("** ARM cantunwind")); }
1075
af2cdeae 1076 private:
7296d933 1077 // Implement do_write for a given endianness.
af2cdeae
DK
1078 template<bool big_endian>
1079 void inline
1080 do_fixed_endian_write(Output_file*);
2e702c99 1081
af2cdeae
DK
1082 // The object containing the section pointed by this.
1083 Relobj* relobj_;
1084 // The section index of the section pointed by this.
1085 unsigned int shndx_;
1086};
1087
1088// During EXIDX coverage fix-up, we compact an EXIDX section. The
1089// Offset map is used to map input section offset within the EXIDX section
2e702c99 1090// to the output offset from the start of this EXIDX section.
af2cdeae
DK
1091
1092typedef std::map<section_offset_type, section_offset_type>
1093 Arm_exidx_section_offset_map;
1094
1095// Arm_exidx_merged_section class. This represents an EXIDX input section
1096// with some of its entries merged.
1097
1098class Arm_exidx_merged_section : public Output_relaxed_input_section
1099{
1100 public:
1101 // Constructor for Arm_exidx_merged_section.
1102 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
1103 // SECTION_OFFSET_MAP points to a section offset map describing how
1104 // parts of the input section are mapped to output. DELETED_BYTES is
1105 // the number of bytes deleted from the EXIDX input section.
1106 Arm_exidx_merged_section(
1107 const Arm_exidx_input_section& exidx_input_section,
1108 const Arm_exidx_section_offset_map& section_offset_map,
1109 uint32_t deleted_bytes);
1110
f625ae50
DK
1111 // Build output contents.
1112 void
1113 build_contents(const unsigned char*, section_size_type);
1114
af2cdeae
DK
1115 // Return the original EXIDX input section.
1116 const Arm_exidx_input_section&
1117 exidx_input_section() const
1118 { return this->exidx_input_section_; }
1119
1120 // Return the section offset map.
1121 const Arm_exidx_section_offset_map&
1122 section_offset_map() const
1123 { return this->section_offset_map_; }
1124
1125 protected:
1126 // Write merged section into file OF.
1127 void
1128 do_write(Output_file* of);
1129
1130 bool
1131 do_output_offset(const Relobj*, unsigned int, section_offset_type,
1132 section_offset_type*) const;
1133
1134 private:
1135 // Original EXIDX input section.
1136 const Arm_exidx_input_section& exidx_input_section_;
1137 // Section offset map.
1138 const Arm_exidx_section_offset_map& section_offset_map_;
2e702c99 1139 // Merged section contents. We need to keep build the merged section
f625ae50
DK
1140 // and save it here to avoid accessing the original EXIDX section when
1141 // we cannot lock the sections' object.
1142 unsigned char* section_contents_;
af2cdeae
DK
1143};
1144
10ad9fe5
DK
1145// A class to wrap an ordinary input section containing executable code.
1146
1147template<bool big_endian>
1148class Arm_input_section : public Output_relaxed_input_section
1149{
1150 public:
2ea97941
ILT
1151 Arm_input_section(Relobj* relobj, unsigned int shndx)
1152 : Output_relaxed_input_section(relobj, shndx, 1),
f625ae50
DK
1153 original_addralign_(1), original_size_(0), stub_table_(NULL),
1154 original_contents_(NULL)
10ad9fe5
DK
1155 { }
1156
1157 ~Arm_input_section()
f625ae50 1158 { delete[] this->original_contents_; }
10ad9fe5
DK
1159
1160 // Initialize.
1161 void
1162 init();
2e702c99 1163
10ad9fe5
DK
1164 // Whether this is a stub table owner.
1165 bool
1166 is_stub_table_owner() const
1167 { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
1168
1169 // Return the stub table.
1170 Stub_table<big_endian>*
1171 stub_table() const
1172 { return this->stub_table_; }
1173
1174 // Set the stub_table.
1175 void
2ea97941
ILT
1176 set_stub_table(Stub_table<big_endian>* stub_table)
1177 { this->stub_table_ = stub_table; }
10ad9fe5 1178
07f508a2
DK
1179 // Downcast a base pointer to an Arm_input_section pointer. This is
1180 // not type-safe but we only use Arm_input_section not the base class.
1181 static Arm_input_section<big_endian>*
1182 as_arm_input_section(Output_relaxed_input_section* poris)
1183 { return static_cast<Arm_input_section<big_endian>*>(poris); }
1184
6625d24e
DK
1185 // Return the original size of the section.
1186 uint32_t
1187 original_size() const
1188 { return this->original_size_; }
1189
10ad9fe5
DK
1190 protected:
1191 // Write data to output file.
1192 void
1193 do_write(Output_file*);
1194
1195 // Return required alignment of this.
1196 uint64_t
1197 do_addralign() const
1198 {
1199 if (this->is_stub_table_owner())
1200 return std::max(this->stub_table_->addralign(),
6625d24e 1201 static_cast<uint64_t>(this->original_addralign_));
10ad9fe5
DK
1202 else
1203 return this->original_addralign_;
1204 }
1205
1206 // Finalize data size.
1207 void
1208 set_final_data_size();
1209
1210 // Reset address and file offset.
1211 void
1212 do_reset_address_and_file_offset();
1213
1214 // Output offset.
1215 bool
2ea97941
ILT
1216 do_output_offset(const Relobj* object, unsigned int shndx,
1217 section_offset_type offset,
2e702c99 1218 section_offset_type* poutput) const
10ad9fe5
DK
1219 {
1220 if ((object == this->relobj())
2ea97941
ILT
1221 && (shndx == this->shndx())
1222 && (offset >= 0)
0439c796
DK
1223 && (offset <=
1224 convert_types<section_offset_type, uint32_t>(this->original_size_)))
10ad9fe5 1225 {
2ea97941 1226 *poutput = offset;
10ad9fe5
DK
1227 return true;
1228 }
1229 else
1230 return false;
1231 }
1232
1233 private:
1234 // Copying is not allowed.
1235 Arm_input_section(const Arm_input_section&);
1236 Arm_input_section& operator=(const Arm_input_section&);
1237
1238 // Address alignment of the original input section.
6625d24e 1239 uint32_t original_addralign_;
10ad9fe5 1240 // Section size of the original input section.
6625d24e 1241 uint32_t original_size_;
10ad9fe5
DK
1242 // Stub table.
1243 Stub_table<big_endian>* stub_table_;
f625ae50
DK
1244 // Original section contents. We have to make a copy here since the file
1245 // containing the original section may not be locked when we need to access
1246 // the contents.
1247 unsigned char* original_contents_;
10ad9fe5
DK
1248};
1249
80d0d023
DK
1250// Arm_exidx_fixup class. This is used to define a number of methods
1251// and keep states for fixing up EXIDX coverage.
1252
1253class Arm_exidx_fixup
1254{
1255 public:
85fdf906
AH
1256 Arm_exidx_fixup(Output_section* exidx_output_section,
1257 bool merge_exidx_entries = true)
80d0d023
DK
1258 : exidx_output_section_(exidx_output_section), last_unwind_type_(UT_NONE),
1259 last_inlined_entry_(0), last_input_section_(NULL),
85fdf906
AH
1260 section_offset_map_(NULL), first_output_text_section_(NULL),
1261 merge_exidx_entries_(merge_exidx_entries)
80d0d023
DK
1262 { }
1263
1264 ~Arm_exidx_fixup()
1265 { delete this->section_offset_map_; }
1266
f625ae50
DK
1267 // Process an EXIDX section for entry merging. SECTION_CONTENTS points
1268 // to the EXIDX contents and SECTION_SIZE is the size of the contents. Return
1269 // number of bytes to be deleted in output. If parts of the input EXIDX
1270 // section are merged a heap allocated Arm_exidx_section_offset_map is store
1271 // in the located PSECTION_OFFSET_MAP. The caller owns the map and is
9b547ce6 1272 // responsible for releasing it.
80d0d023
DK
1273 template<bool big_endian>
1274 uint32_t
1275 process_exidx_section(const Arm_exidx_input_section* exidx_input_section,
f625ae50
DK
1276 const unsigned char* section_contents,
1277 section_size_type section_size,
80d0d023 1278 Arm_exidx_section_offset_map** psection_offset_map);
2e702c99 1279
80d0d023
DK
1280 // Append an EXIDX_CANTUNWIND entry pointing at the end of the last
1281 // input section, if there is not one already.
1282 void
1283 add_exidx_cantunwind_as_needed();
1284
546c7457
DK
1285 // Return the output section for the text section which is linked to the
1286 // first exidx input in output.
1287 Output_section*
1288 first_output_text_section() const
1289 { return this->first_output_text_section_; }
1290
80d0d023
DK
1291 private:
1292 // Copying is not allowed.
1293 Arm_exidx_fixup(const Arm_exidx_fixup&);
1294 Arm_exidx_fixup& operator=(const Arm_exidx_fixup&);
1295
1296 // Type of EXIDX unwind entry.
1297 enum Unwind_type
1298 {
1299 // No type.
1300 UT_NONE,
1301 // EXIDX_CANTUNWIND.
1302 UT_EXIDX_CANTUNWIND,
1303 // Inlined entry.
1304 UT_INLINED_ENTRY,
1305 // Normal entry.
1306 UT_NORMAL_ENTRY,
1307 };
1308
1309 // Process an EXIDX entry. We only care about the second word of the
1310 // entry. Return true if the entry can be deleted.
1311 bool
1312 process_exidx_entry(uint32_t second_word);
1313
1314 // Update the current section offset map during EXIDX section fix-up.
1315 // If there is no map, create one. INPUT_OFFSET is the offset of a
1316 // reference point, DELETED_BYTES is the number of deleted by in the
1317 // section so far. If DELETE_ENTRY is true, the reference point and
1318 // all offsets after the previous reference point are discarded.
1319 void
1320 update_offset_map(section_offset_type input_offset,
1321 section_size_type deleted_bytes, bool delete_entry);
1322
1323 // EXIDX output section.
1324 Output_section* exidx_output_section_;
1325 // Unwind type of the last EXIDX entry processed.
1326 Unwind_type last_unwind_type_;
1327 // Last seen inlined EXIDX entry.
1328 uint32_t last_inlined_entry_;
1329 // Last processed EXIDX input section.
2b328d4e 1330 const Arm_exidx_input_section* last_input_section_;
80d0d023
DK
1331 // Section offset map created in process_exidx_section.
1332 Arm_exidx_section_offset_map* section_offset_map_;
546c7457
DK
1333 // Output section for the text section which is linked to the first exidx
1334 // input in output.
1335 Output_section* first_output_text_section_;
85fdf906
AH
1336
1337 bool merge_exidx_entries_;
80d0d023
DK
1338};
1339
07f508a2
DK
1340// Arm output section class. This is defined mainly to add a number of
1341// stub generation methods.
1342
1343template<bool big_endian>
1344class Arm_output_section : public Output_section
1345{
1346 public:
2b328d4e
DK
1347 typedef std::vector<std::pair<Relobj*, unsigned int> > Text_section_list;
1348
c87e4302 1349 // We need to force SHF_LINK_ORDER in a SHT_ARM_EXIDX section.
2ea97941
ILT
1350 Arm_output_section(const char* name, elfcpp::Elf_Word type,
1351 elfcpp::Elf_Xword flags)
c87e4302
DK
1352 : Output_section(name, type,
1353 (type == elfcpp::SHT_ARM_EXIDX
1354 ? flags | elfcpp::SHF_LINK_ORDER
1355 : flags))
131687b4
DK
1356 {
1357 if (type == elfcpp::SHT_ARM_EXIDX)
1358 this->set_always_keeps_input_sections();
1359 }
07f508a2
DK
1360
1361 ~Arm_output_section()
1362 { }
2e702c99 1363
07f508a2
DK
1364 // Group input sections for stub generation.
1365 void
f625ae50 1366 group_sections(section_size_type, bool, Target_arm<big_endian>*, const Task*);
07f508a2
DK
1367
1368 // Downcast a base pointer to an Arm_output_section pointer. This is
1369 // not type-safe but we only use Arm_output_section not the base class.
1370 static Arm_output_section<big_endian>*
1371 as_arm_output_section(Output_section* os)
1372 { return static_cast<Arm_output_section<big_endian>*>(os); }
1373
2b328d4e
DK
1374 // Append all input text sections in this into LIST.
1375 void
1376 append_text_sections_to_list(Text_section_list* list);
1377
1378 // Fix EXIDX coverage of this EXIDX output section. SORTED_TEXT_SECTION
1379 // is a list of text input sections sorted in ascending order of their
1380 // output addresses.
1381 void
4a54abbb
DK
1382 fix_exidx_coverage(Layout* layout,
1383 const Text_section_list& sorted_text_section,
85fdf906 1384 Symbol_table* symtab,
f625ae50
DK
1385 bool merge_exidx_entries,
1386 const Task* task);
2b328d4e 1387
131687b4
DK
1388 // Link an EXIDX section into its corresponding text section.
1389 void
1390 set_exidx_section_link();
1391
07f508a2
DK
1392 private:
1393 // For convenience.
1394 typedef Output_section::Input_section Input_section;
1395 typedef Output_section::Input_section_list Input_section_list;
1396
1397 // Create a stub group.
1398 void create_stub_group(Input_section_list::const_iterator,
1399 Input_section_list::const_iterator,
1400 Input_section_list::const_iterator,
1401 Target_arm<big_endian>*,
f625ae50
DK
1402 std::vector<Output_relaxed_input_section*>*,
1403 const Task* task);
07f508a2
DK
1404};
1405
993d07c1
DK
1406// Arm_exidx_input_section class. This represents an EXIDX input section.
1407
1408class Arm_exidx_input_section
1409{
1410 public:
1411 static const section_offset_type invalid_offset =
1412 static_cast<section_offset_type>(-1);
1413
1414 Arm_exidx_input_section(Relobj* relobj, unsigned int shndx,
f625ae50
DK
1415 unsigned int link, uint32_t size,
1416 uint32_t addralign, uint32_t text_size)
993d07c1 1417 : relobj_(relobj), shndx_(shndx), link_(link), size_(size),
f625ae50 1418 addralign_(addralign), text_size_(text_size), has_errors_(false)
993d07c1
DK
1419 { }
1420
1421 ~Arm_exidx_input_section()
1422 { }
2e702c99 1423
993d07c1
DK
1424 // Accessors: This is a read-only class.
1425
1426 // Return the object containing this EXIDX input section.
1427 Relobj*
1428 relobj() const
1429 { return this->relobj_; }
1430
1431 // Return the section index of this EXIDX input section.
1432 unsigned int
1433 shndx() const
1434 { return this->shndx_; }
1435
1436 // Return the section index of linked text section in the same object.
1437 unsigned int
1438 link() const
1439 { return this->link_; }
1440
1441 // Return size of the EXIDX input section.
1442 uint32_t
1443 size() const
1444 { return this->size_; }
1445
f625ae50 1446 // Return address alignment of EXIDX input section.
993d07c1
DK
1447 uint32_t
1448 addralign() const
1449 { return this->addralign_; }
1450
f625ae50
DK
1451 // Return size of the associated text input section.
1452 uint32_t
1453 text_size() const
1454 { return this->text_size_; }
1455
131687b4
DK
1456 // Whether there are any errors in the EXIDX input section.
1457 bool
1458 has_errors() const
1459 { return this->has_errors_; }
1460
1461 // Set has-errors flag.
1462 void
1463 set_has_errors()
1464 { this->has_errors_ = true; }
1465
993d07c1
DK
1466 private:
1467 // Object containing this.
1468 Relobj* relobj_;
1469 // Section index of this.
1470 unsigned int shndx_;
1471 // text section linked to this in the same object.
1472 unsigned int link_;
1473 // Size of this. For ARM 32-bit is sufficient.
1474 uint32_t size_;
1475 // Address alignment of this. For ARM 32-bit is sufficient.
1476 uint32_t addralign_;
f625ae50
DK
1477 // Size of associated text section.
1478 uint32_t text_size_;
131687b4
DK
1479 // Whether this has any errors.
1480 bool has_errors_;
993d07c1
DK
1481};
1482
8ffa3667
DK
1483// Arm_relobj class.
1484
1485template<bool big_endian>
6fa2a40b 1486class Arm_relobj : public Sized_relobj_file<32, big_endian>
8ffa3667
DK
1487{
1488 public:
1489 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
1490
2ea97941 1491 Arm_relobj(const std::string& name, Input_file* input_file, off_t offset,
2e702c99 1492 const typename elfcpp::Ehdr<32, big_endian>& ehdr)
6fa2a40b 1493 : Sized_relobj_file<32, big_endian>(name, input_file, offset, ehdr),
a0351a69 1494 stub_tables_(), local_symbol_is_thumb_function_(),
20138696 1495 attributes_section_data_(NULL), mapping_symbols_info_(),
e7eca48c 1496 section_has_cortex_a8_workaround_(NULL), exidx_section_map_(),
7296d933
DK
1497 output_local_symbol_count_needs_update_(false),
1498 merge_flags_and_attributes_(true)
8ffa3667
DK
1499 { }
1500
1501 ~Arm_relobj()
a0351a69 1502 { delete this->attributes_section_data_; }
2e702c99 1503
8ffa3667
DK
1504 // Return the stub table of the SHNDX-th section if there is one.
1505 Stub_table<big_endian>*
2ea97941 1506 stub_table(unsigned int shndx) const
8ffa3667 1507 {
2ea97941
ILT
1508 gold_assert(shndx < this->stub_tables_.size());
1509 return this->stub_tables_[shndx];
8ffa3667
DK
1510 }
1511
1512 // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1513 void
2ea97941 1514 set_stub_table(unsigned int shndx, Stub_table<big_endian>* stub_table)
8ffa3667 1515 {
2ea97941
ILT
1516 gold_assert(shndx < this->stub_tables_.size());
1517 this->stub_tables_[shndx] = stub_table;
8ffa3667
DK
1518 }
1519
1520 // Whether a local symbol is a THUMB function. R_SYM is the symbol table
1521 // index. This is only valid after do_count_local_symbol is called.
1522 bool
1523 local_symbol_is_thumb_function(unsigned int r_sym) const
1524 {
1525 gold_assert(r_sym < this->local_symbol_is_thumb_function_.size());
1526 return this->local_symbol_is_thumb_function_[r_sym];
1527 }
2e702c99 1528
8ffa3667
DK
1529 // Scan all relocation sections for stub generation.
1530 void
1531 scan_sections_for_stubs(Target_arm<big_endian>*, const Symbol_table*,
1532 const Layout*);
1533
1534 // Convert regular input section with index SHNDX to a relaxed section.
1535 void
2ea97941 1536 convert_input_section_to_relaxed_section(unsigned shndx)
8ffa3667
DK
1537 {
1538 // The stubs have relocations and we need to process them after writing
1539 // out the stubs. So relocation now must follow section write.
2b328d4e 1540 this->set_section_offset(shndx, -1ULL);
8ffa3667
DK
1541 this->set_relocs_must_follow_section_writes();
1542 }
1543
1544 // Downcast a base pointer to an Arm_relobj pointer. This is
1545 // not type-safe but we only use Arm_relobj not the base class.
1546 static Arm_relobj<big_endian>*
2ea97941
ILT
1547 as_arm_relobj(Relobj* relobj)
1548 { return static_cast<Arm_relobj<big_endian>*>(relobj); }
8ffa3667 1549
d5b40221
DK
1550 // Processor-specific flags in ELF file header. This is valid only after
1551 // reading symbols.
1552 elfcpp::Elf_Word
1553 processor_specific_flags() const
1554 { return this->processor_specific_flags_; }
1555
a0351a69
DK
1556 // Attribute section data This is the contents of the .ARM.attribute section
1557 // if there is one.
1558 const Attributes_section_data*
1559 attributes_section_data() const
1560 { return this->attributes_section_data_; }
1561
20138696
DK
1562 // Mapping symbol location.
1563 typedef std::pair<unsigned int, Arm_address> Mapping_symbol_position;
1564
1565 // Functor for STL container.
1566 struct Mapping_symbol_position_less
1567 {
1568 bool
1569 operator()(const Mapping_symbol_position& p1,
1570 const Mapping_symbol_position& p2) const
1571 {
1572 return (p1.first < p2.first
1573 || (p1.first == p2.first && p1.second < p2.second));
1574 }
1575 };
2e702c99 1576
20138696
DK
1577 // We only care about the first character of a mapping symbol, so
1578 // we only store that instead of the whole symbol name.
1579 typedef std::map<Mapping_symbol_position, char,
1580 Mapping_symbol_position_less> Mapping_symbols_info;
1581
2fb7225c
DK
1582 // Whether a section contains any Cortex-A8 workaround.
1583 bool
1584 section_has_cortex_a8_workaround(unsigned int shndx) const
2e702c99 1585 {
2fb7225c
DK
1586 return (this->section_has_cortex_a8_workaround_ != NULL
1587 && (*this->section_has_cortex_a8_workaround_)[shndx]);
1588 }
2e702c99 1589
2fb7225c
DK
1590 // Mark a section that has Cortex-A8 workaround.
1591 void
1592 mark_section_for_cortex_a8_workaround(unsigned int shndx)
1593 {
1594 if (this->section_has_cortex_a8_workaround_ == NULL)
1595 this->section_has_cortex_a8_workaround_ =
1596 new std::vector<bool>(this->shnum(), false);
1597 (*this->section_has_cortex_a8_workaround_)[shndx] = true;
1598 }
1599
993d07c1
DK
1600 // Return the EXIDX section of an text section with index SHNDX or NULL
1601 // if the text section has no associated EXIDX section.
1602 const Arm_exidx_input_section*
1603 exidx_input_section_by_link(unsigned int shndx) const
1604 {
1605 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1606 return ((p != this->exidx_section_map_.end()
1607 && p->second->link() == shndx)
1608 ? p->second
1609 : NULL);
1610 }
1611
1612 // Return the EXIDX section with index SHNDX or NULL if there is none.
1613 const Arm_exidx_input_section*
1614 exidx_input_section_by_shndx(unsigned shndx) const
1615 {
1616 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1617 return ((p != this->exidx_section_map_.end()
1618 && p->second->shndx() == shndx)
1619 ? p->second
1620 : NULL);
1621 }
1622
e7eca48c
DK
1623 // Whether output local symbol count needs updating.
1624 bool
1625 output_local_symbol_count_needs_update() const
1626 { return this->output_local_symbol_count_needs_update_; }
1627
1628 // Set output_local_symbol_count_needs_update flag to be true.
1629 void
1630 set_output_local_symbol_count_needs_update()
1631 { this->output_local_symbol_count_needs_update_ = true; }
2e702c99 1632
e7eca48c
DK
1633 // Update output local symbol count at the end of relaxation.
1634 void
1635 update_output_local_symbol_count();
1636
7296d933
DK
1637 // Whether we want to merge processor-specific flags and attributes.
1638 bool
1639 merge_flags_and_attributes() const
1640 { return this->merge_flags_and_attributes_; }
2e702c99 1641
131687b4
DK
1642 // Export list of EXIDX section indices.
1643 void
1644 get_exidx_shndx_list(std::vector<unsigned int>* list) const
1645 {
1646 list->clear();
1647 for (Exidx_section_map::const_iterator p = this->exidx_section_map_.begin();
1648 p != this->exidx_section_map_.end();
1649 ++p)
1650 {
1651 if (p->second->shndx() == p->first)
1652 list->push_back(p->first);
1653 }
2e702c99 1654 // Sort list to make result independent of implementation of map.
131687b4
DK
1655 std::sort(list->begin(), list->end());
1656 }
1657
8ffa3667
DK
1658 protected:
1659 // Post constructor setup.
1660 void
1661 do_setup()
1662 {
1663 // Call parent's setup method.
6fa2a40b 1664 Sized_relobj_file<32, big_endian>::do_setup();
8ffa3667
DK
1665
1666 // Initialize look-up tables.
1667 Stub_table_list empty_stub_table_list(this->shnum(), NULL);
1668 this->stub_tables_.swap(empty_stub_table_list);
1669 }
1670
1671 // Count the local symbols.
1672 void
1673 do_count_local_symbols(Stringpool_template<char>*,
2e702c99 1674 Stringpool_template<char>*);
8ffa3667
DK
1675
1676 void
6fa2a40b
CC
1677 do_relocate_sections(
1678 const Symbol_table* symtab, const Layout* layout,
1679 const unsigned char* pshdrs, Output_file* of,
1680 typename Sized_relobj_file<32, big_endian>::Views* pivews);
8ffa3667 1681
d5b40221
DK
1682 // Read the symbol information.
1683 void
1684 do_read_symbols(Read_symbols_data* sd);
1685
99e5bff2
DK
1686 // Process relocs for garbage collection.
1687 void
1688 do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*);
1689
8ffa3667 1690 private:
44272192
DK
1691
1692 // Whether a section needs to be scanned for relocation stubs.
1693 bool
1694 section_needs_reloc_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1695 const Relobj::Output_sections&,
ca09d69a 1696 const Symbol_table*, const unsigned char*);
44272192 1697
cf846138
DK
1698 // Whether a section is a scannable text section.
1699 bool
1700 section_is_scannable(const elfcpp::Shdr<32, big_endian>&, unsigned int,
ca09d69a 1701 const Output_section*, const Symbol_table*);
cf846138 1702
44272192
DK
1703 // Whether a section needs to be scanned for the Cortex-A8 erratum.
1704 bool
1705 section_needs_cortex_a8_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1706 unsigned int, Output_section*,
ca09d69a 1707 const Symbol_table*);
44272192
DK
1708
1709 // Scan a section for the Cortex-A8 erratum.
1710 void
1711 scan_section_for_cortex_a8_erratum(const elfcpp::Shdr<32, big_endian>&,
1712 unsigned int, Output_section*,
1713 Target_arm<big_endian>*);
1714
c8761b9a 1715 // Find the linked text section of an EXIDX section by looking at the
9b547ce6 1716 // first relocation of the EXIDX section. PSHDR points to the section
c8761b9a
DK
1717 // headers of a relocation section and PSYMS points to the local symbols.
1718 // PSHNDX points to a location storing the text section index if found.
1719 // Return whether we can find the linked section.
1720 bool
1721 find_linked_text_section(const unsigned char* pshdr,
1722 const unsigned char* psyms, unsigned int* pshndx);
1723
1724 //
993d07c1 1725 // Make a new Arm_exidx_input_section object for EXIDX section with
c8761b9a
DK
1726 // index SHNDX and section header SHDR. TEXT_SHNDX is the section
1727 // index of the linked text section.
993d07c1
DK
1728 void
1729 make_exidx_input_section(unsigned int shndx,
c8761b9a 1730 const elfcpp::Shdr<32, big_endian>& shdr,
131687b4
DK
1731 unsigned int text_shndx,
1732 const elfcpp::Shdr<32, big_endian>& text_shdr);
993d07c1 1733
cb1be87e
DK
1734 // Return the output address of either a plain input section or a
1735 // relaxed input section. SHNDX is the section index.
1736 Arm_address
1737 simple_input_section_output_address(unsigned int, Output_section*);
1738
8ffa3667 1739 typedef std::vector<Stub_table<big_endian>*> Stub_table_list;
993d07c1
DK
1740 typedef Unordered_map<unsigned int, const Arm_exidx_input_section*>
1741 Exidx_section_map;
1742
1743 // List of stub tables.
8ffa3667
DK
1744 Stub_table_list stub_tables_;
1745 // Bit vector to tell if a local symbol is a thumb function or not.
1746 // This is only valid after do_count_local_symbol is called.
1747 std::vector<bool> local_symbol_is_thumb_function_;
d5b40221
DK
1748 // processor-specific flags in ELF file header.
1749 elfcpp::Elf_Word processor_specific_flags_;
a0351a69
DK
1750 // Object attributes if there is an .ARM.attributes section or NULL.
1751 Attributes_section_data* attributes_section_data_;
20138696
DK
1752 // Mapping symbols information.
1753 Mapping_symbols_info mapping_symbols_info_;
2fb7225c
DK
1754 // Bitmap to indicate sections with Cortex-A8 workaround or NULL.
1755 std::vector<bool>* section_has_cortex_a8_workaround_;
993d07c1
DK
1756 // Map a text section to its associated .ARM.exidx section, if there is one.
1757 Exidx_section_map exidx_section_map_;
e7eca48c
DK
1758 // Whether output local symbol count needs updating.
1759 bool output_local_symbol_count_needs_update_;
7296d933
DK
1760 // Whether we merge processor flags and attributes of this object to
1761 // output.
1762 bool merge_flags_and_attributes_;
d5b40221
DK
1763};
1764
1765// Arm_dynobj class.
1766
1767template<bool big_endian>
1768class Arm_dynobj : public Sized_dynobj<32, big_endian>
1769{
1770 public:
2ea97941 1771 Arm_dynobj(const std::string& name, Input_file* input_file, off_t offset,
d5b40221 1772 const elfcpp::Ehdr<32, big_endian>& ehdr)
2ea97941
ILT
1773 : Sized_dynobj<32, big_endian>(name, input_file, offset, ehdr),
1774 processor_specific_flags_(0), attributes_section_data_(NULL)
d5b40221 1775 { }
2e702c99 1776
d5b40221 1777 ~Arm_dynobj()
a0351a69 1778 { delete this->attributes_section_data_; }
d5b40221
DK
1779
1780 // Downcast a base pointer to an Arm_relobj pointer. This is
1781 // not type-safe but we only use Arm_relobj not the base class.
1782 static Arm_dynobj<big_endian>*
1783 as_arm_dynobj(Dynobj* dynobj)
1784 { return static_cast<Arm_dynobj<big_endian>*>(dynobj); }
1785
1786 // Processor-specific flags in ELF file header. This is valid only after
1787 // reading symbols.
1788 elfcpp::Elf_Word
1789 processor_specific_flags() const
1790 { return this->processor_specific_flags_; }
1791
a0351a69
DK
1792 // Attributes section data.
1793 const Attributes_section_data*
1794 attributes_section_data() const
1795 { return this->attributes_section_data_; }
1796
d5b40221
DK
1797 protected:
1798 // Read the symbol information.
1799 void
1800 do_read_symbols(Read_symbols_data* sd);
1801
1802 private:
1803 // processor-specific flags in ELF file header.
1804 elfcpp::Elf_Word processor_specific_flags_;
a0351a69
DK
1805 // Object attributes if there is an .ARM.attributes section or NULL.
1806 Attributes_section_data* attributes_section_data_;
8ffa3667
DK
1807};
1808
e9bbb538
DK
1809// Functor to read reloc addends during stub generation.
1810
1811template<int sh_type, bool big_endian>
1812struct Stub_addend_reader
1813{
1814 // Return the addend for a relocation of a particular type. Depending
1815 // on whether this is a REL or RELA relocation, read the addend from a
1816 // view or from a Reloc object.
1817 elfcpp::Elf_types<32>::Elf_Swxword
1818 operator()(
1819 unsigned int /* r_type */,
1820 const unsigned char* /* view */,
1821 const typename Reloc_types<sh_type,
ebd95253 1822 32, big_endian>::Reloc& /* reloc */) const;
e9bbb538
DK
1823};
1824
1825// Specialized Stub_addend_reader for SHT_REL type relocation sections.
1826
1827template<bool big_endian>
1828struct Stub_addend_reader<elfcpp::SHT_REL, big_endian>
1829{
1830 elfcpp::Elf_types<32>::Elf_Swxword
1831 operator()(
1832 unsigned int,
1833 const unsigned char*,
1834 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const;
1835};
1836
1837// Specialized Stub_addend_reader for RELA type relocation sections.
1838// We currently do not handle RELA type relocation sections but it is trivial
1839// to implement the addend reader. This is provided for completeness and to
1840// make it easier to add support for RELA relocation sections in the future.
1841
1842template<bool big_endian>
1843struct Stub_addend_reader<elfcpp::SHT_RELA, big_endian>
1844{
1845 elfcpp::Elf_types<32>::Elf_Swxword
1846 operator()(
1847 unsigned int,
1848 const unsigned char*,
1849 const typename Reloc_types<elfcpp::SHT_RELA, 32,
ebd95253
DK
1850 big_endian>::Reloc& reloc) const
1851 { return reloc.get_r_addend(); }
e9bbb538
DK
1852};
1853
a120bc7f
DK
1854// Cortex_a8_reloc class. We keep record of relocation that may need
1855// the Cortex-A8 erratum workaround.
1856
1857class Cortex_a8_reloc
1858{
1859 public:
1860 Cortex_a8_reloc(Reloc_stub* reloc_stub, unsigned r_type,
1861 Arm_address destination)
1862 : reloc_stub_(reloc_stub), r_type_(r_type), destination_(destination)
1863 { }
1864
1865 ~Cortex_a8_reloc()
1866 { }
1867
1868 // Accessors: This is a read-only class.
2e702c99 1869
a120bc7f
DK
1870 // Return the relocation stub associated with this relocation if there is
1871 // one.
1872 const Reloc_stub*
1873 reloc_stub() const
2e702c99
RM
1874 { return this->reloc_stub_; }
1875
a120bc7f
DK
1876 // Return the relocation type.
1877 unsigned int
1878 r_type() const
1879 { return this->r_type_; }
1880
1881 // Return the destination address of the relocation. LSB stores the THUMB
1882 // bit.
1883 Arm_address
1884 destination() const
1885 { return this->destination_; }
1886
1887 private:
1888 // Associated relocation stub if there is one, or NULL.
1889 const Reloc_stub* reloc_stub_;
1890 // Relocation type.
1891 unsigned int r_type_;
1892 // Destination address of this relocation. LSB is used to distinguish
1893 // ARM/THUMB mode.
1894 Arm_address destination_;
1895};
1896
4a54abbb
DK
1897// Arm_output_data_got class. We derive this from Output_data_got to add
1898// extra methods to handle TLS relocations in a static link.
1899
1900template<bool big_endian>
1901class Arm_output_data_got : public Output_data_got<32, big_endian>
1902{
1903 public:
1904 Arm_output_data_got(Symbol_table* symtab, Layout* layout)
1905 : Output_data_got<32, big_endian>(), symbol_table_(symtab), layout_(layout)
1906 { }
1907
1908 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
1909 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
1910 // applied in a static link.
1911 void
1912 add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1913 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
1914
1915 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
1916 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
1917 // relocation that needs to be applied in a static link.
1918 void
1919 add_static_reloc(unsigned int got_offset, unsigned int r_type,
6fa2a40b
CC
1920 Sized_relobj_file<32, big_endian>* relobj,
1921 unsigned int index)
4a54abbb
DK
1922 {
1923 this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
1924 index));
1925 }
1926
1927 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
1928 // The first one is initialized to be 1, which is the module index for
1929 // the main executable and the second one 0. A reloc of the type
1930 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
1931 // be applied by gold. GSYM is a global symbol.
1932 void
1933 add_tls_gd32_with_static_reloc(unsigned int got_type, Symbol* gsym);
1934
1935 // Same as the above but for a local symbol in OBJECT with INDEX.
1936 void
1937 add_tls_gd32_with_static_reloc(unsigned int got_type,
6fa2a40b 1938 Sized_relobj_file<32, big_endian>* object,
4a54abbb
DK
1939 unsigned int index);
1940
1941 protected:
1942 // Write out the GOT table.
1943 void
1944 do_write(Output_file*);
1945
1946 private:
1947 // This class represent dynamic relocations that need to be applied by
1948 // gold because we are using TLS relocations in a static link.
1949 class Static_reloc
1950 {
1951 public:
1952 Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1953 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
1954 { this->u_.global.symbol = gsym; }
1955
1956 Static_reloc(unsigned int got_offset, unsigned int r_type,
6fa2a40b 1957 Sized_relobj_file<32, big_endian>* relobj, unsigned int index)
4a54abbb
DK
1958 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
1959 {
1960 this->u_.local.relobj = relobj;
1961 this->u_.local.index = index;
1962 }
1963
1964 // Return the GOT offset.
1965 unsigned int
1966 got_offset() const
1967 { return this->got_offset_; }
1968
1969 // Relocation type.
1970 unsigned int
1971 r_type() const
1972 { return this->r_type_; }
1973
1974 // Whether the symbol is global or not.
1975 bool
1976 symbol_is_global() const
1977 { return this->symbol_is_global_; }
1978
1979 // For a relocation against a global symbol, the global symbol.
1980 Symbol*
1981 symbol() const
1982 {
1983 gold_assert(this->symbol_is_global_);
1984 return this->u_.global.symbol;
1985 }
1986
1987 // For a relocation against a local symbol, the defining object.
6fa2a40b 1988 Sized_relobj_file<32, big_endian>*
4a54abbb
DK
1989 relobj() const
1990 {
1991 gold_assert(!this->symbol_is_global_);
1992 return this->u_.local.relobj;
1993 }
1994
1995 // For a relocation against a local symbol, the local symbol index.
1996 unsigned int
1997 index() const
1998 {
1999 gold_assert(!this->symbol_is_global_);
2000 return this->u_.local.index;
2001 }
2002
2003 private:
2004 // GOT offset of the entry to which this relocation is applied.
2005 unsigned int got_offset_;
2006 // Type of relocation.
2007 unsigned int r_type_;
2008 // Whether this relocation is against a global symbol.
2009 bool symbol_is_global_;
2010 // A global or local symbol.
2011 union
2012 {
2013 struct
2014 {
2015 // For a global symbol, the symbol itself.
2016 Symbol* symbol;
2017 } global;
2018 struct
2019 {
2020 // For a local symbol, the object defining object.
6fa2a40b 2021 Sized_relobj_file<32, big_endian>* relobj;
4a54abbb
DK
2022 // For a local symbol, the symbol index.
2023 unsigned int index;
2024 } local;
2025 } u_;
2026 };
2027
2028 // Symbol table of the output object.
2029 Symbol_table* symbol_table_;
2030 // Layout of the output object.
2031 Layout* layout_;
2032 // Static relocs to be applied to the GOT.
2033 std::vector<Static_reloc> static_relocs_;
2034};
2035
9b547ce6 2036// The ARM target has many relocation types with odd-sizes or noncontiguous
5c388529
DK
2037// bits. The default handling of relocatable relocation cannot process these
2038// relocations. So we have to extend the default code.
2039
2040template<bool big_endian, int sh_type, typename Classify_reloc>
2041class Arm_scan_relocatable_relocs :
2042 public Default_scan_relocatable_relocs<sh_type, Classify_reloc>
2043{
2044 public:
2045 // Return the strategy to use for a local symbol which is a section
2046 // symbol, given the relocation type.
2047 inline Relocatable_relocs::Reloc_strategy
2048 local_section_strategy(unsigned int r_type, Relobj*)
2049 {
2050 if (sh_type == elfcpp::SHT_RELA)
2051 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
2052 else
2053 {
2054 if (r_type == elfcpp::R_ARM_TARGET1
2055 || r_type == elfcpp::R_ARM_TARGET2)
2056 {
2057 const Target_arm<big_endian>* arm_target =
2058 Target_arm<big_endian>::default_target();
2059 r_type = arm_target->get_real_reloc_type(r_type);
2060 }
2061
2062 switch(r_type)
2063 {
2064 // Relocations that write nothing. These exclude R_ARM_TARGET1
2065 // and R_ARM_TARGET2.
2066 case elfcpp::R_ARM_NONE:
2067 case elfcpp::R_ARM_V4BX:
2068 case elfcpp::R_ARM_TLS_GOTDESC:
2069 case elfcpp::R_ARM_TLS_CALL:
2070 case elfcpp::R_ARM_TLS_DESCSEQ:
2071 case elfcpp::R_ARM_THM_TLS_CALL:
2072 case elfcpp::R_ARM_GOTRELAX:
2073 case elfcpp::R_ARM_GNU_VTENTRY:
2074 case elfcpp::R_ARM_GNU_VTINHERIT:
2075 case elfcpp::R_ARM_THM_TLS_DESCSEQ16:
2076 case elfcpp::R_ARM_THM_TLS_DESCSEQ32:
2077 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
2078 // These should have been converted to something else above.
2079 case elfcpp::R_ARM_TARGET1:
2080 case elfcpp::R_ARM_TARGET2:
2081 gold_unreachable();
2c339f71 2082 // Relocations that write full 32 bits and
2e702c99 2083 // have alignment of 1.
5c388529
DK
2084 case elfcpp::R_ARM_ABS32:
2085 case elfcpp::R_ARM_REL32:
2086 case elfcpp::R_ARM_SBREL32:
2087 case elfcpp::R_ARM_GOTOFF32:
2088 case elfcpp::R_ARM_BASE_PREL:
2089 case elfcpp::R_ARM_GOT_BREL:
2090 case elfcpp::R_ARM_BASE_ABS:
2091 case elfcpp::R_ARM_ABS32_NOI:
2092 case elfcpp::R_ARM_REL32_NOI:
2093 case elfcpp::R_ARM_PLT32_ABS:
2094 case elfcpp::R_ARM_GOT_ABS:
2095 case elfcpp::R_ARM_GOT_PREL:
2096 case elfcpp::R_ARM_TLS_GD32:
2097 case elfcpp::R_ARM_TLS_LDM32:
2098 case elfcpp::R_ARM_TLS_LDO32:
2099 case elfcpp::R_ARM_TLS_IE32:
2100 case elfcpp::R_ARM_TLS_LE32:
2c339f71 2101 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4_UNALIGNED;
5c388529
DK
2102 default:
2103 // For all other static relocations, return RELOC_SPECIAL.
2104 return Relocatable_relocs::RELOC_SPECIAL;
2105 }
2106 }
2107 }
2108};
2109
4a657b0d
DK
2110template<bool big_endian>
2111class Target_arm : public Sized_target<32, big_endian>
2112{
2113 public:
2114 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
2115 Reloc_section;
2116
2daedcd6
DK
2117 // When were are relocating a stub, we pass this as the relocation number.
2118 static const size_t fake_relnum_for_stubs = static_cast<size_t>(-1);
2119
2e702c99
RM
2120 Target_arm(const Target::Target_info* info = &arm_info)
2121 : Sized_target<32, big_endian>(info),
fa89cc82
HS
2122 got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
2123 rel_dyn_(NULL), rel_irelative_(NULL), copy_relocs_(elfcpp::R_ARM_COPY),
f96accdf
DK
2124 got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
2125 stub_tables_(), stub_factory_(Stub_factory::get_instance()),
cd6eab1c 2126 should_force_pic_veneer_(false),
f96accdf
DK
2127 arm_input_section_map_(), attributes_section_data_(NULL),
2128 fix_cortex_a8_(false), cortex_a8_relocs_info_()
a6d1ef57 2129 { }
4a657b0d 2130
b569affa
DK
2131 // Whether we force PCI branch veneers.
2132 bool
2133 should_force_pic_veneer() const
2134 { return this->should_force_pic_veneer_; }
2135
2136 // Set PIC veneer flag.
2137 void
2138 set_should_force_pic_veneer(bool value)
2139 { this->should_force_pic_veneer_ = value; }
2e702c99 2140
b569affa
DK
2141 // Whether we use THUMB-2 instructions.
2142 bool
2143 using_thumb2() const
2144 {
a0351a69
DK
2145 Object_attribute* attr =
2146 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2147 int arch = attr->int_value();
2148 return arch == elfcpp::TAG_CPU_ARCH_V6T2 || arch >= elfcpp::TAG_CPU_ARCH_V7;
b569affa
DK
2149 }
2150
2151 // Whether we use THUMB/THUMB-2 instructions only.
2152 bool
2153 using_thumb_only() const
2154 {
a0351a69
DK
2155 Object_attribute* attr =
2156 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
323c532f
DK
2157
2158 if (attr->int_value() == elfcpp::TAG_CPU_ARCH_V6_M
2159 || attr->int_value() == elfcpp::TAG_CPU_ARCH_V6S_M)
2160 return true;
a0351a69
DK
2161 if (attr->int_value() != elfcpp::TAG_CPU_ARCH_V7
2162 && attr->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M)
2163 return false;
2164 attr = this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
2165 return attr->int_value() == 'M';
b569affa
DK
2166 }
2167
d204b6e9
DK
2168 // Whether we have an NOP instruction. If not, use mov r0, r0 instead.
2169 bool
2170 may_use_arm_nop() const
2171 {
a0351a69
DK
2172 Object_attribute* attr =
2173 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2174 int arch = attr->int_value();
2175 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2176 || arch == elfcpp::TAG_CPU_ARCH_V6K
2177 || arch == elfcpp::TAG_CPU_ARCH_V7
2178 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
d204b6e9
DK
2179 }
2180
51938283
DK
2181 // Whether we have THUMB-2 NOP.W instruction.
2182 bool
2183 may_use_thumb2_nop() const
2184 {
a0351a69
DK
2185 Object_attribute* attr =
2186 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2187 int arch = attr->int_value();
2188 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2189 || arch == elfcpp::TAG_CPU_ARCH_V7
2190 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
51938283 2191 }
cd6eab1c
ILT
2192
2193 // Whether we have v4T interworking instructions available.
2194 bool
2195 may_use_v4t_interworking() const
2196 {
2197 Object_attribute* attr =
2198 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2199 int arch = attr->int_value();
2200 return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
2201 && arch != elfcpp::TAG_CPU_ARCH_V4);
2202 }
2e702c99 2203
cd6eab1c
ILT
2204 // Whether we have v5T interworking instructions available.
2205 bool
2206 may_use_v5t_interworking() const
2207 {
2208 Object_attribute* attr =
2209 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2210 int arch = attr->int_value();
a8e2273b
ILT
2211 if (parameters->options().fix_arm1176())
2212 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2213 || arch == elfcpp::TAG_CPU_ARCH_V7
2214 || arch == elfcpp::TAG_CPU_ARCH_V6_M
2215 || arch == elfcpp::TAG_CPU_ARCH_V6S_M
2216 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2217 else
2218 return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
2219 && arch != elfcpp::TAG_CPU_ARCH_V4
2220 && arch != elfcpp::TAG_CPU_ARCH_V4T);
cd6eab1c 2221 }
2e702c99
RM
2222
2223 // Process the relocations to determine unreferenced sections for
4a657b0d
DK
2224 // garbage collection.
2225 void
ad0f2072 2226 gc_process_relocs(Symbol_table* symtab,
4a657b0d 2227 Layout* layout,
6fa2a40b 2228 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
2229 unsigned int data_shndx,
2230 unsigned int sh_type,
2231 const unsigned char* prelocs,
2232 size_t reloc_count,
2233 Output_section* output_section,
2234 bool needs_special_offset_handling,
2235 size_t local_symbol_count,
2236 const unsigned char* plocal_symbols);
2237
2238 // Scan the relocations to look for symbol adjustments.
2239 void
ad0f2072 2240 scan_relocs(Symbol_table* symtab,
4a657b0d 2241 Layout* layout,
6fa2a40b 2242 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
2243 unsigned int data_shndx,
2244 unsigned int sh_type,
2245 const unsigned char* prelocs,
2246 size_t reloc_count,
2247 Output_section* output_section,
2248 bool needs_special_offset_handling,
2249 size_t local_symbol_count,
2250 const unsigned char* plocal_symbols);
2251
2252 // Finalize the sections.
2253 void
f59f41f3 2254 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
4a657b0d 2255
94cdfcff 2256 // Return the value to use for a dynamic symbol which requires special
4a657b0d
DK
2257 // treatment.
2258 uint64_t
2259 do_dynsym_value(const Symbol*) const;
2260
fa89cc82
HS
2261 // Return the plt address for globals. Since we have irelative plt entries,
2262 // address calculation is not as straightforward as plt_address + plt_offset.
2263 uint64_t
2264 do_plt_address_for_global(const Symbol* gsym) const
2265 { return this->plt_section()->address_for_global(gsym); }
2266
2267 // Return the plt address for locals. Since we have irelative plt entries,
2268 // address calculation is not as straightforward as plt_address + plt_offset.
2269 uint64_t
2270 do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
2271 { return this->plt_section()->address_for_local(relobj, symndx); }
2272
4a657b0d
DK
2273 // Relocate a section.
2274 void
2275 relocate_section(const Relocate_info<32, big_endian>*,
2276 unsigned int sh_type,
2277 const unsigned char* prelocs,
2278 size_t reloc_count,
2279 Output_section* output_section,
2280 bool needs_special_offset_handling,
2281 unsigned char* view,
ebabffbd 2282 Arm_address view_address,
364c7fa5
ILT
2283 section_size_type view_size,
2284 const Reloc_symbol_changes*);
4a657b0d
DK
2285
2286 // Scan the relocs during a relocatable link.
2287 void
ad0f2072 2288 scan_relocatable_relocs(Symbol_table* symtab,
4a657b0d 2289 Layout* layout,
6fa2a40b 2290 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
2291 unsigned int data_shndx,
2292 unsigned int sh_type,
2293 const unsigned char* prelocs,
2294 size_t reloc_count,
2295 Output_section* output_section,
2296 bool needs_special_offset_handling,
2297 size_t local_symbol_count,
2298 const unsigned char* plocal_symbols,
2299 Relocatable_relocs*);
2300
7404fe1b 2301 // Emit relocations for a section.
4a657b0d 2302 void
7404fe1b
AM
2303 relocate_relocs(const Relocate_info<32, big_endian>*,
2304 unsigned int sh_type,
2305 const unsigned char* prelocs,
2306 size_t reloc_count,
2307 Output_section* output_section,
62fe925a
RM
2308 typename elfcpp::Elf_types<32>::Elf_Off
2309 offset_in_output_section,
7404fe1b
AM
2310 const Relocatable_relocs*,
2311 unsigned char* view,
2312 Arm_address view_address,
2313 section_size_type view_size,
2314 unsigned char* reloc_view,
2315 section_size_type reloc_view_size);
4a657b0d 2316
5c388529
DK
2317 // Perform target-specific processing in a relocatable link. This is
2318 // only used if we use the relocation strategy RELOC_SPECIAL.
2319 void
2320 relocate_special_relocatable(const Relocate_info<32, big_endian>* relinfo,
2321 unsigned int sh_type,
2322 const unsigned char* preloc_in,
2323 size_t relnum,
2324 Output_section* output_section,
62fe925a
RM
2325 typename elfcpp::Elf_types<32>::Elf_Off
2326 offset_in_output_section,
5c388529
DK
2327 unsigned char* view,
2328 typename elfcpp::Elf_types<32>::Elf_Addr
2329 view_address,
2330 section_size_type view_size,
2331 unsigned char* preloc_out);
2e702c99 2332
4a657b0d
DK
2333 // Return whether SYM is defined by the ABI.
2334 bool
2c54b4f4 2335 do_is_defined_by_abi(const Symbol* sym) const
4a657b0d
DK
2336 { return strcmp(sym->name(), "__tls_get_addr") == 0; }
2337
c8761b9a
DK
2338 // Return whether there is a GOT section.
2339 bool
2340 has_got_section() const
2341 { return this->got_ != NULL; }
2342
94cdfcff
DK
2343 // Return the size of the GOT section.
2344 section_size_type
0e70b911 2345 got_size() const
94cdfcff
DK
2346 {
2347 gold_assert(this->got_ != NULL);
2348 return this->got_->data_size();
2349 }
2350
0e70b911
CC
2351 // Return the number of entries in the GOT.
2352 unsigned int
2353 got_entry_count() const
2354 {
2355 if (!this->has_got_section())
2356 return 0;
2357 return this->got_size() / 4;
2358 }
2359
2360 // Return the number of entries in the PLT.
2361 unsigned int
2362 plt_entry_count() const;
2363
2364 // Return the offset of the first non-reserved PLT entry.
2365 unsigned int
2366 first_plt_entry_offset() const;
2367
2368 // Return the size of each PLT entry.
2369 unsigned int
2370 plt_entry_size() const;
2371
fa89cc82
HS
2372 // Get the section to use for IRELATIVE relocations, create it if necessary.
2373 Reloc_section*
2374 rel_irelative_section(Layout*);
2375
4a657b0d 2376 // Map platform-specific reloc types
a6d1ef57 2377 static unsigned int
ca09d69a 2378 get_real_reloc_type(unsigned int r_type);
4a657b0d 2379
55da9579
DK
2380 //
2381 // Methods to support stub-generations.
2382 //
2e702c99 2383
55da9579
DK
2384 // Return the stub factory
2385 const Stub_factory&
2386 stub_factory() const
2387 { return this->stub_factory_; }
2388
2389 // Make a new Arm_input_section object.
2390 Arm_input_section<big_endian>*
2391 new_arm_input_section(Relobj*, unsigned int);
2392
2393 // Find the Arm_input_section object corresponding to the SHNDX-th input
2394 // section of RELOBJ.
2395 Arm_input_section<big_endian>*
2ea97941 2396 find_arm_input_section(Relobj* relobj, unsigned int shndx) const;
55da9579
DK
2397
2398 // Make a new Stub_table
2399 Stub_table<big_endian>*
2400 new_stub_table(Arm_input_section<big_endian>*);
2401
eb44217c
DK
2402 // Scan a section for stub generation.
2403 void
2404 scan_section_for_stubs(const Relocate_info<32, big_endian>*, unsigned int,
2405 const unsigned char*, size_t, Output_section*,
2406 bool, const unsigned char*, Arm_address,
2407 section_size_type);
2408
2e702c99 2409 // Relocate a stub.
43d12afe 2410 void
2fb7225c 2411 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
43d12afe
DK
2412 Output_section*, unsigned char*, Arm_address,
2413 section_size_type);
2e702c99 2414
b569affa 2415 // Get the default ARM target.
43d12afe 2416 static Target_arm<big_endian>*
b569affa
DK
2417 default_target()
2418 {
2419 gold_assert(parameters->target().machine_code() == elfcpp::EM_ARM
2420 && parameters->target().is_big_endian() == big_endian);
43d12afe
DK
2421 return static_cast<Target_arm<big_endian>*>(
2422 parameters->sized_target<32, big_endian>());
b569affa
DK
2423 }
2424
20138696
DK
2425 // Whether NAME belongs to a mapping symbol.
2426 static bool
2427 is_mapping_symbol_name(const char* name)
2428 {
2429 return (name
2430 && name[0] == '$'
2431 && (name[1] == 'a' || name[1] == 't' || name[1] == 'd')
2432 && (name[2] == '\0' || name[2] == '.'));
2433 }
2434
a120bc7f
DK
2435 // Whether we work around the Cortex-A8 erratum.
2436 bool
2437 fix_cortex_a8() const
2438 { return this->fix_cortex_a8_; }
2439
85fdf906
AH
2440 // Whether we merge exidx entries in debuginfo.
2441 bool
2442 merge_exidx_entries() const
2443 { return parameters->options().merge_exidx_entries(); }
2444
a2162063
ILT
2445 // Whether we fix R_ARM_V4BX relocation.
2446 // 0 - do not fix
2447 // 1 - replace with MOV instruction (armv4 target)
2448 // 2 - make interworking veneer (>= armv4t targets only)
9b2fd367 2449 General_options::Fix_v4bx
a2162063 2450 fix_v4bx() const
9b2fd367 2451 { return parameters->options().fix_v4bx(); }
a2162063 2452
44272192
DK
2453 // Scan a span of THUMB code section for Cortex-A8 erratum.
2454 void
2455 scan_span_for_cortex_a8_erratum(Arm_relobj<big_endian>*, unsigned int,
2456 section_size_type, section_size_type,
2457 const unsigned char*, Arm_address);
2458
41263c05
DK
2459 // Apply Cortex-A8 workaround to a branch.
2460 void
2461 apply_cortex_a8_workaround(const Cortex_a8_stub*, Arm_address,
2462 unsigned char*, Arm_address);
2463
d5b40221 2464 protected:
2e702c99
RM
2465 // Make the PLT-generator object.
2466 Output_data_plt_arm<big_endian>*
fa89cc82
HS
2467 make_data_plt(Layout* layout,
2468 Arm_output_data_got<big_endian>* got,
2469 Output_data_space* got_plt,
2470 Output_data_space* got_irelative)
2471 { return this->do_make_data_plt(layout, got, got_plt, got_irelative); }
2e702c99 2472
eb44217c
DK
2473 // Make an ELF object.
2474 Object*
2475 do_make_elf_object(const std::string&, Input_file*, off_t,
2476 const elfcpp::Ehdr<32, big_endian>& ehdr);
2477
2478 Object*
2479 do_make_elf_object(const std::string&, Input_file*, off_t,
2480 const elfcpp::Ehdr<32, !big_endian>&)
2481 { gold_unreachable(); }
2482
2483 Object*
2484 do_make_elf_object(const std::string&, Input_file*, off_t,
2485 const elfcpp::Ehdr<64, false>&)
2486 { gold_unreachable(); }
2487
2488 Object*
2489 do_make_elf_object(const std::string&, Input_file*, off_t,
2490 const elfcpp::Ehdr<64, true>&)
2491 { gold_unreachable(); }
2492
2493 // Make an output section.
2494 Output_section*
2495 do_make_output_section(const char* name, elfcpp::Elf_Word type,
2496 elfcpp::Elf_Xword flags)
2497 { return new Arm_output_section<big_endian>(name, type, flags); }
2498
d5b40221 2499 void
3bfcb652 2500 do_adjust_elf_header(unsigned char* view, int len);
d5b40221 2501
eb44217c
DK
2502 // We only need to generate stubs, and hence perform relaxation if we are
2503 // not doing relocatable linking.
2504 bool
2505 do_may_relax() const
2506 { return !parameters->options().relocatable(); }
2507
2508 bool
f625ae50 2509 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
eb44217c 2510
a0351a69
DK
2511 // Determine whether an object attribute tag takes an integer, a
2512 // string or both.
2513 int
2514 do_attribute_arg_type(int tag) const;
2515
2516 // Reorder tags during output.
2517 int
2518 do_attributes_order(int num) const;
2519
0d31c79d
DK
2520 // This is called when the target is selected as the default.
2521 void
2522 do_select_as_default_target()
2523 {
2524 // No locking is required since there should only be one default target.
2525 // We cannot have both the big-endian and little-endian ARM targets
2526 // as the default.
2527 gold_assert(arm_reloc_property_table == NULL);
2528 arm_reloc_property_table = new Arm_reloc_property_table();
2529 }
2530
b3ce541e
ILT
2531 // Virtual function which is set to return true by a target if
2532 // it can use relocation types to determine if a function's
2533 // pointer is taken.
2534 virtual bool
2535 do_can_check_for_function_pointers() const
2536 { return true; }
2537
2538 // Whether a section called SECTION_NAME may have function pointers to
2539 // sections not eligible for safe ICF folding.
2540 virtual bool
2541 do_section_may_have_icf_unsafe_pointers(const char* section_name) const
2542 {
2543 return (!is_prefix_of(".ARM.exidx", section_name)
2544 && !is_prefix_of(".ARM.extab", section_name)
2545 && Target::do_section_may_have_icf_unsafe_pointers(section_name));
2546 }
2e702c99 2547
647f1574
DK
2548 virtual void
2549 do_define_standard_symbols(Symbol_table*, Layout*);
2550
2e702c99 2551 virtual Output_data_plt_arm<big_endian>*
fa89cc82
HS
2552 do_make_data_plt(Layout* layout,
2553 Arm_output_data_got<big_endian>* got,
2554 Output_data_space* got_plt,
2555 Output_data_space* got_irelative)
2e702c99 2556 {
fa89cc82
HS
2557 gold_assert(got_plt != NULL && got_irelative != NULL);
2558 return new Output_data_plt_arm_standard<big_endian>(
2559 layout, got, got_plt, got_irelative);
2e702c99
RM
2560 }
2561
4a657b0d
DK
2562 private:
2563 // The class which scans relocations.
2564 class Scan
2565 {
2566 public:
2567 Scan()
bec53400 2568 : issued_non_pic_error_(false)
4a657b0d
DK
2569 { }
2570
95a2c8d6
RS
2571 static inline int
2572 get_reference_flags(unsigned int r_type);
2573
4a657b0d 2574 inline void
ad0f2072 2575 local(Symbol_table* symtab, Layout* layout, Target_arm* target,
6fa2a40b 2576 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
2577 unsigned int data_shndx,
2578 Output_section* output_section,
2579 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
bfdfa4cd
AM
2580 const elfcpp::Sym<32, big_endian>& lsym,
2581 bool is_discarded);
4a657b0d
DK
2582
2583 inline void
ad0f2072 2584 global(Symbol_table* symtab, Layout* layout, Target_arm* target,
6fa2a40b 2585 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
2586 unsigned int data_shndx,
2587 Output_section* output_section,
2588 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2589 Symbol* gsym);
2590
21bb3914
ST
2591 inline bool
2592 local_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2e702c99
RM
2593 Sized_relobj_file<32, big_endian>* ,
2594 unsigned int ,
2595 Output_section* ,
2596 const elfcpp::Rel<32, big_endian>& ,
21bb3914 2597 unsigned int ,
2e702c99 2598 const elfcpp::Sym<32, big_endian>&);
21bb3914
ST
2599
2600 inline bool
2601 global_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2e702c99
RM
2602 Sized_relobj_file<32, big_endian>* ,
2603 unsigned int ,
2604 Output_section* ,
2605 const elfcpp::Rel<32, big_endian>& ,
8a75a161 2606 unsigned int , Symbol*);
21bb3914 2607
4a657b0d
DK
2608 private:
2609 static void
6fa2a40b 2610 unsupported_reloc_local(Sized_relobj_file<32, big_endian>*,
4a657b0d
DK
2611 unsigned int r_type);
2612
2613 static void
6fa2a40b 2614 unsupported_reloc_global(Sized_relobj_file<32, big_endian>*,
4a657b0d 2615 unsigned int r_type, Symbol*);
bec53400
DK
2616
2617 void
2618 check_non_pic(Relobj*, unsigned int r_type);
2619
2620 // Almost identical to Symbol::needs_plt_entry except that it also
2621 // handles STT_ARM_TFUNC.
2622 static bool
2623 symbol_needs_plt_entry(const Symbol* sym)
2624 {
2625 // An undefined symbol from an executable does not need a PLT entry.
2626 if (sym->is_undefined() && !parameters->options().shared())
2627 return false;
2628
fa89cc82
HS
2629 if (sym->type() == elfcpp::STT_GNU_IFUNC)
2630 return true;
2631
bec53400
DK
2632 return (!parameters->doing_static_link()
2633 && (sym->type() == elfcpp::STT_FUNC
2634 || sym->type() == elfcpp::STT_ARM_TFUNC)
2635 && (sym->is_from_dynobj()
2636 || sym->is_undefined()
2637 || sym->is_preemptible()));
2638 }
2639
8a75a161
DK
2640 inline bool
2641 possible_function_pointer_reloc(unsigned int r_type);
2642
fa89cc82
HS
2643 // Whether a plt entry is needed for ifunc.
2644 bool
2645 reloc_needs_plt_for_ifunc(Sized_relobj_file<32, big_endian>*,
2646 unsigned int r_type);
2647
bec53400
DK
2648 // Whether we have issued an error about a non-PIC compilation.
2649 bool issued_non_pic_error_;
4a657b0d
DK
2650 };
2651
2652 // The class which implements relocation.
2653 class Relocate
2654 {
2655 public:
2656 Relocate()
2657 { }
2658
2659 ~Relocate()
2660 { }
2661
bec53400
DK
2662 // Return whether the static relocation needs to be applied.
2663 inline bool
2664 should_apply_static_reloc(const Sized_symbol<32>* gsym,
95a2c8d6 2665 unsigned int r_type,
bec53400
DK
2666 bool is_32bit,
2667 Output_section* output_section);
2668
4a657b0d
DK
2669 // Do a relocation. Return false if the caller should not issue
2670 // any warnings about this relocation.
2671 inline bool
2672 relocate(const Relocate_info<32, big_endian>*, Target_arm*,
2673 Output_section*, size_t relnum,
2674 const elfcpp::Rel<32, big_endian>&,
2675 unsigned int r_type, const Sized_symbol<32>*,
2676 const Symbol_value<32>*,
ebabffbd 2677 unsigned char*, Arm_address,
4a657b0d 2678 section_size_type);
c121c671
DK
2679
2680 // Return whether we want to pass flag NON_PIC_REF for this
f4e5969c
DK
2681 // reloc. This means the relocation type accesses a symbol not via
2682 // GOT or PLT.
c121c671 2683 static inline bool
ca09d69a 2684 reloc_is_non_pic(unsigned int r_type)
c121c671
DK
2685 {
2686 switch (r_type)
2687 {
f4e5969c
DK
2688 // These relocation types reference GOT or PLT entries explicitly.
2689 case elfcpp::R_ARM_GOT_BREL:
2690 case elfcpp::R_ARM_GOT_ABS:
2691 case elfcpp::R_ARM_GOT_PREL:
2692 case elfcpp::R_ARM_GOT_BREL12:
2693 case elfcpp::R_ARM_PLT32_ABS:
2694 case elfcpp::R_ARM_TLS_GD32:
2695 case elfcpp::R_ARM_TLS_LDM32:
2696 case elfcpp::R_ARM_TLS_IE32:
2697 case elfcpp::R_ARM_TLS_IE12GP:
2698
2699 // These relocate types may use PLT entries.
c121c671 2700 case elfcpp::R_ARM_CALL:
f4e5969c 2701 case elfcpp::R_ARM_THM_CALL:
c121c671 2702 case elfcpp::R_ARM_JUMP24:
f4e5969c
DK
2703 case elfcpp::R_ARM_THM_JUMP24:
2704 case elfcpp::R_ARM_THM_JUMP19:
2705 case elfcpp::R_ARM_PLT32:
2706 case elfcpp::R_ARM_THM_XPC22:
c3e4ae29
DK
2707 case elfcpp::R_ARM_PREL31:
2708 case elfcpp::R_ARM_SBREL31:
c121c671 2709 return false;
f4e5969c
DK
2710
2711 default:
2712 return true;
c121c671
DK
2713 }
2714 }
f96accdf
DK
2715
2716 private:
2717 // Do a TLS relocation.
2718 inline typename Arm_relocate_functions<big_endian>::Status
2719 relocate_tls(const Relocate_info<32, big_endian>*, Target_arm<big_endian>*,
2e702c99 2720 size_t, const elfcpp::Rel<32, big_endian>&, unsigned int,
f96accdf
DK
2721 const Sized_symbol<32>*, const Symbol_value<32>*,
2722 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
2723 section_size_type);
2724
4a657b0d
DK
2725 };
2726
2727 // A class which returns the size required for a relocation type,
2728 // used while scanning relocs during a relocatable link.
2729 class Relocatable_size_for_reloc
2730 {
2731 public:
2732 unsigned int
2733 get_size_for_reloc(unsigned int, Relobj*);
2734 };
2735
f96accdf
DK
2736 // Adjust TLS relocation type based on the options and whether this
2737 // is a local symbol.
2738 static tls::Tls_optimization
2739 optimize_tls_reloc(bool is_final, int r_type);
2740
94cdfcff 2741 // Get the GOT section, creating it if necessary.
4a54abbb 2742 Arm_output_data_got<big_endian>*
94cdfcff
DK
2743 got_section(Symbol_table*, Layout*);
2744
2745 // Get the GOT PLT section.
2746 Output_data_space*
2747 got_plt_section() const
2748 {
2749 gold_assert(this->got_plt_ != NULL);
2750 return this->got_plt_;
2751 }
2752
fa89cc82
HS
2753 // Create the PLT section.
2754 void
2755 make_plt_section(Symbol_table* symtab, Layout* layout);
2756
94cdfcff
DK
2757 // Create a PLT entry for a global symbol.
2758 void
2759 make_plt_entry(Symbol_table*, Layout*, Symbol*);
2760
fa89cc82
HS
2761 // Create a PLT entry for a local STT_GNU_IFUNC symbol.
2762 void
2763 make_local_ifunc_plt_entry(Symbol_table*, Layout*,
2764 Sized_relobj_file<32, big_endian>* relobj,
2765 unsigned int local_sym_index);
2766
f96accdf
DK
2767 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2768 void
2769 define_tls_base_symbol(Symbol_table*, Layout*);
2770
2771 // Create a GOT entry for the TLS module index.
2772 unsigned int
2773 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
6fa2a40b 2774 Sized_relobj_file<32, big_endian>* object);
f96accdf 2775
94cdfcff
DK
2776 // Get the PLT section.
2777 const Output_data_plt_arm<big_endian>*
2778 plt_section() const
2779 {
2780 gold_assert(this->plt_ != NULL);
2781 return this->plt_;
2782 }
2783
2784 // Get the dynamic reloc section, creating it if necessary.
2785 Reloc_section*
2786 rel_dyn_section(Layout*);
2787
f96accdf
DK
2788 // Get the section to use for TLS_DESC relocations.
2789 Reloc_section*
2790 rel_tls_desc_section(Layout*) const;
2791
94cdfcff
DK
2792 // Return true if the symbol may need a COPY relocation.
2793 // References from an executable object to non-function symbols
2794 // defined in a dynamic object may need a COPY relocation.
2795 bool
2796 may_need_copy_reloc(Symbol* gsym)
2797 {
966d4097
DK
2798 return (gsym->type() != elfcpp::STT_ARM_TFUNC
2799 && gsym->may_need_copy_reloc());
94cdfcff
DK
2800 }
2801
2802 // Add a potential copy relocation.
2803 void
2804 copy_reloc(Symbol_table* symtab, Layout* layout,
6fa2a40b 2805 Sized_relobj_file<32, big_endian>* object,
2ea97941 2806 unsigned int shndx, Output_section* output_section,
94cdfcff
DK
2807 Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc)
2808 {
2809 this->copy_relocs_.copy_reloc(symtab, layout,
2810 symtab->get_sized_symbol<32>(sym),
2ea97941 2811 object, shndx, output_section, reloc,
94cdfcff
DK
2812 this->rel_dyn_section(layout));
2813 }
2814
d5b40221
DK
2815 // Whether two EABI versions are compatible.
2816 static bool
2817 are_eabi_versions_compatible(elfcpp::Elf_Word v1, elfcpp::Elf_Word v2);
2818
2819 // Merge processor-specific flags from input object and those in the ELF
2820 // header of the output.
2821 void
2822 merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word);
2823
a0351a69
DK
2824 // Get the secondary compatible architecture.
2825 static int
2826 get_secondary_compatible_arch(const Attributes_section_data*);
2827
2828 // Set the secondary compatible architecture.
2829 static void
2830 set_secondary_compatible_arch(Attributes_section_data*, int);
2831
2832 static int
2833 tag_cpu_arch_combine(const char*, int, int*, int, int);
2834
2835 // Helper to print AEABI enum tag value.
2836 static std::string
2837 aeabi_enum_name(unsigned int);
2838
2839 // Return string value for TAG_CPU_name.
2840 static std::string
2841 tag_cpu_name_value(unsigned int);
2842
679af368
ILT
2843 // Query attributes object to see if integer divide instructions may be
2844 // present in an object.
2845 static bool
2846 attributes_accept_div(int arch, int profile,
2847 const Object_attribute* div_attr);
2848
2849 // Query attributes object to see if integer divide instructions are
2850 // forbidden to be in the object. This is not the inverse of
2851 // attributes_accept_div.
2852 static bool
2853 attributes_forbid_div(const Object_attribute* div_attr);
2854
a0351a69
DK
2855 // Merge object attributes from input object and those in the output.
2856 void
2857 merge_object_attributes(const char*, const Attributes_section_data*);
2858
2859 // Helper to get an AEABI object attribute
2860 Object_attribute*
2861 get_aeabi_object_attribute(int tag) const
2862 {
2863 Attributes_section_data* pasd = this->attributes_section_data_;
2864 gold_assert(pasd != NULL);
2865 Object_attribute* attr =
2866 pasd->get_attribute(Object_attribute::OBJ_ATTR_PROC, tag);
2867 gold_assert(attr != NULL);
2868 return attr;
2869 }
2870
eb44217c
DK
2871 //
2872 // Methods to support stub-generations.
2873 //
d5b40221 2874
eb44217c
DK
2875 // Group input sections for stub generation.
2876 void
f625ae50 2877 group_sections(Layout*, section_size_type, bool, const Task*);
d5b40221 2878
eb44217c
DK
2879 // Scan a relocation for stub generation.
2880 void
2881 scan_reloc_for_stub(const Relocate_info<32, big_endian>*, unsigned int,
2882 const Sized_symbol<32>*, unsigned int,
2883 const Symbol_value<32>*,
2884 elfcpp::Elf_types<32>::Elf_Swxword, Arm_address);
d5b40221 2885
eb44217c
DK
2886 // Scan a relocation section for stub.
2887 template<int sh_type>
2888 void
2889 scan_reloc_section_for_stubs(
2890 const Relocate_info<32, big_endian>* relinfo,
2891 const unsigned char* prelocs,
2892 size_t reloc_count,
2893 Output_section* output_section,
2894 bool needs_special_offset_handling,
2895 const unsigned char* view,
2896 elfcpp::Elf_types<32>::Elf_Addr view_address,
2897 section_size_type);
d5b40221 2898
2b328d4e
DK
2899 // Fix .ARM.exidx section coverage.
2900 void
131687b4 2901 fix_exidx_coverage(Layout*, const Input_objects*,
f625ae50
DK
2902 Arm_output_section<big_endian>*, Symbol_table*,
2903 const Task*);
2b328d4e
DK
2904
2905 // Functors for STL set.
2906 struct output_section_address_less_than
2907 {
2908 bool
2909 operator()(const Output_section* s1, const Output_section* s2) const
2910 { return s1->address() < s2->address(); }
2911 };
2912
4a657b0d
DK
2913 // Information about this specific target which we pass to the
2914 // general Target structure.
2915 static const Target::Target_info arm_info;
94cdfcff
DK
2916
2917 // The types of GOT entries needed for this platform.
0e70b911
CC
2918 // These values are exposed to the ABI in an incremental link.
2919 // Do not renumber existing values without changing the version
2920 // number of the .gnu_incremental_inputs section.
94cdfcff
DK
2921 enum Got_type
2922 {
f96accdf
DK
2923 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
2924 GOT_TYPE_TLS_NOFFSET = 1, // GOT entry for negative TLS offset
2925 GOT_TYPE_TLS_OFFSET = 2, // GOT entry for positive TLS offset
2926 GOT_TYPE_TLS_PAIR = 3, // GOT entry for TLS module/offset pair
2927 GOT_TYPE_TLS_DESC = 4 // GOT entry for TLS_DESC pair
94cdfcff
DK
2928 };
2929
55da9579
DK
2930 typedef typename std::vector<Stub_table<big_endian>*> Stub_table_list;
2931
2932 // Map input section to Arm_input_section.
5ac169d4 2933 typedef Unordered_map<Section_id,
55da9579 2934 Arm_input_section<big_endian>*,
5ac169d4 2935 Section_id_hash>
55da9579 2936 Arm_input_section_map;
2e702c99 2937
a120bc7f
DK
2938 // Map output addresses to relocs for Cortex-A8 erratum.
2939 typedef Unordered_map<Arm_address, const Cortex_a8_reloc*>
2940 Cortex_a8_relocs_info;
2941
94cdfcff 2942 // The GOT section.
4a54abbb 2943 Arm_output_data_got<big_endian>* got_;
94cdfcff
DK
2944 // The PLT section.
2945 Output_data_plt_arm<big_endian>* plt_;
2946 // The GOT PLT section.
2947 Output_data_space* got_plt_;
fa89cc82
HS
2948 // The GOT section for IRELATIVE relocations.
2949 Output_data_space* got_irelative_;
94cdfcff
DK
2950 // The dynamic reloc section.
2951 Reloc_section* rel_dyn_;
fa89cc82
HS
2952 // The section to use for IRELATIVE relocs.
2953 Reloc_section* rel_irelative_;
94cdfcff
DK
2954 // Relocs saved to avoid a COPY reloc.
2955 Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_;
f96accdf
DK
2956 // Offset of the GOT entry for the TLS module index.
2957 unsigned int got_mod_index_offset_;
2958 // True if the _TLS_MODULE_BASE_ symbol has been defined.
2959 bool tls_base_symbol_defined_;
55da9579
DK
2960 // Vector of Stub_tables created.
2961 Stub_table_list stub_tables_;
2962 // Stub factory.
2963 const Stub_factory &stub_factory_;
b569affa
DK
2964 // Whether we force PIC branch veneers.
2965 bool should_force_pic_veneer_;
eb44217c
DK
2966 // Map for locating Arm_input_sections.
2967 Arm_input_section_map arm_input_section_map_;
a0351a69
DK
2968 // Attributes section data in output.
2969 Attributes_section_data* attributes_section_data_;
a120bc7f
DK
2970 // Whether we want to fix code for Cortex-A8 erratum.
2971 bool fix_cortex_a8_;
2972 // Map addresses to relocs for Cortex-A8 erratum.
2973 Cortex_a8_relocs_info cortex_a8_relocs_info_;
4a657b0d
DK
2974};
2975
2976template<bool big_endian>
2977const Target::Target_info Target_arm<big_endian>::arm_info =
2978{
2979 32, // size
2980 big_endian, // is_big_endian
2981 elfcpp::EM_ARM, // machine_code
2982 false, // has_make_symbol
2983 false, // has_resolve
2984 false, // has_code_fill
2985 true, // is_default_stack_executable
b3ce541e 2986 false, // can_icf_inline_merge_sections
4a657b0d
DK
2987 '\0', // wrap_char
2988 "/usr/lib/libc.so.1", // dynamic_linker
2989 0x8000, // default_text_segment_address
2990 0x1000, // abi_pagesize (overridable by -z max-page-size)
8a5e3e08 2991 0x1000, // common_pagesize (overridable by -z common-page-size)
2e702c99
RM
2992 false, // isolate_execinstr
2993 0, // rosegment_gap
8a5e3e08
ILT
2994 elfcpp::SHN_UNDEF, // small_common_shndx
2995 elfcpp::SHN_UNDEF, // large_common_shndx
2996 0, // small_common_section_flags
05a352e6
DK
2997 0, // large_common_section_flags
2998 ".ARM.attributes", // attributes_section
a67858e0
CC
2999 "aeabi", // attributes_vendor
3000 "_start" // entry_symbol_name
4a657b0d
DK
3001};
3002
c121c671
DK
3003// Arm relocate functions class
3004//
3005
3006template<bool big_endian>
3007class Arm_relocate_functions : public Relocate_functions<32, big_endian>
3008{
3009 public:
3010 typedef enum
3011 {
3012 STATUS_OKAY, // No error during relocation.
9b547ce6 3013 STATUS_OVERFLOW, // Relocation overflow.
c121c671
DK
3014 STATUS_BAD_RELOC // Relocation cannot be applied.
3015 } Status;
3016
3017 private:
3018 typedef Relocate_functions<32, big_endian> Base;
3019 typedef Arm_relocate_functions<big_endian> This;
3020
fd3c5f0b
ILT
3021 // Encoding of imm16 argument for movt and movw ARM instructions
3022 // from ARM ARM:
2e702c99 3023 //
fd3c5f0b
ILT
3024 // imm16 := imm4 | imm12
3025 //
2e702c99 3026 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
fd3c5f0b
ILT
3027 // +-------+---------------+-------+-------+-----------------------+
3028 // | | |imm4 | |imm12 |
3029 // +-------+---------------+-------+-------+-----------------------+
3030
3031 // Extract the relocation addend from VAL based on the ARM
3032 // instruction encoding described above.
3033 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3034 extract_arm_movw_movt_addend(
3035 typename elfcpp::Swap<32, big_endian>::Valtype val)
3036 {
3037 // According to the Elf ABI for ARM Architecture the immediate
3038 // field is sign-extended to form the addend.
bef2b434 3039 return Bits<16>::sign_extend32(((val >> 4) & 0xf000) | (val & 0xfff));
fd3c5f0b
ILT
3040 }
3041
3042 // Insert X into VAL based on the ARM instruction encoding described
3043 // above.
3044 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3045 insert_val_arm_movw_movt(
3046 typename elfcpp::Swap<32, big_endian>::Valtype val,
3047 typename elfcpp::Swap<32, big_endian>::Valtype x)
3048 {
3049 val &= 0xfff0f000;
3050 val |= x & 0x0fff;
3051 val |= (x & 0xf000) << 4;
3052 return val;
3053 }
3054
3055 // Encoding of imm16 argument for movt and movw Thumb2 instructions
3056 // from ARM ARM:
2e702c99 3057 //
fd3c5f0b
ILT
3058 // imm16 := imm4 | i | imm3 | imm8
3059 //
2e702c99 3060 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
fd3c5f0b
ILT
3061 // +---------+-+-----------+-------++-+-----+-------+---------------+
3062 // | |i| |imm4 || |imm3 | |imm8 |
3063 // +---------+-+-----------+-------++-+-----+-------+---------------+
3064
3065 // Extract the relocation addend from VAL based on the Thumb2
3066 // instruction encoding described above.
3067 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3068 extract_thumb_movw_movt_addend(
3069 typename elfcpp::Swap<32, big_endian>::Valtype val)
3070 {
3071 // According to the Elf ABI for ARM Architecture the immediate
3072 // field is sign-extended to form the addend.
bef2b434
ILT
3073 return Bits<16>::sign_extend32(((val >> 4) & 0xf000)
3074 | ((val >> 15) & 0x0800)
3075 | ((val >> 4) & 0x0700)
3076 | (val & 0x00ff));
fd3c5f0b
ILT
3077 }
3078
3079 // Insert X into VAL based on the Thumb2 instruction encoding
3080 // described above.
3081 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3082 insert_val_thumb_movw_movt(
3083 typename elfcpp::Swap<32, big_endian>::Valtype val,
3084 typename elfcpp::Swap<32, big_endian>::Valtype x)
3085 {
3086 val &= 0xfbf08f00;
3087 val |= (x & 0xf000) << 4;
3088 val |= (x & 0x0800) << 15;
3089 val |= (x & 0x0700) << 4;
3090 val |= (x & 0x00ff);
3091 return val;
3092 }
3093
b10d2873
ILT
3094 // Calculate the smallest constant Kn for the specified residual.
3095 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3096 static uint32_t
3097 calc_grp_kn(typename elfcpp::Swap<32, big_endian>::Valtype residual)
3098 {
3099 int32_t msb;
3100
3101 if (residual == 0)
3102 return 0;
3103 // Determine the most significant bit in the residual and
3104 // align the resulting value to a 2-bit boundary.
3105 for (msb = 30; (msb >= 0) && !(residual & (3 << msb)); msb -= 2)
3106 ;
3107 // The desired shift is now (msb - 6), or zero, whichever
3108 // is the greater.
3109 return (((msb - 6) < 0) ? 0 : (msb - 6));
3110 }
3111
3112 // Calculate the final residual for the specified group index.
3113 // If the passed group index is less than zero, the method will return
3114 // the value of the specified residual without any change.
3115 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3116 static typename elfcpp::Swap<32, big_endian>::Valtype
3117 calc_grp_residual(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3118 const int group)
3119 {
3120 for (int n = 0; n <= group; n++)
3121 {
3122 // Calculate which part of the value to mask.
3123 uint32_t shift = calc_grp_kn(residual);
3124 // Calculate the residual for the next time around.
3125 residual &= ~(residual & (0xff << shift));
3126 }
3127
3128 return residual;
3129 }
3130
3131 // Calculate the value of Gn for the specified group index.
3132 // We return it in the form of an encoded constant-and-rotation.
3133 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3134 static typename elfcpp::Swap<32, big_endian>::Valtype
3135 calc_grp_gn(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3136 const int group)
3137 {
3138 typename elfcpp::Swap<32, big_endian>::Valtype gn = 0;
3139 uint32_t shift = 0;
3140
3141 for (int n = 0; n <= group; n++)
3142 {
3143 // Calculate which part of the value to mask.
3144 shift = calc_grp_kn(residual);
3145 // Calculate Gn in 32-bit as well as encoded constant-and-rotation form.
3146 gn = residual & (0xff << shift);
3147 // Calculate the residual for the next time around.
3148 residual &= ~gn;
3149 }
3150 // Return Gn in the form of an encoded constant-and-rotation.
3151 return ((gn >> shift) | ((gn <= 0xff ? 0 : (32 - shift) / 2) << 8));
3152 }
3153
1521477a 3154 public:
d204b6e9
DK
3155 // Handle ARM long branches.
3156 static typename This::Status
3157 arm_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
ca09d69a 3158 unsigned char*, const Sized_symbol<32>*,
d204b6e9
DK
3159 const Arm_relobj<big_endian>*, unsigned int,
3160 const Symbol_value<32>*, Arm_address, Arm_address, bool);
c121c671 3161
51938283
DK
3162 // Handle THUMB long branches.
3163 static typename This::Status
3164 thumb_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
ca09d69a 3165 unsigned char*, const Sized_symbol<32>*,
51938283
DK
3166 const Arm_relobj<big_endian>*, unsigned int,
3167 const Symbol_value<32>*, Arm_address, Arm_address, bool);
3168
5e445df6 3169
089d69dc
DK
3170 // Return the branch offset of a 32-bit THUMB branch.
3171 static inline int32_t
3172 thumb32_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3173 {
3174 // We use the Thumb-2 encoding (backwards compatible with Thumb-1)
3175 // involving the J1 and J2 bits.
3176 uint32_t s = (upper_insn & (1U << 10)) >> 10;
3177 uint32_t upper = upper_insn & 0x3ffU;
3178 uint32_t lower = lower_insn & 0x7ffU;
3179 uint32_t j1 = (lower_insn & (1U << 13)) >> 13;
3180 uint32_t j2 = (lower_insn & (1U << 11)) >> 11;
3181 uint32_t i1 = j1 ^ s ? 0 : 1;
3182 uint32_t i2 = j2 ^ s ? 0 : 1;
3183
bef2b434
ILT
3184 return Bits<25>::sign_extend32((s << 24) | (i1 << 23) | (i2 << 22)
3185 | (upper << 12) | (lower << 1));
089d69dc
DK
3186 }
3187
3188 // Insert OFFSET to a 32-bit THUMB branch and return the upper instruction.
3189 // UPPER_INSN is the original upper instruction of the branch. Caller is
3190 // responsible for overflow checking and BLX offset adjustment.
3191 static inline uint16_t
3192 thumb32_branch_upper(uint16_t upper_insn, int32_t offset)
3193 {
3194 uint32_t s = offset < 0 ? 1 : 0;
3195 uint32_t bits = static_cast<uint32_t>(offset);
3196 return (upper_insn & ~0x7ffU) | ((bits >> 12) & 0x3ffU) | (s << 10);
3197 }
3198
3199 // Insert OFFSET to a 32-bit THUMB branch and return the lower instruction.
3200 // LOWER_INSN is the original lower instruction of the branch. Caller is
3201 // responsible for overflow checking and BLX offset adjustment.
3202 static inline uint16_t
3203 thumb32_branch_lower(uint16_t lower_insn, int32_t offset)
3204 {
3205 uint32_t s = offset < 0 ? 1 : 0;
3206 uint32_t bits = static_cast<uint32_t>(offset);
3207 return ((lower_insn & ~0x2fffU)
2e702c99
RM
3208 | ((((bits >> 23) & 1) ^ !s) << 13)
3209 | ((((bits >> 22) & 1) ^ !s) << 11)
3210 | ((bits >> 1) & 0x7ffU));
089d69dc
DK
3211 }
3212
3213 // Return the branch offset of a 32-bit THUMB conditional branch.
3214 static inline int32_t
3215 thumb32_cond_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3216 {
3217 uint32_t s = (upper_insn & 0x0400U) >> 10;
3218 uint32_t j1 = (lower_insn & 0x2000U) >> 13;
3219 uint32_t j2 = (lower_insn & 0x0800U) >> 11;
3220 uint32_t lower = (lower_insn & 0x07ffU);
3221 uint32_t upper = (s << 8) | (j2 << 7) | (j1 << 6) | (upper_insn & 0x003fU);
3222
bef2b434 3223 return Bits<21>::sign_extend32((upper << 12) | (lower << 1));
089d69dc
DK
3224 }
3225
3226 // Insert OFFSET to a 32-bit THUMB conditional branch and return the upper
3227 // instruction. UPPER_INSN is the original upper instruction of the branch.
3228 // Caller is responsible for overflow checking.
3229 static inline uint16_t
3230 thumb32_cond_branch_upper(uint16_t upper_insn, int32_t offset)
3231 {
3232 uint32_t s = offset < 0 ? 1 : 0;
3233 uint32_t bits = static_cast<uint32_t>(offset);
3234 return (upper_insn & 0xfbc0U) | (s << 10) | ((bits & 0x0003f000U) >> 12);
3235 }
3236
3237 // Insert OFFSET to a 32-bit THUMB conditional branch and return the lower
3238 // instruction. LOWER_INSN is the original lower instruction of the branch.
9b547ce6 3239 // The caller is responsible for overflow checking.
089d69dc
DK
3240 static inline uint16_t
3241 thumb32_cond_branch_lower(uint16_t lower_insn, int32_t offset)
3242 {
3243 uint32_t bits = static_cast<uint32_t>(offset);
3244 uint32_t j2 = (bits & 0x00080000U) >> 19;
3245 uint32_t j1 = (bits & 0x00040000U) >> 18;
3246 uint32_t lo = (bits & 0x00000ffeU) >> 1;
3247
3248 return (lower_insn & 0xd000U) | (j1 << 13) | (j2 << 11) | lo;
3249 }
3250
5e445df6
ILT
3251 // R_ARM_ABS8: S + A
3252 static inline typename This::Status
ca09d69a 3253 abs8(unsigned char* view,
6fa2a40b 3254 const Sized_relobj_file<32, big_endian>* object,
be8fcb75 3255 const Symbol_value<32>* psymval)
5e445df6
ILT
3256 {
3257 typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype;
5e445df6
ILT
3258 Valtype* wv = reinterpret_cast<Valtype*>(view);
3259 Valtype val = elfcpp::Swap<8, big_endian>::readval(wv);
bef2b434 3260 int32_t addend = Bits<8>::sign_extend32(val);
f6cccc2c 3261 Arm_address x = psymval->value(object, addend);
bef2b434 3262 val = Bits<32>::bit_select32(val, x, 0xffU);
5e445df6 3263 elfcpp::Swap<8, big_endian>::writeval(wv, val);
a2c7281b
DK
3264
3265 // R_ARM_ABS8 permits signed or unsigned results.
2c175ebc 3266 return (Bits<8>::has_signed_unsigned_overflow32(x)
5e445df6
ILT
3267 ? This::STATUS_OVERFLOW
3268 : This::STATUS_OKAY);
3269 }
3270
be8fcb75
ILT
3271 // R_ARM_THM_ABS5: S + A
3272 static inline typename This::Status
ca09d69a 3273 thm_abs5(unsigned char* view,
6fa2a40b 3274 const Sized_relobj_file<32, big_endian>* object,
be8fcb75
ILT
3275 const Symbol_value<32>* psymval)
3276 {
3277 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3278 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3279 Valtype* wv = reinterpret_cast<Valtype*>(view);
3280 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3281 Reltype addend = (val & 0x7e0U) >> 6;
2daedcd6 3282 Reltype x = psymval->value(object, addend);
bef2b434 3283 val = Bits<32>::bit_select32(val, x << 6, 0x7e0U);
be8fcb75 3284 elfcpp::Swap<16, big_endian>::writeval(wv, val);
2c175ebc 3285 return (Bits<5>::has_overflow32(x)
be8fcb75
ILT
3286 ? This::STATUS_OVERFLOW
3287 : This::STATUS_OKAY);
3288 }
3289
3290 // R_ARM_ABS12: S + A
3291 static inline typename This::Status
ca09d69a 3292 abs12(unsigned char* view,
6fa2a40b 3293 const Sized_relobj_file<32, big_endian>* object,
51938283 3294 const Symbol_value<32>* psymval)
be8fcb75
ILT
3295 {
3296 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3297 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3298 Valtype* wv = reinterpret_cast<Valtype*>(view);
3299 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3300 Reltype addend = val & 0x0fffU;
2daedcd6 3301 Reltype x = psymval->value(object, addend);
bef2b434 3302 val = Bits<32>::bit_select32(val, x, 0x0fffU);
be8fcb75 3303 elfcpp::Swap<32, big_endian>::writeval(wv, val);
bef2b434 3304 return (Bits<12>::has_overflow32(x)
be8fcb75
ILT
3305 ? This::STATUS_OVERFLOW
3306 : This::STATUS_OKAY);
3307 }
3308
3309 // R_ARM_ABS16: S + A
3310 static inline typename This::Status
ca09d69a 3311 abs16(unsigned char* view,
6fa2a40b 3312 const Sized_relobj_file<32, big_endian>* object,
51938283 3313 const Symbol_value<32>* psymval)
be8fcb75 3314 {
f6cccc2c 3315 typedef typename elfcpp::Swap_unaligned<16, big_endian>::Valtype Valtype;
f6cccc2c 3316 Valtype val = elfcpp::Swap_unaligned<16, big_endian>::readval(view);
bef2b434 3317 int32_t addend = Bits<16>::sign_extend32(val);
f6cccc2c 3318 Arm_address x = psymval->value(object, addend);
bef2b434 3319 val = Bits<32>::bit_select32(val, x, 0xffffU);
f6cccc2c
DK
3320 elfcpp::Swap_unaligned<16, big_endian>::writeval(view, val);
3321
3322 // R_ARM_ABS16 permits signed or unsigned results.
2c175ebc 3323 return (Bits<16>::has_signed_unsigned_overflow32(x)
be8fcb75
ILT
3324 ? This::STATUS_OVERFLOW
3325 : This::STATUS_OKAY);
3326 }
3327
c121c671
DK
3328 // R_ARM_ABS32: (S + A) | T
3329 static inline typename This::Status
ca09d69a 3330 abs32(unsigned char* view,
6fa2a40b 3331 const Sized_relobj_file<32, big_endian>* object,
c121c671 3332 const Symbol_value<32>* psymval,
2daedcd6 3333 Arm_address thumb_bit)
c121c671 3334 {
f6cccc2c
DK
3335 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3336 Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
2daedcd6 3337 Valtype x = psymval->value(object, addend) | thumb_bit;
f6cccc2c 3338 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
c121c671
DK
3339 return This::STATUS_OKAY;
3340 }
3341
3342 // R_ARM_REL32: (S + A) | T - P
3343 static inline typename This::Status
ca09d69a 3344 rel32(unsigned char* view,
6fa2a40b 3345 const Sized_relobj_file<32, big_endian>* object,
c121c671 3346 const Symbol_value<32>* psymval,
ebabffbd 3347 Arm_address address,
2daedcd6 3348 Arm_address thumb_bit)
c121c671 3349 {
f6cccc2c
DK
3350 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3351 Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
2daedcd6 3352 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
f6cccc2c 3353 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
c121c671
DK
3354 return This::STATUS_OKAY;
3355 }
3356
089d69dc
DK
3357 // R_ARM_THM_JUMP24: (S + A) | T - P
3358 static typename This::Status
ca09d69a 3359 thm_jump19(unsigned char* view, const Arm_relobj<big_endian>* object,
089d69dc
DK
3360 const Symbol_value<32>* psymval, Arm_address address,
3361 Arm_address thumb_bit);
3362
800d0f56
ILT
3363 // R_ARM_THM_JUMP6: S + A – P
3364 static inline typename This::Status
ca09d69a 3365 thm_jump6(unsigned char* view,
6fa2a40b 3366 const Sized_relobj_file<32, big_endian>* object,
800d0f56
ILT
3367 const Symbol_value<32>* psymval,
3368 Arm_address address)
3369 {
3370 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3371 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3372 Valtype* wv = reinterpret_cast<Valtype*>(view);
3373 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3374 // bit[9]:bit[7:3]:’0’ (mask: 0x02f8)
3375 Reltype addend = (((val & 0x0200) >> 3) | ((val & 0x00f8) >> 2));
3376 Reltype x = (psymval->value(object, addend) - address);
3377 val = (val & 0xfd07) | ((x & 0x0040) << 3) | ((val & 0x003e) << 2);
3378 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3379 // CZB does only forward jumps.
3380 return ((x > 0x007e)
3381 ? This::STATUS_OVERFLOW
3382 : This::STATUS_OKAY);
3383 }
3384
3385 // R_ARM_THM_JUMP8: S + A – P
3386 static inline typename This::Status
ca09d69a 3387 thm_jump8(unsigned char* view,
6fa2a40b 3388 const Sized_relobj_file<32, big_endian>* object,
800d0f56
ILT
3389 const Symbol_value<32>* psymval,
3390 Arm_address address)
3391 {
3392 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
800d0f56
ILT
3393 Valtype* wv = reinterpret_cast<Valtype*>(view);
3394 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
bef2b434 3395 int32_t addend = Bits<8>::sign_extend32((val & 0x00ff) << 1);
57eb9b50
DK
3396 int32_t x = (psymval->value(object, addend) - address);
3397 elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xff00)
2e702c99 3398 | ((x & 0x01fe) >> 1)));
57eb9b50 3399 // We do a 9-bit overflow check because x is right-shifted by 1 bit.
bef2b434 3400 return (Bits<9>::has_overflow32(x)
800d0f56
ILT
3401 ? This::STATUS_OVERFLOW
3402 : This::STATUS_OKAY);
3403 }
3404
3405 // R_ARM_THM_JUMP11: S + A – P
3406 static inline typename This::Status
ca09d69a 3407 thm_jump11(unsigned char* view,
6fa2a40b 3408 const Sized_relobj_file<32, big_endian>* object,
800d0f56
ILT
3409 const Symbol_value<32>* psymval,
3410 Arm_address address)
3411 {
3412 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
800d0f56
ILT
3413 Valtype* wv = reinterpret_cast<Valtype*>(view);
3414 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
bef2b434 3415 int32_t addend = Bits<11>::sign_extend32((val & 0x07ff) << 1);
57eb9b50
DK
3416 int32_t x = (psymval->value(object, addend) - address);
3417 elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xf800)
2e702c99 3418 | ((x & 0x0ffe) >> 1)));
57eb9b50 3419 // We do a 12-bit overflow check because x is right-shifted by 1 bit.
bef2b434 3420 return (Bits<12>::has_overflow32(x)
800d0f56
ILT
3421 ? This::STATUS_OVERFLOW
3422 : This::STATUS_OKAY);
3423 }
3424
c121c671
DK
3425 // R_ARM_BASE_PREL: B(S) + A - P
3426 static inline typename This::Status
3427 base_prel(unsigned char* view,
ebabffbd
DK
3428 Arm_address origin,
3429 Arm_address address)
c121c671
DK
3430 {
3431 Base::rel32(view, origin - address);
3432 return STATUS_OKAY;
3433 }
3434
be8fcb75
ILT
3435 // R_ARM_BASE_ABS: B(S) + A
3436 static inline typename This::Status
3437 base_abs(unsigned char* view,
f4e5969c 3438 Arm_address origin)
be8fcb75
ILT
3439 {
3440 Base::rel32(view, origin);
3441 return STATUS_OKAY;
3442 }
3443
c121c671
DK
3444 // R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG
3445 static inline typename This::Status
3446 got_brel(unsigned char* view,
3447 typename elfcpp::Swap<32, big_endian>::Valtype got_offset)
3448 {
3449 Base::rel32(view, got_offset);
3450 return This::STATUS_OKAY;
3451 }
3452
f4e5969c 3453 // R_ARM_GOT_PREL: GOT(S) + A - P
7f5309a5 3454 static inline typename This::Status
ca09d69a 3455 got_prel(unsigned char* view,
f4e5969c 3456 Arm_address got_entry,
ebabffbd 3457 Arm_address address)
7f5309a5 3458 {
f4e5969c 3459 Base::rel32(view, got_entry - address);
7f5309a5
ILT
3460 return This::STATUS_OKAY;
3461 }
3462
c121c671
DK
3463 // R_ARM_PREL: (S + A) | T - P
3464 static inline typename This::Status
ca09d69a 3465 prel31(unsigned char* view,
6fa2a40b 3466 const Sized_relobj_file<32, big_endian>* object,
c121c671 3467 const Symbol_value<32>* psymval,
ebabffbd 3468 Arm_address address,
2daedcd6 3469 Arm_address thumb_bit)
c121c671 3470 {
f6cccc2c
DK
3471 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3472 Valtype val = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
bef2b434 3473 Valtype addend = Bits<31>::sign_extend32(val);
2daedcd6 3474 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
bef2b434 3475 val = Bits<32>::bit_select32(val, x, 0x7fffffffU);
f6cccc2c 3476 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, val);
bef2b434
ILT
3477 return (Bits<31>::has_overflow32(x)
3478 ? This::STATUS_OVERFLOW
3479 : This::STATUS_OKAY);
c121c671 3480 }
fd3c5f0b 3481
5c57f1be 3482 // R_ARM_MOVW_ABS_NC: (S + A) | T (relative address base is )
c2a122b6 3483 // R_ARM_MOVW_PREL_NC: (S + A) | T - P
5c57f1be
DK
3484 // R_ARM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3485 // R_ARM_MOVW_BREL: ((S + A) | T) - B(S)
02961d7e 3486 static inline typename This::Status
5c57f1be 3487 movw(unsigned char* view,
6fa2a40b 3488 const Sized_relobj_file<32, big_endian>* object,
5c57f1be
DK
3489 const Symbol_value<32>* psymval,
3490 Arm_address relative_address_base,
3491 Arm_address thumb_bit,
3492 bool check_overflow)
02961d7e
ILT
3493 {
3494 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3495 Valtype* wv = reinterpret_cast<Valtype*>(view);
3496 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3497 Valtype addend = This::extract_arm_movw_movt_addend(val);
5c57f1be
DK
3498 Valtype x = ((psymval->value(object, addend) | thumb_bit)
3499 - relative_address_base);
02961d7e
ILT
3500 val = This::insert_val_arm_movw_movt(val, x);
3501 elfcpp::Swap<32, big_endian>::writeval(wv, val);
bef2b434 3502 return ((check_overflow && Bits<16>::has_overflow32(x))
5c57f1be
DK
3503 ? This::STATUS_OVERFLOW
3504 : This::STATUS_OKAY);
02961d7e
ILT
3505 }
3506
5c57f1be 3507 // R_ARM_MOVT_ABS: S + A (relative address base is 0)
c2a122b6 3508 // R_ARM_MOVT_PREL: S + A - P
5c57f1be 3509 // R_ARM_MOVT_BREL: S + A - B(S)
c2a122b6 3510 static inline typename This::Status
5c57f1be 3511 movt(unsigned char* view,
6fa2a40b 3512 const Sized_relobj_file<32, big_endian>* object,
5c57f1be
DK
3513 const Symbol_value<32>* psymval,
3514 Arm_address relative_address_base)
c2a122b6
ILT
3515 {
3516 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3517 Valtype* wv = reinterpret_cast<Valtype*>(view);
3518 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3519 Valtype addend = This::extract_arm_movw_movt_addend(val);
5c57f1be 3520 Valtype x = (psymval->value(object, addend) - relative_address_base) >> 16;
c2a122b6
ILT
3521 val = This::insert_val_arm_movw_movt(val, x);
3522 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5c57f1be 3523 // FIXME: IHI0044D says that we should check for overflow.
c2a122b6
ILT
3524 return This::STATUS_OKAY;
3525 }
3526
5c57f1be 3527 // R_ARM_THM_MOVW_ABS_NC: S + A | T (relative_address_base is 0)
c2a122b6 3528 // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
5c57f1be
DK
3529 // R_ARM_THM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3530 // R_ARM_THM_MOVW_BREL: ((S + A) | T) - B(S)
02961d7e 3531 static inline typename This::Status
ca09d69a 3532 thm_movw(unsigned char* view,
6fa2a40b 3533 const Sized_relobj_file<32, big_endian>* object,
5c57f1be
DK
3534 const Symbol_value<32>* psymval,
3535 Arm_address relative_address_base,
3536 Arm_address thumb_bit,
3537 bool check_overflow)
02961d7e
ILT
3538 {
3539 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3540 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3541 Valtype* wv = reinterpret_cast<Valtype*>(view);
3542 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3543 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3544 Reltype addend = This::extract_thumb_movw_movt_addend(val);
5c57f1be
DK
3545 Reltype x =
3546 (psymval->value(object, addend) | thumb_bit) - relative_address_base;
02961d7e
ILT
3547 val = This::insert_val_thumb_movw_movt(val, x);
3548 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3549 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
bef2b434 3550 return ((check_overflow && Bits<16>::has_overflow32(x))
2e702c99 3551 ? This::STATUS_OVERFLOW
5c57f1be 3552 : This::STATUS_OKAY);
02961d7e
ILT
3553 }
3554
5c57f1be 3555 // R_ARM_THM_MOVT_ABS: S + A (relative address base is 0)
c2a122b6 3556 // R_ARM_THM_MOVT_PREL: S + A - P
5c57f1be 3557 // R_ARM_THM_MOVT_BREL: S + A - B(S)
c2a122b6 3558 static inline typename This::Status
5c57f1be 3559 thm_movt(unsigned char* view,
6fa2a40b 3560 const Sized_relobj_file<32, big_endian>* object,
5c57f1be
DK
3561 const Symbol_value<32>* psymval,
3562 Arm_address relative_address_base)
c2a122b6
ILT
3563 {
3564 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3565 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3566 Valtype* wv = reinterpret_cast<Valtype*>(view);
3567 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3568 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3569 Reltype addend = This::extract_thumb_movw_movt_addend(val);
5c57f1be 3570 Reltype x = (psymval->value(object, addend) - relative_address_base) >> 16;
c2a122b6
ILT
3571 val = This::insert_val_thumb_movw_movt(val, x);
3572 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3573 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3574 return This::STATUS_OKAY;
3575 }
a2162063 3576
11b861d5
DK
3577 // R_ARM_THM_ALU_PREL_11_0: ((S + A) | T) - Pa (Thumb32)
3578 static inline typename This::Status
3579 thm_alu11(unsigned char* view,
6fa2a40b 3580 const Sized_relobj_file<32, big_endian>* object,
11b861d5
DK
3581 const Symbol_value<32>* psymval,
3582 Arm_address address,
3583 Arm_address thumb_bit)
3584 {
3585 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3586 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3587 Valtype* wv = reinterpret_cast<Valtype*>(view);
3588 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3589 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3590
3591 // f e d c b|a|9|8 7 6 5|4|3 2 1 0||f|e d c|b a 9 8|7 6 5 4 3 2 1 0
3592 // -----------------------------------------------------------------------
3593 // ADD{S} 1 1 1 1 0|i|0|1 0 0 0|S|1 1 0 1||0|imm3 |Rd |imm8
3594 // ADDW 1 1 1 1 0|i|1|0 0 0 0|0|1 1 0 1||0|imm3 |Rd |imm8
3595 // ADR[+] 1 1 1 1 0|i|1|0 0 0 0|0|1 1 1 1||0|imm3 |Rd |imm8
3596 // SUB{S} 1 1 1 1 0|i|0|1 1 0 1|S|1 1 0 1||0|imm3 |Rd |imm8
3597 // SUBW 1 1 1 1 0|i|1|0 1 0 1|0|1 1 0 1||0|imm3 |Rd |imm8
3598 // ADR[-] 1 1 1 1 0|i|1|0 1 0 1|0|1 1 1 1||0|imm3 |Rd |imm8
3599
3600 // Determine a sign for the addend.
3601 const int sign = ((insn & 0xf8ef0000) == 0xf0ad0000
3602 || (insn & 0xf8ef0000) == 0xf0af0000) ? -1 : 1;
3603 // Thumb2 addend encoding:
3604 // imm12 := i | imm3 | imm8
3605 int32_t addend = (insn & 0xff)
3606 | ((insn & 0x00007000) >> 4)
3607 | ((insn & 0x04000000) >> 15);
3608 // Apply a sign to the added.
3609 addend *= sign;
3610
3611 int32_t x = (psymval->value(object, addend) | thumb_bit)
3612 - (address & 0xfffffffc);
3613 Reltype val = abs(x);
3614 // Mask out the value and a distinct part of the ADD/SUB opcode
3615 // (bits 7:5 of opword).
3616 insn = (insn & 0xfb0f8f00)
3617 | (val & 0xff)
3618 | ((val & 0x700) << 4)
3619 | ((val & 0x800) << 15);
3620 // Set the opcode according to whether the value to go in the
3621 // place is negative.
3622 if (x < 0)
3623 insn |= 0x00a00000;
3624
3625 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3626 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3627 return ((val > 0xfff) ?
2e702c99 3628 This::STATUS_OVERFLOW : This::STATUS_OKAY);
11b861d5
DK
3629 }
3630
3631 // R_ARM_THM_PC8: S + A - Pa (Thumb)
3632 static inline typename This::Status
3633 thm_pc8(unsigned char* view,
6fa2a40b 3634 const Sized_relobj_file<32, big_endian>* object,
11b861d5
DK
3635 const Symbol_value<32>* psymval,
3636 Arm_address address)
3637 {
3638 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3639 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3640 Valtype* wv = reinterpret_cast<Valtype*>(view);
3641 Valtype insn = elfcpp::Swap<16, big_endian>::readval(wv);
3642 Reltype addend = ((insn & 0x00ff) << 2);
3643 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3644 Reltype val = abs(x);
3645 insn = (insn & 0xff00) | ((val & 0x03fc) >> 2);
3646
3647 elfcpp::Swap<16, big_endian>::writeval(wv, insn);
3648 return ((val > 0x03fc)
3649 ? This::STATUS_OVERFLOW
3650 : This::STATUS_OKAY);
3651 }
3652
3653 // R_ARM_THM_PC12: S + A - Pa (Thumb32)
3654 static inline typename This::Status
3655 thm_pc12(unsigned char* view,
6fa2a40b 3656 const Sized_relobj_file<32, big_endian>* object,
11b861d5
DK
3657 const Symbol_value<32>* psymval,
3658 Arm_address address)
3659 {
3660 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3661 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3662 Valtype* wv = reinterpret_cast<Valtype*>(view);
3663 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3664 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3665 // Determine a sign for the addend (positive if the U bit is 1).
3666 const int sign = (insn & 0x00800000) ? 1 : -1;
3667 int32_t addend = (insn & 0xfff);
3668 // Apply a sign to the added.
3669 addend *= sign;
3670
3671 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3672 Reltype val = abs(x);
3673 // Mask out and apply the value and the U bit.
3674 insn = (insn & 0xff7ff000) | (val & 0xfff);
3675 // Set the U bit according to whether the value to go in the
3676 // place is positive.
3677 if (x >= 0)
3678 insn |= 0x00800000;
3679
3680 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3681 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3682 return ((val > 0xfff) ?
2e702c99 3683 This::STATUS_OVERFLOW : This::STATUS_OKAY);
11b861d5
DK
3684 }
3685
a2162063
ILT
3686 // R_ARM_V4BX
3687 static inline typename This::Status
3688 v4bx(const Relocate_info<32, big_endian>* relinfo,
ca09d69a 3689 unsigned char* view,
a2162063
ILT
3690 const Arm_relobj<big_endian>* object,
3691 const Arm_address address,
3692 const bool is_interworking)
3693 {
3694
3695 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3696 Valtype* wv = reinterpret_cast<Valtype*>(view);
3697 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3698
3699 // Ensure that we have a BX instruction.
3700 gold_assert((val & 0x0ffffff0) == 0x012fff10);
3701 const uint32_t reg = (val & 0xf);
3702 if (is_interworking && reg != 0xf)
3703 {
3704 Stub_table<big_endian>* stub_table =
3705 object->stub_table(relinfo->data_shndx);
3706 gold_assert(stub_table != NULL);
3707
3708 Arm_v4bx_stub* stub = stub_table->find_arm_v4bx_stub(reg);
3709 gold_assert(stub != NULL);
3710
3711 int32_t veneer_address =
3712 stub_table->address() + stub->offset() - 8 - address;
3713 gold_assert((veneer_address <= ARM_MAX_FWD_BRANCH_OFFSET)
3714 && (veneer_address >= ARM_MAX_BWD_BRANCH_OFFSET));
3715 // Replace with a branch to veneer (B <addr>)
3716 val = (val & 0xf0000000) | 0x0a000000
3717 | ((veneer_address >> 2) & 0x00ffffff);
3718 }
3719 else
3720 {
3721 // Preserve Rm (lowest four bits) and the condition code
3722 // (highest four bits). Other bits encode MOV PC,Rm.
3723 val = (val & 0xf000000f) | 0x01a0f000;
3724 }
3725 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3726 return This::STATUS_OKAY;
3727 }
b10d2873
ILT
3728
3729 // R_ARM_ALU_PC_G0_NC: ((S + A) | T) - P
3730 // R_ARM_ALU_PC_G0: ((S + A) | T) - P
3731 // R_ARM_ALU_PC_G1_NC: ((S + A) | T) - P
3732 // R_ARM_ALU_PC_G1: ((S + A) | T) - P
3733 // R_ARM_ALU_PC_G2: ((S + A) | T) - P
3734 // R_ARM_ALU_SB_G0_NC: ((S + A) | T) - B(S)
3735 // R_ARM_ALU_SB_G0: ((S + A) | T) - B(S)
3736 // R_ARM_ALU_SB_G1_NC: ((S + A) | T) - B(S)
3737 // R_ARM_ALU_SB_G1: ((S + A) | T) - B(S)
3738 // R_ARM_ALU_SB_G2: ((S + A) | T) - B(S)
3739 static inline typename This::Status
3740 arm_grp_alu(unsigned char* view,
6fa2a40b 3741 const Sized_relobj_file<32, big_endian>* object,
b10d2873
ILT
3742 const Symbol_value<32>* psymval,
3743 const int group,
3744 Arm_address address,
3745 Arm_address thumb_bit,
3746 bool check_overflow)
3747 {
5c57f1be 3748 gold_assert(group >= 0 && group < 3);
b10d2873
ILT
3749 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3750 Valtype* wv = reinterpret_cast<Valtype*>(view);
3751 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3752
3753 // ALU group relocations are allowed only for the ADD/SUB instructions.
3754 // (0x00800000 - ADD, 0x00400000 - SUB)
3755 const Valtype opcode = insn & 0x01e00000;
3756 if (opcode != 0x00800000 && opcode != 0x00400000)
3757 return This::STATUS_BAD_RELOC;
3758
3759 // Determine a sign for the addend.
3760 const int sign = (opcode == 0x00800000) ? 1 : -1;
3761 // shifter = rotate_imm * 2
3762 const uint32_t shifter = (insn & 0xf00) >> 7;
3763 // Initial addend value.
3764 int32_t addend = insn & 0xff;
3765 // Rotate addend right by shifter.
3766 addend = (addend >> shifter) | (addend << (32 - shifter));
3767 // Apply a sign to the added.
3768 addend *= sign;
3769
3770 int32_t x = ((psymval->value(object, addend) | thumb_bit) - address);
3771 Valtype gn = Arm_relocate_functions::calc_grp_gn(abs(x), group);
3772 // Check for overflow if required
3773 if (check_overflow
3774 && (Arm_relocate_functions::calc_grp_residual(abs(x), group) != 0))
3775 return This::STATUS_OVERFLOW;
3776
3777 // Mask out the value and the ADD/SUB part of the opcode; take care
3778 // not to destroy the S bit.
3779 insn &= 0xff1ff000;
3780 // Set the opcode according to whether the value to go in the
3781 // place is negative.
3782 insn |= ((x < 0) ? 0x00400000 : 0x00800000);
3783 // Encode the offset (encoded Gn).
3784 insn |= gn;
3785
3786 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3787 return This::STATUS_OKAY;
3788 }
3789
3790 // R_ARM_LDR_PC_G0: S + A - P
3791 // R_ARM_LDR_PC_G1: S + A - P
3792 // R_ARM_LDR_PC_G2: S + A - P
3793 // R_ARM_LDR_SB_G0: S + A - B(S)
3794 // R_ARM_LDR_SB_G1: S + A - B(S)
3795 // R_ARM_LDR_SB_G2: S + A - B(S)
3796 static inline typename This::Status
3797 arm_grp_ldr(unsigned char* view,
6fa2a40b 3798 const Sized_relobj_file<32, big_endian>* object,
b10d2873
ILT
3799 const Symbol_value<32>* psymval,
3800 const int group,
3801 Arm_address address)
3802 {
5c57f1be 3803 gold_assert(group >= 0 && group < 3);
b10d2873
ILT
3804 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3805 Valtype* wv = reinterpret_cast<Valtype*>(view);
3806 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3807
3808 const int sign = (insn & 0x00800000) ? 1 : -1;
3809 int32_t addend = (insn & 0xfff) * sign;
3810 int32_t x = (psymval->value(object, addend) - address);
3811 // Calculate the relevant G(n-1) value to obtain this stage residual.
3812 Valtype residual =
3813 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3814 if (residual >= 0x1000)
3815 return This::STATUS_OVERFLOW;
3816
3817 // Mask out the value and U bit.
3818 insn &= 0xff7ff000;
3819 // Set the U bit for non-negative values.
3820 if (x >= 0)
3821 insn |= 0x00800000;
3822 insn |= residual;
3823
3824 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3825 return This::STATUS_OKAY;
3826 }
3827
3828 // R_ARM_LDRS_PC_G0: S + A - P
3829 // R_ARM_LDRS_PC_G1: S + A - P
3830 // R_ARM_LDRS_PC_G2: S + A - P
3831 // R_ARM_LDRS_SB_G0: S + A - B(S)
3832 // R_ARM_LDRS_SB_G1: S + A - B(S)
3833 // R_ARM_LDRS_SB_G2: S + A - B(S)
3834 static inline typename This::Status
3835 arm_grp_ldrs(unsigned char* view,
6fa2a40b 3836 const Sized_relobj_file<32, big_endian>* object,
b10d2873
ILT
3837 const Symbol_value<32>* psymval,
3838 const int group,
3839 Arm_address address)
3840 {
5c57f1be 3841 gold_assert(group >= 0 && group < 3);
b10d2873
ILT
3842 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3843 Valtype* wv = reinterpret_cast<Valtype*>(view);
3844 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3845
3846 const int sign = (insn & 0x00800000) ? 1 : -1;
3847 int32_t addend = (((insn & 0xf00) >> 4) + (insn & 0xf)) * sign;
3848 int32_t x = (psymval->value(object, addend) - address);
3849 // Calculate the relevant G(n-1) value to obtain this stage residual.
3850 Valtype residual =
3851 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3852 if (residual >= 0x100)
3853 return This::STATUS_OVERFLOW;
3854
3855 // Mask out the value and U bit.
3856 insn &= 0xff7ff0f0;
3857 // Set the U bit for non-negative values.
3858 if (x >= 0)
3859 insn |= 0x00800000;
3860 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
3861
3862 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3863 return This::STATUS_OKAY;
3864 }
3865
3866 // R_ARM_LDC_PC_G0: S + A - P
3867 // R_ARM_LDC_PC_G1: S + A - P
3868 // R_ARM_LDC_PC_G2: S + A - P
3869 // R_ARM_LDC_SB_G0: S + A - B(S)
3870 // R_ARM_LDC_SB_G1: S + A - B(S)
3871 // R_ARM_LDC_SB_G2: S + A - B(S)
3872 static inline typename This::Status
3873 arm_grp_ldc(unsigned char* view,
6fa2a40b 3874 const Sized_relobj_file<32, big_endian>* object,
b10d2873
ILT
3875 const Symbol_value<32>* psymval,
3876 const int group,
3877 Arm_address address)
3878 {
5c57f1be 3879 gold_assert(group >= 0 && group < 3);
b10d2873
ILT
3880 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3881 Valtype* wv = reinterpret_cast<Valtype*>(view);
3882 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3883
3884 const int sign = (insn & 0x00800000) ? 1 : -1;
3885 int32_t addend = ((insn & 0xff) << 2) * sign;
3886 int32_t x = (psymval->value(object, addend) - address);
3887 // Calculate the relevant G(n-1) value to obtain this stage residual.
3888 Valtype residual =
3889 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3890 if ((residual & 0x3) != 0 || residual >= 0x400)
3891 return This::STATUS_OVERFLOW;
3892
3893 // Mask out the value and U bit.
3894 insn &= 0xff7fff00;
3895 // Set the U bit for non-negative values.
3896 if (x >= 0)
3897 insn |= 0x00800000;
3898 insn |= (residual >> 2);
3899
3900 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3901 return This::STATUS_OKAY;
3902 }
c121c671
DK
3903};
3904
d204b6e9
DK
3905// Relocate ARM long branches. This handles relocation types
3906// R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25.
3907// If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3908// undefined and we do not use PLT in this relocation. In such a case,
3909// the branch is converted into an NOP.
3910
3911template<bool big_endian>
3912typename Arm_relocate_functions<big_endian>::Status
3913Arm_relocate_functions<big_endian>::arm_branch_common(
3914 unsigned int r_type,
3915 const Relocate_info<32, big_endian>* relinfo,
ca09d69a 3916 unsigned char* view,
d204b6e9
DK
3917 const Sized_symbol<32>* gsym,
3918 const Arm_relobj<big_endian>* object,
3919 unsigned int r_sym,
3920 const Symbol_value<32>* psymval,
3921 Arm_address address,
3922 Arm_address thumb_bit,
3923 bool is_weakly_undefined_without_plt)
3924{
3925 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3926 Valtype* wv = reinterpret_cast<Valtype*>(view);
3927 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
2e702c99 3928
d204b6e9 3929 bool insn_is_b = (((val >> 28) & 0xf) <= 0xe)
2e702c99 3930 && ((val & 0x0f000000UL) == 0x0a000000UL);
d204b6e9
DK
3931 bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL;
3932 bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe)
3933 && ((val & 0x0f000000UL) == 0x0b000000UL);
3934 bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL;
3935 bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL;
3936
3937 // Check that the instruction is valid.
3938 if (r_type == elfcpp::R_ARM_CALL)
3939 {
3940 if (!insn_is_uncond_bl && !insn_is_blx)
3941 return This::STATUS_BAD_RELOC;
3942 }
3943 else if (r_type == elfcpp::R_ARM_JUMP24)
3944 {
3945 if (!insn_is_b && !insn_is_cond_bl)
3946 return This::STATUS_BAD_RELOC;
3947 }
3948 else if (r_type == elfcpp::R_ARM_PLT32)
3949 {
3950 if (!insn_is_any_branch)
3951 return This::STATUS_BAD_RELOC;
3952 }
3953 else if (r_type == elfcpp::R_ARM_XPC25)
3954 {
3955 // FIXME: AAELF document IH0044C does not say much about it other
3956 // than it being obsolete.
3957 if (!insn_is_any_branch)
3958 return This::STATUS_BAD_RELOC;
3959 }
3960 else
3961 gold_unreachable();
3962
3963 // A branch to an undefined weak symbol is turned into a jump to
3964 // the next instruction unless a PLT entry will be created.
3965 // Do the same for local undefined symbols.
3966 // The jump to the next instruction is optimized as a NOP depending
3967 // on the architecture.
3968 const Target_arm<big_endian>* arm_target =
3969 Target_arm<big_endian>::default_target();
3970 if (is_weakly_undefined_without_plt)
3971 {
5c388529 3972 gold_assert(!parameters->options().relocatable());
d204b6e9
DK
3973 Valtype cond = val & 0xf0000000U;
3974 if (arm_target->may_use_arm_nop())
3975 val = cond | 0x0320f000;
3976 else
3977 val = cond | 0x01a00000; // Using pre-UAL nop: mov r0, r0.
3978 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3979 return This::STATUS_OKAY;
3980 }
2e702c99 3981
bef2b434 3982 Valtype addend = Bits<26>::sign_extend32(val << 2);
d204b6e9
DK
3983 Valtype branch_target = psymval->value(object, addend);
3984 int32_t branch_offset = branch_target - address;
3985
3986 // We need a stub if the branch offset is too large or if we need
3987 // to switch mode.
cd6eab1c 3988 bool may_use_blx = arm_target->may_use_v5t_interworking();
d204b6e9 3989 Reloc_stub* stub = NULL;
5c388529
DK
3990
3991 if (!parameters->options().relocatable()
bef2b434 3992 && (Bits<26>::has_overflow32(branch_offset)
5c388529
DK
3993 || ((thumb_bit != 0)
3994 && !(may_use_blx && r_type == elfcpp::R_ARM_CALL))))
d204b6e9 3995 {
2a2b6d42
DK
3996 Valtype unadjusted_branch_target = psymval->value(object, 0);
3997
d204b6e9 3998 Stub_type stub_type =
2a2b6d42
DK
3999 Reloc_stub::stub_type_for_reloc(r_type, address,
4000 unadjusted_branch_target,
d204b6e9
DK
4001 (thumb_bit != 0));
4002 if (stub_type != arm_stub_none)
4003 {
2ea97941 4004 Stub_table<big_endian>* stub_table =
d204b6e9 4005 object->stub_table(relinfo->data_shndx);
2ea97941 4006 gold_assert(stub_table != NULL);
d204b6e9
DK
4007
4008 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
2ea97941 4009 stub = stub_table->find_reloc_stub(stub_key);
d204b6e9
DK
4010 gold_assert(stub != NULL);
4011 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
2ea97941 4012 branch_target = stub_table->address() + stub->offset() + addend;
d204b6e9 4013 branch_offset = branch_target - address;
bef2b434 4014 gold_assert(!Bits<26>::has_overflow32(branch_offset));
d204b6e9
DK
4015 }
4016 }
4017
4018 // At this point, if we still need to switch mode, the instruction
4019 // must either be a BLX or a BL that can be converted to a BLX.
4020 if (thumb_bit != 0)
4021 {
4022 // Turn BL to BLX.
4023 gold_assert(may_use_blx && r_type == elfcpp::R_ARM_CALL);
4024 val = (val & 0xffffff) | 0xfa000000 | ((branch_offset & 2) << 23);
4025 }
4026
bef2b434 4027 val = Bits<32>::bit_select32(val, (branch_offset >> 2), 0xffffffUL);
d204b6e9 4028 elfcpp::Swap<32, big_endian>::writeval(wv, val);
bef2b434
ILT
4029 return (Bits<26>::has_overflow32(branch_offset)
4030 ? This::STATUS_OVERFLOW
4031 : This::STATUS_OKAY);
d204b6e9
DK
4032}
4033
51938283
DK
4034// Relocate THUMB long branches. This handles relocation types
4035// R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22.
4036// If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
4037// undefined and we do not use PLT in this relocation. In such a case,
4038// the branch is converted into an NOP.
4039
4040template<bool big_endian>
4041typename Arm_relocate_functions<big_endian>::Status
4042Arm_relocate_functions<big_endian>::thumb_branch_common(
4043 unsigned int r_type,
4044 const Relocate_info<32, big_endian>* relinfo,
ca09d69a 4045 unsigned char* view,
51938283
DK
4046 const Sized_symbol<32>* gsym,
4047 const Arm_relobj<big_endian>* object,
4048 unsigned int r_sym,
4049 const Symbol_value<32>* psymval,
4050 Arm_address address,
4051 Arm_address thumb_bit,
4052 bool is_weakly_undefined_without_plt)
4053{
4054 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4055 Valtype* wv = reinterpret_cast<Valtype*>(view);
4056 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4057 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4058
4059 // FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference
4060 // into account.
4061 bool is_bl_insn = (lower_insn & 0x1000U) == 0x1000U;
4062 bool is_blx_insn = (lower_insn & 0x1000U) == 0x0000U;
2e702c99 4063
51938283
DK
4064 // Check that the instruction is valid.
4065 if (r_type == elfcpp::R_ARM_THM_CALL)
4066 {
4067 if (!is_bl_insn && !is_blx_insn)
4068 return This::STATUS_BAD_RELOC;
4069 }
4070 else if (r_type == elfcpp::R_ARM_THM_JUMP24)
4071 {
4072 // This cannot be a BLX.
4073 if (!is_bl_insn)
4074 return This::STATUS_BAD_RELOC;
4075 }
4076 else if (r_type == elfcpp::R_ARM_THM_XPC22)
4077 {
4078 // Check for Thumb to Thumb call.
4079 if (!is_blx_insn)
4080 return This::STATUS_BAD_RELOC;
4081 if (thumb_bit != 0)
4082 {
4083 gold_warning(_("%s: Thumb BLX instruction targets "
4084 "thumb function '%s'."),
4085 object->name().c_str(),
2e702c99 4086 (gsym ? gsym->name() : "(local)"));
51938283
DK
4087 // Convert BLX to BL.
4088 lower_insn |= 0x1000U;
4089 }
4090 }
4091 else
4092 gold_unreachable();
4093
4094 // A branch to an undefined weak symbol is turned into a jump to
4095 // the next instruction unless a PLT entry will be created.
4096 // The jump to the next instruction is optimized as a NOP.W for
4097 // Thumb-2 enabled architectures.
4098 const Target_arm<big_endian>* arm_target =
4099 Target_arm<big_endian>::default_target();
4100 if (is_weakly_undefined_without_plt)
4101 {
5c388529 4102 gold_assert(!parameters->options().relocatable());
51938283
DK
4103 if (arm_target->may_use_thumb2_nop())
4104 {
4105 elfcpp::Swap<16, big_endian>::writeval(wv, 0xf3af);
4106 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0x8000);
4107 }
4108 else
4109 {
4110 elfcpp::Swap<16, big_endian>::writeval(wv, 0xe000);
4111 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0xbf00);
4112 }
4113 return This::STATUS_OKAY;
4114 }
2e702c99 4115
089d69dc 4116 int32_t addend = This::thumb32_branch_offset(upper_insn, lower_insn);
51938283 4117 Arm_address branch_target = psymval->value(object, addend);
a2c7281b
DK
4118
4119 // For BLX, bit 1 of target address comes from bit 1 of base address.
cd6eab1c 4120 bool may_use_blx = arm_target->may_use_v5t_interworking();
a2c7281b 4121 if (thumb_bit == 0 && may_use_blx)
bef2b434 4122 branch_target = Bits<32>::bit_select32(branch_target, address, 0x2);
a2c7281b 4123
51938283
DK
4124 int32_t branch_offset = branch_target - address;
4125
4126 // We need a stub if the branch offset is too large or if we need
4127 // to switch mode.
51938283 4128 bool thumb2 = arm_target->using_thumb2();
5c388529 4129 if (!parameters->options().relocatable()
bef2b434
ILT
4130 && ((!thumb2 && Bits<23>::has_overflow32(branch_offset))
4131 || (thumb2 && Bits<25>::has_overflow32(branch_offset))
5c388529
DK
4132 || ((thumb_bit == 0)
4133 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4134 || r_type == elfcpp::R_ARM_THM_JUMP24))))
51938283 4135 {
2a2b6d42
DK
4136 Arm_address unadjusted_branch_target = psymval->value(object, 0);
4137
51938283 4138 Stub_type stub_type =
2a2b6d42
DK
4139 Reloc_stub::stub_type_for_reloc(r_type, address,
4140 unadjusted_branch_target,
51938283 4141 (thumb_bit != 0));
2a2b6d42 4142
51938283
DK
4143 if (stub_type != arm_stub_none)
4144 {
2ea97941 4145 Stub_table<big_endian>* stub_table =
51938283 4146 object->stub_table(relinfo->data_shndx);
2ea97941 4147 gold_assert(stub_table != NULL);
51938283
DK
4148
4149 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
2ea97941 4150 Reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
51938283
DK
4151 gold_assert(stub != NULL);
4152 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
2ea97941 4153 branch_target = stub_table->address() + stub->offset() + addend;
2e702c99 4154 if (thumb_bit == 0 && may_use_blx)
bef2b434 4155 branch_target = Bits<32>::bit_select32(branch_target, address, 0x2);
51938283
DK
4156 branch_offset = branch_target - address;
4157 }
4158 }
4159
4160 // At this point, if we still need to switch mode, the instruction
4161 // must either be a BLX or a BL that can be converted to a BLX.
4162 if (thumb_bit == 0)
4163 {
4164 gold_assert(may_use_blx
4165 && (r_type == elfcpp::R_ARM_THM_CALL
4166 || r_type == elfcpp::R_ARM_THM_XPC22));
4167 // Make sure this is a BLX.
4168 lower_insn &= ~0x1000U;
4169 }
4170 else
4171 {
4172 // Make sure this is a BL.
4173 lower_insn |= 0x1000U;
4174 }
4175
a2c7281b
DK
4176 // For a BLX instruction, make sure that the relocation is rounded up
4177 // to a word boundary. This follows the semantics of the instruction
4178 // which specifies that bit 1 of the target address will come from bit
4179 // 1 of the base address.
51938283 4180 if ((lower_insn & 0x5000U) == 0x4000U)
a2c7281b 4181 gold_assert((branch_offset & 3) == 0);
51938283
DK
4182
4183 // Put BRANCH_OFFSET back into the insn. Assumes two's complement.
4184 // We use the Thumb-2 encoding, which is safe even if dealing with
4185 // a Thumb-1 instruction by virtue of our overflow check above. */
089d69dc
DK
4186 upper_insn = This::thumb32_branch_upper(upper_insn, branch_offset);
4187 lower_insn = This::thumb32_branch_lower(lower_insn, branch_offset);
51938283
DK
4188
4189 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4190 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4191
bef2b434 4192 gold_assert(!Bits<25>::has_overflow32(branch_offset));
a2c7281b 4193
51938283 4194 return ((thumb2
bef2b434
ILT
4195 ? Bits<25>::has_overflow32(branch_offset)
4196 : Bits<23>::has_overflow32(branch_offset))
089d69dc
DK
4197 ? This::STATUS_OVERFLOW
4198 : This::STATUS_OKAY);
4199}
4200
4201// Relocate THUMB-2 long conditional branches.
4202// If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
4203// undefined and we do not use PLT in this relocation. In such a case,
4204// the branch is converted into an NOP.
4205
4206template<bool big_endian>
4207typename Arm_relocate_functions<big_endian>::Status
4208Arm_relocate_functions<big_endian>::thm_jump19(
ca09d69a 4209 unsigned char* view,
089d69dc
DK
4210 const Arm_relobj<big_endian>* object,
4211 const Symbol_value<32>* psymval,
4212 Arm_address address,
4213 Arm_address thumb_bit)
4214{
4215 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4216 Valtype* wv = reinterpret_cast<Valtype*>(view);
4217 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4218 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4219 int32_t addend = This::thumb32_cond_branch_offset(upper_insn, lower_insn);
4220
4221 Arm_address branch_target = psymval->value(object, addend);
4222 int32_t branch_offset = branch_target - address;
4223
4224 // ??? Should handle interworking? GCC might someday try to
4225 // use this for tail calls.
4226 // FIXME: We do support thumb entry to PLT yet.
4227 if (thumb_bit == 0)
4228 {
4229 gold_error(_("conditional branch to PLT in THUMB-2 not supported yet."));
4230 return This::STATUS_BAD_RELOC;
4231 }
4232
4233 // Put RELOCATION back into the insn.
4234 upper_insn = This::thumb32_cond_branch_upper(upper_insn, branch_offset);
4235 lower_insn = This::thumb32_cond_branch_lower(lower_insn, branch_offset);
4236
4237 // Put the relocated value back in the object file:
4238 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4239 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4240
bef2b434 4241 return (Bits<21>::has_overflow32(branch_offset)
51938283
DK
4242 ? This::STATUS_OVERFLOW
4243 : This::STATUS_OKAY);
4244}
4245
94cdfcff
DK
4246// Get the GOT section, creating it if necessary.
4247
4248template<bool big_endian>
4a54abbb 4249Arm_output_data_got<big_endian>*
94cdfcff
DK
4250Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
4251{
4252 if (this->got_ == NULL)
4253 {
4254 gold_assert(symtab != NULL && layout != NULL);
4255
7b8957f8
DK
4256 // When using -z now, we can treat .got as a relro section.
4257 // Without -z now, it is modified after program startup by lazy
4258 // PLT relocations.
4259 bool is_got_relro = parameters->options().now();
4260 Output_section_order got_order = (is_got_relro
4261 ? ORDER_RELRO_LAST
4262 : ORDER_DATA);
4263
4264 // Unlike some targets (.e.g x86), ARM does not use separate .got and
4265 // .got.plt sections in output. The output .got section contains both
4266 // PLT and non-PLT GOT entries.
4a54abbb 4267 this->got_ = new Arm_output_data_got<big_endian>(symtab, layout);
94cdfcff 4268
82742395 4269 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
0c91cf04 4270 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
7b8957f8 4271 this->got_, got_order, is_got_relro);
22f0da72 4272
94cdfcff
DK
4273 // The old GNU linker creates a .got.plt section. We just
4274 // create another set of data in the .got section. Note that we
4275 // always create a PLT if we create a GOT, although the PLT
4276 // might be empty.
4277 this->got_plt_ = new Output_data_space(4, "** GOT PLT");
82742395 4278 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
0c91cf04 4279 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
7b8957f8 4280 this->got_plt_, got_order, is_got_relro);
94cdfcff
DK
4281
4282 // The first three entries are reserved.
4283 this->got_plt_->set_current_data_size(3 * 4);
4284
4285 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
4286 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
99fff23b 4287 Symbol_table::PREDEFINED,
94cdfcff
DK
4288 this->got_plt_,
4289 0, 0, elfcpp::STT_OBJECT,
4290 elfcpp::STB_LOCAL,
4291 elfcpp::STV_HIDDEN, 0,
4292 false, false);
fa89cc82
HS
4293
4294 // If there are any IRELATIVE relocations, they get GOT entries
4295 // in .got.plt after the jump slot entries.
4296 this->got_irelative_ = new Output_data_space(4, "** GOT IRELATIVE PLT");
4297 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4298 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4299 this->got_irelative_,
4300 got_order, is_got_relro);
4301
94cdfcff
DK
4302 }
4303 return this->got_;
4304}
4305
4306// Get the dynamic reloc section, creating it if necessary.
4307
4308template<bool big_endian>
4309typename Target_arm<big_endian>::Reloc_section*
4310Target_arm<big_endian>::rel_dyn_section(Layout* layout)
4311{
4312 if (this->rel_dyn_ == NULL)
4313 {
4314 gold_assert(layout != NULL);
fa89cc82
HS
4315 // Create both relocation sections in the same place, so as to ensure
4316 // their relative order in the output section.
94cdfcff 4317 this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
fa89cc82 4318 this->rel_irelative_ = new Reloc_section(false);
94cdfcff 4319 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
22f0da72
ILT
4320 elfcpp::SHF_ALLOC, this->rel_dyn_,
4321 ORDER_DYNAMIC_RELOCS, false);
fa89cc82
HS
4322 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
4323 elfcpp::SHF_ALLOC, this->rel_irelative_,
4324 ORDER_DYNAMIC_RELOCS, false);
94cdfcff
DK
4325 }
4326 return this->rel_dyn_;
4327}
4328
fa89cc82
HS
4329
4330// Get the section to use for IRELATIVE relocs, creating it if necessary. These
4331// go in .rela.dyn, but only after all other dynamic relocations. They need to
4332// follow the other dynamic relocations so that they can refer to global
4333// variables initialized by those relocs.
4334
4335template<bool big_endian>
4336typename Target_arm<big_endian>::Reloc_section*
4337Target_arm<big_endian>::rel_irelative_section(Layout* layout)
4338{
4339 if (this->rel_irelative_ == NULL)
4340 {
4341 // Delegate the creation to rel_dyn_section so as to ensure their order in
4342 // the output section.
4343 this->rel_dyn_section(layout);
4344 gold_assert(this->rel_irelative_ != NULL
4345 && (this->rel_dyn_->output_section()
4346 == this->rel_irelative_->output_section()));
4347 }
4348 return this->rel_irelative_;
4349}
4350
4351
b569affa
DK
4352// Insn_template methods.
4353
4354// Return byte size of an instruction template.
4355
4356size_t
4357Insn_template::size() const
4358{
4359 switch (this->type())
4360 {
4361 case THUMB16_TYPE:
2fb7225c 4362 case THUMB16_SPECIAL_TYPE:
b569affa
DK
4363 return 2;
4364 case ARM_TYPE:
4365 case THUMB32_TYPE:
4366 case DATA_TYPE:
4367 return 4;
4368 default:
4369 gold_unreachable();
4370 }
4371}
4372
4373// Return alignment of an instruction template.
4374
4375unsigned
4376Insn_template::alignment() const
4377{
4378 switch (this->type())
4379 {
4380 case THUMB16_TYPE:
2fb7225c 4381 case THUMB16_SPECIAL_TYPE:
b569affa
DK
4382 case THUMB32_TYPE:
4383 return 2;
4384 case ARM_TYPE:
4385 case DATA_TYPE:
4386 return 4;
4387 default:
4388 gold_unreachable();
4389 }
4390}
4391
4392// Stub_template methods.
4393
4394Stub_template::Stub_template(
2ea97941
ILT
4395 Stub_type type, const Insn_template* insns,
4396 size_t insn_count)
4397 : type_(type), insns_(insns), insn_count_(insn_count), alignment_(1),
b569affa
DK
4398 entry_in_thumb_mode_(false), relocs_()
4399{
2ea97941 4400 off_t offset = 0;
b569affa
DK
4401
4402 // Compute byte size and alignment of stub template.
2ea97941 4403 for (size_t i = 0; i < insn_count; i++)
b569affa 4404 {
2ea97941
ILT
4405 unsigned insn_alignment = insns[i].alignment();
4406 size_t insn_size = insns[i].size();
4407 gold_assert((offset & (insn_alignment - 1)) == 0);
b569affa 4408 this->alignment_ = std::max(this->alignment_, insn_alignment);
2ea97941 4409 switch (insns[i].type())
b569affa
DK
4410 {
4411 case Insn_template::THUMB16_TYPE:
089d69dc 4412 case Insn_template::THUMB16_SPECIAL_TYPE:
b569affa
DK
4413 if (i == 0)
4414 this->entry_in_thumb_mode_ = true;
4415 break;
4416
4417 case Insn_template::THUMB32_TYPE:
2e702c99 4418 if (insns[i].r_type() != elfcpp::R_ARM_NONE)
2ea97941 4419 this->relocs_.push_back(Reloc(i, offset));
b569affa
DK
4420 if (i == 0)
4421 this->entry_in_thumb_mode_ = true;
2e702c99 4422 break;
b569affa
DK
4423
4424 case Insn_template::ARM_TYPE:
4425 // Handle cases where the target is encoded within the
4426 // instruction.
2ea97941
ILT
4427 if (insns[i].r_type() == elfcpp::R_ARM_JUMP24)
4428 this->relocs_.push_back(Reloc(i, offset));
b569affa
DK
4429 break;
4430
4431 case Insn_template::DATA_TYPE:
4432 // Entry point cannot be data.
4433 gold_assert(i != 0);
2ea97941 4434 this->relocs_.push_back(Reloc(i, offset));
b569affa
DK
4435 break;
4436
4437 default:
4438 gold_unreachable();
4439 }
2e702c99 4440 offset += insn_size;
b569affa 4441 }
2ea97941 4442 this->size_ = offset;
b569affa
DK
4443}
4444
bb0d3eb0
DK
4445// Stub methods.
4446
7296d933 4447// Template to implement do_write for a specific target endianness.
bb0d3eb0
DK
4448
4449template<bool big_endian>
4450void inline
4451Stub::do_fixed_endian_write(unsigned char* view, section_size_type view_size)
4452{
4453 const Stub_template* stub_template = this->stub_template();
4454 const Insn_template* insns = stub_template->insns();
4455
4456 // FIXME: We do not handle BE8 encoding yet.
4457 unsigned char* pov = view;
4458 for (size_t i = 0; i < stub_template->insn_count(); i++)
4459 {
4460 switch (insns[i].type())
4461 {
4462 case Insn_template::THUMB16_TYPE:
4463 elfcpp::Swap<16, big_endian>::writeval(pov, insns[i].data() & 0xffff);
4464 break;
4465 case Insn_template::THUMB16_SPECIAL_TYPE:
4466 elfcpp::Swap<16, big_endian>::writeval(
4467 pov,
4468 this->thumb16_special(i));
4469 break;
4470 case Insn_template::THUMB32_TYPE:
4471 {
4472 uint32_t hi = (insns[i].data() >> 16) & 0xffff;
4473 uint32_t lo = insns[i].data() & 0xffff;
4474 elfcpp::Swap<16, big_endian>::writeval(pov, hi);
4475 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo);
4476 }
2e702c99 4477 break;
bb0d3eb0
DK
4478 case Insn_template::ARM_TYPE:
4479 case Insn_template::DATA_TYPE:
4480 elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data());
4481 break;
4482 default:
4483 gold_unreachable();
4484 }
4485 pov += insns[i].size();
4486 }
4487 gold_assert(static_cast<section_size_type>(pov - view) == view_size);
2e702c99 4488}
bb0d3eb0 4489
b569affa
DK
4490// Reloc_stub::Key methods.
4491
4492// Dump a Key as a string for debugging.
4493
4494std::string
4495Reloc_stub::Key::name() const
4496{
4497 if (this->r_sym_ == invalid_index)
4498 {
4499 // Global symbol key name
4500 // <stub-type>:<symbol name>:<addend>.
4501 const std::string sym_name = this->u_.symbol->name();
4502 // We need to print two hex number and two colons. So just add 100 bytes
4503 // to the symbol name size.
4504 size_t len = sym_name.size() + 100;
4505 char* buffer = new char[len];
4506 int c = snprintf(buffer, len, "%d:%s:%x", this->stub_type_,
4507 sym_name.c_str(), this->addend_);
4508 gold_assert(c > 0 && c < static_cast<int>(len));
4509 delete[] buffer;
4510 return std::string(buffer);
4511 }
4512 else
4513 {
4514 // local symbol key name
4515 // <stub-type>:<object>:<r_sym>:<addend>.
4516 const size_t len = 200;
4517 char buffer[len];
4518 int c = snprintf(buffer, len, "%d:%p:%u:%x", this->stub_type_,
4519 this->u_.relobj, this->r_sym_, this->addend_);
4520 gold_assert(c > 0 && c < static_cast<int>(len));
4521 return std::string(buffer);
4522 }
4523}
4524
4525// Reloc_stub methods.
4526
4527// Determine the type of stub needed, if any, for a relocation of R_TYPE at
4528// LOCATION to DESTINATION.
4529// This code is based on the arm_type_of_stub function in
9b547ce6 4530// bfd/elf32-arm.c. We have changed the interface a little to keep the Stub
b569affa
DK
4531// class simple.
4532
4533Stub_type
4534Reloc_stub::stub_type_for_reloc(
4535 unsigned int r_type,
4536 Arm_address location,
4537 Arm_address destination,
4538 bool target_is_thumb)
4539{
4540 Stub_type stub_type = arm_stub_none;
4541
4542 // This is a bit ugly but we want to avoid using a templated class for
4543 // big and little endianities.
4544 bool may_use_blx;
4545 bool should_force_pic_veneer;
4546 bool thumb2;
4547 bool thumb_only;
4548 if (parameters->target().is_big_endian())
4549 {
43d12afe 4550 const Target_arm<true>* big_endian_target =
b569affa 4551 Target_arm<true>::default_target();
cd6eab1c 4552 may_use_blx = big_endian_target->may_use_v5t_interworking();
43d12afe
DK
4553 should_force_pic_veneer = big_endian_target->should_force_pic_veneer();
4554 thumb2 = big_endian_target->using_thumb2();
4555 thumb_only = big_endian_target->using_thumb_only();
b569affa
DK
4556 }
4557 else
4558 {
43d12afe 4559 const Target_arm<false>* little_endian_target =
b569affa 4560 Target_arm<false>::default_target();
cd6eab1c 4561 may_use_blx = little_endian_target->may_use_v5t_interworking();
43d12afe
DK
4562 should_force_pic_veneer = little_endian_target->should_force_pic_veneer();
4563 thumb2 = little_endian_target->using_thumb2();
4564 thumb_only = little_endian_target->using_thumb_only();
b569affa
DK
4565 }
4566
a2c7281b 4567 int64_t branch_offset;
90cff06f
DK
4568 bool output_is_position_independent =
4569 parameters->options().output_is_position_independent();
b569affa
DK
4570 if (r_type == elfcpp::R_ARM_THM_CALL || r_type == elfcpp::R_ARM_THM_JUMP24)
4571 {
a2c7281b
DK
4572 // For THUMB BLX instruction, bit 1 of target comes from bit 1 of the
4573 // base address (instruction address + 4).
4574 if ((r_type == elfcpp::R_ARM_THM_CALL) && may_use_blx && !target_is_thumb)
bef2b434 4575 destination = Bits<32>::bit_select32(destination, location, 0x2);
a2c7281b 4576 branch_offset = static_cast<int64_t>(destination) - location;
2e702c99 4577
b569affa
DK
4578 // Handle cases where:
4579 // - this call goes too far (different Thumb/Thumb2 max
4580 // distance)
4581 // - it's a Thumb->Arm call and blx is not available, or it's a
4582 // Thumb->Arm branch (not bl). A stub is needed in this case.
4583 if ((!thumb2
4584 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4585 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
4586 || (thumb2
4587 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4588 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4589 || ((!target_is_thumb)
4590 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4591 || (r_type == elfcpp::R_ARM_THM_JUMP24))))
4592 {
4593 if (target_is_thumb)
4594 {
4595 // Thumb to thumb.
4596 if (!thumb_only)
4597 {
90cff06f 4598 stub_type = (output_is_position_independent
51938283 4599 || should_force_pic_veneer)
b569affa
DK
4600 // PIC stubs.
4601 ? ((may_use_blx
4602 && (r_type == elfcpp::R_ARM_THM_CALL))
4603 // V5T and above. Stub starts with ARM code, so
4604 // we must be able to switch mode before
4605 // reaching it, which is only possible for 'bl'
4606 // (ie R_ARM_THM_CALL relocation).
4607 ? arm_stub_long_branch_any_thumb_pic
4608 // On V4T, use Thumb code only.
4609 : arm_stub_long_branch_v4t_thumb_thumb_pic)
4610
4611 // non-PIC stubs.
4612 : ((may_use_blx
4613 && (r_type == elfcpp::R_ARM_THM_CALL))
4614 ? arm_stub_long_branch_any_any // V5T and above.
4615 : arm_stub_long_branch_v4t_thumb_thumb); // V4T.
4616 }
4617 else
4618 {
90cff06f 4619 stub_type = (output_is_position_independent
51938283 4620 || should_force_pic_veneer)
b569affa
DK
4621 ? arm_stub_long_branch_thumb_only_pic // PIC stub.
4622 : arm_stub_long_branch_thumb_only; // non-PIC stub.
4623 }
4624 }
4625 else
4626 {
4627 // Thumb to arm.
2e702c99 4628
b569affa
DK
4629 // FIXME: We should check that the input section is from an
4630 // object that has interwork enabled.
4631
90cff06f 4632 stub_type = (output_is_position_independent
b569affa
DK
4633 || should_force_pic_veneer)
4634 // PIC stubs.
4635 ? ((may_use_blx
4636 && (r_type == elfcpp::R_ARM_THM_CALL))
4637 ? arm_stub_long_branch_any_arm_pic // V5T and above.
4638 : arm_stub_long_branch_v4t_thumb_arm_pic) // V4T.
4639
4640 // non-PIC stubs.
4641 : ((may_use_blx
4642 && (r_type == elfcpp::R_ARM_THM_CALL))
4643 ? arm_stub_long_branch_any_any // V5T and above.
4644 : arm_stub_long_branch_v4t_thumb_arm); // V4T.
4645
4646 // Handle v4t short branches.
4647 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4648 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4649 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4650 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4651 }
4652 }
4653 }
4654 else if (r_type == elfcpp::R_ARM_CALL
4655 || r_type == elfcpp::R_ARM_JUMP24
4656 || r_type == elfcpp::R_ARM_PLT32)
4657 {
a2c7281b 4658 branch_offset = static_cast<int64_t>(destination) - location;
b569affa
DK
4659 if (target_is_thumb)
4660 {
4661 // Arm to thumb.
4662
4663 // FIXME: We should check that the input section is from an
4664 // object that has interwork enabled.
4665
4666 // We have an extra 2-bytes reach because of
4667 // the mode change (bit 24 (H) of BLX encoding).
4668 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4669 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4670 || ((r_type == elfcpp::R_ARM_CALL) && !may_use_blx)
4671 || (r_type == elfcpp::R_ARM_JUMP24)
4672 || (r_type == elfcpp::R_ARM_PLT32))
4673 {
90cff06f 4674 stub_type = (output_is_position_independent
b569affa
DK
4675 || should_force_pic_veneer)
4676 // PIC stubs.
4677 ? (may_use_blx
4678 ? arm_stub_long_branch_any_thumb_pic// V5T and above.
4679 : arm_stub_long_branch_v4t_arm_thumb_pic) // V4T stub.
4680
4681 // non-PIC stubs.
4682 : (may_use_blx
4683 ? arm_stub_long_branch_any_any // V5T and above.
4684 : arm_stub_long_branch_v4t_arm_thumb); // V4T.
4685 }
4686 }
4687 else
4688 {
4689 // Arm to arm.
4690 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4691 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4692 {
90cff06f 4693 stub_type = (output_is_position_independent
b569affa
DK
4694 || should_force_pic_veneer)
4695 ? arm_stub_long_branch_any_arm_pic // PIC stubs.
4696 : arm_stub_long_branch_any_any; /// non-PIC.
4697 }
4698 }
4699 }
4700
4701 return stub_type;
4702}
4703
bb0d3eb0 4704// Cortex_a8_stub methods.
b569affa 4705
bb0d3eb0
DK
4706// Return the instruction for a THUMB16_SPECIAL_TYPE instruction template.
4707// I is the position of the instruction template in the stub template.
b569affa 4708
bb0d3eb0
DK
4709uint16_t
4710Cortex_a8_stub::do_thumb16_special(size_t i)
b569affa 4711{
bb0d3eb0
DK
4712 // The only use of this is to copy condition code from a conditional
4713 // branch being worked around to the corresponding conditional branch in
4714 // to the stub.
4715 gold_assert(this->stub_template()->type() == arm_stub_a8_veneer_b_cond
4716 && i == 0);
4717 uint16_t data = this->stub_template()->insns()[i].data();
4718 gold_assert((data & 0xff00U) == 0xd000U);
4719 data |= ((this->original_insn_ >> 22) & 0xf) << 8;
4720 return data;
b569affa
DK
4721}
4722
4723// Stub_factory methods.
4724
4725Stub_factory::Stub_factory()
4726{
4727 // The instruction template sequences are declared as static
4728 // objects and initialized first time the constructor runs.
2e702c99 4729
b569affa
DK
4730 // Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
4731 // to reach the stub if necessary.
4732 static const Insn_template elf32_arm_stub_long_branch_any_any[] =
4733 {
4734 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4735 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
2e702c99 4736 // dcd R_ARM_ABS32(X)
b569affa 4737 };
2e702c99 4738
b569affa
DK
4739 // V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
4740 // available.
4741 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb[] =
4742 {
4743 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4744 Insn_template::arm_insn(0xe12fff1c), // bx ip
4745 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
2e702c99 4746 // dcd R_ARM_ABS32(X)
b569affa 4747 };
2e702c99 4748
b569affa
DK
4749 // Thumb -> Thumb long branch stub. Used on M-profile architectures.
4750 static const Insn_template elf32_arm_stub_long_branch_thumb_only[] =
4751 {
4752 Insn_template::thumb16_insn(0xb401), // push {r0}
4753 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4754 Insn_template::thumb16_insn(0x4684), // mov ip, r0
4755 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4756 Insn_template::thumb16_insn(0x4760), // bx ip
4757 Insn_template::thumb16_insn(0xbf00), // nop
4758 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
2e702c99 4759 // dcd R_ARM_ABS32(X)
b569affa 4760 };
2e702c99 4761
b569affa
DK
4762 // V4T Thumb -> Thumb long branch stub. Using the stack is not
4763 // allowed.
4764 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
4765 {
4766 Insn_template::thumb16_insn(0x4778), // bx pc
4767 Insn_template::thumb16_insn(0x46c0), // nop
4768 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4769 Insn_template::arm_insn(0xe12fff1c), // bx ip
4770 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
2e702c99 4771 // dcd R_ARM_ABS32(X)
b569affa 4772 };
2e702c99 4773
b569affa
DK
4774 // V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
4775 // available.
4776 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm[] =
4777 {
4778 Insn_template::thumb16_insn(0x4778), // bx pc
4779 Insn_template::thumb16_insn(0x46c0), // nop
4780 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4781 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
2e702c99 4782 // dcd R_ARM_ABS32(X)
b569affa 4783 };
2e702c99 4784
b569affa
DK
4785 // V4T Thumb -> ARM short branch stub. Shorter variant of the above
4786 // one, when the destination is close enough.
4787 static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm[] =
4788 {
4789 Insn_template::thumb16_insn(0x4778), // bx pc
4790 Insn_template::thumb16_insn(0x46c0), // nop
4791 Insn_template::arm_rel_insn(0xea000000, -8), // b (X-8)
4792 };
2e702c99 4793
b569affa
DK
4794 // ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
4795 // blx to reach the stub if necessary.
4796 static const Insn_template elf32_arm_stub_long_branch_any_arm_pic[] =
4797 {
4798 Insn_template::arm_insn(0xe59fc000), // ldr r12, [pc]
4799 Insn_template::arm_insn(0xe08ff00c), // add pc, pc, ip
4800 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
2e702c99 4801 // dcd R_ARM_REL32(X-4)
b569affa 4802 };
2e702c99 4803
b569affa
DK
4804 // ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
4805 // blx to reach the stub if necessary. We can not add into pc;
4806 // it is not guaranteed to mode switch (different in ARMv6 and
4807 // ARMv7).
4808 static const Insn_template elf32_arm_stub_long_branch_any_thumb_pic[] =
4809 {
4810 Insn_template::arm_insn(0xe59fc004), // ldr r12, [pc, #4]
4811 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4812 Insn_template::arm_insn(0xe12fff1c), // bx ip
4813 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
2e702c99 4814 // dcd R_ARM_REL32(X)
b569affa 4815 };
2e702c99 4816
b569affa
DK
4817 // V4T ARM -> ARM long branch stub, PIC.
4818 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
4819 {
4820 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4821 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4822 Insn_template::arm_insn(0xe12fff1c), // bx ip
4823 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
2e702c99 4824 // dcd R_ARM_REL32(X)
b569affa 4825 };
2e702c99 4826
b569affa
DK
4827 // V4T Thumb -> ARM long branch stub, PIC.
4828 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
4829 {
4830 Insn_template::thumb16_insn(0x4778), // bx pc
4831 Insn_template::thumb16_insn(0x46c0), // nop
4832 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4833 Insn_template::arm_insn(0xe08cf00f), // add pc, ip, pc
4834 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
2e702c99 4835 // dcd R_ARM_REL32(X)
b569affa 4836 };
2e702c99 4837
b569affa
DK
4838 // Thumb -> Thumb long branch stub, PIC. Used on M-profile
4839 // architectures.
4840 static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic[] =
4841 {
4842 Insn_template::thumb16_insn(0xb401), // push {r0}
4843 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4844 Insn_template::thumb16_insn(0x46fc), // mov ip, pc
4845 Insn_template::thumb16_insn(0x4484), // add ip, r0
4846 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4847 Insn_template::thumb16_insn(0x4760), // bx ip
4848 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 4),
2e702c99 4849 // dcd R_ARM_REL32(X)
b569affa 4850 };
2e702c99 4851
b569affa
DK
4852 // V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
4853 // allowed.
4854 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
4855 {
4856 Insn_template::thumb16_insn(0x4778), // bx pc
4857 Insn_template::thumb16_insn(0x46c0), // nop
4858 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4859 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4860 Insn_template::arm_insn(0xe12fff1c), // bx ip
4861 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
2e702c99 4862 // dcd R_ARM_REL32(X)
b569affa 4863 };
2e702c99 4864
b569affa 4865 // Cortex-A8 erratum-workaround stubs.
2e702c99 4866
b569affa
DK
4867 // Stub used for conditional branches (which may be beyond +/-1MB away,
4868 // so we can't use a conditional branch to reach this stub).
2e702c99 4869
b569affa
DK
4870 // original code:
4871 //
4872 // b<cond> X
4873 // after:
4874 //
4875 static const Insn_template elf32_arm_stub_a8_veneer_b_cond[] =
4876 {
4877 Insn_template::thumb16_bcond_insn(0xd001), // b<cond>.n true
4878 Insn_template::thumb32_b_insn(0xf000b800, -4), // b.w after
4879 Insn_template::thumb32_b_insn(0xf000b800, -4) // true:
2e702c99 4880 // b.w X
b569affa 4881 };
2e702c99 4882
b569affa 4883 // Stub used for b.w and bl.w instructions.
2e702c99 4884
b569affa
DK
4885 static const Insn_template elf32_arm_stub_a8_veneer_b[] =
4886 {
4887 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4888 };
2e702c99 4889
b569affa
DK
4890 static const Insn_template elf32_arm_stub_a8_veneer_bl[] =
4891 {
4892 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4893 };
2e702c99 4894
b569affa
DK
4895 // Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
4896 // instruction (which switches to ARM mode) to point to this stub. Jump to
4897 // the real destination using an ARM-mode branch.
bb0d3eb0 4898 static const Insn_template elf32_arm_stub_a8_veneer_blx[] =
b569affa
DK
4899 {
4900 Insn_template::arm_rel_insn(0xea000000, -8) // b dest
4901 };
4902
a2162063
ILT
4903 // Stub used to provide an interworking for R_ARM_V4BX relocation
4904 // (bx r[n] instruction).
4905 static const Insn_template elf32_arm_stub_v4_veneer_bx[] =
4906 {
4907 Insn_template::arm_insn(0xe3100001), // tst r<n>, #1
4908 Insn_template::arm_insn(0x01a0f000), // moveq pc, r<n>
4909 Insn_template::arm_insn(0xe12fff10) // bx r<n>
4910 };
4911
b569affa
DK
4912 // Fill in the stub template look-up table. Stub templates are constructed
4913 // per instance of Stub_factory for fast look-up without locking
4914 // in a thread-enabled environment.
4915
4916 this->stub_templates_[arm_stub_none] =
4917 new Stub_template(arm_stub_none, NULL, 0);
4918
4919#define DEF_STUB(x) \
4920 do \
4921 { \
4922 size_t array_size \
4923 = sizeof(elf32_arm_stub_##x) / sizeof(elf32_arm_stub_##x[0]); \
4924 Stub_type type = arm_stub_##x; \
4925 this->stub_templates_[type] = \
4926 new Stub_template(type, elf32_arm_stub_##x, array_size); \
4927 } \
4928 while (0);
4929
4930 DEF_STUBS
4931#undef DEF_STUB
4932}
4933
56ee5e00
DK
4934// Stub_table methods.
4935
9b547ce6 4936// Remove all Cortex-A8 stub.
56ee5e00
DK
4937
4938template<bool big_endian>
4939void
2fb7225c
DK
4940Stub_table<big_endian>::remove_all_cortex_a8_stubs()
4941{
4942 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4943 p != this->cortex_a8_stubs_.end();
4944 ++p)
4945 delete p->second;
4946 this->cortex_a8_stubs_.clear();
4947}
4948
4949// Relocate one stub. This is a helper for Stub_table::relocate_stubs().
4950
4951template<bool big_endian>
4952void
4953Stub_table<big_endian>::relocate_stub(
4954 Stub* stub,
4955 const Relocate_info<32, big_endian>* relinfo,
4956 Target_arm<big_endian>* arm_target,
4957 Output_section* output_section,
4958 unsigned char* view,
4959 Arm_address address,
4960 section_size_type view_size)
56ee5e00 4961{
2ea97941 4962 const Stub_template* stub_template = stub->stub_template();
2fb7225c
DK
4963 if (stub_template->reloc_count() != 0)
4964 {
4965 // Adjust view to cover the stub only.
4966 section_size_type offset = stub->offset();
4967 section_size_type stub_size = stub_template->size();
4968 gold_assert(offset + stub_size <= view_size);
4969
4970 arm_target->relocate_stub(stub, relinfo, output_section, view + offset,
4971 address + offset, stub_size);
4972 }
56ee5e00
DK
4973}
4974
2fb7225c
DK
4975// Relocate all stubs in this stub table.
4976
56ee5e00
DK
4977template<bool big_endian>
4978void
4979Stub_table<big_endian>::relocate_stubs(
4980 const Relocate_info<32, big_endian>* relinfo,
4981 Target_arm<big_endian>* arm_target,
2ea97941 4982 Output_section* output_section,
56ee5e00 4983 unsigned char* view,
2ea97941 4984 Arm_address address,
56ee5e00
DK
4985 section_size_type view_size)
4986{
4987 // If we are passed a view bigger than the stub table's. we need to
4988 // adjust the view.
2ea97941 4989 gold_assert(address == this->address()
56ee5e00
DK
4990 && (view_size
4991 == static_cast<section_size_type>(this->data_size())));
4992
2fb7225c
DK
4993 // Relocate all relocation stubs.
4994 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4995 p != this->reloc_stubs_.end();
4996 ++p)
4997 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4998 address, view_size);
4999
5000 // Relocate all Cortex-A8 stubs.
5001 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
5002 p != this->cortex_a8_stubs_.end();
5003 ++p)
5004 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
5005 address, view_size);
a2162063
ILT
5006
5007 // Relocate all ARM V4BX stubs.
5008 for (Arm_v4bx_stub_list::iterator p = this->arm_v4bx_stubs_.begin();
5009 p != this->arm_v4bx_stubs_.end();
5010 ++p)
5011 {
5012 if (*p != NULL)
5013 this->relocate_stub(*p, relinfo, arm_target, output_section, view,
5014 address, view_size);
5015 }
2fb7225c
DK
5016}
5017
5018// Write out the stubs to file.
5019
5020template<bool big_endian>
5021void
5022Stub_table<big_endian>::do_write(Output_file* of)
5023{
5024 off_t offset = this->offset();
5025 const section_size_type oview_size =
5026 convert_to_section_size_type(this->data_size());
5027 unsigned char* const oview = of->get_output_view(offset, oview_size);
5028
5029 // Write relocation stubs.
56ee5e00
DK
5030 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
5031 p != this->reloc_stubs_.end();
5032 ++p)
5033 {
5034 Reloc_stub* stub = p->second;
2fb7225c
DK
5035 Arm_address address = this->address() + stub->offset();
5036 gold_assert(address
5037 == align_address(address,
5038 stub->stub_template()->alignment()));
5039 stub->write(oview + stub->offset(), stub->stub_template()->size(),
5040 big_endian);
56ee5e00 5041 }
2fb7225c
DK
5042
5043 // Write Cortex-A8 stubs.
5044 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5045 p != this->cortex_a8_stubs_.end();
5046 ++p)
5047 {
5048 Cortex_a8_stub* stub = p->second;
5049 Arm_address address = this->address() + stub->offset();
5050 gold_assert(address
5051 == align_address(address,
5052 stub->stub_template()->alignment()));
5053 stub->write(oview + stub->offset(), stub->stub_template()->size(),
5054 big_endian);
5055 }
5056
a2162063
ILT
5057 // Write ARM V4BX relocation stubs.
5058 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5059 p != this->arm_v4bx_stubs_.end();
5060 ++p)
5061 {
5062 if (*p == NULL)
5063 continue;
5064
5065 Arm_address address = this->address() + (*p)->offset();
5066 gold_assert(address
5067 == align_address(address,
5068 (*p)->stub_template()->alignment()));
5069 (*p)->write(oview + (*p)->offset(), (*p)->stub_template()->size(),
5070 big_endian);
5071 }
5072
2fb7225c 5073 of->write_output_view(this->offset(), oview_size, oview);
56ee5e00
DK
5074}
5075
2fb7225c
DK
5076// Update the data size and address alignment of the stub table at the end
5077// of a relaxation pass. Return true if either the data size or the
5078// alignment changed in this relaxation pass.
5079
5080template<bool big_endian>
5081bool
5082Stub_table<big_endian>::update_data_size_and_addralign()
5083{
2fb7225c 5084 // Go over all stubs in table to compute data size and address alignment.
d099120c
DK
5085 off_t size = this->reloc_stubs_size_;
5086 unsigned addralign = this->reloc_stubs_addralign_;
2fb7225c
DK
5087
5088 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5089 p != this->cortex_a8_stubs_.end();
5090 ++p)
5091 {
5092 const Stub_template* stub_template = p->second->stub_template();
5093 addralign = std::max(addralign, stub_template->alignment());
5094 size = (align_address(size, stub_template->alignment())
5095 + stub_template->size());
5096 }
5097
a2162063
ILT
5098 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5099 p != this->arm_v4bx_stubs_.end();
5100 ++p)
5101 {
5102 if (*p == NULL)
5103 continue;
5104
5105 const Stub_template* stub_template = (*p)->stub_template();
5106 addralign = std::max(addralign, stub_template->alignment());
5107 size = (align_address(size, stub_template->alignment())
5108 + stub_template->size());
5109 }
5110
2fb7225c
DK
5111 // Check if either data size or alignment changed in this pass.
5112 // Update prev_data_size_ and prev_addralign_. These will be used
5113 // as the current data size and address alignment for the next pass.
5114 bool changed = size != this->prev_data_size_;
2e702c99 5115 this->prev_data_size_ = size;
2fb7225c
DK
5116
5117 if (addralign != this->prev_addralign_)
5118 changed = true;
5119 this->prev_addralign_ = addralign;
5120
5121 return changed;
5122}
5123
5124// Finalize the stubs. This sets the offsets of the stubs within the stub
5125// table. It also marks all input sections needing Cortex-A8 workaround.
56ee5e00
DK
5126
5127template<bool big_endian>
5128void
2fb7225c 5129Stub_table<big_endian>::finalize_stubs()
56ee5e00 5130{
d099120c 5131 off_t off = this->reloc_stubs_size_;
2fb7225c
DK
5132 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5133 p != this->cortex_a8_stubs_.end();
5134 ++p)
5135 {
5136 Cortex_a8_stub* stub = p->second;
5137 const Stub_template* stub_template = stub->stub_template();
5138 uint64_t stub_addralign = stub_template->alignment();
5139 off = align_address(off, stub_addralign);
5140 stub->set_offset(off);
5141 off += stub_template->size();
5142
5143 // Mark input section so that we can determine later if a code section
5144 // needs the Cortex-A8 workaround quickly.
5145 Arm_relobj<big_endian>* arm_relobj =
5146 Arm_relobj<big_endian>::as_arm_relobj(stub->relobj());
5147 arm_relobj->mark_section_for_cortex_a8_workaround(stub->shndx());
5148 }
5149
a2162063
ILT
5150 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5151 p != this->arm_v4bx_stubs_.end();
5152 ++p)
5153 {
5154 if (*p == NULL)
5155 continue;
5156
5157 const Stub_template* stub_template = (*p)->stub_template();
5158 uint64_t stub_addralign = stub_template->alignment();
5159 off = align_address(off, stub_addralign);
5160 (*p)->set_offset(off);
5161 off += stub_template->size();
5162 }
5163
2fb7225c 5164 gold_assert(off <= this->prev_data_size_);
56ee5e00
DK
5165}
5166
2fb7225c
DK
5167// Apply Cortex-A8 workaround to an address range between VIEW_ADDRESS
5168// and VIEW_ADDRESS + VIEW_SIZE - 1. VIEW points to the mapped address
5169// of the address range seen by the linker.
56ee5e00
DK
5170
5171template<bool big_endian>
5172void
2fb7225c
DK
5173Stub_table<big_endian>::apply_cortex_a8_workaround_to_address_range(
5174 Target_arm<big_endian>* arm_target,
5175 unsigned char* view,
5176 Arm_address view_address,
5177 section_size_type view_size)
56ee5e00 5178{
2fb7225c
DK
5179 // Cortex-A8 stubs are sorted by addresses of branches being fixed up.
5180 for (Cortex_a8_stub_list::const_iterator p =
5181 this->cortex_a8_stubs_.lower_bound(view_address);
5182 ((p != this->cortex_a8_stubs_.end())
5183 && (p->first < (view_address + view_size)));
5184 ++p)
56ee5e00 5185 {
2fb7225c
DK
5186 // We do not store the THUMB bit in the LSB of either the branch address
5187 // or the stub offset. There is no need to strip the LSB.
5188 Arm_address branch_address = p->first;
5189 const Cortex_a8_stub* stub = p->second;
5190 Arm_address stub_address = this->address() + stub->offset();
5191
5192 // Offset of the branch instruction relative to this view.
5193 section_size_type offset =
5194 convert_to_section_size_type(branch_address - view_address);
5195 gold_assert((offset + 4) <= view_size);
5196
5197 arm_target->apply_cortex_a8_workaround(stub, stub_address,
5198 view + offset, branch_address);
5199 }
56ee5e00
DK
5200}
5201
10ad9fe5
DK
5202// Arm_input_section methods.
5203
5204// Initialize an Arm_input_section.
5205
5206template<bool big_endian>
5207void
5208Arm_input_section<big_endian>::init()
5209{
2ea97941
ILT
5210 Relobj* relobj = this->relobj();
5211 unsigned int shndx = this->shndx();
10ad9fe5 5212
f625ae50
DK
5213 // We have to cache original size, alignment and contents to avoid locking
5214 // the original file.
6625d24e
DK
5215 this->original_addralign_ =
5216 convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
f625ae50
DK
5217
5218 // This is not efficient but we expect only a small number of relaxed
5219 // input sections for stubs.
5220 section_size_type section_size;
5221 const unsigned char* section_contents =
5222 relobj->section_contents(shndx, &section_size, false);
6625d24e
DK
5223 this->original_size_ =
5224 convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
10ad9fe5 5225
f625ae50
DK
5226 gold_assert(this->original_contents_ == NULL);
5227 this->original_contents_ = new unsigned char[section_size];
5228 memcpy(this->original_contents_, section_contents, section_size);
5229
10ad9fe5
DK
5230 // We want to make this look like the original input section after
5231 // output sections are finalized.
2ea97941
ILT
5232 Output_section* os = relobj->output_section(shndx);
5233 off_t offset = relobj->output_section_offset(shndx);
5234 gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
5235 this->set_address(os->address() + offset);
5236 this->set_file_offset(os->offset() + offset);
10ad9fe5
DK
5237
5238 this->set_current_data_size(this->original_size_);
5239 this->finalize_data_size();
5240}
5241
5242template<bool big_endian>
5243void
5244Arm_input_section<big_endian>::do_write(Output_file* of)
5245{
5246 // We have to write out the original section content.
f625ae50
DK
5247 gold_assert(this->original_contents_ != NULL);
5248 of->write(this->offset(), this->original_contents_,
2e702c99 5249 this->original_size_);
10ad9fe5
DK
5250
5251 // If this owns a stub table and it is not empty, write it.
5252 if (this->is_stub_table_owner() && !this->stub_table_->empty())
5253 this->stub_table_->write(of);
5254}
5255
5256// Finalize data size.
5257
5258template<bool big_endian>
5259void
5260Arm_input_section<big_endian>::set_final_data_size()
5261{
153e7da4
DK
5262 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5263
10ad9fe5
DK
5264 if (this->is_stub_table_owner())
5265 {
6625d24e 5266 this->stub_table_->finalize_data_size();
153e7da4 5267 off = align_address(off, this->stub_table_->addralign());
153e7da4 5268 off += this->stub_table_->data_size();
10ad9fe5 5269 }
153e7da4 5270 this->set_data_size(off);
10ad9fe5
DK
5271}
5272
5273// Reset address and file offset.
5274
5275template<bool big_endian>
5276void
5277Arm_input_section<big_endian>::do_reset_address_and_file_offset()
5278{
5279 // Size of the original input section contents.
5280 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5281
5282 // If this is a stub table owner, account for the stub table size.
5283 if (this->is_stub_table_owner())
5284 {
2ea97941 5285 Stub_table<big_endian>* stub_table = this->stub_table_;
10ad9fe5
DK
5286
5287 // Reset the stub table's address and file offset. The
5288 // current data size for child will be updated after that.
5289 stub_table_->reset_address_and_file_offset();
5290 off = align_address(off, stub_table_->addralign());
2ea97941 5291 off += stub_table->current_data_size();
10ad9fe5
DK
5292 }
5293
5294 this->set_current_data_size(off);
5295}
5296
af2cdeae
DK
5297// Arm_exidx_cantunwind methods.
5298
7296d933 5299// Write this to Output file OF for a fixed endianness.
af2cdeae
DK
5300
5301template<bool big_endian>
5302void
5303Arm_exidx_cantunwind::do_fixed_endian_write(Output_file* of)
5304{
5305 off_t offset = this->offset();
5306 const section_size_type oview_size = 8;
5307 unsigned char* const oview = of->get_output_view(offset, oview_size);
2e702c99 5308
af2cdeae
DK
5309 Output_section* os = this->relobj_->output_section(this->shndx_);
5310 gold_assert(os != NULL);
5311
5312 Arm_relobj<big_endian>* arm_relobj =
5313 Arm_relobj<big_endian>::as_arm_relobj(this->relobj_);
5314 Arm_address output_offset =
5315 arm_relobj->get_output_section_offset(this->shndx_);
5316 Arm_address section_start;
f625ae50
DK
5317 section_size_type section_size;
5318
5319 // Find out the end of the text section referred by this.
7296d933 5320 if (output_offset != Arm_relobj<big_endian>::invalid_address)
f625ae50
DK
5321 {
5322 section_start = os->address() + output_offset;
5323 const Arm_exidx_input_section* exidx_input_section =
2e702c99 5324 arm_relobj->exidx_input_section_by_link(this->shndx_);
f625ae50
DK
5325 gold_assert(exidx_input_section != NULL);
5326 section_size =
5327 convert_to_section_size_type(exidx_input_section->text_size());
5328 }
af2cdeae
DK
5329 else
5330 {
5331 // Currently this only happens for a relaxed section.
5332 const Output_relaxed_input_section* poris =
5333 os->find_relaxed_input_section(this->relobj_, this->shndx_);
5334 gold_assert(poris != NULL);
5335 section_start = poris->address();
f625ae50 5336 section_size = convert_to_section_size_type(poris->data_size());
af2cdeae
DK
5337 }
5338
5339 // We always append this to the end of an EXIDX section.
f625ae50 5340 Arm_address output_address = section_start + section_size;
af2cdeae
DK
5341
5342 // Write out the entry. The first word either points to the beginning
5343 // or after the end of a text section. The second word is the special
5344 // EXIDX_CANTUNWIND value.
e7eca48c 5345 uint32_t prel31_offset = output_address - this->address();
bef2b434 5346 if (Bits<31>::has_overflow32(offset))
e7eca48c 5347 gold_error(_("PREL31 overflow in EXIDX_CANTUNWIND entry"));
f6cccc2c
DK
5348 elfcpp::Swap_unaligned<32, big_endian>::writeval(oview,
5349 prel31_offset & 0x7fffffffU);
5350 elfcpp::Swap_unaligned<32, big_endian>::writeval(oview + 4,
5351 elfcpp::EXIDX_CANTUNWIND);
af2cdeae
DK
5352
5353 of->write_output_view(this->offset(), oview_size, oview);
5354}
5355
5356// Arm_exidx_merged_section methods.
5357
5358// Constructor for Arm_exidx_merged_section.
5359// EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
5360// SECTION_OFFSET_MAP points to a section offset map describing how
5361// parts of the input section are mapped to output. DELETED_BYTES is
5362// the number of bytes deleted from the EXIDX input section.
5363
5364Arm_exidx_merged_section::Arm_exidx_merged_section(
5365 const Arm_exidx_input_section& exidx_input_section,
5366 const Arm_exidx_section_offset_map& section_offset_map,
5367 uint32_t deleted_bytes)
5368 : Output_relaxed_input_section(exidx_input_section.relobj(),
5369 exidx_input_section.shndx(),
5370 exidx_input_section.addralign()),
5371 exidx_input_section_(exidx_input_section),
5372 section_offset_map_(section_offset_map)
5373{
f625ae50
DK
5374 // If we retain or discard the whole EXIDX input section, we would
5375 // not be here.
5376 gold_assert(deleted_bytes != 0
5377 && deleted_bytes != this->exidx_input_section_.size());
5378
af2cdeae 5379 // Fix size here so that we do not need to implement set_final_data_size.
f625ae50
DK
5380 uint32_t size = exidx_input_section.size() - deleted_bytes;
5381 this->set_data_size(size);
af2cdeae 5382 this->fix_data_size();
f625ae50
DK
5383
5384 // Allocate buffer for section contents and build contents.
5385 this->section_contents_ = new unsigned char[size];
5386}
5387
5388// Build the contents of a merged EXIDX output section.
5389
5390void
5391Arm_exidx_merged_section::build_contents(
5392 const unsigned char* original_contents,
5393 section_size_type original_size)
5394{
5395 // Go over spans of input offsets and write only those that are not
5396 // discarded.
5397 section_offset_type in_start = 0;
5398 section_offset_type out_start = 0;
5399 section_offset_type in_max =
5400 convert_types<section_offset_type>(original_size);
5401 section_offset_type out_max =
5402 convert_types<section_offset_type>(this->data_size());
5403 for (Arm_exidx_section_offset_map::const_iterator p =
2e702c99 5404 this->section_offset_map_.begin();
f625ae50
DK
5405 p != this->section_offset_map_.end();
5406 ++p)
5407 {
5408 section_offset_type in_end = p->first;
5409 gold_assert(in_end >= in_start);
5410 section_offset_type out_end = p->second;
5411 size_t in_chunk_size = convert_types<size_t>(in_end - in_start + 1);
5412 if (out_end != -1)
5413 {
5414 size_t out_chunk_size =
5415 convert_types<size_t>(out_end - out_start + 1);
5416
5417 gold_assert(out_chunk_size == in_chunk_size
5418 && in_end < in_max && out_end < out_max);
5419
5420 memcpy(this->section_contents_ + out_start,
5421 original_contents + in_start,
5422 out_chunk_size);
5423 out_start += out_chunk_size;
5424 }
5425 in_start += in_chunk_size;
5426 }
af2cdeae
DK
5427}
5428
5429// Given an input OBJECT, an input section index SHNDX within that
5430// object, and an OFFSET relative to the start of that input
5431// section, return whether or not the corresponding offset within
5432// the output section is known. If this function returns true, it
5433// sets *POUTPUT to the output offset. The value -1 indicates that
5434// this input offset is being discarded.
5435
5436bool
5437Arm_exidx_merged_section::do_output_offset(
5438 const Relobj* relobj,
5439 unsigned int shndx,
5440 section_offset_type offset,
5441 section_offset_type* poutput) const
5442{
5443 // We only handle offsets for the original EXIDX input section.
5444 if (relobj != this->exidx_input_section_.relobj()
5445 || shndx != this->exidx_input_section_.shndx())
5446 return false;
5447
c7f3c371
DK
5448 section_offset_type section_size =
5449 convert_types<section_offset_type>(this->exidx_input_section_.size());
5450 if (offset < 0 || offset >= section_size)
af2cdeae
DK
5451 // Input offset is out of valid range.
5452 *poutput = -1;
5453 else
5454 {
5455 // We need to look up the section offset map to determine the output
5456 // offset. Find the reference point in map that is first offset
5457 // bigger than or equal to this offset.
5458 Arm_exidx_section_offset_map::const_iterator p =
5459 this->section_offset_map_.lower_bound(offset);
5460
5461 // The section offset maps are build such that this should not happen if
5462 // input offset is in the valid range.
5463 gold_assert(p != this->section_offset_map_.end());
5464
5465 // We need to check if this is dropped.
5466 section_offset_type ref = p->first;
5467 section_offset_type mapped_ref = p->second;
5468
5469 if (mapped_ref != Arm_exidx_input_section::invalid_offset)
5470 // Offset is present in output.
5471 *poutput = mapped_ref + (offset - ref);
5472 else
5473 // Offset is discarded owing to EXIDX entry merging.
5474 *poutput = -1;
5475 }
2e702c99 5476
af2cdeae
DK
5477 return true;
5478}
5479
5480// Write this to output file OF.
5481
5482void
5483Arm_exidx_merged_section::do_write(Output_file* of)
5484{
af2cdeae
DK
5485 off_t offset = this->offset();
5486 const section_size_type oview_size = this->data_size();
5487 unsigned char* const oview = of->get_output_view(offset, oview_size);
2e702c99 5488
af2cdeae
DK
5489 Output_section* os = this->relobj()->output_section(this->shndx());
5490 gold_assert(os != NULL);
5491
f625ae50 5492 memcpy(oview, this->section_contents_, oview_size);
af2cdeae
DK
5493 of->write_output_view(this->offset(), oview_size, oview);
5494}
5495
80d0d023
DK
5496// Arm_exidx_fixup methods.
5497
5498// Append an EXIDX_CANTUNWIND in the current output section if the last entry
5499// is not an EXIDX_CANTUNWIND entry already. The new EXIDX_CANTUNWIND entry
5500// points to the end of the last seen EXIDX section.
5501
5502void
5503Arm_exidx_fixup::add_exidx_cantunwind_as_needed()
5504{
5505 if (this->last_unwind_type_ != UT_EXIDX_CANTUNWIND
5506 && this->last_input_section_ != NULL)
5507 {
5508 Relobj* relobj = this->last_input_section_->relobj();
2b328d4e 5509 unsigned int text_shndx = this->last_input_section_->link();
80d0d023 5510 Arm_exidx_cantunwind* cantunwind =
2b328d4e 5511 new Arm_exidx_cantunwind(relobj, text_shndx);
80d0d023
DK
5512 this->exidx_output_section_->add_output_section_data(cantunwind);
5513 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5514 }
5515}
5516
5517// Process an EXIDX section entry in input. Return whether this entry
5518// can be deleted in the output. SECOND_WORD in the second word of the
5519// EXIDX entry.
5520
5521bool
5522Arm_exidx_fixup::process_exidx_entry(uint32_t second_word)
5523{
5524 bool delete_entry;
5525 if (second_word == elfcpp::EXIDX_CANTUNWIND)
5526 {
5527 // Merge if previous entry is also an EXIDX_CANTUNWIND.
5528 delete_entry = this->last_unwind_type_ == UT_EXIDX_CANTUNWIND;
5529 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5530 }
5531 else if ((second_word & 0x80000000) != 0)
5532 {
5533 // Inlined unwinding data. Merge if equal to previous.
85fdf906
AH
5534 delete_entry = (merge_exidx_entries_
5535 && this->last_unwind_type_ == UT_INLINED_ENTRY
80d0d023
DK
5536 && this->last_inlined_entry_ == second_word);
5537 this->last_unwind_type_ = UT_INLINED_ENTRY;
5538 this->last_inlined_entry_ = second_word;
5539 }
5540 else
5541 {
5542 // Normal table entry. In theory we could merge these too,
5543 // but duplicate entries are likely to be much less common.
5544 delete_entry = false;
5545 this->last_unwind_type_ = UT_NORMAL_ENTRY;
5546 }
5547 return delete_entry;
5548}
5549
5550// Update the current section offset map during EXIDX section fix-up.
5551// If there is no map, create one. INPUT_OFFSET is the offset of a
5552// reference point, DELETED_BYTES is the number of deleted by in the
5553// section so far. If DELETE_ENTRY is true, the reference point and
5554// all offsets after the previous reference point are discarded.
5555
5556void
5557Arm_exidx_fixup::update_offset_map(
5558 section_offset_type input_offset,
5559 section_size_type deleted_bytes,
5560 bool delete_entry)
5561{
5562 if (this->section_offset_map_ == NULL)
5563 this->section_offset_map_ = new Arm_exidx_section_offset_map();
4fcd97eb
DK
5564 section_offset_type output_offset;
5565 if (delete_entry)
5566 output_offset = Arm_exidx_input_section::invalid_offset;
5567 else
5568 output_offset = input_offset - deleted_bytes;
80d0d023
DK
5569 (*this->section_offset_map_)[input_offset] = output_offset;
5570}
5571
5572// Process EXIDX_INPUT_SECTION for EXIDX entry merging. Return the number of
f625ae50
DK
5573// bytes deleted. SECTION_CONTENTS points to the contents of the EXIDX
5574// section and SECTION_SIZE is the number of bytes pointed by SECTION_CONTENTS.
5575// If some entries are merged, also store a pointer to a newly created
5576// Arm_exidx_section_offset_map object in *PSECTION_OFFSET_MAP. The caller
5577// owns the map and is responsible for releasing it after use.
80d0d023
DK
5578
5579template<bool big_endian>
5580uint32_t
5581Arm_exidx_fixup::process_exidx_section(
5582 const Arm_exidx_input_section* exidx_input_section,
f625ae50
DK
5583 const unsigned char* section_contents,
5584 section_size_type section_size,
80d0d023
DK
5585 Arm_exidx_section_offset_map** psection_offset_map)
5586{
5587 Relobj* relobj = exidx_input_section->relobj();
5588 unsigned shndx = exidx_input_section->shndx();
80d0d023
DK
5589
5590 if ((section_size % 8) != 0)
5591 {
5592 // Something is wrong with this section. Better not touch it.
5593 gold_error(_("uneven .ARM.exidx section size in %s section %u"),
5594 relobj->name().c_str(), shndx);
5595 this->last_input_section_ = exidx_input_section;
5596 this->last_unwind_type_ = UT_NONE;
5597 return 0;
5598 }
2e702c99 5599
80d0d023
DK
5600 uint32_t deleted_bytes = 0;
5601 bool prev_delete_entry = false;
5602 gold_assert(this->section_offset_map_ == NULL);
5603
5604 for (section_size_type i = 0; i < section_size; i += 8)
5605 {
5606 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5607 const Valtype* wv =
5608 reinterpret_cast<const Valtype*>(section_contents + i + 4);
5609 uint32_t second_word = elfcpp::Swap<32, big_endian>::readval(wv);
5610
5611 bool delete_entry = this->process_exidx_entry(second_word);
5612
5613 // Entry deletion causes changes in output offsets. We use a std::map
5614 // to record these. And entry (x, y) means input offset x
5615 // is mapped to output offset y. If y is invalid_offset, then x is
5616 // dropped in the output. Because of the way std::map::lower_bound
5617 // works, we record the last offset in a region w.r.t to keeping or
5618 // dropping. If there is no entry (x0, y0) for an input offset x0,
5619 // the output offset y0 of it is determined by the output offset y1 of
5620 // the smallest input offset x1 > x0 that there is an (x1, y1) entry
9b547ce6 5621 // in the map. If y1 is not -1, then y0 = y1 + x0 - x1. Otherwise, y1
80d0d023
DK
5622 // y0 is also -1.
5623 if (delete_entry != prev_delete_entry && i != 0)
5624 this->update_offset_map(i - 1, deleted_bytes, prev_delete_entry);
5625
5626 // Update total deleted bytes for this entry.
5627 if (delete_entry)
5628 deleted_bytes += 8;
5629
5630 prev_delete_entry = delete_entry;
5631 }
2e702c99 5632
80d0d023
DK
5633 // If section offset map is not NULL, make an entry for the end of
5634 // section.
5635 if (this->section_offset_map_ != NULL)
5636 update_offset_map(section_size - 1, deleted_bytes, prev_delete_entry);
5637
5638 *psection_offset_map = this->section_offset_map_;
5639 this->section_offset_map_ = NULL;
5640 this->last_input_section_ = exidx_input_section;
2e702c99 5641
546c7457
DK
5642 // Set the first output text section so that we can link the EXIDX output
5643 // section to it. Ignore any EXIDX input section that is completely merged.
5644 if (this->first_output_text_section_ == NULL
5645 && deleted_bytes != section_size)
5646 {
5647 unsigned int link = exidx_input_section->link();
5648 Output_section* os = relobj->output_section(link);
5649 gold_assert(os != NULL);
5650 this->first_output_text_section_ = os;
5651 }
5652
80d0d023
DK
5653 return deleted_bytes;
5654}
5655
07f508a2
DK
5656// Arm_output_section methods.
5657
5658// Create a stub group for input sections from BEGIN to END. OWNER
5659// points to the input section to be the owner a new stub table.
5660
5661template<bool big_endian>
5662void
5663Arm_output_section<big_endian>::create_stub_group(
5664 Input_section_list::const_iterator begin,
5665 Input_section_list::const_iterator end,
5666 Input_section_list::const_iterator owner,
5667 Target_arm<big_endian>* target,
f625ae50
DK
5668 std::vector<Output_relaxed_input_section*>* new_relaxed_sections,
5669 const Task* task)
07f508a2 5670{
2b328d4e
DK
5671 // We use a different kind of relaxed section in an EXIDX section.
5672 // The static casting from Output_relaxed_input_section to
5673 // Arm_input_section is invalid in an EXIDX section. We are okay
2e702c99 5674 // because we should not be calling this for an EXIDX section.
2b328d4e
DK
5675 gold_assert(this->type() != elfcpp::SHT_ARM_EXIDX);
5676
07f508a2
DK
5677 // Currently we convert ordinary input sections into relaxed sections only
5678 // at this point but we may want to support creating relaxed input section
5679 // very early. So we check here to see if owner is already a relaxed
5680 // section.
2e702c99 5681
07f508a2
DK
5682 Arm_input_section<big_endian>* arm_input_section;
5683 if (owner->is_relaxed_input_section())
5684 {
5685 arm_input_section =
5686 Arm_input_section<big_endian>::as_arm_input_section(
5687 owner->relaxed_input_section());
5688 }
5689 else
5690 {
5691 gold_assert(owner->is_input_section());
f625ae50
DK
5692 // Create a new relaxed input section. We need to lock the original
5693 // file.
5694 Task_lock_obj<Object> tl(task, owner->relobj());
07f508a2
DK
5695 arm_input_section =
5696 target->new_arm_input_section(owner->relobj(), owner->shndx());
5697 new_relaxed_sections->push_back(arm_input_section);
5698 }
5699
5700 // Create a stub table.
2ea97941 5701 Stub_table<big_endian>* stub_table =
07f508a2
DK
5702 target->new_stub_table(arm_input_section);
5703
2ea97941 5704 arm_input_section->set_stub_table(stub_table);
2e702c99 5705
07f508a2
DK
5706 Input_section_list::const_iterator p = begin;
5707 Input_section_list::const_iterator prev_p;
5708
5709 // Look for input sections or relaxed input sections in [begin ... end].
5710 do
5711 {
5712 if (p->is_input_section() || p->is_relaxed_input_section())
5713 {
5714 // The stub table information for input sections live
5715 // in their objects.
5716 Arm_relobj<big_endian>* arm_relobj =
5717 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
2ea97941 5718 arm_relobj->set_stub_table(p->shndx(), stub_table);
07f508a2
DK
5719 }
5720 prev_p = p++;
5721 }
5722 while (prev_p != end);
5723}
5724
5725// Group input sections for stub generation. GROUP_SIZE is roughly the limit
5726// of stub groups. We grow a stub group by adding input section until the
5727// size is just below GROUP_SIZE. The last input section will be converted
5728// into a stub table. If STUB_ALWAYS_AFTER_BRANCH is false, we also add
5729// input section after the stub table, effectively double the group size.
2e702c99 5730//
07f508a2
DK
5731// This is similar to the group_sections() function in elf32-arm.c but is
5732// implemented differently.
5733
5734template<bool big_endian>
5735void
5736Arm_output_section<big_endian>::group_sections(
5737 section_size_type group_size,
5738 bool stubs_always_after_branch,
f625ae50
DK
5739 Target_arm<big_endian>* target,
5740 const Task* task)
07f508a2 5741{
07f508a2
DK
5742 // States for grouping.
5743 typedef enum
5744 {
5745 // No group is being built.
5746 NO_GROUP,
5747 // A group is being built but the stub table is not found yet.
5748 // We keep group a stub group until the size is just under GROUP_SIZE.
5749 // The last input section in the group will be used as the stub table.
5750 FINDING_STUB_SECTION,
5751 // A group is being built and we have already found a stub table.
5752 // We enter this state to grow a stub group by adding input section
5753 // after the stub table. This effectively doubles the group size.
5754 HAS_STUB_SECTION
5755 } State;
5756
5757 // Any newly created relaxed sections are stored here.
5758 std::vector<Output_relaxed_input_section*> new_relaxed_sections;
5759
5760 State state = NO_GROUP;
5761 section_size_type off = 0;
5762 section_size_type group_begin_offset = 0;
5763 section_size_type group_end_offset = 0;
5764 section_size_type stub_table_end_offset = 0;
5765 Input_section_list::const_iterator group_begin =
5766 this->input_sections().end();
2ea97941 5767 Input_section_list::const_iterator stub_table =
07f508a2
DK
5768 this->input_sections().end();
5769 Input_section_list::const_iterator group_end = this->input_sections().end();
5770 for (Input_section_list::const_iterator p = this->input_sections().begin();
5771 p != this->input_sections().end();
5772 ++p)
5773 {
5774 section_size_type section_begin_offset =
5775 align_address(off, p->addralign());
5776 section_size_type section_end_offset =
2e702c99
RM
5777 section_begin_offset + p->data_size();
5778
9b547ce6 5779 // Check to see if we should group the previously seen sections.
e9bbb538 5780 switch (state)
07f508a2
DK
5781 {
5782 case NO_GROUP:
5783 break;
5784
5785 case FINDING_STUB_SECTION:
5786 // Adding this section makes the group larger than GROUP_SIZE.
5787 if (section_end_offset - group_begin_offset >= group_size)
5788 {
5789 if (stubs_always_after_branch)
2e702c99 5790 {
07f508a2
DK
5791 gold_assert(group_end != this->input_sections().end());
5792 this->create_stub_group(group_begin, group_end, group_end,
f625ae50
DK
5793 target, &new_relaxed_sections,
5794 task);
07f508a2
DK
5795 state = NO_GROUP;
5796 }
5797 else
5798 {
5799 // But wait, there's more! Input sections up to
5800 // stub_group_size bytes after the stub table can be
5801 // handled by it too.
5802 state = HAS_STUB_SECTION;
2ea97941 5803 stub_table = group_end;
07f508a2
DK
5804 stub_table_end_offset = group_end_offset;
5805 }
5806 }
5807 break;
5808
5809 case HAS_STUB_SECTION:
5810 // Adding this section makes the post stub-section group larger
5811 // than GROUP_SIZE.
5812 if (section_end_offset - stub_table_end_offset >= group_size)
5813 {
5814 gold_assert(group_end != this->input_sections().end());
2ea97941 5815 this->create_stub_group(group_begin, group_end, stub_table,
f625ae50 5816 target, &new_relaxed_sections, task);
07f508a2
DK
5817 state = NO_GROUP;
5818 }
5819 break;
5820
5821 default:
5822 gold_unreachable();
2e702c99 5823 }
07f508a2
DK
5824
5825 // If we see an input section and currently there is no group, start
f625ae50
DK
5826 // a new one. Skip any empty sections. We look at the data size
5827 // instead of calling p->relobj()->section_size() to avoid locking.
07f508a2 5828 if ((p->is_input_section() || p->is_relaxed_input_section())
f625ae50 5829 && (p->data_size() != 0))
07f508a2
DK
5830 {
5831 if (state == NO_GROUP)
5832 {
5833 state = FINDING_STUB_SECTION;
5834 group_begin = p;
5835 group_begin_offset = section_begin_offset;
5836 }
5837
5838 // Keep track of the last input section seen.
5839 group_end = p;
5840 group_end_offset = section_end_offset;
5841 }
5842
5843 off = section_end_offset;
5844 }
5845
5846 // Create a stub group for any ungrouped sections.
5847 if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
5848 {
5849 gold_assert(group_end != this->input_sections().end());
5850 this->create_stub_group(group_begin, group_end,
5851 (state == FINDING_STUB_SECTION
5852 ? group_end
2ea97941 5853 : stub_table),
f625ae50 5854 target, &new_relaxed_sections, task);
07f508a2
DK
5855 }
5856
5857 // Convert input section into relaxed input section in a batch.
5858 if (!new_relaxed_sections.empty())
5859 this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
5860
5861 // Update the section offsets
5862 for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
5863 {
5864 Arm_relobj<big_endian>* arm_relobj =
5865 Arm_relobj<big_endian>::as_arm_relobj(
5866 new_relaxed_sections[i]->relobj());
2ea97941 5867 unsigned int shndx = new_relaxed_sections[i]->shndx();
07f508a2 5868 // Tell Arm_relobj that this input section is converted.
2ea97941 5869 arm_relobj->convert_input_section_to_relaxed_section(shndx);
07f508a2
DK
5870 }
5871}
5872
2b328d4e
DK
5873// Append non empty text sections in this to LIST in ascending
5874// order of their position in this.
5875
5876template<bool big_endian>
5877void
5878Arm_output_section<big_endian>::append_text_sections_to_list(
5879 Text_section_list* list)
5880{
2b328d4e
DK
5881 gold_assert((this->flags() & elfcpp::SHF_ALLOC) != 0);
5882
5883 for (Input_section_list::const_iterator p = this->input_sections().begin();
5884 p != this->input_sections().end();
5885 ++p)
5886 {
5887 // We only care about plain or relaxed input sections. We also
5888 // ignore any merged sections.
a60af0db 5889 if (p->is_input_section() || p->is_relaxed_input_section())
2b328d4e
DK
5890 list->push_back(Text_section_list::value_type(p->relobj(),
5891 p->shndx()));
5892 }
5893}
5894
5895template<bool big_endian>
5896void
5897Arm_output_section<big_endian>::fix_exidx_coverage(
4a54abbb 5898 Layout* layout,
2b328d4e 5899 const Text_section_list& sorted_text_sections,
85fdf906 5900 Symbol_table* symtab,
f625ae50
DK
5901 bool merge_exidx_entries,
5902 const Task* task)
2b328d4e
DK
5903{
5904 // We should only do this for the EXIDX output section.
5905 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
5906
5907 // We don't want the relaxation loop to undo these changes, so we discard
5908 // the current saved states and take another one after the fix-up.
5909 this->discard_states();
5910
5911 // Remove all input sections.
5912 uint64_t address = this->address();
6625d24e
DK
5913 typedef std::list<Output_section::Input_section> Input_section_list;
5914 Input_section_list input_sections;
2b328d4e
DK
5915 this->reset_address_and_file_offset();
5916 this->get_input_sections(address, std::string(""), &input_sections);
5917
5918 if (!this->input_sections().empty())
5919 gold_error(_("Found non-EXIDX input sections in EXIDX output section"));
2e702c99 5920
2b328d4e
DK
5921 // Go through all the known input sections and record them.
5922 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
6625d24e
DK
5923 typedef Unordered_map<Section_id, const Output_section::Input_section*,
5924 Section_id_hash> Text_to_exidx_map;
5925 Text_to_exidx_map text_to_exidx_map;
5926 for (Input_section_list::const_iterator p = input_sections.begin();
2b328d4e
DK
5927 p != input_sections.end();
5928 ++p)
5929 {
5930 // This should never happen. At this point, we should only see
5931 // plain EXIDX input sections.
5932 gold_assert(!p->is_relaxed_input_section());
6625d24e 5933 text_to_exidx_map[Section_id(p->relobj(), p->shndx())] = &(*p);
2b328d4e
DK
5934 }
5935
85fdf906 5936 Arm_exidx_fixup exidx_fixup(this, merge_exidx_entries);
2b328d4e
DK
5937
5938 // Go over the sorted text sections.
6625d24e 5939 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
2b328d4e
DK
5940 Section_id_set processed_input_sections;
5941 for (Text_section_list::const_iterator p = sorted_text_sections.begin();
5942 p != sorted_text_sections.end();
5943 ++p)
5944 {
5945 Relobj* relobj = p->first;
5946 unsigned int shndx = p->second;
5947
5948 Arm_relobj<big_endian>* arm_relobj =
5949 Arm_relobj<big_endian>::as_arm_relobj(relobj);
5950 const Arm_exidx_input_section* exidx_input_section =
5951 arm_relobj->exidx_input_section_by_link(shndx);
5952
131687b4
DK
5953 // If this text section has no EXIDX section or if the EXIDX section
5954 // has errors, force an EXIDX_CANTUNWIND entry pointing to the end
5955 // of the last seen EXIDX section.
5956 if (exidx_input_section == NULL || exidx_input_section->has_errors())
2b328d4e
DK
5957 {
5958 exidx_fixup.add_exidx_cantunwind_as_needed();
5959 continue;
5960 }
5961
5962 Relobj* exidx_relobj = exidx_input_section->relobj();
5963 unsigned int exidx_shndx = exidx_input_section->shndx();
5964 Section_id sid(exidx_relobj, exidx_shndx);
6625d24e
DK
5965 Text_to_exidx_map::const_iterator iter = text_to_exidx_map.find(sid);
5966 if (iter == text_to_exidx_map.end())
2b328d4e
DK
5967 {
5968 // This is odd. We have not seen this EXIDX input section before.
4a54abbb
DK
5969 // We cannot do fix-up. If we saw a SECTIONS clause in a script,
5970 // issue a warning instead. We assume the user knows what he
5971 // or she is doing. Otherwise, this is an error.
5972 if (layout->script_options()->saw_sections_clause())
5973 gold_warning(_("unwinding may not work because EXIDX input section"
5974 " %u of %s is not in EXIDX output section"),
5975 exidx_shndx, exidx_relobj->name().c_str());
5976 else
5977 gold_error(_("unwinding may not work because EXIDX input section"
5978 " %u of %s is not in EXIDX output section"),
5979 exidx_shndx, exidx_relobj->name().c_str());
5980
2b328d4e
DK
5981 exidx_fixup.add_exidx_cantunwind_as_needed();
5982 continue;
5983 }
5984
f625ae50
DK
5985 // We need to access the contents of the EXIDX section, lock the
5986 // object here.
5987 Task_lock_obj<Object> tl(task, exidx_relobj);
5988 section_size_type exidx_size;
5989 const unsigned char* exidx_contents =
2e702c99 5990 exidx_relobj->section_contents(exidx_shndx, &exidx_size, false);
f625ae50 5991
2b328d4e
DK
5992 // Fix up coverage and append input section to output data list.
5993 Arm_exidx_section_offset_map* section_offset_map = NULL;
5994 uint32_t deleted_bytes =
2e702c99 5995 exidx_fixup.process_exidx_section<big_endian>(exidx_input_section,
f625ae50
DK
5996 exidx_contents,
5997 exidx_size,
2b328d4e
DK
5998 &section_offset_map);
5999
6000 if (deleted_bytes == exidx_input_section->size())
6001 {
6002 // The whole EXIDX section got merged. Remove it from output.
6003 gold_assert(section_offset_map == NULL);
6004 exidx_relobj->set_output_section(exidx_shndx, NULL);
e7eca48c
DK
6005
6006 // All local symbols defined in this input section will be dropped.
6007 // We need to adjust output local symbol count.
6008 arm_relobj->set_output_local_symbol_count_needs_update();
2b328d4e
DK
6009 }
6010 else if (deleted_bytes > 0)
6011 {
6012 // Some entries are merged. We need to convert this EXIDX input
6013 // section into a relaxed section.
6014 gold_assert(section_offset_map != NULL);
f625ae50 6015
2b328d4e
DK
6016 Arm_exidx_merged_section* merged_section =
6017 new Arm_exidx_merged_section(*exidx_input_section,
6018 *section_offset_map, deleted_bytes);
f625ae50
DK
6019 merged_section->build_contents(exidx_contents, exidx_size);
6020
d06fb4d1
DK
6021 const std::string secname = exidx_relobj->section_name(exidx_shndx);
6022 this->add_relaxed_input_section(layout, merged_section, secname);
2b328d4e 6023 arm_relobj->convert_input_section_to_relaxed_section(exidx_shndx);
e7eca48c
DK
6024
6025 // All local symbols defined in discarded portions of this input
6026 // section will be dropped. We need to adjust output local symbol
6027 // count.
6028 arm_relobj->set_output_local_symbol_count_needs_update();
2b328d4e
DK
6029 }
6030 else
6031 {
6032 // Just add back the EXIDX input section.
6033 gold_assert(section_offset_map == NULL);
6625d24e
DK
6034 const Output_section::Input_section* pis = iter->second;
6035 gold_assert(pis->is_input_section());
6036 this->add_script_input_section(*pis);
2b328d4e
DK
6037 }
6038
2e702c99 6039 processed_input_sections.insert(Section_id(exidx_relobj, exidx_shndx));
2b328d4e
DK
6040 }
6041
6042 // Insert an EXIDX_CANTUNWIND entry at the end of output if necessary.
6043 exidx_fixup.add_exidx_cantunwind_as_needed();
6044
6045 // Remove any known EXIDX input sections that are not processed.
6625d24e 6046 for (Input_section_list::const_iterator p = input_sections.begin();
2b328d4e
DK
6047 p != input_sections.end();
6048 ++p)
6049 {
6050 if (processed_input_sections.find(Section_id(p->relobj(), p->shndx()))
6051 == processed_input_sections.end())
6052 {
131687b4
DK
6053 // We discard a known EXIDX section because its linked
6054 // text section has been folded by ICF. We also discard an
6055 // EXIDX section with error, the output does not matter in this
6056 // case. We do this to avoid triggering asserts.
2b328d4e
DK
6057 Arm_relobj<big_endian>* arm_relobj =
6058 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
6059 const Arm_exidx_input_section* exidx_input_section =
6060 arm_relobj->exidx_input_section_by_shndx(p->shndx());
6061 gold_assert(exidx_input_section != NULL);
131687b4
DK
6062 if (!exidx_input_section->has_errors())
6063 {
6064 unsigned int text_shndx = exidx_input_section->link();
6065 gold_assert(symtab->is_section_folded(p->relobj(), text_shndx));
6066 }
2b328d4e 6067
04ceb17c
DK
6068 // Remove this from link. We also need to recount the
6069 // local symbols.
2b328d4e 6070 p->relobj()->set_output_section(p->shndx(), NULL);
04ceb17c 6071 arm_relobj->set_output_local_symbol_count_needs_update();
2b328d4e
DK
6072 }
6073 }
2e702c99 6074
546c7457
DK
6075 // Link exidx output section to the first seen output section and
6076 // set correct entry size.
6077 this->set_link_section(exidx_fixup.first_output_text_section());
6078 this->set_entsize(8);
6079
2b328d4e
DK
6080 // Make changes permanent.
6081 this->save_states();
6082 this->set_section_offsets_need_adjustment();
6083}
6084
131687b4
DK
6085// Link EXIDX output sections to text output sections.
6086
6087template<bool big_endian>
6088void
6089Arm_output_section<big_endian>::set_exidx_section_link()
6090{
6091 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
6092 if (!this->input_sections().empty())
6093 {
6094 Input_section_list::const_iterator p = this->input_sections().begin();
6095 Arm_relobj<big_endian>* arm_relobj =
6096 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
6097 unsigned exidx_shndx = p->shndx();
6098 const Arm_exidx_input_section* exidx_input_section =
6099 arm_relobj->exidx_input_section_by_shndx(exidx_shndx);
6100 gold_assert(exidx_input_section != NULL);
6101 unsigned int text_shndx = exidx_input_section->link();
6102 Output_section* os = arm_relobj->output_section(text_shndx);
6103 this->set_link_section(os);
6104 }
6105}
6106
8ffa3667
DK
6107// Arm_relobj methods.
6108
cf846138
DK
6109// Determine if an input section is scannable for stub processing. SHDR is
6110// the header of the section and SHNDX is the section index. OS is the output
6111// section for the input section and SYMTAB is the global symbol table used to
6112// look up ICF information.
6113
6114template<bool big_endian>
6115bool
6116Arm_relobj<big_endian>::section_is_scannable(
6117 const elfcpp::Shdr<32, big_endian>& shdr,
6118 unsigned int shndx,
6119 const Output_section* os,
ca09d69a 6120 const Symbol_table* symtab)
cf846138
DK
6121{
6122 // Skip any empty sections, unallocated sections or sections whose
6123 // type are not SHT_PROGBITS.
6124 if (shdr.get_sh_size() == 0
6125 || (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
6126 || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
6127 return false;
6128
6129 // Skip any discarded or ICF'ed sections.
6130 if (os == NULL || symtab->is_section_folded(this, shndx))
6131 return false;
6132
6133 // If this requires special offset handling, check to see if it is
6134 // a relaxed section. If this is not, then it is a merged section that
6135 // we cannot handle.
6136 if (this->is_output_section_offset_invalid(shndx))
6137 {
6138 const Output_relaxed_input_section* poris =
6139 os->find_relaxed_input_section(this, shndx);
6140 if (poris == NULL)
6141 return false;
6142 }
6143
6144 return true;
6145}
6146
44272192
DK
6147// Determine if we want to scan the SHNDX-th section for relocation stubs.
6148// This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6149
6150template<bool big_endian>
6151bool
6152Arm_relobj<big_endian>::section_needs_reloc_stub_scanning(
6153 const elfcpp::Shdr<32, big_endian>& shdr,
6154 const Relobj::Output_sections& out_sections,
ca09d69a 6155 const Symbol_table* symtab,
2b328d4e 6156 const unsigned char* pshdrs)
44272192
DK
6157{
6158 unsigned int sh_type = shdr.get_sh_type();
6159 if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
6160 return false;
6161
6162 // Ignore empty section.
6163 off_t sh_size = shdr.get_sh_size();
6164 if (sh_size == 0)
6165 return false;
6166
44272192
DK
6167 // Ignore reloc section with unexpected symbol table. The
6168 // error will be reported in the final link.
6169 if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
6170 return false;
6171
b521dfe4
DK
6172 unsigned int reloc_size;
6173 if (sh_type == elfcpp::SHT_REL)
6174 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6175 else
6176 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
44272192
DK
6177
6178 // Ignore reloc section with unexpected entsize or uneven size.
6179 // The error will be reported in the final link.
6180 if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
6181 return false;
6182
cf846138
DK
6183 // Ignore reloc section with bad info. This error will be
6184 // reported in the final link.
6185 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6186 if (index >= this->shnum())
6187 return false;
6188
6189 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6190 const elfcpp::Shdr<32, big_endian> text_shdr(pshdrs + index * shdr_size);
6191 return this->section_is_scannable(text_shdr, index,
6192 out_sections[index], symtab);
44272192
DK
6193}
6194
cb1be87e
DK
6195// Return the output address of either a plain input section or a relaxed
6196// input section. SHNDX is the section index. We define and use this
6197// instead of calling Output_section::output_address because that is slow
6198// for large output.
6199
6200template<bool big_endian>
6201Arm_address
6202Arm_relobj<big_endian>::simple_input_section_output_address(
6203 unsigned int shndx,
6204 Output_section* os)
6205{
6206 if (this->is_output_section_offset_invalid(shndx))
6207 {
6208 const Output_relaxed_input_section* poris =
6209 os->find_relaxed_input_section(this, shndx);
6210 // We do not handle merged sections here.
6211 gold_assert(poris != NULL);
6212 return poris->address();
6213 }
6214 else
6215 return os->address() + this->get_output_section_offset(shndx);
6216}
6217
44272192
DK
6218// Determine if we want to scan the SHNDX-th section for non-relocation stubs.
6219// This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6220
6221template<bool big_endian>
6222bool
6223Arm_relobj<big_endian>::section_needs_cortex_a8_stub_scanning(
6224 const elfcpp::Shdr<32, big_endian>& shdr,
6225 unsigned int shndx,
6226 Output_section* os,
6227 const Symbol_table* symtab)
6228{
cf846138 6229 if (!this->section_is_scannable(shdr, shndx, os, symtab))
44272192
DK
6230 return false;
6231
44272192
DK
6232 // If the section does not cross any 4K-boundaries, it does not need to
6233 // be scanned.
cb1be87e 6234 Arm_address address = this->simple_input_section_output_address(shndx, os);
44272192
DK
6235 if ((address & ~0xfffU) == ((address + shdr.get_sh_size() - 1) & ~0xfffU))
6236 return false;
6237
6238 return true;
6239}
6240
6241// Scan a section for Cortex-A8 workaround.
6242
6243template<bool big_endian>
6244void
6245Arm_relobj<big_endian>::scan_section_for_cortex_a8_erratum(
6246 const elfcpp::Shdr<32, big_endian>& shdr,
6247 unsigned int shndx,
6248 Output_section* os,
6249 Target_arm<big_endian>* arm_target)
6250{
c8761b9a
DK
6251 // Look for the first mapping symbol in this section. It should be
6252 // at (shndx, 0).
6253 Mapping_symbol_position section_start(shndx, 0);
6254 typename Mapping_symbols_info::const_iterator p =
6255 this->mapping_symbols_info_.lower_bound(section_start);
6256
6257 // There are no mapping symbols for this section. Treat it as a data-only
24af6f92
DK
6258 // section. Issue a warning if section is marked as containing
6259 // instructions.
c8761b9a 6260 if (p == this->mapping_symbols_info_.end() || p->first.first != shndx)
24af6f92
DK
6261 {
6262 if ((this->section_flags(shndx) & elfcpp::SHF_EXECINSTR) != 0)
6263 gold_warning(_("cannot scan executable section %u of %s for Cortex-A8 "
6264 "erratum because it has no mapping symbols."),
6265 shndx, this->name().c_str());
6266 return;
6267 }
c8761b9a 6268
cb1be87e
DK
6269 Arm_address output_address =
6270 this->simple_input_section_output_address(shndx, os);
44272192
DK
6271
6272 // Get the section contents.
6273 section_size_type input_view_size = 0;
6274 const unsigned char* input_view =
6275 this->section_contents(shndx, &input_view_size, false);
6276
6277 // We need to go through the mapping symbols to determine what to
6278 // scan. There are two reasons. First, we should look at THUMB code and
6279 // THUMB code only. Second, we only want to look at the 4K-page boundary
6280 // to speed up the scanning.
2e702c99 6281
44272192
DK
6282 while (p != this->mapping_symbols_info_.end()
6283 && p->first.first == shndx)
6284 {
6285 typename Mapping_symbols_info::const_iterator next =
6286 this->mapping_symbols_info_.upper_bound(p->first);
6287
6288 // Only scan part of a section with THUMB code.
6289 if (p->second == 't')
6290 {
6291 // Determine the end of this range.
6292 section_size_type span_start =
6293 convert_to_section_size_type(p->first.second);
6294 section_size_type span_end;
6295 if (next != this->mapping_symbols_info_.end()
6296 && next->first.first == shndx)
6297 span_end = convert_to_section_size_type(next->first.second);
6298 else
6299 span_end = convert_to_section_size_type(shdr.get_sh_size());
2e702c99 6300
44272192
DK
6301 if (((span_start + output_address) & ~0xfffUL)
6302 != ((span_end + output_address - 1) & ~0xfffUL))
6303 {
6304 arm_target->scan_span_for_cortex_a8_erratum(this, shndx,
6305 span_start, span_end,
6306 input_view,
6307 output_address);
6308 }
6309 }
6310
2e702c99 6311 p = next;
44272192
DK
6312 }
6313}
6314
8ffa3667
DK
6315// Scan relocations for stub generation.
6316
6317template<bool big_endian>
6318void
6319Arm_relobj<big_endian>::scan_sections_for_stubs(
6320 Target_arm<big_endian>* arm_target,
6321 const Symbol_table* symtab,
2ea97941 6322 const Layout* layout)
8ffa3667 6323{
2ea97941
ILT
6324 unsigned int shnum = this->shnum();
6325 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
8ffa3667
DK
6326
6327 // Read the section headers.
6328 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
2ea97941 6329 shnum * shdr_size,
8ffa3667
DK
6330 true, true);
6331
6332 // To speed up processing, we set up hash tables for fast lookup of
6333 // input offsets to output addresses.
6334 this->initialize_input_to_output_maps();
6335
6336 const Relobj::Output_sections& out_sections(this->output_sections());
6337
6338 Relocate_info<32, big_endian> relinfo;
8ffa3667 6339 relinfo.symtab = symtab;
2ea97941 6340 relinfo.layout = layout;
8ffa3667
DK
6341 relinfo.object = this;
6342
44272192 6343 // Do relocation stubs scanning.
2ea97941
ILT
6344 const unsigned char* p = pshdrs + shdr_size;
6345 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
8ffa3667 6346 {
44272192 6347 const elfcpp::Shdr<32, big_endian> shdr(p);
2b328d4e
DK
6348 if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
6349 pshdrs))
8ffa3667 6350 {
44272192
DK
6351 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6352 Arm_address output_offset = this->get_output_section_offset(index);
6353 Arm_address output_address;
7296d933 6354 if (output_offset != invalid_address)
44272192
DK
6355 output_address = out_sections[index]->address() + output_offset;
6356 else
6357 {
6358 // Currently this only happens for a relaxed section.
6359 const Output_relaxed_input_section* poris =
6360 out_sections[index]->find_relaxed_input_section(this, index);
6361 gold_assert(poris != NULL);
6362 output_address = poris->address();
6363 }
8ffa3667 6364
44272192
DK
6365 // Get the relocations.
6366 const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
6367 shdr.get_sh_size(),
6368 true, false);
6369
6370 // Get the section contents. This does work for the case in which
6371 // we modify the contents of an input section. We need to pass the
6372 // output view under such circumstances.
6373 section_size_type input_view_size = 0;
6374 const unsigned char* input_view =
6375 this->section_contents(index, &input_view_size, false);
6376
6377 relinfo.reloc_shndx = i;
6378 relinfo.data_shndx = index;
6379 unsigned int sh_type = shdr.get_sh_type();
b521dfe4
DK
6380 unsigned int reloc_size;
6381 if (sh_type == elfcpp::SHT_REL)
6382 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6383 else
6384 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
44272192
DK
6385
6386 Output_section* os = out_sections[index];
6387 arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
6388 shdr.get_sh_size() / reloc_size,
6389 os,
6390 output_offset == invalid_address,
6391 input_view, output_address,
6392 input_view_size);
8ffa3667 6393 }
44272192 6394 }
8ffa3667 6395
44272192
DK
6396 // Do Cortex-A8 erratum stubs scanning. This has to be done for a section
6397 // after its relocation section, if there is one, is processed for
6398 // relocation stubs. Merging this loop with the one above would have been
6399 // complicated since we would have had to make sure that relocation stub
6400 // scanning is done first.
6401 if (arm_target->fix_cortex_a8())
6402 {
6403 const unsigned char* p = pshdrs + shdr_size;
6404 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
8ffa3667 6405 {
44272192
DK
6406 const elfcpp::Shdr<32, big_endian> shdr(p);
6407 if (this->section_needs_cortex_a8_stub_scanning(shdr, i,
6408 out_sections[i],
6409 symtab))
6410 this->scan_section_for_cortex_a8_erratum(shdr, i, out_sections[i],
6411 arm_target);
8ffa3667 6412 }
8ffa3667
DK
6413 }
6414
6415 // After we've done the relocations, we release the hash tables,
6416 // since we no longer need them.
6417 this->free_input_to_output_maps();
6418}
6419
6420// Count the local symbols. The ARM backend needs to know if a symbol
6421// is a THUMB function or not. For global symbols, it is easy because
6422// the Symbol object keeps the ELF symbol type. For local symbol it is
6423// harder because we cannot access this information. So we override the
6424// do_count_local_symbol in parent and scan local symbols to mark
6425// THUMB functions. This is not the most efficient way but I do not want to
9b547ce6 6426// slow down other ports by calling a per symbol target hook inside
2e702c99 6427// Sized_relobj_file<size, big_endian>::do_count_local_symbols.
8ffa3667
DK
6428
6429template<bool big_endian>
6430void
6431Arm_relobj<big_endian>::do_count_local_symbols(
6432 Stringpool_template<char>* pool,
6433 Stringpool_template<char>* dynpool)
6434{
6435 // We need to fix-up the values of any local symbols whose type are
6436 // STT_ARM_TFUNC.
2e702c99 6437
8ffa3667 6438 // Ask parent to count the local symbols.
6fa2a40b 6439 Sized_relobj_file<32, big_endian>::do_count_local_symbols(pool, dynpool);
8ffa3667
DK
6440 const unsigned int loccount = this->local_symbol_count();
6441 if (loccount == 0)
6442 return;
6443
9b547ce6 6444 // Initialize the thumb function bit-vector.
8ffa3667
DK
6445 std::vector<bool> empty_vector(loccount, false);
6446 this->local_symbol_is_thumb_function_.swap(empty_vector);
6447
6448 // Read the symbol table section header.
2ea97941 6449 const unsigned int symtab_shndx = this->symtab_shndx();
8ffa3667 6450 elfcpp::Shdr<32, big_endian>
2ea97941 6451 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
8ffa3667
DK
6452 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6453
6454 // Read the local symbols.
2ea97941 6455 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
8ffa3667 6456 gold_assert(loccount == symtabshdr.get_sh_info());
2ea97941 6457 off_t locsize = loccount * sym_size;
8ffa3667
DK
6458 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6459 locsize, true, true);
6460
20138696
DK
6461 // For mapping symbol processing, we need to read the symbol names.
6462 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
6463 if (strtab_shndx >= this->shnum())
6464 {
6465 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
6466 return;
6467 }
6468
6469 elfcpp::Shdr<32, big_endian>
6470 strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
6471 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
6472 {
6473 this->error(_("symbol table name section has wrong type: %u"),
2e702c99 6474 static_cast<unsigned int>(strtabshdr.get_sh_type()));
20138696
DK
6475 return;
6476 }
6477 const char* pnames =
6478 reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
6479 strtabshdr.get_sh_size(),
6480 false, false));
6481
8ffa3667
DK
6482 // Loop over the local symbols and mark any local symbols pointing
6483 // to THUMB functions.
6484
6485 // Skip the first dummy symbol.
2ea97941 6486 psyms += sym_size;
6fa2a40b 6487 typename Sized_relobj_file<32, big_endian>::Local_values* plocal_values =
8ffa3667 6488 this->local_values();
2ea97941 6489 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
8ffa3667
DK
6490 {
6491 elfcpp::Sym<32, big_endian> sym(psyms);
6492 elfcpp::STT st_type = sym.get_st_type();
6493 Symbol_value<32>& lv((*plocal_values)[i]);
6494 Arm_address input_value = lv.input_value();
6495
20138696
DK
6496 // Check to see if this is a mapping symbol.
6497 const char* sym_name = pnames + sym.get_st_name();
6498 if (Target_arm<big_endian>::is_mapping_symbol_name(sym_name))
6499 {
24af6f92
DK
6500 bool is_ordinary;
6501 unsigned int input_shndx =
6502 this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
6503 gold_assert(is_ordinary);
20138696
DK
6504
6505 // Strip of LSB in case this is a THUMB symbol.
6506 Mapping_symbol_position msp(input_shndx, input_value & ~1U);
6507 this->mapping_symbols_info_[msp] = sym_name[1];
6508 }
6509
8ffa3667
DK
6510 if (st_type == elfcpp::STT_ARM_TFUNC
6511 || (st_type == elfcpp::STT_FUNC && ((input_value & 1) != 0)))
6512 {
6513 // This is a THUMB function. Mark this and canonicalize the
6514 // symbol value by setting LSB.
6515 this->local_symbol_is_thumb_function_[i] = true;
6516 if ((input_value & 1) == 0)
6517 lv.set_input_value(input_value | 1);
6518 }
6519 }
6520}
6521
6522// Relocate sections.
6523template<bool big_endian>
6524void
6525Arm_relobj<big_endian>::do_relocate_sections(
8ffa3667 6526 const Symbol_table* symtab,
2ea97941 6527 const Layout* layout,
8ffa3667 6528 const unsigned char* pshdrs,
aa98ff75 6529 Output_file* of,
6fa2a40b 6530 typename Sized_relobj_file<32, big_endian>::Views* pviews)
8ffa3667
DK
6531{
6532 // Call parent to relocate sections.
6fa2a40b 6533 Sized_relobj_file<32, big_endian>::do_relocate_sections(symtab, layout,
2e702c99 6534 pshdrs, of, pviews);
8ffa3667
DK
6535
6536 // We do not generate stubs if doing a relocatable link.
6537 if (parameters->options().relocatable())
6538 return;
6539
6540 // Relocate stub tables.
2ea97941 6541 unsigned int shnum = this->shnum();
8ffa3667
DK
6542
6543 Target_arm<big_endian>* arm_target =
6544 Target_arm<big_endian>::default_target();
6545
6546 Relocate_info<32, big_endian> relinfo;
8ffa3667 6547 relinfo.symtab = symtab;
2ea97941 6548 relinfo.layout = layout;
8ffa3667
DK
6549 relinfo.object = this;
6550
2ea97941 6551 for (unsigned int i = 1; i < shnum; ++i)
8ffa3667
DK
6552 {
6553 Arm_input_section<big_endian>* arm_input_section =
6554 arm_target->find_arm_input_section(this, i);
6555
41263c05
DK
6556 if (arm_input_section != NULL
6557 && arm_input_section->is_stub_table_owner()
6558 && !arm_input_section->stub_table()->empty())
6559 {
6560 // We cannot discard a section if it owns a stub table.
6561 Output_section* os = this->output_section(i);
6562 gold_assert(os != NULL);
6563
6564 relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
6565 relinfo.reloc_shdr = NULL;
6566 relinfo.data_shndx = i;
6567 relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size;
6568
6569 gold_assert((*pviews)[i].view != NULL);
6570
6571 // We are passed the output section view. Adjust it to cover the
6572 // stub table only.
6573 Stub_table<big_endian>* stub_table = arm_input_section->stub_table();
6574 gold_assert((stub_table->address() >= (*pviews)[i].address)
6575 && ((stub_table->address() + stub_table->data_size())
6576 <= (*pviews)[i].address + (*pviews)[i].view_size));
6577
6578 off_t offset = stub_table->address() - (*pviews)[i].address;
6579 unsigned char* view = (*pviews)[i].view + offset;
6580 Arm_address address = stub_table->address();
6581 section_size_type view_size = stub_table->data_size();
2e702c99 6582
41263c05
DK
6583 stub_table->relocate_stubs(&relinfo, arm_target, os, view, address,
6584 view_size);
6585 }
6586
6587 // Apply Cortex A8 workaround if applicable.
6588 if (this->section_has_cortex_a8_workaround(i))
6589 {
6590 unsigned char* view = (*pviews)[i].view;
6591 Arm_address view_address = (*pviews)[i].address;
6592 section_size_type view_size = (*pviews)[i].view_size;
6593 Stub_table<big_endian>* stub_table = this->stub_tables_[i];
6594
6595 // Adjust view to cover section.
6596 Output_section* os = this->output_section(i);
6597 gold_assert(os != NULL);
cb1be87e
DK
6598 Arm_address section_address =
6599 this->simple_input_section_output_address(i, os);
41263c05
DK
6600 uint64_t section_size = this->section_size(i);
6601
6602 gold_assert(section_address >= view_address
6603 && ((section_address + section_size)
6604 <= (view_address + view_size)));
6605
6606 unsigned char* section_view = view + (section_address - view_address);
6607
6608 // Apply the Cortex-A8 workaround to the output address range
6609 // corresponding to this input section.
6610 stub_table->apply_cortex_a8_workaround_to_address_range(
6611 arm_target,
6612 section_view,
6613 section_address,
6614 section_size);
6615 }
8ffa3667
DK
6616 }
6617}
6618
9b547ce6 6619// Find the linked text section of an EXIDX section by looking at the first
c8761b9a 6620// relocation. 4.4.1 of the EHABI specifications says that an EXIDX section
9b547ce6 6621// must be linked to its associated code section via the sh_link field of
c8761b9a
DK
6622// its section header. However, some tools are broken and the link is not
6623// always set. LD just drops such an EXIDX section silently, causing the
6624// associated code not unwindabled. Here we try a little bit harder to
6625// discover the linked code section.
6626//
6627// PSHDR points to the section header of a relocation section of an EXIDX
6628// section. If we can find a linked text section, return true and
6629// store the text section index in the location PSHNDX. Otherwise
6630// return false.
a0351a69
DK
6631
6632template<bool big_endian>
c8761b9a
DK
6633bool
6634Arm_relobj<big_endian>::find_linked_text_section(
6635 const unsigned char* pshdr,
6636 const unsigned char* psyms,
6637 unsigned int* pshndx)
a0351a69 6638{
c8761b9a 6639 elfcpp::Shdr<32, big_endian> shdr(pshdr);
2e702c99 6640
c8761b9a
DK
6641 // If there is no relocation, we cannot find the linked text section.
6642 size_t reloc_size;
6643 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6644 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6645 else
6646 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6647 size_t reloc_count = shdr.get_sh_size() / reloc_size;
2e702c99 6648
c8761b9a
DK
6649 // Get the relocations.
6650 const unsigned char* prelocs =
2e702c99 6651 this->get_view(shdr.get_sh_offset(), shdr.get_sh_size(), true, false);
993d07c1 6652
c8761b9a
DK
6653 // Find the REL31 relocation for the first word of the first EXIDX entry.
6654 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
a0351a69 6655 {
c8761b9a
DK
6656 Arm_address r_offset;
6657 typename elfcpp::Elf_types<32>::Elf_WXword r_info;
6658 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6659 {
6660 typename elfcpp::Rel<32, big_endian> reloc(prelocs);
6661 r_info = reloc.get_r_info();
6662 r_offset = reloc.get_r_offset();
6663 }
6664 else
6665 {
6666 typename elfcpp::Rela<32, big_endian> reloc(prelocs);
6667 r_info = reloc.get_r_info();
6668 r_offset = reloc.get_r_offset();
6669 }
6670
6671 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
6672 if (r_type != elfcpp::R_ARM_PREL31 && r_type != elfcpp::R_ARM_SBREL31)
6673 continue;
6674
6675 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
6676 if (r_sym == 0
6677 || r_sym >= this->local_symbol_count()
6678 || r_offset != 0)
6679 continue;
6680
6681 // This is the relocation for the first word of the first EXIDX entry.
6682 // We expect to see a local section symbol.
6683 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6684 elfcpp::Sym<32, big_endian> sym(psyms + r_sym * sym_size);
6685 if (sym.get_st_type() == elfcpp::STT_SECTION)
6686 {
24af6f92
DK
6687 bool is_ordinary;
6688 *pshndx =
6689 this->adjust_sym_shndx(r_sym, sym.get_st_shndx(), &is_ordinary);
6690 gold_assert(is_ordinary);
c8761b9a
DK
6691 return true;
6692 }
6693 else
6694 return false;
993d07c1 6695 }
c8761b9a
DK
6696
6697 return false;
6698}
6699
6700// Make an EXIDX input section object for an EXIDX section whose index is
6701// SHNDX. SHDR is the section header of the EXIDX section and TEXT_SHNDX
6702// is the section index of the linked text section.
6703
6704template<bool big_endian>
6705void
6706Arm_relobj<big_endian>::make_exidx_input_section(
6707 unsigned int shndx,
6708 const elfcpp::Shdr<32, big_endian>& shdr,
131687b4
DK
6709 unsigned int text_shndx,
6710 const elfcpp::Shdr<32, big_endian>& text_shdr)
c8761b9a 6711{
993d07c1
DK
6712 // Create an Arm_exidx_input_section object for this EXIDX section.
6713 Arm_exidx_input_section* exidx_input_section =
6714 new Arm_exidx_input_section(this, shndx, text_shndx, shdr.get_sh_size(),
f625ae50
DK
6715 shdr.get_sh_addralign(),
6716 text_shdr.get_sh_size());
993d07c1 6717
993d07c1
DK
6718 gold_assert(this->exidx_section_map_[shndx] == NULL);
6719 this->exidx_section_map_[shndx] = exidx_input_section;
131687b4
DK
6720
6721 if (text_shndx == elfcpp::SHN_UNDEF || text_shndx >= this->shnum())
6722 {
6723 gold_error(_("EXIDX section %s(%u) links to invalid section %u in %s"),
6724 this->section_name(shndx).c_str(), shndx, text_shndx,
6725 this->name().c_str());
6726 exidx_input_section->set_has_errors();
2e702c99 6727 }
131687b4
DK
6728 else if (this->exidx_section_map_[text_shndx] != NULL)
6729 {
6730 unsigned other_exidx_shndx =
6731 this->exidx_section_map_[text_shndx]->shndx();
6732 gold_error(_("EXIDX sections %s(%u) and %s(%u) both link to text section"
6733 "%s(%u) in %s"),
6734 this->section_name(shndx).c_str(), shndx,
6735 this->section_name(other_exidx_shndx).c_str(),
6736 other_exidx_shndx, this->section_name(text_shndx).c_str(),
6737 text_shndx, this->name().c_str());
6738 exidx_input_section->set_has_errors();
6739 }
6740 else
6741 this->exidx_section_map_[text_shndx] = exidx_input_section;
6742
6743 // Check section flags of text section.
6744 if ((text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
6745 {
6746 gold_error(_("EXIDX section %s(%u) links to non-allocated section %s(%u) "
6747 " in %s"),
6748 this->section_name(shndx).c_str(), shndx,
6749 this->section_name(text_shndx).c_str(), text_shndx,
6750 this->name().c_str());
6751 exidx_input_section->set_has_errors();
6752 }
6753 else if ((text_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) == 0)
9b547ce6 6754 // I would like to make this an error but currently ld just ignores
131687b4
DK
6755 // this.
6756 gold_warning(_("EXIDX section %s(%u) links to non-executable section "
6757 "%s(%u) in %s"),
6758 this->section_name(shndx).c_str(), shndx,
6759 this->section_name(text_shndx).c_str(), text_shndx,
6760 this->name().c_str());
a0351a69
DK
6761}
6762
d5b40221
DK
6763// Read the symbol information.
6764
6765template<bool big_endian>
6766void
6767Arm_relobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6768{
6769 // Call parent class to read symbol information.
f35c4853 6770 this->base_read_symbols(sd);
d5b40221 6771
7296d933
DK
6772 // If this input file is a binary file, it has no processor
6773 // specific flags and attributes section.
6774 Input_file::Format format = this->input_file()->format();
6775 if (format != Input_file::FORMAT_ELF)
6776 {
6777 gold_assert(format == Input_file::FORMAT_BINARY);
6778 this->merge_flags_and_attributes_ = false;
6779 return;
6780 }
6781
d5b40221
DK
6782 // Read processor-specific flags in ELF file header.
6783 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6784 elfcpp::Elf_sizes<32>::ehdr_size,
6785 true, false);
6786 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6787 this->processor_specific_flags_ = ehdr.get_e_flags();
993d07c1
DK
6788
6789 // Go over the section headers and look for .ARM.attributes and .ARM.exidx
6790 // sections.
c8761b9a 6791 std::vector<unsigned int> deferred_exidx_sections;
993d07c1 6792 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
c8761b9a 6793 const unsigned char* pshdrs = sd->section_headers->data();
ca09d69a 6794 const unsigned char* ps = pshdrs + shdr_size;
7296d933 6795 bool must_merge_flags_and_attributes = false;
993d07c1
DK
6796 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6797 {
6798 elfcpp::Shdr<32, big_endian> shdr(ps);
7296d933
DK
6799
6800 // Sometimes an object has no contents except the section name string
6801 // table and an empty symbol table with the undefined symbol. We
6802 // don't want to merge processor-specific flags from such an object.
6803 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
6804 {
6805 // Symbol table is not empty.
6806 const elfcpp::Elf_types<32>::Elf_WXword sym_size =
6807 elfcpp::Elf_sizes<32>::sym_size;
6808 if (shdr.get_sh_size() > sym_size)
6809 must_merge_flags_and_attributes = true;
6810 }
6811 else if (shdr.get_sh_type() != elfcpp::SHT_STRTAB)
6812 // If this is neither an empty symbol table nor a string table,
6813 // be conservative.
6814 must_merge_flags_and_attributes = true;
6815
993d07c1
DK
6816 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6817 {
2e702c99 6818 gold_assert(this->attributes_section_data_ == NULL);
993d07c1
DK
6819 section_offset_type section_offset = shdr.get_sh_offset();
6820 section_size_type section_size =
6821 convert_to_section_size_type(shdr.get_sh_size());
f625ae50
DK
6822 const unsigned char* view =
6823 this->get_view(section_offset, section_size, true, false);
993d07c1 6824 this->attributes_section_data_ =
f625ae50 6825 new Attributes_section_data(view, section_size);
993d07c1
DK
6826 }
6827 else if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
c8761b9a
DK
6828 {
6829 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
131687b4 6830 if (text_shndx == elfcpp::SHN_UNDEF)
c8761b9a
DK
6831 deferred_exidx_sections.push_back(i);
6832 else
131687b4
DK
6833 {
6834 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6835 + text_shndx * shdr_size);
6836 this->make_exidx_input_section(i, shdr, text_shndx, text_shdr);
6837 }
c9484ea5
DK
6838 // EHABI 4.4.1 requires that SHF_LINK_ORDER flag to be set.
6839 if ((shdr.get_sh_flags() & elfcpp::SHF_LINK_ORDER) == 0)
6840 gold_warning(_("SHF_LINK_ORDER not set in EXIDX section %s of %s"),
6841 this->section_name(i).c_str(), this->name().c_str());
c8761b9a
DK
6842 }
6843 }
6844
7296d933
DK
6845 // This is rare.
6846 if (!must_merge_flags_and_attributes)
6847 {
131687b4 6848 gold_assert(deferred_exidx_sections.empty());
7296d933
DK
6849 this->merge_flags_and_attributes_ = false;
6850 return;
6851 }
6852
2e702c99 6853 // Some tools are broken and they do not set the link of EXIDX sections.
c8761b9a
DK
6854 // We look at the first relocation to figure out the linked sections.
6855 if (!deferred_exidx_sections.empty())
6856 {
6857 // We need to go over the section headers again to find the mapping
6858 // from sections being relocated to their relocation sections. This is
6859 // a bit inefficient as we could do that in the loop above. However,
6860 // we do not expect any deferred EXIDX sections normally. So we do not
6861 // want to slow down the most common path.
6862 typedef Unordered_map<unsigned int, unsigned int> Reloc_map;
6863 Reloc_map reloc_map;
6864 ps = pshdrs + shdr_size;
6865 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6866 {
6867 elfcpp::Shdr<32, big_endian> shdr(ps);
6868 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
6869 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
6870 {
6871 unsigned int info_shndx = this->adjust_shndx(shdr.get_sh_info());
6872 if (info_shndx >= this->shnum())
6873 gold_error(_("relocation section %u has invalid info %u"),
6874 i, info_shndx);
6875 Reloc_map::value_type value(info_shndx, i);
6876 std::pair<Reloc_map::iterator, bool> result =
6877 reloc_map.insert(value);
6878 if (!result.second)
6879 gold_error(_("section %u has multiple relocation sections "
6880 "%u and %u"),
6881 info_shndx, i, reloc_map[info_shndx]);
6882 }
6883 }
6884
6885 // Read the symbol table section header.
6886 const unsigned int symtab_shndx = this->symtab_shndx();
6887 elfcpp::Shdr<32, big_endian>
6888 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6889 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6890
6891 // Read the local symbols.
6892 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6893 const unsigned int loccount = this->local_symbol_count();
6894 gold_assert(loccount == symtabshdr.get_sh_info());
6895 off_t locsize = loccount * sym_size;
6896 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6897 locsize, true, true);
6898
2e702c99 6899 // Process the deferred EXIDX sections.
f625ae50 6900 for (unsigned int i = 0; i < deferred_exidx_sections.size(); ++i)
c8761b9a
DK
6901 {
6902 unsigned int shndx = deferred_exidx_sections[i];
6903 elfcpp::Shdr<32, big_endian> shdr(pshdrs + shndx * shdr_size);
131687b4 6904 unsigned int text_shndx = elfcpp::SHN_UNDEF;
c8761b9a 6905 Reloc_map::const_iterator it = reloc_map.find(shndx);
131687b4
DK
6906 if (it != reloc_map.end())
6907 find_linked_text_section(pshdrs + it->second * shdr_size,
6908 psyms, &text_shndx);
6909 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6910 + text_shndx * shdr_size);
6911 this->make_exidx_input_section(shndx, shdr, text_shndx, text_shdr);
c8761b9a 6912 }
993d07c1 6913 }
d5b40221
DK
6914}
6915
99e5bff2 6916// Process relocations for garbage collection. The ARM target uses .ARM.exidx
2e702c99 6917// sections for unwinding. These sections are referenced implicitly by
9b547ce6 6918// text sections linked in the section headers. If we ignore these implicit
99e5bff2
DK
6919// references, the .ARM.exidx sections and any .ARM.extab sections they use
6920// will be garbage-collected incorrectly. Hence we override the same function
6921// in the base class to handle these implicit references.
6922
6923template<bool big_endian>
6924void
6925Arm_relobj<big_endian>::do_gc_process_relocs(Symbol_table* symtab,
6926 Layout* layout,
6927 Read_relocs_data* rd)
6928{
6929 // First, call base class method to process relocations in this object.
6fa2a40b 6930 Sized_relobj_file<32, big_endian>::do_gc_process_relocs(symtab, layout, rd);
99e5bff2 6931
4a54abbb
DK
6932 // If --gc-sections is not specified, there is nothing more to do.
6933 // This happens when --icf is used but --gc-sections is not.
6934 if (!parameters->options().gc_sections())
6935 return;
2e702c99 6936
99e5bff2
DK
6937 unsigned int shnum = this->shnum();
6938 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6939 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6940 shnum * shdr_size,
6941 true, true);
6942
6943 // Scan section headers for sections of type SHT_ARM_EXIDX. Add references
6944 // to these from the linked text sections.
6945 const unsigned char* ps = pshdrs + shdr_size;
6946 for (unsigned int i = 1; i < shnum; ++i, ps += shdr_size)
6947 {
6948 elfcpp::Shdr<32, big_endian> shdr(ps);
6949 if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6950 {
6951 // Found an .ARM.exidx section, add it to the set of reachable
6952 // sections from its linked text section.
6953 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6954 symtab->gc()->add_reference(this, text_shndx, this, i);
6955 }
6956 }
6957}
6958
e7eca48c
DK
6959// Update output local symbol count. Owing to EXIDX entry merging, some local
6960// symbols will be removed in output. Adjust output local symbol count
6961// accordingly. We can only changed the static output local symbol count. It
6962// is too late to change the dynamic symbols.
6963
6964template<bool big_endian>
6965void
6966Arm_relobj<big_endian>::update_output_local_symbol_count()
6967{
6968 // Caller should check that this needs updating. We want caller checking
6969 // because output_local_symbol_count_needs_update() is most likely inlined.
6970 gold_assert(this->output_local_symbol_count_needs_update_);
6971
6972 gold_assert(this->symtab_shndx() != -1U);
6973 if (this->symtab_shndx() == 0)
6974 {
6975 // This object has no symbols. Weird but legal.
6976 return;
6977 }
6978
6979 // Read the symbol table section header.
6980 const unsigned int symtab_shndx = this->symtab_shndx();
6981 elfcpp::Shdr<32, big_endian>
6982 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6983 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6984
6985 // Read the local symbols.
6986 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6987 const unsigned int loccount = this->local_symbol_count();
6988 gold_assert(loccount == symtabshdr.get_sh_info());
6989 off_t locsize = loccount * sym_size;
6990 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6991 locsize, true, true);
6992
6993 // Loop over the local symbols.
6994
6fa2a40b 6995 typedef typename Sized_relobj_file<32, big_endian>::Output_sections
e7eca48c
DK
6996 Output_sections;
6997 const Output_sections& out_sections(this->output_sections());
6998 unsigned int shnum = this->shnum();
6999 unsigned int count = 0;
7000 // Skip the first, dummy, symbol.
7001 psyms += sym_size;
7002 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
7003 {
7004 elfcpp::Sym<32, big_endian> sym(psyms);
7005
7006 Symbol_value<32>& lv((*this->local_values())[i]);
7007
7008 // This local symbol was already discarded by do_count_local_symbols.
9177756d 7009 if (lv.is_output_symtab_index_set() && !lv.has_output_symtab_entry())
e7eca48c
DK
7010 continue;
7011
7012 bool is_ordinary;
7013 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
7014 &is_ordinary);
7015
7016 if (shndx < shnum)
7017 {
7018 Output_section* os = out_sections[shndx];
7019
7020 // This local symbol no longer has an output section. Discard it.
7021 if (os == NULL)
7022 {
7023 lv.set_no_output_symtab_entry();
7024 continue;
7025 }
7026
7027 // Currently we only discard parts of EXIDX input sections.
7028 // We explicitly check for a merged EXIDX input section to avoid
7029 // calling Output_section_data::output_offset unless necessary.
7030 if ((this->get_output_section_offset(shndx) == invalid_address)
7031 && (this->exidx_input_section_by_shndx(shndx) != NULL))
7032 {
7033 section_offset_type output_offset =
7034 os->output_offset(this, shndx, lv.input_value());
7035 if (output_offset == -1)
7036 {
7037 // This symbol is defined in a part of an EXIDX input section
7038 // that is discarded due to entry merging.
7039 lv.set_no_output_symtab_entry();
7040 continue;
2e702c99 7041 }
e7eca48c
DK
7042 }
7043 }
7044
7045 ++count;
7046 }
7047
7048 this->set_output_local_symbol_count(count);
7049 this->output_local_symbol_count_needs_update_ = false;
7050}
7051
d5b40221
DK
7052// Arm_dynobj methods.
7053
7054// Read the symbol information.
7055
7056template<bool big_endian>
7057void
7058Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
7059{
7060 // Call parent class to read symbol information.
f35c4853 7061 this->base_read_symbols(sd);
d5b40221
DK
7062
7063 // Read processor-specific flags in ELF file header.
7064 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
7065 elfcpp::Elf_sizes<32>::ehdr_size,
7066 true, false);
7067 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
7068 this->processor_specific_flags_ = ehdr.get_e_flags();
993d07c1
DK
7069
7070 // Read the attributes section if there is one.
7071 // We read from the end because gas seems to put it near the end of
7072 // the section headers.
7073 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
ca09d69a 7074 const unsigned char* ps =
993d07c1
DK
7075 sd->section_headers->data() + shdr_size * (this->shnum() - 1);
7076 for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size)
7077 {
7078 elfcpp::Shdr<32, big_endian> shdr(ps);
7079 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
7080 {
7081 section_offset_type section_offset = shdr.get_sh_offset();
7082 section_size_type section_size =
7083 convert_to_section_size_type(shdr.get_sh_size());
f625ae50
DK
7084 const unsigned char* view =
7085 this->get_view(section_offset, section_size, true, false);
993d07c1 7086 this->attributes_section_data_ =
f625ae50 7087 new Attributes_section_data(view, section_size);
993d07c1
DK
7088 break;
7089 }
7090 }
d5b40221
DK
7091}
7092
e9bbb538
DK
7093// Stub_addend_reader methods.
7094
7095// Read the addend of a REL relocation of type R_TYPE at VIEW.
7096
7097template<bool big_endian>
7098elfcpp::Elf_types<32>::Elf_Swxword
7099Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()(
7100 unsigned int r_type,
7101 const unsigned char* view,
7102 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const
7103{
2c54b4f4 7104 typedef class Arm_relocate_functions<big_endian> RelocFuncs;
2e702c99 7105
e9bbb538
DK
7106 switch (r_type)
7107 {
7108 case elfcpp::R_ARM_CALL:
7109 case elfcpp::R_ARM_JUMP24:
7110 case elfcpp::R_ARM_PLT32:
7111 {
7112 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7113 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7114 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
bef2b434 7115 return Bits<26>::sign_extend32(val << 2);
e9bbb538
DK
7116 }
7117
7118 case elfcpp::R_ARM_THM_CALL:
7119 case elfcpp::R_ARM_THM_JUMP24:
7120 case elfcpp::R_ARM_THM_XPC22:
7121 {
e9bbb538
DK
7122 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7123 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7124 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7125 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
089d69dc 7126 return RelocFuncs::thumb32_branch_offset(upper_insn, lower_insn);
e9bbb538
DK
7127 }
7128
7129 case elfcpp::R_ARM_THM_JUMP19:
7130 {
7131 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7132 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7133 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7134 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
089d69dc 7135 return RelocFuncs::thumb32_cond_branch_offset(upper_insn, lower_insn);
e9bbb538
DK
7136 }
7137
7138 default:
7139 gold_unreachable();
7140 }
7141}
7142
4a54abbb
DK
7143// Arm_output_data_got methods.
7144
7145// Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
7146// The first one is initialized to be 1, which is the module index for
7147// the main executable and the second one 0. A reloc of the type
7148// R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
7149// be applied by gold. GSYM is a global symbol.
7150//
7151template<bool big_endian>
7152void
7153Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7154 unsigned int got_type,
7155 Symbol* gsym)
7156{
7157 if (gsym->has_got_offset(got_type))
7158 return;
7159
7160 // We are doing a static link. Just mark it as belong to module 1,
7161 // the executable.
7162 unsigned int got_offset = this->add_constant(1);
2e702c99 7163 gsym->set_got_offset(got_type, got_offset);
4a54abbb
DK
7164 got_offset = this->add_constant(0);
7165 this->static_relocs_.push_back(Static_reloc(got_offset,
7166 elfcpp::R_ARM_TLS_DTPOFF32,
7167 gsym));
7168}
7169
7170// Same as the above but for a local symbol.
7171
7172template<bool big_endian>
7173void
7174Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7175 unsigned int got_type,
6fa2a40b 7176 Sized_relobj_file<32, big_endian>* object,
4a54abbb
DK
7177 unsigned int index)
7178{
7179 if (object->local_has_got_offset(index, got_type))
7180 return;
7181
7182 // We are doing a static link. Just mark it as belong to module 1,
7183 // the executable.
7184 unsigned int got_offset = this->add_constant(1);
7185 object->set_local_got_offset(index, got_type, got_offset);
7186 got_offset = this->add_constant(0);
2e702c99
RM
7187 this->static_relocs_.push_back(Static_reloc(got_offset,
7188 elfcpp::R_ARM_TLS_DTPOFF32,
4a54abbb
DK
7189 object, index));
7190}
7191
7192template<bool big_endian>
7193void
7194Arm_output_data_got<big_endian>::do_write(Output_file* of)
7195{
7196 // Call parent to write out GOT.
7197 Output_data_got<32, big_endian>::do_write(of);
7198
7199 // We are done if there is no fix up.
7200 if (this->static_relocs_.empty())
7201 return;
7202
7203 gold_assert(parameters->doing_static_link());
7204
7205 const off_t offset = this->offset();
7206 const section_size_type oview_size =
7207 convert_to_section_size_type(this->data_size());
7208 unsigned char* const oview = of->get_output_view(offset, oview_size);
7209
7210 Output_segment* tls_segment = this->layout_->tls_segment();
7211 gold_assert(tls_segment != NULL);
2e702c99 7212
4a54abbb
DK
7213 // The thread pointer $tp points to the TCB, which is followed by the
7214 // TLS. So we need to adjust $tp relative addressing by this amount.
7215 Arm_address aligned_tcb_size =
7216 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
7217
7218 for (size_t i = 0; i < this->static_relocs_.size(); ++i)
7219 {
7220 Static_reloc& reloc(this->static_relocs_[i]);
2e702c99 7221
4a54abbb
DK
7222 Arm_address value;
7223 if (!reloc.symbol_is_global())
7224 {
6fa2a40b 7225 Sized_relobj_file<32, big_endian>* object = reloc.relobj();
4a54abbb
DK
7226 const Symbol_value<32>* psymval =
7227 reloc.relobj()->local_symbol(reloc.index());
7228
7229 // We are doing static linking. Issue an error and skip this
7230 // relocation if the symbol is undefined or in a discarded_section.
7231 bool is_ordinary;
7232 unsigned int shndx = psymval->input_shndx(&is_ordinary);
7233 if ((shndx == elfcpp::SHN_UNDEF)
7234 || (is_ordinary
7235 && shndx != elfcpp::SHN_UNDEF
7236 && !object->is_section_included(shndx)
7237 && !this->symbol_table_->is_section_folded(object, shndx)))
7238 {
7239 gold_error(_("undefined or discarded local symbol %u from "
7240 " object %s in GOT"),
7241 reloc.index(), reloc.relobj()->name().c_str());
7242 continue;
7243 }
2e702c99 7244
4a54abbb
DK
7245 value = psymval->value(object, 0);
7246 }
7247 else
7248 {
7249 const Symbol* gsym = reloc.symbol();
7250 gold_assert(gsym != NULL);
7251 if (gsym->is_forwarder())
7252 gsym = this->symbol_table_->resolve_forwards(gsym);
7253
7254 // We are doing static linking. Issue an error and skip this
7255 // relocation if the symbol is undefined or in a discarded_section
7256 // unless it is a weakly_undefined symbol.
7257 if ((gsym->is_defined_in_discarded_section()
7258 || gsym->is_undefined())
7259 && !gsym->is_weak_undefined())
7260 {
7261 gold_error(_("undefined or discarded symbol %s in GOT"),
7262 gsym->name());
7263 continue;
7264 }
7265
7266 if (!gsym->is_weak_undefined())
7267 {
7268 const Sized_symbol<32>* sym =
7269 static_cast<const Sized_symbol<32>*>(gsym);
7270 value = sym->value();
7271 }
7272 else
7273 value = 0;
7274 }
7275
7276 unsigned got_offset = reloc.got_offset();
7277 gold_assert(got_offset < oview_size);
7278
7279 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7280 Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
7281 Valtype x;
7282 switch (reloc.r_type())
7283 {
7284 case elfcpp::R_ARM_TLS_DTPOFF32:
7285 x = value;
7286 break;
7287 case elfcpp::R_ARM_TLS_TPOFF32:
7288 x = value + aligned_tcb_size;
7289 break;
7290 default:
7291 gold_unreachable();
7292 }
7293 elfcpp::Swap<32, big_endian>::writeval(wv, x);
7294 }
7295
7296 of->write_output_view(offset, oview_size, oview);
7297}
7298
94cdfcff 7299// A class to handle the PLT data.
2e702c99
RM
7300// This is an abstract base class that handles most of the linker details
7301// but does not know the actual contents of PLT entries. The derived
7302// classes below fill in those details.
94cdfcff
DK
7303
7304template<bool big_endian>
7305class Output_data_plt_arm : public Output_section_data
7306{
7307 public:
fa89cc82
HS
7308 // Unlike aarch64, which records symbol value in "addend" field of relocations
7309 // and could be done at the same time an IRelative reloc is created for the
7310 // symbol, arm puts the symbol value into "GOT" table, which, however, is
7311 // issued later in Output_data_plt_arm::do_write(). So we have a struct here
7312 // to keep necessary symbol information for later use in do_write. We usually
7313 // have only a very limited number of ifuncs, so the extra data required here
7314 // is also limited.
7315
7316 struct IRelative_data
7317 {
7318 IRelative_data(Sized_symbol<32>* sized_symbol)
7319 : symbol_is_global_(true)
7320 {
7321 u_.global = sized_symbol;
7322 }
7323
7324 IRelative_data(Sized_relobj_file<32, big_endian>* relobj,
7325 unsigned int index)
7326 : symbol_is_global_(false)
7327 {
7328 u_.local.relobj = relobj;
7329 u_.local.index = index;
7330 }
7331
7332 union
7333 {
7334 Sized_symbol<32>* global;
7335
7336 struct
7337 {
7338 Sized_relobj_file<32, big_endian>* relobj;
7339 unsigned int index;
7340 } local;
7341 } u_;
7342
7343 bool symbol_is_global_;
7344 };
7345
94cdfcff
DK
7346 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
7347 Reloc_section;
7348
fa89cc82
HS
7349 Output_data_plt_arm(Layout* layout, uint64_t addralign,
7350 Arm_output_data_got<big_endian>* got,
7351 Output_data_space* got_plt,
7352 Output_data_space* got_irelative);
94cdfcff
DK
7353
7354 // Add an entry to the PLT.
7355 void
fa89cc82
HS
7356 add_entry(Symbol_table* symtab, Layout* layout, Symbol* gsym);
7357
7358 // Add the relocation for a plt entry.
7359 void
7360 add_relocation(Symbol_table* symtab, Layout* layout,
7361 Symbol* gsym, unsigned int got_offset);
7362
7363 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
7364 unsigned int
7365 add_local_ifunc_entry(Symbol_table* symtab, Layout*,
7366 Sized_relobj_file<32, big_endian>* relobj,
7367 unsigned int local_sym_index);
94cdfcff
DK
7368
7369 // Return the .rel.plt section data.
7370 const Reloc_section*
7371 rel_plt() const
7372 { return this->rel_; }
7373
fa89cc82
HS
7374 // Return the PLT relocation container for IRELATIVE.
7375 Reloc_section*
7376 rel_irelative(Symbol_table*, Layout*);
7377
0e70b911
CC
7378 // Return the number of PLT entries.
7379 unsigned int
7380 entry_count() const
fa89cc82 7381 { return this->count_ + this->irelative_count_; }
0e70b911
CC
7382
7383 // Return the offset of the first non-reserved PLT entry.
2e702c99
RM
7384 unsigned int
7385 first_plt_entry_offset() const
7386 { return this->do_first_plt_entry_offset(); }
0e70b911
CC
7387
7388 // Return the size of a PLT entry.
2e702c99
RM
7389 unsigned int
7390 get_plt_entry_size() const
7391 { return this->do_get_plt_entry_size(); }
0e70b911 7392
fa89cc82
HS
7393 // Return the PLT address for globals.
7394 uint32_t
7395 address_for_global(const Symbol*) const;
7396
7397 // Return the PLT address for locals.
7398 uint32_t
7399 address_for_local(const Relobj*, unsigned int symndx) const;
7400
94cdfcff 7401 protected:
2e702c99
RM
7402 // Fill in the first PLT entry.
7403 void
7404 fill_first_plt_entry(unsigned char* pov,
7405 Arm_address got_address,
7406 Arm_address plt_address)
7407 { this->do_fill_first_plt_entry(pov, got_address, plt_address); }
7408
7409 void
7410 fill_plt_entry(unsigned char* pov,
7411 Arm_address got_address,
7412 Arm_address plt_address,
7413 unsigned int got_offset,
7414 unsigned int plt_offset)
7415 { do_fill_plt_entry(pov, got_address, plt_address, got_offset, plt_offset); }
7416
7417 virtual unsigned int
7418 do_first_plt_entry_offset() const = 0;
7419
7420 virtual unsigned int
7421 do_get_plt_entry_size() const = 0;
7422
7423 virtual void
7424 do_fill_first_plt_entry(unsigned char* pov,
7425 Arm_address got_address,
7426 Arm_address plt_address) = 0;
7427
7428 virtual void
7429 do_fill_plt_entry(unsigned char* pov,
7430 Arm_address got_address,
7431 Arm_address plt_address,
7432 unsigned int got_offset,
7433 unsigned int plt_offset) = 0;
7434
94cdfcff
DK
7435 void
7436 do_adjust_output_section(Output_section* os);
7437
7438 // Write to a map file.
7439 void
7440 do_print_to_mapfile(Mapfile* mapfile) const
7441 { mapfile->print_output_data(this, _("** PLT")); }
7442
7443 private:
94cdfcff
DK
7444 // Set the final size.
7445 void
7446 set_final_data_size()
7447 {
2e702c99 7448 this->set_data_size(this->first_plt_entry_offset()
fa89cc82
HS
7449 + ((this->count_ + this->irelative_count_)
7450 * this->get_plt_entry_size()));
94cdfcff
DK
7451 }
7452
7453 // Write out the PLT data.
7454 void
7455 do_write(Output_file*);
7456
fa89cc82
HS
7457 // Record irelative symbol data.
7458 void insert_irelative_data(const IRelative_data& idata)
7459 { irelative_data_vec_.push_back(idata); }
7460
94cdfcff
DK
7461 // The reloc section.
7462 Reloc_section* rel_;
fa89cc82
HS
7463 // The IRELATIVE relocs, if necessary. These must follow the
7464 // regular PLT relocations.
7465 Reloc_section* irelative_rel_;
7466 // The .got section.
7467 Arm_output_data_got<big_endian>* got_;
94cdfcff
DK
7468 // The .got.plt section.
7469 Output_data_space* got_plt_;
fa89cc82
HS
7470 // The part of the .got.plt section used for IRELATIVE relocs.
7471 Output_data_space* got_irelative_;
94cdfcff
DK
7472 // The number of PLT entries.
7473 unsigned int count_;
fa89cc82
HS
7474 // Number of PLT entries with R_ARM_IRELATIVE relocs. These
7475 // follow the regular PLT entries.
7476 unsigned int irelative_count_;
7477 // Vector for irelative data.
7478 typedef std::vector<IRelative_data> IRelative_data_vec;
7479 IRelative_data_vec irelative_data_vec_;
94cdfcff
DK
7480};
7481
7482// Create the PLT section. The ordinary .got section is an argument,
7483// since we need to refer to the start. We also create our own .got
7484// section just for PLT entries.
7485
7486template<bool big_endian>
fa89cc82
HS
7487Output_data_plt_arm<big_endian>::Output_data_plt_arm(
7488 Layout* layout, uint64_t addralign,
7489 Arm_output_data_got<big_endian>* got,
7490 Output_data_space* got_plt,
7491 Output_data_space* got_irelative)
7492 : Output_section_data(addralign), irelative_rel_(NULL),
7493 got_(got), got_plt_(got_plt), got_irelative_(got_irelative),
7494 count_(0), irelative_count_(0)
94cdfcff
DK
7495{
7496 this->rel_ = new Reloc_section(false);
2ea97941 7497 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
22f0da72
ILT
7498 elfcpp::SHF_ALLOC, this->rel_,
7499 ORDER_DYNAMIC_PLT_RELOCS, false);
94cdfcff
DK
7500}
7501
7502template<bool big_endian>
7503void
7504Output_data_plt_arm<big_endian>::do_adjust_output_section(Output_section* os)
7505{
7506 os->set_entsize(0);
7507}
7508
7509// Add an entry to the PLT.
7510
7511template<bool big_endian>
7512void
fa89cc82
HS
7513Output_data_plt_arm<big_endian>::add_entry(Symbol_table* symtab,
7514 Layout* layout,
7515 Symbol* gsym)
94cdfcff
DK
7516{
7517 gold_assert(!gsym->has_plt_offset());
7518
fa89cc82
HS
7519 unsigned int* entry_count;
7520 Output_section_data_build* got;
7521
7522 // We have 2 different types of plt entry here, normal and ifunc.
7523
7524 // For normal plt, the offset begins with first_plt_entry_offset(20), and the
7525 // 1st entry offset would be 20, the second 32, third 44 ... etc.
7526
7527 // For ifunc plt, the offset begins with 0. So the first offset would 0,
7528 // second 12, third 24 ... etc.
7529
7530 // IFunc plt entries *always* come after *normal* plt entries.
7531
7532 // Notice, when computing the plt address of a certain symbol, "plt_address +
7533 // plt_offset" is no longer correct. Use target->plt_address_for_global() or
7534 // target->plt_address_for_local() instead.
7535
7536 int begin_offset = 0;
7537 if (gsym->type() == elfcpp::STT_GNU_IFUNC
7538 && gsym->can_use_relative_reloc(false))
7539 {
7540 entry_count = &this->irelative_count_;
7541 got = this->got_irelative_;
7542 // For irelative plt entries, offset is relative to the end of normal plt
7543 // entries, so it starts from 0.
7544 begin_offset = 0;
7545 // Record symbol information.
7546 this->insert_irelative_data(
7547 IRelative_data(symtab->get_sized_symbol<32>(gsym)));
7548 }
7549 else
7550 {
7551 entry_count = &this->count_;
7552 got = this->got_plt_;
7553 // Note that for normal plt entries, when setting the PLT offset we skip
7554 // the initial reserved PLT entry.
7555 begin_offset = this->first_plt_entry_offset();
7556 }
7557
7558 gsym->set_plt_offset(begin_offset
7559 + (*entry_count) * this->get_plt_entry_size());
94cdfcff 7560
fa89cc82 7561 ++(*entry_count);
94cdfcff 7562
fa89cc82 7563 section_offset_type got_offset = got->current_data_size();
94cdfcff
DK
7564
7565 // Every PLT entry needs a GOT entry which points back to the PLT
7566 // entry (this will be changed by the dynamic linker, normally
7567 // lazily when the function is called).
fa89cc82 7568 got->set_current_data_size(got_offset + 4);
94cdfcff
DK
7569
7570 // Every PLT entry needs a reloc.
fa89cc82 7571 this->add_relocation(symtab, layout, gsym, got_offset);
94cdfcff
DK
7572
7573 // Note that we don't need to save the symbol. The contents of the
7574 // PLT are independent of which symbols are used. The symbols only
7575 // appear in the relocations.
7576}
7577
fa89cc82
HS
7578// Add an entry to the PLT for a local STT_GNU_IFUNC symbol. Return
7579// the PLT offset.
7580
7581template<bool big_endian>
7582unsigned int
7583Output_data_plt_arm<big_endian>::add_local_ifunc_entry(
7584 Symbol_table* symtab,
7585 Layout* layout,
7586 Sized_relobj_file<32, big_endian>* relobj,
7587 unsigned int local_sym_index)
7588{
7589 this->insert_irelative_data(IRelative_data(relobj, local_sym_index));
7590
7591 // Notice, when computingthe plt entry address, "plt_address + plt_offset" is
7592 // no longer correct. Use target->plt_address_for_local() instead.
7593 unsigned int plt_offset = this->irelative_count_ * this->get_plt_entry_size();
7594 ++this->irelative_count_;
7595
7596 section_offset_type got_offset = this->got_irelative_->current_data_size();
7597
7598 // Every PLT entry needs a GOT entry which points back to the PLT
7599 // entry.
7600 this->got_irelative_->set_current_data_size(got_offset + 4);
7601
7602
7603 // Every PLT entry needs a reloc.
7604 Reloc_section* rel = this->rel_irelative(symtab, layout);
7605 rel->add_symbolless_local_addend(relobj, local_sym_index,
7606 elfcpp::R_ARM_IRELATIVE,
7607 this->got_irelative_, got_offset);
7608 return plt_offset;
7609}
7610
7611
7612// Add the relocation for a PLT entry.
7613
7614template<bool big_endian>
7615void
7616Output_data_plt_arm<big_endian>::add_relocation(
7617 Symbol_table* symtab, Layout* layout, Symbol* gsym, unsigned int got_offset)
7618{
7619 if (gsym->type() == elfcpp::STT_GNU_IFUNC
7620 && gsym->can_use_relative_reloc(false))
7621 {
7622 Reloc_section* rel = this->rel_irelative(symtab, layout);
7623 rel->add_symbolless_global_addend(gsym, elfcpp::R_ARM_IRELATIVE,
7624 this->got_irelative_, got_offset);
7625 }
7626 else
7627 {
7628 gsym->set_needs_dynsym_entry();
7629 this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_,
7630 got_offset);
7631 }
7632}
7633
7634
7635// Create the irelative relocation data.
7636
7637template<bool big_endian>
7638typename Output_data_plt_arm<big_endian>::Reloc_section*
7639Output_data_plt_arm<big_endian>::rel_irelative(Symbol_table* symtab,
7640 Layout* layout)
7641{
7642 if (this->irelative_rel_ == NULL)
7643 {
7644 // Since irelative relocations goes into 'rel.dyn', we delegate the
7645 // creation of irelative_rel_ to where rel_dyn section gets created.
7646 Target_arm<big_endian>* arm_target =
7647 Target_arm<big_endian>::default_target();
7648 this->irelative_rel_ = arm_target->rel_irelative_section(layout);
7649
7650 // Make sure we have a place for the TLSDESC relocations, in
7651 // case we see any later on.
7652 // this->rel_tlsdesc(layout);
7653 if (parameters->doing_static_link())
7654 {
7655 // A statically linked executable will only have a .rel.plt section to
7656 // hold R_ARM_IRELATIVE relocs for STT_GNU_IFUNC symbols. The library
7657 // will use these symbols to locate the IRELATIVE relocs at program
7658 // startup time.
7659 symtab->define_in_output_data("__rel_iplt_start", NULL,
7660 Symbol_table::PREDEFINED,
7661 this->irelative_rel_, 0, 0,
7662 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
7663 elfcpp::STV_HIDDEN, 0, false, true);
7664 symtab->define_in_output_data("__rel_iplt_end", NULL,
7665 Symbol_table::PREDEFINED,
7666 this->irelative_rel_, 0, 0,
7667 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
7668 elfcpp::STV_HIDDEN, 0, true, true);
7669 }
7670 }
7671 return this->irelative_rel_;
7672}
7673
7674
7675// Return the PLT address for a global symbol.
7676
7677template<bool big_endian>
7678uint32_t
7679Output_data_plt_arm<big_endian>::address_for_global(const Symbol* gsym) const
7680{
7681 uint64_t begin_offset = 0;
7682 if (gsym->type() == elfcpp::STT_GNU_IFUNC
7683 && gsym->can_use_relative_reloc(false))
7684 {
7685 begin_offset = (this->first_plt_entry_offset() +
7686 this->count_ * this->get_plt_entry_size());
7687 }
7688 return this->address() + begin_offset + gsym->plt_offset();
7689}
7690
7691
7692// Return the PLT address for a local symbol. These are always
7693// IRELATIVE relocs.
7694
7695template<bool big_endian>
7696uint32_t
7697Output_data_plt_arm<big_endian>::address_for_local(
7698 const Relobj* object,
7699 unsigned int r_sym) const
7700{
7701 return (this->address()
7702 + this->first_plt_entry_offset()
7703 + this->count_ * this->get_plt_entry_size()
7704 + object->local_plt_offset(r_sym));
7705}
7706
7707
2e702c99
RM
7708template<bool big_endian>
7709class Output_data_plt_arm_standard : public Output_data_plt_arm<big_endian>
7710{
7711 public:
fa89cc82
HS
7712 Output_data_plt_arm_standard(Layout* layout,
7713 Arm_output_data_got<big_endian>* got,
7714 Output_data_space* got_plt,
7715 Output_data_space* got_irelative)
7716 : Output_data_plt_arm<big_endian>(layout, 4, got, got_plt, got_irelative)
2e702c99
RM
7717 { }
7718
7719 protected:
7720 // Return the offset of the first non-reserved PLT entry.
7721 virtual unsigned int
7722 do_first_plt_entry_offset() const
7723 { return sizeof(first_plt_entry); }
7724
7725 // Return the size of a PLT entry.
7726 virtual unsigned int
7727 do_get_plt_entry_size() const
7728 { return sizeof(plt_entry); }
7729
7730 virtual void
7731 do_fill_first_plt_entry(unsigned char* pov,
7732 Arm_address got_address,
7733 Arm_address plt_address);
7734
7735 virtual void
7736 do_fill_plt_entry(unsigned char* pov,
7737 Arm_address got_address,
7738 Arm_address plt_address,
7739 unsigned int got_offset,
7740 unsigned int plt_offset);
7741
7742 private:
7743 // Template for the first PLT entry.
7744 static const uint32_t first_plt_entry[5];
7745
7746 // Template for subsequent PLT entries.
7747 static const uint32_t plt_entry[3];
7748};
7749
94cdfcff
DK
7750// ARM PLTs.
7751// FIXME: This is not very flexible. Right now this has only been tested
7752// on armv5te. If we are to support additional architecture features like
7753// Thumb-2 or BE8, we need to make this more flexible like GNU ld.
7754
7755// The first entry in the PLT.
7756template<bool big_endian>
2e702c99 7757const uint32_t Output_data_plt_arm_standard<big_endian>::first_plt_entry[5] =
94cdfcff
DK
7758{
7759 0xe52de004, // str lr, [sp, #-4]!
7760 0xe59fe004, // ldr lr, [pc, #4]
2e702c99 7761 0xe08fe00e, // add lr, pc, lr
94cdfcff
DK
7762 0xe5bef008, // ldr pc, [lr, #8]!
7763 0x00000000, // &GOT[0] - .
7764};
7765
2e702c99
RM
7766template<bool big_endian>
7767void
7768Output_data_plt_arm_standard<big_endian>::do_fill_first_plt_entry(
7769 unsigned char* pov,
7770 Arm_address got_address,
7771 Arm_address plt_address)
7772{
7773 // Write first PLT entry. All but the last word are constants.
7774 const size_t num_first_plt_words = (sizeof(first_plt_entry)
7775 / sizeof(plt_entry[0]));
7776 for (size_t i = 0; i < num_first_plt_words - 1; i++)
7777 elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
7778 // Last word in first PLT entry is &GOT[0] - .
7779 elfcpp::Swap<32, big_endian>::writeval(pov + 16,
7780 got_address - (plt_address + 16));
7781}
7782
94cdfcff
DK
7783// Subsequent entries in the PLT.
7784
7785template<bool big_endian>
2e702c99 7786const uint32_t Output_data_plt_arm_standard<big_endian>::plt_entry[3] =
94cdfcff
DK
7787{
7788 0xe28fc600, // add ip, pc, #0xNN00000
7789 0xe28cca00, // add ip, ip, #0xNN000
7790 0xe5bcf000, // ldr pc, [ip, #0xNNN]!
7791};
7792
2e702c99
RM
7793template<bool big_endian>
7794void
7795Output_data_plt_arm_standard<big_endian>::do_fill_plt_entry(
7796 unsigned char* pov,
7797 Arm_address got_address,
7798 Arm_address plt_address,
7799 unsigned int got_offset,
7800 unsigned int plt_offset)
7801{
7802 int32_t offset = ((got_address + got_offset)
7803 - (plt_address + plt_offset + 8));
7804
7805 gold_assert(offset >= 0 && offset < 0x0fffffff);
7806 uint32_t plt_insn0 = plt_entry[0] | ((offset >> 20) & 0xff);
7807 elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
7808 uint32_t plt_insn1 = plt_entry[1] | ((offset >> 12) & 0xff);
7809 elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
7810 uint32_t plt_insn2 = plt_entry[2] | (offset & 0xfff);
7811 elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
7812}
7813
94cdfcff
DK
7814// Write out the PLT. This uses the hand-coded instructions above,
7815// and adjusts them as needed. This is all specified by the arm ELF
7816// Processor Supplement.
7817
7818template<bool big_endian>
7819void
7820Output_data_plt_arm<big_endian>::do_write(Output_file* of)
7821{
2ea97941 7822 const off_t offset = this->offset();
94cdfcff
DK
7823 const section_size_type oview_size =
7824 convert_to_section_size_type(this->data_size());
2ea97941 7825 unsigned char* const oview = of->get_output_view(offset, oview_size);
94cdfcff
DK
7826
7827 const off_t got_file_offset = this->got_plt_->offset();
fa89cc82
HS
7828 gold_assert(got_file_offset + this->got_plt_->data_size()
7829 == this->got_irelative_->offset());
94cdfcff 7830 const section_size_type got_size =
fa89cc82
HS
7831 convert_to_section_size_type(this->got_plt_->data_size()
7832 + this->got_irelative_->data_size());
94cdfcff
DK
7833 unsigned char* const got_view = of->get_output_view(got_file_offset,
7834 got_size);
7835 unsigned char* pov = oview;
7836
ebabffbd
DK
7837 Arm_address plt_address = this->address();
7838 Arm_address got_address = this->got_plt_->address();
94cdfcff 7839
2e702c99
RM
7840 // Write first PLT entry.
7841 this->fill_first_plt_entry(pov, got_address, plt_address);
7842 pov += this->first_plt_entry_offset();
94cdfcff
DK
7843
7844 unsigned char* got_pov = got_view;
7845
7846 memset(got_pov, 0, 12);
7847 got_pov += 12;
7848
2e702c99 7849 unsigned int plt_offset = this->first_plt_entry_offset();
94cdfcff 7850 unsigned int got_offset = 12;
fa89cc82
HS
7851 const unsigned int count = this->count_ + this->irelative_count_;
7852 gold_assert(this->irelative_count_ == this->irelative_data_vec_.size());
94cdfcff
DK
7853 for (unsigned int i = 0;
7854 i < count;
7855 ++i,
2e702c99 7856 pov += this->get_plt_entry_size(),
94cdfcff 7857 got_pov += 4,
2e702c99 7858 plt_offset += this->get_plt_entry_size(),
94cdfcff
DK
7859 got_offset += 4)
7860 {
7861 // Set and adjust the PLT entry itself.
2e702c99
RM
7862 this->fill_plt_entry(pov, got_address, plt_address,
7863 got_offset, plt_offset);
94cdfcff 7864
fa89cc82
HS
7865 Arm_address value;
7866 if (i < this->count_)
7867 {
7868 // For non-irelative got entries, the value is the beginning of plt.
7869 value = plt_address;
7870 }
7871 else
7872 {
7873 // For irelative got entries, the value is the (global/local) symbol
7874 // address.
7875 const IRelative_data& idata =
7876 this->irelative_data_vec_[i - this->count_];
7877 if (idata.symbol_is_global_)
7878 {
7879 // Set the entry in the GOT for irelative symbols. The content is
7880 // the address of the ifunc, not the address of plt start.
7881 const Sized_symbol<32>* sized_symbol = idata.u_.global;
7882 gold_assert(sized_symbol->type() == elfcpp::STT_GNU_IFUNC);
7883 value = sized_symbol->value();
7884 }
7885 else
7886 {
7887 value = idata.u_.local.relobj->local_symbol_value(
7888 idata.u_.local.index, 0);
7889 }
7890 }
7891 elfcpp::Swap<32, big_endian>::writeval(got_pov, value);
94cdfcff
DK
7892 }
7893
7894 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
7895 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
7896
2ea97941 7897 of->write_output_view(offset, oview_size, oview);
94cdfcff
DK
7898 of->write_output_view(got_file_offset, got_size, got_view);
7899}
7900
fa89cc82 7901
94cdfcff
DK
7902// Create a PLT entry for a global symbol.
7903
7904template<bool big_endian>
7905void
2ea97941 7906Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout,
94cdfcff
DK
7907 Symbol* gsym)
7908{
7909 if (gsym->has_plt_offset())
7910 return;
7911
fa89cc82
HS
7912 if (this->plt_ == NULL)
7913 this->make_plt_section(symtab, layout);
7914
7915 this->plt_->add_entry(symtab, layout, gsym);
7916}
7917
7918
7919// Create the PLT section.
7920template<bool big_endian>
7921void
7922Target_arm<big_endian>::make_plt_section(
7923 Symbol_table* symtab, Layout* layout)
7924{
94cdfcff
DK
7925 if (this->plt_ == NULL)
7926 {
fa89cc82 7927 // Create the GOT section first.
2ea97941 7928 this->got_section(symtab, layout);
94cdfcff 7929
fa89cc82
HS
7930 // GOT for irelatives is create along with got.plt.
7931 gold_assert(this->got_ != NULL
7932 && this->got_plt_ != NULL
7933 && this->got_irelative_ != NULL);
7934 this->plt_ = this->make_data_plt(layout, this->got_, this->got_plt_,
7935 this->got_irelative_);
2e702c99 7936
2ea97941
ILT
7937 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
7938 (elfcpp::SHF_ALLOC
7939 | elfcpp::SHF_EXECINSTR),
22f0da72 7940 this->plt_, ORDER_PLT, false);
07f107f3
WN
7941 symtab->define_in_output_data("$a", NULL,
7942 Symbol_table::PREDEFINED,
7943 this->plt_,
7944 0, 0, elfcpp::STT_NOTYPE,
7945 elfcpp::STB_LOCAL,
7946 elfcpp::STV_DEFAULT, 0,
7947 false, false);
94cdfcff 7948 }
94cdfcff
DK
7949}
7950
fa89cc82
HS
7951
7952// Make a PLT entry for a local STT_GNU_IFUNC symbol.
7953
7954template<bool big_endian>
7955void
7956Target_arm<big_endian>::make_local_ifunc_plt_entry(
7957 Symbol_table* symtab, Layout* layout,
7958 Sized_relobj_file<32, big_endian>* relobj,
7959 unsigned int local_sym_index)
7960{
7961 if (relobj->local_has_plt_offset(local_sym_index))
7962 return;
7963 if (this->plt_ == NULL)
7964 this->make_plt_section(symtab, layout);
7965 unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
7966 relobj,
7967 local_sym_index);
7968 relobj->set_local_plt_offset(local_sym_index, plt_offset);
7969}
7970
7971
0e70b911
CC
7972// Return the number of entries in the PLT.
7973
7974template<bool big_endian>
7975unsigned int
7976Target_arm<big_endian>::plt_entry_count() const
7977{
7978 if (this->plt_ == NULL)
7979 return 0;
7980 return this->plt_->entry_count();
7981}
7982
7983// Return the offset of the first non-reserved PLT entry.
7984
7985template<bool big_endian>
7986unsigned int
7987Target_arm<big_endian>::first_plt_entry_offset() const
7988{
2e702c99 7989 return this->plt_->first_plt_entry_offset();
0e70b911
CC
7990}
7991
7992// Return the size of each PLT entry.
7993
7994template<bool big_endian>
7995unsigned int
7996Target_arm<big_endian>::plt_entry_size() const
7997{
2e702c99 7998 return this->plt_->get_plt_entry_size();
0e70b911
CC
7999}
8000
f96accdf
DK
8001// Get the section to use for TLS_DESC relocations.
8002
8003template<bool big_endian>
8004typename Target_arm<big_endian>::Reloc_section*
8005Target_arm<big_endian>::rel_tls_desc_section(Layout* layout) const
8006{
8007 return this->plt_section()->rel_tls_desc(layout);
8008}
8009
8010// Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
8011
8012template<bool big_endian>
8013void
8014Target_arm<big_endian>::define_tls_base_symbol(
8015 Symbol_table* symtab,
8016 Layout* layout)
8017{
8018 if (this->tls_base_symbol_defined_)
8019 return;
8020
8021 Output_segment* tls_segment = layout->tls_segment();
8022 if (tls_segment != NULL)
8023 {
8024 bool is_exec = parameters->options().output_is_executable();
8025 symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
8026 Symbol_table::PREDEFINED,
8027 tls_segment, 0, 0,
8028 elfcpp::STT_TLS,
8029 elfcpp::STB_LOCAL,
8030 elfcpp::STV_HIDDEN, 0,
8031 (is_exec
8032 ? Symbol::SEGMENT_END
8033 : Symbol::SEGMENT_START),
8034 true);
8035 }
8036 this->tls_base_symbol_defined_ = true;
8037}
8038
8039// Create a GOT entry for the TLS module index.
8040
8041template<bool big_endian>
8042unsigned int
8043Target_arm<big_endian>::got_mod_index_entry(
8044 Symbol_table* symtab,
8045 Layout* layout,
6fa2a40b 8046 Sized_relobj_file<32, big_endian>* object)
f96accdf
DK
8047{
8048 if (this->got_mod_index_offset_ == -1U)
8049 {
8050 gold_assert(symtab != NULL && layout != NULL && object != NULL);
4a54abbb
DK
8051 Arm_output_data_got<big_endian>* got = this->got_section(symtab, layout);
8052 unsigned int got_offset;
8053 if (!parameters->doing_static_link())
8054 {
8055 got_offset = got->add_constant(0);
8056 Reloc_section* rel_dyn = this->rel_dyn_section(layout);
8057 rel_dyn->add_local(object, 0, elfcpp::R_ARM_TLS_DTPMOD32, got,
8058 got_offset);
8059 }
8060 else
8061 {
8062 // We are doing a static link. Just mark it as belong to module 1,
8063 // the executable.
8064 got_offset = got->add_constant(1);
8065 }
8066
f96accdf
DK
8067 got->add_constant(0);
8068 this->got_mod_index_offset_ = got_offset;
8069 }
8070 return this->got_mod_index_offset_;
8071}
8072
8073// Optimize the TLS relocation type based on what we know about the
8074// symbol. IS_FINAL is true if the final address of this symbol is
8075// known at link time.
8076
8077template<bool big_endian>
8078tls::Tls_optimization
8079Target_arm<big_endian>::optimize_tls_reloc(bool, int)
8080{
8081 // FIXME: Currently we do not do any TLS optimization.
8082 return tls::TLSOPT_NONE;
8083}
8084
95a2c8d6
RS
8085// Get the Reference_flags for a particular relocation.
8086
8087template<bool big_endian>
8088int
8089Target_arm<big_endian>::Scan::get_reference_flags(unsigned int r_type)
8090{
8091 switch (r_type)
8092 {
8093 case elfcpp::R_ARM_NONE:
8094 case elfcpp::R_ARM_V4BX:
8095 case elfcpp::R_ARM_GNU_VTENTRY:
8096 case elfcpp::R_ARM_GNU_VTINHERIT:
8097 // No symbol reference.
8098 return 0;
8099
8100 case elfcpp::R_ARM_ABS32:
8101 case elfcpp::R_ARM_ABS16:
8102 case elfcpp::R_ARM_ABS12:
8103 case elfcpp::R_ARM_THM_ABS5:
8104 case elfcpp::R_ARM_ABS8:
8105 case elfcpp::R_ARM_BASE_ABS:
8106 case elfcpp::R_ARM_MOVW_ABS_NC:
8107 case elfcpp::R_ARM_MOVT_ABS:
8108 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8109 case elfcpp::R_ARM_THM_MOVT_ABS:
8110 case elfcpp::R_ARM_ABS32_NOI:
8111 return Symbol::ABSOLUTE_REF;
8112
8113 case elfcpp::R_ARM_REL32:
8114 case elfcpp::R_ARM_LDR_PC_G0:
8115 case elfcpp::R_ARM_SBREL32:
8116 case elfcpp::R_ARM_THM_PC8:
8117 case elfcpp::R_ARM_BASE_PREL:
8118 case elfcpp::R_ARM_MOVW_PREL_NC:
8119 case elfcpp::R_ARM_MOVT_PREL:
8120 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8121 case elfcpp::R_ARM_THM_MOVT_PREL:
8122 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
8123 case elfcpp::R_ARM_THM_PC12:
8124 case elfcpp::R_ARM_REL32_NOI:
8125 case elfcpp::R_ARM_ALU_PC_G0_NC:
8126 case elfcpp::R_ARM_ALU_PC_G0:
8127 case elfcpp::R_ARM_ALU_PC_G1_NC:
8128 case elfcpp::R_ARM_ALU_PC_G1:
8129 case elfcpp::R_ARM_ALU_PC_G2:
8130 case elfcpp::R_ARM_LDR_PC_G1:
8131 case elfcpp::R_ARM_LDR_PC_G2:
8132 case elfcpp::R_ARM_LDRS_PC_G0:
8133 case elfcpp::R_ARM_LDRS_PC_G1:
8134 case elfcpp::R_ARM_LDRS_PC_G2:
8135 case elfcpp::R_ARM_LDC_PC_G0:
8136 case elfcpp::R_ARM_LDC_PC_G1:
8137 case elfcpp::R_ARM_LDC_PC_G2:
8138 case elfcpp::R_ARM_ALU_SB_G0_NC:
8139 case elfcpp::R_ARM_ALU_SB_G0:
8140 case elfcpp::R_ARM_ALU_SB_G1_NC:
8141 case elfcpp::R_ARM_ALU_SB_G1:
8142 case elfcpp::R_ARM_ALU_SB_G2:
8143 case elfcpp::R_ARM_LDR_SB_G0:
8144 case elfcpp::R_ARM_LDR_SB_G1:
8145 case elfcpp::R_ARM_LDR_SB_G2:
8146 case elfcpp::R_ARM_LDRS_SB_G0:
8147 case elfcpp::R_ARM_LDRS_SB_G1:
8148 case elfcpp::R_ARM_LDRS_SB_G2:
8149 case elfcpp::R_ARM_LDC_SB_G0:
8150 case elfcpp::R_ARM_LDC_SB_G1:
8151 case elfcpp::R_ARM_LDC_SB_G2:
8152 case elfcpp::R_ARM_MOVW_BREL_NC:
8153 case elfcpp::R_ARM_MOVT_BREL:
8154 case elfcpp::R_ARM_MOVW_BREL:
8155 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8156 case elfcpp::R_ARM_THM_MOVT_BREL:
8157 case elfcpp::R_ARM_THM_MOVW_BREL:
8158 case elfcpp::R_ARM_GOTOFF32:
8159 case elfcpp::R_ARM_GOTOFF12:
95a2c8d6
RS
8160 case elfcpp::R_ARM_SBREL31:
8161 return Symbol::RELATIVE_REF;
8162
8163 case elfcpp::R_ARM_PLT32:
8164 case elfcpp::R_ARM_CALL:
8165 case elfcpp::R_ARM_JUMP24:
8166 case elfcpp::R_ARM_THM_CALL:
8167 case elfcpp::R_ARM_THM_JUMP24:
8168 case elfcpp::R_ARM_THM_JUMP19:
8169 case elfcpp::R_ARM_THM_JUMP6:
8170 case elfcpp::R_ARM_THM_JUMP11:
8171 case elfcpp::R_ARM_THM_JUMP8:
017257f8
DK
8172 // R_ARM_PREL31 is not used to relocate call/jump instructions but
8173 // in unwind tables. It may point to functions via PLTs.
8174 // So we treat it like call/jump relocations above.
8175 case elfcpp::R_ARM_PREL31:
95a2c8d6
RS
8176 return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
8177
8178 case elfcpp::R_ARM_GOT_BREL:
8179 case elfcpp::R_ARM_GOT_ABS:
8180 case elfcpp::R_ARM_GOT_PREL:
8181 // Absolute in GOT.
8182 return Symbol::ABSOLUTE_REF;
8183
8184 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8185 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8186 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8187 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8188 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8189 return Symbol::TLS_REF;
8190
8191 case elfcpp::R_ARM_TARGET1:
8192 case elfcpp::R_ARM_TARGET2:
8193 case elfcpp::R_ARM_COPY:
8194 case elfcpp::R_ARM_GLOB_DAT:
8195 case elfcpp::R_ARM_JUMP_SLOT:
8196 case elfcpp::R_ARM_RELATIVE:
8197 case elfcpp::R_ARM_PC24:
8198 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8199 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8200 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
8201 default:
8202 // Not expected. We will give an error later.
8203 return 0;
8204 }
8205}
8206
4a657b0d
DK
8207// Report an unsupported relocation against a local symbol.
8208
8209template<bool big_endian>
8210void
8211Target_arm<big_endian>::Scan::unsupported_reloc_local(
6fa2a40b 8212 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
8213 unsigned int r_type)
8214{
8215 gold_error(_("%s: unsupported reloc %u against local symbol"),
8216 object->name().c_str(), r_type);
8217}
8218
bec53400
DK
8219// We are about to emit a dynamic relocation of type R_TYPE. If the
8220// dynamic linker does not support it, issue an error. The GNU linker
8221// only issues a non-PIC error for an allocated read-only section.
8222// Here we know the section is allocated, but we don't know that it is
8223// read-only. But we check for all the relocation types which the
8224// glibc dynamic linker supports, so it seems appropriate to issue an
8225// error even if the section is not read-only.
8226
8227template<bool big_endian>
8228void
8229Target_arm<big_endian>::Scan::check_non_pic(Relobj* object,
8230 unsigned int r_type)
8231{
8232 switch (r_type)
8233 {
8234 // These are the relocation types supported by glibc for ARM.
8235 case elfcpp::R_ARM_RELATIVE:
8236 case elfcpp::R_ARM_COPY:
8237 case elfcpp::R_ARM_GLOB_DAT:
8238 case elfcpp::R_ARM_JUMP_SLOT:
8239 case elfcpp::R_ARM_ABS32:
be8fcb75 8240 case elfcpp::R_ARM_ABS32_NOI:
fa89cc82 8241 case elfcpp::R_ARM_IRELATIVE:
bec53400
DK
8242 case elfcpp::R_ARM_PC24:
8243 // FIXME: The following 3 types are not supported by Android's dynamic
8244 // linker.
8245 case elfcpp::R_ARM_TLS_DTPMOD32:
8246 case elfcpp::R_ARM_TLS_DTPOFF32:
8247 case elfcpp::R_ARM_TLS_TPOFF32:
8248 return;
8249
8250 default:
c8761b9a
DK
8251 {
8252 // This prevents us from issuing more than one error per reloc
8253 // section. But we can still wind up issuing more than one
8254 // error per object file.
8255 if (this->issued_non_pic_error_)
8256 return;
8257 const Arm_reloc_property* reloc_property =
8258 arm_reloc_property_table->get_reloc_property(r_type);
8259 gold_assert(reloc_property != NULL);
8260 object->error(_("requires unsupported dynamic reloc %s; "
8261 "recompile with -fPIC"),
8262 reloc_property->name().c_str());
8263 this->issued_non_pic_error_ = true;
bec53400 8264 return;
c8761b9a 8265 }
bec53400
DK
8266
8267 case elfcpp::R_ARM_NONE:
8268 gold_unreachable();
8269 }
8270}
8271
fa89cc82
HS
8272
8273// Return whether we need to make a PLT entry for a relocation of the
8274// given type against a STT_GNU_IFUNC symbol.
8275
8276template<bool big_endian>
8277bool
8278Target_arm<big_endian>::Scan::reloc_needs_plt_for_ifunc(
8279 Sized_relobj_file<32, big_endian>* object,
8280 unsigned int r_type)
8281{
8282 int flags = Scan::get_reference_flags(r_type);
8283 if (flags & Symbol::TLS_REF)
8284 {
8285 gold_error(_("%s: unsupported TLS reloc %u for IFUNC symbol"),
8286 object->name().c_str(), r_type);
8287 return false;
8288 }
8289 return flags != 0;
8290}
8291
8292
4a657b0d 8293// Scan a relocation for a local symbol.
bec53400
DK
8294// FIXME: This only handles a subset of relocation types used by Android
8295// on ARM v5te devices.
4a657b0d
DK
8296
8297template<bool big_endian>
8298inline void
ad0f2072 8299Target_arm<big_endian>::Scan::local(Symbol_table* symtab,
2ea97941 8300 Layout* layout,
bec53400 8301 Target_arm* target,
6fa2a40b 8302 Sized_relobj_file<32, big_endian>* object,
bec53400
DK
8303 unsigned int data_shndx,
8304 Output_section* output_section,
8305 const elfcpp::Rel<32, big_endian>& reloc,
4a657b0d 8306 unsigned int r_type,
bfdfa4cd
AM
8307 const elfcpp::Sym<32, big_endian>& lsym,
8308 bool is_discarded)
4a657b0d 8309{
bfdfa4cd
AM
8310 if (is_discarded)
8311 return;
8312
a6d1ef57 8313 r_type = get_real_reloc_type(r_type);
fa89cc82
HS
8314
8315 // A local STT_GNU_IFUNC symbol may require a PLT entry.
8316 bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
8317 if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type))
8318 {
8319 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8320 target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
8321 }
8322
4a657b0d
DK
8323 switch (r_type)
8324 {
8325 case elfcpp::R_ARM_NONE:
e4782e83
DK
8326 case elfcpp::R_ARM_V4BX:
8327 case elfcpp::R_ARM_GNU_VTENTRY:
8328 case elfcpp::R_ARM_GNU_VTINHERIT:
4a657b0d
DK
8329 break;
8330
bec53400 8331 case elfcpp::R_ARM_ABS32:
be8fcb75 8332 case elfcpp::R_ARM_ABS32_NOI:
bec53400
DK
8333 // If building a shared library (or a position-independent
8334 // executable), we need to create a dynamic relocation for
8335 // this location. The relocation applied at link time will
8336 // apply the link-time value, so we flag the location with
8337 // an R_ARM_RELATIVE relocation so the dynamic loader can
8338 // relocate it easily.
8339 if (parameters->options().output_is_position_independent())
8340 {
2ea97941 8341 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
bec53400 8342 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
2e702c99
RM
8343 // If we are to add more other reloc types than R_ARM_ABS32,
8344 // we need to add check_non_pic(object, r_type) here.
bec53400
DK
8345 rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE,
8346 output_section, data_shndx,
fa89cc82 8347 reloc.get_r_offset(), is_ifunc);
bec53400
DK
8348 }
8349 break;
8350
e4782e83
DK
8351 case elfcpp::R_ARM_ABS16:
8352 case elfcpp::R_ARM_ABS12:
be8fcb75
ILT
8353 case elfcpp::R_ARM_THM_ABS5:
8354 case elfcpp::R_ARM_ABS8:
be8fcb75 8355 case elfcpp::R_ARM_BASE_ABS:
fd3c5f0b
ILT
8356 case elfcpp::R_ARM_MOVW_ABS_NC:
8357 case elfcpp::R_ARM_MOVT_ABS:
8358 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8359 case elfcpp::R_ARM_THM_MOVT_ABS:
e4782e83
DK
8360 // If building a shared library (or a position-independent
8361 // executable), we need to create a dynamic relocation for
8362 // this location. Because the addend needs to remain in the
8363 // data section, we need to be careful not to apply this
8364 // relocation statically.
8365 if (parameters->options().output_is_position_independent())
2e702c99 8366 {
e4782e83 8367 check_non_pic(object, r_type);
2e702c99 8368 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
e4782e83 8369 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
2e702c99 8370 if (lsym.get_st_type() != elfcpp::STT_SECTION)
e4782e83
DK
8371 rel_dyn->add_local(object, r_sym, r_type, output_section,
8372 data_shndx, reloc.get_r_offset());
2e702c99
RM
8373 else
8374 {
8375 gold_assert(lsym.get_st_value() == 0);
e4782e83
DK
8376 unsigned int shndx = lsym.get_st_shndx();
8377 bool is_ordinary;
8378 shndx = object->adjust_sym_shndx(r_sym, shndx,
8379 &is_ordinary);
8380 if (!is_ordinary)
8381 object->error(_("section symbol %u has bad shndx %u"),
8382 r_sym, shndx);
8383 else
8384 rel_dyn->add_local_section(object, shndx,
8385 r_type, output_section,
8386 data_shndx, reloc.get_r_offset());
2e702c99
RM
8387 }
8388 }
e4782e83
DK
8389 break;
8390
e4782e83
DK
8391 case elfcpp::R_ARM_REL32:
8392 case elfcpp::R_ARM_LDR_PC_G0:
8393 case elfcpp::R_ARM_SBREL32:
8394 case elfcpp::R_ARM_THM_CALL:
8395 case elfcpp::R_ARM_THM_PC8:
8396 case elfcpp::R_ARM_BASE_PREL:
8397 case elfcpp::R_ARM_PLT32:
8398 case elfcpp::R_ARM_CALL:
8399 case elfcpp::R_ARM_JUMP24:
8400 case elfcpp::R_ARM_THM_JUMP24:
e4782e83
DK
8401 case elfcpp::R_ARM_SBREL31:
8402 case elfcpp::R_ARM_PREL31:
c2a122b6
ILT
8403 case elfcpp::R_ARM_MOVW_PREL_NC:
8404 case elfcpp::R_ARM_MOVT_PREL:
8405 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8406 case elfcpp::R_ARM_THM_MOVT_PREL:
e4782e83 8407 case elfcpp::R_ARM_THM_JUMP19:
800d0f56 8408 case elfcpp::R_ARM_THM_JUMP6:
11b861d5 8409 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
e4782e83
DK
8410 case elfcpp::R_ARM_THM_PC12:
8411 case elfcpp::R_ARM_REL32_NOI:
b10d2873
ILT
8412 case elfcpp::R_ARM_ALU_PC_G0_NC:
8413 case elfcpp::R_ARM_ALU_PC_G0:
8414 case elfcpp::R_ARM_ALU_PC_G1_NC:
8415 case elfcpp::R_ARM_ALU_PC_G1:
8416 case elfcpp::R_ARM_ALU_PC_G2:
e4782e83
DK
8417 case elfcpp::R_ARM_LDR_PC_G1:
8418 case elfcpp::R_ARM_LDR_PC_G2:
8419 case elfcpp::R_ARM_LDRS_PC_G0:
8420 case elfcpp::R_ARM_LDRS_PC_G1:
8421 case elfcpp::R_ARM_LDRS_PC_G2:
8422 case elfcpp::R_ARM_LDC_PC_G0:
8423 case elfcpp::R_ARM_LDC_PC_G1:
8424 case elfcpp::R_ARM_LDC_PC_G2:
b10d2873
ILT
8425 case elfcpp::R_ARM_ALU_SB_G0_NC:
8426 case elfcpp::R_ARM_ALU_SB_G0:
8427 case elfcpp::R_ARM_ALU_SB_G1_NC:
8428 case elfcpp::R_ARM_ALU_SB_G1:
8429 case elfcpp::R_ARM_ALU_SB_G2:
b10d2873
ILT
8430 case elfcpp::R_ARM_LDR_SB_G0:
8431 case elfcpp::R_ARM_LDR_SB_G1:
8432 case elfcpp::R_ARM_LDR_SB_G2:
b10d2873
ILT
8433 case elfcpp::R_ARM_LDRS_SB_G0:
8434 case elfcpp::R_ARM_LDRS_SB_G1:
8435 case elfcpp::R_ARM_LDRS_SB_G2:
b10d2873
ILT
8436 case elfcpp::R_ARM_LDC_SB_G0:
8437 case elfcpp::R_ARM_LDC_SB_G1:
8438 case elfcpp::R_ARM_LDC_SB_G2:
e4782e83
DK
8439 case elfcpp::R_ARM_MOVW_BREL_NC:
8440 case elfcpp::R_ARM_MOVT_BREL:
8441 case elfcpp::R_ARM_MOVW_BREL:
8442 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8443 case elfcpp::R_ARM_THM_MOVT_BREL:
8444 case elfcpp::R_ARM_THM_MOVW_BREL:
8445 case elfcpp::R_ARM_THM_JUMP11:
8446 case elfcpp::R_ARM_THM_JUMP8:
8447 // We don't need to do anything for a relative addressing relocation
8448 // against a local symbol if it does not reference the GOT.
bec53400
DK
8449 break;
8450
8451 case elfcpp::R_ARM_GOTOFF32:
e4782e83 8452 case elfcpp::R_ARM_GOTOFF12:
bec53400 8453 // We need a GOT section:
2ea97941 8454 target->got_section(symtab, layout);
bec53400
DK
8455 break;
8456
bec53400 8457 case elfcpp::R_ARM_GOT_BREL:
7f5309a5 8458 case elfcpp::R_ARM_GOT_PREL:
bec53400
DK
8459 {
8460 // The symbol requires a GOT entry.
4a54abbb 8461 Arm_output_data_got<big_endian>* got =
2ea97941 8462 target->got_section(symtab, layout);
bec53400
DK
8463 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8464 if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
8465 {
8466 // If we are generating a shared object, we need to add a
8467 // dynamic RELATIVE relocation for this symbol's GOT entry.
8468 if (parameters->options().output_is_position_independent())
8469 {
2ea97941
ILT
8470 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8471 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
bec53400 8472 rel_dyn->add_local_relative(
2ea97941
ILT
8473 object, r_sym, elfcpp::R_ARM_RELATIVE, got,
8474 object->local_got_offset(r_sym, GOT_TYPE_STANDARD));
bec53400
DK
8475 }
8476 }
8477 }
8478 break;
8479
8480 case elfcpp::R_ARM_TARGET1:
e4782e83 8481 case elfcpp::R_ARM_TARGET2:
bec53400
DK
8482 // This should have been mapped to another type already.
8483 // Fall through.
8484 case elfcpp::R_ARM_COPY:
8485 case elfcpp::R_ARM_GLOB_DAT:
8486 case elfcpp::R_ARM_JUMP_SLOT:
8487 case elfcpp::R_ARM_RELATIVE:
8488 // These are relocations which should only be seen by the
8489 // dynamic linker, and should never be seen here.
8490 gold_error(_("%s: unexpected reloc %u in object file"),
8491 object->name().c_str(), r_type);
8492 break;
8493
f96accdf
DK
8494
8495 // These are initial TLS relocs, which are expected when
8496 // linking.
8497 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8498 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8499 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8500 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8501 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8502 {
8503 bool output_is_shared = parameters->options().shared();
8504 const tls::Tls_optimization optimized_type
2e702c99 8505 = Target_arm<big_endian>::optimize_tls_reloc(!output_is_shared,
f96accdf
DK
8506 r_type);
8507 switch (r_type)
8508 {
8509 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8510 if (optimized_type == tls::TLSOPT_NONE)
8511 {
2e702c99
RM
8512 // Create a pair of GOT entries for the module index and
8513 // dtv-relative offset.
8514 Arm_output_data_got<big_endian>* got
8515 = target->got_section(symtab, layout);
8516 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
f96accdf
DK
8517 unsigned int shndx = lsym.get_st_shndx();
8518 bool is_ordinary;
8519 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
8520 if (!is_ordinary)
4a54abbb
DK
8521 {
8522 object->error(_("local symbol %u has bad shndx %u"),
8523 r_sym, shndx);
8524 break;
8525 }
8526
8527 if (!parameters->doing_static_link())
f96accdf
DK
8528 got->add_local_pair_with_rel(object, r_sym, shndx,
8529 GOT_TYPE_TLS_PAIR,
8530 target->rel_dyn_section(layout),
bd73a62d 8531 elfcpp::R_ARM_TLS_DTPMOD32);
4a54abbb
DK
8532 else
8533 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR,
8534 object, r_sym);
f96accdf
DK
8535 }
8536 else
8537 // FIXME: TLS optimization not supported yet.
8538 gold_unreachable();
8539 break;
8540
8541 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8542 if (optimized_type == tls::TLSOPT_NONE)
8543 {
2e702c99
RM
8544 // Create a GOT entry for the module index.
8545 target->got_mod_index_entry(symtab, layout, object);
f96accdf
DK
8546 }
8547 else
8548 // FIXME: TLS optimization not supported yet.
8549 gold_unreachable();
8550 break;
8551
8552 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8553 break;
8554
8555 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8556 layout->set_has_static_tls();
8557 if (optimized_type == tls::TLSOPT_NONE)
8558 {
4a54abbb
DK
8559 // Create a GOT entry for the tp-relative offset.
8560 Arm_output_data_got<big_endian>* got
8561 = target->got_section(symtab, layout);
8562 unsigned int r_sym =
8563 elfcpp::elf_r_sym<32>(reloc.get_r_info());
8564 if (!parameters->doing_static_link())
8565 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
8566 target->rel_dyn_section(layout),
8567 elfcpp::R_ARM_TLS_TPOFF32);
8568 else if (!object->local_has_got_offset(r_sym,
8569 GOT_TYPE_TLS_OFFSET))
8570 {
8571 got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
8572 unsigned int got_offset =
8573 object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
8574 got->add_static_reloc(got_offset,
8575 elfcpp::R_ARM_TLS_TPOFF32, object,
8576 r_sym);
8577 }
f96accdf
DK
8578 }
8579 else
8580 // FIXME: TLS optimization not supported yet.
8581 gold_unreachable();
8582 break;
8583
8584 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8585 layout->set_has_static_tls();
8586 if (output_is_shared)
8587 {
2e702c99
RM
8588 // We need to create a dynamic relocation.
8589 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
8590 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
f96accdf
DK
8591 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8592 rel_dyn->add_local(object, r_sym, elfcpp::R_ARM_TLS_TPOFF32,
8593 output_section, data_shndx,
8594 reloc.get_r_offset());
8595 }
8596 break;
8597
8598 default:
8599 gold_unreachable();
8600 }
8601 }
8602 break;
8603
3cef7179
ILT
8604 case elfcpp::R_ARM_PC24:
8605 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8606 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8607 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
4a657b0d
DK
8608 default:
8609 unsupported_reloc_local(object, r_type);
8610 break;
8611 }
8612}
8613
8614// Report an unsupported relocation against a global symbol.
8615
8616template<bool big_endian>
8617void
8618Target_arm<big_endian>::Scan::unsupported_reloc_global(
6fa2a40b 8619 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
8620 unsigned int r_type,
8621 Symbol* gsym)
8622{
8623 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
8624 object->name().c_str(), r_type, gsym->demangled_name().c_str());
8625}
8626
8a75a161
DK
8627template<bool big_endian>
8628inline bool
8629Target_arm<big_endian>::Scan::possible_function_pointer_reloc(
8630 unsigned int r_type)
8631{
8632 switch (r_type)
8633 {
8634 case elfcpp::R_ARM_PC24:
8635 case elfcpp::R_ARM_THM_CALL:
8636 case elfcpp::R_ARM_PLT32:
8637 case elfcpp::R_ARM_CALL:
8638 case elfcpp::R_ARM_JUMP24:
8639 case elfcpp::R_ARM_THM_JUMP24:
8640 case elfcpp::R_ARM_SBREL31:
8641 case elfcpp::R_ARM_PREL31:
8642 case elfcpp::R_ARM_THM_JUMP19:
8643 case elfcpp::R_ARM_THM_JUMP6:
8644 case elfcpp::R_ARM_THM_JUMP11:
8645 case elfcpp::R_ARM_THM_JUMP8:
8646 // All the relocations above are branches except SBREL31 and PREL31.
8647 return false;
8648
8649 default:
8650 // Be conservative and assume this is a function pointer.
8651 return true;
8652 }
8653}
8654
8655template<bool big_endian>
8656inline bool
8657Target_arm<big_endian>::Scan::local_reloc_may_be_function_pointer(
8658 Symbol_table*,
8659 Layout*,
8660 Target_arm<big_endian>* target,
6fa2a40b 8661 Sized_relobj_file<32, big_endian>*,
8a75a161
DK
8662 unsigned int,
8663 Output_section*,
8664 const elfcpp::Rel<32, big_endian>&,
8665 unsigned int r_type,
8666 const elfcpp::Sym<32, big_endian>&)
8667{
8668 r_type = target->get_real_reloc_type(r_type);
8669 return possible_function_pointer_reloc(r_type);
8670}
8671
8672template<bool big_endian>
8673inline bool
8674Target_arm<big_endian>::Scan::global_reloc_may_be_function_pointer(
8675 Symbol_table*,
8676 Layout*,
8677 Target_arm<big_endian>* target,
6fa2a40b 8678 Sized_relobj_file<32, big_endian>*,
8a75a161
DK
8679 unsigned int,
8680 Output_section*,
8681 const elfcpp::Rel<32, big_endian>&,
8682 unsigned int r_type,
8683 Symbol* gsym)
8684{
8685 // GOT is not a function.
8686 if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8687 return false;
8688
8689 r_type = target->get_real_reloc_type(r_type);
8690 return possible_function_pointer_reloc(r_type);
8691}
8692
4a657b0d
DK
8693// Scan a relocation for a global symbol.
8694
8695template<bool big_endian>
8696inline void
ad0f2072 8697Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
2ea97941 8698 Layout* layout,
bec53400 8699 Target_arm* target,
6fa2a40b 8700 Sized_relobj_file<32, big_endian>* object,
bec53400
DK
8701 unsigned int data_shndx,
8702 Output_section* output_section,
8703 const elfcpp::Rel<32, big_endian>& reloc,
4a657b0d
DK
8704 unsigned int r_type,
8705 Symbol* gsym)
8706{
c8761b9a
DK
8707 // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
8708 // section. We check here to avoid creating a dynamic reloc against
8709 // _GLOBAL_OFFSET_TABLE_.
8710 if (!target->has_got_section()
8711 && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8712 target->got_section(symtab, layout);
8713
fa89cc82
HS
8714 // A STT_GNU_IFUNC symbol may require a PLT entry.
8715 if (gsym->type() == elfcpp::STT_GNU_IFUNC
8716 && this->reloc_needs_plt_for_ifunc(object, r_type))
8717 target->make_plt_entry(symtab, layout, gsym);
8718
a6d1ef57 8719 r_type = get_real_reloc_type(r_type);
4a657b0d
DK
8720 switch (r_type)
8721 {
8722 case elfcpp::R_ARM_NONE:
e4782e83
DK
8723 case elfcpp::R_ARM_V4BX:
8724 case elfcpp::R_ARM_GNU_VTENTRY:
8725 case elfcpp::R_ARM_GNU_VTINHERIT:
4a657b0d
DK
8726 break;
8727
bec53400 8728 case elfcpp::R_ARM_ABS32:
e4782e83
DK
8729 case elfcpp::R_ARM_ABS16:
8730 case elfcpp::R_ARM_ABS12:
8731 case elfcpp::R_ARM_THM_ABS5:
8732 case elfcpp::R_ARM_ABS8:
8733 case elfcpp::R_ARM_BASE_ABS:
8734 case elfcpp::R_ARM_MOVW_ABS_NC:
8735 case elfcpp::R_ARM_MOVT_ABS:
8736 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8737 case elfcpp::R_ARM_THM_MOVT_ABS:
be8fcb75 8738 case elfcpp::R_ARM_ABS32_NOI:
e4782e83 8739 // Absolute addressing relocations.
bec53400 8740 {
2e702c99
RM
8741 // Make a PLT entry if necessary.
8742 if (this->symbol_needs_plt_entry(gsym))
8743 {
8744 target->make_plt_entry(symtab, layout, gsym);
8745 // Since this is not a PC-relative relocation, we may be
8746 // taking the address of a function. In that case we need to
8747 // set the entry in the dynamic symbol table to the address of
8748 // the PLT entry.
8749 if (gsym->is_from_dynobj() && !parameters->options().shared())
8750 gsym->set_needs_dynsym_value();
8751 }
8752 // Make a dynamic relocation if necessary.
8753 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
8754 {
a82bef93
ST
8755 if (!parameters->options().output_is_position_independent()
8756 && gsym->may_need_copy_reloc())
2e702c99
RM
8757 {
8758 target->copy_reloc(symtab, layout, object,
8759 data_shndx, output_section, gsym, reloc);
8760 }
fa89cc82
HS
8761 else if ((r_type == elfcpp::R_ARM_ABS32
8762 || r_type == elfcpp::R_ARM_ABS32_NOI)
8763 && gsym->type() == elfcpp::STT_GNU_IFUNC
8764 && gsym->can_use_relative_reloc(false)
8765 && !gsym->is_from_dynobj()
8766 && !gsym->is_undefined()
8767 && !gsym->is_preemptible())
8768 {
8769 // Use an IRELATIVE reloc for a locally defined STT_GNU_IFUNC
8770 // symbol. This makes a function address in a PIE executable
8771 // match the address in a shared library that it links against.
8772 Reloc_section* rel_irelative =
8773 target->rel_irelative_section(layout);
8774 unsigned int r_type = elfcpp::R_ARM_IRELATIVE;
8775 rel_irelative->add_symbolless_global_addend(
8776 gsym, r_type, output_section, object,
8777 data_shndx, reloc.get_r_offset());
8778 }
2e702c99 8779 else if ((r_type == elfcpp::R_ARM_ABS32
e4782e83 8780 || r_type == elfcpp::R_ARM_ABS32_NOI)
2e702c99
RM
8781 && gsym->can_use_relative_reloc(false))
8782 {
8783 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8784 rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
8785 output_section, object,
8786 data_shndx, reloc.get_r_offset());
8787 }
8788 else
8789 {
e4782e83 8790 check_non_pic(object, r_type);
2e702c99
RM
8791 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8792 rel_dyn->add_global(gsym, r_type, output_section, object,
8793 data_shndx, reloc.get_r_offset());
8794 }
8795 }
bec53400
DK
8796 }
8797 break;
8798
e4782e83
DK
8799 case elfcpp::R_ARM_GOTOFF32:
8800 case elfcpp::R_ARM_GOTOFF12:
8801 // We need a GOT section.
8802 target->got_section(symtab, layout);
8803 break;
2e702c99 8804
e4782e83
DK
8805 case elfcpp::R_ARM_REL32:
8806 case elfcpp::R_ARM_LDR_PC_G0:
8807 case elfcpp::R_ARM_SBREL32:
8808 case elfcpp::R_ARM_THM_PC8:
8809 case elfcpp::R_ARM_BASE_PREL:
c2a122b6
ILT
8810 case elfcpp::R_ARM_MOVW_PREL_NC:
8811 case elfcpp::R_ARM_MOVT_PREL:
8812 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8813 case elfcpp::R_ARM_THM_MOVT_PREL:
11b861d5 8814 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
e4782e83
DK
8815 case elfcpp::R_ARM_THM_PC12:
8816 case elfcpp::R_ARM_REL32_NOI:
b10d2873
ILT
8817 case elfcpp::R_ARM_ALU_PC_G0_NC:
8818 case elfcpp::R_ARM_ALU_PC_G0:
8819 case elfcpp::R_ARM_ALU_PC_G1_NC:
8820 case elfcpp::R_ARM_ALU_PC_G1:
8821 case elfcpp::R_ARM_ALU_PC_G2:
e4782e83
DK
8822 case elfcpp::R_ARM_LDR_PC_G1:
8823 case elfcpp::R_ARM_LDR_PC_G2:
8824 case elfcpp::R_ARM_LDRS_PC_G0:
8825 case elfcpp::R_ARM_LDRS_PC_G1:
8826 case elfcpp::R_ARM_LDRS_PC_G2:
8827 case elfcpp::R_ARM_LDC_PC_G0:
8828 case elfcpp::R_ARM_LDC_PC_G1:
8829 case elfcpp::R_ARM_LDC_PC_G2:
b10d2873
ILT
8830 case elfcpp::R_ARM_ALU_SB_G0_NC:
8831 case elfcpp::R_ARM_ALU_SB_G0:
8832 case elfcpp::R_ARM_ALU_SB_G1_NC:
8833 case elfcpp::R_ARM_ALU_SB_G1:
8834 case elfcpp::R_ARM_ALU_SB_G2:
b10d2873
ILT
8835 case elfcpp::R_ARM_LDR_SB_G0:
8836 case elfcpp::R_ARM_LDR_SB_G1:
8837 case elfcpp::R_ARM_LDR_SB_G2:
b10d2873
ILT
8838 case elfcpp::R_ARM_LDRS_SB_G0:
8839 case elfcpp::R_ARM_LDRS_SB_G1:
8840 case elfcpp::R_ARM_LDRS_SB_G2:
b10d2873
ILT
8841 case elfcpp::R_ARM_LDC_SB_G0:
8842 case elfcpp::R_ARM_LDC_SB_G1:
8843 case elfcpp::R_ARM_LDC_SB_G2:
e4782e83
DK
8844 case elfcpp::R_ARM_MOVW_BREL_NC:
8845 case elfcpp::R_ARM_MOVT_BREL:
8846 case elfcpp::R_ARM_MOVW_BREL:
8847 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8848 case elfcpp::R_ARM_THM_MOVT_BREL:
8849 case elfcpp::R_ARM_THM_MOVW_BREL:
8850 // Relative addressing relocations.
bec53400
DK
8851 {
8852 // Make a dynamic relocation if necessary.
95a2c8d6 8853 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
bec53400 8854 {
a82bef93
ST
8855 if (parameters->options().output_is_executable()
8856 && target->may_need_copy_reloc(gsym))
bec53400 8857 {
2ea97941 8858 target->copy_reloc(symtab, layout, object,
bec53400
DK
8859 data_shndx, output_section, gsym, reloc);
8860 }
8861 else
8862 {
8863 check_non_pic(object, r_type);
2ea97941 8864 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
bec53400
DK
8865 rel_dyn->add_global(gsym, r_type, output_section, object,
8866 data_shndx, reloc.get_r_offset());
8867 }
8868 }
8869 }
8870 break;
8871
f4e5969c 8872 case elfcpp::R_ARM_THM_CALL:
bec53400 8873 case elfcpp::R_ARM_PLT32:
e4782e83
DK
8874 case elfcpp::R_ARM_CALL:
8875 case elfcpp::R_ARM_JUMP24:
8876 case elfcpp::R_ARM_THM_JUMP24:
8877 case elfcpp::R_ARM_SBREL31:
c9a2c125 8878 case elfcpp::R_ARM_PREL31:
e4782e83
DK
8879 case elfcpp::R_ARM_THM_JUMP19:
8880 case elfcpp::R_ARM_THM_JUMP6:
8881 case elfcpp::R_ARM_THM_JUMP11:
8882 case elfcpp::R_ARM_THM_JUMP8:
8883 // All the relocation above are branches except for the PREL31 ones.
8884 // A PREL31 relocation can point to a personality function in a shared
8885 // library. In that case we want to use a PLT because we want to
9b547ce6 8886 // call the personality routine and the dynamic linkers we care about
e4782e83
DK
8887 // do not support dynamic PREL31 relocations. An REL31 relocation may
8888 // point to a function whose unwinding behaviour is being described but
8889 // we will not mistakenly generate a PLT for that because we should use
8890 // a local section symbol.
8891
bec53400
DK
8892 // If the symbol is fully resolved, this is just a relative
8893 // local reloc. Otherwise we need a PLT entry.
8894 if (gsym->final_value_is_known())
8895 break;
8896 // If building a shared library, we can also skip the PLT entry
8897 // if the symbol is defined in the output file and is protected
8898 // or hidden.
8899 if (gsym->is_defined()
8900 && !gsym->is_from_dynobj()
8901 && !gsym->is_preemptible())
8902 break;
2ea97941 8903 target->make_plt_entry(symtab, layout, gsym);
bec53400
DK
8904 break;
8905
bec53400 8906 case elfcpp::R_ARM_GOT_BREL:
e4782e83 8907 case elfcpp::R_ARM_GOT_ABS:
7f5309a5 8908 case elfcpp::R_ARM_GOT_PREL:
bec53400
DK
8909 {
8910 // The symbol requires a GOT entry.
4a54abbb 8911 Arm_output_data_got<big_endian>* got =
2ea97941 8912 target->got_section(symtab, layout);
bec53400 8913 if (gsym->final_value_is_known())
fa89cc82
HS
8914 {
8915 // For a STT_GNU_IFUNC symbol we want the PLT address.
8916 if (gsym->type() == elfcpp::STT_GNU_IFUNC)
8917 got->add_global_plt(gsym, GOT_TYPE_STANDARD);
8918 else
8919 got->add_global(gsym, GOT_TYPE_STANDARD);
8920 }
bec53400
DK
8921 else
8922 {
8923 // If this symbol is not fully resolved, we need to add a
8924 // GOT entry with a dynamic relocation.
2ea97941 8925 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
bec53400
DK
8926 if (gsym->is_from_dynobj()
8927 || gsym->is_undefined()
fa40b62a
DK
8928 || gsym->is_preemptible()
8929 || (gsym->visibility() == elfcpp::STV_PROTECTED
fa89cc82
HS
8930 && parameters->options().shared())
8931 || (gsym->type() == elfcpp::STT_GNU_IFUNC
8932 && parameters->options().output_is_position_independent()))
bec53400
DK
8933 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
8934 rel_dyn, elfcpp::R_ARM_GLOB_DAT);
8935 else
8936 {
fa89cc82
HS
8937 // For a STT_GNU_IFUNC symbol we want to write the PLT
8938 // offset into the GOT, so that function pointer
8939 // comparisons work correctly.
8940 bool is_new;
8941 if (gsym->type() != elfcpp::STT_GNU_IFUNC)
8942 is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
8943 else
8944 {
8945 is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
8946 // Tell the dynamic linker to use the PLT address
8947 // when resolving relocations.
8948 if (gsym->is_from_dynobj()
8949 && !parameters->options().shared())
8950 gsym->set_needs_dynsym_value();
8951 }
8952 if (is_new)
bec53400
DK
8953 rel_dyn->add_global_relative(
8954 gsym, elfcpp::R_ARM_RELATIVE, got,
8955 gsym->got_offset(GOT_TYPE_STANDARD));
8956 }
8957 }
8958 }
8959 break;
8960
8961 case elfcpp::R_ARM_TARGET1:
e4782e83
DK
8962 case elfcpp::R_ARM_TARGET2:
8963 // These should have been mapped to other types already.
bec53400
DK
8964 // Fall through.
8965 case elfcpp::R_ARM_COPY:
8966 case elfcpp::R_ARM_GLOB_DAT:
8967 case elfcpp::R_ARM_JUMP_SLOT:
8968 case elfcpp::R_ARM_RELATIVE:
8969 // These are relocations which should only be seen by the
8970 // dynamic linker, and should never be seen here.
8971 gold_error(_("%s: unexpected reloc %u in object file"),
8972 object->name().c_str(), r_type);
8973 break;
8974
f96accdf
DK
8975 // These are initial tls relocs, which are expected when
8976 // linking.
8977 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8978 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8979 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8980 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8981 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8982 {
8983 const bool is_final = gsym->final_value_is_known();
8984 const tls::Tls_optimization optimized_type
2e702c99 8985 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
f96accdf
DK
8986 switch (r_type)
8987 {
8988 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8989 if (optimized_type == tls::TLSOPT_NONE)
8990 {
2e702c99
RM
8991 // Create a pair of GOT entries for the module index and
8992 // dtv-relative offset.
8993 Arm_output_data_got<big_endian>* got
8994 = target->got_section(symtab, layout);
4a54abbb
DK
8995 if (!parameters->doing_static_link())
8996 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
8997 target->rel_dyn_section(layout),
8998 elfcpp::R_ARM_TLS_DTPMOD32,
8999 elfcpp::R_ARM_TLS_DTPOFF32);
9000 else
9001 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR, gsym);
f96accdf
DK
9002 }
9003 else
9004 // FIXME: TLS optimization not supported yet.
9005 gold_unreachable();
9006 break;
9007
9008 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9009 if (optimized_type == tls::TLSOPT_NONE)
9010 {
2e702c99
RM
9011 // Create a GOT entry for the module index.
9012 target->got_mod_index_entry(symtab, layout, object);
f96accdf
DK
9013 }
9014 else
9015 // FIXME: TLS optimization not supported yet.
9016 gold_unreachable();
9017 break;
9018
9019 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
9020 break;
9021
9022 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9023 layout->set_has_static_tls();
9024 if (optimized_type == tls::TLSOPT_NONE)
9025 {
4a54abbb
DK
9026 // Create a GOT entry for the tp-relative offset.
9027 Arm_output_data_got<big_endian>* got
9028 = target->got_section(symtab, layout);
9029 if (!parameters->doing_static_link())
9030 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
9031 target->rel_dyn_section(layout),
9032 elfcpp::R_ARM_TLS_TPOFF32);
9033 else if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
9034 {
9035 got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
9036 unsigned int got_offset =
9037 gsym->got_offset(GOT_TYPE_TLS_OFFSET);
9038 got->add_static_reloc(got_offset,
9039 elfcpp::R_ARM_TLS_TPOFF32, gsym);
9040 }
f96accdf
DK
9041 }
9042 else
9043 // FIXME: TLS optimization not supported yet.
9044 gold_unreachable();
9045 break;
9046
9047 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9048 layout->set_has_static_tls();
9049 if (parameters->options().shared())
9050 {
2e702c99
RM
9051 // We need to create a dynamic relocation.
9052 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
9053 rel_dyn->add_global(gsym, elfcpp::R_ARM_TLS_TPOFF32,
f96accdf 9054 output_section, object,
2e702c99 9055 data_shndx, reloc.get_r_offset());
f96accdf
DK
9056 }
9057 break;
9058
9059 default:
9060 gold_unreachable();
9061 }
9062 }
9063 break;
9064
3cef7179
ILT
9065 case elfcpp::R_ARM_PC24:
9066 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
9067 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
9068 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
4a657b0d
DK
9069 default:
9070 unsupported_reloc_global(object, r_type, gsym);
9071 break;
9072 }
9073}
9074
9075// Process relocations for gc.
9076
9077template<bool big_endian>
9078void
6fa2a40b
CC
9079Target_arm<big_endian>::gc_process_relocs(
9080 Symbol_table* symtab,
9081 Layout* layout,
9082 Sized_relobj_file<32, big_endian>* object,
9083 unsigned int data_shndx,
9084 unsigned int,
9085 const unsigned char* prelocs,
9086 size_t reloc_count,
9087 Output_section* output_section,
9088 bool needs_special_offset_handling,
9089 size_t local_symbol_count,
9090 const unsigned char* plocal_symbols)
4a657b0d
DK
9091{
9092 typedef Target_arm<big_endian> Arm;
2ea97941 9093 typedef typename Target_arm<big_endian>::Scan Scan;
4a657b0d 9094
41cbeecc 9095 gold::gc_process_relocs<32, big_endian, Arm, elfcpp::SHT_REL, Scan,
3ff2ccb0 9096 typename Target_arm::Relocatable_size_for_reloc>(
4a657b0d 9097 symtab,
2ea97941 9098 layout,
4a657b0d
DK
9099 this,
9100 object,
9101 data_shndx,
9102 prelocs,
9103 reloc_count,
9104 output_section,
9105 needs_special_offset_handling,
9106 local_symbol_count,
9107 plocal_symbols);
9108}
9109
9110// Scan relocations for a section.
9111
9112template<bool big_endian>
9113void
ad0f2072 9114Target_arm<big_endian>::scan_relocs(Symbol_table* symtab,
2ea97941 9115 Layout* layout,
6fa2a40b 9116 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
9117 unsigned int data_shndx,
9118 unsigned int sh_type,
9119 const unsigned char* prelocs,
9120 size_t reloc_count,
9121 Output_section* output_section,
9122 bool needs_special_offset_handling,
9123 size_t local_symbol_count,
9124 const unsigned char* plocal_symbols)
9125{
2ea97941 9126 typedef typename Target_arm<big_endian>::Scan Scan;
4a657b0d
DK
9127 if (sh_type == elfcpp::SHT_RELA)
9128 {
9129 gold_error(_("%s: unsupported RELA reloc section"),
9130 object->name().c_str());
9131 return;
9132 }
9133
2ea97941 9134 gold::scan_relocs<32, big_endian, Target_arm, elfcpp::SHT_REL, Scan>(
4a657b0d 9135 symtab,
2ea97941 9136 layout,
4a657b0d
DK
9137 this,
9138 object,
9139 data_shndx,
9140 prelocs,
9141 reloc_count,
9142 output_section,
9143 needs_special_offset_handling,
9144 local_symbol_count,
9145 plocal_symbols);
9146}
9147
9148// Finalize the sections.
9149
9150template<bool big_endian>
9151void
d5b40221 9152Target_arm<big_endian>::do_finalize_sections(
2ea97941 9153 Layout* layout,
f59f41f3 9154 const Input_objects* input_objects,
647f1574 9155 Symbol_table*)
4a657b0d 9156{
3e235302 9157 bool merged_any_attributes = false;
d5b40221
DK
9158 // Merge processor-specific flags.
9159 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
9160 p != input_objects->relobj_end();
9161 ++p)
9162 {
9163 Arm_relobj<big_endian>* arm_relobj =
9164 Arm_relobj<big_endian>::as_arm_relobj(*p);
7296d933
DK
9165 if (arm_relobj->merge_flags_and_attributes())
9166 {
9167 this->merge_processor_specific_flags(
9168 arm_relobj->name(),
9169 arm_relobj->processor_specific_flags());
9170 this->merge_object_attributes(arm_relobj->name().c_str(),
9171 arm_relobj->attributes_section_data());
3e235302 9172 merged_any_attributes = true;
7296d933 9173 }
2e702c99 9174 }
d5b40221
DK
9175
9176 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
9177 p != input_objects->dynobj_end();
9178 ++p)
9179 {
9180 Arm_dynobj<big_endian>* arm_dynobj =
9181 Arm_dynobj<big_endian>::as_arm_dynobj(*p);
9182 this->merge_processor_specific_flags(
9183 arm_dynobj->name(),
9184 arm_dynobj->processor_specific_flags());
a0351a69
DK
9185 this->merge_object_attributes(arm_dynobj->name().c_str(),
9186 arm_dynobj->attributes_section_data());
3e235302 9187 merged_any_attributes = true;
d5b40221
DK
9188 }
9189
da59ad79
DK
9190 // Create an empty uninitialized attribute section if we still don't have it
9191 // at this moment. This happens if there is no attributes sections in all
9192 // inputs.
9193 if (this->attributes_section_data_ == NULL)
9194 this->attributes_section_data_ = new Attributes_section_data(NULL, 0);
9195
41263c05 9196 const Object_attribute* cpu_arch_attr =
a0351a69 9197 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
41263c05
DK
9198 // Check if we need to use Cortex-A8 workaround.
9199 if (parameters->options().user_set_fix_cortex_a8())
9200 this->fix_cortex_a8_ = parameters->options().fix_cortex_a8();
9201 else
9202 {
9203 // If neither --fix-cortex-a8 nor --no-fix-cortex-a8 is used, turn on
9204 // Cortex-A8 erratum workaround for ARMv7-A or ARMv7 with unknown
2e702c99 9205 // profile.
41263c05
DK
9206 const Object_attribute* cpu_arch_profile_attr =
9207 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
9208 this->fix_cortex_a8_ =
9209 (cpu_arch_attr->int_value() == elfcpp::TAG_CPU_ARCH_V7
2e702c99
RM
9210 && (cpu_arch_profile_attr->int_value() == 'A'
9211 || cpu_arch_profile_attr->int_value() == 0));
41263c05 9212 }
2e702c99 9213
a2162063
ILT
9214 // Check if we can use V4BX interworking.
9215 // The V4BX interworking stub contains BX instruction,
9216 // which is not specified for some profiles.
9b2fd367 9217 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
cd6eab1c 9218 && !this->may_use_v4t_interworking())
a2162063 9219 gold_error(_("unable to provide V4BX reloc interworking fix up; "
2e702c99 9220 "the target profile does not support BX instruction"));
a2162063 9221
94cdfcff 9222 // Fill in some more dynamic tags.
ea715a34
ILT
9223 const Reloc_section* rel_plt = (this->plt_ == NULL
9224 ? NULL
9225 : this->plt_->rel_plt());
9226 layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
612a8d3d 9227 this->rel_dyn_, true, false);
94cdfcff
DK
9228
9229 // Emit any relocs we saved in an attempt to avoid generating COPY
9230 // relocs.
9231 if (this->copy_relocs_.any_saved_relocs())
2ea97941 9232 this->copy_relocs_.emit(this->rel_dyn_section(layout));
11af873f 9233
f59f41f3 9234 // Handle the .ARM.exidx section.
2ea97941 9235 Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
11af873f 9236
731ca54a
RÁE
9237 if (!parameters->options().relocatable())
9238 {
9239 if (exidx_section != NULL
2e702c99
RM
9240 && exidx_section->type() == elfcpp::SHT_ARM_EXIDX)
9241 {
9242 // For the ARM target, we need to add a PT_ARM_EXIDX segment for
9243 // the .ARM.exidx section.
9244 if (!layout->script_options()->saw_phdrs_clause())
9245 {
9246 gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0,
9247 0)
9248 == NULL);
9249 Output_segment* exidx_segment =
9250 layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R);
9251 exidx_segment->add_output_section_to_nonload(exidx_section,
9252 elfcpp::PF_R);
9253 }
9254 }
11af873f 9255 }
a0351a69 9256
3e235302
DK
9257 // Create an .ARM.attributes section if we have merged any attributes
9258 // from inputs.
9259 if (merged_any_attributes)
7296d933
DK
9260 {
9261 Output_attributes_section_data* attributes_section =
9262 new Output_attributes_section_data(*this->attributes_section_data_);
9263 layout->add_output_section_data(".ARM.attributes",
9264 elfcpp::SHT_ARM_ATTRIBUTES, 0,
22f0da72 9265 attributes_section, ORDER_INVALID,
7296d933
DK
9266 false);
9267 }
131687b4
DK
9268
9269 // Fix up links in section EXIDX headers.
9270 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
9271 p != layout->section_list().end();
9272 ++p)
9273 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
9274 {
9275 Arm_output_section<big_endian>* os =
9276 Arm_output_section<big_endian>::as_arm_output_section(*p);
9277 os->set_exidx_section_link();
9278 }
4a657b0d
DK
9279}
9280
bec53400
DK
9281// Return whether a direct absolute static relocation needs to be applied.
9282// In cases where Scan::local() or Scan::global() has created
9283// a dynamic relocation other than R_ARM_RELATIVE, the addend
9284// of the relocation is carried in the data, and we must not
9285// apply the static relocation.
9286
9287template<bool big_endian>
9288inline bool
9289Target_arm<big_endian>::Relocate::should_apply_static_reloc(
9290 const Sized_symbol<32>* gsym,
95a2c8d6 9291 unsigned int r_type,
bec53400
DK
9292 bool is_32bit,
9293 Output_section* output_section)
9294{
9295 // If the output section is not allocated, then we didn't call
9296 // scan_relocs, we didn't create a dynamic reloc, and we must apply
9297 // the reloc here.
9298 if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
9299 return true;
9300
95a2c8d6
RS
9301 int ref_flags = Scan::get_reference_flags(r_type);
9302
bec53400
DK
9303 // For local symbols, we will have created a non-RELATIVE dynamic
9304 // relocation only if (a) the output is position independent,
9305 // (b) the relocation is absolute (not pc- or segment-relative), and
9306 // (c) the relocation is not 32 bits wide.
9307 if (gsym == NULL)
9308 return !(parameters->options().output_is_position_independent()
9309 && (ref_flags & Symbol::ABSOLUTE_REF)
9310 && !is_32bit);
9311
9312 // For global symbols, we use the same helper routines used in the
9313 // scan pass. If we did not create a dynamic relocation, or if we
9314 // created a RELATIVE dynamic relocation, we should apply the static
9315 // relocation.
9316 bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
9317 bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
9318 && gsym->can_use_relative_reloc(ref_flags
9319 & Symbol::FUNCTION_CALL);
9320 return !has_dyn || is_rel;
9321}
9322
4a657b0d
DK
9323// Perform a relocation.
9324
9325template<bool big_endian>
9326inline bool
9327Target_arm<big_endian>::Relocate::relocate(
c121c671
DK
9328 const Relocate_info<32, big_endian>* relinfo,
9329 Target_arm* target,
ca09d69a 9330 Output_section* output_section,
c121c671
DK
9331 size_t relnum,
9332 const elfcpp::Rel<32, big_endian>& rel,
4a657b0d 9333 unsigned int r_type,
c121c671
DK
9334 const Sized_symbol<32>* gsym,
9335 const Symbol_value<32>* psymval,
9336 unsigned char* view,
ebabffbd 9337 Arm_address address,
f96accdf 9338 section_size_type view_size)
4a657b0d 9339{
0e804863
ILT
9340 if (view == NULL)
9341 return true;
9342
c121c671
DK
9343 typedef Arm_relocate_functions<big_endian> Arm_relocate_functions;
9344
a6d1ef57 9345 r_type = get_real_reloc_type(r_type);
5c57f1be
DK
9346 const Arm_reloc_property* reloc_property =
9347 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9348 if (reloc_property == NULL)
9349 {
9350 std::string reloc_name =
9351 arm_reloc_property_table->reloc_name_in_error_message(r_type);
9352 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9353 _("cannot relocate %s in object file"),
9354 reloc_name.c_str());
9355 return true;
9356 }
c121c671 9357
2daedcd6
DK
9358 const Arm_relobj<big_endian>* object =
9359 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
c121c671 9360
2daedcd6
DK
9361 // If the final branch target of a relocation is THUMB instruction, this
9362 // is 1. Otherwise it is 0.
9363 Arm_address thumb_bit = 0;
c121c671 9364 Symbol_value<32> symval;
d204b6e9 9365 bool is_weakly_undefined_without_plt = false;
bca7fb63
DK
9366 bool have_got_offset = false;
9367 unsigned int got_offset = 0;
9368
9369 // If the relocation uses the GOT entry of a symbol instead of the symbol
9370 // itself, we don't care about whether the symbol is defined or what kind
9371 // of symbol it is.
9372 if (reloc_property->uses_got_entry())
9373 {
9374 // Get the GOT offset.
9375 // The GOT pointer points to the end of the GOT section.
9376 // We need to subtract the size of the GOT section to get
9377 // the actual offset to use in the relocation.
9378 // TODO: We should move GOT offset computing code in TLS relocations
9379 // to here.
9380 switch (r_type)
9381 {
9382 case elfcpp::R_ARM_GOT_BREL:
9383 case elfcpp::R_ARM_GOT_PREL:
9384 if (gsym != NULL)
9385 {
9386 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
9387 got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
9388 - target->got_size());
9389 }
9390 else
9391 {
9392 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9393 gold_assert(object->local_has_got_offset(r_sym,
9394 GOT_TYPE_STANDARD));
9395 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
9396 - target->got_size());
9397 }
9398 have_got_offset = true;
9399 break;
9400
9401 default:
9402 break;
9403 }
9404 }
9405 else if (relnum != Target_arm<big_endian>::fake_relnum_for_stubs)
c121c671 9406 {
2daedcd6
DK
9407 if (gsym != NULL)
9408 {
9409 // This is a global symbol. Determine if we use PLT and if the
9410 // final target is THUMB.
95a2c8d6 9411 if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
2daedcd6
DK
9412 {
9413 // This uses a PLT, change the symbol value.
fa89cc82 9414 symval.set_output_value(target->plt_address_for_global(gsym));
2daedcd6
DK
9415 psymval = &symval;
9416 }
d204b6e9
DK
9417 else if (gsym->is_weak_undefined())
9418 {
9419 // This is a weakly undefined symbol and we do not use PLT
9420 // for this relocation. A branch targeting this symbol will
9421 // be converted into an NOP.
9422 is_weakly_undefined_without_plt = true;
9423 }
b2286c10
DK
9424 else if (gsym->is_undefined() && reloc_property->uses_symbol())
9425 {
9426 // This relocation uses the symbol value but the symbol is
9427 // undefined. Exit early and have the caller reporting an
9428 // error.
9429 return true;
9430 }
2daedcd6
DK
9431 else
9432 {
9433 // Set thumb bit if symbol:
9434 // -Has type STT_ARM_TFUNC or
9435 // -Has type STT_FUNC, is defined and with LSB in value set.
9436 thumb_bit =
9437 (((gsym->type() == elfcpp::STT_ARM_TFUNC)
9438 || (gsym->type() == elfcpp::STT_FUNC
9439 && !gsym->is_undefined()
9440 && ((psymval->value(object, 0) & 1) != 0)))
9441 ? 1
9442 : 0);
9443 }
9444 }
9445 else
9446 {
2e702c99
RM
9447 // This is a local symbol. Determine if the final target is THUMB.
9448 // We saved this information when all the local symbols were read.
2daedcd6
DK
9449 elfcpp::Elf_types<32>::Elf_WXword r_info = rel.get_r_info();
9450 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
9451 thumb_bit = object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
fa89cc82
HS
9452
9453 if (psymval->is_ifunc_symbol() && object->local_has_plt_offset(r_sym))
9454 {
9455 symval.set_output_value(
9456 target->plt_address_for_local(object, r_sym));
9457 psymval = &symval;
9458 }
2daedcd6
DK
9459 }
9460 }
9461 else
9462 {
9463 // This is a fake relocation synthesized for a stub. It does not have
9464 // a real symbol. We just look at the LSB of the symbol value to
9465 // determine if the target is THUMB or not.
9466 thumb_bit = ((psymval->value(object, 0) & 1) != 0);
c121c671
DK
9467 }
9468
2daedcd6
DK
9469 // Strip LSB if this points to a THUMB target.
9470 if (thumb_bit != 0
2e702c99 9471 && reloc_property->uses_thumb_bit()
2daedcd6
DK
9472 && ((psymval->value(object, 0) & 1) != 0))
9473 {
9474 Arm_address stripped_value =
9475 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
9476 symval.set_output_value(stripped_value);
9477 psymval = &symval;
2e702c99 9478 }
2daedcd6 9479
d204b6e9
DK
9480 // To look up relocation stubs, we need to pass the symbol table index of
9481 // a local symbol.
9482 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9483
b10d2873
ILT
9484 // Get the addressing origin of the output segment defining the
9485 // symbol gsym if needed (AAELF 4.6.1.2 Relocation types).
9486 Arm_address sym_origin = 0;
5c57f1be 9487 if (reloc_property->uses_symbol_base())
b10d2873
ILT
9488 {
9489 if (r_type == elfcpp::R_ARM_BASE_ABS && gsym == NULL)
9490 // R_ARM_BASE_ABS with the NULL symbol will give the
9491 // absolute address of the GOT origin (GOT_ORG) (see ARM IHI
9492 // 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
9493 sym_origin = target->got_plt_section()->address();
9494 else if (gsym == NULL)
9495 sym_origin = 0;
9496 else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
9497 sym_origin = gsym->output_segment()->vaddr();
9498 else if (gsym->source() == Symbol::IN_OUTPUT_DATA)
9499 sym_origin = gsym->output_data()->address();
9500
9501 // TODO: Assumes the segment base to be zero for the global symbols
9502 // till the proper support for the segment-base-relative addressing
9503 // will be implemented. This is consistent with GNU ld.
9504 }
9505
5c57f1be
DK
9506 // For relative addressing relocation, find out the relative address base.
9507 Arm_address relative_address_base = 0;
9508 switch(reloc_property->relative_address_base())
9509 {
9510 case Arm_reloc_property::RAB_NONE:
f96accdf
DK
9511 // Relocations with relative address bases RAB_TLS and RAB_tp are
9512 // handled by relocate_tls. So we do not need to do anything here.
9513 case Arm_reloc_property::RAB_TLS:
9514 case Arm_reloc_property::RAB_tp:
5c57f1be
DK
9515 break;
9516 case Arm_reloc_property::RAB_B_S:
9517 relative_address_base = sym_origin;
9518 break;
9519 case Arm_reloc_property::RAB_GOT_ORG:
9520 relative_address_base = target->got_plt_section()->address();
9521 break;
9522 case Arm_reloc_property::RAB_P:
9523 relative_address_base = address;
9524 break;
9525 case Arm_reloc_property::RAB_Pa:
9526 relative_address_base = address & 0xfffffffcU;
9527 break;
9528 default:
2e702c99 9529 gold_unreachable();
5c57f1be 9530 }
2e702c99 9531
c121c671
DK
9532 typename Arm_relocate_functions::Status reloc_status =
9533 Arm_relocate_functions::STATUS_OKAY;
5c57f1be 9534 bool check_overflow = reloc_property->checks_overflow();
4a657b0d
DK
9535 switch (r_type)
9536 {
9537 case elfcpp::R_ARM_NONE:
9538 break;
9539
5e445df6 9540 case elfcpp::R_ARM_ABS8:
95a2c8d6 9541 if (should_apply_static_reloc(gsym, r_type, false, output_section))
be8fcb75
ILT
9542 reloc_status = Arm_relocate_functions::abs8(view, object, psymval);
9543 break;
9544
9545 case elfcpp::R_ARM_ABS12:
95a2c8d6 9546 if (should_apply_static_reloc(gsym, r_type, false, output_section))
be8fcb75
ILT
9547 reloc_status = Arm_relocate_functions::abs12(view, object, psymval);
9548 break;
9549
9550 case elfcpp::R_ARM_ABS16:
95a2c8d6 9551 if (should_apply_static_reloc(gsym, r_type, false, output_section))
be8fcb75 9552 reloc_status = Arm_relocate_functions::abs16(view, object, psymval);
5e445df6
ILT
9553 break;
9554
c121c671 9555 case elfcpp::R_ARM_ABS32:
95a2c8d6 9556 if (should_apply_static_reloc(gsym, r_type, true, output_section))
c121c671 9557 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
2daedcd6 9558 thumb_bit);
c121c671
DK
9559 break;
9560
be8fcb75 9561 case elfcpp::R_ARM_ABS32_NOI:
95a2c8d6 9562 if (should_apply_static_reloc(gsym, r_type, true, output_section))
be8fcb75
ILT
9563 // No thumb bit for this relocation: (S + A)
9564 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
f4e5969c 9565 0);
be8fcb75
ILT
9566 break;
9567
fd3c5f0b 9568 case elfcpp::R_ARM_MOVW_ABS_NC:
95a2c8d6 9569 if (should_apply_static_reloc(gsym, r_type, false, output_section))
5c57f1be
DK
9570 reloc_status = Arm_relocate_functions::movw(view, object, psymval,
9571 0, thumb_bit,
9572 check_overflow);
fd3c5f0b
ILT
9573 break;
9574
9575 case elfcpp::R_ARM_MOVT_ABS:
95a2c8d6 9576 if (should_apply_static_reloc(gsym, r_type, false, output_section))
5c57f1be 9577 reloc_status = Arm_relocate_functions::movt(view, object, psymval, 0);
fd3c5f0b
ILT
9578 break;
9579
9580 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
95a2c8d6 9581 if (should_apply_static_reloc(gsym, r_type, false, output_section))
5c57f1be 9582 reloc_status = Arm_relocate_functions::thm_movw(view, object, psymval,
2e702c99 9583 0, thumb_bit, false);
fd3c5f0b
ILT
9584 break;
9585
9586 case elfcpp::R_ARM_THM_MOVT_ABS:
95a2c8d6 9587 if (should_apply_static_reloc(gsym, r_type, false, output_section))
5c57f1be
DK
9588 reloc_status = Arm_relocate_functions::thm_movt(view, object,
9589 psymval, 0);
fd3c5f0b
ILT
9590 break;
9591
c2a122b6 9592 case elfcpp::R_ARM_MOVW_PREL_NC:
02961d7e 9593 case elfcpp::R_ARM_MOVW_BREL_NC:
02961d7e 9594 case elfcpp::R_ARM_MOVW_BREL:
5c57f1be
DK
9595 reloc_status =
9596 Arm_relocate_functions::movw(view, object, psymval,
9597 relative_address_base, thumb_bit,
9598 check_overflow);
c2a122b6
ILT
9599 break;
9600
9601 case elfcpp::R_ARM_MOVT_PREL:
02961d7e 9602 case elfcpp::R_ARM_MOVT_BREL:
5c57f1be
DK
9603 reloc_status =
9604 Arm_relocate_functions::movt(view, object, psymval,
9605 relative_address_base);
c2a122b6
ILT
9606 break;
9607
9608 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
02961d7e 9609 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
02961d7e 9610 case elfcpp::R_ARM_THM_MOVW_BREL:
5c57f1be
DK
9611 reloc_status =
9612 Arm_relocate_functions::thm_movw(view, object, psymval,
9613 relative_address_base,
9614 thumb_bit, check_overflow);
c2a122b6
ILT
9615 break;
9616
9617 case elfcpp::R_ARM_THM_MOVT_PREL:
02961d7e 9618 case elfcpp::R_ARM_THM_MOVT_BREL:
5c57f1be
DK
9619 reloc_status =
9620 Arm_relocate_functions::thm_movt(view, object, psymval,
9621 relative_address_base);
02961d7e 9622 break;
2e702c99 9623
c121c671
DK
9624 case elfcpp::R_ARM_REL32:
9625 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
2daedcd6 9626 address, thumb_bit);
c121c671
DK
9627 break;
9628
be8fcb75 9629 case elfcpp::R_ARM_THM_ABS5:
95a2c8d6 9630 if (should_apply_static_reloc(gsym, r_type, false, output_section))
be8fcb75
ILT
9631 reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval);
9632 break;
9633
1521477a 9634 // Thumb long branches.
c121c671 9635 case elfcpp::R_ARM_THM_CALL:
51938283 9636 case elfcpp::R_ARM_THM_XPC22:
1521477a 9637 case elfcpp::R_ARM_THM_JUMP24:
51938283 9638 reloc_status =
1521477a
DK
9639 Arm_relocate_functions::thumb_branch_common(
9640 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9641 thumb_bit, is_weakly_undefined_without_plt);
51938283
DK
9642 break;
9643
c121c671
DK
9644 case elfcpp::R_ARM_GOTOFF32:
9645 {
ebabffbd 9646 Arm_address got_origin;
c121c671
DK
9647 got_origin = target->got_plt_section()->address();
9648 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
2daedcd6 9649 got_origin, thumb_bit);
c121c671
DK
9650 }
9651 break;
9652
9653 case elfcpp::R_ARM_BASE_PREL:
b10d2873
ILT
9654 gold_assert(gsym != NULL);
9655 reloc_status =
9656 Arm_relocate_functions::base_prel(view, sym_origin, address);
c121c671
DK
9657 break;
9658
be8fcb75 9659 case elfcpp::R_ARM_BASE_ABS:
95a2c8d6 9660 if (should_apply_static_reloc(gsym, r_type, false, output_section))
b10d2873 9661 reloc_status = Arm_relocate_functions::base_abs(view, sym_origin);
be8fcb75
ILT
9662 break;
9663
c121c671
DK
9664 case elfcpp::R_ARM_GOT_BREL:
9665 gold_assert(have_got_offset);
9666 reloc_status = Arm_relocate_functions::got_brel(view, got_offset);
9667 break;
9668
7f5309a5
ILT
9669 case elfcpp::R_ARM_GOT_PREL:
9670 gold_assert(have_got_offset);
9671 // Get the address origin for GOT PLT, which is allocated right
9672 // after the GOT section, to calculate an absolute address of
9673 // the symbol GOT entry (got_origin + got_offset).
ebabffbd 9674 Arm_address got_origin;
7f5309a5
ILT
9675 got_origin = target->got_plt_section()->address();
9676 reloc_status = Arm_relocate_functions::got_prel(view,
9677 got_origin + got_offset,
9678 address);
9679 break;
9680
c121c671 9681 case elfcpp::R_ARM_PLT32:
1521477a
DK
9682 case elfcpp::R_ARM_CALL:
9683 case elfcpp::R_ARM_JUMP24:
9684 case elfcpp::R_ARM_XPC25:
c121c671
DK
9685 gold_assert(gsym == NULL
9686 || gsym->has_plt_offset()
9687 || gsym->final_value_is_known()
9688 || (gsym->is_defined()
9689 && !gsym->is_from_dynobj()
9690 && !gsym->is_preemptible()));
d204b6e9 9691 reloc_status =
2e702c99 9692 Arm_relocate_functions::arm_branch_common(
1521477a
DK
9693 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9694 thumb_bit, is_weakly_undefined_without_plt);
51938283
DK
9695 break;
9696
41263c05
DK
9697 case elfcpp::R_ARM_THM_JUMP19:
9698 reloc_status =
9699 Arm_relocate_functions::thm_jump19(view, object, psymval, address,
9700 thumb_bit);
9701 break;
9702
800d0f56
ILT
9703 case elfcpp::R_ARM_THM_JUMP6:
9704 reloc_status =
9705 Arm_relocate_functions::thm_jump6(view, object, psymval, address);
9706 break;
9707
9708 case elfcpp::R_ARM_THM_JUMP8:
9709 reloc_status =
9710 Arm_relocate_functions::thm_jump8(view, object, psymval, address);
9711 break;
9712
9713 case elfcpp::R_ARM_THM_JUMP11:
9714 reloc_status =
9715 Arm_relocate_functions::thm_jump11(view, object, psymval, address);
9716 break;
9717
c121c671
DK
9718 case elfcpp::R_ARM_PREL31:
9719 reloc_status = Arm_relocate_functions::prel31(view, object, psymval,
2daedcd6 9720 address, thumb_bit);
c121c671
DK
9721 break;
9722
a2162063 9723 case elfcpp::R_ARM_V4BX:
9b2fd367
DK
9724 if (target->fix_v4bx() > General_options::FIX_V4BX_NONE)
9725 {
9726 const bool is_v4bx_interworking =
9727 (target->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING);
9728 reloc_status =
9729 Arm_relocate_functions::v4bx(relinfo, view, object, address,
9730 is_v4bx_interworking);
9731 }
a2162063
ILT
9732 break;
9733
11b861d5
DK
9734 case elfcpp::R_ARM_THM_PC8:
9735 reloc_status =
9736 Arm_relocate_functions::thm_pc8(view, object, psymval, address);
9737 break;
9738
9739 case elfcpp::R_ARM_THM_PC12:
9740 reloc_status =
9741 Arm_relocate_functions::thm_pc12(view, object, psymval, address);
9742 break;
9743
9744 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9745 reloc_status =
9746 Arm_relocate_functions::thm_alu11(view, object, psymval, address,
9747 thumb_bit);
9748 break;
9749
b10d2873 9750 case elfcpp::R_ARM_ALU_PC_G0_NC:
b10d2873 9751 case elfcpp::R_ARM_ALU_PC_G0:
b10d2873 9752 case elfcpp::R_ARM_ALU_PC_G1_NC:
b10d2873 9753 case elfcpp::R_ARM_ALU_PC_G1:
b10d2873 9754 case elfcpp::R_ARM_ALU_PC_G2:
b10d2873 9755 case elfcpp::R_ARM_ALU_SB_G0_NC:
b10d2873 9756 case elfcpp::R_ARM_ALU_SB_G0:
b10d2873 9757 case elfcpp::R_ARM_ALU_SB_G1_NC:
b10d2873 9758 case elfcpp::R_ARM_ALU_SB_G1:
b10d2873
ILT
9759 case elfcpp::R_ARM_ALU_SB_G2:
9760 reloc_status =
5c57f1be
DK
9761 Arm_relocate_functions::arm_grp_alu(view, object, psymval,
9762 reloc_property->group_index(),
9763 relative_address_base,
9764 thumb_bit, check_overflow);
b10d2873
ILT
9765 break;
9766
9767 case elfcpp::R_ARM_LDR_PC_G0:
b10d2873 9768 case elfcpp::R_ARM_LDR_PC_G1:
b10d2873 9769 case elfcpp::R_ARM_LDR_PC_G2:
b10d2873 9770 case elfcpp::R_ARM_LDR_SB_G0:
b10d2873 9771 case elfcpp::R_ARM_LDR_SB_G1:
b10d2873
ILT
9772 case elfcpp::R_ARM_LDR_SB_G2:
9773 reloc_status =
5c57f1be
DK
9774 Arm_relocate_functions::arm_grp_ldr(view, object, psymval,
9775 reloc_property->group_index(),
9776 relative_address_base);
b10d2873
ILT
9777 break;
9778
9779 case elfcpp::R_ARM_LDRS_PC_G0:
b10d2873 9780 case elfcpp::R_ARM_LDRS_PC_G1:
b10d2873 9781 case elfcpp::R_ARM_LDRS_PC_G2:
b10d2873 9782 case elfcpp::R_ARM_LDRS_SB_G0:
b10d2873 9783 case elfcpp::R_ARM_LDRS_SB_G1:
b10d2873
ILT
9784 case elfcpp::R_ARM_LDRS_SB_G2:
9785 reloc_status =
5c57f1be
DK
9786 Arm_relocate_functions::arm_grp_ldrs(view, object, psymval,
9787 reloc_property->group_index(),
9788 relative_address_base);
b10d2873
ILT
9789 break;
9790
9791 case elfcpp::R_ARM_LDC_PC_G0:
b10d2873 9792 case elfcpp::R_ARM_LDC_PC_G1:
b10d2873 9793 case elfcpp::R_ARM_LDC_PC_G2:
b10d2873 9794 case elfcpp::R_ARM_LDC_SB_G0:
b10d2873 9795 case elfcpp::R_ARM_LDC_SB_G1:
b10d2873
ILT
9796 case elfcpp::R_ARM_LDC_SB_G2:
9797 reloc_status =
5c57f1be
DK
9798 Arm_relocate_functions::arm_grp_ldc(view, object, psymval,
9799 reloc_property->group_index(),
9800 relative_address_base);
c121c671
DK
9801 break;
9802
f96accdf
DK
9803 // These are initial tls relocs, which are expected when
9804 // linking.
9805 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
9806 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9807 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
9808 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9809 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9810 reloc_status =
9811 this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
9812 view, address, view_size);
9813 break;
9814
3cef7179
ILT
9815 // The known and unknown unsupported and/or deprecated relocations.
9816 case elfcpp::R_ARM_PC24:
9817 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
9818 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
9819 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
c121c671 9820 default:
3cef7179
ILT
9821 // Just silently leave the method. We should get an appropriate error
9822 // message in the scan methods.
9823 break;
c121c671
DK
9824 }
9825
9826 // Report any errors.
9827 switch (reloc_status)
9828 {
9829 case Arm_relocate_functions::STATUS_OKAY:
9830 break;
9831 case Arm_relocate_functions::STATUS_OVERFLOW:
9832 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
a2c7281b
DK
9833 _("relocation overflow in %s"),
9834 reloc_property->name().c_str());
c121c671
DK
9835 break;
9836 case Arm_relocate_functions::STATUS_BAD_RELOC:
9837 gold_error_at_location(
9838 relinfo,
9839 relnum,
9840 rel.get_r_offset(),
a2c7281b
DK
9841 _("unexpected opcode while processing relocation %s"),
9842 reloc_property->name().c_str());
c121c671 9843 break;
4a657b0d
DK
9844 default:
9845 gold_unreachable();
9846 }
9847
9848 return true;
9849}
9850
f96accdf
DK
9851// Perform a TLS relocation.
9852
9853template<bool big_endian>
9854inline typename Arm_relocate_functions<big_endian>::Status
9855Target_arm<big_endian>::Relocate::relocate_tls(
9856 const Relocate_info<32, big_endian>* relinfo,
9857 Target_arm<big_endian>* target,
9858 size_t relnum,
9859 const elfcpp::Rel<32, big_endian>& rel,
9860 unsigned int r_type,
9861 const Sized_symbol<32>* gsym,
9862 const Symbol_value<32>* psymval,
9863 unsigned char* view,
4a54abbb 9864 elfcpp::Elf_types<32>::Elf_Addr address,
f96accdf
DK
9865 section_size_type /*view_size*/ )
9866{
9867 typedef Arm_relocate_functions<big_endian> ArmRelocFuncs;
4a54abbb 9868 typedef Relocate_functions<32, big_endian> RelocFuncs;
f96accdf
DK
9869 Output_segment* tls_segment = relinfo->layout->tls_segment();
9870
6fa2a40b 9871 const Sized_relobj_file<32, big_endian>* object = relinfo->object;
f96accdf
DK
9872
9873 elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
9874
9875 const bool is_final = (gsym == NULL
9876 ? !parameters->options().shared()
9877 : gsym->final_value_is_known());
9878 const tls::Tls_optimization optimized_type
9879 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
9880 switch (r_type)
9881 {
9882 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
2e702c99
RM
9883 {
9884 unsigned int got_type = GOT_TYPE_TLS_PAIR;
9885 unsigned int got_offset;
9886 if (gsym != NULL)
9887 {
9888 gold_assert(gsym->has_got_offset(got_type));
9889 got_offset = gsym->got_offset(got_type) - target->got_size();
9890 }
9891 else
9892 {
9893 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9894 gold_assert(object->local_has_got_offset(r_sym, got_type));
9895 got_offset = (object->local_got_offset(r_sym, got_type)
f96accdf 9896 - target->got_size());
2e702c99
RM
9897 }
9898 if (optimized_type == tls::TLSOPT_NONE)
9899 {
4a54abbb
DK
9900 Arm_address got_entry =
9901 target->got_plt_section()->address() + got_offset;
2e702c99
RM
9902
9903 // Relocate the field with the PC relative offset of the pair of
9904 // GOT entries.
29ab395d 9905 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
2e702c99
RM
9906 return ArmRelocFuncs::STATUS_OKAY;
9907 }
9908 }
f96accdf
DK
9909 break;
9910
9911 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9912 if (optimized_type == tls::TLSOPT_NONE)
2e702c99
RM
9913 {
9914 // Relocate the field with the offset of the GOT entry for
9915 // the module index.
9916 unsigned int got_offset;
9917 got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
f96accdf 9918 - target->got_size());
4a54abbb
DK
9919 Arm_address got_entry =
9920 target->got_plt_section()->address() + got_offset;
9921
2e702c99
RM
9922 // Relocate the field with the PC relative offset of the pair of
9923 // GOT entries.
9924 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
f96accdf 9925 return ArmRelocFuncs::STATUS_OKAY;
2e702c99 9926 }
f96accdf
DK
9927 break;
9928
9929 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
29ab395d 9930 RelocFuncs::rel32_unaligned(view, value);
f96accdf
DK
9931 return ArmRelocFuncs::STATUS_OKAY;
9932
9933 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9934 if (optimized_type == tls::TLSOPT_NONE)
2e702c99
RM
9935 {
9936 // Relocate the field with the offset of the GOT entry for
9937 // the tp-relative offset of the symbol.
f96accdf 9938 unsigned int got_type = GOT_TYPE_TLS_OFFSET;
2e702c99
RM
9939 unsigned int got_offset;
9940 if (gsym != NULL)
9941 {
9942 gold_assert(gsym->has_got_offset(got_type));
9943 got_offset = gsym->got_offset(got_type);
9944 }
9945 else
9946 {
9947 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9948 gold_assert(object->local_has_got_offset(r_sym, got_type));
9949 got_offset = object->local_got_offset(r_sym, got_type);
9950 }
9951
9952 // All GOT offsets are relative to the end of the GOT.
9953 got_offset -= target->got_size();
4a54abbb
DK
9954
9955 Arm_address got_entry =
9956 target->got_plt_section()->address() + got_offset;
9957
2e702c99 9958 // Relocate the field with the PC relative offset of the GOT entry.
29ab395d 9959 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
f96accdf 9960 return ArmRelocFuncs::STATUS_OKAY;
2e702c99 9961 }
f96accdf
DK
9962 break;
9963
9964 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9965 // If we're creating a shared library, a dynamic relocation will
9966 // have been created for this location, so do not apply it now.
9967 if (!parameters->options().shared())
2e702c99
RM
9968 {
9969 gold_assert(tls_segment != NULL);
4a54abbb
DK
9970
9971 // $tp points to the TCB, which is followed by the TLS, so we
9972 // need to add TCB size to the offset.
9973 Arm_address aligned_tcb_size =
9974 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
2e702c99 9975 RelocFuncs::rel32_unaligned(view, value + aligned_tcb_size);
4a54abbb 9976
2e702c99 9977 }
f96accdf 9978 return ArmRelocFuncs::STATUS_OKAY;
2e702c99 9979
f96accdf
DK
9980 default:
9981 gold_unreachable();
9982 }
9983
9984 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9985 _("unsupported reloc %u"),
9986 r_type);
9987 return ArmRelocFuncs::STATUS_BAD_RELOC;
9988}
9989
4a657b0d
DK
9990// Relocate section data.
9991
9992template<bool big_endian>
9993void
9994Target_arm<big_endian>::relocate_section(
9995 const Relocate_info<32, big_endian>* relinfo,
9996 unsigned int sh_type,
9997 const unsigned char* prelocs,
9998 size_t reloc_count,
9999 Output_section* output_section,
10000 bool needs_special_offset_handling,
10001 unsigned char* view,
ebabffbd 10002 Arm_address address,
364c7fa5
ILT
10003 section_size_type view_size,
10004 const Reloc_symbol_changes* reloc_symbol_changes)
4a657b0d
DK
10005{
10006 typedef typename Target_arm<big_endian>::Relocate Arm_relocate;
10007 gold_assert(sh_type == elfcpp::SHT_REL);
10008
218c5831
DK
10009 // See if we are relocating a relaxed input section. If so, the view
10010 // covers the whole output section and we need to adjust accordingly.
10011 if (needs_special_offset_handling)
43d12afe 10012 {
218c5831
DK
10013 const Output_relaxed_input_section* poris =
10014 output_section->find_relaxed_input_section(relinfo->object,
10015 relinfo->data_shndx);
10016 if (poris != NULL)
10017 {
10018 Arm_address section_address = poris->address();
10019 section_size_type section_size = poris->data_size();
10020
10021 gold_assert((section_address >= address)
10022 && ((section_address + section_size)
10023 <= (address + view_size)));
10024
10025 off_t offset = section_address - address;
10026 view += offset;
10027 address += offset;
10028 view_size = section_size;
10029 }
43d12afe
DK
10030 }
10031
4a657b0d 10032 gold::relocate_section<32, big_endian, Target_arm, elfcpp::SHT_REL,
168a4726 10033 Arm_relocate, gold::Default_comdat_behavior>(
4a657b0d
DK
10034 relinfo,
10035 this,
10036 prelocs,
10037 reloc_count,
10038 output_section,
10039 needs_special_offset_handling,
10040 view,
10041 address,
364c7fa5
ILT
10042 view_size,
10043 reloc_symbol_changes);
4a657b0d
DK
10044}
10045
10046// Return the size of a relocation while scanning during a relocatable
10047// link.
10048
10049template<bool big_endian>
10050unsigned int
10051Target_arm<big_endian>::Relocatable_size_for_reloc::get_size_for_reloc(
10052 unsigned int r_type,
10053 Relobj* object)
10054{
a6d1ef57 10055 r_type = get_real_reloc_type(r_type);
5c57f1be
DK
10056 const Arm_reloc_property* arp =
10057 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
10058 if (arp != NULL)
10059 return arp->size();
10060 else
4a657b0d 10061 {
5c57f1be
DK
10062 std::string reloc_name =
10063 arm_reloc_property_table->reloc_name_in_error_message(r_type);
10064 gold_error(_("%s: unexpected %s in object file"),
10065 object->name().c_str(), reloc_name.c_str());
4a657b0d
DK
10066 return 0;
10067 }
10068}
10069
10070// Scan the relocs during a relocatable link.
10071
10072template<bool big_endian>
10073void
10074Target_arm<big_endian>::scan_relocatable_relocs(
4a657b0d 10075 Symbol_table* symtab,
2ea97941 10076 Layout* layout,
6fa2a40b 10077 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
10078 unsigned int data_shndx,
10079 unsigned int sh_type,
10080 const unsigned char* prelocs,
10081 size_t reloc_count,
10082 Output_section* output_section,
10083 bool needs_special_offset_handling,
10084 size_t local_symbol_count,
10085 const unsigned char* plocal_symbols,
10086 Relocatable_relocs* rr)
10087{
10088 gold_assert(sh_type == elfcpp::SHT_REL);
10089
5c388529 10090 typedef Arm_scan_relocatable_relocs<big_endian, elfcpp::SHT_REL,
4a657b0d
DK
10091 Relocatable_size_for_reloc> Scan_relocatable_relocs;
10092
10093 gold::scan_relocatable_relocs<32, big_endian, elfcpp::SHT_REL,
10094 Scan_relocatable_relocs>(
4a657b0d 10095 symtab,
2ea97941 10096 layout,
4a657b0d
DK
10097 object,
10098 data_shndx,
10099 prelocs,
10100 reloc_count,
10101 output_section,
10102 needs_special_offset_handling,
10103 local_symbol_count,
10104 plocal_symbols,
10105 rr);
10106}
10107
7404fe1b 10108// Emit relocations for a section.
4a657b0d
DK
10109
10110template<bool big_endian>
10111void
7404fe1b 10112Target_arm<big_endian>::relocate_relocs(
4a657b0d
DK
10113 const Relocate_info<32, big_endian>* relinfo,
10114 unsigned int sh_type,
10115 const unsigned char* prelocs,
10116 size_t reloc_count,
10117 Output_section* output_section,
62fe925a 10118 typename elfcpp::Elf_types<32>::Elf_Off offset_in_output_section,
4a657b0d
DK
10119 const Relocatable_relocs* rr,
10120 unsigned char* view,
ebabffbd 10121 Arm_address view_address,
4a657b0d
DK
10122 section_size_type view_size,
10123 unsigned char* reloc_view,
10124 section_size_type reloc_view_size)
10125{
10126 gold_assert(sh_type == elfcpp::SHT_REL);
10127
7404fe1b 10128 gold::relocate_relocs<32, big_endian, elfcpp::SHT_REL>(
4a657b0d
DK
10129 relinfo,
10130 prelocs,
10131 reloc_count,
10132 output_section,
10133 offset_in_output_section,
10134 rr,
10135 view,
10136 view_address,
10137 view_size,
10138 reloc_view,
10139 reloc_view_size);
10140}
10141
5c388529
DK
10142// Perform target-specific processing in a relocatable link. This is
10143// only used if we use the relocation strategy RELOC_SPECIAL.
10144
10145template<bool big_endian>
10146void
10147Target_arm<big_endian>::relocate_special_relocatable(
10148 const Relocate_info<32, big_endian>* relinfo,
10149 unsigned int sh_type,
10150 const unsigned char* preloc_in,
10151 size_t relnum,
10152 Output_section* output_section,
62fe925a 10153 typename elfcpp::Elf_types<32>::Elf_Off offset_in_output_section,
5c388529
DK
10154 unsigned char* view,
10155 elfcpp::Elf_types<32>::Elf_Addr view_address,
10156 section_size_type,
10157 unsigned char* preloc_out)
10158{
10159 // We can only handle REL type relocation sections.
10160 gold_assert(sh_type == elfcpp::SHT_REL);
10161
10162 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc Reltype;
10163 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc_write
10164 Reltype_write;
10165 const Arm_address invalid_address = static_cast<Arm_address>(0) - 1;
10166
10167 const Arm_relobj<big_endian>* object =
10168 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
10169 const unsigned int local_count = object->local_symbol_count();
10170
10171 Reltype reloc(preloc_in);
10172 Reltype_write reloc_write(preloc_out);
10173
10174 elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
10175 const unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
10176 const unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
10177
10178 const Arm_reloc_property* arp =
10179 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
10180 gold_assert(arp != NULL);
10181
10182 // Get the new symbol index.
10183 // We only use RELOC_SPECIAL strategy in local relocations.
10184 gold_assert(r_sym < local_count);
10185
10186 // We are adjusting a section symbol. We need to find
10187 // the symbol table index of the section symbol for
10188 // the output section corresponding to input section
10189 // in which this symbol is defined.
10190 bool is_ordinary;
10191 unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
10192 gold_assert(is_ordinary);
10193 Output_section* os = object->output_section(shndx);
10194 gold_assert(os != NULL);
10195 gold_assert(os->needs_symtab_index());
10196 unsigned int new_symndx = os->symtab_index();
10197
10198 // Get the new offset--the location in the output section where
10199 // this relocation should be applied.
10200
10201 Arm_address offset = reloc.get_r_offset();
10202 Arm_address new_offset;
10203 if (offset_in_output_section != invalid_address)
10204 new_offset = offset + offset_in_output_section;
10205 else
10206 {
10207 section_offset_type sot_offset =
2e702c99 10208 convert_types<section_offset_type, Arm_address>(offset);
5c388529 10209 section_offset_type new_sot_offset =
2e702c99
RM
10210 output_section->output_offset(object, relinfo->data_shndx,
10211 sot_offset);
5c388529
DK
10212 gold_assert(new_sot_offset != -1);
10213 new_offset = new_sot_offset;
10214 }
10215
10216 // In an object file, r_offset is an offset within the section.
10217 // In an executable or dynamic object, generated by
10218 // --emit-relocs, r_offset is an absolute address.
10219 if (!parameters->options().relocatable())
10220 {
10221 new_offset += view_address;
10222 if (offset_in_output_section != invalid_address)
2e702c99 10223 new_offset -= offset_in_output_section;
5c388529
DK
10224 }
10225
10226 reloc_write.put_r_offset(new_offset);
10227 reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
10228
10229 // Handle the reloc addend.
10230 // The relocation uses a section symbol in the input file.
10231 // We are adjusting it to use a section symbol in the output
10232 // file. The input section symbol refers to some address in
10233 // the input section. We need the relocation in the output
10234 // file to refer to that same address. This adjustment to
10235 // the addend is the same calculation we use for a simple
10236 // absolute relocation for the input section symbol.
10237
10238 const Symbol_value<32>* psymval = object->local_symbol(r_sym);
10239
10240 // Handle THUMB bit.
10241 Symbol_value<32> symval;
10242 Arm_address thumb_bit =
10243 object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
10244 if (thumb_bit != 0
2e702c99 10245 && arp->uses_thumb_bit()
5c388529
DK
10246 && ((psymval->value(object, 0) & 1) != 0))
10247 {
10248 Arm_address stripped_value =
10249 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
10250 symval.set_output_value(stripped_value);
10251 psymval = &symval;
2e702c99 10252 }
5c388529
DK
10253
10254 unsigned char* paddend = view + offset;
10255 typename Arm_relocate_functions<big_endian>::Status reloc_status =
10256 Arm_relocate_functions<big_endian>::STATUS_OKAY;
10257 switch (r_type)
10258 {
10259 case elfcpp::R_ARM_ABS8:
10260 reloc_status = Arm_relocate_functions<big_endian>::abs8(paddend, object,
10261 psymval);
10262 break;
10263
10264 case elfcpp::R_ARM_ABS12:
10265 reloc_status = Arm_relocate_functions<big_endian>::abs12(paddend, object,
10266 psymval);
10267 break;
10268
10269 case elfcpp::R_ARM_ABS16:
10270 reloc_status = Arm_relocate_functions<big_endian>::abs16(paddend, object,
10271 psymval);
10272 break;
10273
10274 case elfcpp::R_ARM_THM_ABS5:
10275 reloc_status = Arm_relocate_functions<big_endian>::thm_abs5(paddend,
10276 object,
10277 psymval);
10278 break;
10279
10280 case elfcpp::R_ARM_MOVW_ABS_NC:
10281 case elfcpp::R_ARM_MOVW_PREL_NC:
10282 case elfcpp::R_ARM_MOVW_BREL_NC:
10283 case elfcpp::R_ARM_MOVW_BREL:
10284 reloc_status = Arm_relocate_functions<big_endian>::movw(
10285 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
10286 break;
10287
10288 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
10289 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
10290 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
10291 case elfcpp::R_ARM_THM_MOVW_BREL:
10292 reloc_status = Arm_relocate_functions<big_endian>::thm_movw(
10293 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
10294 break;
10295
10296 case elfcpp::R_ARM_THM_CALL:
10297 case elfcpp::R_ARM_THM_XPC22:
10298 case elfcpp::R_ARM_THM_JUMP24:
10299 reloc_status =
10300 Arm_relocate_functions<big_endian>::thumb_branch_common(
10301 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
10302 false);
10303 break;
10304
10305 case elfcpp::R_ARM_PLT32:
10306 case elfcpp::R_ARM_CALL:
10307 case elfcpp::R_ARM_JUMP24:
10308 case elfcpp::R_ARM_XPC25:
10309 reloc_status =
2e702c99 10310 Arm_relocate_functions<big_endian>::arm_branch_common(
5c388529
DK
10311 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
10312 false);
10313 break;
10314
10315 case elfcpp::R_ARM_THM_JUMP19:
10316 reloc_status =
10317 Arm_relocate_functions<big_endian>::thm_jump19(paddend, object,
10318 psymval, 0, thumb_bit);
10319 break;
10320
10321 case elfcpp::R_ARM_THM_JUMP6:
10322 reloc_status =
10323 Arm_relocate_functions<big_endian>::thm_jump6(paddend, object, psymval,
10324 0);
10325 break;
10326
10327 case elfcpp::R_ARM_THM_JUMP8:
10328 reloc_status =
10329 Arm_relocate_functions<big_endian>::thm_jump8(paddend, object, psymval,
10330 0);
10331 break;
10332
10333 case elfcpp::R_ARM_THM_JUMP11:
10334 reloc_status =
10335 Arm_relocate_functions<big_endian>::thm_jump11(paddend, object, psymval,
10336 0);
10337 break;
10338
10339 case elfcpp::R_ARM_PREL31:
10340 reloc_status =
10341 Arm_relocate_functions<big_endian>::prel31(paddend, object, psymval, 0,
10342 thumb_bit);
10343 break;
10344
10345 case elfcpp::R_ARM_THM_PC8:
10346 reloc_status =
10347 Arm_relocate_functions<big_endian>::thm_pc8(paddend, object, psymval,
10348 0);
10349 break;
10350
10351 case elfcpp::R_ARM_THM_PC12:
10352 reloc_status =
10353 Arm_relocate_functions<big_endian>::thm_pc12(paddend, object, psymval,
10354 0);
10355 break;
10356
10357 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
10358 reloc_status =
10359 Arm_relocate_functions<big_endian>::thm_alu11(paddend, object, psymval,
10360 0, thumb_bit);
10361 break;
10362
10363 // These relocation truncate relocation results so we cannot handle them
10364 // in a relocatable link.
10365 case elfcpp::R_ARM_MOVT_ABS:
10366 case elfcpp::R_ARM_THM_MOVT_ABS:
10367 case elfcpp::R_ARM_MOVT_PREL:
10368 case elfcpp::R_ARM_MOVT_BREL:
10369 case elfcpp::R_ARM_THM_MOVT_PREL:
10370 case elfcpp::R_ARM_THM_MOVT_BREL:
10371 case elfcpp::R_ARM_ALU_PC_G0_NC:
10372 case elfcpp::R_ARM_ALU_PC_G0:
10373 case elfcpp::R_ARM_ALU_PC_G1_NC:
10374 case elfcpp::R_ARM_ALU_PC_G1:
10375 case elfcpp::R_ARM_ALU_PC_G2:
10376 case elfcpp::R_ARM_ALU_SB_G0_NC:
10377 case elfcpp::R_ARM_ALU_SB_G0:
10378 case elfcpp::R_ARM_ALU_SB_G1_NC:
10379 case elfcpp::R_ARM_ALU_SB_G1:
10380 case elfcpp::R_ARM_ALU_SB_G2:
10381 case elfcpp::R_ARM_LDR_PC_G0:
10382 case elfcpp::R_ARM_LDR_PC_G1:
10383 case elfcpp::R_ARM_LDR_PC_G2:
10384 case elfcpp::R_ARM_LDR_SB_G0:
10385 case elfcpp::R_ARM_LDR_SB_G1:
10386 case elfcpp::R_ARM_LDR_SB_G2:
10387 case elfcpp::R_ARM_LDRS_PC_G0:
10388 case elfcpp::R_ARM_LDRS_PC_G1:
10389 case elfcpp::R_ARM_LDRS_PC_G2:
10390 case elfcpp::R_ARM_LDRS_SB_G0:
10391 case elfcpp::R_ARM_LDRS_SB_G1:
10392 case elfcpp::R_ARM_LDRS_SB_G2:
10393 case elfcpp::R_ARM_LDC_PC_G0:
10394 case elfcpp::R_ARM_LDC_PC_G1:
10395 case elfcpp::R_ARM_LDC_PC_G2:
10396 case elfcpp::R_ARM_LDC_SB_G0:
10397 case elfcpp::R_ARM_LDC_SB_G1:
10398 case elfcpp::R_ARM_LDC_SB_G2:
10399 gold_error(_("cannot handle %s in a relocatable link"),
10400 arp->name().c_str());
10401 break;
10402
10403 default:
10404 gold_unreachable();
10405 }
10406
10407 // Report any errors.
10408 switch (reloc_status)
10409 {
10410 case Arm_relocate_functions<big_endian>::STATUS_OKAY:
10411 break;
10412 case Arm_relocate_functions<big_endian>::STATUS_OVERFLOW:
10413 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
10414 _("relocation overflow in %s"),
10415 arp->name().c_str());
10416 break;
10417 case Arm_relocate_functions<big_endian>::STATUS_BAD_RELOC:
10418 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
10419 _("unexpected opcode while processing relocation %s"),
10420 arp->name().c_str());
10421 break;
10422 default:
10423 gold_unreachable();
10424 }
10425}
10426
94cdfcff
DK
10427// Return the value to use for a dynamic symbol which requires special
10428// treatment. This is how we support equality comparisons of function
10429// pointers across shared library boundaries, as described in the
10430// processor specific ABI supplement.
10431
4a657b0d
DK
10432template<bool big_endian>
10433uint64_t
94cdfcff 10434Target_arm<big_endian>::do_dynsym_value(const Symbol* gsym) const
4a657b0d 10435{
94cdfcff 10436 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
fa89cc82 10437 return this->plt_address_for_global(gsym);
4a657b0d
DK
10438}
10439
10440// Map platform-specific relocs to real relocs
10441//
10442template<bool big_endian>
10443unsigned int
ca09d69a 10444Target_arm<big_endian>::get_real_reloc_type(unsigned int r_type)
4a657b0d
DK
10445{
10446 switch (r_type)
10447 {
10448 case elfcpp::R_ARM_TARGET1:
a6d1ef57
DK
10449 // This is either R_ARM_ABS32 or R_ARM_REL32;
10450 return elfcpp::R_ARM_ABS32;
4a657b0d
DK
10451
10452 case elfcpp::R_ARM_TARGET2:
9b547ce6 10453 // This can be any reloc type but usually is R_ARM_GOT_PREL
a6d1ef57 10454 return elfcpp::R_ARM_GOT_PREL;
4a657b0d
DK
10455
10456 default:
10457 return r_type;
10458 }
10459}
10460
d5b40221
DK
10461// Whether if two EABI versions V1 and V2 are compatible.
10462
10463template<bool big_endian>
10464bool
10465Target_arm<big_endian>::are_eabi_versions_compatible(
10466 elfcpp::Elf_Word v1,
10467 elfcpp::Elf_Word v2)
10468{
10469 // v4 and v5 are the same spec before and after it was released,
10470 // so allow mixing them.
106e8a6c
DK
10471 if ((v1 == elfcpp::EF_ARM_EABI_UNKNOWN || v2 == elfcpp::EF_ARM_EABI_UNKNOWN)
10472 || (v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5)
d5b40221
DK
10473 || (v1 == elfcpp::EF_ARM_EABI_VER5 && v2 == elfcpp::EF_ARM_EABI_VER4))
10474 return true;
10475
10476 return v1 == v2;
10477}
10478
10479// Combine FLAGS from an input object called NAME and the processor-specific
10480// flags in the ELF header of the output. Much of this is adapted from the
10481// processor-specific flags merging code in elf32_arm_merge_private_bfd_data
10482// in bfd/elf32-arm.c.
10483
10484template<bool big_endian>
10485void
10486Target_arm<big_endian>::merge_processor_specific_flags(
10487 const std::string& name,
10488 elfcpp::Elf_Word flags)
10489{
10490 if (this->are_processor_specific_flags_set())
10491 {
10492 elfcpp::Elf_Word out_flags = this->processor_specific_flags();
10493
10494 // Nothing to merge if flags equal to those in output.
10495 if (flags == out_flags)
10496 return;
10497
10498 // Complain about various flag mismatches.
10499 elfcpp::Elf_Word version1 = elfcpp::arm_eabi_version(flags);
10500 elfcpp::Elf_Word version2 = elfcpp::arm_eabi_version(out_flags);
7296d933
DK
10501 if (!this->are_eabi_versions_compatible(version1, version2)
10502 && parameters->options().warn_mismatch())
d5b40221
DK
10503 gold_error(_("Source object %s has EABI version %d but output has "
10504 "EABI version %d."),
10505 name.c_str(),
10506 (flags & elfcpp::EF_ARM_EABIMASK) >> 24,
10507 (out_flags & elfcpp::EF_ARM_EABIMASK) >> 24);
10508 }
10509 else
10510 {
10511 // If the input is the default architecture and had the default
10512 // flags then do not bother setting the flags for the output
10513 // architecture, instead allow future merges to do this. If no
10514 // future merges ever set these flags then they will retain their
10515 // uninitialised values, which surprise surprise, correspond
10516 // to the default values.
10517 if (flags == 0)
10518 return;
10519
10520 // This is the first time, just copy the flags.
10521 // We only copy the EABI version for now.
10522 this->set_processor_specific_flags(flags & elfcpp::EF_ARM_EABIMASK);
10523 }
10524}
10525
10526// Adjust ELF file header.
10527template<bool big_endian>
10528void
10529Target_arm<big_endian>::do_adjust_elf_header(
10530 unsigned char* view,
3bfcb652 10531 int len)
d5b40221
DK
10532{
10533 gold_assert(len == elfcpp::Elf_sizes<32>::ehdr_size);
10534
10535 elfcpp::Ehdr<32, big_endian> ehdr(view);
3bfcb652 10536 elfcpp::Elf_Word flags = this->processor_specific_flags();
d5b40221
DK
10537 unsigned char e_ident[elfcpp::EI_NIDENT];
10538 memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
10539
3bfcb652 10540 if (elfcpp::arm_eabi_version(flags)
d5b40221
DK
10541 == elfcpp::EF_ARM_EABI_UNKNOWN)
10542 e_ident[elfcpp::EI_OSABI] = elfcpp::ELFOSABI_ARM;
10543 else
10544 e_ident[elfcpp::EI_OSABI] = 0;
10545 e_ident[elfcpp::EI_ABIVERSION] = 0;
10546
10547 // FIXME: Do EF_ARM_BE8 adjustment.
10548
3bfcb652
NC
10549 // If we're working in EABI_VER5, set the hard/soft float ABI flags
10550 // as appropriate.
10551 if (elfcpp::arm_eabi_version(flags) == elfcpp::EF_ARM_EABI_VER5)
10552 {
10553 elfcpp::Elf_Half type = ehdr.get_e_type();
10554 if (type == elfcpp::ET_EXEC || type == elfcpp::ET_DYN)
10555 {
10556 Object_attribute* attr = this->get_aeabi_object_attribute(elfcpp::Tag_ABI_VFP_args);
f12d1e8a 10557 if (attr->int_value() == elfcpp::AEABI_VFP_args_vfp)
3bfcb652
NC
10558 flags |= elfcpp::EF_ARM_ABI_FLOAT_HARD;
10559 else
10560 flags |= elfcpp::EF_ARM_ABI_FLOAT_SOFT;
10561 this->set_processor_specific_flags(flags);
10562 }
10563 }
d5b40221
DK
10564 elfcpp::Ehdr_write<32, big_endian> oehdr(view);
10565 oehdr.put_e_ident(e_ident);
10566}
10567
10568// do_make_elf_object to override the same function in the base class.
6fa2a40b
CC
10569// We need to use a target-specific sub-class of
10570// Sized_relobj_file<32, big_endian> to store ARM specific information.
10571// Hence we need to have our own ELF object creation.
d5b40221
DK
10572
10573template<bool big_endian>
10574Object*
10575Target_arm<big_endian>::do_make_elf_object(
10576 const std::string& name,
10577 Input_file* input_file,
2ea97941 10578 off_t offset, const elfcpp::Ehdr<32, big_endian>& ehdr)
d5b40221
DK
10579{
10580 int et = ehdr.get_e_type();
f4a8b6d7
DK
10581 // ET_EXEC files are valid input for --just-symbols/-R,
10582 // and we treat them as relocatable objects.
10583 if (et == elfcpp::ET_REL
10584 || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
d5b40221
DK
10585 {
10586 Arm_relobj<big_endian>* obj =
2e702c99 10587 new Arm_relobj<big_endian>(name, input_file, offset, ehdr);
d5b40221
DK
10588 obj->setup();
10589 return obj;
10590 }
10591 else if (et == elfcpp::ET_DYN)
10592 {
10593 Sized_dynobj<32, big_endian>* obj =
2e702c99 10594 new Arm_dynobj<big_endian>(name, input_file, offset, ehdr);
d5b40221
DK
10595 obj->setup();
10596 return obj;
10597 }
10598 else
10599 {
10600 gold_error(_("%s: unsupported ELF file type %d"),
2e702c99 10601 name.c_str(), et);
d5b40221
DK
10602 return NULL;
10603 }
10604}
10605
a0351a69
DK
10606// Read the architecture from the Tag_also_compatible_with attribute, if any.
10607// Returns -1 if no architecture could be read.
10608// This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c.
10609
10610template<bool big_endian>
10611int
10612Target_arm<big_endian>::get_secondary_compatible_arch(
10613 const Attributes_section_data* pasd)
10614{
ca09d69a 10615 const Object_attribute* known_attributes =
a0351a69
DK
10616 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10617
10618 // Note: the tag and its argument below are uleb128 values, though
10619 // currently-defined values fit in one byte for each.
10620 const std::string& sv =
10621 known_attributes[elfcpp::Tag_also_compatible_with].string_value();
10622 if (sv.size() == 2
10623 && sv.data()[0] == elfcpp::Tag_CPU_arch
10624 && (sv.data()[1] & 128) != 128)
10625 return sv.data()[1];
10626
10627 // This tag is "safely ignorable", so don't complain if it looks funny.
10628 return -1;
10629}
10630
10631// Set, or unset, the architecture of the Tag_also_compatible_with attribute.
10632// The tag is removed if ARCH is -1.
10633// This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c.
10634
10635template<bool big_endian>
10636void
10637Target_arm<big_endian>::set_secondary_compatible_arch(
10638 Attributes_section_data* pasd,
10639 int arch)
10640{
ca09d69a 10641 Object_attribute* known_attributes =
a0351a69
DK
10642 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10643
10644 if (arch == -1)
10645 {
10646 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value("");
10647 return;
10648 }
10649
10650 // Note: the tag and its argument below are uleb128 values, though
10651 // currently-defined values fit in one byte for each.
10652 char sv[3];
10653 sv[0] = elfcpp::Tag_CPU_arch;
10654 gold_assert(arch != 0);
10655 sv[1] = arch;
10656 sv[2] = '\0';
10657
10658 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(sv);
10659}
10660
10661// Combine two values for Tag_CPU_arch, taking secondary compatibility tags
10662// into account.
10663// This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c.
10664
10665template<bool big_endian>
10666int
10667Target_arm<big_endian>::tag_cpu_arch_combine(
10668 const char* name,
10669 int oldtag,
10670 int* secondary_compat_out,
10671 int newtag,
10672 int secondary_compat)
10673{
10674#define T(X) elfcpp::TAG_CPU_ARCH_##X
10675 static const int v6t2[] =
10676 {
10677 T(V6T2), // PRE_V4.
10678 T(V6T2), // V4.
10679 T(V6T2), // V4T.
10680 T(V6T2), // V5T.
10681 T(V6T2), // V5TE.
10682 T(V6T2), // V5TEJ.
10683 T(V6T2), // V6.
10684 T(V7), // V6KZ.
10685 T(V6T2) // V6T2.
10686 };
10687 static const int v6k[] =
10688 {
10689 T(V6K), // PRE_V4.
10690 T(V6K), // V4.
10691 T(V6K), // V4T.
10692 T(V6K), // V5T.
10693 T(V6K), // V5TE.
10694 T(V6K), // V5TEJ.
10695 T(V6K), // V6.
10696 T(V6KZ), // V6KZ.
10697 T(V7), // V6T2.
10698 T(V6K) // V6K.
10699 };
10700 static const int v7[] =
10701 {
10702 T(V7), // PRE_V4.
10703 T(V7), // V4.
10704 T(V7), // V4T.
10705 T(V7), // V5T.
10706 T(V7), // V5TE.
10707 T(V7), // V5TEJ.
10708 T(V7), // V6.
10709 T(V7), // V6KZ.
10710 T(V7), // V6T2.
10711 T(V7), // V6K.
10712 T(V7) // V7.
10713 };
10714 static const int v6_m[] =
10715 {
10716 -1, // PRE_V4.
10717 -1, // V4.
10718 T(V6K), // V4T.
10719 T(V6K), // V5T.
10720 T(V6K), // V5TE.
10721 T(V6K), // V5TEJ.
10722 T(V6K), // V6.
10723 T(V6KZ), // V6KZ.
10724 T(V7), // V6T2.
10725 T(V6K), // V6K.
10726 T(V7), // V7.
10727 T(V6_M) // V6_M.
10728 };
10729 static const int v6s_m[] =
10730 {
10731 -1, // PRE_V4.
10732 -1, // V4.
10733 T(V6K), // V4T.
10734 T(V6K), // V5T.
10735 T(V6K), // V5TE.
10736 T(V6K), // V5TEJ.
10737 T(V6K), // V6.
10738 T(V6KZ), // V6KZ.
10739 T(V7), // V6T2.
10740 T(V6K), // V6K.
10741 T(V7), // V7.
10742 T(V6S_M), // V6_M.
10743 T(V6S_M) // V6S_M.
10744 };
10745 static const int v7e_m[] =
10746 {
10747 -1, // PRE_V4.
10748 -1, // V4.
10749 T(V7E_M), // V4T.
10750 T(V7E_M), // V5T.
10751 T(V7E_M), // V5TE.
10752 T(V7E_M), // V5TEJ.
10753 T(V7E_M), // V6.
10754 T(V7E_M), // V6KZ.
10755 T(V7E_M), // V6T2.
10756 T(V7E_M), // V6K.
10757 T(V7E_M), // V7.
10758 T(V7E_M), // V6_M.
10759 T(V7E_M), // V6S_M.
10760 T(V7E_M) // V7E_M.
10761 };
10762 static const int v4t_plus_v6_m[] =
10763 {
10764 -1, // PRE_V4.
10765 -1, // V4.
10766 T(V4T), // V4T.
10767 T(V5T), // V5T.
10768 T(V5TE), // V5TE.
10769 T(V5TEJ), // V5TEJ.
10770 T(V6), // V6.
10771 T(V6KZ), // V6KZ.
10772 T(V6T2), // V6T2.
10773 T(V6K), // V6K.
10774 T(V7), // V7.
10775 T(V6_M), // V6_M.
10776 T(V6S_M), // V6S_M.
10777 T(V7E_M), // V7E_M.
10778 T(V4T_PLUS_V6_M) // V4T plus V6_M.
10779 };
ca09d69a 10780 static const int* comb[] =
a0351a69
DK
10781 {
10782 v6t2,
10783 v6k,
10784 v7,
10785 v6_m,
10786 v6s_m,
10787 v7e_m,
10788 // Pseudo-architecture.
10789 v4t_plus_v6_m
10790 };
10791
10792 // Check we've not got a higher architecture than we know about.
10793
f62a3ca7 10794 if (oldtag > elfcpp::MAX_TAG_CPU_ARCH || newtag > elfcpp::MAX_TAG_CPU_ARCH)
a0351a69
DK
10795 {
10796 gold_error(_("%s: unknown CPU architecture"), name);
10797 return -1;
10798 }
10799
10800 // Override old tag if we have a Tag_also_compatible_with on the output.
10801
10802 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
10803 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
10804 oldtag = T(V4T_PLUS_V6_M);
10805
10806 // And override the new tag if we have a Tag_also_compatible_with on the
10807 // input.
10808
10809 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
10810 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
10811 newtag = T(V4T_PLUS_V6_M);
10812
10813 // Architectures before V6KZ add features monotonically.
10814 int tagh = std::max(oldtag, newtag);
10815 if (tagh <= elfcpp::TAG_CPU_ARCH_V6KZ)
10816 return tagh;
10817
10818 int tagl = std::min(oldtag, newtag);
10819 int result = comb[tagh - T(V6T2)][tagl];
10820
10821 // Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
10822 // as the canonical version.
10823 if (result == T(V4T_PLUS_V6_M))
10824 {
10825 result = T(V4T);
10826 *secondary_compat_out = T(V6_M);
10827 }
10828 else
10829 *secondary_compat_out = -1;
10830
10831 if (result == -1)
10832 {
10833 gold_error(_("%s: conflicting CPU architectures %d/%d"),
10834 name, oldtag, newtag);
10835 return -1;
10836 }
10837
10838 return result;
10839#undef T
10840}
10841
10842// Helper to print AEABI enum tag value.
10843
10844template<bool big_endian>
10845std::string
10846Target_arm<big_endian>::aeabi_enum_name(unsigned int value)
10847{
ca09d69a 10848 static const char* aeabi_enum_names[] =
a0351a69
DK
10849 { "", "variable-size", "32-bit", "" };
10850 const size_t aeabi_enum_names_size =
10851 sizeof(aeabi_enum_names) / sizeof(aeabi_enum_names[0]);
10852
10853 if (value < aeabi_enum_names_size)
10854 return std::string(aeabi_enum_names[value]);
10855 else
10856 {
10857 char buffer[100];
10858 sprintf(buffer, "<unknown value %u>", value);
10859 return std::string(buffer);
10860 }
10861}
10862
10863// Return the string value to store in TAG_CPU_name.
10864
10865template<bool big_endian>
10866std::string
10867Target_arm<big_endian>::tag_cpu_name_value(unsigned int value)
10868{
ca09d69a 10869 static const char* name_table[] = {
a0351a69
DK
10870 // These aren't real CPU names, but we can't guess
10871 // that from the architecture version alone.
10872 "Pre v4",
10873 "ARM v4",
10874 "ARM v4T",
10875 "ARM v5T",
10876 "ARM v5TE",
10877 "ARM v5TEJ",
10878 "ARM v6",
10879 "ARM v6KZ",
10880 "ARM v6T2",
10881 "ARM v6K",
10882 "ARM v7",
10883 "ARM v6-M",
10884 "ARM v6S-M",
10885 "ARM v7E-M"
10886 };
10887 const size_t name_table_size = sizeof(name_table) / sizeof(name_table[0]);
10888
10889 if (value < name_table_size)
10890 return std::string(name_table[value]);
10891 else
10892 {
10893 char buffer[100];
10894 sprintf(buffer, "<unknown CPU value %u>", value);
10895 return std::string(buffer);
2e702c99 10896 }
a0351a69
DK
10897}
10898
679af368
ILT
10899// Query attributes object to see if integer divide instructions may be
10900// present in an object.
10901
10902template<bool big_endian>
10903bool
10904Target_arm<big_endian>::attributes_accept_div(int arch, int profile,
10905 const Object_attribute* div_attr)
10906{
10907 switch (div_attr->int_value())
10908 {
10909 case 0:
10910 // Integer divide allowed if instruction contained in
10911 // archetecture.
10912 if (arch == elfcpp::TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M'))
10913 return true;
10914 else if (arch >= elfcpp::TAG_CPU_ARCH_V7E_M)
10915 return true;
10916 else
10917 return false;
10918
10919 case 1:
10920 // Integer divide explicitly prohibited.
10921 return false;
10922
10923 default:
10924 // Unrecognised case - treat as allowing divide everywhere.
10925 case 2:
10926 // Integer divide allowed in ARM state.
10927 return true;
10928 }
10929}
10930
10931// Query attributes object to see if integer divide instructions are
10932// forbidden to be in the object. This is not the inverse of
10933// attributes_accept_div.
10934
10935template<bool big_endian>
10936bool
10937Target_arm<big_endian>::attributes_forbid_div(const Object_attribute* div_attr)
10938{
10939 return div_attr->int_value() == 1;
10940}
10941
a0351a69
DK
10942// Merge object attributes from input file called NAME with those of the
10943// output. The input object attributes are in the object pointed by PASD.
10944
10945template<bool big_endian>
10946void
10947Target_arm<big_endian>::merge_object_attributes(
10948 const char* name,
10949 const Attributes_section_data* pasd)
10950{
10951 // Return if there is no attributes section data.
10952 if (pasd == NULL)
10953 return;
10954
10955 // If output has no object attributes, just copy.
da59ad79 10956 const int vendor = Object_attribute::OBJ_ATTR_PROC;
a0351a69
DK
10957 if (this->attributes_section_data_ == NULL)
10958 {
10959 this->attributes_section_data_ = new Attributes_section_data(*pasd);
da59ad79
DK
10960 Object_attribute* out_attr =
10961 this->attributes_section_data_->known_attributes(vendor);
10962
10963 // We do not output objects with Tag_MPextension_use_legacy - we move
10964 // the attribute's value to Tag_MPextension_use. */
10965 if (out_attr[elfcpp::Tag_MPextension_use_legacy].int_value() != 0)
10966 {
10967 if (out_attr[elfcpp::Tag_MPextension_use].int_value() != 0
10968 && out_attr[elfcpp::Tag_MPextension_use_legacy].int_value()
2e702c99 10969 != out_attr[elfcpp::Tag_MPextension_use].int_value())
da59ad79
DK
10970 {
10971 gold_error(_("%s has both the current and legacy "
10972 "Tag_MPextension_use attributes"),
10973 name);
10974 }
10975
10976 out_attr[elfcpp::Tag_MPextension_use] =
10977 out_attr[elfcpp::Tag_MPextension_use_legacy];
10978 out_attr[elfcpp::Tag_MPextension_use_legacy].set_type(0);
10979 out_attr[elfcpp::Tag_MPextension_use_legacy].set_int_value(0);
10980 }
10981
a0351a69
DK
10982 return;
10983 }
10984
a0351a69
DK
10985 const Object_attribute* in_attr = pasd->known_attributes(vendor);
10986 Object_attribute* out_attr =
10987 this->attributes_section_data_->known_attributes(vendor);
10988
10989 // This needs to happen before Tag_ABI_FP_number_model is merged. */
10990 if (in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
10991 != out_attr[elfcpp::Tag_ABI_VFP_args].int_value())
10992 {
10993 // Ignore mismatches if the object doesn't use floating point. */
5c294fee 10994 if (out_attr[elfcpp::Tag_ABI_FP_number_model].int_value()
f12d1e8a 10995 == elfcpp::AEABI_FP_number_model_none
5c294fee 10996 || (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value()
f12d1e8a 10997 != elfcpp::AEABI_FP_number_model_none
5c294fee 10998 && out_attr[elfcpp::Tag_ABI_VFP_args].int_value()
f12d1e8a 10999 == elfcpp::AEABI_VFP_args_compatible))
a0351a69
DK
11000 out_attr[elfcpp::Tag_ABI_VFP_args].set_int_value(
11001 in_attr[elfcpp::Tag_ABI_VFP_args].int_value());
5c294fee 11002 else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value()
f12d1e8a 11003 != elfcpp::AEABI_FP_number_model_none
5c294fee 11004 && in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
f12d1e8a 11005 != elfcpp::AEABI_VFP_args_compatible
7296d933 11006 && parameters->options().warn_mismatch())
2e702c99 11007 gold_error(_("%s uses VFP register arguments, output does not"),
a0351a69
DK
11008 name);
11009 }
11010
11011 for (int i = 4; i < Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES; ++i)
11012 {
11013 // Merge this attribute with existing attributes.
11014 switch (i)
11015 {
11016 case elfcpp::Tag_CPU_raw_name:
11017 case elfcpp::Tag_CPU_name:
11018 // These are merged after Tag_CPU_arch.
11019 break;
11020
11021 case elfcpp::Tag_ABI_optimization_goals:
11022 case elfcpp::Tag_ABI_FP_optimization_goals:
11023 // Use the first value seen.
11024 break;
11025
11026 case elfcpp::Tag_CPU_arch:
11027 {
11028 unsigned int saved_out_attr = out_attr->int_value();
11029 // Merge Tag_CPU_arch and Tag_also_compatible_with.
11030 int secondary_compat =
11031 this->get_secondary_compatible_arch(pasd);
11032 int secondary_compat_out =
11033 this->get_secondary_compatible_arch(
11034 this->attributes_section_data_);
11035 out_attr[i].set_int_value(
11036 tag_cpu_arch_combine(name, out_attr[i].int_value(),
11037 &secondary_compat_out,
11038 in_attr[i].int_value(),
11039 secondary_compat));
11040 this->set_secondary_compatible_arch(this->attributes_section_data_,
11041 secondary_compat_out);
11042
11043 // Merge Tag_CPU_name and Tag_CPU_raw_name.
11044 if (out_attr[i].int_value() == saved_out_attr)
11045 ; // Leave the names alone.
11046 else if (out_attr[i].int_value() == in_attr[i].int_value())
11047 {
11048 // The output architecture has been changed to match the
11049 // input architecture. Use the input names.
11050 out_attr[elfcpp::Tag_CPU_name].set_string_value(
11051 in_attr[elfcpp::Tag_CPU_name].string_value());
11052 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value(
11053 in_attr[elfcpp::Tag_CPU_raw_name].string_value());
11054 }
11055 else
11056 {
11057 out_attr[elfcpp::Tag_CPU_name].set_string_value("");
11058 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value("");
11059 }
11060
11061 // If we still don't have a value for Tag_CPU_name,
11062 // make one up now. Tag_CPU_raw_name remains blank.
11063 if (out_attr[elfcpp::Tag_CPU_name].string_value() == "")
11064 {
11065 const std::string cpu_name =
11066 this->tag_cpu_name_value(out_attr[i].int_value());
11067 // FIXME: If we see an unknown CPU, this will be set
11068 // to "<unknown CPU n>", where n is the attribute value.
11069 // This is different from BFD, which leaves the name alone.
11070 out_attr[elfcpp::Tag_CPU_name].set_string_value(cpu_name);
11071 }
11072 }
11073 break;
11074
11075 case elfcpp::Tag_ARM_ISA_use:
11076 case elfcpp::Tag_THUMB_ISA_use:
11077 case elfcpp::Tag_WMMX_arch:
11078 case elfcpp::Tag_Advanced_SIMD_arch:
11079 // ??? Do Advanced_SIMD (NEON) and WMMX conflict?
11080 case elfcpp::Tag_ABI_FP_rounding:
11081 case elfcpp::Tag_ABI_FP_exceptions:
11082 case elfcpp::Tag_ABI_FP_user_exceptions:
11083 case elfcpp::Tag_ABI_FP_number_model:
11084 case elfcpp::Tag_VFP_HP_extension:
11085 case elfcpp::Tag_CPU_unaligned_access:
11086 case elfcpp::Tag_T2EE_use:
11087 case elfcpp::Tag_Virtualization_use:
11088 case elfcpp::Tag_MPextension_use:
11089 // Use the largest value specified.
11090 if (in_attr[i].int_value() > out_attr[i].int_value())
11091 out_attr[i].set_int_value(in_attr[i].int_value());
11092 break;
11093
11094 case elfcpp::Tag_ABI_align8_preserved:
11095 case elfcpp::Tag_ABI_PCS_RO_data:
11096 // Use the smallest value specified.
11097 if (in_attr[i].int_value() < out_attr[i].int_value())
11098 out_attr[i].set_int_value(in_attr[i].int_value());
11099 break;
11100
11101 case elfcpp::Tag_ABI_align8_needed:
11102 if ((in_attr[i].int_value() > 0 || out_attr[i].int_value() > 0)
11103 && (in_attr[elfcpp::Tag_ABI_align8_preserved].int_value() == 0
11104 || (out_attr[elfcpp::Tag_ABI_align8_preserved].int_value()
11105 == 0)))
11106 {
9b547ce6 11107 // This error message should be enabled once all non-conforming
a0351a69
DK
11108 // binaries in the toolchain have had the attributes set
11109 // properly.
11110 // gold_error(_("output 8-byte data alignment conflicts with %s"),
11111 // name);
11112 }
11113 // Fall through.
11114 case elfcpp::Tag_ABI_FP_denormal:
11115 case elfcpp::Tag_ABI_PCS_GOT_use:
11116 {
11117 // These tags have 0 = don't care, 1 = strong requirement,
11118 // 2 = weak requirement.
11119 static const int order_021[3] = {0, 2, 1};
11120
11121 // Use the "greatest" from the sequence 0, 2, 1, or the largest
11122 // value if greater than 2 (for future-proofing).
11123 if ((in_attr[i].int_value() > 2
11124 && in_attr[i].int_value() > out_attr[i].int_value())
11125 || (in_attr[i].int_value() <= 2
11126 && out_attr[i].int_value() <= 2
11127 && (order_021[in_attr[i].int_value()]
11128 > order_021[out_attr[i].int_value()])))
11129 out_attr[i].set_int_value(in_attr[i].int_value());
11130 }
11131 break;
11132
11133 case elfcpp::Tag_CPU_arch_profile:
11134 if (out_attr[i].int_value() != in_attr[i].int_value())
11135 {
11136 // 0 will merge with anything.
11137 // 'A' and 'S' merge to 'A'.
11138 // 'R' and 'S' merge to 'R'.
11139 // 'M' and 'A|R|S' is an error.
11140 if (out_attr[i].int_value() == 0
11141 || (out_attr[i].int_value() == 'S'
11142 && (in_attr[i].int_value() == 'A'
11143 || in_attr[i].int_value() == 'R')))
11144 out_attr[i].set_int_value(in_attr[i].int_value());
11145 else if (in_attr[i].int_value() == 0
11146 || (in_attr[i].int_value() == 'S'
11147 && (out_attr[i].int_value() == 'A'
11148 || out_attr[i].int_value() == 'R')))
11149 ; // Do nothing.
7296d933 11150 else if (parameters->options().warn_mismatch())
a0351a69
DK
11151 {
11152 gold_error
11153 (_("conflicting architecture profiles %c/%c"),
11154 in_attr[i].int_value() ? in_attr[i].int_value() : '0',
11155 out_attr[i].int_value() ? out_attr[i].int_value() : '0');
11156 }
11157 }
11158 break;
11159 case elfcpp::Tag_VFP_arch:
11160 {
11161 static const struct
11162 {
11163 int ver;
11164 int regs;
11165 } vfp_versions[7] =
11166 {
11167 {0, 0},
11168 {1, 16},
11169 {2, 16},
11170 {3, 32},
11171 {3, 16},
11172 {4, 32},
11173 {4, 16}
11174 };
11175
11176 // Values greater than 6 aren't defined, so just pick the
11177 // biggest.
11178 if (in_attr[i].int_value() > 6
11179 && in_attr[i].int_value() > out_attr[i].int_value())
11180 {
11181 *out_attr = *in_attr;
11182 break;
11183 }
11184 // The output uses the superset of input features
11185 // (ISA version) and registers.
11186 int ver = std::max(vfp_versions[in_attr[i].int_value()].ver,
11187 vfp_versions[out_attr[i].int_value()].ver);
11188 int regs = std::max(vfp_versions[in_attr[i].int_value()].regs,
11189 vfp_versions[out_attr[i].int_value()].regs);
11190 // This assumes all possible supersets are also a valid
11191 // options.
11192 int newval;
11193 for (newval = 6; newval > 0; newval--)
11194 {
11195 if (regs == vfp_versions[newval].regs
11196 && ver == vfp_versions[newval].ver)
11197 break;
11198 }
11199 out_attr[i].set_int_value(newval);
11200 }
11201 break;
11202 case elfcpp::Tag_PCS_config:
11203 if (out_attr[i].int_value() == 0)
11204 out_attr[i].set_int_value(in_attr[i].int_value());
7296d933
DK
11205 else if (in_attr[i].int_value() != 0
11206 && out_attr[i].int_value() != 0
11207 && parameters->options().warn_mismatch())
a0351a69
DK
11208 {
11209 // It's sometimes ok to mix different configs, so this is only
11210 // a warning.
11211 gold_warning(_("%s: conflicting platform configuration"), name);
11212 }
11213 break;
11214 case elfcpp::Tag_ABI_PCS_R9_use:
11215 if (in_attr[i].int_value() != out_attr[i].int_value()
11216 && out_attr[i].int_value() != elfcpp::AEABI_R9_unused
7296d933
DK
11217 && in_attr[i].int_value() != elfcpp::AEABI_R9_unused
11218 && parameters->options().warn_mismatch())
a0351a69
DK
11219 {
11220 gold_error(_("%s: conflicting use of R9"), name);
11221 }
11222 if (out_attr[i].int_value() == elfcpp::AEABI_R9_unused)
11223 out_attr[i].set_int_value(in_attr[i].int_value());
11224 break;
11225 case elfcpp::Tag_ABI_PCS_RW_data:
11226 if (in_attr[i].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel
11227 && (in_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
11228 != elfcpp::AEABI_R9_SB)
11229 && (out_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
7296d933
DK
11230 != elfcpp::AEABI_R9_unused)
11231 && parameters->options().warn_mismatch())
a0351a69
DK
11232 {
11233 gold_error(_("%s: SB relative addressing conflicts with use "
11234 "of R9"),
7296d933 11235 name);
a0351a69
DK
11236 }
11237 // Use the smallest value specified.
11238 if (in_attr[i].int_value() < out_attr[i].int_value())
11239 out_attr[i].set_int_value(in_attr[i].int_value());
11240 break;
11241 case elfcpp::Tag_ABI_PCS_wchar_t:
a0351a69
DK
11242 if (out_attr[i].int_value()
11243 && in_attr[i].int_value()
7296d933 11244 && out_attr[i].int_value() != in_attr[i].int_value()
ce0d1972
DK
11245 && parameters->options().warn_mismatch()
11246 && parameters->options().wchar_size_warning())
a0351a69
DK
11247 {
11248 gold_warning(_("%s uses %u-byte wchar_t yet the output is to "
11249 "use %u-byte wchar_t; use of wchar_t values "
11250 "across objects may fail"),
11251 name, in_attr[i].int_value(),
11252 out_attr[i].int_value());
11253 }
11254 else if (in_attr[i].int_value() && !out_attr[i].int_value())
11255 out_attr[i].set_int_value(in_attr[i].int_value());
11256 break;
11257 case elfcpp::Tag_ABI_enum_size:
11258 if (in_attr[i].int_value() != elfcpp::AEABI_enum_unused)
11259 {
11260 if (out_attr[i].int_value() == elfcpp::AEABI_enum_unused
11261 || out_attr[i].int_value() == elfcpp::AEABI_enum_forced_wide)
11262 {
11263 // The existing object is compatible with anything.
11264 // Use whatever requirements the new object has.
11265 out_attr[i].set_int_value(in_attr[i].int_value());
11266 }
a0351a69 11267 else if (in_attr[i].int_value() != elfcpp::AEABI_enum_forced_wide
7296d933 11268 && out_attr[i].int_value() != in_attr[i].int_value()
ce0d1972
DK
11269 && parameters->options().warn_mismatch()
11270 && parameters->options().enum_size_warning())
a0351a69
DK
11271 {
11272 unsigned int in_value = in_attr[i].int_value();
11273 unsigned int out_value = out_attr[i].int_value();
11274 gold_warning(_("%s uses %s enums yet the output is to use "
11275 "%s enums; use of enum values across objects "
11276 "may fail"),
11277 name,
11278 this->aeabi_enum_name(in_value).c_str(),
11279 this->aeabi_enum_name(out_value).c_str());
11280 }
11281 }
11282 break;
11283 case elfcpp::Tag_ABI_VFP_args:
9b547ce6 11284 // Already done.
a0351a69
DK
11285 break;
11286 case elfcpp::Tag_ABI_WMMX_args:
7296d933
DK
11287 if (in_attr[i].int_value() != out_attr[i].int_value()
11288 && parameters->options().warn_mismatch())
a0351a69
DK
11289 {
11290 gold_error(_("%s uses iWMMXt register arguments, output does "
11291 "not"),
11292 name);
11293 }
11294 break;
11295 case Object_attribute::Tag_compatibility:
11296 // Merged in target-independent code.
11297 break;
11298 case elfcpp::Tag_ABI_HardFP_use:
11299 // 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP).
11300 if ((in_attr[i].int_value() == 1 && out_attr[i].int_value() == 2)
11301 || (in_attr[i].int_value() == 2 && out_attr[i].int_value() == 1))
11302 out_attr[i].set_int_value(3);
11303 else if (in_attr[i].int_value() > out_attr[i].int_value())
11304 out_attr[i].set_int_value(in_attr[i].int_value());
11305 break;
11306 case elfcpp::Tag_ABI_FP_16bit_format:
11307 if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
11308 {
7296d933
DK
11309 if (in_attr[i].int_value() != out_attr[i].int_value()
11310 && parameters->options().warn_mismatch())
a0351a69
DK
11311 gold_error(_("fp16 format mismatch between %s and output"),
11312 name);
11313 }
11314 if (in_attr[i].int_value() != 0)
11315 out_attr[i].set_int_value(in_attr[i].int_value());
11316 break;
11317
da59ad79 11318 case elfcpp::Tag_DIV_use:
679af368
ILT
11319 {
11320 // A value of zero on input means that the divide
11321 // instruction may be used if available in the base
11322 // architecture as specified via Tag_CPU_arch and
11323 // Tag_CPU_arch_profile. A value of 1 means that the user
11324 // did not want divide instructions. A value of 2
11325 // explicitly means that divide instructions were allowed
11326 // in ARM and Thumb state.
11327 int arch = this->
11328 get_aeabi_object_attribute(elfcpp::Tag_CPU_arch)->
11329 int_value();
11330 int profile = this->
11331 get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile)->
11332 int_value();
11333 if (in_attr[i].int_value() == out_attr[i].int_value())
11334 {
11335 // Do nothing.
11336 }
11337 else if (attributes_forbid_div(&in_attr[i])
43819297 11338 && !attributes_accept_div(arch, profile, &out_attr[i]))
679af368
ILT
11339 out_attr[i].set_int_value(1);
11340 else if (attributes_forbid_div(&out_attr[i])
11341 && attributes_accept_div(arch, profile, &in_attr[i]))
11342 out_attr[i].set_int_value(in_attr[i].int_value());
11343 else if (in_attr[i].int_value() == 2)
11344 out_attr[i].set_int_value(in_attr[i].int_value());
11345 }
da59ad79
DK
11346 break;
11347
11348 case elfcpp::Tag_MPextension_use_legacy:
11349 // We don't output objects with Tag_MPextension_use_legacy - we
11350 // move the value to Tag_MPextension_use.
11351 if (in_attr[i].int_value() != 0
11352 && in_attr[elfcpp::Tag_MPextension_use].int_value() != 0)
11353 {
11354 if (in_attr[elfcpp::Tag_MPextension_use].int_value()
11355 != in_attr[i].int_value())
11356 {
11357 gold_error(_("%s has has both the current and legacy "
2e702c99 11358 "Tag_MPextension_use attributes"),
da59ad79
DK
11359 name);
11360 }
11361 }
11362
11363 if (in_attr[i].int_value()
11364 > out_attr[elfcpp::Tag_MPextension_use].int_value())
11365 out_attr[elfcpp::Tag_MPextension_use] = in_attr[i];
11366
11367 break;
11368
a0351a69
DK
11369 case elfcpp::Tag_nodefaults:
11370 // This tag is set if it exists, but the value is unused (and is
11371 // typically zero). We don't actually need to do anything here -
11372 // the merge happens automatically when the type flags are merged
11373 // below.
11374 break;
11375 case elfcpp::Tag_also_compatible_with:
11376 // Already done in Tag_CPU_arch.
11377 break;
11378 case elfcpp::Tag_conformance:
11379 // Keep the attribute if it matches. Throw it away otherwise.
11380 // No attribute means no claim to conform.
11381 if (in_attr[i].string_value() != out_attr[i].string_value())
11382 out_attr[i].set_string_value("");
11383 break;
11384
11385 default:
11386 {
11387 const char* err_object = NULL;
11388
11389 // The "known_obj_attributes" table does contain some undefined
11390 // attributes. Ensure that there are unused.
11391 if (out_attr[i].int_value() != 0
11392 || out_attr[i].string_value() != "")
11393 err_object = "output";
11394 else if (in_attr[i].int_value() != 0
11395 || in_attr[i].string_value() != "")
11396 err_object = name;
11397
7296d933
DK
11398 if (err_object != NULL
11399 && parameters->options().warn_mismatch())
a0351a69
DK
11400 {
11401 // Attribute numbers >=64 (mod 128) can be safely ignored.
11402 if ((i & 127) < 64)
11403 gold_error(_("%s: unknown mandatory EABI object attribute "
11404 "%d"),
11405 err_object, i);
11406 else
11407 gold_warning(_("%s: unknown EABI object attribute %d"),
11408 err_object, i);
11409 }
11410
11411 // Only pass on attributes that match in both inputs.
11412 if (!in_attr[i].matches(out_attr[i]))
11413 {
11414 out_attr[i].set_int_value(0);
11415 out_attr[i].set_string_value("");
11416 }
11417 }
11418 }
11419
11420 // If out_attr was copied from in_attr then it won't have a type yet.
11421 if (in_attr[i].type() && !out_attr[i].type())
11422 out_attr[i].set_type(in_attr[i].type());
11423 }
11424
11425 // Merge Tag_compatibility attributes and any common GNU ones.
11426 this->attributes_section_data_->merge(name, pasd);
11427
11428 // Check for any attributes not known on ARM.
11429 typedef Vendor_object_attributes::Other_attributes Other_attributes;
11430 const Other_attributes* in_other_attributes = pasd->other_attributes(vendor);
11431 Other_attributes::const_iterator in_iter = in_other_attributes->begin();
11432 Other_attributes* out_other_attributes =
11433 this->attributes_section_data_->other_attributes(vendor);
11434 Other_attributes::iterator out_iter = out_other_attributes->begin();
11435
11436 while (in_iter != in_other_attributes->end()
11437 || out_iter != out_other_attributes->end())
11438 {
11439 const char* err_object = NULL;
11440 int err_tag = 0;
11441
11442 // The tags for each list are in numerical order.
11443 // If the tags are equal, then merge.
11444 if (out_iter != out_other_attributes->end()
11445 && (in_iter == in_other_attributes->end()
11446 || in_iter->first > out_iter->first))
11447 {
11448 // This attribute only exists in output. We can't merge, and we
11449 // don't know what the tag means, so delete it.
11450 err_object = "output";
11451 err_tag = out_iter->first;
11452 int saved_tag = out_iter->first;
11453 delete out_iter->second;
2e702c99 11454 out_other_attributes->erase(out_iter);
a0351a69
DK
11455 out_iter = out_other_attributes->upper_bound(saved_tag);
11456 }
11457 else if (in_iter != in_other_attributes->end()
11458 && (out_iter != out_other_attributes->end()
11459 || in_iter->first < out_iter->first))
11460 {
11461 // This attribute only exists in input. We can't merge, and we
11462 // don't know what the tag means, so ignore it.
11463 err_object = name;
11464 err_tag = in_iter->first;
11465 ++in_iter;
11466 }
11467 else // The tags are equal.
11468 {
11469 // As present, all attributes in the list are unknown, and
11470 // therefore can't be merged meaningfully.
11471 err_object = "output";
11472 err_tag = out_iter->first;
11473
11474 // Only pass on attributes that match in both inputs.
11475 if (!in_iter->second->matches(*(out_iter->second)))
11476 {
11477 // No match. Delete the attribute.
11478 int saved_tag = out_iter->first;
11479 delete out_iter->second;
11480 out_other_attributes->erase(out_iter);
11481 out_iter = out_other_attributes->upper_bound(saved_tag);
11482 }
11483 else
11484 {
11485 // Matched. Keep the attribute and move to the next.
11486 ++out_iter;
11487 ++in_iter;
11488 }
11489 }
11490
7296d933 11491 if (err_object && parameters->options().warn_mismatch())
a0351a69
DK
11492 {
11493 // Attribute numbers >=64 (mod 128) can be safely ignored. */
11494 if ((err_tag & 127) < 64)
11495 {
11496 gold_error(_("%s: unknown mandatory EABI object attribute %d"),
11497 err_object, err_tag);
11498 }
11499 else
11500 {
11501 gold_warning(_("%s: unknown EABI object attribute %d"),
11502 err_object, err_tag);
11503 }
11504 }
11505 }
11506}
11507
55da9579
DK
11508// Stub-generation methods for Target_arm.
11509
11510// Make a new Arm_input_section object.
11511
11512template<bool big_endian>
11513Arm_input_section<big_endian>*
11514Target_arm<big_endian>::new_arm_input_section(
2ea97941
ILT
11515 Relobj* relobj,
11516 unsigned int shndx)
55da9579 11517{
5ac169d4 11518 Section_id sid(relobj, shndx);
55da9579
DK
11519
11520 Arm_input_section<big_endian>* arm_input_section =
2ea97941 11521 new Arm_input_section<big_endian>(relobj, shndx);
55da9579
DK
11522 arm_input_section->init();
11523
11524 // Register new Arm_input_section in map for look-up.
11525 std::pair<typename Arm_input_section_map::iterator, bool> ins =
5ac169d4 11526 this->arm_input_section_map_.insert(std::make_pair(sid, arm_input_section));
55da9579
DK
11527
11528 // Make sure that it we have not created another Arm_input_section
11529 // for this input section already.
11530 gold_assert(ins.second);
11531
2e702c99 11532 return arm_input_section;
55da9579
DK
11533}
11534
11535// Find the Arm_input_section object corresponding to the SHNDX-th input
11536// section of RELOBJ.
11537
11538template<bool big_endian>
11539Arm_input_section<big_endian>*
11540Target_arm<big_endian>::find_arm_input_section(
2ea97941
ILT
11541 Relobj* relobj,
11542 unsigned int shndx) const
55da9579 11543{
5ac169d4 11544 Section_id sid(relobj, shndx);
55da9579 11545 typename Arm_input_section_map::const_iterator p =
5ac169d4 11546 this->arm_input_section_map_.find(sid);
55da9579
DK
11547 return (p != this->arm_input_section_map_.end()) ? p->second : NULL;
11548}
11549
11550// Make a new stub table.
11551
11552template<bool big_endian>
11553Stub_table<big_endian>*
11554Target_arm<big_endian>::new_stub_table(Arm_input_section<big_endian>* owner)
11555{
2ea97941 11556 Stub_table<big_endian>* stub_table =
55da9579 11557 new Stub_table<big_endian>(owner);
2ea97941 11558 this->stub_tables_.push_back(stub_table);
55da9579 11559
2ea97941
ILT
11560 stub_table->set_address(owner->address() + owner->data_size());
11561 stub_table->set_file_offset(owner->offset() + owner->data_size());
11562 stub_table->finalize_data_size();
55da9579 11563
2ea97941 11564 return stub_table;
55da9579
DK
11565}
11566
eb44217c
DK
11567// Scan a relocation for stub generation.
11568
11569template<bool big_endian>
11570void
11571Target_arm<big_endian>::scan_reloc_for_stub(
11572 const Relocate_info<32, big_endian>* relinfo,
11573 unsigned int r_type,
11574 const Sized_symbol<32>* gsym,
11575 unsigned int r_sym,
11576 const Symbol_value<32>* psymval,
11577 elfcpp::Elf_types<32>::Elf_Swxword addend,
11578 Arm_address address)
11579{
eb44217c
DK
11580 const Arm_relobj<big_endian>* arm_relobj =
11581 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
11582
11583 bool target_is_thumb;
11584 Symbol_value<32> symval;
11585 if (gsym != NULL)
11586 {
11587 // This is a global symbol. Determine if we use PLT and if the
11588 // final target is THUMB.
95a2c8d6 11589 if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
eb44217c
DK
11590 {
11591 // This uses a PLT, change the symbol value.
fa89cc82 11592 symval.set_output_value(this->plt_address_for_global(gsym));
eb44217c
DK
11593 psymval = &symval;
11594 target_is_thumb = false;
11595 }
11596 else if (gsym->is_undefined())
11597 // There is no need to generate a stub symbol is undefined.
11598 return;
11599 else
11600 {
11601 target_is_thumb =
11602 ((gsym->type() == elfcpp::STT_ARM_TFUNC)
11603 || (gsym->type() == elfcpp::STT_FUNC
11604 && !gsym->is_undefined()
11605 && ((psymval->value(arm_relobj, 0) & 1) != 0)));
11606 }
11607 }
11608 else
11609 {
11610 // This is a local symbol. Determine if the final target is THUMB.
11611 target_is_thumb = arm_relobj->local_symbol_is_thumb_function(r_sym);
11612 }
11613
11614 // Strip LSB if this points to a THUMB target.
5c57f1be
DK
11615 const Arm_reloc_property* reloc_property =
11616 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
11617 gold_assert(reloc_property != NULL);
eb44217c 11618 if (target_is_thumb
5c57f1be 11619 && reloc_property->uses_thumb_bit()
eb44217c
DK
11620 && ((psymval->value(arm_relobj, 0) & 1) != 0))
11621 {
11622 Arm_address stripped_value =
11623 psymval->value(arm_relobj, 0) & ~static_cast<Arm_address>(1);
11624 symval.set_output_value(stripped_value);
11625 psymval = &symval;
2e702c99 11626 }
eb44217c
DK
11627
11628 // Get the symbol value.
11629 Symbol_value<32>::Value value = psymval->value(arm_relobj, 0);
11630
11631 // Owing to pipelining, the PC relative branches below actually skip
11632 // two instructions when the branch offset is 0.
11633 Arm_address destination;
11634 switch (r_type)
11635 {
11636 case elfcpp::R_ARM_CALL:
11637 case elfcpp::R_ARM_JUMP24:
11638 case elfcpp::R_ARM_PLT32:
11639 // ARM branches.
11640 destination = value + addend + 8;
11641 break;
11642 case elfcpp::R_ARM_THM_CALL:
11643 case elfcpp::R_ARM_THM_XPC22:
11644 case elfcpp::R_ARM_THM_JUMP24:
11645 case elfcpp::R_ARM_THM_JUMP19:
11646 // THUMB branches.
11647 destination = value + addend + 4;
11648 break;
11649 default:
11650 gold_unreachable();
11651 }
11652
a120bc7f 11653 Reloc_stub* stub = NULL;
eb44217c
DK
11654 Stub_type stub_type =
11655 Reloc_stub::stub_type_for_reloc(r_type, address, destination,
11656 target_is_thumb);
a120bc7f
DK
11657 if (stub_type != arm_stub_none)
11658 {
11659 // Try looking up an existing stub from a stub table.
2e702c99 11660 Stub_table<big_endian>* stub_table =
a120bc7f
DK
11661 arm_relobj->stub_table(relinfo->data_shndx);
11662 gold_assert(stub_table != NULL);
2e702c99 11663
a120bc7f
DK
11664 // Locate stub by destination.
11665 Reloc_stub::Key stub_key(stub_type, gsym, arm_relobj, r_sym, addend);
eb44217c 11666
a120bc7f
DK
11667 // Create a stub if there is not one already
11668 stub = stub_table->find_reloc_stub(stub_key);
11669 if (stub == NULL)
11670 {
11671 // create a new stub and add it to stub table.
11672 stub = this->stub_factory().make_reloc_stub(stub_type);
11673 stub_table->add_reloc_stub(stub, stub_key);
11674 }
11675
11676 // Record the destination address.
11677 stub->set_destination_address(destination
11678 | (target_is_thumb ? 1 : 0));
eb44217c
DK
11679 }
11680
a120bc7f
DK
11681 // For Cortex-A8, we need to record a relocation at 4K page boundary.
11682 if (this->fix_cortex_a8_
11683 && (r_type == elfcpp::R_ARM_THM_JUMP24
11684 || r_type == elfcpp::R_ARM_THM_JUMP19
11685 || r_type == elfcpp::R_ARM_THM_CALL
11686 || r_type == elfcpp::R_ARM_THM_XPC22)
11687 && (address & 0xfffU) == 0xffeU)
11688 {
11689 // Found a candidate. Note we haven't checked the destination is
11690 // within 4K here: if we do so (and don't create a record) we can't
11691 // tell that a branch should have been relocated when scanning later.
11692 this->cortex_a8_relocs_info_[address] =
11693 new Cortex_a8_reloc(stub, r_type,
11694 destination | (target_is_thumb ? 1 : 0));
11695 }
eb44217c
DK
11696}
11697
11698// This function scans a relocation sections for stub generation.
11699// The template parameter Relocate must be a class type which provides
11700// a single function, relocate(), which implements the machine
11701// specific part of a relocation.
11702
11703// BIG_ENDIAN is the endianness of the data. SH_TYPE is the section type:
11704// SHT_REL or SHT_RELA.
11705
11706// PRELOCS points to the relocation data. RELOC_COUNT is the number
11707// of relocs. OUTPUT_SECTION is the output section.
11708// NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
11709// mapped to output offsets.
11710
11711// VIEW is the section data, VIEW_ADDRESS is its memory address, and
11712// VIEW_SIZE is the size. These refer to the input section, unless
11713// NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
11714// the output section.
11715
11716template<bool big_endian>
11717template<int sh_type>
11718void inline
11719Target_arm<big_endian>::scan_reloc_section_for_stubs(
11720 const Relocate_info<32, big_endian>* relinfo,
11721 const unsigned char* prelocs,
11722 size_t reloc_count,
11723 Output_section* output_section,
11724 bool needs_special_offset_handling,
11725 const unsigned char* view,
11726 elfcpp::Elf_types<32>::Elf_Addr view_address,
11727 section_size_type)
11728{
11729 typedef typename Reloc_types<sh_type, 32, big_endian>::Reloc Reltype;
11730 const int reloc_size =
11731 Reloc_types<sh_type, 32, big_endian>::reloc_size;
11732
11733 Arm_relobj<big_endian>* arm_object =
11734 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
11735 unsigned int local_count = arm_object->local_symbol_count();
11736
168a4726 11737 gold::Default_comdat_behavior default_comdat_behavior;
eb44217c
DK
11738 Comdat_behavior comdat_behavior = CB_UNDETERMINED;
11739
11740 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
11741 {
11742 Reltype reloc(prelocs);
11743
11744 typename elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
11745 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
11746 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
11747
11748 r_type = this->get_real_reloc_type(r_type);
11749
11750 // Only a few relocation types need stubs.
11751 if ((r_type != elfcpp::R_ARM_CALL)
2e702c99
RM
11752 && (r_type != elfcpp::R_ARM_JUMP24)
11753 && (r_type != elfcpp::R_ARM_PLT32)
11754 && (r_type != elfcpp::R_ARM_THM_CALL)
11755 && (r_type != elfcpp::R_ARM_THM_XPC22)
11756 && (r_type != elfcpp::R_ARM_THM_JUMP24)
11757 && (r_type != elfcpp::R_ARM_THM_JUMP19)
11758 && (r_type != elfcpp::R_ARM_V4BX))
eb44217c
DK
11759 continue;
11760
2ea97941 11761 section_offset_type offset =
eb44217c
DK
11762 convert_to_section_size_type(reloc.get_r_offset());
11763
11764 if (needs_special_offset_handling)
11765 {
2ea97941
ILT
11766 offset = output_section->output_offset(relinfo->object,
11767 relinfo->data_shndx,
11768 offset);
11769 if (offset == -1)
eb44217c
DK
11770 continue;
11771 }
11772
2fd9ae7a 11773 // Create a v4bx stub if --fix-v4bx-interworking is used.
a2162063
ILT
11774 if (r_type == elfcpp::R_ARM_V4BX)
11775 {
2fd9ae7a
DK
11776 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING)
11777 {
11778 // Get the BX instruction.
11779 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
11780 const Valtype* wv =
11781 reinterpret_cast<const Valtype*>(view + offset);
11782 elfcpp::Elf_types<32>::Elf_Swxword insn =
11783 elfcpp::Swap<32, big_endian>::readval(wv);
11784 const uint32_t reg = (insn & 0xf);
11785
11786 if (reg < 0xf)
11787 {
11788 // Try looking up an existing stub from a stub table.
11789 Stub_table<big_endian>* stub_table =
11790 arm_object->stub_table(relinfo->data_shndx);
11791 gold_assert(stub_table != NULL);
11792
11793 if (stub_table->find_arm_v4bx_stub(reg) == NULL)
11794 {
11795 // create a new stub and add it to stub table.
11796 Arm_v4bx_stub* stub =
2e702c99 11797 this->stub_factory().make_arm_v4bx_stub(reg);
2fd9ae7a
DK
11798 gold_assert(stub != NULL);
11799 stub_table->add_arm_v4bx_stub(stub);
11800 }
11801 }
11802 }
a2162063
ILT
11803 continue;
11804 }
11805
eb44217c
DK
11806 // Get the addend.
11807 Stub_addend_reader<sh_type, big_endian> stub_addend_reader;
11808 elfcpp::Elf_types<32>::Elf_Swxword addend =
2ea97941 11809 stub_addend_reader(r_type, view + offset, reloc);
eb44217c
DK
11810
11811 const Sized_symbol<32>* sym;
11812
11813 Symbol_value<32> symval;
11814 const Symbol_value<32> *psymval;
aa98ff75
DK
11815 bool is_defined_in_discarded_section;
11816 unsigned int shndx;
eb44217c
DK
11817 if (r_sym < local_count)
11818 {
11819 sym = NULL;
11820 psymval = arm_object->local_symbol(r_sym);
11821
2e702c99
RM
11822 // If the local symbol belongs to a section we are discarding,
11823 // and that section is a debug section, try to find the
11824 // corresponding kept section and map this symbol to its
11825 // counterpart in the kept section. The symbol must not
11826 // correspond to a section we are folding.
eb44217c 11827 bool is_ordinary;
aa98ff75
DK
11828 shndx = psymval->input_shndx(&is_ordinary);
11829 is_defined_in_discarded_section =
11830 (is_ordinary
11831 && shndx != elfcpp::SHN_UNDEF
11832 && !arm_object->is_section_included(shndx)
11833 && !relinfo->symtab->is_section_folded(arm_object, shndx));
11834
11835 // We need to compute the would-be final value of this local
11836 // symbol.
11837 if (!is_defined_in_discarded_section)
eb44217c 11838 {
6fa2a40b 11839 typedef Sized_relobj_file<32, big_endian> ObjType;
aa98ff75
DK
11840 typename ObjType::Compute_final_local_value_status status =
11841 arm_object->compute_final_local_value(r_sym, psymval, &symval,
2e702c99 11842 relinfo->symtab);
aa98ff75
DK
11843 if (status == ObjType::CFLV_OK)
11844 {
11845 // Currently we cannot handle a branch to a target in
11846 // a merged section. If this is the case, issue an error
11847 // and also free the merge symbol value.
11848 if (!symval.has_output_value())
11849 {
11850 const std::string& section_name =
11851 arm_object->section_name(shndx);
11852 arm_object->error(_("cannot handle branch to local %u "
11853 "in a merged section %s"),
11854 r_sym, section_name.c_str());
11855 }
11856 psymval = &symval;
11857 }
eb44217c 11858 else
aa98ff75
DK
11859 {
11860 // We cannot determine the final value.
2e702c99 11861 continue;
aa98ff75 11862 }
eb44217c
DK
11863 }
11864 }
11865 else
11866 {
aa98ff75
DK
11867 const Symbol* gsym;
11868 gsym = arm_object->global_symbol(r_sym);
eb44217c
DK
11869 gold_assert(gsym != NULL);
11870 if (gsym->is_forwarder())
11871 gsym = relinfo->symtab->resolve_forwards(gsym);
11872
11873 sym = static_cast<const Sized_symbol<32>*>(gsym);
aa98ff75 11874 if (sym->has_symtab_index() && sym->symtab_index() != -1U)
eb44217c
DK
11875 symval.set_output_symtab_index(sym->symtab_index());
11876 else
11877 symval.set_no_output_symtab_entry();
11878
11879 // We need to compute the would-be final value of this global
11880 // symbol.
11881 const Symbol_table* symtab = relinfo->symtab;
11882 const Sized_symbol<32>* sized_symbol =
11883 symtab->get_sized_symbol<32>(gsym);
11884 Symbol_table::Compute_final_value_status status;
11885 Arm_address value =
11886 symtab->compute_final_value<32>(sized_symbol, &status);
11887
11888 // Skip this if the symbol has not output section.
11889 if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
11890 continue;
eb44217c 11891 symval.set_output_value(value);
aa98ff75
DK
11892
11893 if (gsym->type() == elfcpp::STT_TLS)
11894 symval.set_is_tls_symbol();
11895 else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
11896 symval.set_is_ifunc_symbol();
eb44217c 11897 psymval = &symval;
aa98ff75
DK
11898
11899 is_defined_in_discarded_section =
11900 (gsym->is_defined_in_discarded_section()
11901 && gsym->is_undefined());
11902 shndx = 0;
11903 }
11904
11905 Symbol_value<32> symval2;
11906 if (is_defined_in_discarded_section)
11907 {
11908 if (comdat_behavior == CB_UNDETERMINED)
11909 {
11910 std::string name = arm_object->section_name(relinfo->data_shndx);
168a4726 11911 comdat_behavior = default_comdat_behavior.get(name.c_str());
aa98ff75
DK
11912 }
11913 if (comdat_behavior == CB_PRETEND)
11914 {
11915 // FIXME: This case does not work for global symbols.
11916 // We have no place to store the original section index.
11917 // Fortunately this does not matter for comdat sections,
11918 // only for sections explicitly discarded by a linker
11919 // script.
11920 bool found;
11921 typename elfcpp::Elf_types<32>::Elf_Addr value =
11922 arm_object->map_to_kept_section(shndx, &found);
11923 if (found)
11924 symval2.set_output_value(value + psymval->input_value());
11925 else
11926 symval2.set_output_value(0);
11927 }
11928 else
11929 {
11930 if (comdat_behavior == CB_WARNING)
11931 gold_warning_at_location(relinfo, i, offset,
11932 _("relocation refers to discarded "
11933 "section"));
11934 symval2.set_output_value(0);
11935 }
11936 symval2.set_no_output_symtab_entry();
11937 psymval = &symval2;
eb44217c
DK
11938 }
11939
11940 // If symbol is a section symbol, we don't know the actual type of
11941 // destination. Give up.
11942 if (psymval->is_section_symbol())
11943 continue;
11944
11945 this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
2ea97941 11946 addend, view_address + offset);
eb44217c
DK
11947 }
11948}
11949
11950// Scan an input section for stub generation.
11951
11952template<bool big_endian>
11953void
11954Target_arm<big_endian>::scan_section_for_stubs(
11955 const Relocate_info<32, big_endian>* relinfo,
11956 unsigned int sh_type,
11957 const unsigned char* prelocs,
11958 size_t reloc_count,
11959 Output_section* output_section,
11960 bool needs_special_offset_handling,
11961 const unsigned char* view,
11962 Arm_address view_address,
11963 section_size_type view_size)
11964{
11965 if (sh_type == elfcpp::SHT_REL)
11966 this->scan_reloc_section_for_stubs<elfcpp::SHT_REL>(
11967 relinfo,
11968 prelocs,
11969 reloc_count,
11970 output_section,
11971 needs_special_offset_handling,
11972 view,
11973 view_address,
11974 view_size);
11975 else if (sh_type == elfcpp::SHT_RELA)
11976 // We do not support RELA type relocations yet. This is provided for
11977 // completeness.
11978 this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
11979 relinfo,
11980 prelocs,
11981 reloc_count,
11982 output_section,
11983 needs_special_offset_handling,
11984 view,
11985 view_address,
11986 view_size);
11987 else
11988 gold_unreachable();
11989}
11990
11991// Group input sections for stub generation.
11992//
9b547ce6 11993// We group input sections in an output section so that the total size,
eb44217c
DK
11994// including any padding space due to alignment is smaller than GROUP_SIZE
11995// unless the only input section in group is bigger than GROUP_SIZE already.
11996// Then an ARM stub table is created to follow the last input section
11997// in group. For each group an ARM stub table is created an is placed
9b547ce6 11998// after the last group. If STUB_ALWAYS_AFTER_BRANCH is false, we further
eb44217c
DK
11999// extend the group after the stub table.
12000
12001template<bool big_endian>
12002void
12003Target_arm<big_endian>::group_sections(
2ea97941 12004 Layout* layout,
eb44217c 12005 section_size_type group_size,
f625ae50
DK
12006 bool stubs_always_after_branch,
12007 const Task* task)
eb44217c
DK
12008{
12009 // Group input sections and insert stub table
12010 Layout::Section_list section_list;
ec661b9d 12011 layout->get_executable_sections(&section_list);
eb44217c
DK
12012 for (Layout::Section_list::const_iterator p = section_list.begin();
12013 p != section_list.end();
12014 ++p)
12015 {
12016 Arm_output_section<big_endian>* output_section =
12017 Arm_output_section<big_endian>::as_arm_output_section(*p);
12018 output_section->group_sections(group_size, stubs_always_after_branch,
f625ae50 12019 this, task);
eb44217c
DK
12020 }
12021}
12022
12023// Relaxation hook. This is where we do stub generation.
12024
12025template<bool big_endian>
12026bool
12027Target_arm<big_endian>::do_relax(
12028 int pass,
12029 const Input_objects* input_objects,
12030 Symbol_table* symtab,
f625ae50
DK
12031 Layout* layout,
12032 const Task* task)
eb44217c
DK
12033{
12034 // No need to generate stubs if this is a relocatable link.
12035 gold_assert(!parameters->options().relocatable());
12036
12037 // If this is the first pass, we need to group input sections into
12038 // stub groups.
2b328d4e 12039 bool done_exidx_fixup = false;
6625d24e 12040 typedef typename Stub_table_list::iterator Stub_table_iterator;
eb44217c
DK
12041 if (pass == 1)
12042 {
12043 // Determine the stub group size. The group size is the absolute
12044 // value of the parameter --stub-group-size. If --stub-group-size
9b547ce6 12045 // is passed a negative value, we restrict stubs to be always after
eb44217c
DK
12046 // the stubbed branches.
12047 int32_t stub_group_size_param =
12048 parameters->options().stub_group_size();
12049 bool stubs_always_after_branch = stub_group_size_param < 0;
12050 section_size_type stub_group_size = abs(stub_group_size_param);
12051
12052 if (stub_group_size == 1)
12053 {
12054 // Default value.
12055 // Thumb branch range is +-4MB has to be used as the default
12056 // maximum size (a given section can contain both ARM and Thumb
a2c7281b
DK
12057 // code, so the worst case has to be taken into account). If we are
12058 // fixing cortex-a8 errata, the branch range has to be even smaller,
12059 // since wide conditional branch has a range of +-1MB only.
eb44217c 12060 //
25bbe950 12061 // This value is 48K less than that, which allows for 4096
eb44217c
DK
12062 // 12-byte stubs. If we exceed that, then we will fail to link.
12063 // The user will have to relink with an explicit group size
12064 // option.
25bbe950
DK
12065 stub_group_size = 4145152;
12066 }
12067
12068 // The Cortex-A8 erratum fix depends on stubs not being in the same 4K
12069 // page as the first half of a 32-bit branch straddling two 4K pages.
12070 // This is a crude way of enforcing that. In addition, long conditional
12071 // branches of THUMB-2 have a range of +-1M. If we are fixing cortex-A8
12072 // erratum, limit the group size to (1M - 12k) to avoid unreachable
12073 // cortex-A8 stubs from long conditional branches.
12074 if (this->fix_cortex_a8_)
12075 {
12076 stubs_always_after_branch = true;
12077 const section_size_type cortex_a8_group_size = 1024 * (1024 - 12);
12078 stub_group_size = std::max(stub_group_size, cortex_a8_group_size);
eb44217c
DK
12079 }
12080
f625ae50 12081 group_sections(layout, stub_group_size, stubs_always_after_branch, task);
2e702c99 12082
2b328d4e 12083 // Also fix .ARM.exidx section coverage.
131687b4
DK
12084 Arm_output_section<big_endian>* exidx_output_section = NULL;
12085 for (Layout::Section_list::const_iterator p =
12086 layout->section_list().begin();
12087 p != layout->section_list().end();
12088 ++p)
12089 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
12090 {
12091 if (exidx_output_section == NULL)
12092 exidx_output_section =
12093 Arm_output_section<big_endian>::as_arm_output_section(*p);
12094 else
12095 // We cannot handle this now.
12096 gold_error(_("multiple SHT_ARM_EXIDX sections %s and %s in a "
12097 "non-relocatable link"),
12098 exidx_output_section->name(),
12099 (*p)->name());
12100 }
12101
12102 if (exidx_output_section != NULL)
2b328d4e 12103 {
131687b4 12104 this->fix_exidx_coverage(layout, input_objects, exidx_output_section,
f625ae50 12105 symtab, task);
2b328d4e
DK
12106 done_exidx_fixup = true;
12107 }
eb44217c 12108 }
6625d24e
DK
12109 else
12110 {
12111 // If this is not the first pass, addresses and file offsets have
12112 // been reset at this point, set them here.
12113 for (Stub_table_iterator sp = this->stub_tables_.begin();
12114 sp != this->stub_tables_.end();
12115 ++sp)
12116 {
12117 Arm_input_section<big_endian>* owner = (*sp)->owner();
12118 off_t off = align_address(owner->original_size(),
12119 (*sp)->addralign());
12120 (*sp)->set_address_and_file_offset(owner->address() + off,
12121 owner->offset() + off);
12122 }
12123 }
eb44217c 12124
44272192
DK
12125 // The Cortex-A8 stubs are sensitive to layout of code sections. At the
12126 // beginning of each relaxation pass, just blow away all the stubs.
12127 // Alternatively, we could selectively remove only the stubs and reloc
12128 // information for code sections that have moved since the last pass.
12129 // That would require more book-keeping.
a120bc7f
DK
12130 if (this->fix_cortex_a8_)
12131 {
12132 // Clear all Cortex-A8 reloc information.
12133 for (typename Cortex_a8_relocs_info::const_iterator p =
12134 this->cortex_a8_relocs_info_.begin();
12135 p != this->cortex_a8_relocs_info_.end();
12136 ++p)
12137 delete p->second;
12138 this->cortex_a8_relocs_info_.clear();
44272192
DK
12139
12140 // Remove all Cortex-A8 stubs.
12141 for (Stub_table_iterator sp = this->stub_tables_.begin();
12142 sp != this->stub_tables_.end();
12143 ++sp)
12144 (*sp)->remove_all_cortex_a8_stubs();
a120bc7f 12145 }
2e702c99 12146
44272192 12147 // Scan relocs for relocation stubs
eb44217c
DK
12148 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
12149 op != input_objects->relobj_end();
12150 ++op)
12151 {
12152 Arm_relobj<big_endian>* arm_relobj =
12153 Arm_relobj<big_endian>::as_arm_relobj(*op);
f625ae50
DK
12154 // Lock the object so we can read from it. This is only called
12155 // single-threaded from Layout::finalize, so it is OK to lock.
12156 Task_lock_obj<Object> tl(task, arm_relobj);
2ea97941 12157 arm_relobj->scan_sections_for_stubs(this, symtab, layout);
eb44217c
DK
12158 }
12159
2fb7225c
DK
12160 // Check all stub tables to see if any of them have their data sizes
12161 // or addresses alignments changed. These are the only things that
12162 // matter.
eb44217c 12163 bool any_stub_table_changed = false;
8923b24c 12164 Unordered_set<const Output_section*> sections_needing_adjustment;
eb44217c
DK
12165 for (Stub_table_iterator sp = this->stub_tables_.begin();
12166 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
12167 ++sp)
12168 {
2fb7225c 12169 if ((*sp)->update_data_size_and_addralign())
8923b24c
DK
12170 {
12171 // Update data size of stub table owner.
12172 Arm_input_section<big_endian>* owner = (*sp)->owner();
12173 uint64_t address = owner->address();
12174 off_t offset = owner->offset();
12175 owner->reset_address_and_file_offset();
12176 owner->set_address_and_file_offset(address, offset);
12177
12178 sections_needing_adjustment.insert(owner->output_section());
12179 any_stub_table_changed = true;
12180 }
12181 }
12182
12183 // Output_section_data::output_section() returns a const pointer but we
12184 // need to update output sections, so we record all output sections needing
12185 // update above and scan the sections here to find out what sections need
12186 // to be updated.
f625ae50 12187 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
8923b24c
DK
12188 p != layout->section_list().end();
12189 ++p)
12190 {
12191 if (sections_needing_adjustment.find(*p)
12192 != sections_needing_adjustment.end())
12193 (*p)->set_section_offsets_need_adjustment();
eb44217c
DK
12194 }
12195
2b328d4e
DK
12196 // Stop relaxation if no EXIDX fix-up and no stub table change.
12197 bool continue_relaxation = done_exidx_fixup || any_stub_table_changed;
12198
2fb7225c 12199 // Finalize the stubs in the last relaxation pass.
2b328d4e 12200 if (!continue_relaxation)
e7eca48c
DK
12201 {
12202 for (Stub_table_iterator sp = this->stub_tables_.begin();
12203 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
12204 ++sp)
12205 (*sp)->finalize_stubs();
12206
12207 // Update output local symbol counts of objects if necessary.
12208 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
12209 op != input_objects->relobj_end();
12210 ++op)
12211 {
12212 Arm_relobj<big_endian>* arm_relobj =
12213 Arm_relobj<big_endian>::as_arm_relobj(*op);
12214
12215 // Update output local symbol counts. We need to discard local
12216 // symbols defined in parts of input sections that are discarded by
12217 // relaxation.
12218 if (arm_relobj->output_local_symbol_count_needs_update())
f625ae50
DK
12219 {
12220 // We need to lock the object's file to update it.
12221 Task_lock_obj<Object> tl(task, arm_relobj);
12222 arm_relobj->update_output_local_symbol_count();
12223 }
e7eca48c
DK
12224 }
12225 }
2fb7225c 12226
2b328d4e 12227 return continue_relaxation;
eb44217c
DK
12228}
12229
43d12afe
DK
12230// Relocate a stub.
12231
12232template<bool big_endian>
12233void
12234Target_arm<big_endian>::relocate_stub(
2fb7225c 12235 Stub* stub,
43d12afe
DK
12236 const Relocate_info<32, big_endian>* relinfo,
12237 Output_section* output_section,
12238 unsigned char* view,
12239 Arm_address address,
12240 section_size_type view_size)
12241{
12242 Relocate relocate;
2ea97941
ILT
12243 const Stub_template* stub_template = stub->stub_template();
12244 for (size_t i = 0; i < stub_template->reloc_count(); i++)
43d12afe 12245 {
2ea97941
ILT
12246 size_t reloc_insn_index = stub_template->reloc_insn_index(i);
12247 const Insn_template* insn = &stub_template->insns()[reloc_insn_index];
43d12afe
DK
12248
12249 unsigned int r_type = insn->r_type();
2ea97941 12250 section_size_type reloc_offset = stub_template->reloc_offset(i);
43d12afe
DK
12251 section_size_type reloc_size = insn->size();
12252 gold_assert(reloc_offset + reloc_size <= view_size);
12253
12254 // This is the address of the stub destination.
41263c05 12255 Arm_address target = stub->reloc_target(i) + insn->reloc_addend();
43d12afe
DK
12256 Symbol_value<32> symval;
12257 symval.set_output_value(target);
12258
12259 // Synthesize a fake reloc just in case. We don't have a symbol so
12260 // we use 0.
12261 unsigned char reloc_buffer[elfcpp::Elf_sizes<32>::rel_size];
12262 memset(reloc_buffer, 0, sizeof(reloc_buffer));
12263 elfcpp::Rel_write<32, big_endian> reloc_write(reloc_buffer);
12264 reloc_write.put_r_offset(reloc_offset);
12265 reloc_write.put_r_info(elfcpp::elf_r_info<32>(0, r_type));
12266 elfcpp::Rel<32, big_endian> rel(reloc_buffer);
12267
12268 relocate.relocate(relinfo, this, output_section,
12269 this->fake_relnum_for_stubs, rel, r_type,
12270 NULL, &symval, view + reloc_offset,
12271 address + reloc_offset, reloc_size);
12272 }
12273}
12274
a0351a69
DK
12275// Determine whether an object attribute tag takes an integer, a
12276// string or both.
12277
12278template<bool big_endian>
12279int
12280Target_arm<big_endian>::do_attribute_arg_type(int tag) const
12281{
12282 if (tag == Object_attribute::Tag_compatibility)
12283 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
12284 | Object_attribute::ATTR_TYPE_FLAG_STR_VAL);
12285 else if (tag == elfcpp::Tag_nodefaults)
12286 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
12287 | Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT);
12288 else if (tag == elfcpp::Tag_CPU_raw_name || tag == elfcpp::Tag_CPU_name)
12289 return Object_attribute::ATTR_TYPE_FLAG_STR_VAL;
12290 else if (tag < 32)
12291 return Object_attribute::ATTR_TYPE_FLAG_INT_VAL;
12292 else
12293 return ((tag & 1) != 0
12294 ? Object_attribute::ATTR_TYPE_FLAG_STR_VAL
12295 : Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
12296}
12297
12298// Reorder attributes.
12299//
12300// The ABI defines that Tag_conformance should be emitted first, and that
12301// Tag_nodefaults should be second (if either is defined). This sets those
12302// two positions, and bumps up the position of all the remaining tags to
12303// compensate.
12304
12305template<bool big_endian>
12306int
12307Target_arm<big_endian>::do_attributes_order(int num) const
12308{
12309 // Reorder the known object attributes in output. We want to move
12310 // Tag_conformance to position 4 and Tag_conformance to position 5
9b547ce6 12311 // and shift everything between 4 .. Tag_conformance - 1 to make room.
a0351a69
DK
12312 if (num == 4)
12313 return elfcpp::Tag_conformance;
12314 if (num == 5)
12315 return elfcpp::Tag_nodefaults;
12316 if ((num - 2) < elfcpp::Tag_nodefaults)
12317 return num - 2;
12318 if ((num - 1) < elfcpp::Tag_conformance)
12319 return num - 1;
12320 return num;
12321}
4a657b0d 12322
44272192
DK
12323// Scan a span of THUMB code for Cortex-A8 erratum.
12324
12325template<bool big_endian>
12326void
12327Target_arm<big_endian>::scan_span_for_cortex_a8_erratum(
12328 Arm_relobj<big_endian>* arm_relobj,
12329 unsigned int shndx,
12330 section_size_type span_start,
12331 section_size_type span_end,
12332 const unsigned char* view,
12333 Arm_address address)
12334{
12335 // Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
12336 //
12337 // The opcode is BLX.W, BL.W, B.W, Bcc.W
12338 // The branch target is in the same 4KB region as the
12339 // first half of the branch.
12340 // The instruction before the branch is a 32-bit
12341 // length non-branch instruction.
12342 section_size_type i = span_start;
12343 bool last_was_32bit = false;
12344 bool last_was_branch = false;
12345 while (i < span_end)
12346 {
12347 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
12348 const Valtype* wv = reinterpret_cast<const Valtype*>(view + i);
12349 uint32_t insn = elfcpp::Swap<16, big_endian>::readval(wv);
12350 bool is_blx = false, is_b = false;
12351 bool is_bl = false, is_bcc = false;
12352
12353 bool insn_32bit = (insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000;
12354 if (insn_32bit)
12355 {
12356 // Load the rest of the insn (in manual-friendly order).
12357 insn = (insn << 16) | elfcpp::Swap<16, big_endian>::readval(wv + 1);
12358
12359 // Encoding T4: B<c>.W.
12360 is_b = (insn & 0xf800d000U) == 0xf0009000U;
12361 // Encoding T1: BL<c>.W.
2e702c99
RM
12362 is_bl = (insn & 0xf800d000U) == 0xf000d000U;
12363 // Encoding T2: BLX<c>.W.
12364 is_blx = (insn & 0xf800d000U) == 0xf000c000U;
44272192
DK
12365 // Encoding T3: B<c>.W (not permitted in IT block).
12366 is_bcc = ((insn & 0xf800d000U) == 0xf0008000U
12367 && (insn & 0x07f00000U) != 0x03800000U);
12368 }
12369
12370 bool is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
2e702c99 12371
44272192
DK
12372 // If this instruction is a 32-bit THUMB branch that crosses a 4K
12373 // page boundary and it follows 32-bit non-branch instruction,
12374 // we need to work around.
12375 if (is_32bit_branch
12376 && ((address + i) & 0xfffU) == 0xffeU
12377 && last_was_32bit
12378 && !last_was_branch)
12379 {
12380 // Check to see if there is a relocation stub for this branch.
12381 bool force_target_arm = false;
12382 bool force_target_thumb = false;
12383 const Cortex_a8_reloc* cortex_a8_reloc = NULL;
12384 Cortex_a8_relocs_info::const_iterator p =
12385 this->cortex_a8_relocs_info_.find(address + i);
12386
12387 if (p != this->cortex_a8_relocs_info_.end())
12388 {
12389 cortex_a8_reloc = p->second;
12390 bool target_is_thumb = (cortex_a8_reloc->destination() & 1) != 0;
12391
12392 if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
12393 && !target_is_thumb)
12394 force_target_arm = true;
12395 else if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
12396 && target_is_thumb)
12397 force_target_thumb = true;
12398 }
12399
12400 off_t offset;
12401 Stub_type stub_type = arm_stub_none;
12402
12403 // Check if we have an offending branch instruction.
12404 uint16_t upper_insn = (insn >> 16) & 0xffffU;
12405 uint16_t lower_insn = insn & 0xffffU;
2c54b4f4 12406 typedef class Arm_relocate_functions<big_endian> RelocFuncs;
44272192
DK
12407
12408 if (cortex_a8_reloc != NULL
12409 && cortex_a8_reloc->reloc_stub() != NULL)
12410 // We've already made a stub for this instruction, e.g.
12411 // it's a long branch or a Thumb->ARM stub. Assume that
12412 // stub will suffice to work around the A8 erratum (see
12413 // setting of always_after_branch above).
12414 ;
12415 else if (is_bcc)
12416 {
12417 offset = RelocFuncs::thumb32_cond_branch_offset(upper_insn,
12418 lower_insn);
12419 stub_type = arm_stub_a8_veneer_b_cond;
12420 }
12421 else if (is_b || is_bl || is_blx)
12422 {
12423 offset = RelocFuncs::thumb32_branch_offset(upper_insn,
12424 lower_insn);
12425 if (is_blx)
2e702c99 12426 offset &= ~3;
44272192
DK
12427
12428 stub_type = (is_blx
12429 ? arm_stub_a8_veneer_blx
12430 : (is_bl
12431 ? arm_stub_a8_veneer_bl
12432 : arm_stub_a8_veneer_b));
12433 }
12434
12435 if (stub_type != arm_stub_none)
12436 {
12437 Arm_address pc_for_insn = address + i + 4;
12438
12439 // The original instruction is a BL, but the target is
12440 // an ARM instruction. If we were not making a stub,
12441 // the BL would have been converted to a BLX. Use the
12442 // BLX stub instead in that case.
cd6eab1c 12443 if (this->may_use_v5t_interworking() && force_target_arm
44272192
DK
12444 && stub_type == arm_stub_a8_veneer_bl)
12445 {
12446 stub_type = arm_stub_a8_veneer_blx;
12447 is_blx = true;
12448 is_bl = false;
12449 }
12450 // Conversely, if the original instruction was
12451 // BLX but the target is Thumb mode, use the BL stub.
12452 else if (force_target_thumb
12453 && stub_type == arm_stub_a8_veneer_blx)
12454 {
12455 stub_type = arm_stub_a8_veneer_bl;
12456 is_blx = false;
12457 is_bl = true;
12458 }
12459
12460 if (is_blx)
12461 pc_for_insn &= ~3;
12462
2e702c99 12463 // If we found a relocation, use the proper destination,
44272192
DK
12464 // not the offset in the (unrelocated) instruction.
12465 // Note this is always done if we switched the stub type above.
2e702c99
RM
12466 if (cortex_a8_reloc != NULL)
12467 offset = (off_t) (cortex_a8_reloc->destination() - pc_for_insn);
44272192 12468
2e702c99 12469 Arm_address target = (pc_for_insn + offset) | (is_blx ? 0 : 1);
44272192
DK
12470
12471 // Add a new stub if destination address in in the same page.
2e702c99
RM
12472 if (((address + i) & ~0xfffU) == (target & ~0xfffU))
12473 {
44272192
DK
12474 Cortex_a8_stub* stub =
12475 this->stub_factory_.make_cortex_a8_stub(stub_type,
12476 arm_relobj, shndx,
12477 address + i,
12478 target, insn);
12479 Stub_table<big_endian>* stub_table =
12480 arm_relobj->stub_table(shndx);
12481 gold_assert(stub_table != NULL);
12482 stub_table->add_cortex_a8_stub(address + i, stub);
2e702c99
RM
12483 }
12484 }
12485 }
44272192
DK
12486
12487 i += insn_32bit ? 4 : 2;
12488 last_was_32bit = insn_32bit;
12489 last_was_branch = is_32bit_branch;
12490 }
12491}
12492
41263c05
DK
12493// Apply the Cortex-A8 workaround.
12494
12495template<bool big_endian>
12496void
12497Target_arm<big_endian>::apply_cortex_a8_workaround(
12498 const Cortex_a8_stub* stub,
12499 Arm_address stub_address,
12500 unsigned char* insn_view,
12501 Arm_address insn_address)
12502{
12503 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
12504 Valtype* wv = reinterpret_cast<Valtype*>(insn_view);
12505 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
12506 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
12507 off_t branch_offset = stub_address - (insn_address + 4);
12508
2c54b4f4 12509 typedef class Arm_relocate_functions<big_endian> RelocFuncs;
41263c05
DK
12510 switch (stub->stub_template()->type())
12511 {
12512 case arm_stub_a8_veneer_b_cond:
9b547ce6 12513 // For a conditional branch, we re-write it to be an unconditional
0439c796
DK
12514 // branch to the stub. We use the THUMB-2 encoding here.
12515 upper_insn = 0xf000U;
12516 lower_insn = 0xb800U;
12517 // Fall through
41263c05
DK
12518 case arm_stub_a8_veneer_b:
12519 case arm_stub_a8_veneer_bl:
12520 case arm_stub_a8_veneer_blx:
12521 if ((lower_insn & 0x5000U) == 0x4000U)
12522 // For a BLX instruction, make sure that the relocation is
12523 // rounded up to a word boundary. This follows the semantics of
12524 // the instruction which specifies that bit 1 of the target
12525 // address will come from bit 1 of the base address.
12526 branch_offset = (branch_offset + 2) & ~3;
12527
12528 // Put BRANCH_OFFSET back into the insn.
bef2b434 12529 gold_assert(!Bits<25>::has_overflow32(branch_offset));
41263c05
DK
12530 upper_insn = RelocFuncs::thumb32_branch_upper(upper_insn, branch_offset);
12531 lower_insn = RelocFuncs::thumb32_branch_lower(lower_insn, branch_offset);
12532 break;
12533
12534 default:
12535 gold_unreachable();
12536 }
12537
12538 // Put the relocated value back in the object file:
12539 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
12540 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
12541}
12542
2e702c99
RM
12543// Target selector for ARM. Note this is never instantiated directly.
12544// It's only used in Target_selector_arm_nacl, below.
12545
4a657b0d
DK
12546template<bool big_endian>
12547class Target_selector_arm : public Target_selector
12548{
12549 public:
12550 Target_selector_arm()
12551 : Target_selector(elfcpp::EM_ARM, 32, big_endian,
03ef7571
ILT
12552 (big_endian ? "elf32-bigarm" : "elf32-littlearm"),
12553 (big_endian ? "armelfb" : "armelf"))
4a657b0d
DK
12554 { }
12555
12556 Target*
12557 do_instantiate_target()
12558 { return new Target_arm<big_endian>(); }
12559};
12560
2b328d4e
DK
12561// Fix .ARM.exidx section coverage.
12562
12563template<bool big_endian>
12564void
12565Target_arm<big_endian>::fix_exidx_coverage(
12566 Layout* layout,
131687b4 12567 const Input_objects* input_objects,
2b328d4e 12568 Arm_output_section<big_endian>* exidx_section,
f625ae50
DK
12569 Symbol_table* symtab,
12570 const Task* task)
2b328d4e
DK
12571{
12572 // We need to look at all the input sections in output in ascending
12573 // order of of output address. We do that by building a sorted list
12574 // of output sections by addresses. Then we looks at the output sections
12575 // in order. The input sections in an output section are already sorted
12576 // by addresses within the output section.
12577
12578 typedef std::set<Output_section*, output_section_address_less_than>
12579 Sorted_output_section_list;
12580 Sorted_output_section_list sorted_output_sections;
131687b4
DK
12581
12582 // Find out all the output sections of input sections pointed by
12583 // EXIDX input sections.
12584 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
12585 p != input_objects->relobj_end();
2b328d4e
DK
12586 ++p)
12587 {
131687b4
DK
12588 Arm_relobj<big_endian>* arm_relobj =
12589 Arm_relobj<big_endian>::as_arm_relobj(*p);
12590 std::vector<unsigned int> shndx_list;
12591 arm_relobj->get_exidx_shndx_list(&shndx_list);
12592 for (size_t i = 0; i < shndx_list.size(); ++i)
12593 {
12594 const Arm_exidx_input_section* exidx_input_section =
12595 arm_relobj->exidx_input_section_by_shndx(shndx_list[i]);
12596 gold_assert(exidx_input_section != NULL);
12597 if (!exidx_input_section->has_errors())
12598 {
12599 unsigned int text_shndx = exidx_input_section->link();
ca09d69a 12600 Output_section* os = arm_relobj->output_section(text_shndx);
131687b4
DK
12601 if (os != NULL && (os->flags() & elfcpp::SHF_ALLOC) != 0)
12602 sorted_output_sections.insert(os);
12603 }
12604 }
2b328d4e
DK
12605 }
12606
12607 // Go over the output sections in ascending order of output addresses.
12608 typedef typename Arm_output_section<big_endian>::Text_section_list
12609 Text_section_list;
12610 Text_section_list sorted_text_sections;
f625ae50 12611 for (typename Sorted_output_section_list::iterator p =
2b328d4e
DK
12612 sorted_output_sections.begin();
12613 p != sorted_output_sections.end();
12614 ++p)
12615 {
12616 Arm_output_section<big_endian>* arm_output_section =
12617 Arm_output_section<big_endian>::as_arm_output_section(*p);
12618 arm_output_section->append_text_sections_to_list(&sorted_text_sections);
2e702c99 12619 }
2b328d4e 12620
85fdf906 12621 exidx_section->fix_exidx_coverage(layout, sorted_text_sections, symtab,
f625ae50 12622 merge_exidx_entries(), task);
2b328d4e
DK
12623}
12624
647f1574
DK
12625template<bool big_endian>
12626void
12627Target_arm<big_endian>::do_define_standard_symbols(
12628 Symbol_table* symtab,
12629 Layout* layout)
12630{
12631 // Handle the .ARM.exidx section.
12632 Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
12633
12634 if (exidx_section != NULL)
12635 {
12636 // Create __exidx_start and __exidx_end symbols.
12637 symtab->define_in_output_data("__exidx_start",
12638 NULL, // version
12639 Symbol_table::PREDEFINED,
12640 exidx_section,
12641 0, // value
12642 0, // symsize
12643 elfcpp::STT_NOTYPE,
12644 elfcpp::STB_GLOBAL,
12645 elfcpp::STV_HIDDEN,
12646 0, // nonvis
12647 false, // offset_is_from_end
12648 true); // only_if_ref
12649
12650 symtab->define_in_output_data("__exidx_end",
12651 NULL, // version
12652 Symbol_table::PREDEFINED,
12653 exidx_section,
2e702c99 12654 0, // value
647f1574
DK
12655 0, // symsize
12656 elfcpp::STT_NOTYPE,
12657 elfcpp::STB_GLOBAL,
12658 elfcpp::STV_HIDDEN,
12659 0, // nonvis
12660 true, // offset_is_from_end
12661 true); // only_if_ref
12662 }
12663 else
12664 {
12665 // Define __exidx_start and __exidx_end even when .ARM.exidx
12666 // section is missing to match ld's behaviour.
12667 symtab->define_as_constant("__exidx_start", NULL,
2e702c99
RM
12668 Symbol_table::PREDEFINED,
12669 0, 0, elfcpp::STT_OBJECT,
12670 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
12671 true, false);
647f1574 12672 symtab->define_as_constant("__exidx_end", NULL,
2e702c99
RM
12673 Symbol_table::PREDEFINED,
12674 0, 0, elfcpp::STT_OBJECT,
12675 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
12676 true, false);
647f1574
DK
12677 }
12678}
12679
2e702c99
RM
12680// NaCl variant. It uses different PLT contents.
12681
12682template<bool big_endian>
12683class Output_data_plt_arm_nacl;
12684
12685template<bool big_endian>
12686class Target_arm_nacl : public Target_arm<big_endian>
12687{
12688 public:
12689 Target_arm_nacl()
12690 : Target_arm<big_endian>(&arm_nacl_info)
12691 { }
12692
12693 protected:
12694 virtual Output_data_plt_arm<big_endian>*
fa89cc82
HS
12695 do_make_data_plt(
12696 Layout* layout,
12697 Arm_output_data_got<big_endian>* got,
12698 Output_data_space* got_plt,
12699 Output_data_space* got_irelative)
12700 { return new Output_data_plt_arm_nacl<big_endian>(
12701 layout, got, got_plt, got_irelative); }
2e702c99
RM
12702
12703 private:
12704 static const Target::Target_info arm_nacl_info;
12705};
12706
12707template<bool big_endian>
12708const Target::Target_info Target_arm_nacl<big_endian>::arm_nacl_info =
12709{
12710 32, // size
12711 big_endian, // is_big_endian
12712 elfcpp::EM_ARM, // machine_code
12713 false, // has_make_symbol
12714 false, // has_resolve
12715 false, // has_code_fill
12716 true, // is_default_stack_executable
12717 false, // can_icf_inline_merge_sections
12718 '\0', // wrap_char
12719 "/lib/ld-nacl-arm.so.1", // dynamic_linker
12720 0x20000, // default_text_segment_address
12721 0x10000, // abi_pagesize (overridable by -z max-page-size)
12722 0x10000, // common_pagesize (overridable by -z common-page-size)
12723 true, // isolate_execinstr
12724 0x10000000, // rosegment_gap
12725 elfcpp::SHN_UNDEF, // small_common_shndx
12726 elfcpp::SHN_UNDEF, // large_common_shndx
12727 0, // small_common_section_flags
12728 0, // large_common_section_flags
12729 ".ARM.attributes", // attributes_section
a67858e0
CC
12730 "aeabi", // attributes_vendor
12731 "_start" // entry_symbol_name
2e702c99
RM
12732};
12733
12734template<bool big_endian>
12735class Output_data_plt_arm_nacl : public Output_data_plt_arm<big_endian>
12736{
12737 public:
fa89cc82
HS
12738 Output_data_plt_arm_nacl(
12739 Layout* layout,
12740 Arm_output_data_got<big_endian>* got,
12741 Output_data_space* got_plt,
12742 Output_data_space* got_irelative)
12743 : Output_data_plt_arm<big_endian>(layout, 16, got, got_plt, got_irelative)
2e702c99
RM
12744 { }
12745
12746 protected:
12747 // Return the offset of the first non-reserved PLT entry.
12748 virtual unsigned int
12749 do_first_plt_entry_offset() const
12750 { return sizeof(first_plt_entry); }
12751
12752 // Return the size of a PLT entry.
12753 virtual unsigned int
12754 do_get_plt_entry_size() const
12755 { return sizeof(plt_entry); }
12756
12757 virtual void
12758 do_fill_first_plt_entry(unsigned char* pov,
12759 Arm_address got_address,
12760 Arm_address plt_address);
12761
12762 virtual void
12763 do_fill_plt_entry(unsigned char* pov,
12764 Arm_address got_address,
12765 Arm_address plt_address,
12766 unsigned int got_offset,
12767 unsigned int plt_offset);
12768
12769 private:
12770 inline uint32_t arm_movw_immediate(uint32_t value)
12771 {
12772 return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
12773 }
12774
12775 inline uint32_t arm_movt_immediate(uint32_t value)
12776 {
12777 return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
12778 }
12779
12780 // Template for the first PLT entry.
12781 static const uint32_t first_plt_entry[16];
12782
12783 // Template for subsequent PLT entries.
12784 static const uint32_t plt_entry[4];
12785};
12786
12787// The first entry in the PLT.
12788template<bool big_endian>
12789const uint32_t Output_data_plt_arm_nacl<big_endian>::first_plt_entry[16] =
12790{
12791 // First bundle:
12792 0xe300c000, // movw ip, #:lower16:&GOT[2]-.+8
12793 0xe340c000, // movt ip, #:upper16:&GOT[2]-.+8
12794 0xe08cc00f, // add ip, ip, pc
12795 0xe52dc008, // str ip, [sp, #-8]!
12796 // Second bundle:
edccdf7c 12797 0xe3ccc103, // bic ip, ip, #0xc0000000
2e702c99
RM
12798 0xe59cc000, // ldr ip, [ip]
12799 0xe3ccc13f, // bic ip, ip, #0xc000000f
12800 0xe12fff1c, // bx ip
12801 // Third bundle:
12802 0xe320f000, // nop
12803 0xe320f000, // nop
12804 0xe320f000, // nop
12805 // .Lplt_tail:
12806 0xe50dc004, // str ip, [sp, #-4]
12807 // Fourth bundle:
edccdf7c 12808 0xe3ccc103, // bic ip, ip, #0xc0000000
2e702c99
RM
12809 0xe59cc000, // ldr ip, [ip]
12810 0xe3ccc13f, // bic ip, ip, #0xc000000f
12811 0xe12fff1c, // bx ip
12812};
12813
12814template<bool big_endian>
12815void
12816Output_data_plt_arm_nacl<big_endian>::do_fill_first_plt_entry(
12817 unsigned char* pov,
12818 Arm_address got_address,
12819 Arm_address plt_address)
12820{
12821 // Write first PLT entry. All but first two words are constants.
12822 const size_t num_first_plt_words = (sizeof(first_plt_entry)
12823 / sizeof(first_plt_entry[0]));
12824
12825 int32_t got_displacement = got_address + 8 - (plt_address + 16);
12826
12827 elfcpp::Swap<32, big_endian>::writeval
12828 (pov + 0, first_plt_entry[0] | arm_movw_immediate (got_displacement));
12829 elfcpp::Swap<32, big_endian>::writeval
12830 (pov + 4, first_plt_entry[1] | arm_movt_immediate (got_displacement));
12831
12832 for (size_t i = 2; i < num_first_plt_words; ++i)
12833 elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
12834}
12835
12836// Subsequent entries in the PLT.
12837
12838template<bool big_endian>
12839const uint32_t Output_data_plt_arm_nacl<big_endian>::plt_entry[4] =
12840{
12841 0xe300c000, // movw ip, #:lower16:&GOT[n]-.+8
12842 0xe340c000, // movt ip, #:upper16:&GOT[n]-.+8
12843 0xe08cc00f, // add ip, ip, pc
12844 0xea000000, // b .Lplt_tail
12845};
12846
12847template<bool big_endian>
12848void
12849Output_data_plt_arm_nacl<big_endian>::do_fill_plt_entry(
12850 unsigned char* pov,
12851 Arm_address got_address,
12852 Arm_address plt_address,
12853 unsigned int got_offset,
12854 unsigned int plt_offset)
12855{
12856 // Calculate the displacement between the PLT slot and the
12857 // common tail that's part of the special initial PLT slot.
12858 int32_t tail_displacement = (plt_address + (11 * sizeof(uint32_t))
12859 - (plt_address + plt_offset
12860 + sizeof(plt_entry) + sizeof(uint32_t)));
12861 gold_assert((tail_displacement & 3) == 0);
12862 tail_displacement >>= 2;
12863
12864 gold_assert ((tail_displacement & 0xff000000) == 0
12865 || (-tail_displacement & 0xff000000) == 0);
12866
12867 // Calculate the displacement between the PLT slot and the entry
12868 // in the GOT. The offset accounts for the value produced by
12869 // adding to pc in the penultimate instruction of the PLT stub.
12870 const int32_t got_displacement = (got_address + got_offset
12871 - (plt_address + sizeof(plt_entry)));
12872
12873 elfcpp::Swap<32, big_endian>::writeval
12874 (pov + 0, plt_entry[0] | arm_movw_immediate (got_displacement));
12875 elfcpp::Swap<32, big_endian>::writeval
12876 (pov + 4, plt_entry[1] | arm_movt_immediate (got_displacement));
12877 elfcpp::Swap<32, big_endian>::writeval
12878 (pov + 8, plt_entry[2]);
12879 elfcpp::Swap<32, big_endian>::writeval
12880 (pov + 12, plt_entry[3] | (tail_displacement & 0x00ffffff));
12881}
12882
12883// Target selectors.
12884
12885template<bool big_endian>
12886class Target_selector_arm_nacl
12887 : public Target_selector_nacl<Target_selector_arm<big_endian>,
12888 Target_arm_nacl<big_endian> >
12889{
12890 public:
12891 Target_selector_arm_nacl()
12892 : Target_selector_nacl<Target_selector_arm<big_endian>,
12893 Target_arm_nacl<big_endian> >(
12894 "arm",
12895 big_endian ? "elf32-bigarm-nacl" : "elf32-littlearm-nacl",
12896 big_endian ? "armelfb_nacl" : "armelf_nacl")
12897 { }
12898};
12899
12900Target_selector_arm_nacl<false> target_selector_arm;
12901Target_selector_arm_nacl<true> target_selector_armbe;
4a657b0d
DK
12902
12903} // End anonymous namespace.