]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gold/arm.cc
*** empty log message ***
[thirdparty/binutils-gdb.git] / gold / arm.cc
CommitLineData
4a657b0d
DK
1// arm.cc -- arm target support for gold.
2
679af368 3// Copyright 2009, 2010, 2011, 2012, 2013 Free Software Foundation, Inc.
4a657b0d
DK
4// Written by Doug Kwan <dougkwan@google.com> based on the i386 code
5// by Ian Lance Taylor <iant@google.com>.
b569affa
DK
6// This file also contains borrowed and adapted code from
7// bfd/elf32-arm.c.
4a657b0d
DK
8
9// This file is part of gold.
10
11// This program is free software; you can redistribute it and/or modify
12// it under the terms of the GNU General Public License as published by
13// the Free Software Foundation; either version 3 of the License, or
14// (at your option) any later version.
15
16// This program is distributed in the hope that it will be useful,
17// but WITHOUT ANY WARRANTY; without even the implied warranty of
18// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19// GNU General Public License for more details.
20
21// You should have received a copy of the GNU General Public License
22// along with this program; if not, write to the Free Software
23// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
24// MA 02110-1301, USA.
25
26#include "gold.h"
27
28#include <cstring>
29#include <limits>
30#include <cstdio>
31#include <string>
56ee5e00 32#include <algorithm>
41263c05
DK
33#include <map>
34#include <utility>
2b328d4e 35#include <set>
4a657b0d
DK
36
37#include "elfcpp.h"
38#include "parameters.h"
39#include "reloc.h"
40#include "arm.h"
41#include "object.h"
42#include "symtab.h"
43#include "layout.h"
44#include "output.h"
45#include "copy-relocs.h"
46#include "target.h"
47#include "target-reloc.h"
48#include "target-select.h"
49#include "tls.h"
50#include "defstd.h"
f345227a 51#include "gc.h"
a0351a69 52#include "attributes.h"
0d31c79d 53#include "arm-reloc-property.h"
2e702c99 54#include "nacl.h"
4a657b0d
DK
55
56namespace
57{
58
59using namespace gold;
60
94cdfcff
DK
61template<bool big_endian>
62class Output_data_plt_arm;
63
2e702c99
RM
64template<bool big_endian>
65class Output_data_plt_arm_standard;
66
56ee5e00
DK
67template<bool big_endian>
68class Stub_table;
69
70template<bool big_endian>
71class Arm_input_section;
72
af2cdeae
DK
73class Arm_exidx_cantunwind;
74
75class Arm_exidx_merged_section;
76
80d0d023
DK
77class Arm_exidx_fixup;
78
07f508a2
DK
79template<bool big_endian>
80class Arm_output_section;
81
993d07c1
DK
82class Arm_exidx_input_section;
83
07f508a2
DK
84template<bool big_endian>
85class Arm_relobj;
86
f96accdf
DK
87template<bool big_endian>
88class Arm_relocate_functions;
89
4a54abbb
DK
90template<bool big_endian>
91class Arm_output_data_got;
92
b569affa
DK
93template<bool big_endian>
94class Target_arm;
95
96// For convenience.
97typedef elfcpp::Elf_types<32>::Elf_Addr Arm_address;
98
99// Maximum branch offsets for ARM, THUMB and THUMB2.
100const int32_t ARM_MAX_FWD_BRANCH_OFFSET = ((((1 << 23) - 1) << 2) + 8);
101const int32_t ARM_MAX_BWD_BRANCH_OFFSET = ((-((1 << 23) << 2)) + 8);
102const int32_t THM_MAX_FWD_BRANCH_OFFSET = ((1 << 22) -2 + 4);
103const int32_t THM_MAX_BWD_BRANCH_OFFSET = (-(1 << 22) + 4);
104const int32_t THM2_MAX_FWD_BRANCH_OFFSET = (((1 << 24) - 2) + 4);
105const int32_t THM2_MAX_BWD_BRANCH_OFFSET = (-(1 << 24) + 4);
106
4a54abbb
DK
107// Thread Control Block size.
108const size_t ARM_TCB_SIZE = 8;
109
4a657b0d
DK
110// The arm target class.
111//
112// This is a very simple port of gold for ARM-EABI. It is intended for
b10d2873 113// supporting Android only for the time being.
2e702c99 114//
4a657b0d 115// TODOs:
0d31c79d 116// - Implement all static relocation types documented in arm-reloc.def.
94cdfcff
DK
117// - Make PLTs more flexible for different architecture features like
118// Thumb-2 and BE8.
11af873f 119// There are probably a lot more.
4a657b0d 120
0d31c79d
DK
121// Ideally we would like to avoid using global variables but this is used
122// very in many places and sometimes in loops. If we use a function
9b547ce6 123// returning a static instance of Arm_reloc_property_table, it will be very
0d31c79d
DK
124// slow in an threaded environment since the static instance needs to be
125// locked. The pointer is below initialized in the
126// Target::do_select_as_default_target() hook so that we do not spend time
127// building the table if we are not linking ARM objects.
128//
129// An alternative is to to process the information in arm-reloc.def in
130// compilation time and generate a representation of it in PODs only. That
131// way we can avoid initialization when the linker starts.
132
ca09d69a 133Arm_reloc_property_table* arm_reloc_property_table = NULL;
0d31c79d 134
b569affa
DK
135// Instruction template class. This class is similar to the insn_sequence
136// struct in bfd/elf32-arm.c.
137
138class Insn_template
139{
140 public:
141 // Types of instruction templates.
142 enum Type
143 {
144 THUMB16_TYPE = 1,
2e702c99 145 // THUMB16_SPECIAL_TYPE is used by sub-classes of Stub for instruction
bb0d3eb0
DK
146 // templates with class-specific semantics. Currently this is used
147 // only by the Cortex_a8_stub class for handling condition codes in
148 // conditional branches.
149 THUMB16_SPECIAL_TYPE,
b569affa
DK
150 THUMB32_TYPE,
151 ARM_TYPE,
152 DATA_TYPE
153 };
154
bb0d3eb0 155 // Factory methods to create instruction templates in different formats.
b569affa
DK
156
157 static const Insn_template
158 thumb16_insn(uint32_t data)
2e702c99 159 { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 0); }
b569affa 160
bb0d3eb0
DK
161 // A Thumb conditional branch, in which the proper condition is inserted
162 // when we build the stub.
b569affa
DK
163 static const Insn_template
164 thumb16_bcond_insn(uint32_t data)
2e702c99 165 { return Insn_template(data, THUMB16_SPECIAL_TYPE, elfcpp::R_ARM_NONE, 1); }
b569affa
DK
166
167 static const Insn_template
168 thumb32_insn(uint32_t data)
2e702c99 169 { return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_NONE, 0); }
b569affa
DK
170
171 static const Insn_template
172 thumb32_b_insn(uint32_t data, int reloc_addend)
173 {
174 return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_THM_JUMP24,
175 reloc_addend);
2e702c99 176 }
b569affa
DK
177
178 static const Insn_template
179 arm_insn(uint32_t data)
180 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_NONE, 0); }
181
182 static const Insn_template
183 arm_rel_insn(unsigned data, int reloc_addend)
184 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_JUMP24, reloc_addend); }
185
186 static const Insn_template
187 data_word(unsigned data, unsigned int r_type, int reloc_addend)
2e702c99 188 { return Insn_template(data, DATA_TYPE, r_type, reloc_addend); }
b569affa
DK
189
190 // Accessors. This class is used for read-only objects so no modifiers
191 // are provided.
192
193 uint32_t
194 data() const
195 { return this->data_; }
196
197 // Return the instruction sequence type of this.
198 Type
199 type() const
200 { return this->type_; }
201
202 // Return the ARM relocation type of this.
203 unsigned int
204 r_type() const
205 { return this->r_type_; }
206
207 int32_t
208 reloc_addend() const
209 { return this->reloc_addend_; }
210
bb0d3eb0 211 // Return size of instruction template in bytes.
b569affa
DK
212 size_t
213 size() const;
214
bb0d3eb0 215 // Return byte-alignment of instruction template.
b569affa
DK
216 unsigned
217 alignment() const;
218
219 private:
220 // We make the constructor private to ensure that only the factory
221 // methods are used.
222 inline
2ea97941
ILT
223 Insn_template(unsigned data, Type type, unsigned int r_type, int reloc_addend)
224 : data_(data), type_(type), r_type_(r_type), reloc_addend_(reloc_addend)
b569affa
DK
225 { }
226
227 // Instruction specific data. This is used to store information like
228 // some of the instruction bits.
229 uint32_t data_;
230 // Instruction template type.
231 Type type_;
232 // Relocation type if there is a relocation or R_ARM_NONE otherwise.
233 unsigned int r_type_;
234 // Relocation addend.
235 int32_t reloc_addend_;
236};
237
238// Macro for generating code to stub types. One entry per long/short
239// branch stub
240
241#define DEF_STUBS \
242 DEF_STUB(long_branch_any_any) \
243 DEF_STUB(long_branch_v4t_arm_thumb) \
244 DEF_STUB(long_branch_thumb_only) \
245 DEF_STUB(long_branch_v4t_thumb_thumb) \
246 DEF_STUB(long_branch_v4t_thumb_arm) \
247 DEF_STUB(short_branch_v4t_thumb_arm) \
248 DEF_STUB(long_branch_any_arm_pic) \
249 DEF_STUB(long_branch_any_thumb_pic) \
250 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
251 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
252 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
253 DEF_STUB(long_branch_thumb_only_pic) \
254 DEF_STUB(a8_veneer_b_cond) \
255 DEF_STUB(a8_veneer_b) \
256 DEF_STUB(a8_veneer_bl) \
a2162063
ILT
257 DEF_STUB(a8_veneer_blx) \
258 DEF_STUB(v4_veneer_bx)
b569affa
DK
259
260// Stub types.
261
262#define DEF_STUB(x) arm_stub_##x,
263typedef enum
264 {
265 arm_stub_none,
266 DEF_STUBS
267
268 // First reloc stub type.
269 arm_stub_reloc_first = arm_stub_long_branch_any_any,
270 // Last reloc stub type.
271 arm_stub_reloc_last = arm_stub_long_branch_thumb_only_pic,
272
273 // First Cortex-A8 stub type.
274 arm_stub_cortex_a8_first = arm_stub_a8_veneer_b_cond,
275 // Last Cortex-A8 stub type.
276 arm_stub_cortex_a8_last = arm_stub_a8_veneer_blx,
2e702c99 277
b569affa 278 // Last stub type.
a2162063 279 arm_stub_type_last = arm_stub_v4_veneer_bx
b569affa
DK
280 } Stub_type;
281#undef DEF_STUB
282
283// Stub template class. Templates are meant to be read-only objects.
284// A stub template for a stub type contains all read-only attributes
285// common to all stubs of the same type.
286
287class Stub_template
288{
289 public:
290 Stub_template(Stub_type, const Insn_template*, size_t);
291
292 ~Stub_template()
293 { }
294
295 // Return stub type.
296 Stub_type
297 type() const
298 { return this->type_; }
299
300 // Return an array of instruction templates.
301 const Insn_template*
302 insns() const
303 { return this->insns_; }
304
305 // Return size of template in number of instructions.
306 size_t
307 insn_count() const
308 { return this->insn_count_; }
309
310 // Return size of template in bytes.
311 size_t
312 size() const
313 { return this->size_; }
314
315 // Return alignment of the stub template.
316 unsigned
317 alignment() const
318 { return this->alignment_; }
2e702c99 319
b569affa
DK
320 // Return whether entry point is in thumb mode.
321 bool
322 entry_in_thumb_mode() const
323 { return this->entry_in_thumb_mode_; }
324
325 // Return number of relocations in this template.
326 size_t
327 reloc_count() const
328 { return this->relocs_.size(); }
329
330 // Return index of the I-th instruction with relocation.
331 size_t
332 reloc_insn_index(size_t i) const
333 {
334 gold_assert(i < this->relocs_.size());
335 return this->relocs_[i].first;
336 }
337
338 // Return the offset of the I-th instruction with relocation from the
339 // beginning of the stub.
340 section_size_type
341 reloc_offset(size_t i) const
342 {
343 gold_assert(i < this->relocs_.size());
344 return this->relocs_[i].second;
345 }
346
347 private:
348 // This contains information about an instruction template with a relocation
349 // and its offset from start of stub.
350 typedef std::pair<size_t, section_size_type> Reloc;
351
352 // A Stub_template may not be copied. We want to share templates as much
353 // as possible.
354 Stub_template(const Stub_template&);
355 Stub_template& operator=(const Stub_template&);
2e702c99 356
b569affa
DK
357 // Stub type.
358 Stub_type type_;
359 // Points to an array of Insn_templates.
360 const Insn_template* insns_;
361 // Number of Insn_templates in insns_[].
362 size_t insn_count_;
363 // Size of templated instructions in bytes.
364 size_t size_;
365 // Alignment of templated instructions.
366 unsigned alignment_;
367 // Flag to indicate if entry is in thumb mode.
368 bool entry_in_thumb_mode_;
369 // A table of reloc instruction indices and offsets. We can find these by
370 // looking at the instruction templates but we pre-compute and then stash
2e702c99 371 // them here for speed.
b569affa
DK
372 std::vector<Reloc> relocs_;
373};
374
375//
376// A class for code stubs. This is a base class for different type of
377// stubs used in the ARM target.
378//
379
380class Stub
381{
382 private:
383 static const section_offset_type invalid_offset =
384 static_cast<section_offset_type>(-1);
385
386 public:
2ea97941
ILT
387 Stub(const Stub_template* stub_template)
388 : stub_template_(stub_template), offset_(invalid_offset)
b569affa
DK
389 { }
390
391 virtual
392 ~Stub()
393 { }
394
395 // Return the stub template.
396 const Stub_template*
397 stub_template() const
398 { return this->stub_template_; }
399
400 // Return offset of code stub from beginning of its containing stub table.
401 section_offset_type
402 offset() const
403 {
404 gold_assert(this->offset_ != invalid_offset);
405 return this->offset_;
406 }
407
408 // Set offset of code stub from beginning of its containing stub table.
409 void
2ea97941
ILT
410 set_offset(section_offset_type offset)
411 { this->offset_ = offset; }
2e702c99 412
b569affa
DK
413 // Return the relocation target address of the i-th relocation in the
414 // stub. This must be defined in a child class.
415 Arm_address
416 reloc_target(size_t i)
417 { return this->do_reloc_target(i); }
418
419 // Write a stub at output VIEW. BIG_ENDIAN select how a stub is written.
420 void
421 write(unsigned char* view, section_size_type view_size, bool big_endian)
422 { this->do_write(view, view_size, big_endian); }
423
bb0d3eb0
DK
424 // Return the instruction for THUMB16_SPECIAL_TYPE instruction template
425 // for the i-th instruction.
426 uint16_t
427 thumb16_special(size_t i)
428 { return this->do_thumb16_special(i); }
429
b569affa
DK
430 protected:
431 // This must be defined in the child class.
432 virtual Arm_address
433 do_reloc_target(size_t) = 0;
434
bb0d3eb0 435 // This may be overridden in the child class.
b569affa 436 virtual void
bb0d3eb0
DK
437 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
438 {
439 if (big_endian)
440 this->do_fixed_endian_write<true>(view, view_size);
441 else
442 this->do_fixed_endian_write<false>(view, view_size);
443 }
2e702c99 444
bb0d3eb0
DK
445 // This must be overridden if a child class uses the THUMB16_SPECIAL_TYPE
446 // instruction template.
447 virtual uint16_t
448 do_thumb16_special(size_t)
449 { gold_unreachable(); }
450
b569affa 451 private:
bb0d3eb0
DK
452 // A template to implement do_write.
453 template<bool big_endian>
454 void inline
455 do_fixed_endian_write(unsigned char*, section_size_type);
456
b569affa
DK
457 // Its template.
458 const Stub_template* stub_template_;
459 // Offset within the section of containing this stub.
460 section_offset_type offset_;
461};
462
463// Reloc stub class. These are stubs we use to fix up relocation because
464// of limited branch ranges.
465
466class Reloc_stub : public Stub
467{
468 public:
469 static const unsigned int invalid_index = static_cast<unsigned int>(-1);
470 // We assume we never jump to this address.
471 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
472
473 // Return destination address.
474 Arm_address
475 destination_address() const
476 {
477 gold_assert(this->destination_address_ != this->invalid_address);
478 return this->destination_address_;
479 }
480
481 // Set destination address.
482 void
483 set_destination_address(Arm_address address)
484 {
485 gold_assert(address != this->invalid_address);
486 this->destination_address_ = address;
487 }
488
489 // Reset destination address.
490 void
491 reset_destination_address()
492 { this->destination_address_ = this->invalid_address; }
493
494 // Determine stub type for a branch of a relocation of R_TYPE going
495 // from BRANCH_ADDRESS to BRANCH_TARGET. If TARGET_IS_THUMB is set,
496 // the branch target is a thumb instruction. TARGET is used for look
497 // up ARM-specific linker settings.
498 static Stub_type
499 stub_type_for_reloc(unsigned int r_type, Arm_address branch_address,
500 Arm_address branch_target, bool target_is_thumb);
501
502 // Reloc_stub key. A key is logically a triplet of a stub type, a symbol
503 // and an addend. Since we treat global and local symbol differently, we
504 // use a Symbol object for a global symbol and a object-index pair for
505 // a local symbol.
506 class Key
507 {
508 public:
509 // If SYMBOL is not null, this is a global symbol, we ignore RELOBJ and
510 // R_SYM. Otherwise, this is a local symbol and RELOBJ must non-NULL
511 // and R_SYM must not be invalid_index.
2ea97941
ILT
512 Key(Stub_type stub_type, const Symbol* symbol, const Relobj* relobj,
513 unsigned int r_sym, int32_t addend)
514 : stub_type_(stub_type), addend_(addend)
b569affa 515 {
2ea97941 516 if (symbol != NULL)
b569affa
DK
517 {
518 this->r_sym_ = Reloc_stub::invalid_index;
2ea97941 519 this->u_.symbol = symbol;
b569affa
DK
520 }
521 else
522 {
2ea97941
ILT
523 gold_assert(relobj != NULL && r_sym != invalid_index);
524 this->r_sym_ = r_sym;
525 this->u_.relobj = relobj;
b569affa
DK
526 }
527 }
528
529 ~Key()
530 { }
531
532 // Accessors: Keys are meant to be read-only object so no modifiers are
533 // provided.
534
535 // Return stub type.
536 Stub_type
537 stub_type() const
538 { return this->stub_type_; }
539
540 // Return the local symbol index or invalid_index.
541 unsigned int
542 r_sym() const
543 { return this->r_sym_; }
544
545 // Return the symbol if there is one.
546 const Symbol*
547 symbol() const
548 { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
549
550 // Return the relobj if there is one.
551 const Relobj*
552 relobj() const
553 { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
554
555 // Whether this equals to another key k.
556 bool
2e702c99 557 eq(const Key& k) const
b569affa
DK
558 {
559 return ((this->stub_type_ == k.stub_type_)
560 && (this->r_sym_ == k.r_sym_)
561 && ((this->r_sym_ != Reloc_stub::invalid_index)
562 ? (this->u_.relobj == k.u_.relobj)
563 : (this->u_.symbol == k.u_.symbol))
564 && (this->addend_ == k.addend_));
565 }
566
567 // Return a hash value.
568 size_t
569 hash_value() const
570 {
571 return (this->stub_type_
572 ^ this->r_sym_
573 ^ gold::string_hash<char>(
574 (this->r_sym_ != Reloc_stub::invalid_index)
575 ? this->u_.relobj->name().c_str()
576 : this->u_.symbol->name())
577 ^ this->addend_);
578 }
579
580 // Functors for STL associative containers.
581 struct hash
582 {
583 size_t
584 operator()(const Key& k) const
585 { return k.hash_value(); }
586 };
587
588 struct equal_to
589 {
590 bool
591 operator()(const Key& k1, const Key& k2) const
592 { return k1.eq(k2); }
593 };
594
595 // Name of key. This is mainly for debugging.
596 std::string
597 name() const;
598
599 private:
600 // Stub type.
601 Stub_type stub_type_;
602 // If this is a local symbol, this is the index in the defining object.
603 // Otherwise, it is invalid_index for a global symbol.
604 unsigned int r_sym_;
9b547ce6
RW
605 // If r_sym_ is an invalid index, this points to a global symbol.
606 // Otherwise, it points to a relobj. We used the unsized and target
2e702c99 607 // independent Symbol and Relobj classes instead of Sized_symbol<32> and
9b547ce6 608 // Arm_relobj, in order to avoid making the stub class a template
7296d933 609 // as most of the stub machinery is endianness-neutral. However, it
b569affa
DK
610 // may require a bit of casting done by users of this class.
611 union
612 {
613 const Symbol* symbol;
614 const Relobj* relobj;
615 } u_;
616 // Addend associated with a reloc.
617 int32_t addend_;
618 };
619
620 protected:
621 // Reloc_stubs are created via a stub factory. So these are protected.
2ea97941
ILT
622 Reloc_stub(const Stub_template* stub_template)
623 : Stub(stub_template), destination_address_(invalid_address)
b569affa
DK
624 { }
625
626 ~Reloc_stub()
627 { }
628
629 friend class Stub_factory;
630
b569affa
DK
631 // Return the relocation target address of the i-th relocation in the
632 // stub.
633 Arm_address
634 do_reloc_target(size_t i)
635 {
636 // All reloc stub have only one relocation.
637 gold_assert(i == 0);
638 return this->destination_address_;
639 }
640
bb0d3eb0
DK
641 private:
642 // Address of destination.
643 Arm_address destination_address_;
644};
b569affa 645
bb0d3eb0
DK
646// Cortex-A8 stub class. We need a Cortex-A8 stub to redirect any 32-bit
647// THUMB branch that meets the following conditions:
2e702c99 648//
bb0d3eb0
DK
649// 1. The branch straddles across a page boundary. i.e. lower 12-bit of
650// branch address is 0xffe.
651// 2. The branch target address is in the same page as the first word of the
652// branch.
653// 3. The branch follows a 32-bit instruction which is not a branch.
654//
655// To do the fix up, we need to store the address of the branch instruction
656// and its target at least. We also need to store the original branch
657// instruction bits for the condition code in a conditional branch. The
658// condition code is used in a special instruction template. We also want
659// to identify input sections needing Cortex-A8 workaround quickly. We store
660// extra information about object and section index of the code section
661// containing a branch being fixed up. The information is used to mark
662// the code section when we finalize the Cortex-A8 stubs.
663//
b569affa 664
bb0d3eb0
DK
665class Cortex_a8_stub : public Stub
666{
667 public:
668 ~Cortex_a8_stub()
669 { }
670
671 // Return the object of the code section containing the branch being fixed
672 // up.
673 Relobj*
674 relobj() const
675 { return this->relobj_; }
676
677 // Return the section index of the code section containing the branch being
678 // fixed up.
679 unsigned int
680 shndx() const
681 { return this->shndx_; }
682
683 // Return the source address of stub. This is the address of the original
684 // branch instruction. LSB is 1 always set to indicate that it is a THUMB
685 // instruction.
686 Arm_address
687 source_address() const
688 { return this->source_address_; }
689
690 // Return the destination address of the stub. This is the branch taken
691 // address of the original branch instruction. LSB is 1 if it is a THUMB
692 // instruction address.
693 Arm_address
694 destination_address() const
695 { return this->destination_address_; }
696
697 // Return the instruction being fixed up.
698 uint32_t
699 original_insn() const
700 { return this->original_insn_; }
701
702 protected:
703 // Cortex_a8_stubs are created via a stub factory. So these are protected.
704 Cortex_a8_stub(const Stub_template* stub_template, Relobj* relobj,
705 unsigned int shndx, Arm_address source_address,
706 Arm_address destination_address, uint32_t original_insn)
707 : Stub(stub_template), relobj_(relobj), shndx_(shndx),
708 source_address_(source_address | 1U),
709 destination_address_(destination_address),
710 original_insn_(original_insn)
711 { }
712
713 friend class Stub_factory;
714
715 // Return the relocation target address of the i-th relocation in the
716 // stub.
717 Arm_address
718 do_reloc_target(size_t i)
719 {
720 if (this->stub_template()->type() == arm_stub_a8_veneer_b_cond)
721 {
2e702c99
RM
722 // The conditional branch veneer has two relocations.
723 gold_assert(i < 2);
bb0d3eb0
DK
724 return i == 0 ? this->source_address_ + 4 : this->destination_address_;
725 }
726 else
727 {
2e702c99
RM
728 // All other Cortex-A8 stubs have only one relocation.
729 gold_assert(i == 0);
730 return this->destination_address_;
bb0d3eb0
DK
731 }
732 }
733
734 // Return an instruction for the THUMB16_SPECIAL_TYPE instruction template.
735 uint16_t
736 do_thumb16_special(size_t);
737
738 private:
739 // Object of the code section containing the branch being fixed up.
740 Relobj* relobj_;
741 // Section index of the code section containing the branch begin fixed up.
742 unsigned int shndx_;
743 // Source address of original branch.
744 Arm_address source_address_;
745 // Destination address of the original branch.
b569affa 746 Arm_address destination_address_;
bb0d3eb0
DK
747 // Original branch instruction. This is needed for copying the condition
748 // code from a condition branch to its stub.
749 uint32_t original_insn_;
b569affa
DK
750};
751
a2162063
ILT
752// ARMv4 BX Rx branch relocation stub class.
753class Arm_v4bx_stub : public Stub
754{
755 public:
756 ~Arm_v4bx_stub()
757 { }
758
759 // Return the associated register.
760 uint32_t
761 reg() const
762 { return this->reg_; }
763
764 protected:
765 // Arm V4BX stubs are created via a stub factory. So these are protected.
766 Arm_v4bx_stub(const Stub_template* stub_template, const uint32_t reg)
767 : Stub(stub_template), reg_(reg)
768 { }
769
770 friend class Stub_factory;
771
772 // Return the relocation target address of the i-th relocation in the
773 // stub.
774 Arm_address
775 do_reloc_target(size_t)
776 { gold_unreachable(); }
777
778 // This may be overridden in the child class.
779 virtual void
780 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
781 {
782 if (big_endian)
783 this->do_fixed_endian_v4bx_write<true>(view, view_size);
784 else
785 this->do_fixed_endian_v4bx_write<false>(view, view_size);
786 }
787
788 private:
789 // A template to implement do_write.
790 template<bool big_endian>
791 void inline
792 do_fixed_endian_v4bx_write(unsigned char* view, section_size_type)
793 {
794 const Insn_template* insns = this->stub_template()->insns();
795 elfcpp::Swap<32, big_endian>::writeval(view,
796 (insns[0].data()
797 + (this->reg_ << 16)));
798 view += insns[0].size();
799 elfcpp::Swap<32, big_endian>::writeval(view,
800 (insns[1].data() + this->reg_));
801 view += insns[1].size();
802 elfcpp::Swap<32, big_endian>::writeval(view,
803 (insns[2].data() + this->reg_));
804 }
805
806 // A register index (r0-r14), which is associated with the stub.
807 uint32_t reg_;
808};
809
b569affa
DK
810// Stub factory class.
811
812class Stub_factory
813{
814 public:
815 // Return the unique instance of this class.
816 static const Stub_factory&
817 get_instance()
818 {
819 static Stub_factory singleton;
820 return singleton;
821 }
822
823 // Make a relocation stub.
824 Reloc_stub*
825 make_reloc_stub(Stub_type stub_type) const
826 {
827 gold_assert(stub_type >= arm_stub_reloc_first
828 && stub_type <= arm_stub_reloc_last);
829 return new Reloc_stub(this->stub_templates_[stub_type]);
830 }
831
bb0d3eb0
DK
832 // Make a Cortex-A8 stub.
833 Cortex_a8_stub*
834 make_cortex_a8_stub(Stub_type stub_type, Relobj* relobj, unsigned int shndx,
835 Arm_address source, Arm_address destination,
836 uint32_t original_insn) const
837 {
838 gold_assert(stub_type >= arm_stub_cortex_a8_first
839 && stub_type <= arm_stub_cortex_a8_last);
840 return new Cortex_a8_stub(this->stub_templates_[stub_type], relobj, shndx,
841 source, destination, original_insn);
842 }
843
a2162063
ILT
844 // Make an ARM V4BX relocation stub.
845 // This method creates a stub from the arm_stub_v4_veneer_bx template only.
846 Arm_v4bx_stub*
847 make_arm_v4bx_stub(uint32_t reg) const
848 {
849 gold_assert(reg < 0xf);
850 return new Arm_v4bx_stub(this->stub_templates_[arm_stub_v4_veneer_bx],
851 reg);
852 }
853
b569affa
DK
854 private:
855 // Constructor and destructor are protected since we only return a single
856 // instance created in Stub_factory::get_instance().
2e702c99 857
b569affa
DK
858 Stub_factory();
859
860 // A Stub_factory may not be copied since it is a singleton.
861 Stub_factory(const Stub_factory&);
862 Stub_factory& operator=(Stub_factory&);
2e702c99 863
b569affa
DK
864 // Stub templates. These are initialized in the constructor.
865 const Stub_template* stub_templates_[arm_stub_type_last+1];
866};
867
56ee5e00
DK
868// A class to hold stubs for the ARM target.
869
870template<bool big_endian>
871class Stub_table : public Output_data
872{
873 public:
2ea97941 874 Stub_table(Arm_input_section<big_endian>* owner)
d099120c
DK
875 : Output_data(), owner_(owner), reloc_stubs_(), reloc_stubs_size_(0),
876 reloc_stubs_addralign_(1), cortex_a8_stubs_(), arm_v4bx_stubs_(0xf),
877 prev_data_size_(0), prev_addralign_(1)
56ee5e00
DK
878 { }
879
880 ~Stub_table()
881 { }
882
883 // Owner of this stub table.
884 Arm_input_section<big_endian>*
885 owner() const
886 { return this->owner_; }
887
888 // Whether this stub table is empty.
889 bool
890 empty() const
a2162063
ILT
891 {
892 return (this->reloc_stubs_.empty()
893 && this->cortex_a8_stubs_.empty()
894 && this->arm_v4bx_stubs_.empty());
895 }
56ee5e00
DK
896
897 // Return the current data size.
898 off_t
899 current_data_size() const
900 { return this->current_data_size_for_child(); }
901
9b547ce6
RW
902 // Add a STUB using KEY. The caller is responsible for avoiding addition
903 // if a STUB with the same key has already been added.
56ee5e00 904 void
2fb7225c
DK
905 add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key)
906 {
907 const Stub_template* stub_template = stub->stub_template();
908 gold_assert(stub_template->type() == key.stub_type());
909 this->reloc_stubs_[key] = stub;
d099120c
DK
910
911 // Assign stub offset early. We can do this because we never remove
912 // reloc stubs and they are in the beginning of the stub table.
913 uint64_t align = stub_template->alignment();
914 this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_, align);
915 stub->set_offset(this->reloc_stubs_size_);
916 this->reloc_stubs_size_ += stub_template->size();
917 this->reloc_stubs_addralign_ =
918 std::max(this->reloc_stubs_addralign_, align);
2fb7225c
DK
919 }
920
921 // Add a Cortex-A8 STUB that fixes up a THUMB branch at ADDRESS.
9b547ce6
RW
922 // The caller is responsible for avoiding addition if a STUB with the same
923 // address has already been added.
2fb7225c
DK
924 void
925 add_cortex_a8_stub(Arm_address address, Cortex_a8_stub* stub)
926 {
927 std::pair<Arm_address, Cortex_a8_stub*> value(address, stub);
928 this->cortex_a8_stubs_.insert(value);
929 }
930
a2162063
ILT
931 // Add an ARM V4BX relocation stub. A register index will be retrieved
932 // from the stub.
933 void
934 add_arm_v4bx_stub(Arm_v4bx_stub* stub)
935 {
936 gold_assert(stub != NULL && this->arm_v4bx_stubs_[stub->reg()] == NULL);
937 this->arm_v4bx_stubs_[stub->reg()] = stub;
938 }
939
2fb7225c
DK
940 // Remove all Cortex-A8 stubs.
941 void
942 remove_all_cortex_a8_stubs();
56ee5e00
DK
943
944 // Look up a relocation stub using KEY. Return NULL if there is none.
945 Reloc_stub*
946 find_reloc_stub(const Reloc_stub::Key& key) const
947 {
948 typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.find(key);
949 return (p != this->reloc_stubs_.end()) ? p->second : NULL;
950 }
951
a2162063
ILT
952 // Look up an arm v4bx relocation stub using the register index.
953 // Return NULL if there is none.
954 Arm_v4bx_stub*
955 find_arm_v4bx_stub(const uint32_t reg) const
956 {
957 gold_assert(reg < 0xf);
958 return this->arm_v4bx_stubs_[reg];
959 }
960
56ee5e00
DK
961 // Relocate stubs in this stub table.
962 void
963 relocate_stubs(const Relocate_info<32, big_endian>*,
964 Target_arm<big_endian>*, Output_section*,
965 unsigned char*, Arm_address, section_size_type);
966
2fb7225c
DK
967 // Update data size and alignment at the end of a relaxation pass. Return
968 // true if either data size or alignment is different from that of the
969 // previous relaxation pass.
970 bool
971 update_data_size_and_addralign();
972
973 // Finalize stubs. Set the offsets of all stubs and mark input sections
974 // needing the Cortex-A8 workaround.
975 void
976 finalize_stubs();
2e702c99 977
2fb7225c
DK
978 // Apply Cortex-A8 workaround to an address range.
979 void
980 apply_cortex_a8_workaround_to_address_range(Target_arm<big_endian>*,
981 unsigned char*, Arm_address,
982 section_size_type);
983
56ee5e00
DK
984 protected:
985 // Write out section contents.
986 void
987 do_write(Output_file*);
2e702c99 988
56ee5e00
DK
989 // Return the required alignment.
990 uint64_t
991 do_addralign() const
2fb7225c 992 { return this->prev_addralign_; }
56ee5e00
DK
993
994 // Reset address and file offset.
995 void
2fb7225c
DK
996 do_reset_address_and_file_offset()
997 { this->set_current_data_size_for_child(this->prev_data_size_); }
56ee5e00 998
2fb7225c
DK
999 // Set final data size.
1000 void
1001 set_final_data_size()
1002 { this->set_data_size(this->current_data_size()); }
2e702c99 1003
56ee5e00 1004 private:
2fb7225c
DK
1005 // Relocate one stub.
1006 void
1007 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
1008 Target_arm<big_endian>*, Output_section*,
1009 unsigned char*, Arm_address, section_size_type);
1010
1011 // Unordered map of relocation stubs.
56ee5e00
DK
1012 typedef
1013 Unordered_map<Reloc_stub::Key, Reloc_stub*, Reloc_stub::Key::hash,
1014 Reloc_stub::Key::equal_to>
1015 Reloc_stub_map;
1016
2fb7225c
DK
1017 // List of Cortex-A8 stubs ordered by addresses of branches being
1018 // fixed up in output.
1019 typedef std::map<Arm_address, Cortex_a8_stub*> Cortex_a8_stub_list;
a2162063
ILT
1020 // List of Arm V4BX relocation stubs ordered by associated registers.
1021 typedef std::vector<Arm_v4bx_stub*> Arm_v4bx_stub_list;
2fb7225c 1022
56ee5e00
DK
1023 // Owner of this stub table.
1024 Arm_input_section<big_endian>* owner_;
56ee5e00
DK
1025 // The relocation stubs.
1026 Reloc_stub_map reloc_stubs_;
d099120c
DK
1027 // Size of reloc stubs.
1028 off_t reloc_stubs_size_;
1029 // Maximum address alignment of reloc stubs.
1030 uint64_t reloc_stubs_addralign_;
2fb7225c
DK
1031 // The cortex_a8_stubs.
1032 Cortex_a8_stub_list cortex_a8_stubs_;
a2162063
ILT
1033 // The Arm V4BX relocation stubs.
1034 Arm_v4bx_stub_list arm_v4bx_stubs_;
2fb7225c
DK
1035 // data size of this in the previous pass.
1036 off_t prev_data_size_;
1037 // address alignment of this in the previous pass.
1038 uint64_t prev_addralign_;
56ee5e00
DK
1039};
1040
af2cdeae
DK
1041// Arm_exidx_cantunwind class. This represents an EXIDX_CANTUNWIND entry
1042// we add to the end of an EXIDX input section that goes into the output.
1043
1044class Arm_exidx_cantunwind : public Output_section_data
1045{
1046 public:
1047 Arm_exidx_cantunwind(Relobj* relobj, unsigned int shndx)
1048 : Output_section_data(8, 4, true), relobj_(relobj), shndx_(shndx)
1049 { }
1050
1051 // Return the object containing the section pointed by this.
1052 Relobj*
1053 relobj() const
1054 { return this->relobj_; }
1055
1056 // Return the section index of the section pointed by this.
1057 unsigned int
1058 shndx() const
1059 { return this->shndx_; }
1060
1061 protected:
1062 void
1063 do_write(Output_file* of)
1064 {
1065 if (parameters->target().is_big_endian())
1066 this->do_fixed_endian_write<true>(of);
1067 else
1068 this->do_fixed_endian_write<false>(of);
1069 }
1070
aa98ff75
DK
1071 // Write to a map file.
1072 void
1073 do_print_to_mapfile(Mapfile* mapfile) const
1074 { mapfile->print_output_data(this, _("** ARM cantunwind")); }
1075
af2cdeae 1076 private:
7296d933 1077 // Implement do_write for a given endianness.
af2cdeae
DK
1078 template<bool big_endian>
1079 void inline
1080 do_fixed_endian_write(Output_file*);
2e702c99 1081
af2cdeae
DK
1082 // The object containing the section pointed by this.
1083 Relobj* relobj_;
1084 // The section index of the section pointed by this.
1085 unsigned int shndx_;
1086};
1087
1088// During EXIDX coverage fix-up, we compact an EXIDX section. The
1089// Offset map is used to map input section offset within the EXIDX section
2e702c99 1090// to the output offset from the start of this EXIDX section.
af2cdeae
DK
1091
1092typedef std::map<section_offset_type, section_offset_type>
1093 Arm_exidx_section_offset_map;
1094
1095// Arm_exidx_merged_section class. This represents an EXIDX input section
1096// with some of its entries merged.
1097
1098class Arm_exidx_merged_section : public Output_relaxed_input_section
1099{
1100 public:
1101 // Constructor for Arm_exidx_merged_section.
1102 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
1103 // SECTION_OFFSET_MAP points to a section offset map describing how
1104 // parts of the input section are mapped to output. DELETED_BYTES is
1105 // the number of bytes deleted from the EXIDX input section.
1106 Arm_exidx_merged_section(
1107 const Arm_exidx_input_section& exidx_input_section,
1108 const Arm_exidx_section_offset_map& section_offset_map,
1109 uint32_t deleted_bytes);
1110
f625ae50
DK
1111 // Build output contents.
1112 void
1113 build_contents(const unsigned char*, section_size_type);
1114
af2cdeae
DK
1115 // Return the original EXIDX input section.
1116 const Arm_exidx_input_section&
1117 exidx_input_section() const
1118 { return this->exidx_input_section_; }
1119
1120 // Return the section offset map.
1121 const Arm_exidx_section_offset_map&
1122 section_offset_map() const
1123 { return this->section_offset_map_; }
1124
1125 protected:
1126 // Write merged section into file OF.
1127 void
1128 do_write(Output_file* of);
1129
1130 bool
1131 do_output_offset(const Relobj*, unsigned int, section_offset_type,
1132 section_offset_type*) const;
1133
1134 private:
1135 // Original EXIDX input section.
1136 const Arm_exidx_input_section& exidx_input_section_;
1137 // Section offset map.
1138 const Arm_exidx_section_offset_map& section_offset_map_;
2e702c99 1139 // Merged section contents. We need to keep build the merged section
f625ae50
DK
1140 // and save it here to avoid accessing the original EXIDX section when
1141 // we cannot lock the sections' object.
1142 unsigned char* section_contents_;
af2cdeae
DK
1143};
1144
10ad9fe5
DK
1145// A class to wrap an ordinary input section containing executable code.
1146
1147template<bool big_endian>
1148class Arm_input_section : public Output_relaxed_input_section
1149{
1150 public:
2ea97941
ILT
1151 Arm_input_section(Relobj* relobj, unsigned int shndx)
1152 : Output_relaxed_input_section(relobj, shndx, 1),
f625ae50
DK
1153 original_addralign_(1), original_size_(0), stub_table_(NULL),
1154 original_contents_(NULL)
10ad9fe5
DK
1155 { }
1156
1157 ~Arm_input_section()
f625ae50 1158 { delete[] this->original_contents_; }
10ad9fe5
DK
1159
1160 // Initialize.
1161 void
1162 init();
2e702c99 1163
10ad9fe5
DK
1164 // Whether this is a stub table owner.
1165 bool
1166 is_stub_table_owner() const
1167 { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
1168
1169 // Return the stub table.
1170 Stub_table<big_endian>*
1171 stub_table() const
1172 { return this->stub_table_; }
1173
1174 // Set the stub_table.
1175 void
2ea97941
ILT
1176 set_stub_table(Stub_table<big_endian>* stub_table)
1177 { this->stub_table_ = stub_table; }
10ad9fe5 1178
07f508a2
DK
1179 // Downcast a base pointer to an Arm_input_section pointer. This is
1180 // not type-safe but we only use Arm_input_section not the base class.
1181 static Arm_input_section<big_endian>*
1182 as_arm_input_section(Output_relaxed_input_section* poris)
1183 { return static_cast<Arm_input_section<big_endian>*>(poris); }
1184
6625d24e
DK
1185 // Return the original size of the section.
1186 uint32_t
1187 original_size() const
1188 { return this->original_size_; }
1189
10ad9fe5
DK
1190 protected:
1191 // Write data to output file.
1192 void
1193 do_write(Output_file*);
1194
1195 // Return required alignment of this.
1196 uint64_t
1197 do_addralign() const
1198 {
1199 if (this->is_stub_table_owner())
1200 return std::max(this->stub_table_->addralign(),
6625d24e 1201 static_cast<uint64_t>(this->original_addralign_));
10ad9fe5
DK
1202 else
1203 return this->original_addralign_;
1204 }
1205
1206 // Finalize data size.
1207 void
1208 set_final_data_size();
1209
1210 // Reset address and file offset.
1211 void
1212 do_reset_address_and_file_offset();
1213
1214 // Output offset.
1215 bool
2ea97941
ILT
1216 do_output_offset(const Relobj* object, unsigned int shndx,
1217 section_offset_type offset,
2e702c99 1218 section_offset_type* poutput) const
10ad9fe5
DK
1219 {
1220 if ((object == this->relobj())
2ea97941
ILT
1221 && (shndx == this->shndx())
1222 && (offset >= 0)
0439c796
DK
1223 && (offset <=
1224 convert_types<section_offset_type, uint32_t>(this->original_size_)))
10ad9fe5 1225 {
2ea97941 1226 *poutput = offset;
10ad9fe5
DK
1227 return true;
1228 }
1229 else
1230 return false;
1231 }
1232
1233 private:
1234 // Copying is not allowed.
1235 Arm_input_section(const Arm_input_section&);
1236 Arm_input_section& operator=(const Arm_input_section&);
1237
1238 // Address alignment of the original input section.
6625d24e 1239 uint32_t original_addralign_;
10ad9fe5 1240 // Section size of the original input section.
6625d24e 1241 uint32_t original_size_;
10ad9fe5
DK
1242 // Stub table.
1243 Stub_table<big_endian>* stub_table_;
f625ae50
DK
1244 // Original section contents. We have to make a copy here since the file
1245 // containing the original section may not be locked when we need to access
1246 // the contents.
1247 unsigned char* original_contents_;
10ad9fe5
DK
1248};
1249
80d0d023
DK
1250// Arm_exidx_fixup class. This is used to define a number of methods
1251// and keep states for fixing up EXIDX coverage.
1252
1253class Arm_exidx_fixup
1254{
1255 public:
85fdf906
AH
1256 Arm_exidx_fixup(Output_section* exidx_output_section,
1257 bool merge_exidx_entries = true)
80d0d023
DK
1258 : exidx_output_section_(exidx_output_section), last_unwind_type_(UT_NONE),
1259 last_inlined_entry_(0), last_input_section_(NULL),
85fdf906
AH
1260 section_offset_map_(NULL), first_output_text_section_(NULL),
1261 merge_exidx_entries_(merge_exidx_entries)
80d0d023
DK
1262 { }
1263
1264 ~Arm_exidx_fixup()
1265 { delete this->section_offset_map_; }
1266
f625ae50
DK
1267 // Process an EXIDX section for entry merging. SECTION_CONTENTS points
1268 // to the EXIDX contents and SECTION_SIZE is the size of the contents. Return
1269 // number of bytes to be deleted in output. If parts of the input EXIDX
1270 // section are merged a heap allocated Arm_exidx_section_offset_map is store
1271 // in the located PSECTION_OFFSET_MAP. The caller owns the map and is
9b547ce6 1272 // responsible for releasing it.
80d0d023
DK
1273 template<bool big_endian>
1274 uint32_t
1275 process_exidx_section(const Arm_exidx_input_section* exidx_input_section,
f625ae50
DK
1276 const unsigned char* section_contents,
1277 section_size_type section_size,
80d0d023 1278 Arm_exidx_section_offset_map** psection_offset_map);
2e702c99 1279
80d0d023
DK
1280 // Append an EXIDX_CANTUNWIND entry pointing at the end of the last
1281 // input section, if there is not one already.
1282 void
1283 add_exidx_cantunwind_as_needed();
1284
546c7457
DK
1285 // Return the output section for the text section which is linked to the
1286 // first exidx input in output.
1287 Output_section*
1288 first_output_text_section() const
1289 { return this->first_output_text_section_; }
1290
80d0d023
DK
1291 private:
1292 // Copying is not allowed.
1293 Arm_exidx_fixup(const Arm_exidx_fixup&);
1294 Arm_exidx_fixup& operator=(const Arm_exidx_fixup&);
1295
1296 // Type of EXIDX unwind entry.
1297 enum Unwind_type
1298 {
1299 // No type.
1300 UT_NONE,
1301 // EXIDX_CANTUNWIND.
1302 UT_EXIDX_CANTUNWIND,
1303 // Inlined entry.
1304 UT_INLINED_ENTRY,
1305 // Normal entry.
1306 UT_NORMAL_ENTRY,
1307 };
1308
1309 // Process an EXIDX entry. We only care about the second word of the
1310 // entry. Return true if the entry can be deleted.
1311 bool
1312 process_exidx_entry(uint32_t second_word);
1313
1314 // Update the current section offset map during EXIDX section fix-up.
1315 // If there is no map, create one. INPUT_OFFSET is the offset of a
1316 // reference point, DELETED_BYTES is the number of deleted by in the
1317 // section so far. If DELETE_ENTRY is true, the reference point and
1318 // all offsets after the previous reference point are discarded.
1319 void
1320 update_offset_map(section_offset_type input_offset,
1321 section_size_type deleted_bytes, bool delete_entry);
1322
1323 // EXIDX output section.
1324 Output_section* exidx_output_section_;
1325 // Unwind type of the last EXIDX entry processed.
1326 Unwind_type last_unwind_type_;
1327 // Last seen inlined EXIDX entry.
1328 uint32_t last_inlined_entry_;
1329 // Last processed EXIDX input section.
2b328d4e 1330 const Arm_exidx_input_section* last_input_section_;
80d0d023
DK
1331 // Section offset map created in process_exidx_section.
1332 Arm_exidx_section_offset_map* section_offset_map_;
546c7457
DK
1333 // Output section for the text section which is linked to the first exidx
1334 // input in output.
1335 Output_section* first_output_text_section_;
85fdf906
AH
1336
1337 bool merge_exidx_entries_;
80d0d023
DK
1338};
1339
07f508a2
DK
1340// Arm output section class. This is defined mainly to add a number of
1341// stub generation methods.
1342
1343template<bool big_endian>
1344class Arm_output_section : public Output_section
1345{
1346 public:
2b328d4e
DK
1347 typedef std::vector<std::pair<Relobj*, unsigned int> > Text_section_list;
1348
c87e4302 1349 // We need to force SHF_LINK_ORDER in a SHT_ARM_EXIDX section.
2ea97941
ILT
1350 Arm_output_section(const char* name, elfcpp::Elf_Word type,
1351 elfcpp::Elf_Xword flags)
c87e4302
DK
1352 : Output_section(name, type,
1353 (type == elfcpp::SHT_ARM_EXIDX
1354 ? flags | elfcpp::SHF_LINK_ORDER
1355 : flags))
131687b4
DK
1356 {
1357 if (type == elfcpp::SHT_ARM_EXIDX)
1358 this->set_always_keeps_input_sections();
1359 }
07f508a2
DK
1360
1361 ~Arm_output_section()
1362 { }
2e702c99 1363
07f508a2
DK
1364 // Group input sections for stub generation.
1365 void
f625ae50 1366 group_sections(section_size_type, bool, Target_arm<big_endian>*, const Task*);
07f508a2
DK
1367
1368 // Downcast a base pointer to an Arm_output_section pointer. This is
1369 // not type-safe but we only use Arm_output_section not the base class.
1370 static Arm_output_section<big_endian>*
1371 as_arm_output_section(Output_section* os)
1372 { return static_cast<Arm_output_section<big_endian>*>(os); }
1373
2b328d4e
DK
1374 // Append all input text sections in this into LIST.
1375 void
1376 append_text_sections_to_list(Text_section_list* list);
1377
1378 // Fix EXIDX coverage of this EXIDX output section. SORTED_TEXT_SECTION
1379 // is a list of text input sections sorted in ascending order of their
1380 // output addresses.
1381 void
4a54abbb
DK
1382 fix_exidx_coverage(Layout* layout,
1383 const Text_section_list& sorted_text_section,
85fdf906 1384 Symbol_table* symtab,
f625ae50
DK
1385 bool merge_exidx_entries,
1386 const Task* task);
2b328d4e 1387
131687b4
DK
1388 // Link an EXIDX section into its corresponding text section.
1389 void
1390 set_exidx_section_link();
1391
07f508a2
DK
1392 private:
1393 // For convenience.
1394 typedef Output_section::Input_section Input_section;
1395 typedef Output_section::Input_section_list Input_section_list;
1396
1397 // Create a stub group.
1398 void create_stub_group(Input_section_list::const_iterator,
1399 Input_section_list::const_iterator,
1400 Input_section_list::const_iterator,
1401 Target_arm<big_endian>*,
f625ae50
DK
1402 std::vector<Output_relaxed_input_section*>*,
1403 const Task* task);
07f508a2
DK
1404};
1405
993d07c1
DK
1406// Arm_exidx_input_section class. This represents an EXIDX input section.
1407
1408class Arm_exidx_input_section
1409{
1410 public:
1411 static const section_offset_type invalid_offset =
1412 static_cast<section_offset_type>(-1);
1413
1414 Arm_exidx_input_section(Relobj* relobj, unsigned int shndx,
f625ae50
DK
1415 unsigned int link, uint32_t size,
1416 uint32_t addralign, uint32_t text_size)
993d07c1 1417 : relobj_(relobj), shndx_(shndx), link_(link), size_(size),
f625ae50 1418 addralign_(addralign), text_size_(text_size), has_errors_(false)
993d07c1
DK
1419 { }
1420
1421 ~Arm_exidx_input_section()
1422 { }
2e702c99 1423
993d07c1
DK
1424 // Accessors: This is a read-only class.
1425
1426 // Return the object containing this EXIDX input section.
1427 Relobj*
1428 relobj() const
1429 { return this->relobj_; }
1430
1431 // Return the section index of this EXIDX input section.
1432 unsigned int
1433 shndx() const
1434 { return this->shndx_; }
1435
1436 // Return the section index of linked text section in the same object.
1437 unsigned int
1438 link() const
1439 { return this->link_; }
1440
1441 // Return size of the EXIDX input section.
1442 uint32_t
1443 size() const
1444 { return this->size_; }
1445
f625ae50 1446 // Return address alignment of EXIDX input section.
993d07c1
DK
1447 uint32_t
1448 addralign() const
1449 { return this->addralign_; }
1450
f625ae50
DK
1451 // Return size of the associated text input section.
1452 uint32_t
1453 text_size() const
1454 { return this->text_size_; }
1455
131687b4
DK
1456 // Whether there are any errors in the EXIDX input section.
1457 bool
1458 has_errors() const
1459 { return this->has_errors_; }
1460
1461 // Set has-errors flag.
1462 void
1463 set_has_errors()
1464 { this->has_errors_ = true; }
1465
993d07c1
DK
1466 private:
1467 // Object containing this.
1468 Relobj* relobj_;
1469 // Section index of this.
1470 unsigned int shndx_;
1471 // text section linked to this in the same object.
1472 unsigned int link_;
1473 // Size of this. For ARM 32-bit is sufficient.
1474 uint32_t size_;
1475 // Address alignment of this. For ARM 32-bit is sufficient.
1476 uint32_t addralign_;
f625ae50
DK
1477 // Size of associated text section.
1478 uint32_t text_size_;
131687b4
DK
1479 // Whether this has any errors.
1480 bool has_errors_;
993d07c1
DK
1481};
1482
8ffa3667
DK
1483// Arm_relobj class.
1484
1485template<bool big_endian>
6fa2a40b 1486class Arm_relobj : public Sized_relobj_file<32, big_endian>
8ffa3667
DK
1487{
1488 public:
1489 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
1490
2ea97941 1491 Arm_relobj(const std::string& name, Input_file* input_file, off_t offset,
2e702c99 1492 const typename elfcpp::Ehdr<32, big_endian>& ehdr)
6fa2a40b 1493 : Sized_relobj_file<32, big_endian>(name, input_file, offset, ehdr),
a0351a69 1494 stub_tables_(), local_symbol_is_thumb_function_(),
20138696 1495 attributes_section_data_(NULL), mapping_symbols_info_(),
e7eca48c 1496 section_has_cortex_a8_workaround_(NULL), exidx_section_map_(),
7296d933
DK
1497 output_local_symbol_count_needs_update_(false),
1498 merge_flags_and_attributes_(true)
8ffa3667
DK
1499 { }
1500
1501 ~Arm_relobj()
a0351a69 1502 { delete this->attributes_section_data_; }
2e702c99 1503
8ffa3667
DK
1504 // Return the stub table of the SHNDX-th section if there is one.
1505 Stub_table<big_endian>*
2ea97941 1506 stub_table(unsigned int shndx) const
8ffa3667 1507 {
2ea97941
ILT
1508 gold_assert(shndx < this->stub_tables_.size());
1509 return this->stub_tables_[shndx];
8ffa3667
DK
1510 }
1511
1512 // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1513 void
2ea97941 1514 set_stub_table(unsigned int shndx, Stub_table<big_endian>* stub_table)
8ffa3667 1515 {
2ea97941
ILT
1516 gold_assert(shndx < this->stub_tables_.size());
1517 this->stub_tables_[shndx] = stub_table;
8ffa3667
DK
1518 }
1519
1520 // Whether a local symbol is a THUMB function. R_SYM is the symbol table
1521 // index. This is only valid after do_count_local_symbol is called.
1522 bool
1523 local_symbol_is_thumb_function(unsigned int r_sym) const
1524 {
1525 gold_assert(r_sym < this->local_symbol_is_thumb_function_.size());
1526 return this->local_symbol_is_thumb_function_[r_sym];
1527 }
2e702c99 1528
8ffa3667
DK
1529 // Scan all relocation sections for stub generation.
1530 void
1531 scan_sections_for_stubs(Target_arm<big_endian>*, const Symbol_table*,
1532 const Layout*);
1533
1534 // Convert regular input section with index SHNDX to a relaxed section.
1535 void
2ea97941 1536 convert_input_section_to_relaxed_section(unsigned shndx)
8ffa3667
DK
1537 {
1538 // The stubs have relocations and we need to process them after writing
1539 // out the stubs. So relocation now must follow section write.
2b328d4e 1540 this->set_section_offset(shndx, -1ULL);
8ffa3667
DK
1541 this->set_relocs_must_follow_section_writes();
1542 }
1543
1544 // Downcast a base pointer to an Arm_relobj pointer. This is
1545 // not type-safe but we only use Arm_relobj not the base class.
1546 static Arm_relobj<big_endian>*
2ea97941
ILT
1547 as_arm_relobj(Relobj* relobj)
1548 { return static_cast<Arm_relobj<big_endian>*>(relobj); }
8ffa3667 1549
d5b40221
DK
1550 // Processor-specific flags in ELF file header. This is valid only after
1551 // reading symbols.
1552 elfcpp::Elf_Word
1553 processor_specific_flags() const
1554 { return this->processor_specific_flags_; }
1555
a0351a69
DK
1556 // Attribute section data This is the contents of the .ARM.attribute section
1557 // if there is one.
1558 const Attributes_section_data*
1559 attributes_section_data() const
1560 { return this->attributes_section_data_; }
1561
20138696
DK
1562 // Mapping symbol location.
1563 typedef std::pair<unsigned int, Arm_address> Mapping_symbol_position;
1564
1565 // Functor for STL container.
1566 struct Mapping_symbol_position_less
1567 {
1568 bool
1569 operator()(const Mapping_symbol_position& p1,
1570 const Mapping_symbol_position& p2) const
1571 {
1572 return (p1.first < p2.first
1573 || (p1.first == p2.first && p1.second < p2.second));
1574 }
1575 };
2e702c99 1576
20138696
DK
1577 // We only care about the first character of a mapping symbol, so
1578 // we only store that instead of the whole symbol name.
1579 typedef std::map<Mapping_symbol_position, char,
1580 Mapping_symbol_position_less> Mapping_symbols_info;
1581
2fb7225c
DK
1582 // Whether a section contains any Cortex-A8 workaround.
1583 bool
1584 section_has_cortex_a8_workaround(unsigned int shndx) const
2e702c99 1585 {
2fb7225c
DK
1586 return (this->section_has_cortex_a8_workaround_ != NULL
1587 && (*this->section_has_cortex_a8_workaround_)[shndx]);
1588 }
2e702c99 1589
2fb7225c
DK
1590 // Mark a section that has Cortex-A8 workaround.
1591 void
1592 mark_section_for_cortex_a8_workaround(unsigned int shndx)
1593 {
1594 if (this->section_has_cortex_a8_workaround_ == NULL)
1595 this->section_has_cortex_a8_workaround_ =
1596 new std::vector<bool>(this->shnum(), false);
1597 (*this->section_has_cortex_a8_workaround_)[shndx] = true;
1598 }
1599
993d07c1
DK
1600 // Return the EXIDX section of an text section with index SHNDX or NULL
1601 // if the text section has no associated EXIDX section.
1602 const Arm_exidx_input_section*
1603 exidx_input_section_by_link(unsigned int shndx) const
1604 {
1605 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1606 return ((p != this->exidx_section_map_.end()
1607 && p->second->link() == shndx)
1608 ? p->second
1609 : NULL);
1610 }
1611
1612 // Return the EXIDX section with index SHNDX or NULL if there is none.
1613 const Arm_exidx_input_section*
1614 exidx_input_section_by_shndx(unsigned shndx) const
1615 {
1616 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1617 return ((p != this->exidx_section_map_.end()
1618 && p->second->shndx() == shndx)
1619 ? p->second
1620 : NULL);
1621 }
1622
e7eca48c
DK
1623 // Whether output local symbol count needs updating.
1624 bool
1625 output_local_symbol_count_needs_update() const
1626 { return this->output_local_symbol_count_needs_update_; }
1627
1628 // Set output_local_symbol_count_needs_update flag to be true.
1629 void
1630 set_output_local_symbol_count_needs_update()
1631 { this->output_local_symbol_count_needs_update_ = true; }
2e702c99 1632
e7eca48c
DK
1633 // Update output local symbol count at the end of relaxation.
1634 void
1635 update_output_local_symbol_count();
1636
7296d933
DK
1637 // Whether we want to merge processor-specific flags and attributes.
1638 bool
1639 merge_flags_and_attributes() const
1640 { return this->merge_flags_and_attributes_; }
2e702c99 1641
131687b4
DK
1642 // Export list of EXIDX section indices.
1643 void
1644 get_exidx_shndx_list(std::vector<unsigned int>* list) const
1645 {
1646 list->clear();
1647 for (Exidx_section_map::const_iterator p = this->exidx_section_map_.begin();
1648 p != this->exidx_section_map_.end();
1649 ++p)
1650 {
1651 if (p->second->shndx() == p->first)
1652 list->push_back(p->first);
1653 }
2e702c99 1654 // Sort list to make result independent of implementation of map.
131687b4
DK
1655 std::sort(list->begin(), list->end());
1656 }
1657
8ffa3667
DK
1658 protected:
1659 // Post constructor setup.
1660 void
1661 do_setup()
1662 {
1663 // Call parent's setup method.
6fa2a40b 1664 Sized_relobj_file<32, big_endian>::do_setup();
8ffa3667
DK
1665
1666 // Initialize look-up tables.
1667 Stub_table_list empty_stub_table_list(this->shnum(), NULL);
1668 this->stub_tables_.swap(empty_stub_table_list);
1669 }
1670
1671 // Count the local symbols.
1672 void
1673 do_count_local_symbols(Stringpool_template<char>*,
2e702c99 1674 Stringpool_template<char>*);
8ffa3667
DK
1675
1676 void
6fa2a40b
CC
1677 do_relocate_sections(
1678 const Symbol_table* symtab, const Layout* layout,
1679 const unsigned char* pshdrs, Output_file* of,
1680 typename Sized_relobj_file<32, big_endian>::Views* pivews);
8ffa3667 1681
d5b40221
DK
1682 // Read the symbol information.
1683 void
1684 do_read_symbols(Read_symbols_data* sd);
1685
99e5bff2
DK
1686 // Process relocs for garbage collection.
1687 void
1688 do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*);
1689
8ffa3667 1690 private:
44272192
DK
1691
1692 // Whether a section needs to be scanned for relocation stubs.
1693 bool
1694 section_needs_reloc_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1695 const Relobj::Output_sections&,
ca09d69a 1696 const Symbol_table*, const unsigned char*);
44272192 1697
cf846138
DK
1698 // Whether a section is a scannable text section.
1699 bool
1700 section_is_scannable(const elfcpp::Shdr<32, big_endian>&, unsigned int,
ca09d69a 1701 const Output_section*, const Symbol_table*);
cf846138 1702
44272192
DK
1703 // Whether a section needs to be scanned for the Cortex-A8 erratum.
1704 bool
1705 section_needs_cortex_a8_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1706 unsigned int, Output_section*,
ca09d69a 1707 const Symbol_table*);
44272192
DK
1708
1709 // Scan a section for the Cortex-A8 erratum.
1710 void
1711 scan_section_for_cortex_a8_erratum(const elfcpp::Shdr<32, big_endian>&,
1712 unsigned int, Output_section*,
1713 Target_arm<big_endian>*);
1714
c8761b9a 1715 // Find the linked text section of an EXIDX section by looking at the
9b547ce6 1716 // first relocation of the EXIDX section. PSHDR points to the section
c8761b9a
DK
1717 // headers of a relocation section and PSYMS points to the local symbols.
1718 // PSHNDX points to a location storing the text section index if found.
1719 // Return whether we can find the linked section.
1720 bool
1721 find_linked_text_section(const unsigned char* pshdr,
1722 const unsigned char* psyms, unsigned int* pshndx);
1723
1724 //
993d07c1 1725 // Make a new Arm_exidx_input_section object for EXIDX section with
c8761b9a
DK
1726 // index SHNDX and section header SHDR. TEXT_SHNDX is the section
1727 // index of the linked text section.
993d07c1
DK
1728 void
1729 make_exidx_input_section(unsigned int shndx,
c8761b9a 1730 const elfcpp::Shdr<32, big_endian>& shdr,
131687b4
DK
1731 unsigned int text_shndx,
1732 const elfcpp::Shdr<32, big_endian>& text_shdr);
993d07c1 1733
cb1be87e
DK
1734 // Return the output address of either a plain input section or a
1735 // relaxed input section. SHNDX is the section index.
1736 Arm_address
1737 simple_input_section_output_address(unsigned int, Output_section*);
1738
8ffa3667 1739 typedef std::vector<Stub_table<big_endian>*> Stub_table_list;
993d07c1
DK
1740 typedef Unordered_map<unsigned int, const Arm_exidx_input_section*>
1741 Exidx_section_map;
1742
1743 // List of stub tables.
8ffa3667
DK
1744 Stub_table_list stub_tables_;
1745 // Bit vector to tell if a local symbol is a thumb function or not.
1746 // This is only valid after do_count_local_symbol is called.
1747 std::vector<bool> local_symbol_is_thumb_function_;
d5b40221
DK
1748 // processor-specific flags in ELF file header.
1749 elfcpp::Elf_Word processor_specific_flags_;
a0351a69
DK
1750 // Object attributes if there is an .ARM.attributes section or NULL.
1751 Attributes_section_data* attributes_section_data_;
20138696
DK
1752 // Mapping symbols information.
1753 Mapping_symbols_info mapping_symbols_info_;
2fb7225c
DK
1754 // Bitmap to indicate sections with Cortex-A8 workaround or NULL.
1755 std::vector<bool>* section_has_cortex_a8_workaround_;
993d07c1
DK
1756 // Map a text section to its associated .ARM.exidx section, if there is one.
1757 Exidx_section_map exidx_section_map_;
e7eca48c
DK
1758 // Whether output local symbol count needs updating.
1759 bool output_local_symbol_count_needs_update_;
7296d933
DK
1760 // Whether we merge processor flags and attributes of this object to
1761 // output.
1762 bool merge_flags_and_attributes_;
d5b40221
DK
1763};
1764
1765// Arm_dynobj class.
1766
1767template<bool big_endian>
1768class Arm_dynobj : public Sized_dynobj<32, big_endian>
1769{
1770 public:
2ea97941 1771 Arm_dynobj(const std::string& name, Input_file* input_file, off_t offset,
d5b40221 1772 const elfcpp::Ehdr<32, big_endian>& ehdr)
2ea97941
ILT
1773 : Sized_dynobj<32, big_endian>(name, input_file, offset, ehdr),
1774 processor_specific_flags_(0), attributes_section_data_(NULL)
d5b40221 1775 { }
2e702c99 1776
d5b40221 1777 ~Arm_dynobj()
a0351a69 1778 { delete this->attributes_section_data_; }
d5b40221
DK
1779
1780 // Downcast a base pointer to an Arm_relobj pointer. This is
1781 // not type-safe but we only use Arm_relobj not the base class.
1782 static Arm_dynobj<big_endian>*
1783 as_arm_dynobj(Dynobj* dynobj)
1784 { return static_cast<Arm_dynobj<big_endian>*>(dynobj); }
1785
1786 // Processor-specific flags in ELF file header. This is valid only after
1787 // reading symbols.
1788 elfcpp::Elf_Word
1789 processor_specific_flags() const
1790 { return this->processor_specific_flags_; }
1791
a0351a69
DK
1792 // Attributes section data.
1793 const Attributes_section_data*
1794 attributes_section_data() const
1795 { return this->attributes_section_data_; }
1796
d5b40221
DK
1797 protected:
1798 // Read the symbol information.
1799 void
1800 do_read_symbols(Read_symbols_data* sd);
1801
1802 private:
1803 // processor-specific flags in ELF file header.
1804 elfcpp::Elf_Word processor_specific_flags_;
a0351a69
DK
1805 // Object attributes if there is an .ARM.attributes section or NULL.
1806 Attributes_section_data* attributes_section_data_;
8ffa3667
DK
1807};
1808
e9bbb538
DK
1809// Functor to read reloc addends during stub generation.
1810
1811template<int sh_type, bool big_endian>
1812struct Stub_addend_reader
1813{
1814 // Return the addend for a relocation of a particular type. Depending
1815 // on whether this is a REL or RELA relocation, read the addend from a
1816 // view or from a Reloc object.
1817 elfcpp::Elf_types<32>::Elf_Swxword
1818 operator()(
1819 unsigned int /* r_type */,
1820 const unsigned char* /* view */,
1821 const typename Reloc_types<sh_type,
ebd95253 1822 32, big_endian>::Reloc& /* reloc */) const;
e9bbb538
DK
1823};
1824
1825// Specialized Stub_addend_reader for SHT_REL type relocation sections.
1826
1827template<bool big_endian>
1828struct Stub_addend_reader<elfcpp::SHT_REL, big_endian>
1829{
1830 elfcpp::Elf_types<32>::Elf_Swxword
1831 operator()(
1832 unsigned int,
1833 const unsigned char*,
1834 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const;
1835};
1836
1837// Specialized Stub_addend_reader for RELA type relocation sections.
1838// We currently do not handle RELA type relocation sections but it is trivial
1839// to implement the addend reader. This is provided for completeness and to
1840// make it easier to add support for RELA relocation sections in the future.
1841
1842template<bool big_endian>
1843struct Stub_addend_reader<elfcpp::SHT_RELA, big_endian>
1844{
1845 elfcpp::Elf_types<32>::Elf_Swxword
1846 operator()(
1847 unsigned int,
1848 const unsigned char*,
1849 const typename Reloc_types<elfcpp::SHT_RELA, 32,
ebd95253
DK
1850 big_endian>::Reloc& reloc) const
1851 { return reloc.get_r_addend(); }
e9bbb538
DK
1852};
1853
a120bc7f
DK
1854// Cortex_a8_reloc class. We keep record of relocation that may need
1855// the Cortex-A8 erratum workaround.
1856
1857class Cortex_a8_reloc
1858{
1859 public:
1860 Cortex_a8_reloc(Reloc_stub* reloc_stub, unsigned r_type,
1861 Arm_address destination)
1862 : reloc_stub_(reloc_stub), r_type_(r_type), destination_(destination)
1863 { }
1864
1865 ~Cortex_a8_reloc()
1866 { }
1867
1868 // Accessors: This is a read-only class.
2e702c99 1869
a120bc7f
DK
1870 // Return the relocation stub associated with this relocation if there is
1871 // one.
1872 const Reloc_stub*
1873 reloc_stub() const
2e702c99
RM
1874 { return this->reloc_stub_; }
1875
a120bc7f
DK
1876 // Return the relocation type.
1877 unsigned int
1878 r_type() const
1879 { return this->r_type_; }
1880
1881 // Return the destination address of the relocation. LSB stores the THUMB
1882 // bit.
1883 Arm_address
1884 destination() const
1885 { return this->destination_; }
1886
1887 private:
1888 // Associated relocation stub if there is one, or NULL.
1889 const Reloc_stub* reloc_stub_;
1890 // Relocation type.
1891 unsigned int r_type_;
1892 // Destination address of this relocation. LSB is used to distinguish
1893 // ARM/THUMB mode.
1894 Arm_address destination_;
1895};
1896
4a54abbb
DK
1897// Arm_output_data_got class. We derive this from Output_data_got to add
1898// extra methods to handle TLS relocations in a static link.
1899
1900template<bool big_endian>
1901class Arm_output_data_got : public Output_data_got<32, big_endian>
1902{
1903 public:
1904 Arm_output_data_got(Symbol_table* symtab, Layout* layout)
1905 : Output_data_got<32, big_endian>(), symbol_table_(symtab), layout_(layout)
1906 { }
1907
1908 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
1909 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
1910 // applied in a static link.
1911 void
1912 add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1913 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
1914
1915 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
1916 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
1917 // relocation that needs to be applied in a static link.
1918 void
1919 add_static_reloc(unsigned int got_offset, unsigned int r_type,
6fa2a40b
CC
1920 Sized_relobj_file<32, big_endian>* relobj,
1921 unsigned int index)
4a54abbb
DK
1922 {
1923 this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
1924 index));
1925 }
1926
1927 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
1928 // The first one is initialized to be 1, which is the module index for
1929 // the main executable and the second one 0. A reloc of the type
1930 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
1931 // be applied by gold. GSYM is a global symbol.
1932 void
1933 add_tls_gd32_with_static_reloc(unsigned int got_type, Symbol* gsym);
1934
1935 // Same as the above but for a local symbol in OBJECT with INDEX.
1936 void
1937 add_tls_gd32_with_static_reloc(unsigned int got_type,
6fa2a40b 1938 Sized_relobj_file<32, big_endian>* object,
4a54abbb
DK
1939 unsigned int index);
1940
1941 protected:
1942 // Write out the GOT table.
1943 void
1944 do_write(Output_file*);
1945
1946 private:
1947 // This class represent dynamic relocations that need to be applied by
1948 // gold because we are using TLS relocations in a static link.
1949 class Static_reloc
1950 {
1951 public:
1952 Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1953 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
1954 { this->u_.global.symbol = gsym; }
1955
1956 Static_reloc(unsigned int got_offset, unsigned int r_type,
6fa2a40b 1957 Sized_relobj_file<32, big_endian>* relobj, unsigned int index)
4a54abbb
DK
1958 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
1959 {
1960 this->u_.local.relobj = relobj;
1961 this->u_.local.index = index;
1962 }
1963
1964 // Return the GOT offset.
1965 unsigned int
1966 got_offset() const
1967 { return this->got_offset_; }
1968
1969 // Relocation type.
1970 unsigned int
1971 r_type() const
1972 { return this->r_type_; }
1973
1974 // Whether the symbol is global or not.
1975 bool
1976 symbol_is_global() const
1977 { return this->symbol_is_global_; }
1978
1979 // For a relocation against a global symbol, the global symbol.
1980 Symbol*
1981 symbol() const
1982 {
1983 gold_assert(this->symbol_is_global_);
1984 return this->u_.global.symbol;
1985 }
1986
1987 // For a relocation against a local symbol, the defining object.
6fa2a40b 1988 Sized_relobj_file<32, big_endian>*
4a54abbb
DK
1989 relobj() const
1990 {
1991 gold_assert(!this->symbol_is_global_);
1992 return this->u_.local.relobj;
1993 }
1994
1995 // For a relocation against a local symbol, the local symbol index.
1996 unsigned int
1997 index() const
1998 {
1999 gold_assert(!this->symbol_is_global_);
2000 return this->u_.local.index;
2001 }
2002
2003 private:
2004 // GOT offset of the entry to which this relocation is applied.
2005 unsigned int got_offset_;
2006 // Type of relocation.
2007 unsigned int r_type_;
2008 // Whether this relocation is against a global symbol.
2009 bool symbol_is_global_;
2010 // A global or local symbol.
2011 union
2012 {
2013 struct
2014 {
2015 // For a global symbol, the symbol itself.
2016 Symbol* symbol;
2017 } global;
2018 struct
2019 {
2020 // For a local symbol, the object defining object.
6fa2a40b 2021 Sized_relobj_file<32, big_endian>* relobj;
4a54abbb
DK
2022 // For a local symbol, the symbol index.
2023 unsigned int index;
2024 } local;
2025 } u_;
2026 };
2027
2028 // Symbol table of the output object.
2029 Symbol_table* symbol_table_;
2030 // Layout of the output object.
2031 Layout* layout_;
2032 // Static relocs to be applied to the GOT.
2033 std::vector<Static_reloc> static_relocs_;
2034};
2035
9b547ce6 2036// The ARM target has many relocation types with odd-sizes or noncontiguous
5c388529
DK
2037// bits. The default handling of relocatable relocation cannot process these
2038// relocations. So we have to extend the default code.
2039
2040template<bool big_endian, int sh_type, typename Classify_reloc>
2041class Arm_scan_relocatable_relocs :
2042 public Default_scan_relocatable_relocs<sh_type, Classify_reloc>
2043{
2044 public:
2045 // Return the strategy to use for a local symbol which is a section
2046 // symbol, given the relocation type.
2047 inline Relocatable_relocs::Reloc_strategy
2048 local_section_strategy(unsigned int r_type, Relobj*)
2049 {
2050 if (sh_type == elfcpp::SHT_RELA)
2051 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
2052 else
2053 {
2054 if (r_type == elfcpp::R_ARM_TARGET1
2055 || r_type == elfcpp::R_ARM_TARGET2)
2056 {
2057 const Target_arm<big_endian>* arm_target =
2058 Target_arm<big_endian>::default_target();
2059 r_type = arm_target->get_real_reloc_type(r_type);
2060 }
2061
2062 switch(r_type)
2063 {
2064 // Relocations that write nothing. These exclude R_ARM_TARGET1
2065 // and R_ARM_TARGET2.
2066 case elfcpp::R_ARM_NONE:
2067 case elfcpp::R_ARM_V4BX:
2068 case elfcpp::R_ARM_TLS_GOTDESC:
2069 case elfcpp::R_ARM_TLS_CALL:
2070 case elfcpp::R_ARM_TLS_DESCSEQ:
2071 case elfcpp::R_ARM_THM_TLS_CALL:
2072 case elfcpp::R_ARM_GOTRELAX:
2073 case elfcpp::R_ARM_GNU_VTENTRY:
2074 case elfcpp::R_ARM_GNU_VTINHERIT:
2075 case elfcpp::R_ARM_THM_TLS_DESCSEQ16:
2076 case elfcpp::R_ARM_THM_TLS_DESCSEQ32:
2077 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
2078 // These should have been converted to something else above.
2079 case elfcpp::R_ARM_TARGET1:
2080 case elfcpp::R_ARM_TARGET2:
2081 gold_unreachable();
2c339f71 2082 // Relocations that write full 32 bits and
2e702c99 2083 // have alignment of 1.
5c388529
DK
2084 case elfcpp::R_ARM_ABS32:
2085 case elfcpp::R_ARM_REL32:
2086 case elfcpp::R_ARM_SBREL32:
2087 case elfcpp::R_ARM_GOTOFF32:
2088 case elfcpp::R_ARM_BASE_PREL:
2089 case elfcpp::R_ARM_GOT_BREL:
2090 case elfcpp::R_ARM_BASE_ABS:
2091 case elfcpp::R_ARM_ABS32_NOI:
2092 case elfcpp::R_ARM_REL32_NOI:
2093 case elfcpp::R_ARM_PLT32_ABS:
2094 case elfcpp::R_ARM_GOT_ABS:
2095 case elfcpp::R_ARM_GOT_PREL:
2096 case elfcpp::R_ARM_TLS_GD32:
2097 case elfcpp::R_ARM_TLS_LDM32:
2098 case elfcpp::R_ARM_TLS_LDO32:
2099 case elfcpp::R_ARM_TLS_IE32:
2100 case elfcpp::R_ARM_TLS_LE32:
2c339f71 2101 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4_UNALIGNED;
5c388529
DK
2102 default:
2103 // For all other static relocations, return RELOC_SPECIAL.
2104 return Relocatable_relocs::RELOC_SPECIAL;
2105 }
2106 }
2107 }
2108};
2109
4a657b0d
DK
2110template<bool big_endian>
2111class Target_arm : public Sized_target<32, big_endian>
2112{
2113 public:
2114 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
2115 Reloc_section;
2116
2daedcd6
DK
2117 // When were are relocating a stub, we pass this as the relocation number.
2118 static const size_t fake_relnum_for_stubs = static_cast<size_t>(-1);
2119
2e702c99
RM
2120 Target_arm(const Target::Target_info* info = &arm_info)
2121 : Sized_target<32, big_endian>(info),
a6d1ef57 2122 got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
2e702c99 2123 copy_relocs_(elfcpp::R_ARM_COPY), dynbss_(NULL),
f96accdf
DK
2124 got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
2125 stub_tables_(), stub_factory_(Stub_factory::get_instance()),
cd6eab1c 2126 should_force_pic_veneer_(false),
f96accdf
DK
2127 arm_input_section_map_(), attributes_section_data_(NULL),
2128 fix_cortex_a8_(false), cortex_a8_relocs_info_()
a6d1ef57 2129 { }
4a657b0d 2130
b569affa
DK
2131 // Whether we force PCI branch veneers.
2132 bool
2133 should_force_pic_veneer() const
2134 { return this->should_force_pic_veneer_; }
2135
2136 // Set PIC veneer flag.
2137 void
2138 set_should_force_pic_veneer(bool value)
2139 { this->should_force_pic_veneer_ = value; }
2e702c99 2140
b569affa
DK
2141 // Whether we use THUMB-2 instructions.
2142 bool
2143 using_thumb2() const
2144 {
a0351a69
DK
2145 Object_attribute* attr =
2146 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2147 int arch = attr->int_value();
2148 return arch == elfcpp::TAG_CPU_ARCH_V6T2 || arch >= elfcpp::TAG_CPU_ARCH_V7;
b569affa
DK
2149 }
2150
2151 // Whether we use THUMB/THUMB-2 instructions only.
2152 bool
2153 using_thumb_only() const
2154 {
a0351a69
DK
2155 Object_attribute* attr =
2156 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
323c532f
DK
2157
2158 if (attr->int_value() == elfcpp::TAG_CPU_ARCH_V6_M
2159 || attr->int_value() == elfcpp::TAG_CPU_ARCH_V6S_M)
2160 return true;
a0351a69
DK
2161 if (attr->int_value() != elfcpp::TAG_CPU_ARCH_V7
2162 && attr->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M)
2163 return false;
2164 attr = this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
2165 return attr->int_value() == 'M';
b569affa
DK
2166 }
2167
d204b6e9
DK
2168 // Whether we have an NOP instruction. If not, use mov r0, r0 instead.
2169 bool
2170 may_use_arm_nop() const
2171 {
a0351a69
DK
2172 Object_attribute* attr =
2173 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2174 int arch = attr->int_value();
2175 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2176 || arch == elfcpp::TAG_CPU_ARCH_V6K
2177 || arch == elfcpp::TAG_CPU_ARCH_V7
2178 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
d204b6e9
DK
2179 }
2180
51938283
DK
2181 // Whether we have THUMB-2 NOP.W instruction.
2182 bool
2183 may_use_thumb2_nop() const
2184 {
a0351a69
DK
2185 Object_attribute* attr =
2186 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2187 int arch = attr->int_value();
2188 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2189 || arch == elfcpp::TAG_CPU_ARCH_V7
2190 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
51938283 2191 }
cd6eab1c
ILT
2192
2193 // Whether we have v4T interworking instructions available.
2194 bool
2195 may_use_v4t_interworking() const
2196 {
2197 Object_attribute* attr =
2198 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2199 int arch = attr->int_value();
2200 return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
2201 && arch != elfcpp::TAG_CPU_ARCH_V4);
2202 }
2e702c99 2203
cd6eab1c
ILT
2204 // Whether we have v5T interworking instructions available.
2205 bool
2206 may_use_v5t_interworking() const
2207 {
2208 Object_attribute* attr =
2209 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2210 int arch = attr->int_value();
a8e2273b
ILT
2211 if (parameters->options().fix_arm1176())
2212 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2213 || arch == elfcpp::TAG_CPU_ARCH_V7
2214 || arch == elfcpp::TAG_CPU_ARCH_V6_M
2215 || arch == elfcpp::TAG_CPU_ARCH_V6S_M
2216 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2217 else
2218 return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
2219 && arch != elfcpp::TAG_CPU_ARCH_V4
2220 && arch != elfcpp::TAG_CPU_ARCH_V4T);
cd6eab1c 2221 }
2e702c99
RM
2222
2223 // Process the relocations to determine unreferenced sections for
4a657b0d
DK
2224 // garbage collection.
2225 void
ad0f2072 2226 gc_process_relocs(Symbol_table* symtab,
4a657b0d 2227 Layout* layout,
6fa2a40b 2228 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
2229 unsigned int data_shndx,
2230 unsigned int sh_type,
2231 const unsigned char* prelocs,
2232 size_t reloc_count,
2233 Output_section* output_section,
2234 bool needs_special_offset_handling,
2235 size_t local_symbol_count,
2236 const unsigned char* plocal_symbols);
2237
2238 // Scan the relocations to look for symbol adjustments.
2239 void
ad0f2072 2240 scan_relocs(Symbol_table* symtab,
4a657b0d 2241 Layout* layout,
6fa2a40b 2242 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
2243 unsigned int data_shndx,
2244 unsigned int sh_type,
2245 const unsigned char* prelocs,
2246 size_t reloc_count,
2247 Output_section* output_section,
2248 bool needs_special_offset_handling,
2249 size_t local_symbol_count,
2250 const unsigned char* plocal_symbols);
2251
2252 // Finalize the sections.
2253 void
f59f41f3 2254 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
4a657b0d 2255
94cdfcff 2256 // Return the value to use for a dynamic symbol which requires special
4a657b0d
DK
2257 // treatment.
2258 uint64_t
2259 do_dynsym_value(const Symbol*) const;
2260
2261 // Relocate a section.
2262 void
2263 relocate_section(const Relocate_info<32, big_endian>*,
2264 unsigned int sh_type,
2265 const unsigned char* prelocs,
2266 size_t reloc_count,
2267 Output_section* output_section,
2268 bool needs_special_offset_handling,
2269 unsigned char* view,
ebabffbd 2270 Arm_address view_address,
364c7fa5
ILT
2271 section_size_type view_size,
2272 const Reloc_symbol_changes*);
4a657b0d
DK
2273
2274 // Scan the relocs during a relocatable link.
2275 void
ad0f2072 2276 scan_relocatable_relocs(Symbol_table* symtab,
4a657b0d 2277 Layout* layout,
6fa2a40b 2278 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
2279 unsigned int data_shndx,
2280 unsigned int sh_type,
2281 const unsigned char* prelocs,
2282 size_t reloc_count,
2283 Output_section* output_section,
2284 bool needs_special_offset_handling,
2285 size_t local_symbol_count,
2286 const unsigned char* plocal_symbols,
2287 Relocatable_relocs*);
2288
7404fe1b 2289 // Emit relocations for a section.
4a657b0d 2290 void
7404fe1b
AM
2291 relocate_relocs(const Relocate_info<32, big_endian>*,
2292 unsigned int sh_type,
2293 const unsigned char* prelocs,
2294 size_t reloc_count,
2295 Output_section* output_section,
62fe925a
RM
2296 typename elfcpp::Elf_types<32>::Elf_Off
2297 offset_in_output_section,
7404fe1b
AM
2298 const Relocatable_relocs*,
2299 unsigned char* view,
2300 Arm_address view_address,
2301 section_size_type view_size,
2302 unsigned char* reloc_view,
2303 section_size_type reloc_view_size);
4a657b0d 2304
5c388529
DK
2305 // Perform target-specific processing in a relocatable link. This is
2306 // only used if we use the relocation strategy RELOC_SPECIAL.
2307 void
2308 relocate_special_relocatable(const Relocate_info<32, big_endian>* relinfo,
2309 unsigned int sh_type,
2310 const unsigned char* preloc_in,
2311 size_t relnum,
2312 Output_section* output_section,
62fe925a
RM
2313 typename elfcpp::Elf_types<32>::Elf_Off
2314 offset_in_output_section,
5c388529
DK
2315 unsigned char* view,
2316 typename elfcpp::Elf_types<32>::Elf_Addr
2317 view_address,
2318 section_size_type view_size,
2319 unsigned char* preloc_out);
2e702c99 2320
4a657b0d
DK
2321 // Return whether SYM is defined by the ABI.
2322 bool
2c54b4f4 2323 do_is_defined_by_abi(const Symbol* sym) const
4a657b0d
DK
2324 { return strcmp(sym->name(), "__tls_get_addr") == 0; }
2325
c8761b9a
DK
2326 // Return whether there is a GOT section.
2327 bool
2328 has_got_section() const
2329 { return this->got_ != NULL; }
2330
94cdfcff
DK
2331 // Return the size of the GOT section.
2332 section_size_type
0e70b911 2333 got_size() const
94cdfcff
DK
2334 {
2335 gold_assert(this->got_ != NULL);
2336 return this->got_->data_size();
2337 }
2338
0e70b911
CC
2339 // Return the number of entries in the GOT.
2340 unsigned int
2341 got_entry_count() const
2342 {
2343 if (!this->has_got_section())
2344 return 0;
2345 return this->got_size() / 4;
2346 }
2347
2348 // Return the number of entries in the PLT.
2349 unsigned int
2350 plt_entry_count() const;
2351
2352 // Return the offset of the first non-reserved PLT entry.
2353 unsigned int
2354 first_plt_entry_offset() const;
2355
2356 // Return the size of each PLT entry.
2357 unsigned int
2358 plt_entry_size() const;
2359
4a657b0d 2360 // Map platform-specific reloc types
a6d1ef57 2361 static unsigned int
ca09d69a 2362 get_real_reloc_type(unsigned int r_type);
4a657b0d 2363
55da9579
DK
2364 //
2365 // Methods to support stub-generations.
2366 //
2e702c99 2367
55da9579
DK
2368 // Return the stub factory
2369 const Stub_factory&
2370 stub_factory() const
2371 { return this->stub_factory_; }
2372
2373 // Make a new Arm_input_section object.
2374 Arm_input_section<big_endian>*
2375 new_arm_input_section(Relobj*, unsigned int);
2376
2377 // Find the Arm_input_section object corresponding to the SHNDX-th input
2378 // section of RELOBJ.
2379 Arm_input_section<big_endian>*
2ea97941 2380 find_arm_input_section(Relobj* relobj, unsigned int shndx) const;
55da9579
DK
2381
2382 // Make a new Stub_table
2383 Stub_table<big_endian>*
2384 new_stub_table(Arm_input_section<big_endian>*);
2385
eb44217c
DK
2386 // Scan a section for stub generation.
2387 void
2388 scan_section_for_stubs(const Relocate_info<32, big_endian>*, unsigned int,
2389 const unsigned char*, size_t, Output_section*,
2390 bool, const unsigned char*, Arm_address,
2391 section_size_type);
2392
2e702c99 2393 // Relocate a stub.
43d12afe 2394 void
2fb7225c 2395 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
43d12afe
DK
2396 Output_section*, unsigned char*, Arm_address,
2397 section_size_type);
2e702c99 2398
b569affa 2399 // Get the default ARM target.
43d12afe 2400 static Target_arm<big_endian>*
b569affa
DK
2401 default_target()
2402 {
2403 gold_assert(parameters->target().machine_code() == elfcpp::EM_ARM
2404 && parameters->target().is_big_endian() == big_endian);
43d12afe
DK
2405 return static_cast<Target_arm<big_endian>*>(
2406 parameters->sized_target<32, big_endian>());
b569affa
DK
2407 }
2408
20138696
DK
2409 // Whether NAME belongs to a mapping symbol.
2410 static bool
2411 is_mapping_symbol_name(const char* name)
2412 {
2413 return (name
2414 && name[0] == '$'
2415 && (name[1] == 'a' || name[1] == 't' || name[1] == 'd')
2416 && (name[2] == '\0' || name[2] == '.'));
2417 }
2418
a120bc7f
DK
2419 // Whether we work around the Cortex-A8 erratum.
2420 bool
2421 fix_cortex_a8() const
2422 { return this->fix_cortex_a8_; }
2423
85fdf906
AH
2424 // Whether we merge exidx entries in debuginfo.
2425 bool
2426 merge_exidx_entries() const
2427 { return parameters->options().merge_exidx_entries(); }
2428
a2162063
ILT
2429 // Whether we fix R_ARM_V4BX relocation.
2430 // 0 - do not fix
2431 // 1 - replace with MOV instruction (armv4 target)
2432 // 2 - make interworking veneer (>= armv4t targets only)
9b2fd367 2433 General_options::Fix_v4bx
a2162063 2434 fix_v4bx() const
9b2fd367 2435 { return parameters->options().fix_v4bx(); }
a2162063 2436
44272192
DK
2437 // Scan a span of THUMB code section for Cortex-A8 erratum.
2438 void
2439 scan_span_for_cortex_a8_erratum(Arm_relobj<big_endian>*, unsigned int,
2440 section_size_type, section_size_type,
2441 const unsigned char*, Arm_address);
2442
41263c05
DK
2443 // Apply Cortex-A8 workaround to a branch.
2444 void
2445 apply_cortex_a8_workaround(const Cortex_a8_stub*, Arm_address,
2446 unsigned char*, Arm_address);
2447
d5b40221 2448 protected:
2e702c99
RM
2449 // Make the PLT-generator object.
2450 Output_data_plt_arm<big_endian>*
2451 make_data_plt(Layout* layout, Output_data_space* got_plt)
2452 { return this->do_make_data_plt(layout, got_plt); }
2453
eb44217c
DK
2454 // Make an ELF object.
2455 Object*
2456 do_make_elf_object(const std::string&, Input_file*, off_t,
2457 const elfcpp::Ehdr<32, big_endian>& ehdr);
2458
2459 Object*
2460 do_make_elf_object(const std::string&, Input_file*, off_t,
2461 const elfcpp::Ehdr<32, !big_endian>&)
2462 { gold_unreachable(); }
2463
2464 Object*
2465 do_make_elf_object(const std::string&, Input_file*, off_t,
2466 const elfcpp::Ehdr<64, false>&)
2467 { gold_unreachable(); }
2468
2469 Object*
2470 do_make_elf_object(const std::string&, Input_file*, off_t,
2471 const elfcpp::Ehdr<64, true>&)
2472 { gold_unreachable(); }
2473
2474 // Make an output section.
2475 Output_section*
2476 do_make_output_section(const char* name, elfcpp::Elf_Word type,
2477 elfcpp::Elf_Xword flags)
2478 { return new Arm_output_section<big_endian>(name, type, flags); }
2479
d5b40221 2480 void
3bfcb652 2481 do_adjust_elf_header(unsigned char* view, int len);
d5b40221 2482
eb44217c
DK
2483 // We only need to generate stubs, and hence perform relaxation if we are
2484 // not doing relocatable linking.
2485 bool
2486 do_may_relax() const
2487 { return !parameters->options().relocatable(); }
2488
2489 bool
f625ae50 2490 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
eb44217c 2491
a0351a69
DK
2492 // Determine whether an object attribute tag takes an integer, a
2493 // string or both.
2494 int
2495 do_attribute_arg_type(int tag) const;
2496
2497 // Reorder tags during output.
2498 int
2499 do_attributes_order(int num) const;
2500
0d31c79d
DK
2501 // This is called when the target is selected as the default.
2502 void
2503 do_select_as_default_target()
2504 {
2505 // No locking is required since there should only be one default target.
2506 // We cannot have both the big-endian and little-endian ARM targets
2507 // as the default.
2508 gold_assert(arm_reloc_property_table == NULL);
2509 arm_reloc_property_table = new Arm_reloc_property_table();
2510 }
2511
b3ce541e
ILT
2512 // Virtual function which is set to return true by a target if
2513 // it can use relocation types to determine if a function's
2514 // pointer is taken.
2515 virtual bool
2516 do_can_check_for_function_pointers() const
2517 { return true; }
2518
2519 // Whether a section called SECTION_NAME may have function pointers to
2520 // sections not eligible for safe ICF folding.
2521 virtual bool
2522 do_section_may_have_icf_unsafe_pointers(const char* section_name) const
2523 {
2524 return (!is_prefix_of(".ARM.exidx", section_name)
2525 && !is_prefix_of(".ARM.extab", section_name)
2526 && Target::do_section_may_have_icf_unsafe_pointers(section_name));
2527 }
2e702c99 2528
647f1574
DK
2529 virtual void
2530 do_define_standard_symbols(Symbol_table*, Layout*);
2531
2e702c99
RM
2532 virtual Output_data_plt_arm<big_endian>*
2533 do_make_data_plt(Layout* layout, Output_data_space* got_plt)
2534 {
2535 return new Output_data_plt_arm_standard<big_endian>(layout, got_plt);
2536 }
2537
4a657b0d
DK
2538 private:
2539 // The class which scans relocations.
2540 class Scan
2541 {
2542 public:
2543 Scan()
bec53400 2544 : issued_non_pic_error_(false)
4a657b0d
DK
2545 { }
2546
95a2c8d6
RS
2547 static inline int
2548 get_reference_flags(unsigned int r_type);
2549
4a657b0d 2550 inline void
ad0f2072 2551 local(Symbol_table* symtab, Layout* layout, Target_arm* target,
6fa2a40b 2552 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
2553 unsigned int data_shndx,
2554 Output_section* output_section,
2555 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
bfdfa4cd
AM
2556 const elfcpp::Sym<32, big_endian>& lsym,
2557 bool is_discarded);
4a657b0d
DK
2558
2559 inline void
ad0f2072 2560 global(Symbol_table* symtab, Layout* layout, Target_arm* target,
6fa2a40b 2561 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
2562 unsigned int data_shndx,
2563 Output_section* output_section,
2564 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2565 Symbol* gsym);
2566
21bb3914
ST
2567 inline bool
2568 local_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2e702c99
RM
2569 Sized_relobj_file<32, big_endian>* ,
2570 unsigned int ,
2571 Output_section* ,
2572 const elfcpp::Rel<32, big_endian>& ,
21bb3914 2573 unsigned int ,
2e702c99 2574 const elfcpp::Sym<32, big_endian>&);
21bb3914
ST
2575
2576 inline bool
2577 global_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2e702c99
RM
2578 Sized_relobj_file<32, big_endian>* ,
2579 unsigned int ,
2580 Output_section* ,
2581 const elfcpp::Rel<32, big_endian>& ,
8a75a161 2582 unsigned int , Symbol*);
21bb3914 2583
4a657b0d
DK
2584 private:
2585 static void
6fa2a40b 2586 unsupported_reloc_local(Sized_relobj_file<32, big_endian>*,
4a657b0d
DK
2587 unsigned int r_type);
2588
2589 static void
6fa2a40b 2590 unsupported_reloc_global(Sized_relobj_file<32, big_endian>*,
4a657b0d 2591 unsigned int r_type, Symbol*);
bec53400
DK
2592
2593 void
2594 check_non_pic(Relobj*, unsigned int r_type);
2595
2596 // Almost identical to Symbol::needs_plt_entry except that it also
2597 // handles STT_ARM_TFUNC.
2598 static bool
2599 symbol_needs_plt_entry(const Symbol* sym)
2600 {
2601 // An undefined symbol from an executable does not need a PLT entry.
2602 if (sym->is_undefined() && !parameters->options().shared())
2603 return false;
2604
2605 return (!parameters->doing_static_link()
2606 && (sym->type() == elfcpp::STT_FUNC
2607 || sym->type() == elfcpp::STT_ARM_TFUNC)
2608 && (sym->is_from_dynobj()
2609 || sym->is_undefined()
2610 || sym->is_preemptible()));
2611 }
2612
8a75a161
DK
2613 inline bool
2614 possible_function_pointer_reloc(unsigned int r_type);
2615
bec53400
DK
2616 // Whether we have issued an error about a non-PIC compilation.
2617 bool issued_non_pic_error_;
4a657b0d
DK
2618 };
2619
2620 // The class which implements relocation.
2621 class Relocate
2622 {
2623 public:
2624 Relocate()
2625 { }
2626
2627 ~Relocate()
2628 { }
2629
bec53400
DK
2630 // Return whether the static relocation needs to be applied.
2631 inline bool
2632 should_apply_static_reloc(const Sized_symbol<32>* gsym,
95a2c8d6 2633 unsigned int r_type,
bec53400
DK
2634 bool is_32bit,
2635 Output_section* output_section);
2636
4a657b0d
DK
2637 // Do a relocation. Return false if the caller should not issue
2638 // any warnings about this relocation.
2639 inline bool
2640 relocate(const Relocate_info<32, big_endian>*, Target_arm*,
2641 Output_section*, size_t relnum,
2642 const elfcpp::Rel<32, big_endian>&,
2643 unsigned int r_type, const Sized_symbol<32>*,
2644 const Symbol_value<32>*,
ebabffbd 2645 unsigned char*, Arm_address,
4a657b0d 2646 section_size_type);
c121c671
DK
2647
2648 // Return whether we want to pass flag NON_PIC_REF for this
f4e5969c
DK
2649 // reloc. This means the relocation type accesses a symbol not via
2650 // GOT or PLT.
c121c671 2651 static inline bool
ca09d69a 2652 reloc_is_non_pic(unsigned int r_type)
c121c671
DK
2653 {
2654 switch (r_type)
2655 {
f4e5969c
DK
2656 // These relocation types reference GOT or PLT entries explicitly.
2657 case elfcpp::R_ARM_GOT_BREL:
2658 case elfcpp::R_ARM_GOT_ABS:
2659 case elfcpp::R_ARM_GOT_PREL:
2660 case elfcpp::R_ARM_GOT_BREL12:
2661 case elfcpp::R_ARM_PLT32_ABS:
2662 case elfcpp::R_ARM_TLS_GD32:
2663 case elfcpp::R_ARM_TLS_LDM32:
2664 case elfcpp::R_ARM_TLS_IE32:
2665 case elfcpp::R_ARM_TLS_IE12GP:
2666
2667 // These relocate types may use PLT entries.
c121c671 2668 case elfcpp::R_ARM_CALL:
f4e5969c 2669 case elfcpp::R_ARM_THM_CALL:
c121c671 2670 case elfcpp::R_ARM_JUMP24:
f4e5969c
DK
2671 case elfcpp::R_ARM_THM_JUMP24:
2672 case elfcpp::R_ARM_THM_JUMP19:
2673 case elfcpp::R_ARM_PLT32:
2674 case elfcpp::R_ARM_THM_XPC22:
c3e4ae29
DK
2675 case elfcpp::R_ARM_PREL31:
2676 case elfcpp::R_ARM_SBREL31:
c121c671 2677 return false;
f4e5969c
DK
2678
2679 default:
2680 return true;
c121c671
DK
2681 }
2682 }
f96accdf
DK
2683
2684 private:
2685 // Do a TLS relocation.
2686 inline typename Arm_relocate_functions<big_endian>::Status
2687 relocate_tls(const Relocate_info<32, big_endian>*, Target_arm<big_endian>*,
2e702c99 2688 size_t, const elfcpp::Rel<32, big_endian>&, unsigned int,
f96accdf
DK
2689 const Sized_symbol<32>*, const Symbol_value<32>*,
2690 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
2691 section_size_type);
2692
4a657b0d
DK
2693 };
2694
2695 // A class which returns the size required for a relocation type,
2696 // used while scanning relocs during a relocatable link.
2697 class Relocatable_size_for_reloc
2698 {
2699 public:
2700 unsigned int
2701 get_size_for_reloc(unsigned int, Relobj*);
2702 };
2703
f96accdf
DK
2704 // Adjust TLS relocation type based on the options and whether this
2705 // is a local symbol.
2706 static tls::Tls_optimization
2707 optimize_tls_reloc(bool is_final, int r_type);
2708
94cdfcff 2709 // Get the GOT section, creating it if necessary.
4a54abbb 2710 Arm_output_data_got<big_endian>*
94cdfcff
DK
2711 got_section(Symbol_table*, Layout*);
2712
2713 // Get the GOT PLT section.
2714 Output_data_space*
2715 got_plt_section() const
2716 {
2717 gold_assert(this->got_plt_ != NULL);
2718 return this->got_plt_;
2719 }
2720
2721 // Create a PLT entry for a global symbol.
2722 void
2723 make_plt_entry(Symbol_table*, Layout*, Symbol*);
2724
f96accdf
DK
2725 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2726 void
2727 define_tls_base_symbol(Symbol_table*, Layout*);
2728
2729 // Create a GOT entry for the TLS module index.
2730 unsigned int
2731 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
6fa2a40b 2732 Sized_relobj_file<32, big_endian>* object);
f96accdf 2733
94cdfcff
DK
2734 // Get the PLT section.
2735 const Output_data_plt_arm<big_endian>*
2736 plt_section() const
2737 {
2738 gold_assert(this->plt_ != NULL);
2739 return this->plt_;
2740 }
2741
2742 // Get the dynamic reloc section, creating it if necessary.
2743 Reloc_section*
2744 rel_dyn_section(Layout*);
2745
f96accdf
DK
2746 // Get the section to use for TLS_DESC relocations.
2747 Reloc_section*
2748 rel_tls_desc_section(Layout*) const;
2749
94cdfcff
DK
2750 // Return true if the symbol may need a COPY relocation.
2751 // References from an executable object to non-function symbols
2752 // defined in a dynamic object may need a COPY relocation.
2753 bool
2754 may_need_copy_reloc(Symbol* gsym)
2755 {
966d4097
DK
2756 return (gsym->type() != elfcpp::STT_ARM_TFUNC
2757 && gsym->may_need_copy_reloc());
94cdfcff
DK
2758 }
2759
2760 // Add a potential copy relocation.
2761 void
2762 copy_reloc(Symbol_table* symtab, Layout* layout,
6fa2a40b 2763 Sized_relobj_file<32, big_endian>* object,
2ea97941 2764 unsigned int shndx, Output_section* output_section,
94cdfcff
DK
2765 Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc)
2766 {
2767 this->copy_relocs_.copy_reloc(symtab, layout,
2768 symtab->get_sized_symbol<32>(sym),
2ea97941 2769 object, shndx, output_section, reloc,
94cdfcff
DK
2770 this->rel_dyn_section(layout));
2771 }
2772
d5b40221
DK
2773 // Whether two EABI versions are compatible.
2774 static bool
2775 are_eabi_versions_compatible(elfcpp::Elf_Word v1, elfcpp::Elf_Word v2);
2776
2777 // Merge processor-specific flags from input object and those in the ELF
2778 // header of the output.
2779 void
2780 merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word);
2781
a0351a69
DK
2782 // Get the secondary compatible architecture.
2783 static int
2784 get_secondary_compatible_arch(const Attributes_section_data*);
2785
2786 // Set the secondary compatible architecture.
2787 static void
2788 set_secondary_compatible_arch(Attributes_section_data*, int);
2789
2790 static int
2791 tag_cpu_arch_combine(const char*, int, int*, int, int);
2792
2793 // Helper to print AEABI enum tag value.
2794 static std::string
2795 aeabi_enum_name(unsigned int);
2796
2797 // Return string value for TAG_CPU_name.
2798 static std::string
2799 tag_cpu_name_value(unsigned int);
2800
679af368
ILT
2801 // Query attributes object to see if integer divide instructions may be
2802 // present in an object.
2803 static bool
2804 attributes_accept_div(int arch, int profile,
2805 const Object_attribute* div_attr);
2806
2807 // Query attributes object to see if integer divide instructions are
2808 // forbidden to be in the object. This is not the inverse of
2809 // attributes_accept_div.
2810 static bool
2811 attributes_forbid_div(const Object_attribute* div_attr);
2812
a0351a69
DK
2813 // Merge object attributes from input object and those in the output.
2814 void
2815 merge_object_attributes(const char*, const Attributes_section_data*);
2816
2817 // Helper to get an AEABI object attribute
2818 Object_attribute*
2819 get_aeabi_object_attribute(int tag) const
2820 {
2821 Attributes_section_data* pasd = this->attributes_section_data_;
2822 gold_assert(pasd != NULL);
2823 Object_attribute* attr =
2824 pasd->get_attribute(Object_attribute::OBJ_ATTR_PROC, tag);
2825 gold_assert(attr != NULL);
2826 return attr;
2827 }
2828
eb44217c
DK
2829 //
2830 // Methods to support stub-generations.
2831 //
d5b40221 2832
eb44217c
DK
2833 // Group input sections for stub generation.
2834 void
f625ae50 2835 group_sections(Layout*, section_size_type, bool, const Task*);
d5b40221 2836
eb44217c
DK
2837 // Scan a relocation for stub generation.
2838 void
2839 scan_reloc_for_stub(const Relocate_info<32, big_endian>*, unsigned int,
2840 const Sized_symbol<32>*, unsigned int,
2841 const Symbol_value<32>*,
2842 elfcpp::Elf_types<32>::Elf_Swxword, Arm_address);
d5b40221 2843
eb44217c
DK
2844 // Scan a relocation section for stub.
2845 template<int sh_type>
2846 void
2847 scan_reloc_section_for_stubs(
2848 const Relocate_info<32, big_endian>* relinfo,
2849 const unsigned char* prelocs,
2850 size_t reloc_count,
2851 Output_section* output_section,
2852 bool needs_special_offset_handling,
2853 const unsigned char* view,
2854 elfcpp::Elf_types<32>::Elf_Addr view_address,
2855 section_size_type);
d5b40221 2856
2b328d4e
DK
2857 // Fix .ARM.exidx section coverage.
2858 void
131687b4 2859 fix_exidx_coverage(Layout*, const Input_objects*,
f625ae50
DK
2860 Arm_output_section<big_endian>*, Symbol_table*,
2861 const Task*);
2b328d4e
DK
2862
2863 // Functors for STL set.
2864 struct output_section_address_less_than
2865 {
2866 bool
2867 operator()(const Output_section* s1, const Output_section* s2) const
2868 { return s1->address() < s2->address(); }
2869 };
2870
4a657b0d
DK
2871 // Information about this specific target which we pass to the
2872 // general Target structure.
2873 static const Target::Target_info arm_info;
94cdfcff
DK
2874
2875 // The types of GOT entries needed for this platform.
0e70b911
CC
2876 // These values are exposed to the ABI in an incremental link.
2877 // Do not renumber existing values without changing the version
2878 // number of the .gnu_incremental_inputs section.
94cdfcff
DK
2879 enum Got_type
2880 {
f96accdf
DK
2881 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
2882 GOT_TYPE_TLS_NOFFSET = 1, // GOT entry for negative TLS offset
2883 GOT_TYPE_TLS_OFFSET = 2, // GOT entry for positive TLS offset
2884 GOT_TYPE_TLS_PAIR = 3, // GOT entry for TLS module/offset pair
2885 GOT_TYPE_TLS_DESC = 4 // GOT entry for TLS_DESC pair
94cdfcff
DK
2886 };
2887
55da9579
DK
2888 typedef typename std::vector<Stub_table<big_endian>*> Stub_table_list;
2889
2890 // Map input section to Arm_input_section.
5ac169d4 2891 typedef Unordered_map<Section_id,
55da9579 2892 Arm_input_section<big_endian>*,
5ac169d4 2893 Section_id_hash>
55da9579 2894 Arm_input_section_map;
2e702c99 2895
a120bc7f
DK
2896 // Map output addresses to relocs for Cortex-A8 erratum.
2897 typedef Unordered_map<Arm_address, const Cortex_a8_reloc*>
2898 Cortex_a8_relocs_info;
2899
94cdfcff 2900 // The GOT section.
4a54abbb 2901 Arm_output_data_got<big_endian>* got_;
94cdfcff
DK
2902 // The PLT section.
2903 Output_data_plt_arm<big_endian>* plt_;
2904 // The GOT PLT section.
2905 Output_data_space* got_plt_;
2906 // The dynamic reloc section.
2907 Reloc_section* rel_dyn_;
2908 // Relocs saved to avoid a COPY reloc.
2909 Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_;
2910 // Space for variables copied with a COPY reloc.
2911 Output_data_space* dynbss_;
f96accdf
DK
2912 // Offset of the GOT entry for the TLS module index.
2913 unsigned int got_mod_index_offset_;
2914 // True if the _TLS_MODULE_BASE_ symbol has been defined.
2915 bool tls_base_symbol_defined_;
55da9579
DK
2916 // Vector of Stub_tables created.
2917 Stub_table_list stub_tables_;
2918 // Stub factory.
2919 const Stub_factory &stub_factory_;
b569affa
DK
2920 // Whether we force PIC branch veneers.
2921 bool should_force_pic_veneer_;
eb44217c
DK
2922 // Map for locating Arm_input_sections.
2923 Arm_input_section_map arm_input_section_map_;
a0351a69
DK
2924 // Attributes section data in output.
2925 Attributes_section_data* attributes_section_data_;
a120bc7f
DK
2926 // Whether we want to fix code for Cortex-A8 erratum.
2927 bool fix_cortex_a8_;
2928 // Map addresses to relocs for Cortex-A8 erratum.
2929 Cortex_a8_relocs_info cortex_a8_relocs_info_;
4a657b0d
DK
2930};
2931
2932template<bool big_endian>
2933const Target::Target_info Target_arm<big_endian>::arm_info =
2934{
2935 32, // size
2936 big_endian, // is_big_endian
2937 elfcpp::EM_ARM, // machine_code
2938 false, // has_make_symbol
2939 false, // has_resolve
2940 false, // has_code_fill
2941 true, // is_default_stack_executable
b3ce541e 2942 false, // can_icf_inline_merge_sections
4a657b0d
DK
2943 '\0', // wrap_char
2944 "/usr/lib/libc.so.1", // dynamic_linker
2945 0x8000, // default_text_segment_address
2946 0x1000, // abi_pagesize (overridable by -z max-page-size)
8a5e3e08 2947 0x1000, // common_pagesize (overridable by -z common-page-size)
2e702c99
RM
2948 false, // isolate_execinstr
2949 0, // rosegment_gap
8a5e3e08
ILT
2950 elfcpp::SHN_UNDEF, // small_common_shndx
2951 elfcpp::SHN_UNDEF, // large_common_shndx
2952 0, // small_common_section_flags
05a352e6
DK
2953 0, // large_common_section_flags
2954 ".ARM.attributes", // attributes_section
2955 "aeabi" // attributes_vendor
4a657b0d
DK
2956};
2957
c121c671
DK
2958// Arm relocate functions class
2959//
2960
2961template<bool big_endian>
2962class Arm_relocate_functions : public Relocate_functions<32, big_endian>
2963{
2964 public:
2965 typedef enum
2966 {
2967 STATUS_OKAY, // No error during relocation.
9b547ce6 2968 STATUS_OVERFLOW, // Relocation overflow.
c121c671
DK
2969 STATUS_BAD_RELOC // Relocation cannot be applied.
2970 } Status;
2971
2972 private:
2973 typedef Relocate_functions<32, big_endian> Base;
2974 typedef Arm_relocate_functions<big_endian> This;
2975
fd3c5f0b
ILT
2976 // Encoding of imm16 argument for movt and movw ARM instructions
2977 // from ARM ARM:
2e702c99 2978 //
fd3c5f0b
ILT
2979 // imm16 := imm4 | imm12
2980 //
2e702c99 2981 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
fd3c5f0b
ILT
2982 // +-------+---------------+-------+-------+-----------------------+
2983 // | | |imm4 | |imm12 |
2984 // +-------+---------------+-------+-------+-----------------------+
2985
2986 // Extract the relocation addend from VAL based on the ARM
2987 // instruction encoding described above.
2988 static inline typename elfcpp::Swap<32, big_endian>::Valtype
2989 extract_arm_movw_movt_addend(
2990 typename elfcpp::Swap<32, big_endian>::Valtype val)
2991 {
2992 // According to the Elf ABI for ARM Architecture the immediate
2993 // field is sign-extended to form the addend.
bef2b434 2994 return Bits<16>::sign_extend32(((val >> 4) & 0xf000) | (val & 0xfff));
fd3c5f0b
ILT
2995 }
2996
2997 // Insert X into VAL based on the ARM instruction encoding described
2998 // above.
2999 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3000 insert_val_arm_movw_movt(
3001 typename elfcpp::Swap<32, big_endian>::Valtype val,
3002 typename elfcpp::Swap<32, big_endian>::Valtype x)
3003 {
3004 val &= 0xfff0f000;
3005 val |= x & 0x0fff;
3006 val |= (x & 0xf000) << 4;
3007 return val;
3008 }
3009
3010 // Encoding of imm16 argument for movt and movw Thumb2 instructions
3011 // from ARM ARM:
2e702c99 3012 //
fd3c5f0b
ILT
3013 // imm16 := imm4 | i | imm3 | imm8
3014 //
2e702c99 3015 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
fd3c5f0b
ILT
3016 // +---------+-+-----------+-------++-+-----+-------+---------------+
3017 // | |i| |imm4 || |imm3 | |imm8 |
3018 // +---------+-+-----------+-------++-+-----+-------+---------------+
3019
3020 // Extract the relocation addend from VAL based on the Thumb2
3021 // instruction encoding described above.
3022 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3023 extract_thumb_movw_movt_addend(
3024 typename elfcpp::Swap<32, big_endian>::Valtype val)
3025 {
3026 // According to the Elf ABI for ARM Architecture the immediate
3027 // field is sign-extended to form the addend.
bef2b434
ILT
3028 return Bits<16>::sign_extend32(((val >> 4) & 0xf000)
3029 | ((val >> 15) & 0x0800)
3030 | ((val >> 4) & 0x0700)
3031 | (val & 0x00ff));
fd3c5f0b
ILT
3032 }
3033
3034 // Insert X into VAL based on the Thumb2 instruction encoding
3035 // described above.
3036 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3037 insert_val_thumb_movw_movt(
3038 typename elfcpp::Swap<32, big_endian>::Valtype val,
3039 typename elfcpp::Swap<32, big_endian>::Valtype x)
3040 {
3041 val &= 0xfbf08f00;
3042 val |= (x & 0xf000) << 4;
3043 val |= (x & 0x0800) << 15;
3044 val |= (x & 0x0700) << 4;
3045 val |= (x & 0x00ff);
3046 return val;
3047 }
3048
b10d2873
ILT
3049 // Calculate the smallest constant Kn for the specified residual.
3050 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3051 static uint32_t
3052 calc_grp_kn(typename elfcpp::Swap<32, big_endian>::Valtype residual)
3053 {
3054 int32_t msb;
3055
3056 if (residual == 0)
3057 return 0;
3058 // Determine the most significant bit in the residual and
3059 // align the resulting value to a 2-bit boundary.
3060 for (msb = 30; (msb >= 0) && !(residual & (3 << msb)); msb -= 2)
3061 ;
3062 // The desired shift is now (msb - 6), or zero, whichever
3063 // is the greater.
3064 return (((msb - 6) < 0) ? 0 : (msb - 6));
3065 }
3066
3067 // Calculate the final residual for the specified group index.
3068 // If the passed group index is less than zero, the method will return
3069 // the value of the specified residual without any change.
3070 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3071 static typename elfcpp::Swap<32, big_endian>::Valtype
3072 calc_grp_residual(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3073 const int group)
3074 {
3075 for (int n = 0; n <= group; n++)
3076 {
3077 // Calculate which part of the value to mask.
3078 uint32_t shift = calc_grp_kn(residual);
3079 // Calculate the residual for the next time around.
3080 residual &= ~(residual & (0xff << shift));
3081 }
3082
3083 return residual;
3084 }
3085
3086 // Calculate the value of Gn for the specified group index.
3087 // We return it in the form of an encoded constant-and-rotation.
3088 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3089 static typename elfcpp::Swap<32, big_endian>::Valtype
3090 calc_grp_gn(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3091 const int group)
3092 {
3093 typename elfcpp::Swap<32, big_endian>::Valtype gn = 0;
3094 uint32_t shift = 0;
3095
3096 for (int n = 0; n <= group; n++)
3097 {
3098 // Calculate which part of the value to mask.
3099 shift = calc_grp_kn(residual);
3100 // Calculate Gn in 32-bit as well as encoded constant-and-rotation form.
3101 gn = residual & (0xff << shift);
3102 // Calculate the residual for the next time around.
3103 residual &= ~gn;
3104 }
3105 // Return Gn in the form of an encoded constant-and-rotation.
3106 return ((gn >> shift) | ((gn <= 0xff ? 0 : (32 - shift) / 2) << 8));
3107 }
3108
1521477a 3109 public:
d204b6e9
DK
3110 // Handle ARM long branches.
3111 static typename This::Status
3112 arm_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
ca09d69a 3113 unsigned char*, const Sized_symbol<32>*,
d204b6e9
DK
3114 const Arm_relobj<big_endian>*, unsigned int,
3115 const Symbol_value<32>*, Arm_address, Arm_address, bool);
c121c671 3116
51938283
DK
3117 // Handle THUMB long branches.
3118 static typename This::Status
3119 thumb_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
ca09d69a 3120 unsigned char*, const Sized_symbol<32>*,
51938283
DK
3121 const Arm_relobj<big_endian>*, unsigned int,
3122 const Symbol_value<32>*, Arm_address, Arm_address, bool);
3123
5e445df6 3124
089d69dc
DK
3125 // Return the branch offset of a 32-bit THUMB branch.
3126 static inline int32_t
3127 thumb32_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3128 {
3129 // We use the Thumb-2 encoding (backwards compatible with Thumb-1)
3130 // involving the J1 and J2 bits.
3131 uint32_t s = (upper_insn & (1U << 10)) >> 10;
3132 uint32_t upper = upper_insn & 0x3ffU;
3133 uint32_t lower = lower_insn & 0x7ffU;
3134 uint32_t j1 = (lower_insn & (1U << 13)) >> 13;
3135 uint32_t j2 = (lower_insn & (1U << 11)) >> 11;
3136 uint32_t i1 = j1 ^ s ? 0 : 1;
3137 uint32_t i2 = j2 ^ s ? 0 : 1;
3138
bef2b434
ILT
3139 return Bits<25>::sign_extend32((s << 24) | (i1 << 23) | (i2 << 22)
3140 | (upper << 12) | (lower << 1));
089d69dc
DK
3141 }
3142
3143 // Insert OFFSET to a 32-bit THUMB branch and return the upper instruction.
3144 // UPPER_INSN is the original upper instruction of the branch. Caller is
3145 // responsible for overflow checking and BLX offset adjustment.
3146 static inline uint16_t
3147 thumb32_branch_upper(uint16_t upper_insn, int32_t offset)
3148 {
3149 uint32_t s = offset < 0 ? 1 : 0;
3150 uint32_t bits = static_cast<uint32_t>(offset);
3151 return (upper_insn & ~0x7ffU) | ((bits >> 12) & 0x3ffU) | (s << 10);
3152 }
3153
3154 // Insert OFFSET to a 32-bit THUMB branch and return the lower instruction.
3155 // LOWER_INSN is the original lower instruction of the branch. Caller is
3156 // responsible for overflow checking and BLX offset adjustment.
3157 static inline uint16_t
3158 thumb32_branch_lower(uint16_t lower_insn, int32_t offset)
3159 {
3160 uint32_t s = offset < 0 ? 1 : 0;
3161 uint32_t bits = static_cast<uint32_t>(offset);
3162 return ((lower_insn & ~0x2fffU)
2e702c99
RM
3163 | ((((bits >> 23) & 1) ^ !s) << 13)
3164 | ((((bits >> 22) & 1) ^ !s) << 11)
3165 | ((bits >> 1) & 0x7ffU));
089d69dc
DK
3166 }
3167
3168 // Return the branch offset of a 32-bit THUMB conditional branch.
3169 static inline int32_t
3170 thumb32_cond_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3171 {
3172 uint32_t s = (upper_insn & 0x0400U) >> 10;
3173 uint32_t j1 = (lower_insn & 0x2000U) >> 13;
3174 uint32_t j2 = (lower_insn & 0x0800U) >> 11;
3175 uint32_t lower = (lower_insn & 0x07ffU);
3176 uint32_t upper = (s << 8) | (j2 << 7) | (j1 << 6) | (upper_insn & 0x003fU);
3177
bef2b434 3178 return Bits<21>::sign_extend32((upper << 12) | (lower << 1));
089d69dc
DK
3179 }
3180
3181 // Insert OFFSET to a 32-bit THUMB conditional branch and return the upper
3182 // instruction. UPPER_INSN is the original upper instruction of the branch.
3183 // Caller is responsible for overflow checking.
3184 static inline uint16_t
3185 thumb32_cond_branch_upper(uint16_t upper_insn, int32_t offset)
3186 {
3187 uint32_t s = offset < 0 ? 1 : 0;
3188 uint32_t bits = static_cast<uint32_t>(offset);
3189 return (upper_insn & 0xfbc0U) | (s << 10) | ((bits & 0x0003f000U) >> 12);
3190 }
3191
3192 // Insert OFFSET to a 32-bit THUMB conditional branch and return the lower
3193 // instruction. LOWER_INSN is the original lower instruction of the branch.
9b547ce6 3194 // The caller is responsible for overflow checking.
089d69dc
DK
3195 static inline uint16_t
3196 thumb32_cond_branch_lower(uint16_t lower_insn, int32_t offset)
3197 {
3198 uint32_t bits = static_cast<uint32_t>(offset);
3199 uint32_t j2 = (bits & 0x00080000U) >> 19;
3200 uint32_t j1 = (bits & 0x00040000U) >> 18;
3201 uint32_t lo = (bits & 0x00000ffeU) >> 1;
3202
3203 return (lower_insn & 0xd000U) | (j1 << 13) | (j2 << 11) | lo;
3204 }
3205
5e445df6
ILT
3206 // R_ARM_ABS8: S + A
3207 static inline typename This::Status
ca09d69a 3208 abs8(unsigned char* view,
6fa2a40b 3209 const Sized_relobj_file<32, big_endian>* object,
be8fcb75 3210 const Symbol_value<32>* psymval)
5e445df6
ILT
3211 {
3212 typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype;
5e445df6
ILT
3213 Valtype* wv = reinterpret_cast<Valtype*>(view);
3214 Valtype val = elfcpp::Swap<8, big_endian>::readval(wv);
bef2b434 3215 int32_t addend = Bits<8>::sign_extend32(val);
f6cccc2c 3216 Arm_address x = psymval->value(object, addend);
bef2b434 3217 val = Bits<32>::bit_select32(val, x, 0xffU);
5e445df6 3218 elfcpp::Swap<8, big_endian>::writeval(wv, val);
a2c7281b
DK
3219
3220 // R_ARM_ABS8 permits signed or unsigned results.
2c175ebc 3221 return (Bits<8>::has_signed_unsigned_overflow32(x)
5e445df6
ILT
3222 ? This::STATUS_OVERFLOW
3223 : This::STATUS_OKAY);
3224 }
3225
be8fcb75
ILT
3226 // R_ARM_THM_ABS5: S + A
3227 static inline typename This::Status
ca09d69a 3228 thm_abs5(unsigned char* view,
6fa2a40b 3229 const Sized_relobj_file<32, big_endian>* object,
be8fcb75
ILT
3230 const Symbol_value<32>* psymval)
3231 {
3232 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3233 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3234 Valtype* wv = reinterpret_cast<Valtype*>(view);
3235 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3236 Reltype addend = (val & 0x7e0U) >> 6;
2daedcd6 3237 Reltype x = psymval->value(object, addend);
bef2b434 3238 val = Bits<32>::bit_select32(val, x << 6, 0x7e0U);
be8fcb75 3239 elfcpp::Swap<16, big_endian>::writeval(wv, val);
2c175ebc 3240 return (Bits<5>::has_overflow32(x)
be8fcb75
ILT
3241 ? This::STATUS_OVERFLOW
3242 : This::STATUS_OKAY);
3243 }
3244
3245 // R_ARM_ABS12: S + A
3246 static inline typename This::Status
ca09d69a 3247 abs12(unsigned char* view,
6fa2a40b 3248 const Sized_relobj_file<32, big_endian>* object,
51938283 3249 const Symbol_value<32>* psymval)
be8fcb75
ILT
3250 {
3251 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3252 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3253 Valtype* wv = reinterpret_cast<Valtype*>(view);
3254 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3255 Reltype addend = val & 0x0fffU;
2daedcd6 3256 Reltype x = psymval->value(object, addend);
bef2b434 3257 val = Bits<32>::bit_select32(val, x, 0x0fffU);
be8fcb75 3258 elfcpp::Swap<32, big_endian>::writeval(wv, val);
bef2b434 3259 return (Bits<12>::has_overflow32(x)
be8fcb75
ILT
3260 ? This::STATUS_OVERFLOW
3261 : This::STATUS_OKAY);
3262 }
3263
3264 // R_ARM_ABS16: S + A
3265 static inline typename This::Status
ca09d69a 3266 abs16(unsigned char* view,
6fa2a40b 3267 const Sized_relobj_file<32, big_endian>* object,
51938283 3268 const Symbol_value<32>* psymval)
be8fcb75 3269 {
f6cccc2c 3270 typedef typename elfcpp::Swap_unaligned<16, big_endian>::Valtype Valtype;
f6cccc2c 3271 Valtype val = elfcpp::Swap_unaligned<16, big_endian>::readval(view);
bef2b434 3272 int32_t addend = Bits<16>::sign_extend32(val);
f6cccc2c 3273 Arm_address x = psymval->value(object, addend);
bef2b434 3274 val = Bits<32>::bit_select32(val, x, 0xffffU);
f6cccc2c
DK
3275 elfcpp::Swap_unaligned<16, big_endian>::writeval(view, val);
3276
3277 // R_ARM_ABS16 permits signed or unsigned results.
2c175ebc 3278 return (Bits<16>::has_signed_unsigned_overflow32(x)
be8fcb75
ILT
3279 ? This::STATUS_OVERFLOW
3280 : This::STATUS_OKAY);
3281 }
3282
c121c671
DK
3283 // R_ARM_ABS32: (S + A) | T
3284 static inline typename This::Status
ca09d69a 3285 abs32(unsigned char* view,
6fa2a40b 3286 const Sized_relobj_file<32, big_endian>* object,
c121c671 3287 const Symbol_value<32>* psymval,
2daedcd6 3288 Arm_address thumb_bit)
c121c671 3289 {
f6cccc2c
DK
3290 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3291 Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
2daedcd6 3292 Valtype x = psymval->value(object, addend) | thumb_bit;
f6cccc2c 3293 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
c121c671
DK
3294 return This::STATUS_OKAY;
3295 }
3296
3297 // R_ARM_REL32: (S + A) | T - P
3298 static inline typename This::Status
ca09d69a 3299 rel32(unsigned char* view,
6fa2a40b 3300 const Sized_relobj_file<32, big_endian>* object,
c121c671 3301 const Symbol_value<32>* psymval,
ebabffbd 3302 Arm_address address,
2daedcd6 3303 Arm_address thumb_bit)
c121c671 3304 {
f6cccc2c
DK
3305 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3306 Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
2daedcd6 3307 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
f6cccc2c 3308 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
c121c671
DK
3309 return This::STATUS_OKAY;
3310 }
3311
089d69dc
DK
3312 // R_ARM_THM_JUMP24: (S + A) | T - P
3313 static typename This::Status
ca09d69a 3314 thm_jump19(unsigned char* view, const Arm_relobj<big_endian>* object,
089d69dc
DK
3315 const Symbol_value<32>* psymval, Arm_address address,
3316 Arm_address thumb_bit);
3317
800d0f56
ILT
3318 // R_ARM_THM_JUMP6: S + A – P
3319 static inline typename This::Status
ca09d69a 3320 thm_jump6(unsigned char* view,
6fa2a40b 3321 const Sized_relobj_file<32, big_endian>* object,
800d0f56
ILT
3322 const Symbol_value<32>* psymval,
3323 Arm_address address)
3324 {
3325 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3326 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3327 Valtype* wv = reinterpret_cast<Valtype*>(view);
3328 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3329 // bit[9]:bit[7:3]:’0’ (mask: 0x02f8)
3330 Reltype addend = (((val & 0x0200) >> 3) | ((val & 0x00f8) >> 2));
3331 Reltype x = (psymval->value(object, addend) - address);
3332 val = (val & 0xfd07) | ((x & 0x0040) << 3) | ((val & 0x003e) << 2);
3333 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3334 // CZB does only forward jumps.
3335 return ((x > 0x007e)
3336 ? This::STATUS_OVERFLOW
3337 : This::STATUS_OKAY);
3338 }
3339
3340 // R_ARM_THM_JUMP8: S + A – P
3341 static inline typename This::Status
ca09d69a 3342 thm_jump8(unsigned char* view,
6fa2a40b 3343 const Sized_relobj_file<32, big_endian>* object,
800d0f56
ILT
3344 const Symbol_value<32>* psymval,
3345 Arm_address address)
3346 {
3347 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
800d0f56
ILT
3348 Valtype* wv = reinterpret_cast<Valtype*>(view);
3349 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
bef2b434 3350 int32_t addend = Bits<8>::sign_extend32((val & 0x00ff) << 1);
57eb9b50
DK
3351 int32_t x = (psymval->value(object, addend) - address);
3352 elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xff00)
2e702c99 3353 | ((x & 0x01fe) >> 1)));
57eb9b50 3354 // We do a 9-bit overflow check because x is right-shifted by 1 bit.
bef2b434 3355 return (Bits<9>::has_overflow32(x)
800d0f56
ILT
3356 ? This::STATUS_OVERFLOW
3357 : This::STATUS_OKAY);
3358 }
3359
3360 // R_ARM_THM_JUMP11: S + A – P
3361 static inline typename This::Status
ca09d69a 3362 thm_jump11(unsigned char* view,
6fa2a40b 3363 const Sized_relobj_file<32, big_endian>* object,
800d0f56
ILT
3364 const Symbol_value<32>* psymval,
3365 Arm_address address)
3366 {
3367 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
800d0f56
ILT
3368 Valtype* wv = reinterpret_cast<Valtype*>(view);
3369 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
bef2b434 3370 int32_t addend = Bits<11>::sign_extend32((val & 0x07ff) << 1);
57eb9b50
DK
3371 int32_t x = (psymval->value(object, addend) - address);
3372 elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xf800)
2e702c99 3373 | ((x & 0x0ffe) >> 1)));
57eb9b50 3374 // We do a 12-bit overflow check because x is right-shifted by 1 bit.
bef2b434 3375 return (Bits<12>::has_overflow32(x)
800d0f56
ILT
3376 ? This::STATUS_OVERFLOW
3377 : This::STATUS_OKAY);
3378 }
3379
c121c671
DK
3380 // R_ARM_BASE_PREL: B(S) + A - P
3381 static inline typename This::Status
3382 base_prel(unsigned char* view,
ebabffbd
DK
3383 Arm_address origin,
3384 Arm_address address)
c121c671
DK
3385 {
3386 Base::rel32(view, origin - address);
3387 return STATUS_OKAY;
3388 }
3389
be8fcb75
ILT
3390 // R_ARM_BASE_ABS: B(S) + A
3391 static inline typename This::Status
3392 base_abs(unsigned char* view,
f4e5969c 3393 Arm_address origin)
be8fcb75
ILT
3394 {
3395 Base::rel32(view, origin);
3396 return STATUS_OKAY;
3397 }
3398
c121c671
DK
3399 // R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG
3400 static inline typename This::Status
3401 got_brel(unsigned char* view,
3402 typename elfcpp::Swap<32, big_endian>::Valtype got_offset)
3403 {
3404 Base::rel32(view, got_offset);
3405 return This::STATUS_OKAY;
3406 }
3407
f4e5969c 3408 // R_ARM_GOT_PREL: GOT(S) + A - P
7f5309a5 3409 static inline typename This::Status
ca09d69a 3410 got_prel(unsigned char* view,
f4e5969c 3411 Arm_address got_entry,
ebabffbd 3412 Arm_address address)
7f5309a5 3413 {
f4e5969c 3414 Base::rel32(view, got_entry - address);
7f5309a5
ILT
3415 return This::STATUS_OKAY;
3416 }
3417
c121c671
DK
3418 // R_ARM_PREL: (S + A) | T - P
3419 static inline typename This::Status
ca09d69a 3420 prel31(unsigned char* view,
6fa2a40b 3421 const Sized_relobj_file<32, big_endian>* object,
c121c671 3422 const Symbol_value<32>* psymval,
ebabffbd 3423 Arm_address address,
2daedcd6 3424 Arm_address thumb_bit)
c121c671 3425 {
f6cccc2c
DK
3426 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3427 Valtype val = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
bef2b434 3428 Valtype addend = Bits<31>::sign_extend32(val);
2daedcd6 3429 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
bef2b434 3430 val = Bits<32>::bit_select32(val, x, 0x7fffffffU);
f6cccc2c 3431 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, val);
bef2b434
ILT
3432 return (Bits<31>::has_overflow32(x)
3433 ? This::STATUS_OVERFLOW
3434 : This::STATUS_OKAY);
c121c671 3435 }
fd3c5f0b 3436
5c57f1be 3437 // R_ARM_MOVW_ABS_NC: (S + A) | T (relative address base is )
c2a122b6 3438 // R_ARM_MOVW_PREL_NC: (S + A) | T - P
5c57f1be
DK
3439 // R_ARM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3440 // R_ARM_MOVW_BREL: ((S + A) | T) - B(S)
02961d7e 3441 static inline typename This::Status
5c57f1be 3442 movw(unsigned char* view,
6fa2a40b 3443 const Sized_relobj_file<32, big_endian>* object,
5c57f1be
DK
3444 const Symbol_value<32>* psymval,
3445 Arm_address relative_address_base,
3446 Arm_address thumb_bit,
3447 bool check_overflow)
02961d7e
ILT
3448 {
3449 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3450 Valtype* wv = reinterpret_cast<Valtype*>(view);
3451 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3452 Valtype addend = This::extract_arm_movw_movt_addend(val);
5c57f1be
DK
3453 Valtype x = ((psymval->value(object, addend) | thumb_bit)
3454 - relative_address_base);
02961d7e
ILT
3455 val = This::insert_val_arm_movw_movt(val, x);
3456 elfcpp::Swap<32, big_endian>::writeval(wv, val);
bef2b434 3457 return ((check_overflow && Bits<16>::has_overflow32(x))
5c57f1be
DK
3458 ? This::STATUS_OVERFLOW
3459 : This::STATUS_OKAY);
02961d7e
ILT
3460 }
3461
5c57f1be 3462 // R_ARM_MOVT_ABS: S + A (relative address base is 0)
c2a122b6 3463 // R_ARM_MOVT_PREL: S + A - P
5c57f1be 3464 // R_ARM_MOVT_BREL: S + A - B(S)
c2a122b6 3465 static inline typename This::Status
5c57f1be 3466 movt(unsigned char* view,
6fa2a40b 3467 const Sized_relobj_file<32, big_endian>* object,
5c57f1be
DK
3468 const Symbol_value<32>* psymval,
3469 Arm_address relative_address_base)
c2a122b6
ILT
3470 {
3471 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3472 Valtype* wv = reinterpret_cast<Valtype*>(view);
3473 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3474 Valtype addend = This::extract_arm_movw_movt_addend(val);
5c57f1be 3475 Valtype x = (psymval->value(object, addend) - relative_address_base) >> 16;
c2a122b6
ILT
3476 val = This::insert_val_arm_movw_movt(val, x);
3477 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5c57f1be 3478 // FIXME: IHI0044D says that we should check for overflow.
c2a122b6
ILT
3479 return This::STATUS_OKAY;
3480 }
3481
5c57f1be 3482 // R_ARM_THM_MOVW_ABS_NC: S + A | T (relative_address_base is 0)
c2a122b6 3483 // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
5c57f1be
DK
3484 // R_ARM_THM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3485 // R_ARM_THM_MOVW_BREL: ((S + A) | T) - B(S)
02961d7e 3486 static inline typename This::Status
ca09d69a 3487 thm_movw(unsigned char* view,
6fa2a40b 3488 const Sized_relobj_file<32, big_endian>* object,
5c57f1be
DK
3489 const Symbol_value<32>* psymval,
3490 Arm_address relative_address_base,
3491 Arm_address thumb_bit,
3492 bool check_overflow)
02961d7e
ILT
3493 {
3494 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3495 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3496 Valtype* wv = reinterpret_cast<Valtype*>(view);
3497 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3498 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3499 Reltype addend = This::extract_thumb_movw_movt_addend(val);
5c57f1be
DK
3500 Reltype x =
3501 (psymval->value(object, addend) | thumb_bit) - relative_address_base;
02961d7e
ILT
3502 val = This::insert_val_thumb_movw_movt(val, x);
3503 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3504 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
bef2b434 3505 return ((check_overflow && Bits<16>::has_overflow32(x))
2e702c99 3506 ? This::STATUS_OVERFLOW
5c57f1be 3507 : This::STATUS_OKAY);
02961d7e
ILT
3508 }
3509
5c57f1be 3510 // R_ARM_THM_MOVT_ABS: S + A (relative address base is 0)
c2a122b6 3511 // R_ARM_THM_MOVT_PREL: S + A - P
5c57f1be 3512 // R_ARM_THM_MOVT_BREL: S + A - B(S)
c2a122b6 3513 static inline typename This::Status
5c57f1be 3514 thm_movt(unsigned char* view,
6fa2a40b 3515 const Sized_relobj_file<32, big_endian>* object,
5c57f1be
DK
3516 const Symbol_value<32>* psymval,
3517 Arm_address relative_address_base)
c2a122b6
ILT
3518 {
3519 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3520 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3521 Valtype* wv = reinterpret_cast<Valtype*>(view);
3522 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3523 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3524 Reltype addend = This::extract_thumb_movw_movt_addend(val);
5c57f1be 3525 Reltype x = (psymval->value(object, addend) - relative_address_base) >> 16;
c2a122b6
ILT
3526 val = This::insert_val_thumb_movw_movt(val, x);
3527 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3528 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3529 return This::STATUS_OKAY;
3530 }
a2162063 3531
11b861d5
DK
3532 // R_ARM_THM_ALU_PREL_11_0: ((S + A) | T) - Pa (Thumb32)
3533 static inline typename This::Status
3534 thm_alu11(unsigned char* view,
6fa2a40b 3535 const Sized_relobj_file<32, big_endian>* object,
11b861d5
DK
3536 const Symbol_value<32>* psymval,
3537 Arm_address address,
3538 Arm_address thumb_bit)
3539 {
3540 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3541 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3542 Valtype* wv = reinterpret_cast<Valtype*>(view);
3543 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3544 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3545
3546 // f e d c b|a|9|8 7 6 5|4|3 2 1 0||f|e d c|b a 9 8|7 6 5 4 3 2 1 0
3547 // -----------------------------------------------------------------------
3548 // ADD{S} 1 1 1 1 0|i|0|1 0 0 0|S|1 1 0 1||0|imm3 |Rd |imm8
3549 // ADDW 1 1 1 1 0|i|1|0 0 0 0|0|1 1 0 1||0|imm3 |Rd |imm8
3550 // ADR[+] 1 1 1 1 0|i|1|0 0 0 0|0|1 1 1 1||0|imm3 |Rd |imm8
3551 // SUB{S} 1 1 1 1 0|i|0|1 1 0 1|S|1 1 0 1||0|imm3 |Rd |imm8
3552 // SUBW 1 1 1 1 0|i|1|0 1 0 1|0|1 1 0 1||0|imm3 |Rd |imm8
3553 // ADR[-] 1 1 1 1 0|i|1|0 1 0 1|0|1 1 1 1||0|imm3 |Rd |imm8
3554
3555 // Determine a sign for the addend.
3556 const int sign = ((insn & 0xf8ef0000) == 0xf0ad0000
3557 || (insn & 0xf8ef0000) == 0xf0af0000) ? -1 : 1;
3558 // Thumb2 addend encoding:
3559 // imm12 := i | imm3 | imm8
3560 int32_t addend = (insn & 0xff)
3561 | ((insn & 0x00007000) >> 4)
3562 | ((insn & 0x04000000) >> 15);
3563 // Apply a sign to the added.
3564 addend *= sign;
3565
3566 int32_t x = (psymval->value(object, addend) | thumb_bit)
3567 - (address & 0xfffffffc);
3568 Reltype val = abs(x);
3569 // Mask out the value and a distinct part of the ADD/SUB opcode
3570 // (bits 7:5 of opword).
3571 insn = (insn & 0xfb0f8f00)
3572 | (val & 0xff)
3573 | ((val & 0x700) << 4)
3574 | ((val & 0x800) << 15);
3575 // Set the opcode according to whether the value to go in the
3576 // place is negative.
3577 if (x < 0)
3578 insn |= 0x00a00000;
3579
3580 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3581 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3582 return ((val > 0xfff) ?
2e702c99 3583 This::STATUS_OVERFLOW : This::STATUS_OKAY);
11b861d5
DK
3584 }
3585
3586 // R_ARM_THM_PC8: S + A - Pa (Thumb)
3587 static inline typename This::Status
3588 thm_pc8(unsigned char* view,
6fa2a40b 3589 const Sized_relobj_file<32, big_endian>* object,
11b861d5
DK
3590 const Symbol_value<32>* psymval,
3591 Arm_address address)
3592 {
3593 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3594 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3595 Valtype* wv = reinterpret_cast<Valtype*>(view);
3596 Valtype insn = elfcpp::Swap<16, big_endian>::readval(wv);
3597 Reltype addend = ((insn & 0x00ff) << 2);
3598 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3599 Reltype val = abs(x);
3600 insn = (insn & 0xff00) | ((val & 0x03fc) >> 2);
3601
3602 elfcpp::Swap<16, big_endian>::writeval(wv, insn);
3603 return ((val > 0x03fc)
3604 ? This::STATUS_OVERFLOW
3605 : This::STATUS_OKAY);
3606 }
3607
3608 // R_ARM_THM_PC12: S + A - Pa (Thumb32)
3609 static inline typename This::Status
3610 thm_pc12(unsigned char* view,
6fa2a40b 3611 const Sized_relobj_file<32, big_endian>* object,
11b861d5
DK
3612 const Symbol_value<32>* psymval,
3613 Arm_address address)
3614 {
3615 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3616 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3617 Valtype* wv = reinterpret_cast<Valtype*>(view);
3618 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3619 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3620 // Determine a sign for the addend (positive if the U bit is 1).
3621 const int sign = (insn & 0x00800000) ? 1 : -1;
3622 int32_t addend = (insn & 0xfff);
3623 // Apply a sign to the added.
3624 addend *= sign;
3625
3626 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3627 Reltype val = abs(x);
3628 // Mask out and apply the value and the U bit.
3629 insn = (insn & 0xff7ff000) | (val & 0xfff);
3630 // Set the U bit according to whether the value to go in the
3631 // place is positive.
3632 if (x >= 0)
3633 insn |= 0x00800000;
3634
3635 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3636 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3637 return ((val > 0xfff) ?
2e702c99 3638 This::STATUS_OVERFLOW : This::STATUS_OKAY);
11b861d5
DK
3639 }
3640
a2162063
ILT
3641 // R_ARM_V4BX
3642 static inline typename This::Status
3643 v4bx(const Relocate_info<32, big_endian>* relinfo,
ca09d69a 3644 unsigned char* view,
a2162063
ILT
3645 const Arm_relobj<big_endian>* object,
3646 const Arm_address address,
3647 const bool is_interworking)
3648 {
3649
3650 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3651 Valtype* wv = reinterpret_cast<Valtype*>(view);
3652 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3653
3654 // Ensure that we have a BX instruction.
3655 gold_assert((val & 0x0ffffff0) == 0x012fff10);
3656 const uint32_t reg = (val & 0xf);
3657 if (is_interworking && reg != 0xf)
3658 {
3659 Stub_table<big_endian>* stub_table =
3660 object->stub_table(relinfo->data_shndx);
3661 gold_assert(stub_table != NULL);
3662
3663 Arm_v4bx_stub* stub = stub_table->find_arm_v4bx_stub(reg);
3664 gold_assert(stub != NULL);
3665
3666 int32_t veneer_address =
3667 stub_table->address() + stub->offset() - 8 - address;
3668 gold_assert((veneer_address <= ARM_MAX_FWD_BRANCH_OFFSET)
3669 && (veneer_address >= ARM_MAX_BWD_BRANCH_OFFSET));
3670 // Replace with a branch to veneer (B <addr>)
3671 val = (val & 0xf0000000) | 0x0a000000
3672 | ((veneer_address >> 2) & 0x00ffffff);
3673 }
3674 else
3675 {
3676 // Preserve Rm (lowest four bits) and the condition code
3677 // (highest four bits). Other bits encode MOV PC,Rm.
3678 val = (val & 0xf000000f) | 0x01a0f000;
3679 }
3680 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3681 return This::STATUS_OKAY;
3682 }
b10d2873
ILT
3683
3684 // R_ARM_ALU_PC_G0_NC: ((S + A) | T) - P
3685 // R_ARM_ALU_PC_G0: ((S + A) | T) - P
3686 // R_ARM_ALU_PC_G1_NC: ((S + A) | T) - P
3687 // R_ARM_ALU_PC_G1: ((S + A) | T) - P
3688 // R_ARM_ALU_PC_G2: ((S + A) | T) - P
3689 // R_ARM_ALU_SB_G0_NC: ((S + A) | T) - B(S)
3690 // R_ARM_ALU_SB_G0: ((S + A) | T) - B(S)
3691 // R_ARM_ALU_SB_G1_NC: ((S + A) | T) - B(S)
3692 // R_ARM_ALU_SB_G1: ((S + A) | T) - B(S)
3693 // R_ARM_ALU_SB_G2: ((S + A) | T) - B(S)
3694 static inline typename This::Status
3695 arm_grp_alu(unsigned char* view,
6fa2a40b 3696 const Sized_relobj_file<32, big_endian>* object,
b10d2873
ILT
3697 const Symbol_value<32>* psymval,
3698 const int group,
3699 Arm_address address,
3700 Arm_address thumb_bit,
3701 bool check_overflow)
3702 {
5c57f1be 3703 gold_assert(group >= 0 && group < 3);
b10d2873
ILT
3704 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3705 Valtype* wv = reinterpret_cast<Valtype*>(view);
3706 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3707
3708 // ALU group relocations are allowed only for the ADD/SUB instructions.
3709 // (0x00800000 - ADD, 0x00400000 - SUB)
3710 const Valtype opcode = insn & 0x01e00000;
3711 if (opcode != 0x00800000 && opcode != 0x00400000)
3712 return This::STATUS_BAD_RELOC;
3713
3714 // Determine a sign for the addend.
3715 const int sign = (opcode == 0x00800000) ? 1 : -1;
3716 // shifter = rotate_imm * 2
3717 const uint32_t shifter = (insn & 0xf00) >> 7;
3718 // Initial addend value.
3719 int32_t addend = insn & 0xff;
3720 // Rotate addend right by shifter.
3721 addend = (addend >> shifter) | (addend << (32 - shifter));
3722 // Apply a sign to the added.
3723 addend *= sign;
3724
3725 int32_t x = ((psymval->value(object, addend) | thumb_bit) - address);
3726 Valtype gn = Arm_relocate_functions::calc_grp_gn(abs(x), group);
3727 // Check for overflow if required
3728 if (check_overflow
3729 && (Arm_relocate_functions::calc_grp_residual(abs(x), group) != 0))
3730 return This::STATUS_OVERFLOW;
3731
3732 // Mask out the value and the ADD/SUB part of the opcode; take care
3733 // not to destroy the S bit.
3734 insn &= 0xff1ff000;
3735 // Set the opcode according to whether the value to go in the
3736 // place is negative.
3737 insn |= ((x < 0) ? 0x00400000 : 0x00800000);
3738 // Encode the offset (encoded Gn).
3739 insn |= gn;
3740
3741 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3742 return This::STATUS_OKAY;
3743 }
3744
3745 // R_ARM_LDR_PC_G0: S + A - P
3746 // R_ARM_LDR_PC_G1: S + A - P
3747 // R_ARM_LDR_PC_G2: S + A - P
3748 // R_ARM_LDR_SB_G0: S + A - B(S)
3749 // R_ARM_LDR_SB_G1: S + A - B(S)
3750 // R_ARM_LDR_SB_G2: S + A - B(S)
3751 static inline typename This::Status
3752 arm_grp_ldr(unsigned char* view,
6fa2a40b 3753 const Sized_relobj_file<32, big_endian>* object,
b10d2873
ILT
3754 const Symbol_value<32>* psymval,
3755 const int group,
3756 Arm_address address)
3757 {
5c57f1be 3758 gold_assert(group >= 0 && group < 3);
b10d2873
ILT
3759 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3760 Valtype* wv = reinterpret_cast<Valtype*>(view);
3761 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3762
3763 const int sign = (insn & 0x00800000) ? 1 : -1;
3764 int32_t addend = (insn & 0xfff) * sign;
3765 int32_t x = (psymval->value(object, addend) - address);
3766 // Calculate the relevant G(n-1) value to obtain this stage residual.
3767 Valtype residual =
3768 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3769 if (residual >= 0x1000)
3770 return This::STATUS_OVERFLOW;
3771
3772 // Mask out the value and U bit.
3773 insn &= 0xff7ff000;
3774 // Set the U bit for non-negative values.
3775 if (x >= 0)
3776 insn |= 0x00800000;
3777 insn |= residual;
3778
3779 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3780 return This::STATUS_OKAY;
3781 }
3782
3783 // R_ARM_LDRS_PC_G0: S + A - P
3784 // R_ARM_LDRS_PC_G1: S + A - P
3785 // R_ARM_LDRS_PC_G2: S + A - P
3786 // R_ARM_LDRS_SB_G0: S + A - B(S)
3787 // R_ARM_LDRS_SB_G1: S + A - B(S)
3788 // R_ARM_LDRS_SB_G2: S + A - B(S)
3789 static inline typename This::Status
3790 arm_grp_ldrs(unsigned char* view,
6fa2a40b 3791 const Sized_relobj_file<32, big_endian>* object,
b10d2873
ILT
3792 const Symbol_value<32>* psymval,
3793 const int group,
3794 Arm_address address)
3795 {
5c57f1be 3796 gold_assert(group >= 0 && group < 3);
b10d2873
ILT
3797 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3798 Valtype* wv = reinterpret_cast<Valtype*>(view);
3799 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3800
3801 const int sign = (insn & 0x00800000) ? 1 : -1;
3802 int32_t addend = (((insn & 0xf00) >> 4) + (insn & 0xf)) * sign;
3803 int32_t x = (psymval->value(object, addend) - address);
3804 // Calculate the relevant G(n-1) value to obtain this stage residual.
3805 Valtype residual =
3806 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3807 if (residual >= 0x100)
3808 return This::STATUS_OVERFLOW;
3809
3810 // Mask out the value and U bit.
3811 insn &= 0xff7ff0f0;
3812 // Set the U bit for non-negative values.
3813 if (x >= 0)
3814 insn |= 0x00800000;
3815 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
3816
3817 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3818 return This::STATUS_OKAY;
3819 }
3820
3821 // R_ARM_LDC_PC_G0: S + A - P
3822 // R_ARM_LDC_PC_G1: S + A - P
3823 // R_ARM_LDC_PC_G2: S + A - P
3824 // R_ARM_LDC_SB_G0: S + A - B(S)
3825 // R_ARM_LDC_SB_G1: S + A - B(S)
3826 // R_ARM_LDC_SB_G2: S + A - B(S)
3827 static inline typename This::Status
3828 arm_grp_ldc(unsigned char* view,
6fa2a40b 3829 const Sized_relobj_file<32, big_endian>* object,
b10d2873
ILT
3830 const Symbol_value<32>* psymval,
3831 const int group,
3832 Arm_address address)
3833 {
5c57f1be 3834 gold_assert(group >= 0 && group < 3);
b10d2873
ILT
3835 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3836 Valtype* wv = reinterpret_cast<Valtype*>(view);
3837 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3838
3839 const int sign = (insn & 0x00800000) ? 1 : -1;
3840 int32_t addend = ((insn & 0xff) << 2) * sign;
3841 int32_t x = (psymval->value(object, addend) - address);
3842 // Calculate the relevant G(n-1) value to obtain this stage residual.
3843 Valtype residual =
3844 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3845 if ((residual & 0x3) != 0 || residual >= 0x400)
3846 return This::STATUS_OVERFLOW;
3847
3848 // Mask out the value and U bit.
3849 insn &= 0xff7fff00;
3850 // Set the U bit for non-negative values.
3851 if (x >= 0)
3852 insn |= 0x00800000;
3853 insn |= (residual >> 2);
3854
3855 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3856 return This::STATUS_OKAY;
3857 }
c121c671
DK
3858};
3859
d204b6e9
DK
3860// Relocate ARM long branches. This handles relocation types
3861// R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25.
3862// If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3863// undefined and we do not use PLT in this relocation. In such a case,
3864// the branch is converted into an NOP.
3865
3866template<bool big_endian>
3867typename Arm_relocate_functions<big_endian>::Status
3868Arm_relocate_functions<big_endian>::arm_branch_common(
3869 unsigned int r_type,
3870 const Relocate_info<32, big_endian>* relinfo,
ca09d69a 3871 unsigned char* view,
d204b6e9
DK
3872 const Sized_symbol<32>* gsym,
3873 const Arm_relobj<big_endian>* object,
3874 unsigned int r_sym,
3875 const Symbol_value<32>* psymval,
3876 Arm_address address,
3877 Arm_address thumb_bit,
3878 bool is_weakly_undefined_without_plt)
3879{
3880 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3881 Valtype* wv = reinterpret_cast<Valtype*>(view);
3882 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
2e702c99 3883
d204b6e9 3884 bool insn_is_b = (((val >> 28) & 0xf) <= 0xe)
2e702c99 3885 && ((val & 0x0f000000UL) == 0x0a000000UL);
d204b6e9
DK
3886 bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL;
3887 bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe)
3888 && ((val & 0x0f000000UL) == 0x0b000000UL);
3889 bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL;
3890 bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL;
3891
3892 // Check that the instruction is valid.
3893 if (r_type == elfcpp::R_ARM_CALL)
3894 {
3895 if (!insn_is_uncond_bl && !insn_is_blx)
3896 return This::STATUS_BAD_RELOC;
3897 }
3898 else if (r_type == elfcpp::R_ARM_JUMP24)
3899 {
3900 if (!insn_is_b && !insn_is_cond_bl)
3901 return This::STATUS_BAD_RELOC;
3902 }
3903 else if (r_type == elfcpp::R_ARM_PLT32)
3904 {
3905 if (!insn_is_any_branch)
3906 return This::STATUS_BAD_RELOC;
3907 }
3908 else if (r_type == elfcpp::R_ARM_XPC25)
3909 {
3910 // FIXME: AAELF document IH0044C does not say much about it other
3911 // than it being obsolete.
3912 if (!insn_is_any_branch)
3913 return This::STATUS_BAD_RELOC;
3914 }
3915 else
3916 gold_unreachable();
3917
3918 // A branch to an undefined weak symbol is turned into a jump to
3919 // the next instruction unless a PLT entry will be created.
3920 // Do the same for local undefined symbols.
3921 // The jump to the next instruction is optimized as a NOP depending
3922 // on the architecture.
3923 const Target_arm<big_endian>* arm_target =
3924 Target_arm<big_endian>::default_target();
3925 if (is_weakly_undefined_without_plt)
3926 {
5c388529 3927 gold_assert(!parameters->options().relocatable());
d204b6e9
DK
3928 Valtype cond = val & 0xf0000000U;
3929 if (arm_target->may_use_arm_nop())
3930 val = cond | 0x0320f000;
3931 else
3932 val = cond | 0x01a00000; // Using pre-UAL nop: mov r0, r0.
3933 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3934 return This::STATUS_OKAY;
3935 }
2e702c99 3936
bef2b434 3937 Valtype addend = Bits<26>::sign_extend32(val << 2);
d204b6e9
DK
3938 Valtype branch_target = psymval->value(object, addend);
3939 int32_t branch_offset = branch_target - address;
3940
3941 // We need a stub if the branch offset is too large or if we need
3942 // to switch mode.
cd6eab1c 3943 bool may_use_blx = arm_target->may_use_v5t_interworking();
d204b6e9 3944 Reloc_stub* stub = NULL;
5c388529
DK
3945
3946 if (!parameters->options().relocatable()
bef2b434 3947 && (Bits<26>::has_overflow32(branch_offset)
5c388529
DK
3948 || ((thumb_bit != 0)
3949 && !(may_use_blx && r_type == elfcpp::R_ARM_CALL))))
d204b6e9 3950 {
2a2b6d42
DK
3951 Valtype unadjusted_branch_target = psymval->value(object, 0);
3952
d204b6e9 3953 Stub_type stub_type =
2a2b6d42
DK
3954 Reloc_stub::stub_type_for_reloc(r_type, address,
3955 unadjusted_branch_target,
d204b6e9
DK
3956 (thumb_bit != 0));
3957 if (stub_type != arm_stub_none)
3958 {
2ea97941 3959 Stub_table<big_endian>* stub_table =
d204b6e9 3960 object->stub_table(relinfo->data_shndx);
2ea97941 3961 gold_assert(stub_table != NULL);
d204b6e9
DK
3962
3963 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
2ea97941 3964 stub = stub_table->find_reloc_stub(stub_key);
d204b6e9
DK
3965 gold_assert(stub != NULL);
3966 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
2ea97941 3967 branch_target = stub_table->address() + stub->offset() + addend;
d204b6e9 3968 branch_offset = branch_target - address;
bef2b434 3969 gold_assert(!Bits<26>::has_overflow32(branch_offset));
d204b6e9
DK
3970 }
3971 }
3972
3973 // At this point, if we still need to switch mode, the instruction
3974 // must either be a BLX or a BL that can be converted to a BLX.
3975 if (thumb_bit != 0)
3976 {
3977 // Turn BL to BLX.
3978 gold_assert(may_use_blx && r_type == elfcpp::R_ARM_CALL);
3979 val = (val & 0xffffff) | 0xfa000000 | ((branch_offset & 2) << 23);
3980 }
3981
bef2b434 3982 val = Bits<32>::bit_select32(val, (branch_offset >> 2), 0xffffffUL);
d204b6e9 3983 elfcpp::Swap<32, big_endian>::writeval(wv, val);
bef2b434
ILT
3984 return (Bits<26>::has_overflow32(branch_offset)
3985 ? This::STATUS_OVERFLOW
3986 : This::STATUS_OKAY);
d204b6e9
DK
3987}
3988
51938283
DK
3989// Relocate THUMB long branches. This handles relocation types
3990// R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22.
3991// If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3992// undefined and we do not use PLT in this relocation. In such a case,
3993// the branch is converted into an NOP.
3994
3995template<bool big_endian>
3996typename Arm_relocate_functions<big_endian>::Status
3997Arm_relocate_functions<big_endian>::thumb_branch_common(
3998 unsigned int r_type,
3999 const Relocate_info<32, big_endian>* relinfo,
ca09d69a 4000 unsigned char* view,
51938283
DK
4001 const Sized_symbol<32>* gsym,
4002 const Arm_relobj<big_endian>* object,
4003 unsigned int r_sym,
4004 const Symbol_value<32>* psymval,
4005 Arm_address address,
4006 Arm_address thumb_bit,
4007 bool is_weakly_undefined_without_plt)
4008{
4009 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4010 Valtype* wv = reinterpret_cast<Valtype*>(view);
4011 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4012 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4013
4014 // FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference
4015 // into account.
4016 bool is_bl_insn = (lower_insn & 0x1000U) == 0x1000U;
4017 bool is_blx_insn = (lower_insn & 0x1000U) == 0x0000U;
2e702c99 4018
51938283
DK
4019 // Check that the instruction is valid.
4020 if (r_type == elfcpp::R_ARM_THM_CALL)
4021 {
4022 if (!is_bl_insn && !is_blx_insn)
4023 return This::STATUS_BAD_RELOC;
4024 }
4025 else if (r_type == elfcpp::R_ARM_THM_JUMP24)
4026 {
4027 // This cannot be a BLX.
4028 if (!is_bl_insn)
4029 return This::STATUS_BAD_RELOC;
4030 }
4031 else if (r_type == elfcpp::R_ARM_THM_XPC22)
4032 {
4033 // Check for Thumb to Thumb call.
4034 if (!is_blx_insn)
4035 return This::STATUS_BAD_RELOC;
4036 if (thumb_bit != 0)
4037 {
4038 gold_warning(_("%s: Thumb BLX instruction targets "
4039 "thumb function '%s'."),
4040 object->name().c_str(),
2e702c99 4041 (gsym ? gsym->name() : "(local)"));
51938283
DK
4042 // Convert BLX to BL.
4043 lower_insn |= 0x1000U;
4044 }
4045 }
4046 else
4047 gold_unreachable();
4048
4049 // A branch to an undefined weak symbol is turned into a jump to
4050 // the next instruction unless a PLT entry will be created.
4051 // The jump to the next instruction is optimized as a NOP.W for
4052 // Thumb-2 enabled architectures.
4053 const Target_arm<big_endian>* arm_target =
4054 Target_arm<big_endian>::default_target();
4055 if (is_weakly_undefined_without_plt)
4056 {
5c388529 4057 gold_assert(!parameters->options().relocatable());
51938283
DK
4058 if (arm_target->may_use_thumb2_nop())
4059 {
4060 elfcpp::Swap<16, big_endian>::writeval(wv, 0xf3af);
4061 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0x8000);
4062 }
4063 else
4064 {
4065 elfcpp::Swap<16, big_endian>::writeval(wv, 0xe000);
4066 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0xbf00);
4067 }
4068 return This::STATUS_OKAY;
4069 }
2e702c99 4070
089d69dc 4071 int32_t addend = This::thumb32_branch_offset(upper_insn, lower_insn);
51938283 4072 Arm_address branch_target = psymval->value(object, addend);
a2c7281b
DK
4073
4074 // For BLX, bit 1 of target address comes from bit 1 of base address.
cd6eab1c 4075 bool may_use_blx = arm_target->may_use_v5t_interworking();
a2c7281b 4076 if (thumb_bit == 0 && may_use_blx)
bef2b434 4077 branch_target = Bits<32>::bit_select32(branch_target, address, 0x2);
a2c7281b 4078
51938283
DK
4079 int32_t branch_offset = branch_target - address;
4080
4081 // We need a stub if the branch offset is too large or if we need
4082 // to switch mode.
51938283 4083 bool thumb2 = arm_target->using_thumb2();
5c388529 4084 if (!parameters->options().relocatable()
bef2b434
ILT
4085 && ((!thumb2 && Bits<23>::has_overflow32(branch_offset))
4086 || (thumb2 && Bits<25>::has_overflow32(branch_offset))
5c388529
DK
4087 || ((thumb_bit == 0)
4088 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4089 || r_type == elfcpp::R_ARM_THM_JUMP24))))
51938283 4090 {
2a2b6d42
DK
4091 Arm_address unadjusted_branch_target = psymval->value(object, 0);
4092
51938283 4093 Stub_type stub_type =
2a2b6d42
DK
4094 Reloc_stub::stub_type_for_reloc(r_type, address,
4095 unadjusted_branch_target,
51938283 4096 (thumb_bit != 0));
2a2b6d42 4097
51938283
DK
4098 if (stub_type != arm_stub_none)
4099 {
2ea97941 4100 Stub_table<big_endian>* stub_table =
51938283 4101 object->stub_table(relinfo->data_shndx);
2ea97941 4102 gold_assert(stub_table != NULL);
51938283
DK
4103
4104 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
2ea97941 4105 Reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
51938283
DK
4106 gold_assert(stub != NULL);
4107 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
2ea97941 4108 branch_target = stub_table->address() + stub->offset() + addend;
2e702c99 4109 if (thumb_bit == 0 && may_use_blx)
bef2b434 4110 branch_target = Bits<32>::bit_select32(branch_target, address, 0x2);
51938283
DK
4111 branch_offset = branch_target - address;
4112 }
4113 }
4114
4115 // At this point, if we still need to switch mode, the instruction
4116 // must either be a BLX or a BL that can be converted to a BLX.
4117 if (thumb_bit == 0)
4118 {
4119 gold_assert(may_use_blx
4120 && (r_type == elfcpp::R_ARM_THM_CALL
4121 || r_type == elfcpp::R_ARM_THM_XPC22));
4122 // Make sure this is a BLX.
4123 lower_insn &= ~0x1000U;
4124 }
4125 else
4126 {
4127 // Make sure this is a BL.
4128 lower_insn |= 0x1000U;
4129 }
4130
a2c7281b
DK
4131 // For a BLX instruction, make sure that the relocation is rounded up
4132 // to a word boundary. This follows the semantics of the instruction
4133 // which specifies that bit 1 of the target address will come from bit
4134 // 1 of the base address.
51938283 4135 if ((lower_insn & 0x5000U) == 0x4000U)
a2c7281b 4136 gold_assert((branch_offset & 3) == 0);
51938283
DK
4137
4138 // Put BRANCH_OFFSET back into the insn. Assumes two's complement.
4139 // We use the Thumb-2 encoding, which is safe even if dealing with
4140 // a Thumb-1 instruction by virtue of our overflow check above. */
089d69dc
DK
4141 upper_insn = This::thumb32_branch_upper(upper_insn, branch_offset);
4142 lower_insn = This::thumb32_branch_lower(lower_insn, branch_offset);
51938283
DK
4143
4144 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4145 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4146
bef2b434 4147 gold_assert(!Bits<25>::has_overflow32(branch_offset));
a2c7281b 4148
51938283 4149 return ((thumb2
bef2b434
ILT
4150 ? Bits<25>::has_overflow32(branch_offset)
4151 : Bits<23>::has_overflow32(branch_offset))
089d69dc
DK
4152 ? This::STATUS_OVERFLOW
4153 : This::STATUS_OKAY);
4154}
4155
4156// Relocate THUMB-2 long conditional branches.
4157// If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
4158// undefined and we do not use PLT in this relocation. In such a case,
4159// the branch is converted into an NOP.
4160
4161template<bool big_endian>
4162typename Arm_relocate_functions<big_endian>::Status
4163Arm_relocate_functions<big_endian>::thm_jump19(
ca09d69a 4164 unsigned char* view,
089d69dc
DK
4165 const Arm_relobj<big_endian>* object,
4166 const Symbol_value<32>* psymval,
4167 Arm_address address,
4168 Arm_address thumb_bit)
4169{
4170 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4171 Valtype* wv = reinterpret_cast<Valtype*>(view);
4172 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4173 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4174 int32_t addend = This::thumb32_cond_branch_offset(upper_insn, lower_insn);
4175
4176 Arm_address branch_target = psymval->value(object, addend);
4177 int32_t branch_offset = branch_target - address;
4178
4179 // ??? Should handle interworking? GCC might someday try to
4180 // use this for tail calls.
4181 // FIXME: We do support thumb entry to PLT yet.
4182 if (thumb_bit == 0)
4183 {
4184 gold_error(_("conditional branch to PLT in THUMB-2 not supported yet."));
4185 return This::STATUS_BAD_RELOC;
4186 }
4187
4188 // Put RELOCATION back into the insn.
4189 upper_insn = This::thumb32_cond_branch_upper(upper_insn, branch_offset);
4190 lower_insn = This::thumb32_cond_branch_lower(lower_insn, branch_offset);
4191
4192 // Put the relocated value back in the object file:
4193 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4194 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4195
bef2b434 4196 return (Bits<21>::has_overflow32(branch_offset)
51938283
DK
4197 ? This::STATUS_OVERFLOW
4198 : This::STATUS_OKAY);
4199}
4200
94cdfcff
DK
4201// Get the GOT section, creating it if necessary.
4202
4203template<bool big_endian>
4a54abbb 4204Arm_output_data_got<big_endian>*
94cdfcff
DK
4205Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
4206{
4207 if (this->got_ == NULL)
4208 {
4209 gold_assert(symtab != NULL && layout != NULL);
4210
7b8957f8
DK
4211 // When using -z now, we can treat .got as a relro section.
4212 // Without -z now, it is modified after program startup by lazy
4213 // PLT relocations.
4214 bool is_got_relro = parameters->options().now();
4215 Output_section_order got_order = (is_got_relro
4216 ? ORDER_RELRO_LAST
4217 : ORDER_DATA);
4218
4219 // Unlike some targets (.e.g x86), ARM does not use separate .got and
4220 // .got.plt sections in output. The output .got section contains both
4221 // PLT and non-PLT GOT entries.
4a54abbb 4222 this->got_ = new Arm_output_data_got<big_endian>(symtab, layout);
94cdfcff 4223
82742395 4224 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
0c91cf04 4225 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
7b8957f8 4226 this->got_, got_order, is_got_relro);
22f0da72 4227
94cdfcff
DK
4228 // The old GNU linker creates a .got.plt section. We just
4229 // create another set of data in the .got section. Note that we
4230 // always create a PLT if we create a GOT, although the PLT
4231 // might be empty.
4232 this->got_plt_ = new Output_data_space(4, "** GOT PLT");
82742395 4233 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
0c91cf04 4234 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
7b8957f8 4235 this->got_plt_, got_order, is_got_relro);
94cdfcff
DK
4236
4237 // The first three entries are reserved.
4238 this->got_plt_->set_current_data_size(3 * 4);
4239
4240 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
4241 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
99fff23b 4242 Symbol_table::PREDEFINED,
94cdfcff
DK
4243 this->got_plt_,
4244 0, 0, elfcpp::STT_OBJECT,
4245 elfcpp::STB_LOCAL,
4246 elfcpp::STV_HIDDEN, 0,
4247 false, false);
4248 }
4249 return this->got_;
4250}
4251
4252// Get the dynamic reloc section, creating it if necessary.
4253
4254template<bool big_endian>
4255typename Target_arm<big_endian>::Reloc_section*
4256Target_arm<big_endian>::rel_dyn_section(Layout* layout)
4257{
4258 if (this->rel_dyn_ == NULL)
4259 {
4260 gold_assert(layout != NULL);
4261 this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
4262 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
22f0da72
ILT
4263 elfcpp::SHF_ALLOC, this->rel_dyn_,
4264 ORDER_DYNAMIC_RELOCS, false);
94cdfcff
DK
4265 }
4266 return this->rel_dyn_;
4267}
4268
b569affa
DK
4269// Insn_template methods.
4270
4271// Return byte size of an instruction template.
4272
4273size_t
4274Insn_template::size() const
4275{
4276 switch (this->type())
4277 {
4278 case THUMB16_TYPE:
2fb7225c 4279 case THUMB16_SPECIAL_TYPE:
b569affa
DK
4280 return 2;
4281 case ARM_TYPE:
4282 case THUMB32_TYPE:
4283 case DATA_TYPE:
4284 return 4;
4285 default:
4286 gold_unreachable();
4287 }
4288}
4289
4290// Return alignment of an instruction template.
4291
4292unsigned
4293Insn_template::alignment() const
4294{
4295 switch (this->type())
4296 {
4297 case THUMB16_TYPE:
2fb7225c 4298 case THUMB16_SPECIAL_TYPE:
b569affa
DK
4299 case THUMB32_TYPE:
4300 return 2;
4301 case ARM_TYPE:
4302 case DATA_TYPE:
4303 return 4;
4304 default:
4305 gold_unreachable();
4306 }
4307}
4308
4309// Stub_template methods.
4310
4311Stub_template::Stub_template(
2ea97941
ILT
4312 Stub_type type, const Insn_template* insns,
4313 size_t insn_count)
4314 : type_(type), insns_(insns), insn_count_(insn_count), alignment_(1),
b569affa
DK
4315 entry_in_thumb_mode_(false), relocs_()
4316{
2ea97941 4317 off_t offset = 0;
b569affa
DK
4318
4319 // Compute byte size and alignment of stub template.
2ea97941 4320 for (size_t i = 0; i < insn_count; i++)
b569affa 4321 {
2ea97941
ILT
4322 unsigned insn_alignment = insns[i].alignment();
4323 size_t insn_size = insns[i].size();
4324 gold_assert((offset & (insn_alignment - 1)) == 0);
b569affa 4325 this->alignment_ = std::max(this->alignment_, insn_alignment);
2ea97941 4326 switch (insns[i].type())
b569affa
DK
4327 {
4328 case Insn_template::THUMB16_TYPE:
089d69dc 4329 case Insn_template::THUMB16_SPECIAL_TYPE:
b569affa
DK
4330 if (i == 0)
4331 this->entry_in_thumb_mode_ = true;
4332 break;
4333
4334 case Insn_template::THUMB32_TYPE:
2e702c99 4335 if (insns[i].r_type() != elfcpp::R_ARM_NONE)
2ea97941 4336 this->relocs_.push_back(Reloc(i, offset));
b569affa
DK
4337 if (i == 0)
4338 this->entry_in_thumb_mode_ = true;
2e702c99 4339 break;
b569affa
DK
4340
4341 case Insn_template::ARM_TYPE:
4342 // Handle cases where the target is encoded within the
4343 // instruction.
2ea97941
ILT
4344 if (insns[i].r_type() == elfcpp::R_ARM_JUMP24)
4345 this->relocs_.push_back(Reloc(i, offset));
b569affa
DK
4346 break;
4347
4348 case Insn_template::DATA_TYPE:
4349 // Entry point cannot be data.
4350 gold_assert(i != 0);
2ea97941 4351 this->relocs_.push_back(Reloc(i, offset));
b569affa
DK
4352 break;
4353
4354 default:
4355 gold_unreachable();
4356 }
2e702c99 4357 offset += insn_size;
b569affa 4358 }
2ea97941 4359 this->size_ = offset;
b569affa
DK
4360}
4361
bb0d3eb0
DK
4362// Stub methods.
4363
7296d933 4364// Template to implement do_write for a specific target endianness.
bb0d3eb0
DK
4365
4366template<bool big_endian>
4367void inline
4368Stub::do_fixed_endian_write(unsigned char* view, section_size_type view_size)
4369{
4370 const Stub_template* stub_template = this->stub_template();
4371 const Insn_template* insns = stub_template->insns();
4372
4373 // FIXME: We do not handle BE8 encoding yet.
4374 unsigned char* pov = view;
4375 for (size_t i = 0; i < stub_template->insn_count(); i++)
4376 {
4377 switch (insns[i].type())
4378 {
4379 case Insn_template::THUMB16_TYPE:
4380 elfcpp::Swap<16, big_endian>::writeval(pov, insns[i].data() & 0xffff);
4381 break;
4382 case Insn_template::THUMB16_SPECIAL_TYPE:
4383 elfcpp::Swap<16, big_endian>::writeval(
4384 pov,
4385 this->thumb16_special(i));
4386 break;
4387 case Insn_template::THUMB32_TYPE:
4388 {
4389 uint32_t hi = (insns[i].data() >> 16) & 0xffff;
4390 uint32_t lo = insns[i].data() & 0xffff;
4391 elfcpp::Swap<16, big_endian>::writeval(pov, hi);
4392 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo);
4393 }
2e702c99 4394 break;
bb0d3eb0
DK
4395 case Insn_template::ARM_TYPE:
4396 case Insn_template::DATA_TYPE:
4397 elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data());
4398 break;
4399 default:
4400 gold_unreachable();
4401 }
4402 pov += insns[i].size();
4403 }
4404 gold_assert(static_cast<section_size_type>(pov - view) == view_size);
2e702c99 4405}
bb0d3eb0 4406
b569affa
DK
4407// Reloc_stub::Key methods.
4408
4409// Dump a Key as a string for debugging.
4410
4411std::string
4412Reloc_stub::Key::name() const
4413{
4414 if (this->r_sym_ == invalid_index)
4415 {
4416 // Global symbol key name
4417 // <stub-type>:<symbol name>:<addend>.
4418 const std::string sym_name = this->u_.symbol->name();
4419 // We need to print two hex number and two colons. So just add 100 bytes
4420 // to the symbol name size.
4421 size_t len = sym_name.size() + 100;
4422 char* buffer = new char[len];
4423 int c = snprintf(buffer, len, "%d:%s:%x", this->stub_type_,
4424 sym_name.c_str(), this->addend_);
4425 gold_assert(c > 0 && c < static_cast<int>(len));
4426 delete[] buffer;
4427 return std::string(buffer);
4428 }
4429 else
4430 {
4431 // local symbol key name
4432 // <stub-type>:<object>:<r_sym>:<addend>.
4433 const size_t len = 200;
4434 char buffer[len];
4435 int c = snprintf(buffer, len, "%d:%p:%u:%x", this->stub_type_,
4436 this->u_.relobj, this->r_sym_, this->addend_);
4437 gold_assert(c > 0 && c < static_cast<int>(len));
4438 return std::string(buffer);
4439 }
4440}
4441
4442// Reloc_stub methods.
4443
4444// Determine the type of stub needed, if any, for a relocation of R_TYPE at
4445// LOCATION to DESTINATION.
4446// This code is based on the arm_type_of_stub function in
9b547ce6 4447// bfd/elf32-arm.c. We have changed the interface a little to keep the Stub
b569affa
DK
4448// class simple.
4449
4450Stub_type
4451Reloc_stub::stub_type_for_reloc(
4452 unsigned int r_type,
4453 Arm_address location,
4454 Arm_address destination,
4455 bool target_is_thumb)
4456{
4457 Stub_type stub_type = arm_stub_none;
4458
4459 // This is a bit ugly but we want to avoid using a templated class for
4460 // big and little endianities.
4461 bool may_use_blx;
4462 bool should_force_pic_veneer;
4463 bool thumb2;
4464 bool thumb_only;
4465 if (parameters->target().is_big_endian())
4466 {
43d12afe 4467 const Target_arm<true>* big_endian_target =
b569affa 4468 Target_arm<true>::default_target();
cd6eab1c 4469 may_use_blx = big_endian_target->may_use_v5t_interworking();
43d12afe
DK
4470 should_force_pic_veneer = big_endian_target->should_force_pic_veneer();
4471 thumb2 = big_endian_target->using_thumb2();
4472 thumb_only = big_endian_target->using_thumb_only();
b569affa
DK
4473 }
4474 else
4475 {
43d12afe 4476 const Target_arm<false>* little_endian_target =
b569affa 4477 Target_arm<false>::default_target();
cd6eab1c 4478 may_use_blx = little_endian_target->may_use_v5t_interworking();
43d12afe
DK
4479 should_force_pic_veneer = little_endian_target->should_force_pic_veneer();
4480 thumb2 = little_endian_target->using_thumb2();
4481 thumb_only = little_endian_target->using_thumb_only();
b569affa
DK
4482 }
4483
a2c7281b 4484 int64_t branch_offset;
90cff06f
DK
4485 bool output_is_position_independent =
4486 parameters->options().output_is_position_independent();
b569affa
DK
4487 if (r_type == elfcpp::R_ARM_THM_CALL || r_type == elfcpp::R_ARM_THM_JUMP24)
4488 {
a2c7281b
DK
4489 // For THUMB BLX instruction, bit 1 of target comes from bit 1 of the
4490 // base address (instruction address + 4).
4491 if ((r_type == elfcpp::R_ARM_THM_CALL) && may_use_blx && !target_is_thumb)
bef2b434 4492 destination = Bits<32>::bit_select32(destination, location, 0x2);
a2c7281b 4493 branch_offset = static_cast<int64_t>(destination) - location;
2e702c99 4494
b569affa
DK
4495 // Handle cases where:
4496 // - this call goes too far (different Thumb/Thumb2 max
4497 // distance)
4498 // - it's a Thumb->Arm call and blx is not available, or it's a
4499 // Thumb->Arm branch (not bl). A stub is needed in this case.
4500 if ((!thumb2
4501 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4502 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
4503 || (thumb2
4504 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4505 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4506 || ((!target_is_thumb)
4507 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4508 || (r_type == elfcpp::R_ARM_THM_JUMP24))))
4509 {
4510 if (target_is_thumb)
4511 {
4512 // Thumb to thumb.
4513 if (!thumb_only)
4514 {
90cff06f 4515 stub_type = (output_is_position_independent
51938283 4516 || should_force_pic_veneer)
b569affa
DK
4517 // PIC stubs.
4518 ? ((may_use_blx
4519 && (r_type == elfcpp::R_ARM_THM_CALL))
4520 // V5T and above. Stub starts with ARM code, so
4521 // we must be able to switch mode before
4522 // reaching it, which is only possible for 'bl'
4523 // (ie R_ARM_THM_CALL relocation).
4524 ? arm_stub_long_branch_any_thumb_pic
4525 // On V4T, use Thumb code only.
4526 : arm_stub_long_branch_v4t_thumb_thumb_pic)
4527
4528 // non-PIC stubs.
4529 : ((may_use_blx
4530 && (r_type == elfcpp::R_ARM_THM_CALL))
4531 ? arm_stub_long_branch_any_any // V5T and above.
4532 : arm_stub_long_branch_v4t_thumb_thumb); // V4T.
4533 }
4534 else
4535 {
90cff06f 4536 stub_type = (output_is_position_independent
51938283 4537 || should_force_pic_veneer)
b569affa
DK
4538 ? arm_stub_long_branch_thumb_only_pic // PIC stub.
4539 : arm_stub_long_branch_thumb_only; // non-PIC stub.
4540 }
4541 }
4542 else
4543 {
4544 // Thumb to arm.
2e702c99 4545
b569affa
DK
4546 // FIXME: We should check that the input section is from an
4547 // object that has interwork enabled.
4548
90cff06f 4549 stub_type = (output_is_position_independent
b569affa
DK
4550 || should_force_pic_veneer)
4551 // PIC stubs.
4552 ? ((may_use_blx
4553 && (r_type == elfcpp::R_ARM_THM_CALL))
4554 ? arm_stub_long_branch_any_arm_pic // V5T and above.
4555 : arm_stub_long_branch_v4t_thumb_arm_pic) // V4T.
4556
4557 // non-PIC stubs.
4558 : ((may_use_blx
4559 && (r_type == elfcpp::R_ARM_THM_CALL))
4560 ? arm_stub_long_branch_any_any // V5T and above.
4561 : arm_stub_long_branch_v4t_thumb_arm); // V4T.
4562
4563 // Handle v4t short branches.
4564 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4565 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4566 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4567 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4568 }
4569 }
4570 }
4571 else if (r_type == elfcpp::R_ARM_CALL
4572 || r_type == elfcpp::R_ARM_JUMP24
4573 || r_type == elfcpp::R_ARM_PLT32)
4574 {
a2c7281b 4575 branch_offset = static_cast<int64_t>(destination) - location;
b569affa
DK
4576 if (target_is_thumb)
4577 {
4578 // Arm to thumb.
4579
4580 // FIXME: We should check that the input section is from an
4581 // object that has interwork enabled.
4582
4583 // We have an extra 2-bytes reach because of
4584 // the mode change (bit 24 (H) of BLX encoding).
4585 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4586 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4587 || ((r_type == elfcpp::R_ARM_CALL) && !may_use_blx)
4588 || (r_type == elfcpp::R_ARM_JUMP24)
4589 || (r_type == elfcpp::R_ARM_PLT32))
4590 {
90cff06f 4591 stub_type = (output_is_position_independent
b569affa
DK
4592 || should_force_pic_veneer)
4593 // PIC stubs.
4594 ? (may_use_blx
4595 ? arm_stub_long_branch_any_thumb_pic// V5T and above.
4596 : arm_stub_long_branch_v4t_arm_thumb_pic) // V4T stub.
4597
4598 // non-PIC stubs.
4599 : (may_use_blx
4600 ? arm_stub_long_branch_any_any // V5T and above.
4601 : arm_stub_long_branch_v4t_arm_thumb); // V4T.
4602 }
4603 }
4604 else
4605 {
4606 // Arm to arm.
4607 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4608 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4609 {
90cff06f 4610 stub_type = (output_is_position_independent
b569affa
DK
4611 || should_force_pic_veneer)
4612 ? arm_stub_long_branch_any_arm_pic // PIC stubs.
4613 : arm_stub_long_branch_any_any; /// non-PIC.
4614 }
4615 }
4616 }
4617
4618 return stub_type;
4619}
4620
bb0d3eb0 4621// Cortex_a8_stub methods.
b569affa 4622
bb0d3eb0
DK
4623// Return the instruction for a THUMB16_SPECIAL_TYPE instruction template.
4624// I is the position of the instruction template in the stub template.
b569affa 4625
bb0d3eb0
DK
4626uint16_t
4627Cortex_a8_stub::do_thumb16_special(size_t i)
b569affa 4628{
bb0d3eb0
DK
4629 // The only use of this is to copy condition code from a conditional
4630 // branch being worked around to the corresponding conditional branch in
4631 // to the stub.
4632 gold_assert(this->stub_template()->type() == arm_stub_a8_veneer_b_cond
4633 && i == 0);
4634 uint16_t data = this->stub_template()->insns()[i].data();
4635 gold_assert((data & 0xff00U) == 0xd000U);
4636 data |= ((this->original_insn_ >> 22) & 0xf) << 8;
4637 return data;
b569affa
DK
4638}
4639
4640// Stub_factory methods.
4641
4642Stub_factory::Stub_factory()
4643{
4644 // The instruction template sequences are declared as static
4645 // objects and initialized first time the constructor runs.
2e702c99 4646
b569affa
DK
4647 // Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
4648 // to reach the stub if necessary.
4649 static const Insn_template elf32_arm_stub_long_branch_any_any[] =
4650 {
4651 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4652 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
2e702c99 4653 // dcd R_ARM_ABS32(X)
b569affa 4654 };
2e702c99 4655
b569affa
DK
4656 // V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
4657 // available.
4658 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb[] =
4659 {
4660 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4661 Insn_template::arm_insn(0xe12fff1c), // bx ip
4662 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
2e702c99 4663 // dcd R_ARM_ABS32(X)
b569affa 4664 };
2e702c99 4665
b569affa
DK
4666 // Thumb -> Thumb long branch stub. Used on M-profile architectures.
4667 static const Insn_template elf32_arm_stub_long_branch_thumb_only[] =
4668 {
4669 Insn_template::thumb16_insn(0xb401), // push {r0}
4670 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4671 Insn_template::thumb16_insn(0x4684), // mov ip, r0
4672 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4673 Insn_template::thumb16_insn(0x4760), // bx ip
4674 Insn_template::thumb16_insn(0xbf00), // nop
4675 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
2e702c99 4676 // dcd R_ARM_ABS32(X)
b569affa 4677 };
2e702c99 4678
b569affa
DK
4679 // V4T Thumb -> Thumb long branch stub. Using the stack is not
4680 // allowed.
4681 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
4682 {
4683 Insn_template::thumb16_insn(0x4778), // bx pc
4684 Insn_template::thumb16_insn(0x46c0), // nop
4685 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4686 Insn_template::arm_insn(0xe12fff1c), // bx ip
4687 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
2e702c99 4688 // dcd R_ARM_ABS32(X)
b569affa 4689 };
2e702c99 4690
b569affa
DK
4691 // V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
4692 // available.
4693 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm[] =
4694 {
4695 Insn_template::thumb16_insn(0x4778), // bx pc
4696 Insn_template::thumb16_insn(0x46c0), // nop
4697 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4698 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
2e702c99 4699 // dcd R_ARM_ABS32(X)
b569affa 4700 };
2e702c99 4701
b569affa
DK
4702 // V4T Thumb -> ARM short branch stub. Shorter variant of the above
4703 // one, when the destination is close enough.
4704 static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm[] =
4705 {
4706 Insn_template::thumb16_insn(0x4778), // bx pc
4707 Insn_template::thumb16_insn(0x46c0), // nop
4708 Insn_template::arm_rel_insn(0xea000000, -8), // b (X-8)
4709 };
2e702c99 4710
b569affa
DK
4711 // ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
4712 // blx to reach the stub if necessary.
4713 static const Insn_template elf32_arm_stub_long_branch_any_arm_pic[] =
4714 {
4715 Insn_template::arm_insn(0xe59fc000), // ldr r12, [pc]
4716 Insn_template::arm_insn(0xe08ff00c), // add pc, pc, ip
4717 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
2e702c99 4718 // dcd R_ARM_REL32(X-4)
b569affa 4719 };
2e702c99 4720
b569affa
DK
4721 // ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
4722 // blx to reach the stub if necessary. We can not add into pc;
4723 // it is not guaranteed to mode switch (different in ARMv6 and
4724 // ARMv7).
4725 static const Insn_template elf32_arm_stub_long_branch_any_thumb_pic[] =
4726 {
4727 Insn_template::arm_insn(0xe59fc004), // ldr r12, [pc, #4]
4728 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4729 Insn_template::arm_insn(0xe12fff1c), // bx ip
4730 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
2e702c99 4731 // dcd R_ARM_REL32(X)
b569affa 4732 };
2e702c99 4733
b569affa
DK
4734 // V4T ARM -> ARM long branch stub, PIC.
4735 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
4736 {
4737 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4738 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4739 Insn_template::arm_insn(0xe12fff1c), // bx ip
4740 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
2e702c99 4741 // dcd R_ARM_REL32(X)
b569affa 4742 };
2e702c99 4743
b569affa
DK
4744 // V4T Thumb -> ARM long branch stub, PIC.
4745 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
4746 {
4747 Insn_template::thumb16_insn(0x4778), // bx pc
4748 Insn_template::thumb16_insn(0x46c0), // nop
4749 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4750 Insn_template::arm_insn(0xe08cf00f), // add pc, ip, pc
4751 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
2e702c99 4752 // dcd R_ARM_REL32(X)
b569affa 4753 };
2e702c99 4754
b569affa
DK
4755 // Thumb -> Thumb long branch stub, PIC. Used on M-profile
4756 // architectures.
4757 static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic[] =
4758 {
4759 Insn_template::thumb16_insn(0xb401), // push {r0}
4760 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4761 Insn_template::thumb16_insn(0x46fc), // mov ip, pc
4762 Insn_template::thumb16_insn(0x4484), // add ip, r0
4763 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4764 Insn_template::thumb16_insn(0x4760), // bx ip
4765 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 4),
2e702c99 4766 // dcd R_ARM_REL32(X)
b569affa 4767 };
2e702c99 4768
b569affa
DK
4769 // V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
4770 // allowed.
4771 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
4772 {
4773 Insn_template::thumb16_insn(0x4778), // bx pc
4774 Insn_template::thumb16_insn(0x46c0), // nop
4775 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4776 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4777 Insn_template::arm_insn(0xe12fff1c), // bx ip
4778 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
2e702c99 4779 // dcd R_ARM_REL32(X)
b569affa 4780 };
2e702c99 4781
b569affa 4782 // Cortex-A8 erratum-workaround stubs.
2e702c99 4783
b569affa
DK
4784 // Stub used for conditional branches (which may be beyond +/-1MB away,
4785 // so we can't use a conditional branch to reach this stub).
2e702c99 4786
b569affa
DK
4787 // original code:
4788 //
4789 // b<cond> X
4790 // after:
4791 //
4792 static const Insn_template elf32_arm_stub_a8_veneer_b_cond[] =
4793 {
4794 Insn_template::thumb16_bcond_insn(0xd001), // b<cond>.n true
4795 Insn_template::thumb32_b_insn(0xf000b800, -4), // b.w after
4796 Insn_template::thumb32_b_insn(0xf000b800, -4) // true:
2e702c99 4797 // b.w X
b569affa 4798 };
2e702c99 4799
b569affa 4800 // Stub used for b.w and bl.w instructions.
2e702c99 4801
b569affa
DK
4802 static const Insn_template elf32_arm_stub_a8_veneer_b[] =
4803 {
4804 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4805 };
2e702c99 4806
b569affa
DK
4807 static const Insn_template elf32_arm_stub_a8_veneer_bl[] =
4808 {
4809 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4810 };
2e702c99 4811
b569affa
DK
4812 // Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
4813 // instruction (which switches to ARM mode) to point to this stub. Jump to
4814 // the real destination using an ARM-mode branch.
bb0d3eb0 4815 static const Insn_template elf32_arm_stub_a8_veneer_blx[] =
b569affa
DK
4816 {
4817 Insn_template::arm_rel_insn(0xea000000, -8) // b dest
4818 };
4819
a2162063
ILT
4820 // Stub used to provide an interworking for R_ARM_V4BX relocation
4821 // (bx r[n] instruction).
4822 static const Insn_template elf32_arm_stub_v4_veneer_bx[] =
4823 {
4824 Insn_template::arm_insn(0xe3100001), // tst r<n>, #1
4825 Insn_template::arm_insn(0x01a0f000), // moveq pc, r<n>
4826 Insn_template::arm_insn(0xe12fff10) // bx r<n>
4827 };
4828
b569affa
DK
4829 // Fill in the stub template look-up table. Stub templates are constructed
4830 // per instance of Stub_factory for fast look-up without locking
4831 // in a thread-enabled environment.
4832
4833 this->stub_templates_[arm_stub_none] =
4834 new Stub_template(arm_stub_none, NULL, 0);
4835
4836#define DEF_STUB(x) \
4837 do \
4838 { \
4839 size_t array_size \
4840 = sizeof(elf32_arm_stub_##x) / sizeof(elf32_arm_stub_##x[0]); \
4841 Stub_type type = arm_stub_##x; \
4842 this->stub_templates_[type] = \
4843 new Stub_template(type, elf32_arm_stub_##x, array_size); \
4844 } \
4845 while (0);
4846
4847 DEF_STUBS
4848#undef DEF_STUB
4849}
4850
56ee5e00
DK
4851// Stub_table methods.
4852
9b547ce6 4853// Remove all Cortex-A8 stub.
56ee5e00
DK
4854
4855template<bool big_endian>
4856void
2fb7225c
DK
4857Stub_table<big_endian>::remove_all_cortex_a8_stubs()
4858{
4859 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4860 p != this->cortex_a8_stubs_.end();
4861 ++p)
4862 delete p->second;
4863 this->cortex_a8_stubs_.clear();
4864}
4865
4866// Relocate one stub. This is a helper for Stub_table::relocate_stubs().
4867
4868template<bool big_endian>
4869void
4870Stub_table<big_endian>::relocate_stub(
4871 Stub* stub,
4872 const Relocate_info<32, big_endian>* relinfo,
4873 Target_arm<big_endian>* arm_target,
4874 Output_section* output_section,
4875 unsigned char* view,
4876 Arm_address address,
4877 section_size_type view_size)
56ee5e00 4878{
2ea97941 4879 const Stub_template* stub_template = stub->stub_template();
2fb7225c
DK
4880 if (stub_template->reloc_count() != 0)
4881 {
4882 // Adjust view to cover the stub only.
4883 section_size_type offset = stub->offset();
4884 section_size_type stub_size = stub_template->size();
4885 gold_assert(offset + stub_size <= view_size);
4886
4887 arm_target->relocate_stub(stub, relinfo, output_section, view + offset,
4888 address + offset, stub_size);
4889 }
56ee5e00
DK
4890}
4891
2fb7225c
DK
4892// Relocate all stubs in this stub table.
4893
56ee5e00
DK
4894template<bool big_endian>
4895void
4896Stub_table<big_endian>::relocate_stubs(
4897 const Relocate_info<32, big_endian>* relinfo,
4898 Target_arm<big_endian>* arm_target,
2ea97941 4899 Output_section* output_section,
56ee5e00 4900 unsigned char* view,
2ea97941 4901 Arm_address address,
56ee5e00
DK
4902 section_size_type view_size)
4903{
4904 // If we are passed a view bigger than the stub table's. we need to
4905 // adjust the view.
2ea97941 4906 gold_assert(address == this->address()
56ee5e00
DK
4907 && (view_size
4908 == static_cast<section_size_type>(this->data_size())));
4909
2fb7225c
DK
4910 // Relocate all relocation stubs.
4911 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4912 p != this->reloc_stubs_.end();
4913 ++p)
4914 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4915 address, view_size);
4916
4917 // Relocate all Cortex-A8 stubs.
4918 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4919 p != this->cortex_a8_stubs_.end();
4920 ++p)
4921 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4922 address, view_size);
a2162063
ILT
4923
4924 // Relocate all ARM V4BX stubs.
4925 for (Arm_v4bx_stub_list::iterator p = this->arm_v4bx_stubs_.begin();
4926 p != this->arm_v4bx_stubs_.end();
4927 ++p)
4928 {
4929 if (*p != NULL)
4930 this->relocate_stub(*p, relinfo, arm_target, output_section, view,
4931 address, view_size);
4932 }
2fb7225c
DK
4933}
4934
4935// Write out the stubs to file.
4936
4937template<bool big_endian>
4938void
4939Stub_table<big_endian>::do_write(Output_file* of)
4940{
4941 off_t offset = this->offset();
4942 const section_size_type oview_size =
4943 convert_to_section_size_type(this->data_size());
4944 unsigned char* const oview = of->get_output_view(offset, oview_size);
4945
4946 // Write relocation stubs.
56ee5e00
DK
4947 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4948 p != this->reloc_stubs_.end();
4949 ++p)
4950 {
4951 Reloc_stub* stub = p->second;
2fb7225c
DK
4952 Arm_address address = this->address() + stub->offset();
4953 gold_assert(address
4954 == align_address(address,
4955 stub->stub_template()->alignment()));
4956 stub->write(oview + stub->offset(), stub->stub_template()->size(),
4957 big_endian);
56ee5e00 4958 }
2fb7225c
DK
4959
4960 // Write Cortex-A8 stubs.
4961 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4962 p != this->cortex_a8_stubs_.end();
4963 ++p)
4964 {
4965 Cortex_a8_stub* stub = p->second;
4966 Arm_address address = this->address() + stub->offset();
4967 gold_assert(address
4968 == align_address(address,
4969 stub->stub_template()->alignment()));
4970 stub->write(oview + stub->offset(), stub->stub_template()->size(),
4971 big_endian);
4972 }
4973
a2162063
ILT
4974 // Write ARM V4BX relocation stubs.
4975 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4976 p != this->arm_v4bx_stubs_.end();
4977 ++p)
4978 {
4979 if (*p == NULL)
4980 continue;
4981
4982 Arm_address address = this->address() + (*p)->offset();
4983 gold_assert(address
4984 == align_address(address,
4985 (*p)->stub_template()->alignment()));
4986 (*p)->write(oview + (*p)->offset(), (*p)->stub_template()->size(),
4987 big_endian);
4988 }
4989
2fb7225c 4990 of->write_output_view(this->offset(), oview_size, oview);
56ee5e00
DK
4991}
4992
2fb7225c
DK
4993// Update the data size and address alignment of the stub table at the end
4994// of a relaxation pass. Return true if either the data size or the
4995// alignment changed in this relaxation pass.
4996
4997template<bool big_endian>
4998bool
4999Stub_table<big_endian>::update_data_size_and_addralign()
5000{
2fb7225c 5001 // Go over all stubs in table to compute data size and address alignment.
d099120c
DK
5002 off_t size = this->reloc_stubs_size_;
5003 unsigned addralign = this->reloc_stubs_addralign_;
2fb7225c
DK
5004
5005 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5006 p != this->cortex_a8_stubs_.end();
5007 ++p)
5008 {
5009 const Stub_template* stub_template = p->second->stub_template();
5010 addralign = std::max(addralign, stub_template->alignment());
5011 size = (align_address(size, stub_template->alignment())
5012 + stub_template->size());
5013 }
5014
a2162063
ILT
5015 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5016 p != this->arm_v4bx_stubs_.end();
5017 ++p)
5018 {
5019 if (*p == NULL)
5020 continue;
5021
5022 const Stub_template* stub_template = (*p)->stub_template();
5023 addralign = std::max(addralign, stub_template->alignment());
5024 size = (align_address(size, stub_template->alignment())
5025 + stub_template->size());
5026 }
5027
2fb7225c
DK
5028 // Check if either data size or alignment changed in this pass.
5029 // Update prev_data_size_ and prev_addralign_. These will be used
5030 // as the current data size and address alignment for the next pass.
5031 bool changed = size != this->prev_data_size_;
2e702c99 5032 this->prev_data_size_ = size;
2fb7225c
DK
5033
5034 if (addralign != this->prev_addralign_)
5035 changed = true;
5036 this->prev_addralign_ = addralign;
5037
5038 return changed;
5039}
5040
5041// Finalize the stubs. This sets the offsets of the stubs within the stub
5042// table. It also marks all input sections needing Cortex-A8 workaround.
56ee5e00
DK
5043
5044template<bool big_endian>
5045void
2fb7225c 5046Stub_table<big_endian>::finalize_stubs()
56ee5e00 5047{
d099120c 5048 off_t off = this->reloc_stubs_size_;
2fb7225c
DK
5049 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5050 p != this->cortex_a8_stubs_.end();
5051 ++p)
5052 {
5053 Cortex_a8_stub* stub = p->second;
5054 const Stub_template* stub_template = stub->stub_template();
5055 uint64_t stub_addralign = stub_template->alignment();
5056 off = align_address(off, stub_addralign);
5057 stub->set_offset(off);
5058 off += stub_template->size();
5059
5060 // Mark input section so that we can determine later if a code section
5061 // needs the Cortex-A8 workaround quickly.
5062 Arm_relobj<big_endian>* arm_relobj =
5063 Arm_relobj<big_endian>::as_arm_relobj(stub->relobj());
5064 arm_relobj->mark_section_for_cortex_a8_workaround(stub->shndx());
5065 }
5066
a2162063
ILT
5067 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5068 p != this->arm_v4bx_stubs_.end();
5069 ++p)
5070 {
5071 if (*p == NULL)
5072 continue;
5073
5074 const Stub_template* stub_template = (*p)->stub_template();
5075 uint64_t stub_addralign = stub_template->alignment();
5076 off = align_address(off, stub_addralign);
5077 (*p)->set_offset(off);
5078 off += stub_template->size();
5079 }
5080
2fb7225c 5081 gold_assert(off <= this->prev_data_size_);
56ee5e00
DK
5082}
5083
2fb7225c
DK
5084// Apply Cortex-A8 workaround to an address range between VIEW_ADDRESS
5085// and VIEW_ADDRESS + VIEW_SIZE - 1. VIEW points to the mapped address
5086// of the address range seen by the linker.
56ee5e00
DK
5087
5088template<bool big_endian>
5089void
2fb7225c
DK
5090Stub_table<big_endian>::apply_cortex_a8_workaround_to_address_range(
5091 Target_arm<big_endian>* arm_target,
5092 unsigned char* view,
5093 Arm_address view_address,
5094 section_size_type view_size)
56ee5e00 5095{
2fb7225c
DK
5096 // Cortex-A8 stubs are sorted by addresses of branches being fixed up.
5097 for (Cortex_a8_stub_list::const_iterator p =
5098 this->cortex_a8_stubs_.lower_bound(view_address);
5099 ((p != this->cortex_a8_stubs_.end())
5100 && (p->first < (view_address + view_size)));
5101 ++p)
56ee5e00 5102 {
2fb7225c
DK
5103 // We do not store the THUMB bit in the LSB of either the branch address
5104 // or the stub offset. There is no need to strip the LSB.
5105 Arm_address branch_address = p->first;
5106 const Cortex_a8_stub* stub = p->second;
5107 Arm_address stub_address = this->address() + stub->offset();
5108
5109 // Offset of the branch instruction relative to this view.
5110 section_size_type offset =
5111 convert_to_section_size_type(branch_address - view_address);
5112 gold_assert((offset + 4) <= view_size);
5113
5114 arm_target->apply_cortex_a8_workaround(stub, stub_address,
5115 view + offset, branch_address);
5116 }
56ee5e00
DK
5117}
5118
10ad9fe5
DK
5119// Arm_input_section methods.
5120
5121// Initialize an Arm_input_section.
5122
5123template<bool big_endian>
5124void
5125Arm_input_section<big_endian>::init()
5126{
2ea97941
ILT
5127 Relobj* relobj = this->relobj();
5128 unsigned int shndx = this->shndx();
10ad9fe5 5129
f625ae50
DK
5130 // We have to cache original size, alignment and contents to avoid locking
5131 // the original file.
6625d24e
DK
5132 this->original_addralign_ =
5133 convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
f625ae50
DK
5134
5135 // This is not efficient but we expect only a small number of relaxed
5136 // input sections for stubs.
5137 section_size_type section_size;
5138 const unsigned char* section_contents =
5139 relobj->section_contents(shndx, &section_size, false);
6625d24e
DK
5140 this->original_size_ =
5141 convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
10ad9fe5 5142
f625ae50
DK
5143 gold_assert(this->original_contents_ == NULL);
5144 this->original_contents_ = new unsigned char[section_size];
5145 memcpy(this->original_contents_, section_contents, section_size);
5146
10ad9fe5
DK
5147 // We want to make this look like the original input section after
5148 // output sections are finalized.
2ea97941
ILT
5149 Output_section* os = relobj->output_section(shndx);
5150 off_t offset = relobj->output_section_offset(shndx);
5151 gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
5152 this->set_address(os->address() + offset);
5153 this->set_file_offset(os->offset() + offset);
10ad9fe5
DK
5154
5155 this->set_current_data_size(this->original_size_);
5156 this->finalize_data_size();
5157}
5158
5159template<bool big_endian>
5160void
5161Arm_input_section<big_endian>::do_write(Output_file* of)
5162{
5163 // We have to write out the original section content.
f625ae50
DK
5164 gold_assert(this->original_contents_ != NULL);
5165 of->write(this->offset(), this->original_contents_,
2e702c99 5166 this->original_size_);
10ad9fe5
DK
5167
5168 // If this owns a stub table and it is not empty, write it.
5169 if (this->is_stub_table_owner() && !this->stub_table_->empty())
5170 this->stub_table_->write(of);
5171}
5172
5173// Finalize data size.
5174
5175template<bool big_endian>
5176void
5177Arm_input_section<big_endian>::set_final_data_size()
5178{
153e7da4
DK
5179 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5180
10ad9fe5
DK
5181 if (this->is_stub_table_owner())
5182 {
6625d24e 5183 this->stub_table_->finalize_data_size();
153e7da4 5184 off = align_address(off, this->stub_table_->addralign());
153e7da4 5185 off += this->stub_table_->data_size();
10ad9fe5 5186 }
153e7da4 5187 this->set_data_size(off);
10ad9fe5
DK
5188}
5189
5190// Reset address and file offset.
5191
5192template<bool big_endian>
5193void
5194Arm_input_section<big_endian>::do_reset_address_and_file_offset()
5195{
5196 // Size of the original input section contents.
5197 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5198
5199 // If this is a stub table owner, account for the stub table size.
5200 if (this->is_stub_table_owner())
5201 {
2ea97941 5202 Stub_table<big_endian>* stub_table = this->stub_table_;
10ad9fe5
DK
5203
5204 // Reset the stub table's address and file offset. The
5205 // current data size for child will be updated after that.
5206 stub_table_->reset_address_and_file_offset();
5207 off = align_address(off, stub_table_->addralign());
2ea97941 5208 off += stub_table->current_data_size();
10ad9fe5
DK
5209 }
5210
5211 this->set_current_data_size(off);
5212}
5213
af2cdeae
DK
5214// Arm_exidx_cantunwind methods.
5215
7296d933 5216// Write this to Output file OF for a fixed endianness.
af2cdeae
DK
5217
5218template<bool big_endian>
5219void
5220Arm_exidx_cantunwind::do_fixed_endian_write(Output_file* of)
5221{
5222 off_t offset = this->offset();
5223 const section_size_type oview_size = 8;
5224 unsigned char* const oview = of->get_output_view(offset, oview_size);
2e702c99 5225
af2cdeae
DK
5226 Output_section* os = this->relobj_->output_section(this->shndx_);
5227 gold_assert(os != NULL);
5228
5229 Arm_relobj<big_endian>* arm_relobj =
5230 Arm_relobj<big_endian>::as_arm_relobj(this->relobj_);
5231 Arm_address output_offset =
5232 arm_relobj->get_output_section_offset(this->shndx_);
5233 Arm_address section_start;
f625ae50
DK
5234 section_size_type section_size;
5235
5236 // Find out the end of the text section referred by this.
7296d933 5237 if (output_offset != Arm_relobj<big_endian>::invalid_address)
f625ae50
DK
5238 {
5239 section_start = os->address() + output_offset;
5240 const Arm_exidx_input_section* exidx_input_section =
2e702c99 5241 arm_relobj->exidx_input_section_by_link(this->shndx_);
f625ae50
DK
5242 gold_assert(exidx_input_section != NULL);
5243 section_size =
5244 convert_to_section_size_type(exidx_input_section->text_size());
5245 }
af2cdeae
DK
5246 else
5247 {
5248 // Currently this only happens for a relaxed section.
5249 const Output_relaxed_input_section* poris =
5250 os->find_relaxed_input_section(this->relobj_, this->shndx_);
5251 gold_assert(poris != NULL);
5252 section_start = poris->address();
f625ae50 5253 section_size = convert_to_section_size_type(poris->data_size());
af2cdeae
DK
5254 }
5255
5256 // We always append this to the end of an EXIDX section.
f625ae50 5257 Arm_address output_address = section_start + section_size;
af2cdeae
DK
5258
5259 // Write out the entry. The first word either points to the beginning
5260 // or after the end of a text section. The second word is the special
5261 // EXIDX_CANTUNWIND value.
e7eca48c 5262 uint32_t prel31_offset = output_address - this->address();
bef2b434 5263 if (Bits<31>::has_overflow32(offset))
e7eca48c 5264 gold_error(_("PREL31 overflow in EXIDX_CANTUNWIND entry"));
f6cccc2c
DK
5265 elfcpp::Swap_unaligned<32, big_endian>::writeval(oview,
5266 prel31_offset & 0x7fffffffU);
5267 elfcpp::Swap_unaligned<32, big_endian>::writeval(oview + 4,
5268 elfcpp::EXIDX_CANTUNWIND);
af2cdeae
DK
5269
5270 of->write_output_view(this->offset(), oview_size, oview);
5271}
5272
5273// Arm_exidx_merged_section methods.
5274
5275// Constructor for Arm_exidx_merged_section.
5276// EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
5277// SECTION_OFFSET_MAP points to a section offset map describing how
5278// parts of the input section are mapped to output. DELETED_BYTES is
5279// the number of bytes deleted from the EXIDX input section.
5280
5281Arm_exidx_merged_section::Arm_exidx_merged_section(
5282 const Arm_exidx_input_section& exidx_input_section,
5283 const Arm_exidx_section_offset_map& section_offset_map,
5284 uint32_t deleted_bytes)
5285 : Output_relaxed_input_section(exidx_input_section.relobj(),
5286 exidx_input_section.shndx(),
5287 exidx_input_section.addralign()),
5288 exidx_input_section_(exidx_input_section),
5289 section_offset_map_(section_offset_map)
5290{
f625ae50
DK
5291 // If we retain or discard the whole EXIDX input section, we would
5292 // not be here.
5293 gold_assert(deleted_bytes != 0
5294 && deleted_bytes != this->exidx_input_section_.size());
5295
af2cdeae 5296 // Fix size here so that we do not need to implement set_final_data_size.
f625ae50
DK
5297 uint32_t size = exidx_input_section.size() - deleted_bytes;
5298 this->set_data_size(size);
af2cdeae 5299 this->fix_data_size();
f625ae50
DK
5300
5301 // Allocate buffer for section contents and build contents.
5302 this->section_contents_ = new unsigned char[size];
5303}
5304
5305// Build the contents of a merged EXIDX output section.
5306
5307void
5308Arm_exidx_merged_section::build_contents(
5309 const unsigned char* original_contents,
5310 section_size_type original_size)
5311{
5312 // Go over spans of input offsets and write only those that are not
5313 // discarded.
5314 section_offset_type in_start = 0;
5315 section_offset_type out_start = 0;
5316 section_offset_type in_max =
5317 convert_types<section_offset_type>(original_size);
5318 section_offset_type out_max =
5319 convert_types<section_offset_type>(this->data_size());
5320 for (Arm_exidx_section_offset_map::const_iterator p =
2e702c99 5321 this->section_offset_map_.begin();
f625ae50
DK
5322 p != this->section_offset_map_.end();
5323 ++p)
5324 {
5325 section_offset_type in_end = p->first;
5326 gold_assert(in_end >= in_start);
5327 section_offset_type out_end = p->second;
5328 size_t in_chunk_size = convert_types<size_t>(in_end - in_start + 1);
5329 if (out_end != -1)
5330 {
5331 size_t out_chunk_size =
5332 convert_types<size_t>(out_end - out_start + 1);
5333
5334 gold_assert(out_chunk_size == in_chunk_size
5335 && in_end < in_max && out_end < out_max);
5336
5337 memcpy(this->section_contents_ + out_start,
5338 original_contents + in_start,
5339 out_chunk_size);
5340 out_start += out_chunk_size;
5341 }
5342 in_start += in_chunk_size;
5343 }
af2cdeae
DK
5344}
5345
5346// Given an input OBJECT, an input section index SHNDX within that
5347// object, and an OFFSET relative to the start of that input
5348// section, return whether or not the corresponding offset within
5349// the output section is known. If this function returns true, it
5350// sets *POUTPUT to the output offset. The value -1 indicates that
5351// this input offset is being discarded.
5352
5353bool
5354Arm_exidx_merged_section::do_output_offset(
5355 const Relobj* relobj,
5356 unsigned int shndx,
5357 section_offset_type offset,
5358 section_offset_type* poutput) const
5359{
5360 // We only handle offsets for the original EXIDX input section.
5361 if (relobj != this->exidx_input_section_.relobj()
5362 || shndx != this->exidx_input_section_.shndx())
5363 return false;
5364
c7f3c371
DK
5365 section_offset_type section_size =
5366 convert_types<section_offset_type>(this->exidx_input_section_.size());
5367 if (offset < 0 || offset >= section_size)
af2cdeae
DK
5368 // Input offset is out of valid range.
5369 *poutput = -1;
5370 else
5371 {
5372 // We need to look up the section offset map to determine the output
5373 // offset. Find the reference point in map that is first offset
5374 // bigger than or equal to this offset.
5375 Arm_exidx_section_offset_map::const_iterator p =
5376 this->section_offset_map_.lower_bound(offset);
5377
5378 // The section offset maps are build such that this should not happen if
5379 // input offset is in the valid range.
5380 gold_assert(p != this->section_offset_map_.end());
5381
5382 // We need to check if this is dropped.
5383 section_offset_type ref = p->first;
5384 section_offset_type mapped_ref = p->second;
5385
5386 if (mapped_ref != Arm_exidx_input_section::invalid_offset)
5387 // Offset is present in output.
5388 *poutput = mapped_ref + (offset - ref);
5389 else
5390 // Offset is discarded owing to EXIDX entry merging.
5391 *poutput = -1;
5392 }
2e702c99 5393
af2cdeae
DK
5394 return true;
5395}
5396
5397// Write this to output file OF.
5398
5399void
5400Arm_exidx_merged_section::do_write(Output_file* of)
5401{
af2cdeae
DK
5402 off_t offset = this->offset();
5403 const section_size_type oview_size = this->data_size();
5404 unsigned char* const oview = of->get_output_view(offset, oview_size);
2e702c99 5405
af2cdeae
DK
5406 Output_section* os = this->relobj()->output_section(this->shndx());
5407 gold_assert(os != NULL);
5408
f625ae50 5409 memcpy(oview, this->section_contents_, oview_size);
af2cdeae
DK
5410 of->write_output_view(this->offset(), oview_size, oview);
5411}
5412
80d0d023
DK
5413// Arm_exidx_fixup methods.
5414
5415// Append an EXIDX_CANTUNWIND in the current output section if the last entry
5416// is not an EXIDX_CANTUNWIND entry already. The new EXIDX_CANTUNWIND entry
5417// points to the end of the last seen EXIDX section.
5418
5419void
5420Arm_exidx_fixup::add_exidx_cantunwind_as_needed()
5421{
5422 if (this->last_unwind_type_ != UT_EXIDX_CANTUNWIND
5423 && this->last_input_section_ != NULL)
5424 {
5425 Relobj* relobj = this->last_input_section_->relobj();
2b328d4e 5426 unsigned int text_shndx = this->last_input_section_->link();
80d0d023 5427 Arm_exidx_cantunwind* cantunwind =
2b328d4e 5428 new Arm_exidx_cantunwind(relobj, text_shndx);
80d0d023
DK
5429 this->exidx_output_section_->add_output_section_data(cantunwind);
5430 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5431 }
5432}
5433
5434// Process an EXIDX section entry in input. Return whether this entry
5435// can be deleted in the output. SECOND_WORD in the second word of the
5436// EXIDX entry.
5437
5438bool
5439Arm_exidx_fixup::process_exidx_entry(uint32_t second_word)
5440{
5441 bool delete_entry;
5442 if (second_word == elfcpp::EXIDX_CANTUNWIND)
5443 {
5444 // Merge if previous entry is also an EXIDX_CANTUNWIND.
5445 delete_entry = this->last_unwind_type_ == UT_EXIDX_CANTUNWIND;
5446 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5447 }
5448 else if ((second_word & 0x80000000) != 0)
5449 {
5450 // Inlined unwinding data. Merge if equal to previous.
85fdf906
AH
5451 delete_entry = (merge_exidx_entries_
5452 && this->last_unwind_type_ == UT_INLINED_ENTRY
80d0d023
DK
5453 && this->last_inlined_entry_ == second_word);
5454 this->last_unwind_type_ = UT_INLINED_ENTRY;
5455 this->last_inlined_entry_ = second_word;
5456 }
5457 else
5458 {
5459 // Normal table entry. In theory we could merge these too,
5460 // but duplicate entries are likely to be much less common.
5461 delete_entry = false;
5462 this->last_unwind_type_ = UT_NORMAL_ENTRY;
5463 }
5464 return delete_entry;
5465}
5466
5467// Update the current section offset map during EXIDX section fix-up.
5468// If there is no map, create one. INPUT_OFFSET is the offset of a
5469// reference point, DELETED_BYTES is the number of deleted by in the
5470// section so far. If DELETE_ENTRY is true, the reference point and
5471// all offsets after the previous reference point are discarded.
5472
5473void
5474Arm_exidx_fixup::update_offset_map(
5475 section_offset_type input_offset,
5476 section_size_type deleted_bytes,
5477 bool delete_entry)
5478{
5479 if (this->section_offset_map_ == NULL)
5480 this->section_offset_map_ = new Arm_exidx_section_offset_map();
4fcd97eb
DK
5481 section_offset_type output_offset;
5482 if (delete_entry)
5483 output_offset = Arm_exidx_input_section::invalid_offset;
5484 else
5485 output_offset = input_offset - deleted_bytes;
80d0d023
DK
5486 (*this->section_offset_map_)[input_offset] = output_offset;
5487}
5488
5489// Process EXIDX_INPUT_SECTION for EXIDX entry merging. Return the number of
f625ae50
DK
5490// bytes deleted. SECTION_CONTENTS points to the contents of the EXIDX
5491// section and SECTION_SIZE is the number of bytes pointed by SECTION_CONTENTS.
5492// If some entries are merged, also store a pointer to a newly created
5493// Arm_exidx_section_offset_map object in *PSECTION_OFFSET_MAP. The caller
5494// owns the map and is responsible for releasing it after use.
80d0d023
DK
5495
5496template<bool big_endian>
5497uint32_t
5498Arm_exidx_fixup::process_exidx_section(
5499 const Arm_exidx_input_section* exidx_input_section,
f625ae50
DK
5500 const unsigned char* section_contents,
5501 section_size_type section_size,
80d0d023
DK
5502 Arm_exidx_section_offset_map** psection_offset_map)
5503{
5504 Relobj* relobj = exidx_input_section->relobj();
5505 unsigned shndx = exidx_input_section->shndx();
80d0d023
DK
5506
5507 if ((section_size % 8) != 0)
5508 {
5509 // Something is wrong with this section. Better not touch it.
5510 gold_error(_("uneven .ARM.exidx section size in %s section %u"),
5511 relobj->name().c_str(), shndx);
5512 this->last_input_section_ = exidx_input_section;
5513 this->last_unwind_type_ = UT_NONE;
5514 return 0;
5515 }
2e702c99 5516
80d0d023
DK
5517 uint32_t deleted_bytes = 0;
5518 bool prev_delete_entry = false;
5519 gold_assert(this->section_offset_map_ == NULL);
5520
5521 for (section_size_type i = 0; i < section_size; i += 8)
5522 {
5523 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5524 const Valtype* wv =
5525 reinterpret_cast<const Valtype*>(section_contents + i + 4);
5526 uint32_t second_word = elfcpp::Swap<32, big_endian>::readval(wv);
5527
5528 bool delete_entry = this->process_exidx_entry(second_word);
5529
5530 // Entry deletion causes changes in output offsets. We use a std::map
5531 // to record these. And entry (x, y) means input offset x
5532 // is mapped to output offset y. If y is invalid_offset, then x is
5533 // dropped in the output. Because of the way std::map::lower_bound
5534 // works, we record the last offset in a region w.r.t to keeping or
5535 // dropping. If there is no entry (x0, y0) for an input offset x0,
5536 // the output offset y0 of it is determined by the output offset y1 of
5537 // the smallest input offset x1 > x0 that there is an (x1, y1) entry
9b547ce6 5538 // in the map. If y1 is not -1, then y0 = y1 + x0 - x1. Otherwise, y1
80d0d023
DK
5539 // y0 is also -1.
5540 if (delete_entry != prev_delete_entry && i != 0)
5541 this->update_offset_map(i - 1, deleted_bytes, prev_delete_entry);
5542
5543 // Update total deleted bytes for this entry.
5544 if (delete_entry)
5545 deleted_bytes += 8;
5546
5547 prev_delete_entry = delete_entry;
5548 }
2e702c99 5549
80d0d023
DK
5550 // If section offset map is not NULL, make an entry for the end of
5551 // section.
5552 if (this->section_offset_map_ != NULL)
5553 update_offset_map(section_size - 1, deleted_bytes, prev_delete_entry);
5554
5555 *psection_offset_map = this->section_offset_map_;
5556 this->section_offset_map_ = NULL;
5557 this->last_input_section_ = exidx_input_section;
2e702c99 5558
546c7457
DK
5559 // Set the first output text section so that we can link the EXIDX output
5560 // section to it. Ignore any EXIDX input section that is completely merged.
5561 if (this->first_output_text_section_ == NULL
5562 && deleted_bytes != section_size)
5563 {
5564 unsigned int link = exidx_input_section->link();
5565 Output_section* os = relobj->output_section(link);
5566 gold_assert(os != NULL);
5567 this->first_output_text_section_ = os;
5568 }
5569
80d0d023
DK
5570 return deleted_bytes;
5571}
5572
07f508a2
DK
5573// Arm_output_section methods.
5574
5575// Create a stub group for input sections from BEGIN to END. OWNER
5576// points to the input section to be the owner a new stub table.
5577
5578template<bool big_endian>
5579void
5580Arm_output_section<big_endian>::create_stub_group(
5581 Input_section_list::const_iterator begin,
5582 Input_section_list::const_iterator end,
5583 Input_section_list::const_iterator owner,
5584 Target_arm<big_endian>* target,
f625ae50
DK
5585 std::vector<Output_relaxed_input_section*>* new_relaxed_sections,
5586 const Task* task)
07f508a2 5587{
2b328d4e
DK
5588 // We use a different kind of relaxed section in an EXIDX section.
5589 // The static casting from Output_relaxed_input_section to
5590 // Arm_input_section is invalid in an EXIDX section. We are okay
2e702c99 5591 // because we should not be calling this for an EXIDX section.
2b328d4e
DK
5592 gold_assert(this->type() != elfcpp::SHT_ARM_EXIDX);
5593
07f508a2
DK
5594 // Currently we convert ordinary input sections into relaxed sections only
5595 // at this point but we may want to support creating relaxed input section
5596 // very early. So we check here to see if owner is already a relaxed
5597 // section.
2e702c99 5598
07f508a2
DK
5599 Arm_input_section<big_endian>* arm_input_section;
5600 if (owner->is_relaxed_input_section())
5601 {
5602 arm_input_section =
5603 Arm_input_section<big_endian>::as_arm_input_section(
5604 owner->relaxed_input_section());
5605 }
5606 else
5607 {
5608 gold_assert(owner->is_input_section());
f625ae50
DK
5609 // Create a new relaxed input section. We need to lock the original
5610 // file.
5611 Task_lock_obj<Object> tl(task, owner->relobj());
07f508a2
DK
5612 arm_input_section =
5613 target->new_arm_input_section(owner->relobj(), owner->shndx());
5614 new_relaxed_sections->push_back(arm_input_section);
5615 }
5616
5617 // Create a stub table.
2ea97941 5618 Stub_table<big_endian>* stub_table =
07f508a2
DK
5619 target->new_stub_table(arm_input_section);
5620
2ea97941 5621 arm_input_section->set_stub_table(stub_table);
2e702c99 5622
07f508a2
DK
5623 Input_section_list::const_iterator p = begin;
5624 Input_section_list::const_iterator prev_p;
5625
5626 // Look for input sections or relaxed input sections in [begin ... end].
5627 do
5628 {
5629 if (p->is_input_section() || p->is_relaxed_input_section())
5630 {
5631 // The stub table information for input sections live
5632 // in their objects.
5633 Arm_relobj<big_endian>* arm_relobj =
5634 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
2ea97941 5635 arm_relobj->set_stub_table(p->shndx(), stub_table);
07f508a2
DK
5636 }
5637 prev_p = p++;
5638 }
5639 while (prev_p != end);
5640}
5641
5642// Group input sections for stub generation. GROUP_SIZE is roughly the limit
5643// of stub groups. We grow a stub group by adding input section until the
5644// size is just below GROUP_SIZE. The last input section will be converted
5645// into a stub table. If STUB_ALWAYS_AFTER_BRANCH is false, we also add
5646// input section after the stub table, effectively double the group size.
2e702c99 5647//
07f508a2
DK
5648// This is similar to the group_sections() function in elf32-arm.c but is
5649// implemented differently.
5650
5651template<bool big_endian>
5652void
5653Arm_output_section<big_endian>::group_sections(
5654 section_size_type group_size,
5655 bool stubs_always_after_branch,
f625ae50
DK
5656 Target_arm<big_endian>* target,
5657 const Task* task)
07f508a2 5658{
07f508a2
DK
5659 // States for grouping.
5660 typedef enum
5661 {
5662 // No group is being built.
5663 NO_GROUP,
5664 // A group is being built but the stub table is not found yet.
5665 // We keep group a stub group until the size is just under GROUP_SIZE.
5666 // The last input section in the group will be used as the stub table.
5667 FINDING_STUB_SECTION,
5668 // A group is being built and we have already found a stub table.
5669 // We enter this state to grow a stub group by adding input section
5670 // after the stub table. This effectively doubles the group size.
5671 HAS_STUB_SECTION
5672 } State;
5673
5674 // Any newly created relaxed sections are stored here.
5675 std::vector<Output_relaxed_input_section*> new_relaxed_sections;
5676
5677 State state = NO_GROUP;
5678 section_size_type off = 0;
5679 section_size_type group_begin_offset = 0;
5680 section_size_type group_end_offset = 0;
5681 section_size_type stub_table_end_offset = 0;
5682 Input_section_list::const_iterator group_begin =
5683 this->input_sections().end();
2ea97941 5684 Input_section_list::const_iterator stub_table =
07f508a2
DK
5685 this->input_sections().end();
5686 Input_section_list::const_iterator group_end = this->input_sections().end();
5687 for (Input_section_list::const_iterator p = this->input_sections().begin();
5688 p != this->input_sections().end();
5689 ++p)
5690 {
5691 section_size_type section_begin_offset =
5692 align_address(off, p->addralign());
5693 section_size_type section_end_offset =
2e702c99
RM
5694 section_begin_offset + p->data_size();
5695
9b547ce6 5696 // Check to see if we should group the previously seen sections.
e9bbb538 5697 switch (state)
07f508a2
DK
5698 {
5699 case NO_GROUP:
5700 break;
5701
5702 case FINDING_STUB_SECTION:
5703 // Adding this section makes the group larger than GROUP_SIZE.
5704 if (section_end_offset - group_begin_offset >= group_size)
5705 {
5706 if (stubs_always_after_branch)
2e702c99 5707 {
07f508a2
DK
5708 gold_assert(group_end != this->input_sections().end());
5709 this->create_stub_group(group_begin, group_end, group_end,
f625ae50
DK
5710 target, &new_relaxed_sections,
5711 task);
07f508a2
DK
5712 state = NO_GROUP;
5713 }
5714 else
5715 {
5716 // But wait, there's more! Input sections up to
5717 // stub_group_size bytes after the stub table can be
5718 // handled by it too.
5719 state = HAS_STUB_SECTION;
2ea97941 5720 stub_table = group_end;
07f508a2
DK
5721 stub_table_end_offset = group_end_offset;
5722 }
5723 }
5724 break;
5725
5726 case HAS_STUB_SECTION:
5727 // Adding this section makes the post stub-section group larger
5728 // than GROUP_SIZE.
5729 if (section_end_offset - stub_table_end_offset >= group_size)
5730 {
5731 gold_assert(group_end != this->input_sections().end());
2ea97941 5732 this->create_stub_group(group_begin, group_end, stub_table,
f625ae50 5733 target, &new_relaxed_sections, task);
07f508a2
DK
5734 state = NO_GROUP;
5735 }
5736 break;
5737
5738 default:
5739 gold_unreachable();
2e702c99 5740 }
07f508a2
DK
5741
5742 // If we see an input section and currently there is no group, start
f625ae50
DK
5743 // a new one. Skip any empty sections. We look at the data size
5744 // instead of calling p->relobj()->section_size() to avoid locking.
07f508a2 5745 if ((p->is_input_section() || p->is_relaxed_input_section())
f625ae50 5746 && (p->data_size() != 0))
07f508a2
DK
5747 {
5748 if (state == NO_GROUP)
5749 {
5750 state = FINDING_STUB_SECTION;
5751 group_begin = p;
5752 group_begin_offset = section_begin_offset;
5753 }
5754
5755 // Keep track of the last input section seen.
5756 group_end = p;
5757 group_end_offset = section_end_offset;
5758 }
5759
5760 off = section_end_offset;
5761 }
5762
5763 // Create a stub group for any ungrouped sections.
5764 if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
5765 {
5766 gold_assert(group_end != this->input_sections().end());
5767 this->create_stub_group(group_begin, group_end,
5768 (state == FINDING_STUB_SECTION
5769 ? group_end
2ea97941 5770 : stub_table),
f625ae50 5771 target, &new_relaxed_sections, task);
07f508a2
DK
5772 }
5773
5774 // Convert input section into relaxed input section in a batch.
5775 if (!new_relaxed_sections.empty())
5776 this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
5777
5778 // Update the section offsets
5779 for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
5780 {
5781 Arm_relobj<big_endian>* arm_relobj =
5782 Arm_relobj<big_endian>::as_arm_relobj(
5783 new_relaxed_sections[i]->relobj());
2ea97941 5784 unsigned int shndx = new_relaxed_sections[i]->shndx();
07f508a2 5785 // Tell Arm_relobj that this input section is converted.
2ea97941 5786 arm_relobj->convert_input_section_to_relaxed_section(shndx);
07f508a2
DK
5787 }
5788}
5789
2b328d4e
DK
5790// Append non empty text sections in this to LIST in ascending
5791// order of their position in this.
5792
5793template<bool big_endian>
5794void
5795Arm_output_section<big_endian>::append_text_sections_to_list(
5796 Text_section_list* list)
5797{
2b328d4e
DK
5798 gold_assert((this->flags() & elfcpp::SHF_ALLOC) != 0);
5799
5800 for (Input_section_list::const_iterator p = this->input_sections().begin();
5801 p != this->input_sections().end();
5802 ++p)
5803 {
5804 // We only care about plain or relaxed input sections. We also
5805 // ignore any merged sections.
a60af0db 5806 if (p->is_input_section() || p->is_relaxed_input_section())
2b328d4e
DK
5807 list->push_back(Text_section_list::value_type(p->relobj(),
5808 p->shndx()));
5809 }
5810}
5811
5812template<bool big_endian>
5813void
5814Arm_output_section<big_endian>::fix_exidx_coverage(
4a54abbb 5815 Layout* layout,
2b328d4e 5816 const Text_section_list& sorted_text_sections,
85fdf906 5817 Symbol_table* symtab,
f625ae50
DK
5818 bool merge_exidx_entries,
5819 const Task* task)
2b328d4e
DK
5820{
5821 // We should only do this for the EXIDX output section.
5822 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
5823
5824 // We don't want the relaxation loop to undo these changes, so we discard
5825 // the current saved states and take another one after the fix-up.
5826 this->discard_states();
5827
5828 // Remove all input sections.
5829 uint64_t address = this->address();
6625d24e
DK
5830 typedef std::list<Output_section::Input_section> Input_section_list;
5831 Input_section_list input_sections;
2b328d4e
DK
5832 this->reset_address_and_file_offset();
5833 this->get_input_sections(address, std::string(""), &input_sections);
5834
5835 if (!this->input_sections().empty())
5836 gold_error(_("Found non-EXIDX input sections in EXIDX output section"));
2e702c99 5837
2b328d4e
DK
5838 // Go through all the known input sections and record them.
5839 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
6625d24e
DK
5840 typedef Unordered_map<Section_id, const Output_section::Input_section*,
5841 Section_id_hash> Text_to_exidx_map;
5842 Text_to_exidx_map text_to_exidx_map;
5843 for (Input_section_list::const_iterator p = input_sections.begin();
2b328d4e
DK
5844 p != input_sections.end();
5845 ++p)
5846 {
5847 // This should never happen. At this point, we should only see
5848 // plain EXIDX input sections.
5849 gold_assert(!p->is_relaxed_input_section());
6625d24e 5850 text_to_exidx_map[Section_id(p->relobj(), p->shndx())] = &(*p);
2b328d4e
DK
5851 }
5852
85fdf906 5853 Arm_exidx_fixup exidx_fixup(this, merge_exidx_entries);
2b328d4e
DK
5854
5855 // Go over the sorted text sections.
6625d24e 5856 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
2b328d4e
DK
5857 Section_id_set processed_input_sections;
5858 for (Text_section_list::const_iterator p = sorted_text_sections.begin();
5859 p != sorted_text_sections.end();
5860 ++p)
5861 {
5862 Relobj* relobj = p->first;
5863 unsigned int shndx = p->second;
5864
5865 Arm_relobj<big_endian>* arm_relobj =
5866 Arm_relobj<big_endian>::as_arm_relobj(relobj);
5867 const Arm_exidx_input_section* exidx_input_section =
5868 arm_relobj->exidx_input_section_by_link(shndx);
5869
131687b4
DK
5870 // If this text section has no EXIDX section or if the EXIDX section
5871 // has errors, force an EXIDX_CANTUNWIND entry pointing to the end
5872 // of the last seen EXIDX section.
5873 if (exidx_input_section == NULL || exidx_input_section->has_errors())
2b328d4e
DK
5874 {
5875 exidx_fixup.add_exidx_cantunwind_as_needed();
5876 continue;
5877 }
5878
5879 Relobj* exidx_relobj = exidx_input_section->relobj();
5880 unsigned int exidx_shndx = exidx_input_section->shndx();
5881 Section_id sid(exidx_relobj, exidx_shndx);
6625d24e
DK
5882 Text_to_exidx_map::const_iterator iter = text_to_exidx_map.find(sid);
5883 if (iter == text_to_exidx_map.end())
2b328d4e
DK
5884 {
5885 // This is odd. We have not seen this EXIDX input section before.
4a54abbb
DK
5886 // We cannot do fix-up. If we saw a SECTIONS clause in a script,
5887 // issue a warning instead. We assume the user knows what he
5888 // or she is doing. Otherwise, this is an error.
5889 if (layout->script_options()->saw_sections_clause())
5890 gold_warning(_("unwinding may not work because EXIDX input section"
5891 " %u of %s is not in EXIDX output section"),
5892 exidx_shndx, exidx_relobj->name().c_str());
5893 else
5894 gold_error(_("unwinding may not work because EXIDX input section"
5895 " %u of %s is not in EXIDX output section"),
5896 exidx_shndx, exidx_relobj->name().c_str());
5897
2b328d4e
DK
5898 exidx_fixup.add_exidx_cantunwind_as_needed();
5899 continue;
5900 }
5901
f625ae50
DK
5902 // We need to access the contents of the EXIDX section, lock the
5903 // object here.
5904 Task_lock_obj<Object> tl(task, exidx_relobj);
5905 section_size_type exidx_size;
5906 const unsigned char* exidx_contents =
2e702c99 5907 exidx_relobj->section_contents(exidx_shndx, &exidx_size, false);
f625ae50 5908
2b328d4e
DK
5909 // Fix up coverage and append input section to output data list.
5910 Arm_exidx_section_offset_map* section_offset_map = NULL;
5911 uint32_t deleted_bytes =
2e702c99 5912 exidx_fixup.process_exidx_section<big_endian>(exidx_input_section,
f625ae50
DK
5913 exidx_contents,
5914 exidx_size,
2b328d4e
DK
5915 &section_offset_map);
5916
5917 if (deleted_bytes == exidx_input_section->size())
5918 {
5919 // The whole EXIDX section got merged. Remove it from output.
5920 gold_assert(section_offset_map == NULL);
5921 exidx_relobj->set_output_section(exidx_shndx, NULL);
e7eca48c
DK
5922
5923 // All local symbols defined in this input section will be dropped.
5924 // We need to adjust output local symbol count.
5925 arm_relobj->set_output_local_symbol_count_needs_update();
2b328d4e
DK
5926 }
5927 else if (deleted_bytes > 0)
5928 {
5929 // Some entries are merged. We need to convert this EXIDX input
5930 // section into a relaxed section.
5931 gold_assert(section_offset_map != NULL);
f625ae50 5932
2b328d4e
DK
5933 Arm_exidx_merged_section* merged_section =
5934 new Arm_exidx_merged_section(*exidx_input_section,
5935 *section_offset_map, deleted_bytes);
f625ae50
DK
5936 merged_section->build_contents(exidx_contents, exidx_size);
5937
d06fb4d1
DK
5938 const std::string secname = exidx_relobj->section_name(exidx_shndx);
5939 this->add_relaxed_input_section(layout, merged_section, secname);
2b328d4e 5940 arm_relobj->convert_input_section_to_relaxed_section(exidx_shndx);
e7eca48c
DK
5941
5942 // All local symbols defined in discarded portions of this input
5943 // section will be dropped. We need to adjust output local symbol
5944 // count.
5945 arm_relobj->set_output_local_symbol_count_needs_update();
2b328d4e
DK
5946 }
5947 else
5948 {
5949 // Just add back the EXIDX input section.
5950 gold_assert(section_offset_map == NULL);
6625d24e
DK
5951 const Output_section::Input_section* pis = iter->second;
5952 gold_assert(pis->is_input_section());
5953 this->add_script_input_section(*pis);
2b328d4e
DK
5954 }
5955
2e702c99 5956 processed_input_sections.insert(Section_id(exidx_relobj, exidx_shndx));
2b328d4e
DK
5957 }
5958
5959 // Insert an EXIDX_CANTUNWIND entry at the end of output if necessary.
5960 exidx_fixup.add_exidx_cantunwind_as_needed();
5961
5962 // Remove any known EXIDX input sections that are not processed.
6625d24e 5963 for (Input_section_list::const_iterator p = input_sections.begin();
2b328d4e
DK
5964 p != input_sections.end();
5965 ++p)
5966 {
5967 if (processed_input_sections.find(Section_id(p->relobj(), p->shndx()))
5968 == processed_input_sections.end())
5969 {
131687b4
DK
5970 // We discard a known EXIDX section because its linked
5971 // text section has been folded by ICF. We also discard an
5972 // EXIDX section with error, the output does not matter in this
5973 // case. We do this to avoid triggering asserts.
2b328d4e
DK
5974 Arm_relobj<big_endian>* arm_relobj =
5975 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5976 const Arm_exidx_input_section* exidx_input_section =
5977 arm_relobj->exidx_input_section_by_shndx(p->shndx());
5978 gold_assert(exidx_input_section != NULL);
131687b4
DK
5979 if (!exidx_input_section->has_errors())
5980 {
5981 unsigned int text_shndx = exidx_input_section->link();
5982 gold_assert(symtab->is_section_folded(p->relobj(), text_shndx));
5983 }
2b328d4e 5984
04ceb17c
DK
5985 // Remove this from link. We also need to recount the
5986 // local symbols.
2b328d4e 5987 p->relobj()->set_output_section(p->shndx(), NULL);
04ceb17c 5988 arm_relobj->set_output_local_symbol_count_needs_update();
2b328d4e
DK
5989 }
5990 }
2e702c99 5991
546c7457
DK
5992 // Link exidx output section to the first seen output section and
5993 // set correct entry size.
5994 this->set_link_section(exidx_fixup.first_output_text_section());
5995 this->set_entsize(8);
5996
2b328d4e
DK
5997 // Make changes permanent.
5998 this->save_states();
5999 this->set_section_offsets_need_adjustment();
6000}
6001
131687b4
DK
6002// Link EXIDX output sections to text output sections.
6003
6004template<bool big_endian>
6005void
6006Arm_output_section<big_endian>::set_exidx_section_link()
6007{
6008 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
6009 if (!this->input_sections().empty())
6010 {
6011 Input_section_list::const_iterator p = this->input_sections().begin();
6012 Arm_relobj<big_endian>* arm_relobj =
6013 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
6014 unsigned exidx_shndx = p->shndx();
6015 const Arm_exidx_input_section* exidx_input_section =
6016 arm_relobj->exidx_input_section_by_shndx(exidx_shndx);
6017 gold_assert(exidx_input_section != NULL);
6018 unsigned int text_shndx = exidx_input_section->link();
6019 Output_section* os = arm_relobj->output_section(text_shndx);
6020 this->set_link_section(os);
6021 }
6022}
6023
8ffa3667
DK
6024// Arm_relobj methods.
6025
cf846138
DK
6026// Determine if an input section is scannable for stub processing. SHDR is
6027// the header of the section and SHNDX is the section index. OS is the output
6028// section for the input section and SYMTAB is the global symbol table used to
6029// look up ICF information.
6030
6031template<bool big_endian>
6032bool
6033Arm_relobj<big_endian>::section_is_scannable(
6034 const elfcpp::Shdr<32, big_endian>& shdr,
6035 unsigned int shndx,
6036 const Output_section* os,
ca09d69a 6037 const Symbol_table* symtab)
cf846138
DK
6038{
6039 // Skip any empty sections, unallocated sections or sections whose
6040 // type are not SHT_PROGBITS.
6041 if (shdr.get_sh_size() == 0
6042 || (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
6043 || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
6044 return false;
6045
6046 // Skip any discarded or ICF'ed sections.
6047 if (os == NULL || symtab->is_section_folded(this, shndx))
6048 return false;
6049
6050 // If this requires special offset handling, check to see if it is
6051 // a relaxed section. If this is not, then it is a merged section that
6052 // we cannot handle.
6053 if (this->is_output_section_offset_invalid(shndx))
6054 {
6055 const Output_relaxed_input_section* poris =
6056 os->find_relaxed_input_section(this, shndx);
6057 if (poris == NULL)
6058 return false;
6059 }
6060
6061 return true;
6062}
6063
44272192
DK
6064// Determine if we want to scan the SHNDX-th section for relocation stubs.
6065// This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6066
6067template<bool big_endian>
6068bool
6069Arm_relobj<big_endian>::section_needs_reloc_stub_scanning(
6070 const elfcpp::Shdr<32, big_endian>& shdr,
6071 const Relobj::Output_sections& out_sections,
ca09d69a 6072 const Symbol_table* symtab,
2b328d4e 6073 const unsigned char* pshdrs)
44272192
DK
6074{
6075 unsigned int sh_type = shdr.get_sh_type();
6076 if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
6077 return false;
6078
6079 // Ignore empty section.
6080 off_t sh_size = shdr.get_sh_size();
6081 if (sh_size == 0)
6082 return false;
6083
44272192
DK
6084 // Ignore reloc section with unexpected symbol table. The
6085 // error will be reported in the final link.
6086 if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
6087 return false;
6088
b521dfe4
DK
6089 unsigned int reloc_size;
6090 if (sh_type == elfcpp::SHT_REL)
6091 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6092 else
6093 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
44272192
DK
6094
6095 // Ignore reloc section with unexpected entsize or uneven size.
6096 // The error will be reported in the final link.
6097 if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
6098 return false;
6099
cf846138
DK
6100 // Ignore reloc section with bad info. This error will be
6101 // reported in the final link.
6102 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6103 if (index >= this->shnum())
6104 return false;
6105
6106 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6107 const elfcpp::Shdr<32, big_endian> text_shdr(pshdrs + index * shdr_size);
6108 return this->section_is_scannable(text_shdr, index,
6109 out_sections[index], symtab);
44272192
DK
6110}
6111
cb1be87e
DK
6112// Return the output address of either a plain input section or a relaxed
6113// input section. SHNDX is the section index. We define and use this
6114// instead of calling Output_section::output_address because that is slow
6115// for large output.
6116
6117template<bool big_endian>
6118Arm_address
6119Arm_relobj<big_endian>::simple_input_section_output_address(
6120 unsigned int shndx,
6121 Output_section* os)
6122{
6123 if (this->is_output_section_offset_invalid(shndx))
6124 {
6125 const Output_relaxed_input_section* poris =
6126 os->find_relaxed_input_section(this, shndx);
6127 // We do not handle merged sections here.
6128 gold_assert(poris != NULL);
6129 return poris->address();
6130 }
6131 else
6132 return os->address() + this->get_output_section_offset(shndx);
6133}
6134
44272192
DK
6135// Determine if we want to scan the SHNDX-th section for non-relocation stubs.
6136// This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6137
6138template<bool big_endian>
6139bool
6140Arm_relobj<big_endian>::section_needs_cortex_a8_stub_scanning(
6141 const elfcpp::Shdr<32, big_endian>& shdr,
6142 unsigned int shndx,
6143 Output_section* os,
6144 const Symbol_table* symtab)
6145{
cf846138 6146 if (!this->section_is_scannable(shdr, shndx, os, symtab))
44272192
DK
6147 return false;
6148
44272192
DK
6149 // If the section does not cross any 4K-boundaries, it does not need to
6150 // be scanned.
cb1be87e 6151 Arm_address address = this->simple_input_section_output_address(shndx, os);
44272192
DK
6152 if ((address & ~0xfffU) == ((address + shdr.get_sh_size() - 1) & ~0xfffU))
6153 return false;
6154
6155 return true;
6156}
6157
6158// Scan a section for Cortex-A8 workaround.
6159
6160template<bool big_endian>
6161void
6162Arm_relobj<big_endian>::scan_section_for_cortex_a8_erratum(
6163 const elfcpp::Shdr<32, big_endian>& shdr,
6164 unsigned int shndx,
6165 Output_section* os,
6166 Target_arm<big_endian>* arm_target)
6167{
c8761b9a
DK
6168 // Look for the first mapping symbol in this section. It should be
6169 // at (shndx, 0).
6170 Mapping_symbol_position section_start(shndx, 0);
6171 typename Mapping_symbols_info::const_iterator p =
6172 this->mapping_symbols_info_.lower_bound(section_start);
6173
6174 // There are no mapping symbols for this section. Treat it as a data-only
24af6f92
DK
6175 // section. Issue a warning if section is marked as containing
6176 // instructions.
c8761b9a 6177 if (p == this->mapping_symbols_info_.end() || p->first.first != shndx)
24af6f92
DK
6178 {
6179 if ((this->section_flags(shndx) & elfcpp::SHF_EXECINSTR) != 0)
6180 gold_warning(_("cannot scan executable section %u of %s for Cortex-A8 "
6181 "erratum because it has no mapping symbols."),
6182 shndx, this->name().c_str());
6183 return;
6184 }
c8761b9a 6185
cb1be87e
DK
6186 Arm_address output_address =
6187 this->simple_input_section_output_address(shndx, os);
44272192
DK
6188
6189 // Get the section contents.
6190 section_size_type input_view_size = 0;
6191 const unsigned char* input_view =
6192 this->section_contents(shndx, &input_view_size, false);
6193
6194 // We need to go through the mapping symbols to determine what to
6195 // scan. There are two reasons. First, we should look at THUMB code and
6196 // THUMB code only. Second, we only want to look at the 4K-page boundary
6197 // to speed up the scanning.
2e702c99 6198
44272192
DK
6199 while (p != this->mapping_symbols_info_.end()
6200 && p->first.first == shndx)
6201 {
6202 typename Mapping_symbols_info::const_iterator next =
6203 this->mapping_symbols_info_.upper_bound(p->first);
6204
6205 // Only scan part of a section with THUMB code.
6206 if (p->second == 't')
6207 {
6208 // Determine the end of this range.
6209 section_size_type span_start =
6210 convert_to_section_size_type(p->first.second);
6211 section_size_type span_end;
6212 if (next != this->mapping_symbols_info_.end()
6213 && next->first.first == shndx)
6214 span_end = convert_to_section_size_type(next->first.second);
6215 else
6216 span_end = convert_to_section_size_type(shdr.get_sh_size());
2e702c99 6217
44272192
DK
6218 if (((span_start + output_address) & ~0xfffUL)
6219 != ((span_end + output_address - 1) & ~0xfffUL))
6220 {
6221 arm_target->scan_span_for_cortex_a8_erratum(this, shndx,
6222 span_start, span_end,
6223 input_view,
6224 output_address);
6225 }
6226 }
6227
2e702c99 6228 p = next;
44272192
DK
6229 }
6230}
6231
8ffa3667
DK
6232// Scan relocations for stub generation.
6233
6234template<bool big_endian>
6235void
6236Arm_relobj<big_endian>::scan_sections_for_stubs(
6237 Target_arm<big_endian>* arm_target,
6238 const Symbol_table* symtab,
2ea97941 6239 const Layout* layout)
8ffa3667 6240{
2ea97941
ILT
6241 unsigned int shnum = this->shnum();
6242 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
8ffa3667
DK
6243
6244 // Read the section headers.
6245 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
2ea97941 6246 shnum * shdr_size,
8ffa3667
DK
6247 true, true);
6248
6249 // To speed up processing, we set up hash tables for fast lookup of
6250 // input offsets to output addresses.
6251 this->initialize_input_to_output_maps();
6252
6253 const Relobj::Output_sections& out_sections(this->output_sections());
6254
6255 Relocate_info<32, big_endian> relinfo;
8ffa3667 6256 relinfo.symtab = symtab;
2ea97941 6257 relinfo.layout = layout;
8ffa3667
DK
6258 relinfo.object = this;
6259
44272192 6260 // Do relocation stubs scanning.
2ea97941
ILT
6261 const unsigned char* p = pshdrs + shdr_size;
6262 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
8ffa3667 6263 {
44272192 6264 const elfcpp::Shdr<32, big_endian> shdr(p);
2b328d4e
DK
6265 if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
6266 pshdrs))
8ffa3667 6267 {
44272192
DK
6268 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6269 Arm_address output_offset = this->get_output_section_offset(index);
6270 Arm_address output_address;
7296d933 6271 if (output_offset != invalid_address)
44272192
DK
6272 output_address = out_sections[index]->address() + output_offset;
6273 else
6274 {
6275 // Currently this only happens for a relaxed section.
6276 const Output_relaxed_input_section* poris =
6277 out_sections[index]->find_relaxed_input_section(this, index);
6278 gold_assert(poris != NULL);
6279 output_address = poris->address();
6280 }
8ffa3667 6281
44272192
DK
6282 // Get the relocations.
6283 const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
6284 shdr.get_sh_size(),
6285 true, false);
6286
6287 // Get the section contents. This does work for the case in which
6288 // we modify the contents of an input section. We need to pass the
6289 // output view under such circumstances.
6290 section_size_type input_view_size = 0;
6291 const unsigned char* input_view =
6292 this->section_contents(index, &input_view_size, false);
6293
6294 relinfo.reloc_shndx = i;
6295 relinfo.data_shndx = index;
6296 unsigned int sh_type = shdr.get_sh_type();
b521dfe4
DK
6297 unsigned int reloc_size;
6298 if (sh_type == elfcpp::SHT_REL)
6299 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6300 else
6301 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
44272192
DK
6302
6303 Output_section* os = out_sections[index];
6304 arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
6305 shdr.get_sh_size() / reloc_size,
6306 os,
6307 output_offset == invalid_address,
6308 input_view, output_address,
6309 input_view_size);
8ffa3667 6310 }
44272192 6311 }
8ffa3667 6312
44272192
DK
6313 // Do Cortex-A8 erratum stubs scanning. This has to be done for a section
6314 // after its relocation section, if there is one, is processed for
6315 // relocation stubs. Merging this loop with the one above would have been
6316 // complicated since we would have had to make sure that relocation stub
6317 // scanning is done first.
6318 if (arm_target->fix_cortex_a8())
6319 {
6320 const unsigned char* p = pshdrs + shdr_size;
6321 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
8ffa3667 6322 {
44272192
DK
6323 const elfcpp::Shdr<32, big_endian> shdr(p);
6324 if (this->section_needs_cortex_a8_stub_scanning(shdr, i,
6325 out_sections[i],
6326 symtab))
6327 this->scan_section_for_cortex_a8_erratum(shdr, i, out_sections[i],
6328 arm_target);
8ffa3667 6329 }
8ffa3667
DK
6330 }
6331
6332 // After we've done the relocations, we release the hash tables,
6333 // since we no longer need them.
6334 this->free_input_to_output_maps();
6335}
6336
6337// Count the local symbols. The ARM backend needs to know if a symbol
6338// is a THUMB function or not. For global symbols, it is easy because
6339// the Symbol object keeps the ELF symbol type. For local symbol it is
6340// harder because we cannot access this information. So we override the
6341// do_count_local_symbol in parent and scan local symbols to mark
6342// THUMB functions. This is not the most efficient way but I do not want to
9b547ce6 6343// slow down other ports by calling a per symbol target hook inside
2e702c99 6344// Sized_relobj_file<size, big_endian>::do_count_local_symbols.
8ffa3667
DK
6345
6346template<bool big_endian>
6347void
6348Arm_relobj<big_endian>::do_count_local_symbols(
6349 Stringpool_template<char>* pool,
6350 Stringpool_template<char>* dynpool)
6351{
6352 // We need to fix-up the values of any local symbols whose type are
6353 // STT_ARM_TFUNC.
2e702c99 6354
8ffa3667 6355 // Ask parent to count the local symbols.
6fa2a40b 6356 Sized_relobj_file<32, big_endian>::do_count_local_symbols(pool, dynpool);
8ffa3667
DK
6357 const unsigned int loccount = this->local_symbol_count();
6358 if (loccount == 0)
6359 return;
6360
9b547ce6 6361 // Initialize the thumb function bit-vector.
8ffa3667
DK
6362 std::vector<bool> empty_vector(loccount, false);
6363 this->local_symbol_is_thumb_function_.swap(empty_vector);
6364
6365 // Read the symbol table section header.
2ea97941 6366 const unsigned int symtab_shndx = this->symtab_shndx();
8ffa3667 6367 elfcpp::Shdr<32, big_endian>
2ea97941 6368 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
8ffa3667
DK
6369 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6370
6371 // Read the local symbols.
2ea97941 6372 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
8ffa3667 6373 gold_assert(loccount == symtabshdr.get_sh_info());
2ea97941 6374 off_t locsize = loccount * sym_size;
8ffa3667
DK
6375 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6376 locsize, true, true);
6377
20138696
DK
6378 // For mapping symbol processing, we need to read the symbol names.
6379 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
6380 if (strtab_shndx >= this->shnum())
6381 {
6382 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
6383 return;
6384 }
6385
6386 elfcpp::Shdr<32, big_endian>
6387 strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
6388 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
6389 {
6390 this->error(_("symbol table name section has wrong type: %u"),
2e702c99 6391 static_cast<unsigned int>(strtabshdr.get_sh_type()));
20138696
DK
6392 return;
6393 }
6394 const char* pnames =
6395 reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
6396 strtabshdr.get_sh_size(),
6397 false, false));
6398
8ffa3667
DK
6399 // Loop over the local symbols and mark any local symbols pointing
6400 // to THUMB functions.
6401
6402 // Skip the first dummy symbol.
2ea97941 6403 psyms += sym_size;
6fa2a40b 6404 typename Sized_relobj_file<32, big_endian>::Local_values* plocal_values =
8ffa3667 6405 this->local_values();
2ea97941 6406 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
8ffa3667
DK
6407 {
6408 elfcpp::Sym<32, big_endian> sym(psyms);
6409 elfcpp::STT st_type = sym.get_st_type();
6410 Symbol_value<32>& lv((*plocal_values)[i]);
6411 Arm_address input_value = lv.input_value();
6412
20138696
DK
6413 // Check to see if this is a mapping symbol.
6414 const char* sym_name = pnames + sym.get_st_name();
6415 if (Target_arm<big_endian>::is_mapping_symbol_name(sym_name))
6416 {
24af6f92
DK
6417 bool is_ordinary;
6418 unsigned int input_shndx =
6419 this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
6420 gold_assert(is_ordinary);
20138696
DK
6421
6422 // Strip of LSB in case this is a THUMB symbol.
6423 Mapping_symbol_position msp(input_shndx, input_value & ~1U);
6424 this->mapping_symbols_info_[msp] = sym_name[1];
6425 }
6426
8ffa3667
DK
6427 if (st_type == elfcpp::STT_ARM_TFUNC
6428 || (st_type == elfcpp::STT_FUNC && ((input_value & 1) != 0)))
6429 {
6430 // This is a THUMB function. Mark this and canonicalize the
6431 // symbol value by setting LSB.
6432 this->local_symbol_is_thumb_function_[i] = true;
6433 if ((input_value & 1) == 0)
6434 lv.set_input_value(input_value | 1);
6435 }
6436 }
6437}
6438
6439// Relocate sections.
6440template<bool big_endian>
6441void
6442Arm_relobj<big_endian>::do_relocate_sections(
8ffa3667 6443 const Symbol_table* symtab,
2ea97941 6444 const Layout* layout,
8ffa3667 6445 const unsigned char* pshdrs,
aa98ff75 6446 Output_file* of,
6fa2a40b 6447 typename Sized_relobj_file<32, big_endian>::Views* pviews)
8ffa3667
DK
6448{
6449 // Call parent to relocate sections.
6fa2a40b 6450 Sized_relobj_file<32, big_endian>::do_relocate_sections(symtab, layout,
2e702c99 6451 pshdrs, of, pviews);
8ffa3667
DK
6452
6453 // We do not generate stubs if doing a relocatable link.
6454 if (parameters->options().relocatable())
6455 return;
6456
6457 // Relocate stub tables.
2ea97941 6458 unsigned int shnum = this->shnum();
8ffa3667
DK
6459
6460 Target_arm<big_endian>* arm_target =
6461 Target_arm<big_endian>::default_target();
6462
6463 Relocate_info<32, big_endian> relinfo;
8ffa3667 6464 relinfo.symtab = symtab;
2ea97941 6465 relinfo.layout = layout;
8ffa3667
DK
6466 relinfo.object = this;
6467
2ea97941 6468 for (unsigned int i = 1; i < shnum; ++i)
8ffa3667
DK
6469 {
6470 Arm_input_section<big_endian>* arm_input_section =
6471 arm_target->find_arm_input_section(this, i);
6472
41263c05
DK
6473 if (arm_input_section != NULL
6474 && arm_input_section->is_stub_table_owner()
6475 && !arm_input_section->stub_table()->empty())
6476 {
6477 // We cannot discard a section if it owns a stub table.
6478 Output_section* os = this->output_section(i);
6479 gold_assert(os != NULL);
6480
6481 relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
6482 relinfo.reloc_shdr = NULL;
6483 relinfo.data_shndx = i;
6484 relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size;
6485
6486 gold_assert((*pviews)[i].view != NULL);
6487
6488 // We are passed the output section view. Adjust it to cover the
6489 // stub table only.
6490 Stub_table<big_endian>* stub_table = arm_input_section->stub_table();
6491 gold_assert((stub_table->address() >= (*pviews)[i].address)
6492 && ((stub_table->address() + stub_table->data_size())
6493 <= (*pviews)[i].address + (*pviews)[i].view_size));
6494
6495 off_t offset = stub_table->address() - (*pviews)[i].address;
6496 unsigned char* view = (*pviews)[i].view + offset;
6497 Arm_address address = stub_table->address();
6498 section_size_type view_size = stub_table->data_size();
2e702c99 6499
41263c05
DK
6500 stub_table->relocate_stubs(&relinfo, arm_target, os, view, address,
6501 view_size);
6502 }
6503
6504 // Apply Cortex A8 workaround if applicable.
6505 if (this->section_has_cortex_a8_workaround(i))
6506 {
6507 unsigned char* view = (*pviews)[i].view;
6508 Arm_address view_address = (*pviews)[i].address;
6509 section_size_type view_size = (*pviews)[i].view_size;
6510 Stub_table<big_endian>* stub_table = this->stub_tables_[i];
6511
6512 // Adjust view to cover section.
6513 Output_section* os = this->output_section(i);
6514 gold_assert(os != NULL);
cb1be87e
DK
6515 Arm_address section_address =
6516 this->simple_input_section_output_address(i, os);
41263c05
DK
6517 uint64_t section_size = this->section_size(i);
6518
6519 gold_assert(section_address >= view_address
6520 && ((section_address + section_size)
6521 <= (view_address + view_size)));
6522
6523 unsigned char* section_view = view + (section_address - view_address);
6524
6525 // Apply the Cortex-A8 workaround to the output address range
6526 // corresponding to this input section.
6527 stub_table->apply_cortex_a8_workaround_to_address_range(
6528 arm_target,
6529 section_view,
6530 section_address,
6531 section_size);
6532 }
8ffa3667
DK
6533 }
6534}
6535
9b547ce6 6536// Find the linked text section of an EXIDX section by looking at the first
c8761b9a 6537// relocation. 4.4.1 of the EHABI specifications says that an EXIDX section
9b547ce6 6538// must be linked to its associated code section via the sh_link field of
c8761b9a
DK
6539// its section header. However, some tools are broken and the link is not
6540// always set. LD just drops such an EXIDX section silently, causing the
6541// associated code not unwindabled. Here we try a little bit harder to
6542// discover the linked code section.
6543//
6544// PSHDR points to the section header of a relocation section of an EXIDX
6545// section. If we can find a linked text section, return true and
6546// store the text section index in the location PSHNDX. Otherwise
6547// return false.
a0351a69
DK
6548
6549template<bool big_endian>
c8761b9a
DK
6550bool
6551Arm_relobj<big_endian>::find_linked_text_section(
6552 const unsigned char* pshdr,
6553 const unsigned char* psyms,
6554 unsigned int* pshndx)
a0351a69 6555{
c8761b9a 6556 elfcpp::Shdr<32, big_endian> shdr(pshdr);
2e702c99 6557
c8761b9a
DK
6558 // If there is no relocation, we cannot find the linked text section.
6559 size_t reloc_size;
6560 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6561 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6562 else
6563 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6564 size_t reloc_count = shdr.get_sh_size() / reloc_size;
2e702c99 6565
c8761b9a
DK
6566 // Get the relocations.
6567 const unsigned char* prelocs =
2e702c99 6568 this->get_view(shdr.get_sh_offset(), shdr.get_sh_size(), true, false);
993d07c1 6569
c8761b9a
DK
6570 // Find the REL31 relocation for the first word of the first EXIDX entry.
6571 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
a0351a69 6572 {
c8761b9a
DK
6573 Arm_address r_offset;
6574 typename elfcpp::Elf_types<32>::Elf_WXword r_info;
6575 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6576 {
6577 typename elfcpp::Rel<32, big_endian> reloc(prelocs);
6578 r_info = reloc.get_r_info();
6579 r_offset = reloc.get_r_offset();
6580 }
6581 else
6582 {
6583 typename elfcpp::Rela<32, big_endian> reloc(prelocs);
6584 r_info = reloc.get_r_info();
6585 r_offset = reloc.get_r_offset();
6586 }
6587
6588 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
6589 if (r_type != elfcpp::R_ARM_PREL31 && r_type != elfcpp::R_ARM_SBREL31)
6590 continue;
6591
6592 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
6593 if (r_sym == 0
6594 || r_sym >= this->local_symbol_count()
6595 || r_offset != 0)
6596 continue;
6597
6598 // This is the relocation for the first word of the first EXIDX entry.
6599 // We expect to see a local section symbol.
6600 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6601 elfcpp::Sym<32, big_endian> sym(psyms + r_sym * sym_size);
6602 if (sym.get_st_type() == elfcpp::STT_SECTION)
6603 {
24af6f92
DK
6604 bool is_ordinary;
6605 *pshndx =
6606 this->adjust_sym_shndx(r_sym, sym.get_st_shndx(), &is_ordinary);
6607 gold_assert(is_ordinary);
c8761b9a
DK
6608 return true;
6609 }
6610 else
6611 return false;
993d07c1 6612 }
c8761b9a
DK
6613
6614 return false;
6615}
6616
6617// Make an EXIDX input section object for an EXIDX section whose index is
6618// SHNDX. SHDR is the section header of the EXIDX section and TEXT_SHNDX
6619// is the section index of the linked text section.
6620
6621template<bool big_endian>
6622void
6623Arm_relobj<big_endian>::make_exidx_input_section(
6624 unsigned int shndx,
6625 const elfcpp::Shdr<32, big_endian>& shdr,
131687b4
DK
6626 unsigned int text_shndx,
6627 const elfcpp::Shdr<32, big_endian>& text_shdr)
c8761b9a 6628{
993d07c1
DK
6629 // Create an Arm_exidx_input_section object for this EXIDX section.
6630 Arm_exidx_input_section* exidx_input_section =
6631 new Arm_exidx_input_section(this, shndx, text_shndx, shdr.get_sh_size(),
f625ae50
DK
6632 shdr.get_sh_addralign(),
6633 text_shdr.get_sh_size());
993d07c1 6634
993d07c1
DK
6635 gold_assert(this->exidx_section_map_[shndx] == NULL);
6636 this->exidx_section_map_[shndx] = exidx_input_section;
131687b4
DK
6637
6638 if (text_shndx == elfcpp::SHN_UNDEF || text_shndx >= this->shnum())
6639 {
6640 gold_error(_("EXIDX section %s(%u) links to invalid section %u in %s"),
6641 this->section_name(shndx).c_str(), shndx, text_shndx,
6642 this->name().c_str());
6643 exidx_input_section->set_has_errors();
2e702c99 6644 }
131687b4
DK
6645 else if (this->exidx_section_map_[text_shndx] != NULL)
6646 {
6647 unsigned other_exidx_shndx =
6648 this->exidx_section_map_[text_shndx]->shndx();
6649 gold_error(_("EXIDX sections %s(%u) and %s(%u) both link to text section"
6650 "%s(%u) in %s"),
6651 this->section_name(shndx).c_str(), shndx,
6652 this->section_name(other_exidx_shndx).c_str(),
6653 other_exidx_shndx, this->section_name(text_shndx).c_str(),
6654 text_shndx, this->name().c_str());
6655 exidx_input_section->set_has_errors();
6656 }
6657 else
6658 this->exidx_section_map_[text_shndx] = exidx_input_section;
6659
6660 // Check section flags of text section.
6661 if ((text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
6662 {
6663 gold_error(_("EXIDX section %s(%u) links to non-allocated section %s(%u) "
6664 " in %s"),
6665 this->section_name(shndx).c_str(), shndx,
6666 this->section_name(text_shndx).c_str(), text_shndx,
6667 this->name().c_str());
6668 exidx_input_section->set_has_errors();
6669 }
6670 else if ((text_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) == 0)
9b547ce6 6671 // I would like to make this an error but currently ld just ignores
131687b4
DK
6672 // this.
6673 gold_warning(_("EXIDX section %s(%u) links to non-executable section "
6674 "%s(%u) in %s"),
6675 this->section_name(shndx).c_str(), shndx,
6676 this->section_name(text_shndx).c_str(), text_shndx,
6677 this->name().c_str());
a0351a69
DK
6678}
6679
d5b40221
DK
6680// Read the symbol information.
6681
6682template<bool big_endian>
6683void
6684Arm_relobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6685{
6686 // Call parent class to read symbol information.
6fa2a40b 6687 Sized_relobj_file<32, big_endian>::do_read_symbols(sd);
d5b40221 6688
7296d933
DK
6689 // If this input file is a binary file, it has no processor
6690 // specific flags and attributes section.
6691 Input_file::Format format = this->input_file()->format();
6692 if (format != Input_file::FORMAT_ELF)
6693 {
6694 gold_assert(format == Input_file::FORMAT_BINARY);
6695 this->merge_flags_and_attributes_ = false;
6696 return;
6697 }
6698
d5b40221
DK
6699 // Read processor-specific flags in ELF file header.
6700 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6701 elfcpp::Elf_sizes<32>::ehdr_size,
6702 true, false);
6703 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6704 this->processor_specific_flags_ = ehdr.get_e_flags();
993d07c1
DK
6705
6706 // Go over the section headers and look for .ARM.attributes and .ARM.exidx
6707 // sections.
c8761b9a 6708 std::vector<unsigned int> deferred_exidx_sections;
993d07c1 6709 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
c8761b9a 6710 const unsigned char* pshdrs = sd->section_headers->data();
ca09d69a 6711 const unsigned char* ps = pshdrs + shdr_size;
7296d933 6712 bool must_merge_flags_and_attributes = false;
993d07c1
DK
6713 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6714 {
6715 elfcpp::Shdr<32, big_endian> shdr(ps);
7296d933
DK
6716
6717 // Sometimes an object has no contents except the section name string
6718 // table and an empty symbol table with the undefined symbol. We
6719 // don't want to merge processor-specific flags from such an object.
6720 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
6721 {
6722 // Symbol table is not empty.
6723 const elfcpp::Elf_types<32>::Elf_WXword sym_size =
6724 elfcpp::Elf_sizes<32>::sym_size;
6725 if (shdr.get_sh_size() > sym_size)
6726 must_merge_flags_and_attributes = true;
6727 }
6728 else if (shdr.get_sh_type() != elfcpp::SHT_STRTAB)
6729 // If this is neither an empty symbol table nor a string table,
6730 // be conservative.
6731 must_merge_flags_and_attributes = true;
6732
993d07c1
DK
6733 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6734 {
2e702c99 6735 gold_assert(this->attributes_section_data_ == NULL);
993d07c1
DK
6736 section_offset_type section_offset = shdr.get_sh_offset();
6737 section_size_type section_size =
6738 convert_to_section_size_type(shdr.get_sh_size());
f625ae50
DK
6739 const unsigned char* view =
6740 this->get_view(section_offset, section_size, true, false);
993d07c1 6741 this->attributes_section_data_ =
f625ae50 6742 new Attributes_section_data(view, section_size);
993d07c1
DK
6743 }
6744 else if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
c8761b9a
DK
6745 {
6746 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
131687b4 6747 if (text_shndx == elfcpp::SHN_UNDEF)
c8761b9a
DK
6748 deferred_exidx_sections.push_back(i);
6749 else
131687b4
DK
6750 {
6751 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6752 + text_shndx * shdr_size);
6753 this->make_exidx_input_section(i, shdr, text_shndx, text_shdr);
6754 }
c9484ea5
DK
6755 // EHABI 4.4.1 requires that SHF_LINK_ORDER flag to be set.
6756 if ((shdr.get_sh_flags() & elfcpp::SHF_LINK_ORDER) == 0)
6757 gold_warning(_("SHF_LINK_ORDER not set in EXIDX section %s of %s"),
6758 this->section_name(i).c_str(), this->name().c_str());
c8761b9a
DK
6759 }
6760 }
6761
7296d933
DK
6762 // This is rare.
6763 if (!must_merge_flags_and_attributes)
6764 {
131687b4 6765 gold_assert(deferred_exidx_sections.empty());
7296d933
DK
6766 this->merge_flags_and_attributes_ = false;
6767 return;
6768 }
6769
2e702c99 6770 // Some tools are broken and they do not set the link of EXIDX sections.
c8761b9a
DK
6771 // We look at the first relocation to figure out the linked sections.
6772 if (!deferred_exidx_sections.empty())
6773 {
6774 // We need to go over the section headers again to find the mapping
6775 // from sections being relocated to their relocation sections. This is
6776 // a bit inefficient as we could do that in the loop above. However,
6777 // we do not expect any deferred EXIDX sections normally. So we do not
6778 // want to slow down the most common path.
6779 typedef Unordered_map<unsigned int, unsigned int> Reloc_map;
6780 Reloc_map reloc_map;
6781 ps = pshdrs + shdr_size;
6782 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6783 {
6784 elfcpp::Shdr<32, big_endian> shdr(ps);
6785 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
6786 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
6787 {
6788 unsigned int info_shndx = this->adjust_shndx(shdr.get_sh_info());
6789 if (info_shndx >= this->shnum())
6790 gold_error(_("relocation section %u has invalid info %u"),
6791 i, info_shndx);
6792 Reloc_map::value_type value(info_shndx, i);
6793 std::pair<Reloc_map::iterator, bool> result =
6794 reloc_map.insert(value);
6795 if (!result.second)
6796 gold_error(_("section %u has multiple relocation sections "
6797 "%u and %u"),
6798 info_shndx, i, reloc_map[info_shndx]);
6799 }
6800 }
6801
6802 // Read the symbol table section header.
6803 const unsigned int symtab_shndx = this->symtab_shndx();
6804 elfcpp::Shdr<32, big_endian>
6805 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6806 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6807
6808 // Read the local symbols.
6809 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6810 const unsigned int loccount = this->local_symbol_count();
6811 gold_assert(loccount == symtabshdr.get_sh_info());
6812 off_t locsize = loccount * sym_size;
6813 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6814 locsize, true, true);
6815
2e702c99 6816 // Process the deferred EXIDX sections.
f625ae50 6817 for (unsigned int i = 0; i < deferred_exidx_sections.size(); ++i)
c8761b9a
DK
6818 {
6819 unsigned int shndx = deferred_exidx_sections[i];
6820 elfcpp::Shdr<32, big_endian> shdr(pshdrs + shndx * shdr_size);
131687b4 6821 unsigned int text_shndx = elfcpp::SHN_UNDEF;
c8761b9a 6822 Reloc_map::const_iterator it = reloc_map.find(shndx);
131687b4
DK
6823 if (it != reloc_map.end())
6824 find_linked_text_section(pshdrs + it->second * shdr_size,
6825 psyms, &text_shndx);
6826 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6827 + text_shndx * shdr_size);
6828 this->make_exidx_input_section(shndx, shdr, text_shndx, text_shdr);
c8761b9a 6829 }
993d07c1 6830 }
d5b40221
DK
6831}
6832
99e5bff2 6833// Process relocations for garbage collection. The ARM target uses .ARM.exidx
2e702c99 6834// sections for unwinding. These sections are referenced implicitly by
9b547ce6 6835// text sections linked in the section headers. If we ignore these implicit
99e5bff2
DK
6836// references, the .ARM.exidx sections and any .ARM.extab sections they use
6837// will be garbage-collected incorrectly. Hence we override the same function
6838// in the base class to handle these implicit references.
6839
6840template<bool big_endian>
6841void
6842Arm_relobj<big_endian>::do_gc_process_relocs(Symbol_table* symtab,
6843 Layout* layout,
6844 Read_relocs_data* rd)
6845{
6846 // First, call base class method to process relocations in this object.
6fa2a40b 6847 Sized_relobj_file<32, big_endian>::do_gc_process_relocs(symtab, layout, rd);
99e5bff2 6848
4a54abbb
DK
6849 // If --gc-sections is not specified, there is nothing more to do.
6850 // This happens when --icf is used but --gc-sections is not.
6851 if (!parameters->options().gc_sections())
6852 return;
2e702c99 6853
99e5bff2
DK
6854 unsigned int shnum = this->shnum();
6855 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6856 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6857 shnum * shdr_size,
6858 true, true);
6859
6860 // Scan section headers for sections of type SHT_ARM_EXIDX. Add references
6861 // to these from the linked text sections.
6862 const unsigned char* ps = pshdrs + shdr_size;
6863 for (unsigned int i = 1; i < shnum; ++i, ps += shdr_size)
6864 {
6865 elfcpp::Shdr<32, big_endian> shdr(ps);
6866 if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6867 {
6868 // Found an .ARM.exidx section, add it to the set of reachable
6869 // sections from its linked text section.
6870 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6871 symtab->gc()->add_reference(this, text_shndx, this, i);
6872 }
6873 }
6874}
6875
e7eca48c
DK
6876// Update output local symbol count. Owing to EXIDX entry merging, some local
6877// symbols will be removed in output. Adjust output local symbol count
6878// accordingly. We can only changed the static output local symbol count. It
6879// is too late to change the dynamic symbols.
6880
6881template<bool big_endian>
6882void
6883Arm_relobj<big_endian>::update_output_local_symbol_count()
6884{
6885 // Caller should check that this needs updating. We want caller checking
6886 // because output_local_symbol_count_needs_update() is most likely inlined.
6887 gold_assert(this->output_local_symbol_count_needs_update_);
6888
6889 gold_assert(this->symtab_shndx() != -1U);
6890 if (this->symtab_shndx() == 0)
6891 {
6892 // This object has no symbols. Weird but legal.
6893 return;
6894 }
6895
6896 // Read the symbol table section header.
6897 const unsigned int symtab_shndx = this->symtab_shndx();
6898 elfcpp::Shdr<32, big_endian>
6899 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6900 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6901
6902 // Read the local symbols.
6903 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6904 const unsigned int loccount = this->local_symbol_count();
6905 gold_assert(loccount == symtabshdr.get_sh_info());
6906 off_t locsize = loccount * sym_size;
6907 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6908 locsize, true, true);
6909
6910 // Loop over the local symbols.
6911
6fa2a40b 6912 typedef typename Sized_relobj_file<32, big_endian>::Output_sections
e7eca48c
DK
6913 Output_sections;
6914 const Output_sections& out_sections(this->output_sections());
6915 unsigned int shnum = this->shnum();
6916 unsigned int count = 0;
6917 // Skip the first, dummy, symbol.
6918 psyms += sym_size;
6919 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6920 {
6921 elfcpp::Sym<32, big_endian> sym(psyms);
6922
6923 Symbol_value<32>& lv((*this->local_values())[i]);
6924
6925 // This local symbol was already discarded by do_count_local_symbols.
9177756d 6926 if (lv.is_output_symtab_index_set() && !lv.has_output_symtab_entry())
e7eca48c
DK
6927 continue;
6928
6929 bool is_ordinary;
6930 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
6931 &is_ordinary);
6932
6933 if (shndx < shnum)
6934 {
6935 Output_section* os = out_sections[shndx];
6936
6937 // This local symbol no longer has an output section. Discard it.
6938 if (os == NULL)
6939 {
6940 lv.set_no_output_symtab_entry();
6941 continue;
6942 }
6943
6944 // Currently we only discard parts of EXIDX input sections.
6945 // We explicitly check for a merged EXIDX input section to avoid
6946 // calling Output_section_data::output_offset unless necessary.
6947 if ((this->get_output_section_offset(shndx) == invalid_address)
6948 && (this->exidx_input_section_by_shndx(shndx) != NULL))
6949 {
6950 section_offset_type output_offset =
6951 os->output_offset(this, shndx, lv.input_value());
6952 if (output_offset == -1)
6953 {
6954 // This symbol is defined in a part of an EXIDX input section
6955 // that is discarded due to entry merging.
6956 lv.set_no_output_symtab_entry();
6957 continue;
2e702c99 6958 }
e7eca48c
DK
6959 }
6960 }
6961
6962 ++count;
6963 }
6964
6965 this->set_output_local_symbol_count(count);
6966 this->output_local_symbol_count_needs_update_ = false;
6967}
6968
d5b40221
DK
6969// Arm_dynobj methods.
6970
6971// Read the symbol information.
6972
6973template<bool big_endian>
6974void
6975Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6976{
6977 // Call parent class to read symbol information.
6978 Sized_dynobj<32, big_endian>::do_read_symbols(sd);
6979
6980 // Read processor-specific flags in ELF file header.
6981 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6982 elfcpp::Elf_sizes<32>::ehdr_size,
6983 true, false);
6984 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6985 this->processor_specific_flags_ = ehdr.get_e_flags();
993d07c1
DK
6986
6987 // Read the attributes section if there is one.
6988 // We read from the end because gas seems to put it near the end of
6989 // the section headers.
6990 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
ca09d69a 6991 const unsigned char* ps =
993d07c1
DK
6992 sd->section_headers->data() + shdr_size * (this->shnum() - 1);
6993 for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size)
6994 {
6995 elfcpp::Shdr<32, big_endian> shdr(ps);
6996 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6997 {
6998 section_offset_type section_offset = shdr.get_sh_offset();
6999 section_size_type section_size =
7000 convert_to_section_size_type(shdr.get_sh_size());
f625ae50
DK
7001 const unsigned char* view =
7002 this->get_view(section_offset, section_size, true, false);
993d07c1 7003 this->attributes_section_data_ =
f625ae50 7004 new Attributes_section_data(view, section_size);
993d07c1
DK
7005 break;
7006 }
7007 }
d5b40221
DK
7008}
7009
e9bbb538
DK
7010// Stub_addend_reader methods.
7011
7012// Read the addend of a REL relocation of type R_TYPE at VIEW.
7013
7014template<bool big_endian>
7015elfcpp::Elf_types<32>::Elf_Swxword
7016Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()(
7017 unsigned int r_type,
7018 const unsigned char* view,
7019 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const
7020{
2c54b4f4 7021 typedef class Arm_relocate_functions<big_endian> RelocFuncs;
2e702c99 7022
e9bbb538
DK
7023 switch (r_type)
7024 {
7025 case elfcpp::R_ARM_CALL:
7026 case elfcpp::R_ARM_JUMP24:
7027 case elfcpp::R_ARM_PLT32:
7028 {
7029 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7030 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7031 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
bef2b434 7032 return Bits<26>::sign_extend32(val << 2);
e9bbb538
DK
7033 }
7034
7035 case elfcpp::R_ARM_THM_CALL:
7036 case elfcpp::R_ARM_THM_JUMP24:
7037 case elfcpp::R_ARM_THM_XPC22:
7038 {
e9bbb538
DK
7039 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7040 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7041 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7042 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
089d69dc 7043 return RelocFuncs::thumb32_branch_offset(upper_insn, lower_insn);
e9bbb538
DK
7044 }
7045
7046 case elfcpp::R_ARM_THM_JUMP19:
7047 {
7048 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7049 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7050 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7051 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
089d69dc 7052 return RelocFuncs::thumb32_cond_branch_offset(upper_insn, lower_insn);
e9bbb538
DK
7053 }
7054
7055 default:
7056 gold_unreachable();
7057 }
7058}
7059
4a54abbb
DK
7060// Arm_output_data_got methods.
7061
7062// Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
7063// The first one is initialized to be 1, which is the module index for
7064// the main executable and the second one 0. A reloc of the type
7065// R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
7066// be applied by gold. GSYM is a global symbol.
7067//
7068template<bool big_endian>
7069void
7070Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7071 unsigned int got_type,
7072 Symbol* gsym)
7073{
7074 if (gsym->has_got_offset(got_type))
7075 return;
7076
7077 // We are doing a static link. Just mark it as belong to module 1,
7078 // the executable.
7079 unsigned int got_offset = this->add_constant(1);
2e702c99 7080 gsym->set_got_offset(got_type, got_offset);
4a54abbb
DK
7081 got_offset = this->add_constant(0);
7082 this->static_relocs_.push_back(Static_reloc(got_offset,
7083 elfcpp::R_ARM_TLS_DTPOFF32,
7084 gsym));
7085}
7086
7087// Same as the above but for a local symbol.
7088
7089template<bool big_endian>
7090void
7091Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7092 unsigned int got_type,
6fa2a40b 7093 Sized_relobj_file<32, big_endian>* object,
4a54abbb
DK
7094 unsigned int index)
7095{
7096 if (object->local_has_got_offset(index, got_type))
7097 return;
7098
7099 // We are doing a static link. Just mark it as belong to module 1,
7100 // the executable.
7101 unsigned int got_offset = this->add_constant(1);
7102 object->set_local_got_offset(index, got_type, got_offset);
7103 got_offset = this->add_constant(0);
2e702c99
RM
7104 this->static_relocs_.push_back(Static_reloc(got_offset,
7105 elfcpp::R_ARM_TLS_DTPOFF32,
4a54abbb
DK
7106 object, index));
7107}
7108
7109template<bool big_endian>
7110void
7111Arm_output_data_got<big_endian>::do_write(Output_file* of)
7112{
7113 // Call parent to write out GOT.
7114 Output_data_got<32, big_endian>::do_write(of);
7115
7116 // We are done if there is no fix up.
7117 if (this->static_relocs_.empty())
7118 return;
7119
7120 gold_assert(parameters->doing_static_link());
7121
7122 const off_t offset = this->offset();
7123 const section_size_type oview_size =
7124 convert_to_section_size_type(this->data_size());
7125 unsigned char* const oview = of->get_output_view(offset, oview_size);
7126
7127 Output_segment* tls_segment = this->layout_->tls_segment();
7128 gold_assert(tls_segment != NULL);
2e702c99 7129
4a54abbb
DK
7130 // The thread pointer $tp points to the TCB, which is followed by the
7131 // TLS. So we need to adjust $tp relative addressing by this amount.
7132 Arm_address aligned_tcb_size =
7133 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
7134
7135 for (size_t i = 0; i < this->static_relocs_.size(); ++i)
7136 {
7137 Static_reloc& reloc(this->static_relocs_[i]);
2e702c99 7138
4a54abbb
DK
7139 Arm_address value;
7140 if (!reloc.symbol_is_global())
7141 {
6fa2a40b 7142 Sized_relobj_file<32, big_endian>* object = reloc.relobj();
4a54abbb
DK
7143 const Symbol_value<32>* psymval =
7144 reloc.relobj()->local_symbol(reloc.index());
7145
7146 // We are doing static linking. Issue an error and skip this
7147 // relocation if the symbol is undefined or in a discarded_section.
7148 bool is_ordinary;
7149 unsigned int shndx = psymval->input_shndx(&is_ordinary);
7150 if ((shndx == elfcpp::SHN_UNDEF)
7151 || (is_ordinary
7152 && shndx != elfcpp::SHN_UNDEF
7153 && !object->is_section_included(shndx)
7154 && !this->symbol_table_->is_section_folded(object, shndx)))
7155 {
7156 gold_error(_("undefined or discarded local symbol %u from "
7157 " object %s in GOT"),
7158 reloc.index(), reloc.relobj()->name().c_str());
7159 continue;
7160 }
2e702c99 7161
4a54abbb
DK
7162 value = psymval->value(object, 0);
7163 }
7164 else
7165 {
7166 const Symbol* gsym = reloc.symbol();
7167 gold_assert(gsym != NULL);
7168 if (gsym->is_forwarder())
7169 gsym = this->symbol_table_->resolve_forwards(gsym);
7170
7171 // We are doing static linking. Issue an error and skip this
7172 // relocation if the symbol is undefined or in a discarded_section
7173 // unless it is a weakly_undefined symbol.
7174 if ((gsym->is_defined_in_discarded_section()
7175 || gsym->is_undefined())
7176 && !gsym->is_weak_undefined())
7177 {
7178 gold_error(_("undefined or discarded symbol %s in GOT"),
7179 gsym->name());
7180 continue;
7181 }
7182
7183 if (!gsym->is_weak_undefined())
7184 {
7185 const Sized_symbol<32>* sym =
7186 static_cast<const Sized_symbol<32>*>(gsym);
7187 value = sym->value();
7188 }
7189 else
7190 value = 0;
7191 }
7192
7193 unsigned got_offset = reloc.got_offset();
7194 gold_assert(got_offset < oview_size);
7195
7196 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7197 Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
7198 Valtype x;
7199 switch (reloc.r_type())
7200 {
7201 case elfcpp::R_ARM_TLS_DTPOFF32:
7202 x = value;
7203 break;
7204 case elfcpp::R_ARM_TLS_TPOFF32:
7205 x = value + aligned_tcb_size;
7206 break;
7207 default:
7208 gold_unreachable();
7209 }
7210 elfcpp::Swap<32, big_endian>::writeval(wv, x);
7211 }
7212
7213 of->write_output_view(offset, oview_size, oview);
7214}
7215
94cdfcff 7216// A class to handle the PLT data.
2e702c99
RM
7217// This is an abstract base class that handles most of the linker details
7218// but does not know the actual contents of PLT entries. The derived
7219// classes below fill in those details.
94cdfcff
DK
7220
7221template<bool big_endian>
7222class Output_data_plt_arm : public Output_section_data
7223{
7224 public:
7225 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
7226 Reloc_section;
7227
2e702c99 7228 Output_data_plt_arm(Layout*, uint64_t addralign, Output_data_space*);
94cdfcff
DK
7229
7230 // Add an entry to the PLT.
7231 void
7232 add_entry(Symbol* gsym);
7233
7234 // Return the .rel.plt section data.
7235 const Reloc_section*
7236 rel_plt() const
7237 { return this->rel_; }
7238
0e70b911
CC
7239 // Return the number of PLT entries.
7240 unsigned int
7241 entry_count() const
7242 { return this->count_; }
7243
7244 // Return the offset of the first non-reserved PLT entry.
2e702c99
RM
7245 unsigned int
7246 first_plt_entry_offset() const
7247 { return this->do_first_plt_entry_offset(); }
0e70b911
CC
7248
7249 // Return the size of a PLT entry.
2e702c99
RM
7250 unsigned int
7251 get_plt_entry_size() const
7252 { return this->do_get_plt_entry_size(); }
0e70b911 7253
94cdfcff 7254 protected:
2e702c99
RM
7255 // Fill in the first PLT entry.
7256 void
7257 fill_first_plt_entry(unsigned char* pov,
7258 Arm_address got_address,
7259 Arm_address plt_address)
7260 { this->do_fill_first_plt_entry(pov, got_address, plt_address); }
7261
7262 void
7263 fill_plt_entry(unsigned char* pov,
7264 Arm_address got_address,
7265 Arm_address plt_address,
7266 unsigned int got_offset,
7267 unsigned int plt_offset)
7268 { do_fill_plt_entry(pov, got_address, plt_address, got_offset, plt_offset); }
7269
7270 virtual unsigned int
7271 do_first_plt_entry_offset() const = 0;
7272
7273 virtual unsigned int
7274 do_get_plt_entry_size() const = 0;
7275
7276 virtual void
7277 do_fill_first_plt_entry(unsigned char* pov,
7278 Arm_address got_address,
7279 Arm_address plt_address) = 0;
7280
7281 virtual void
7282 do_fill_plt_entry(unsigned char* pov,
7283 Arm_address got_address,
7284 Arm_address plt_address,
7285 unsigned int got_offset,
7286 unsigned int plt_offset) = 0;
7287
94cdfcff
DK
7288 void
7289 do_adjust_output_section(Output_section* os);
7290
7291 // Write to a map file.
7292 void
7293 do_print_to_mapfile(Mapfile* mapfile) const
7294 { mapfile->print_output_data(this, _("** PLT")); }
7295
7296 private:
94cdfcff
DK
7297 // Set the final size.
7298 void
7299 set_final_data_size()
7300 {
2e702c99
RM
7301 this->set_data_size(this->first_plt_entry_offset()
7302 + this->count_ * this->get_plt_entry_size());
94cdfcff
DK
7303 }
7304
7305 // Write out the PLT data.
7306 void
7307 do_write(Output_file*);
7308
7309 // The reloc section.
7310 Reloc_section* rel_;
7311 // The .got.plt section.
7312 Output_data_space* got_plt_;
7313 // The number of PLT entries.
7314 unsigned int count_;
7315};
7316
7317// Create the PLT section. The ordinary .got section is an argument,
7318// since we need to refer to the start. We also create our own .got
7319// section just for PLT entries.
7320
7321template<bool big_endian>
2ea97941 7322Output_data_plt_arm<big_endian>::Output_data_plt_arm(Layout* layout,
2e702c99 7323 uint64_t addralign,
94cdfcff 7324 Output_data_space* got_plt)
2e702c99 7325 : Output_section_data(addralign), got_plt_(got_plt), count_(0)
94cdfcff
DK
7326{
7327 this->rel_ = new Reloc_section(false);
2ea97941 7328 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
22f0da72
ILT
7329 elfcpp::SHF_ALLOC, this->rel_,
7330 ORDER_DYNAMIC_PLT_RELOCS, false);
94cdfcff
DK
7331}
7332
7333template<bool big_endian>
7334void
7335Output_data_plt_arm<big_endian>::do_adjust_output_section(Output_section* os)
7336{
7337 os->set_entsize(0);
7338}
7339
7340// Add an entry to the PLT.
7341
7342template<bool big_endian>
7343void
7344Output_data_plt_arm<big_endian>::add_entry(Symbol* gsym)
7345{
7346 gold_assert(!gsym->has_plt_offset());
7347
7348 // Note that when setting the PLT offset we skip the initial
7349 // reserved PLT entry.
2e702c99
RM
7350 gsym->set_plt_offset((this->count_) * this->get_plt_entry_size()
7351 + this->first_plt_entry_offset());
94cdfcff
DK
7352
7353 ++this->count_;
7354
7355 section_offset_type got_offset = this->got_plt_->current_data_size();
7356
7357 // Every PLT entry needs a GOT entry which points back to the PLT
7358 // entry (this will be changed by the dynamic linker, normally
7359 // lazily when the function is called).
7360 this->got_plt_->set_current_data_size(got_offset + 4);
7361
7362 // Every PLT entry needs a reloc.
7363 gsym->set_needs_dynsym_entry();
7364 this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_,
7365 got_offset);
7366
7367 // Note that we don't need to save the symbol. The contents of the
7368 // PLT are independent of which symbols are used. The symbols only
7369 // appear in the relocations.
7370}
7371
2e702c99
RM
7372template<bool big_endian>
7373class Output_data_plt_arm_standard : public Output_data_plt_arm<big_endian>
7374{
7375 public:
7376 Output_data_plt_arm_standard(Layout* layout, Output_data_space* got_plt)
7377 : Output_data_plt_arm<big_endian>(layout, 4, got_plt)
7378 { }
7379
7380 protected:
7381 // Return the offset of the first non-reserved PLT entry.
7382 virtual unsigned int
7383 do_first_plt_entry_offset() const
7384 { return sizeof(first_plt_entry); }
7385
7386 // Return the size of a PLT entry.
7387 virtual unsigned int
7388 do_get_plt_entry_size() const
7389 { return sizeof(plt_entry); }
7390
7391 virtual void
7392 do_fill_first_plt_entry(unsigned char* pov,
7393 Arm_address got_address,
7394 Arm_address plt_address);
7395
7396 virtual void
7397 do_fill_plt_entry(unsigned char* pov,
7398 Arm_address got_address,
7399 Arm_address plt_address,
7400 unsigned int got_offset,
7401 unsigned int plt_offset);
7402
7403 private:
7404 // Template for the first PLT entry.
7405 static const uint32_t first_plt_entry[5];
7406
7407 // Template for subsequent PLT entries.
7408 static const uint32_t plt_entry[3];
7409};
7410
94cdfcff
DK
7411// ARM PLTs.
7412// FIXME: This is not very flexible. Right now this has only been tested
7413// on armv5te. If we are to support additional architecture features like
7414// Thumb-2 or BE8, we need to make this more flexible like GNU ld.
7415
7416// The first entry in the PLT.
7417template<bool big_endian>
2e702c99 7418const uint32_t Output_data_plt_arm_standard<big_endian>::first_plt_entry[5] =
94cdfcff
DK
7419{
7420 0xe52de004, // str lr, [sp, #-4]!
7421 0xe59fe004, // ldr lr, [pc, #4]
2e702c99 7422 0xe08fe00e, // add lr, pc, lr
94cdfcff
DK
7423 0xe5bef008, // ldr pc, [lr, #8]!
7424 0x00000000, // &GOT[0] - .
7425};
7426
2e702c99
RM
7427template<bool big_endian>
7428void
7429Output_data_plt_arm_standard<big_endian>::do_fill_first_plt_entry(
7430 unsigned char* pov,
7431 Arm_address got_address,
7432 Arm_address plt_address)
7433{
7434 // Write first PLT entry. All but the last word are constants.
7435 const size_t num_first_plt_words = (sizeof(first_plt_entry)
7436 / sizeof(plt_entry[0]));
7437 for (size_t i = 0; i < num_first_plt_words - 1; i++)
7438 elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
7439 // Last word in first PLT entry is &GOT[0] - .
7440 elfcpp::Swap<32, big_endian>::writeval(pov + 16,
7441 got_address - (plt_address + 16));
7442}
7443
94cdfcff
DK
7444// Subsequent entries in the PLT.
7445
7446template<bool big_endian>
2e702c99 7447const uint32_t Output_data_plt_arm_standard<big_endian>::plt_entry[3] =
94cdfcff
DK
7448{
7449 0xe28fc600, // add ip, pc, #0xNN00000
7450 0xe28cca00, // add ip, ip, #0xNN000
7451 0xe5bcf000, // ldr pc, [ip, #0xNNN]!
7452};
7453
2e702c99
RM
7454template<bool big_endian>
7455void
7456Output_data_plt_arm_standard<big_endian>::do_fill_plt_entry(
7457 unsigned char* pov,
7458 Arm_address got_address,
7459 Arm_address plt_address,
7460 unsigned int got_offset,
7461 unsigned int plt_offset)
7462{
7463 int32_t offset = ((got_address + got_offset)
7464 - (plt_address + plt_offset + 8));
7465
7466 gold_assert(offset >= 0 && offset < 0x0fffffff);
7467 uint32_t plt_insn0 = plt_entry[0] | ((offset >> 20) & 0xff);
7468 elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
7469 uint32_t plt_insn1 = plt_entry[1] | ((offset >> 12) & 0xff);
7470 elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
7471 uint32_t plt_insn2 = plt_entry[2] | (offset & 0xfff);
7472 elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
7473}
7474
94cdfcff
DK
7475// Write out the PLT. This uses the hand-coded instructions above,
7476// and adjusts them as needed. This is all specified by the arm ELF
7477// Processor Supplement.
7478
7479template<bool big_endian>
7480void
7481Output_data_plt_arm<big_endian>::do_write(Output_file* of)
7482{
2ea97941 7483 const off_t offset = this->offset();
94cdfcff
DK
7484 const section_size_type oview_size =
7485 convert_to_section_size_type(this->data_size());
2ea97941 7486 unsigned char* const oview = of->get_output_view(offset, oview_size);
94cdfcff
DK
7487
7488 const off_t got_file_offset = this->got_plt_->offset();
7489 const section_size_type got_size =
7490 convert_to_section_size_type(this->got_plt_->data_size());
7491 unsigned char* const got_view = of->get_output_view(got_file_offset,
7492 got_size);
7493 unsigned char* pov = oview;
7494
ebabffbd
DK
7495 Arm_address plt_address = this->address();
7496 Arm_address got_address = this->got_plt_->address();
94cdfcff 7497
2e702c99
RM
7498 // Write first PLT entry.
7499 this->fill_first_plt_entry(pov, got_address, plt_address);
7500 pov += this->first_plt_entry_offset();
94cdfcff
DK
7501
7502 unsigned char* got_pov = got_view;
7503
7504 memset(got_pov, 0, 12);
7505 got_pov += 12;
7506
2e702c99 7507 unsigned int plt_offset = this->first_plt_entry_offset();
94cdfcff
DK
7508 unsigned int got_offset = 12;
7509 const unsigned int count = this->count_;
7510 for (unsigned int i = 0;
7511 i < count;
7512 ++i,
2e702c99 7513 pov += this->get_plt_entry_size(),
94cdfcff 7514 got_pov += 4,
2e702c99 7515 plt_offset += this->get_plt_entry_size(),
94cdfcff
DK
7516 got_offset += 4)
7517 {
7518 // Set and adjust the PLT entry itself.
2e702c99
RM
7519 this->fill_plt_entry(pov, got_address, plt_address,
7520 got_offset, plt_offset);
94cdfcff
DK
7521
7522 // Set the entry in the GOT.
7523 elfcpp::Swap<32, big_endian>::writeval(got_pov, plt_address);
7524 }
7525
7526 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
7527 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
7528
2ea97941 7529 of->write_output_view(offset, oview_size, oview);
94cdfcff
DK
7530 of->write_output_view(got_file_offset, got_size, got_view);
7531}
7532
7533// Create a PLT entry for a global symbol.
7534
7535template<bool big_endian>
7536void
2ea97941 7537Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout,
94cdfcff
DK
7538 Symbol* gsym)
7539{
7540 if (gsym->has_plt_offset())
7541 return;
7542
7543 if (this->plt_ == NULL)
7544 {
7545 // Create the GOT sections first.
2ea97941 7546 this->got_section(symtab, layout);
94cdfcff 7547
2e702c99
RM
7548 this->plt_ = this->make_data_plt(layout, this->got_plt_);
7549
2ea97941
ILT
7550 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
7551 (elfcpp::SHF_ALLOC
7552 | elfcpp::SHF_EXECINSTR),
22f0da72 7553 this->plt_, ORDER_PLT, false);
94cdfcff
DK
7554 }
7555 this->plt_->add_entry(gsym);
7556}
7557
0e70b911
CC
7558// Return the number of entries in the PLT.
7559
7560template<bool big_endian>
7561unsigned int
7562Target_arm<big_endian>::plt_entry_count() const
7563{
7564 if (this->plt_ == NULL)
7565 return 0;
7566 return this->plt_->entry_count();
7567}
7568
7569// Return the offset of the first non-reserved PLT entry.
7570
7571template<bool big_endian>
7572unsigned int
7573Target_arm<big_endian>::first_plt_entry_offset() const
7574{
2e702c99 7575 return this->plt_->first_plt_entry_offset();
0e70b911
CC
7576}
7577
7578// Return the size of each PLT entry.
7579
7580template<bool big_endian>
7581unsigned int
7582Target_arm<big_endian>::plt_entry_size() const
7583{
2e702c99 7584 return this->plt_->get_plt_entry_size();
0e70b911
CC
7585}
7586
f96accdf
DK
7587// Get the section to use for TLS_DESC relocations.
7588
7589template<bool big_endian>
7590typename Target_arm<big_endian>::Reloc_section*
7591Target_arm<big_endian>::rel_tls_desc_section(Layout* layout) const
7592{
7593 return this->plt_section()->rel_tls_desc(layout);
7594}
7595
7596// Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
7597
7598template<bool big_endian>
7599void
7600Target_arm<big_endian>::define_tls_base_symbol(
7601 Symbol_table* symtab,
7602 Layout* layout)
7603{
7604 if (this->tls_base_symbol_defined_)
7605 return;
7606
7607 Output_segment* tls_segment = layout->tls_segment();
7608 if (tls_segment != NULL)
7609 {
7610 bool is_exec = parameters->options().output_is_executable();
7611 symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
7612 Symbol_table::PREDEFINED,
7613 tls_segment, 0, 0,
7614 elfcpp::STT_TLS,
7615 elfcpp::STB_LOCAL,
7616 elfcpp::STV_HIDDEN, 0,
7617 (is_exec
7618 ? Symbol::SEGMENT_END
7619 : Symbol::SEGMENT_START),
7620 true);
7621 }
7622 this->tls_base_symbol_defined_ = true;
7623}
7624
7625// Create a GOT entry for the TLS module index.
7626
7627template<bool big_endian>
7628unsigned int
7629Target_arm<big_endian>::got_mod_index_entry(
7630 Symbol_table* symtab,
7631 Layout* layout,
6fa2a40b 7632 Sized_relobj_file<32, big_endian>* object)
f96accdf
DK
7633{
7634 if (this->got_mod_index_offset_ == -1U)
7635 {
7636 gold_assert(symtab != NULL && layout != NULL && object != NULL);
4a54abbb
DK
7637 Arm_output_data_got<big_endian>* got = this->got_section(symtab, layout);
7638 unsigned int got_offset;
7639 if (!parameters->doing_static_link())
7640 {
7641 got_offset = got->add_constant(0);
7642 Reloc_section* rel_dyn = this->rel_dyn_section(layout);
7643 rel_dyn->add_local(object, 0, elfcpp::R_ARM_TLS_DTPMOD32, got,
7644 got_offset);
7645 }
7646 else
7647 {
7648 // We are doing a static link. Just mark it as belong to module 1,
7649 // the executable.
7650 got_offset = got->add_constant(1);
7651 }
7652
f96accdf
DK
7653 got->add_constant(0);
7654 this->got_mod_index_offset_ = got_offset;
7655 }
7656 return this->got_mod_index_offset_;
7657}
7658
7659// Optimize the TLS relocation type based on what we know about the
7660// symbol. IS_FINAL is true if the final address of this symbol is
7661// known at link time.
7662
7663template<bool big_endian>
7664tls::Tls_optimization
7665Target_arm<big_endian>::optimize_tls_reloc(bool, int)
7666{
7667 // FIXME: Currently we do not do any TLS optimization.
7668 return tls::TLSOPT_NONE;
7669}
7670
95a2c8d6
RS
7671// Get the Reference_flags for a particular relocation.
7672
7673template<bool big_endian>
7674int
7675Target_arm<big_endian>::Scan::get_reference_flags(unsigned int r_type)
7676{
7677 switch (r_type)
7678 {
7679 case elfcpp::R_ARM_NONE:
7680 case elfcpp::R_ARM_V4BX:
7681 case elfcpp::R_ARM_GNU_VTENTRY:
7682 case elfcpp::R_ARM_GNU_VTINHERIT:
7683 // No symbol reference.
7684 return 0;
7685
7686 case elfcpp::R_ARM_ABS32:
7687 case elfcpp::R_ARM_ABS16:
7688 case elfcpp::R_ARM_ABS12:
7689 case elfcpp::R_ARM_THM_ABS5:
7690 case elfcpp::R_ARM_ABS8:
7691 case elfcpp::R_ARM_BASE_ABS:
7692 case elfcpp::R_ARM_MOVW_ABS_NC:
7693 case elfcpp::R_ARM_MOVT_ABS:
7694 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7695 case elfcpp::R_ARM_THM_MOVT_ABS:
7696 case elfcpp::R_ARM_ABS32_NOI:
7697 return Symbol::ABSOLUTE_REF;
7698
7699 case elfcpp::R_ARM_REL32:
7700 case elfcpp::R_ARM_LDR_PC_G0:
7701 case elfcpp::R_ARM_SBREL32:
7702 case elfcpp::R_ARM_THM_PC8:
7703 case elfcpp::R_ARM_BASE_PREL:
7704 case elfcpp::R_ARM_MOVW_PREL_NC:
7705 case elfcpp::R_ARM_MOVT_PREL:
7706 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7707 case elfcpp::R_ARM_THM_MOVT_PREL:
7708 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7709 case elfcpp::R_ARM_THM_PC12:
7710 case elfcpp::R_ARM_REL32_NOI:
7711 case elfcpp::R_ARM_ALU_PC_G0_NC:
7712 case elfcpp::R_ARM_ALU_PC_G0:
7713 case elfcpp::R_ARM_ALU_PC_G1_NC:
7714 case elfcpp::R_ARM_ALU_PC_G1:
7715 case elfcpp::R_ARM_ALU_PC_G2:
7716 case elfcpp::R_ARM_LDR_PC_G1:
7717 case elfcpp::R_ARM_LDR_PC_G2:
7718 case elfcpp::R_ARM_LDRS_PC_G0:
7719 case elfcpp::R_ARM_LDRS_PC_G1:
7720 case elfcpp::R_ARM_LDRS_PC_G2:
7721 case elfcpp::R_ARM_LDC_PC_G0:
7722 case elfcpp::R_ARM_LDC_PC_G1:
7723 case elfcpp::R_ARM_LDC_PC_G2:
7724 case elfcpp::R_ARM_ALU_SB_G0_NC:
7725 case elfcpp::R_ARM_ALU_SB_G0:
7726 case elfcpp::R_ARM_ALU_SB_G1_NC:
7727 case elfcpp::R_ARM_ALU_SB_G1:
7728 case elfcpp::R_ARM_ALU_SB_G2:
7729 case elfcpp::R_ARM_LDR_SB_G0:
7730 case elfcpp::R_ARM_LDR_SB_G1:
7731 case elfcpp::R_ARM_LDR_SB_G2:
7732 case elfcpp::R_ARM_LDRS_SB_G0:
7733 case elfcpp::R_ARM_LDRS_SB_G1:
7734 case elfcpp::R_ARM_LDRS_SB_G2:
7735 case elfcpp::R_ARM_LDC_SB_G0:
7736 case elfcpp::R_ARM_LDC_SB_G1:
7737 case elfcpp::R_ARM_LDC_SB_G2:
7738 case elfcpp::R_ARM_MOVW_BREL_NC:
7739 case elfcpp::R_ARM_MOVT_BREL:
7740 case elfcpp::R_ARM_MOVW_BREL:
7741 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7742 case elfcpp::R_ARM_THM_MOVT_BREL:
7743 case elfcpp::R_ARM_THM_MOVW_BREL:
7744 case elfcpp::R_ARM_GOTOFF32:
7745 case elfcpp::R_ARM_GOTOFF12:
95a2c8d6
RS
7746 case elfcpp::R_ARM_SBREL31:
7747 return Symbol::RELATIVE_REF;
7748
7749 case elfcpp::R_ARM_PLT32:
7750 case elfcpp::R_ARM_CALL:
7751 case elfcpp::R_ARM_JUMP24:
7752 case elfcpp::R_ARM_THM_CALL:
7753 case elfcpp::R_ARM_THM_JUMP24:
7754 case elfcpp::R_ARM_THM_JUMP19:
7755 case elfcpp::R_ARM_THM_JUMP6:
7756 case elfcpp::R_ARM_THM_JUMP11:
7757 case elfcpp::R_ARM_THM_JUMP8:
017257f8
DK
7758 // R_ARM_PREL31 is not used to relocate call/jump instructions but
7759 // in unwind tables. It may point to functions via PLTs.
7760 // So we treat it like call/jump relocations above.
7761 case elfcpp::R_ARM_PREL31:
95a2c8d6
RS
7762 return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
7763
7764 case elfcpp::R_ARM_GOT_BREL:
7765 case elfcpp::R_ARM_GOT_ABS:
7766 case elfcpp::R_ARM_GOT_PREL:
7767 // Absolute in GOT.
7768 return Symbol::ABSOLUTE_REF;
7769
7770 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7771 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
7772 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
7773 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
7774 case elfcpp::R_ARM_TLS_LE32: // Local-exec
7775 return Symbol::TLS_REF;
7776
7777 case elfcpp::R_ARM_TARGET1:
7778 case elfcpp::R_ARM_TARGET2:
7779 case elfcpp::R_ARM_COPY:
7780 case elfcpp::R_ARM_GLOB_DAT:
7781 case elfcpp::R_ARM_JUMP_SLOT:
7782 case elfcpp::R_ARM_RELATIVE:
7783 case elfcpp::R_ARM_PC24:
7784 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
7785 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
7786 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
7787 default:
7788 // Not expected. We will give an error later.
7789 return 0;
7790 }
7791}
7792
4a657b0d
DK
7793// Report an unsupported relocation against a local symbol.
7794
7795template<bool big_endian>
7796void
7797Target_arm<big_endian>::Scan::unsupported_reloc_local(
6fa2a40b 7798 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
7799 unsigned int r_type)
7800{
7801 gold_error(_("%s: unsupported reloc %u against local symbol"),
7802 object->name().c_str(), r_type);
7803}
7804
bec53400
DK
7805// We are about to emit a dynamic relocation of type R_TYPE. If the
7806// dynamic linker does not support it, issue an error. The GNU linker
7807// only issues a non-PIC error for an allocated read-only section.
7808// Here we know the section is allocated, but we don't know that it is
7809// read-only. But we check for all the relocation types which the
7810// glibc dynamic linker supports, so it seems appropriate to issue an
7811// error even if the section is not read-only.
7812
7813template<bool big_endian>
7814void
7815Target_arm<big_endian>::Scan::check_non_pic(Relobj* object,
7816 unsigned int r_type)
7817{
7818 switch (r_type)
7819 {
7820 // These are the relocation types supported by glibc for ARM.
7821 case elfcpp::R_ARM_RELATIVE:
7822 case elfcpp::R_ARM_COPY:
7823 case elfcpp::R_ARM_GLOB_DAT:
7824 case elfcpp::R_ARM_JUMP_SLOT:
7825 case elfcpp::R_ARM_ABS32:
be8fcb75 7826 case elfcpp::R_ARM_ABS32_NOI:
bec53400
DK
7827 case elfcpp::R_ARM_PC24:
7828 // FIXME: The following 3 types are not supported by Android's dynamic
7829 // linker.
7830 case elfcpp::R_ARM_TLS_DTPMOD32:
7831 case elfcpp::R_ARM_TLS_DTPOFF32:
7832 case elfcpp::R_ARM_TLS_TPOFF32:
7833 return;
7834
7835 default:
c8761b9a
DK
7836 {
7837 // This prevents us from issuing more than one error per reloc
7838 // section. But we can still wind up issuing more than one
7839 // error per object file.
7840 if (this->issued_non_pic_error_)
7841 return;
7842 const Arm_reloc_property* reloc_property =
7843 arm_reloc_property_table->get_reloc_property(r_type);
7844 gold_assert(reloc_property != NULL);
7845 object->error(_("requires unsupported dynamic reloc %s; "
7846 "recompile with -fPIC"),
7847 reloc_property->name().c_str());
7848 this->issued_non_pic_error_ = true;
bec53400 7849 return;
c8761b9a 7850 }
bec53400
DK
7851
7852 case elfcpp::R_ARM_NONE:
7853 gold_unreachable();
7854 }
7855}
7856
4a657b0d 7857// Scan a relocation for a local symbol.
bec53400
DK
7858// FIXME: This only handles a subset of relocation types used by Android
7859// on ARM v5te devices.
4a657b0d
DK
7860
7861template<bool big_endian>
7862inline void
ad0f2072 7863Target_arm<big_endian>::Scan::local(Symbol_table* symtab,
2ea97941 7864 Layout* layout,
bec53400 7865 Target_arm* target,
6fa2a40b 7866 Sized_relobj_file<32, big_endian>* object,
bec53400
DK
7867 unsigned int data_shndx,
7868 Output_section* output_section,
7869 const elfcpp::Rel<32, big_endian>& reloc,
4a657b0d 7870 unsigned int r_type,
bfdfa4cd
AM
7871 const elfcpp::Sym<32, big_endian>& lsym,
7872 bool is_discarded)
4a657b0d 7873{
bfdfa4cd
AM
7874 if (is_discarded)
7875 return;
7876
a6d1ef57 7877 r_type = get_real_reloc_type(r_type);
4a657b0d
DK
7878 switch (r_type)
7879 {
7880 case elfcpp::R_ARM_NONE:
e4782e83
DK
7881 case elfcpp::R_ARM_V4BX:
7882 case elfcpp::R_ARM_GNU_VTENTRY:
7883 case elfcpp::R_ARM_GNU_VTINHERIT:
4a657b0d
DK
7884 break;
7885
bec53400 7886 case elfcpp::R_ARM_ABS32:
be8fcb75 7887 case elfcpp::R_ARM_ABS32_NOI:
bec53400
DK
7888 // If building a shared library (or a position-independent
7889 // executable), we need to create a dynamic relocation for
7890 // this location. The relocation applied at link time will
7891 // apply the link-time value, so we flag the location with
7892 // an R_ARM_RELATIVE relocation so the dynamic loader can
7893 // relocate it easily.
7894 if (parameters->options().output_is_position_independent())
7895 {
2ea97941 7896 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
bec53400 7897 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
2e702c99
RM
7898 // If we are to add more other reloc types than R_ARM_ABS32,
7899 // we need to add check_non_pic(object, r_type) here.
bec53400
DK
7900 rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE,
7901 output_section, data_shndx,
7902 reloc.get_r_offset());
7903 }
7904 break;
7905
e4782e83
DK
7906 case elfcpp::R_ARM_ABS16:
7907 case elfcpp::R_ARM_ABS12:
be8fcb75
ILT
7908 case elfcpp::R_ARM_THM_ABS5:
7909 case elfcpp::R_ARM_ABS8:
be8fcb75 7910 case elfcpp::R_ARM_BASE_ABS:
fd3c5f0b
ILT
7911 case elfcpp::R_ARM_MOVW_ABS_NC:
7912 case elfcpp::R_ARM_MOVT_ABS:
7913 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7914 case elfcpp::R_ARM_THM_MOVT_ABS:
e4782e83
DK
7915 // If building a shared library (or a position-independent
7916 // executable), we need to create a dynamic relocation for
7917 // this location. Because the addend needs to remain in the
7918 // data section, we need to be careful not to apply this
7919 // relocation statically.
7920 if (parameters->options().output_is_position_independent())
2e702c99 7921 {
e4782e83 7922 check_non_pic(object, r_type);
2e702c99 7923 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
e4782e83 7924 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
2e702c99 7925 if (lsym.get_st_type() != elfcpp::STT_SECTION)
e4782e83
DK
7926 rel_dyn->add_local(object, r_sym, r_type, output_section,
7927 data_shndx, reloc.get_r_offset());
2e702c99
RM
7928 else
7929 {
7930 gold_assert(lsym.get_st_value() == 0);
e4782e83
DK
7931 unsigned int shndx = lsym.get_st_shndx();
7932 bool is_ordinary;
7933 shndx = object->adjust_sym_shndx(r_sym, shndx,
7934 &is_ordinary);
7935 if (!is_ordinary)
7936 object->error(_("section symbol %u has bad shndx %u"),
7937 r_sym, shndx);
7938 else
7939 rel_dyn->add_local_section(object, shndx,
7940 r_type, output_section,
7941 data_shndx, reloc.get_r_offset());
2e702c99
RM
7942 }
7943 }
e4782e83
DK
7944 break;
7945
e4782e83
DK
7946 case elfcpp::R_ARM_REL32:
7947 case elfcpp::R_ARM_LDR_PC_G0:
7948 case elfcpp::R_ARM_SBREL32:
7949 case elfcpp::R_ARM_THM_CALL:
7950 case elfcpp::R_ARM_THM_PC8:
7951 case elfcpp::R_ARM_BASE_PREL:
7952 case elfcpp::R_ARM_PLT32:
7953 case elfcpp::R_ARM_CALL:
7954 case elfcpp::R_ARM_JUMP24:
7955 case elfcpp::R_ARM_THM_JUMP24:
e4782e83
DK
7956 case elfcpp::R_ARM_SBREL31:
7957 case elfcpp::R_ARM_PREL31:
c2a122b6
ILT
7958 case elfcpp::R_ARM_MOVW_PREL_NC:
7959 case elfcpp::R_ARM_MOVT_PREL:
7960 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7961 case elfcpp::R_ARM_THM_MOVT_PREL:
e4782e83 7962 case elfcpp::R_ARM_THM_JUMP19:
800d0f56 7963 case elfcpp::R_ARM_THM_JUMP6:
11b861d5 7964 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
e4782e83
DK
7965 case elfcpp::R_ARM_THM_PC12:
7966 case elfcpp::R_ARM_REL32_NOI:
b10d2873
ILT
7967 case elfcpp::R_ARM_ALU_PC_G0_NC:
7968 case elfcpp::R_ARM_ALU_PC_G0:
7969 case elfcpp::R_ARM_ALU_PC_G1_NC:
7970 case elfcpp::R_ARM_ALU_PC_G1:
7971 case elfcpp::R_ARM_ALU_PC_G2:
e4782e83
DK
7972 case elfcpp::R_ARM_LDR_PC_G1:
7973 case elfcpp::R_ARM_LDR_PC_G2:
7974 case elfcpp::R_ARM_LDRS_PC_G0:
7975 case elfcpp::R_ARM_LDRS_PC_G1:
7976 case elfcpp::R_ARM_LDRS_PC_G2:
7977 case elfcpp::R_ARM_LDC_PC_G0:
7978 case elfcpp::R_ARM_LDC_PC_G1:
7979 case elfcpp::R_ARM_LDC_PC_G2:
b10d2873
ILT
7980 case elfcpp::R_ARM_ALU_SB_G0_NC:
7981 case elfcpp::R_ARM_ALU_SB_G0:
7982 case elfcpp::R_ARM_ALU_SB_G1_NC:
7983 case elfcpp::R_ARM_ALU_SB_G1:
7984 case elfcpp::R_ARM_ALU_SB_G2:
b10d2873
ILT
7985 case elfcpp::R_ARM_LDR_SB_G0:
7986 case elfcpp::R_ARM_LDR_SB_G1:
7987 case elfcpp::R_ARM_LDR_SB_G2:
b10d2873
ILT
7988 case elfcpp::R_ARM_LDRS_SB_G0:
7989 case elfcpp::R_ARM_LDRS_SB_G1:
7990 case elfcpp::R_ARM_LDRS_SB_G2:
b10d2873
ILT
7991 case elfcpp::R_ARM_LDC_SB_G0:
7992 case elfcpp::R_ARM_LDC_SB_G1:
7993 case elfcpp::R_ARM_LDC_SB_G2:
e4782e83
DK
7994 case elfcpp::R_ARM_MOVW_BREL_NC:
7995 case elfcpp::R_ARM_MOVT_BREL:
7996 case elfcpp::R_ARM_MOVW_BREL:
7997 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7998 case elfcpp::R_ARM_THM_MOVT_BREL:
7999 case elfcpp::R_ARM_THM_MOVW_BREL:
8000 case elfcpp::R_ARM_THM_JUMP11:
8001 case elfcpp::R_ARM_THM_JUMP8:
8002 // We don't need to do anything for a relative addressing relocation
8003 // against a local symbol if it does not reference the GOT.
bec53400
DK
8004 break;
8005
8006 case elfcpp::R_ARM_GOTOFF32:
e4782e83 8007 case elfcpp::R_ARM_GOTOFF12:
bec53400 8008 // We need a GOT section:
2ea97941 8009 target->got_section(symtab, layout);
bec53400
DK
8010 break;
8011
bec53400 8012 case elfcpp::R_ARM_GOT_BREL:
7f5309a5 8013 case elfcpp::R_ARM_GOT_PREL:
bec53400
DK
8014 {
8015 // The symbol requires a GOT entry.
4a54abbb 8016 Arm_output_data_got<big_endian>* got =
2ea97941 8017 target->got_section(symtab, layout);
bec53400
DK
8018 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8019 if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
8020 {
8021 // If we are generating a shared object, we need to add a
8022 // dynamic RELATIVE relocation for this symbol's GOT entry.
8023 if (parameters->options().output_is_position_independent())
8024 {
2ea97941
ILT
8025 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8026 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
bec53400 8027 rel_dyn->add_local_relative(
2ea97941
ILT
8028 object, r_sym, elfcpp::R_ARM_RELATIVE, got,
8029 object->local_got_offset(r_sym, GOT_TYPE_STANDARD));
bec53400
DK
8030 }
8031 }
8032 }
8033 break;
8034
8035 case elfcpp::R_ARM_TARGET1:
e4782e83 8036 case elfcpp::R_ARM_TARGET2:
bec53400
DK
8037 // This should have been mapped to another type already.
8038 // Fall through.
8039 case elfcpp::R_ARM_COPY:
8040 case elfcpp::R_ARM_GLOB_DAT:
8041 case elfcpp::R_ARM_JUMP_SLOT:
8042 case elfcpp::R_ARM_RELATIVE:
8043 // These are relocations which should only be seen by the
8044 // dynamic linker, and should never be seen here.
8045 gold_error(_("%s: unexpected reloc %u in object file"),
8046 object->name().c_str(), r_type);
8047 break;
8048
f96accdf
DK
8049
8050 // These are initial TLS relocs, which are expected when
8051 // linking.
8052 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8053 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8054 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8055 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8056 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8057 {
8058 bool output_is_shared = parameters->options().shared();
8059 const tls::Tls_optimization optimized_type
2e702c99 8060 = Target_arm<big_endian>::optimize_tls_reloc(!output_is_shared,
f96accdf
DK
8061 r_type);
8062 switch (r_type)
8063 {
8064 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8065 if (optimized_type == tls::TLSOPT_NONE)
8066 {
2e702c99
RM
8067 // Create a pair of GOT entries for the module index and
8068 // dtv-relative offset.
8069 Arm_output_data_got<big_endian>* got
8070 = target->got_section(symtab, layout);
8071 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
f96accdf
DK
8072 unsigned int shndx = lsym.get_st_shndx();
8073 bool is_ordinary;
8074 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
8075 if (!is_ordinary)
4a54abbb
DK
8076 {
8077 object->error(_("local symbol %u has bad shndx %u"),
8078 r_sym, shndx);
8079 break;
8080 }
8081
8082 if (!parameters->doing_static_link())
f96accdf
DK
8083 got->add_local_pair_with_rel(object, r_sym, shndx,
8084 GOT_TYPE_TLS_PAIR,
8085 target->rel_dyn_section(layout),
bd73a62d 8086 elfcpp::R_ARM_TLS_DTPMOD32);
4a54abbb
DK
8087 else
8088 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR,
8089 object, r_sym);
f96accdf
DK
8090 }
8091 else
8092 // FIXME: TLS optimization not supported yet.
8093 gold_unreachable();
8094 break;
8095
8096 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8097 if (optimized_type == tls::TLSOPT_NONE)
8098 {
2e702c99
RM
8099 // Create a GOT entry for the module index.
8100 target->got_mod_index_entry(symtab, layout, object);
f96accdf
DK
8101 }
8102 else
8103 // FIXME: TLS optimization not supported yet.
8104 gold_unreachable();
8105 break;
8106
8107 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8108 break;
8109
8110 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8111 layout->set_has_static_tls();
8112 if (optimized_type == tls::TLSOPT_NONE)
8113 {
4a54abbb
DK
8114 // Create a GOT entry for the tp-relative offset.
8115 Arm_output_data_got<big_endian>* got
8116 = target->got_section(symtab, layout);
8117 unsigned int r_sym =
8118 elfcpp::elf_r_sym<32>(reloc.get_r_info());
8119 if (!parameters->doing_static_link())
8120 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
8121 target->rel_dyn_section(layout),
8122 elfcpp::R_ARM_TLS_TPOFF32);
8123 else if (!object->local_has_got_offset(r_sym,
8124 GOT_TYPE_TLS_OFFSET))
8125 {
8126 got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
8127 unsigned int got_offset =
8128 object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
8129 got->add_static_reloc(got_offset,
8130 elfcpp::R_ARM_TLS_TPOFF32, object,
8131 r_sym);
8132 }
f96accdf
DK
8133 }
8134 else
8135 // FIXME: TLS optimization not supported yet.
8136 gold_unreachable();
8137 break;
8138
8139 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8140 layout->set_has_static_tls();
8141 if (output_is_shared)
8142 {
2e702c99
RM
8143 // We need to create a dynamic relocation.
8144 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
8145 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
f96accdf
DK
8146 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8147 rel_dyn->add_local(object, r_sym, elfcpp::R_ARM_TLS_TPOFF32,
8148 output_section, data_shndx,
8149 reloc.get_r_offset());
8150 }
8151 break;
8152
8153 default:
8154 gold_unreachable();
8155 }
8156 }
8157 break;
8158
3cef7179
ILT
8159 case elfcpp::R_ARM_PC24:
8160 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8161 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8162 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
4a657b0d
DK
8163 default:
8164 unsupported_reloc_local(object, r_type);
8165 break;
8166 }
8167}
8168
8169// Report an unsupported relocation against a global symbol.
8170
8171template<bool big_endian>
8172void
8173Target_arm<big_endian>::Scan::unsupported_reloc_global(
6fa2a40b 8174 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
8175 unsigned int r_type,
8176 Symbol* gsym)
8177{
8178 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
8179 object->name().c_str(), r_type, gsym->demangled_name().c_str());
8180}
8181
8a75a161
DK
8182template<bool big_endian>
8183inline bool
8184Target_arm<big_endian>::Scan::possible_function_pointer_reloc(
8185 unsigned int r_type)
8186{
8187 switch (r_type)
8188 {
8189 case elfcpp::R_ARM_PC24:
8190 case elfcpp::R_ARM_THM_CALL:
8191 case elfcpp::R_ARM_PLT32:
8192 case elfcpp::R_ARM_CALL:
8193 case elfcpp::R_ARM_JUMP24:
8194 case elfcpp::R_ARM_THM_JUMP24:
8195 case elfcpp::R_ARM_SBREL31:
8196 case elfcpp::R_ARM_PREL31:
8197 case elfcpp::R_ARM_THM_JUMP19:
8198 case elfcpp::R_ARM_THM_JUMP6:
8199 case elfcpp::R_ARM_THM_JUMP11:
8200 case elfcpp::R_ARM_THM_JUMP8:
8201 // All the relocations above are branches except SBREL31 and PREL31.
8202 return false;
8203
8204 default:
8205 // Be conservative and assume this is a function pointer.
8206 return true;
8207 }
8208}
8209
8210template<bool big_endian>
8211inline bool
8212Target_arm<big_endian>::Scan::local_reloc_may_be_function_pointer(
8213 Symbol_table*,
8214 Layout*,
8215 Target_arm<big_endian>* target,
6fa2a40b 8216 Sized_relobj_file<32, big_endian>*,
8a75a161
DK
8217 unsigned int,
8218 Output_section*,
8219 const elfcpp::Rel<32, big_endian>&,
8220 unsigned int r_type,
8221 const elfcpp::Sym<32, big_endian>&)
8222{
8223 r_type = target->get_real_reloc_type(r_type);
8224 return possible_function_pointer_reloc(r_type);
8225}
8226
8227template<bool big_endian>
8228inline bool
8229Target_arm<big_endian>::Scan::global_reloc_may_be_function_pointer(
8230 Symbol_table*,
8231 Layout*,
8232 Target_arm<big_endian>* target,
6fa2a40b 8233 Sized_relobj_file<32, big_endian>*,
8a75a161
DK
8234 unsigned int,
8235 Output_section*,
8236 const elfcpp::Rel<32, big_endian>&,
8237 unsigned int r_type,
8238 Symbol* gsym)
8239{
8240 // GOT is not a function.
8241 if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8242 return false;
8243
8244 r_type = target->get_real_reloc_type(r_type);
8245 return possible_function_pointer_reloc(r_type);
8246}
8247
4a657b0d
DK
8248// Scan a relocation for a global symbol.
8249
8250template<bool big_endian>
8251inline void
ad0f2072 8252Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
2ea97941 8253 Layout* layout,
bec53400 8254 Target_arm* target,
6fa2a40b 8255 Sized_relobj_file<32, big_endian>* object,
bec53400
DK
8256 unsigned int data_shndx,
8257 Output_section* output_section,
8258 const elfcpp::Rel<32, big_endian>& reloc,
4a657b0d
DK
8259 unsigned int r_type,
8260 Symbol* gsym)
8261{
c8761b9a
DK
8262 // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
8263 // section. We check here to avoid creating a dynamic reloc against
8264 // _GLOBAL_OFFSET_TABLE_.
8265 if (!target->has_got_section()
8266 && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8267 target->got_section(symtab, layout);
8268
a6d1ef57 8269 r_type = get_real_reloc_type(r_type);
4a657b0d
DK
8270 switch (r_type)
8271 {
8272 case elfcpp::R_ARM_NONE:
e4782e83
DK
8273 case elfcpp::R_ARM_V4BX:
8274 case elfcpp::R_ARM_GNU_VTENTRY:
8275 case elfcpp::R_ARM_GNU_VTINHERIT:
4a657b0d
DK
8276 break;
8277
bec53400 8278 case elfcpp::R_ARM_ABS32:
e4782e83
DK
8279 case elfcpp::R_ARM_ABS16:
8280 case elfcpp::R_ARM_ABS12:
8281 case elfcpp::R_ARM_THM_ABS5:
8282 case elfcpp::R_ARM_ABS8:
8283 case elfcpp::R_ARM_BASE_ABS:
8284 case elfcpp::R_ARM_MOVW_ABS_NC:
8285 case elfcpp::R_ARM_MOVT_ABS:
8286 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8287 case elfcpp::R_ARM_THM_MOVT_ABS:
be8fcb75 8288 case elfcpp::R_ARM_ABS32_NOI:
e4782e83 8289 // Absolute addressing relocations.
bec53400 8290 {
2e702c99
RM
8291 // Make a PLT entry if necessary.
8292 if (this->symbol_needs_plt_entry(gsym))
8293 {
8294 target->make_plt_entry(symtab, layout, gsym);
8295 // Since this is not a PC-relative relocation, we may be
8296 // taking the address of a function. In that case we need to
8297 // set the entry in the dynamic symbol table to the address of
8298 // the PLT entry.
8299 if (gsym->is_from_dynobj() && !parameters->options().shared())
8300 gsym->set_needs_dynsym_value();
8301 }
8302 // Make a dynamic relocation if necessary.
8303 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
8304 {
8305 if (gsym->may_need_copy_reloc())
8306 {
8307 target->copy_reloc(symtab, layout, object,
8308 data_shndx, output_section, gsym, reloc);
8309 }
8310 else if ((r_type == elfcpp::R_ARM_ABS32
e4782e83 8311 || r_type == elfcpp::R_ARM_ABS32_NOI)
2e702c99
RM
8312 && gsym->can_use_relative_reloc(false))
8313 {
8314 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8315 rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
8316 output_section, object,
8317 data_shndx, reloc.get_r_offset());
8318 }
8319 else
8320 {
e4782e83 8321 check_non_pic(object, r_type);
2e702c99
RM
8322 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8323 rel_dyn->add_global(gsym, r_type, output_section, object,
8324 data_shndx, reloc.get_r_offset());
8325 }
8326 }
bec53400
DK
8327 }
8328 break;
8329
e4782e83
DK
8330 case elfcpp::R_ARM_GOTOFF32:
8331 case elfcpp::R_ARM_GOTOFF12:
8332 // We need a GOT section.
8333 target->got_section(symtab, layout);
8334 break;
2e702c99 8335
e4782e83
DK
8336 case elfcpp::R_ARM_REL32:
8337 case elfcpp::R_ARM_LDR_PC_G0:
8338 case elfcpp::R_ARM_SBREL32:
8339 case elfcpp::R_ARM_THM_PC8:
8340 case elfcpp::R_ARM_BASE_PREL:
c2a122b6
ILT
8341 case elfcpp::R_ARM_MOVW_PREL_NC:
8342 case elfcpp::R_ARM_MOVT_PREL:
8343 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8344 case elfcpp::R_ARM_THM_MOVT_PREL:
11b861d5 8345 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
e4782e83
DK
8346 case elfcpp::R_ARM_THM_PC12:
8347 case elfcpp::R_ARM_REL32_NOI:
b10d2873
ILT
8348 case elfcpp::R_ARM_ALU_PC_G0_NC:
8349 case elfcpp::R_ARM_ALU_PC_G0:
8350 case elfcpp::R_ARM_ALU_PC_G1_NC:
8351 case elfcpp::R_ARM_ALU_PC_G1:
8352 case elfcpp::R_ARM_ALU_PC_G2:
e4782e83
DK
8353 case elfcpp::R_ARM_LDR_PC_G1:
8354 case elfcpp::R_ARM_LDR_PC_G2:
8355 case elfcpp::R_ARM_LDRS_PC_G0:
8356 case elfcpp::R_ARM_LDRS_PC_G1:
8357 case elfcpp::R_ARM_LDRS_PC_G2:
8358 case elfcpp::R_ARM_LDC_PC_G0:
8359 case elfcpp::R_ARM_LDC_PC_G1:
8360 case elfcpp::R_ARM_LDC_PC_G2:
b10d2873
ILT
8361 case elfcpp::R_ARM_ALU_SB_G0_NC:
8362 case elfcpp::R_ARM_ALU_SB_G0:
8363 case elfcpp::R_ARM_ALU_SB_G1_NC:
8364 case elfcpp::R_ARM_ALU_SB_G1:
8365 case elfcpp::R_ARM_ALU_SB_G2:
b10d2873
ILT
8366 case elfcpp::R_ARM_LDR_SB_G0:
8367 case elfcpp::R_ARM_LDR_SB_G1:
8368 case elfcpp::R_ARM_LDR_SB_G2:
b10d2873
ILT
8369 case elfcpp::R_ARM_LDRS_SB_G0:
8370 case elfcpp::R_ARM_LDRS_SB_G1:
8371 case elfcpp::R_ARM_LDRS_SB_G2:
b10d2873
ILT
8372 case elfcpp::R_ARM_LDC_SB_G0:
8373 case elfcpp::R_ARM_LDC_SB_G1:
8374 case elfcpp::R_ARM_LDC_SB_G2:
e4782e83
DK
8375 case elfcpp::R_ARM_MOVW_BREL_NC:
8376 case elfcpp::R_ARM_MOVT_BREL:
8377 case elfcpp::R_ARM_MOVW_BREL:
8378 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8379 case elfcpp::R_ARM_THM_MOVT_BREL:
8380 case elfcpp::R_ARM_THM_MOVW_BREL:
8381 // Relative addressing relocations.
bec53400
DK
8382 {
8383 // Make a dynamic relocation if necessary.
95a2c8d6 8384 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
bec53400
DK
8385 {
8386 if (target->may_need_copy_reloc(gsym))
8387 {
2ea97941 8388 target->copy_reloc(symtab, layout, object,
bec53400
DK
8389 data_shndx, output_section, gsym, reloc);
8390 }
8391 else
8392 {
8393 check_non_pic(object, r_type);
2ea97941 8394 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
bec53400
DK
8395 rel_dyn->add_global(gsym, r_type, output_section, object,
8396 data_shndx, reloc.get_r_offset());
8397 }
8398 }
8399 }
8400 break;
8401
f4e5969c 8402 case elfcpp::R_ARM_THM_CALL:
bec53400 8403 case elfcpp::R_ARM_PLT32:
e4782e83
DK
8404 case elfcpp::R_ARM_CALL:
8405 case elfcpp::R_ARM_JUMP24:
8406 case elfcpp::R_ARM_THM_JUMP24:
8407 case elfcpp::R_ARM_SBREL31:
c9a2c125 8408 case elfcpp::R_ARM_PREL31:
e4782e83
DK
8409 case elfcpp::R_ARM_THM_JUMP19:
8410 case elfcpp::R_ARM_THM_JUMP6:
8411 case elfcpp::R_ARM_THM_JUMP11:
8412 case elfcpp::R_ARM_THM_JUMP8:
8413 // All the relocation above are branches except for the PREL31 ones.
8414 // A PREL31 relocation can point to a personality function in a shared
8415 // library. In that case we want to use a PLT because we want to
9b547ce6 8416 // call the personality routine and the dynamic linkers we care about
e4782e83
DK
8417 // do not support dynamic PREL31 relocations. An REL31 relocation may
8418 // point to a function whose unwinding behaviour is being described but
8419 // we will not mistakenly generate a PLT for that because we should use
8420 // a local section symbol.
8421
bec53400
DK
8422 // If the symbol is fully resolved, this is just a relative
8423 // local reloc. Otherwise we need a PLT entry.
8424 if (gsym->final_value_is_known())
8425 break;
8426 // If building a shared library, we can also skip the PLT entry
8427 // if the symbol is defined in the output file and is protected
8428 // or hidden.
8429 if (gsym->is_defined()
8430 && !gsym->is_from_dynobj()
8431 && !gsym->is_preemptible())
8432 break;
2ea97941 8433 target->make_plt_entry(symtab, layout, gsym);
bec53400
DK
8434 break;
8435
bec53400 8436 case elfcpp::R_ARM_GOT_BREL:
e4782e83 8437 case elfcpp::R_ARM_GOT_ABS:
7f5309a5 8438 case elfcpp::R_ARM_GOT_PREL:
bec53400
DK
8439 {
8440 // The symbol requires a GOT entry.
4a54abbb 8441 Arm_output_data_got<big_endian>* got =
2ea97941 8442 target->got_section(symtab, layout);
bec53400
DK
8443 if (gsym->final_value_is_known())
8444 got->add_global(gsym, GOT_TYPE_STANDARD);
8445 else
8446 {
8447 // If this symbol is not fully resolved, we need to add a
8448 // GOT entry with a dynamic relocation.
2ea97941 8449 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
bec53400
DK
8450 if (gsym->is_from_dynobj()
8451 || gsym->is_undefined()
fa40b62a
DK
8452 || gsym->is_preemptible()
8453 || (gsym->visibility() == elfcpp::STV_PROTECTED
8454 && parameters->options().shared()))
bec53400
DK
8455 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
8456 rel_dyn, elfcpp::R_ARM_GLOB_DAT);
8457 else
8458 {
8459 if (got->add_global(gsym, GOT_TYPE_STANDARD))
8460 rel_dyn->add_global_relative(
8461 gsym, elfcpp::R_ARM_RELATIVE, got,
8462 gsym->got_offset(GOT_TYPE_STANDARD));
8463 }
8464 }
8465 }
8466 break;
8467
8468 case elfcpp::R_ARM_TARGET1:
e4782e83
DK
8469 case elfcpp::R_ARM_TARGET2:
8470 // These should have been mapped to other types already.
bec53400
DK
8471 // Fall through.
8472 case elfcpp::R_ARM_COPY:
8473 case elfcpp::R_ARM_GLOB_DAT:
8474 case elfcpp::R_ARM_JUMP_SLOT:
8475 case elfcpp::R_ARM_RELATIVE:
8476 // These are relocations which should only be seen by the
8477 // dynamic linker, and should never be seen here.
8478 gold_error(_("%s: unexpected reloc %u in object file"),
8479 object->name().c_str(), r_type);
8480 break;
8481
f96accdf
DK
8482 // These are initial tls relocs, which are expected when
8483 // linking.
8484 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8485 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8486 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8487 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8488 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8489 {
8490 const bool is_final = gsym->final_value_is_known();
8491 const tls::Tls_optimization optimized_type
2e702c99 8492 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
f96accdf
DK
8493 switch (r_type)
8494 {
8495 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8496 if (optimized_type == tls::TLSOPT_NONE)
8497 {
2e702c99
RM
8498 // Create a pair of GOT entries for the module index and
8499 // dtv-relative offset.
8500 Arm_output_data_got<big_endian>* got
8501 = target->got_section(symtab, layout);
4a54abbb
DK
8502 if (!parameters->doing_static_link())
8503 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
8504 target->rel_dyn_section(layout),
8505 elfcpp::R_ARM_TLS_DTPMOD32,
8506 elfcpp::R_ARM_TLS_DTPOFF32);
8507 else
8508 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR, gsym);
f96accdf
DK
8509 }
8510 else
8511 // FIXME: TLS optimization not supported yet.
8512 gold_unreachable();
8513 break;
8514
8515 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8516 if (optimized_type == tls::TLSOPT_NONE)
8517 {
2e702c99
RM
8518 // Create a GOT entry for the module index.
8519 target->got_mod_index_entry(symtab, layout, object);
f96accdf
DK
8520 }
8521 else
8522 // FIXME: TLS optimization not supported yet.
8523 gold_unreachable();
8524 break;
8525
8526 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8527 break;
8528
8529 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8530 layout->set_has_static_tls();
8531 if (optimized_type == tls::TLSOPT_NONE)
8532 {
4a54abbb
DK
8533 // Create a GOT entry for the tp-relative offset.
8534 Arm_output_data_got<big_endian>* got
8535 = target->got_section(symtab, layout);
8536 if (!parameters->doing_static_link())
8537 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
8538 target->rel_dyn_section(layout),
8539 elfcpp::R_ARM_TLS_TPOFF32);
8540 else if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
8541 {
8542 got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
8543 unsigned int got_offset =
8544 gsym->got_offset(GOT_TYPE_TLS_OFFSET);
8545 got->add_static_reloc(got_offset,
8546 elfcpp::R_ARM_TLS_TPOFF32, gsym);
8547 }
f96accdf
DK
8548 }
8549 else
8550 // FIXME: TLS optimization not supported yet.
8551 gold_unreachable();
8552 break;
8553
8554 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8555 layout->set_has_static_tls();
8556 if (parameters->options().shared())
8557 {
2e702c99
RM
8558 // We need to create a dynamic relocation.
8559 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8560 rel_dyn->add_global(gsym, elfcpp::R_ARM_TLS_TPOFF32,
f96accdf 8561 output_section, object,
2e702c99 8562 data_shndx, reloc.get_r_offset());
f96accdf
DK
8563 }
8564 break;
8565
8566 default:
8567 gold_unreachable();
8568 }
8569 }
8570 break;
8571
3cef7179
ILT
8572 case elfcpp::R_ARM_PC24:
8573 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8574 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8575 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
4a657b0d
DK
8576 default:
8577 unsupported_reloc_global(object, r_type, gsym);
8578 break;
8579 }
8580}
8581
8582// Process relocations for gc.
8583
8584template<bool big_endian>
8585void
6fa2a40b
CC
8586Target_arm<big_endian>::gc_process_relocs(
8587 Symbol_table* symtab,
8588 Layout* layout,
8589 Sized_relobj_file<32, big_endian>* object,
8590 unsigned int data_shndx,
8591 unsigned int,
8592 const unsigned char* prelocs,
8593 size_t reloc_count,
8594 Output_section* output_section,
8595 bool needs_special_offset_handling,
8596 size_t local_symbol_count,
8597 const unsigned char* plocal_symbols)
4a657b0d
DK
8598{
8599 typedef Target_arm<big_endian> Arm;
2ea97941 8600 typedef typename Target_arm<big_endian>::Scan Scan;
4a657b0d 8601
41cbeecc 8602 gold::gc_process_relocs<32, big_endian, Arm, elfcpp::SHT_REL, Scan,
3ff2ccb0 8603 typename Target_arm::Relocatable_size_for_reloc>(
4a657b0d 8604 symtab,
2ea97941 8605 layout,
4a657b0d
DK
8606 this,
8607 object,
8608 data_shndx,
8609 prelocs,
8610 reloc_count,
8611 output_section,
8612 needs_special_offset_handling,
8613 local_symbol_count,
8614 plocal_symbols);
8615}
8616
8617// Scan relocations for a section.
8618
8619template<bool big_endian>
8620void
ad0f2072 8621Target_arm<big_endian>::scan_relocs(Symbol_table* symtab,
2ea97941 8622 Layout* layout,
6fa2a40b 8623 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
8624 unsigned int data_shndx,
8625 unsigned int sh_type,
8626 const unsigned char* prelocs,
8627 size_t reloc_count,
8628 Output_section* output_section,
8629 bool needs_special_offset_handling,
8630 size_t local_symbol_count,
8631 const unsigned char* plocal_symbols)
8632{
2ea97941 8633 typedef typename Target_arm<big_endian>::Scan Scan;
4a657b0d
DK
8634 if (sh_type == elfcpp::SHT_RELA)
8635 {
8636 gold_error(_("%s: unsupported RELA reloc section"),
8637 object->name().c_str());
8638 return;
8639 }
8640
2ea97941 8641 gold::scan_relocs<32, big_endian, Target_arm, elfcpp::SHT_REL, Scan>(
4a657b0d 8642 symtab,
2ea97941 8643 layout,
4a657b0d
DK
8644 this,
8645 object,
8646 data_shndx,
8647 prelocs,
8648 reloc_count,
8649 output_section,
8650 needs_special_offset_handling,
8651 local_symbol_count,
8652 plocal_symbols);
8653}
8654
8655// Finalize the sections.
8656
8657template<bool big_endian>
8658void
d5b40221 8659Target_arm<big_endian>::do_finalize_sections(
2ea97941 8660 Layout* layout,
f59f41f3 8661 const Input_objects* input_objects,
647f1574 8662 Symbol_table*)
4a657b0d 8663{
3e235302 8664 bool merged_any_attributes = false;
d5b40221
DK
8665 // Merge processor-specific flags.
8666 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
8667 p != input_objects->relobj_end();
8668 ++p)
8669 {
8670 Arm_relobj<big_endian>* arm_relobj =
8671 Arm_relobj<big_endian>::as_arm_relobj(*p);
7296d933
DK
8672 if (arm_relobj->merge_flags_and_attributes())
8673 {
8674 this->merge_processor_specific_flags(
8675 arm_relobj->name(),
8676 arm_relobj->processor_specific_flags());
8677 this->merge_object_attributes(arm_relobj->name().c_str(),
8678 arm_relobj->attributes_section_data());
3e235302 8679 merged_any_attributes = true;
7296d933 8680 }
2e702c99 8681 }
d5b40221
DK
8682
8683 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
8684 p != input_objects->dynobj_end();
8685 ++p)
8686 {
8687 Arm_dynobj<big_endian>* arm_dynobj =
8688 Arm_dynobj<big_endian>::as_arm_dynobj(*p);
8689 this->merge_processor_specific_flags(
8690 arm_dynobj->name(),
8691 arm_dynobj->processor_specific_flags());
a0351a69
DK
8692 this->merge_object_attributes(arm_dynobj->name().c_str(),
8693 arm_dynobj->attributes_section_data());
3e235302 8694 merged_any_attributes = true;
d5b40221
DK
8695 }
8696
da59ad79
DK
8697 // Create an empty uninitialized attribute section if we still don't have it
8698 // at this moment. This happens if there is no attributes sections in all
8699 // inputs.
8700 if (this->attributes_section_data_ == NULL)
8701 this->attributes_section_data_ = new Attributes_section_data(NULL, 0);
8702
41263c05 8703 const Object_attribute* cpu_arch_attr =
a0351a69 8704 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
41263c05
DK
8705 // Check if we need to use Cortex-A8 workaround.
8706 if (parameters->options().user_set_fix_cortex_a8())
8707 this->fix_cortex_a8_ = parameters->options().fix_cortex_a8();
8708 else
8709 {
8710 // If neither --fix-cortex-a8 nor --no-fix-cortex-a8 is used, turn on
8711 // Cortex-A8 erratum workaround for ARMv7-A or ARMv7 with unknown
2e702c99 8712 // profile.
41263c05
DK
8713 const Object_attribute* cpu_arch_profile_attr =
8714 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
8715 this->fix_cortex_a8_ =
8716 (cpu_arch_attr->int_value() == elfcpp::TAG_CPU_ARCH_V7
2e702c99
RM
8717 && (cpu_arch_profile_attr->int_value() == 'A'
8718 || cpu_arch_profile_attr->int_value() == 0));
41263c05 8719 }
2e702c99 8720
a2162063
ILT
8721 // Check if we can use V4BX interworking.
8722 // The V4BX interworking stub contains BX instruction,
8723 // which is not specified for some profiles.
9b2fd367 8724 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
cd6eab1c 8725 && !this->may_use_v4t_interworking())
a2162063 8726 gold_error(_("unable to provide V4BX reloc interworking fix up; "
2e702c99 8727 "the target profile does not support BX instruction"));
a2162063 8728
94cdfcff 8729 // Fill in some more dynamic tags.
ea715a34
ILT
8730 const Reloc_section* rel_plt = (this->plt_ == NULL
8731 ? NULL
8732 : this->plt_->rel_plt());
8733 layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
612a8d3d 8734 this->rel_dyn_, true, false);
94cdfcff
DK
8735
8736 // Emit any relocs we saved in an attempt to avoid generating COPY
8737 // relocs.
8738 if (this->copy_relocs_.any_saved_relocs())
2ea97941 8739 this->copy_relocs_.emit(this->rel_dyn_section(layout));
11af873f 8740
f59f41f3 8741 // Handle the .ARM.exidx section.
2ea97941 8742 Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
11af873f 8743
731ca54a
RÁE
8744 if (!parameters->options().relocatable())
8745 {
8746 if (exidx_section != NULL
2e702c99
RM
8747 && exidx_section->type() == elfcpp::SHT_ARM_EXIDX)
8748 {
8749 // For the ARM target, we need to add a PT_ARM_EXIDX segment for
8750 // the .ARM.exidx section.
8751 if (!layout->script_options()->saw_phdrs_clause())
8752 {
8753 gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0,
8754 0)
8755 == NULL);
8756 Output_segment* exidx_segment =
8757 layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R);
8758 exidx_segment->add_output_section_to_nonload(exidx_section,
8759 elfcpp::PF_R);
8760 }
8761 }
11af873f 8762 }
a0351a69 8763
3e235302
DK
8764 // Create an .ARM.attributes section if we have merged any attributes
8765 // from inputs.
8766 if (merged_any_attributes)
7296d933
DK
8767 {
8768 Output_attributes_section_data* attributes_section =
8769 new Output_attributes_section_data(*this->attributes_section_data_);
8770 layout->add_output_section_data(".ARM.attributes",
8771 elfcpp::SHT_ARM_ATTRIBUTES, 0,
22f0da72 8772 attributes_section, ORDER_INVALID,
7296d933
DK
8773 false);
8774 }
131687b4
DK
8775
8776 // Fix up links in section EXIDX headers.
8777 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
8778 p != layout->section_list().end();
8779 ++p)
8780 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
8781 {
8782 Arm_output_section<big_endian>* os =
8783 Arm_output_section<big_endian>::as_arm_output_section(*p);
8784 os->set_exidx_section_link();
8785 }
4a657b0d
DK
8786}
8787
bec53400
DK
8788// Return whether a direct absolute static relocation needs to be applied.
8789// In cases where Scan::local() or Scan::global() has created
8790// a dynamic relocation other than R_ARM_RELATIVE, the addend
8791// of the relocation is carried in the data, and we must not
8792// apply the static relocation.
8793
8794template<bool big_endian>
8795inline bool
8796Target_arm<big_endian>::Relocate::should_apply_static_reloc(
8797 const Sized_symbol<32>* gsym,
95a2c8d6 8798 unsigned int r_type,
bec53400
DK
8799 bool is_32bit,
8800 Output_section* output_section)
8801{
8802 // If the output section is not allocated, then we didn't call
8803 // scan_relocs, we didn't create a dynamic reloc, and we must apply
8804 // the reloc here.
8805 if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
8806 return true;
8807
95a2c8d6
RS
8808 int ref_flags = Scan::get_reference_flags(r_type);
8809
bec53400
DK
8810 // For local symbols, we will have created a non-RELATIVE dynamic
8811 // relocation only if (a) the output is position independent,
8812 // (b) the relocation is absolute (not pc- or segment-relative), and
8813 // (c) the relocation is not 32 bits wide.
8814 if (gsym == NULL)
8815 return !(parameters->options().output_is_position_independent()
8816 && (ref_flags & Symbol::ABSOLUTE_REF)
8817 && !is_32bit);
8818
8819 // For global symbols, we use the same helper routines used in the
8820 // scan pass. If we did not create a dynamic relocation, or if we
8821 // created a RELATIVE dynamic relocation, we should apply the static
8822 // relocation.
8823 bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
8824 bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
8825 && gsym->can_use_relative_reloc(ref_flags
8826 & Symbol::FUNCTION_CALL);
8827 return !has_dyn || is_rel;
8828}
8829
4a657b0d
DK
8830// Perform a relocation.
8831
8832template<bool big_endian>
8833inline bool
8834Target_arm<big_endian>::Relocate::relocate(
c121c671
DK
8835 const Relocate_info<32, big_endian>* relinfo,
8836 Target_arm* target,
ca09d69a 8837 Output_section* output_section,
c121c671
DK
8838 size_t relnum,
8839 const elfcpp::Rel<32, big_endian>& rel,
4a657b0d 8840 unsigned int r_type,
c121c671
DK
8841 const Sized_symbol<32>* gsym,
8842 const Symbol_value<32>* psymval,
8843 unsigned char* view,
ebabffbd 8844 Arm_address address,
f96accdf 8845 section_size_type view_size)
4a657b0d 8846{
c121c671
DK
8847 typedef Arm_relocate_functions<big_endian> Arm_relocate_functions;
8848
a6d1ef57 8849 r_type = get_real_reloc_type(r_type);
5c57f1be
DK
8850 const Arm_reloc_property* reloc_property =
8851 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
8852 if (reloc_property == NULL)
8853 {
8854 std::string reloc_name =
8855 arm_reloc_property_table->reloc_name_in_error_message(r_type);
8856 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
8857 _("cannot relocate %s in object file"),
8858 reloc_name.c_str());
8859 return true;
8860 }
c121c671 8861
2daedcd6
DK
8862 const Arm_relobj<big_endian>* object =
8863 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
c121c671 8864
2daedcd6
DK
8865 // If the final branch target of a relocation is THUMB instruction, this
8866 // is 1. Otherwise it is 0.
8867 Arm_address thumb_bit = 0;
c121c671 8868 Symbol_value<32> symval;
d204b6e9 8869 bool is_weakly_undefined_without_plt = false;
bca7fb63
DK
8870 bool have_got_offset = false;
8871 unsigned int got_offset = 0;
8872
8873 // If the relocation uses the GOT entry of a symbol instead of the symbol
8874 // itself, we don't care about whether the symbol is defined or what kind
8875 // of symbol it is.
8876 if (reloc_property->uses_got_entry())
8877 {
8878 // Get the GOT offset.
8879 // The GOT pointer points to the end of the GOT section.
8880 // We need to subtract the size of the GOT section to get
8881 // the actual offset to use in the relocation.
8882 // TODO: We should move GOT offset computing code in TLS relocations
8883 // to here.
8884 switch (r_type)
8885 {
8886 case elfcpp::R_ARM_GOT_BREL:
8887 case elfcpp::R_ARM_GOT_PREL:
8888 if (gsym != NULL)
8889 {
8890 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
8891 got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
8892 - target->got_size());
8893 }
8894 else
8895 {
8896 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8897 gold_assert(object->local_has_got_offset(r_sym,
8898 GOT_TYPE_STANDARD));
8899 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
8900 - target->got_size());
8901 }
8902 have_got_offset = true;
8903 break;
8904
8905 default:
8906 break;
8907 }
8908 }
8909 else if (relnum != Target_arm<big_endian>::fake_relnum_for_stubs)
c121c671 8910 {
2daedcd6
DK
8911 if (gsym != NULL)
8912 {
8913 // This is a global symbol. Determine if we use PLT and if the
8914 // final target is THUMB.
95a2c8d6 8915 if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
2daedcd6
DK
8916 {
8917 // This uses a PLT, change the symbol value.
8918 symval.set_output_value(target->plt_section()->address()
8919 + gsym->plt_offset());
8920 psymval = &symval;
8921 }
d204b6e9
DK
8922 else if (gsym->is_weak_undefined())
8923 {
8924 // This is a weakly undefined symbol and we do not use PLT
8925 // for this relocation. A branch targeting this symbol will
8926 // be converted into an NOP.
8927 is_weakly_undefined_without_plt = true;
8928 }
b2286c10
DK
8929 else if (gsym->is_undefined() && reloc_property->uses_symbol())
8930 {
8931 // This relocation uses the symbol value but the symbol is
8932 // undefined. Exit early and have the caller reporting an
8933 // error.
8934 return true;
8935 }
2daedcd6
DK
8936 else
8937 {
8938 // Set thumb bit if symbol:
8939 // -Has type STT_ARM_TFUNC or
8940 // -Has type STT_FUNC, is defined and with LSB in value set.
8941 thumb_bit =
8942 (((gsym->type() == elfcpp::STT_ARM_TFUNC)
8943 || (gsym->type() == elfcpp::STT_FUNC
8944 && !gsym->is_undefined()
8945 && ((psymval->value(object, 0) & 1) != 0)))
8946 ? 1
8947 : 0);
8948 }
8949 }
8950 else
8951 {
2e702c99
RM
8952 // This is a local symbol. Determine if the final target is THUMB.
8953 // We saved this information when all the local symbols were read.
2daedcd6
DK
8954 elfcpp::Elf_types<32>::Elf_WXword r_info = rel.get_r_info();
8955 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
8956 thumb_bit = object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
8957 }
8958 }
8959 else
8960 {
8961 // This is a fake relocation synthesized for a stub. It does not have
8962 // a real symbol. We just look at the LSB of the symbol value to
8963 // determine if the target is THUMB or not.
8964 thumb_bit = ((psymval->value(object, 0) & 1) != 0);
c121c671
DK
8965 }
8966
2daedcd6
DK
8967 // Strip LSB if this points to a THUMB target.
8968 if (thumb_bit != 0
2e702c99 8969 && reloc_property->uses_thumb_bit()
2daedcd6
DK
8970 && ((psymval->value(object, 0) & 1) != 0))
8971 {
8972 Arm_address stripped_value =
8973 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
8974 symval.set_output_value(stripped_value);
8975 psymval = &symval;
2e702c99 8976 }
2daedcd6 8977
d204b6e9
DK
8978 // To look up relocation stubs, we need to pass the symbol table index of
8979 // a local symbol.
8980 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8981
b10d2873
ILT
8982 // Get the addressing origin of the output segment defining the
8983 // symbol gsym if needed (AAELF 4.6.1.2 Relocation types).
8984 Arm_address sym_origin = 0;
5c57f1be 8985 if (reloc_property->uses_symbol_base())
b10d2873
ILT
8986 {
8987 if (r_type == elfcpp::R_ARM_BASE_ABS && gsym == NULL)
8988 // R_ARM_BASE_ABS with the NULL symbol will give the
8989 // absolute address of the GOT origin (GOT_ORG) (see ARM IHI
8990 // 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
8991 sym_origin = target->got_plt_section()->address();
8992 else if (gsym == NULL)
8993 sym_origin = 0;
8994 else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
8995 sym_origin = gsym->output_segment()->vaddr();
8996 else if (gsym->source() == Symbol::IN_OUTPUT_DATA)
8997 sym_origin = gsym->output_data()->address();
8998
8999 // TODO: Assumes the segment base to be zero for the global symbols
9000 // till the proper support for the segment-base-relative addressing
9001 // will be implemented. This is consistent with GNU ld.
9002 }
9003
5c57f1be
DK
9004 // For relative addressing relocation, find out the relative address base.
9005 Arm_address relative_address_base = 0;
9006 switch(reloc_property->relative_address_base())
9007 {
9008 case Arm_reloc_property::RAB_NONE:
f96accdf
DK
9009 // Relocations with relative address bases RAB_TLS and RAB_tp are
9010 // handled by relocate_tls. So we do not need to do anything here.
9011 case Arm_reloc_property::RAB_TLS:
9012 case Arm_reloc_property::RAB_tp:
5c57f1be
DK
9013 break;
9014 case Arm_reloc_property::RAB_B_S:
9015 relative_address_base = sym_origin;
9016 break;
9017 case Arm_reloc_property::RAB_GOT_ORG:
9018 relative_address_base = target->got_plt_section()->address();
9019 break;
9020 case Arm_reloc_property::RAB_P:
9021 relative_address_base = address;
9022 break;
9023 case Arm_reloc_property::RAB_Pa:
9024 relative_address_base = address & 0xfffffffcU;
9025 break;
9026 default:
2e702c99 9027 gold_unreachable();
5c57f1be 9028 }
2e702c99 9029
c121c671
DK
9030 typename Arm_relocate_functions::Status reloc_status =
9031 Arm_relocate_functions::STATUS_OKAY;
5c57f1be 9032 bool check_overflow = reloc_property->checks_overflow();
4a657b0d
DK
9033 switch (r_type)
9034 {
9035 case elfcpp::R_ARM_NONE:
9036 break;
9037
5e445df6 9038 case elfcpp::R_ARM_ABS8:
95a2c8d6 9039 if (should_apply_static_reloc(gsym, r_type, false, output_section))
be8fcb75
ILT
9040 reloc_status = Arm_relocate_functions::abs8(view, object, psymval);
9041 break;
9042
9043 case elfcpp::R_ARM_ABS12:
95a2c8d6 9044 if (should_apply_static_reloc(gsym, r_type, false, output_section))
be8fcb75
ILT
9045 reloc_status = Arm_relocate_functions::abs12(view, object, psymval);
9046 break;
9047
9048 case elfcpp::R_ARM_ABS16:
95a2c8d6 9049 if (should_apply_static_reloc(gsym, r_type, false, output_section))
be8fcb75 9050 reloc_status = Arm_relocate_functions::abs16(view, object, psymval);
5e445df6
ILT
9051 break;
9052
c121c671 9053 case elfcpp::R_ARM_ABS32:
95a2c8d6 9054 if (should_apply_static_reloc(gsym, r_type, true, output_section))
c121c671 9055 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
2daedcd6 9056 thumb_bit);
c121c671
DK
9057 break;
9058
be8fcb75 9059 case elfcpp::R_ARM_ABS32_NOI:
95a2c8d6 9060 if (should_apply_static_reloc(gsym, r_type, true, output_section))
be8fcb75
ILT
9061 // No thumb bit for this relocation: (S + A)
9062 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
f4e5969c 9063 0);
be8fcb75
ILT
9064 break;
9065
fd3c5f0b 9066 case elfcpp::R_ARM_MOVW_ABS_NC:
95a2c8d6 9067 if (should_apply_static_reloc(gsym, r_type, false, output_section))
5c57f1be
DK
9068 reloc_status = Arm_relocate_functions::movw(view, object, psymval,
9069 0, thumb_bit,
9070 check_overflow);
fd3c5f0b
ILT
9071 break;
9072
9073 case elfcpp::R_ARM_MOVT_ABS:
95a2c8d6 9074 if (should_apply_static_reloc(gsym, r_type, false, output_section))
5c57f1be 9075 reloc_status = Arm_relocate_functions::movt(view, object, psymval, 0);
fd3c5f0b
ILT
9076 break;
9077
9078 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
95a2c8d6 9079 if (should_apply_static_reloc(gsym, r_type, false, output_section))
5c57f1be 9080 reloc_status = Arm_relocate_functions::thm_movw(view, object, psymval,
2e702c99 9081 0, thumb_bit, false);
fd3c5f0b
ILT
9082 break;
9083
9084 case elfcpp::R_ARM_THM_MOVT_ABS:
95a2c8d6 9085 if (should_apply_static_reloc(gsym, r_type, false, output_section))
5c57f1be
DK
9086 reloc_status = Arm_relocate_functions::thm_movt(view, object,
9087 psymval, 0);
fd3c5f0b
ILT
9088 break;
9089
c2a122b6 9090 case elfcpp::R_ARM_MOVW_PREL_NC:
02961d7e 9091 case elfcpp::R_ARM_MOVW_BREL_NC:
02961d7e 9092 case elfcpp::R_ARM_MOVW_BREL:
5c57f1be
DK
9093 reloc_status =
9094 Arm_relocate_functions::movw(view, object, psymval,
9095 relative_address_base, thumb_bit,
9096 check_overflow);
c2a122b6
ILT
9097 break;
9098
9099 case elfcpp::R_ARM_MOVT_PREL:
02961d7e 9100 case elfcpp::R_ARM_MOVT_BREL:
5c57f1be
DK
9101 reloc_status =
9102 Arm_relocate_functions::movt(view, object, psymval,
9103 relative_address_base);
c2a122b6
ILT
9104 break;
9105
9106 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
02961d7e 9107 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
02961d7e 9108 case elfcpp::R_ARM_THM_MOVW_BREL:
5c57f1be
DK
9109 reloc_status =
9110 Arm_relocate_functions::thm_movw(view, object, psymval,
9111 relative_address_base,
9112 thumb_bit, check_overflow);
c2a122b6
ILT
9113 break;
9114
9115 case elfcpp::R_ARM_THM_MOVT_PREL:
02961d7e 9116 case elfcpp::R_ARM_THM_MOVT_BREL:
5c57f1be
DK
9117 reloc_status =
9118 Arm_relocate_functions::thm_movt(view, object, psymval,
9119 relative_address_base);
02961d7e 9120 break;
2e702c99 9121
c121c671
DK
9122 case elfcpp::R_ARM_REL32:
9123 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
2daedcd6 9124 address, thumb_bit);
c121c671
DK
9125 break;
9126
be8fcb75 9127 case elfcpp::R_ARM_THM_ABS5:
95a2c8d6 9128 if (should_apply_static_reloc(gsym, r_type, false, output_section))
be8fcb75
ILT
9129 reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval);
9130 break;
9131
1521477a 9132 // Thumb long branches.
c121c671 9133 case elfcpp::R_ARM_THM_CALL:
51938283 9134 case elfcpp::R_ARM_THM_XPC22:
1521477a 9135 case elfcpp::R_ARM_THM_JUMP24:
51938283 9136 reloc_status =
1521477a
DK
9137 Arm_relocate_functions::thumb_branch_common(
9138 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9139 thumb_bit, is_weakly_undefined_without_plt);
51938283
DK
9140 break;
9141
c121c671
DK
9142 case elfcpp::R_ARM_GOTOFF32:
9143 {
ebabffbd 9144 Arm_address got_origin;
c121c671
DK
9145 got_origin = target->got_plt_section()->address();
9146 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
2daedcd6 9147 got_origin, thumb_bit);
c121c671
DK
9148 }
9149 break;
9150
9151 case elfcpp::R_ARM_BASE_PREL:
b10d2873
ILT
9152 gold_assert(gsym != NULL);
9153 reloc_status =
9154 Arm_relocate_functions::base_prel(view, sym_origin, address);
c121c671
DK
9155 break;
9156
be8fcb75 9157 case elfcpp::R_ARM_BASE_ABS:
95a2c8d6 9158 if (should_apply_static_reloc(gsym, r_type, false, output_section))
b10d2873 9159 reloc_status = Arm_relocate_functions::base_abs(view, sym_origin);
be8fcb75
ILT
9160 break;
9161
c121c671
DK
9162 case elfcpp::R_ARM_GOT_BREL:
9163 gold_assert(have_got_offset);
9164 reloc_status = Arm_relocate_functions::got_brel(view, got_offset);
9165 break;
9166
7f5309a5
ILT
9167 case elfcpp::R_ARM_GOT_PREL:
9168 gold_assert(have_got_offset);
9169 // Get the address origin for GOT PLT, which is allocated right
9170 // after the GOT section, to calculate an absolute address of
9171 // the symbol GOT entry (got_origin + got_offset).
ebabffbd 9172 Arm_address got_origin;
7f5309a5
ILT
9173 got_origin = target->got_plt_section()->address();
9174 reloc_status = Arm_relocate_functions::got_prel(view,
9175 got_origin + got_offset,
9176 address);
9177 break;
9178
c121c671 9179 case elfcpp::R_ARM_PLT32:
1521477a
DK
9180 case elfcpp::R_ARM_CALL:
9181 case elfcpp::R_ARM_JUMP24:
9182 case elfcpp::R_ARM_XPC25:
c121c671
DK
9183 gold_assert(gsym == NULL
9184 || gsym->has_plt_offset()
9185 || gsym->final_value_is_known()
9186 || (gsym->is_defined()
9187 && !gsym->is_from_dynobj()
9188 && !gsym->is_preemptible()));
d204b6e9 9189 reloc_status =
2e702c99 9190 Arm_relocate_functions::arm_branch_common(
1521477a
DK
9191 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9192 thumb_bit, is_weakly_undefined_without_plt);
51938283
DK
9193 break;
9194
41263c05
DK
9195 case elfcpp::R_ARM_THM_JUMP19:
9196 reloc_status =
9197 Arm_relocate_functions::thm_jump19(view, object, psymval, address,
9198 thumb_bit);
9199 break;
9200
800d0f56
ILT
9201 case elfcpp::R_ARM_THM_JUMP6:
9202 reloc_status =
9203 Arm_relocate_functions::thm_jump6(view, object, psymval, address);
9204 break;
9205
9206 case elfcpp::R_ARM_THM_JUMP8:
9207 reloc_status =
9208 Arm_relocate_functions::thm_jump8(view, object, psymval, address);
9209 break;
9210
9211 case elfcpp::R_ARM_THM_JUMP11:
9212 reloc_status =
9213 Arm_relocate_functions::thm_jump11(view, object, psymval, address);
9214 break;
9215
c121c671
DK
9216 case elfcpp::R_ARM_PREL31:
9217 reloc_status = Arm_relocate_functions::prel31(view, object, psymval,
2daedcd6 9218 address, thumb_bit);
c121c671
DK
9219 break;
9220
a2162063 9221 case elfcpp::R_ARM_V4BX:
9b2fd367
DK
9222 if (target->fix_v4bx() > General_options::FIX_V4BX_NONE)
9223 {
9224 const bool is_v4bx_interworking =
9225 (target->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING);
9226 reloc_status =
9227 Arm_relocate_functions::v4bx(relinfo, view, object, address,
9228 is_v4bx_interworking);
9229 }
a2162063
ILT
9230 break;
9231
11b861d5
DK
9232 case elfcpp::R_ARM_THM_PC8:
9233 reloc_status =
9234 Arm_relocate_functions::thm_pc8(view, object, psymval, address);
9235 break;
9236
9237 case elfcpp::R_ARM_THM_PC12:
9238 reloc_status =
9239 Arm_relocate_functions::thm_pc12(view, object, psymval, address);
9240 break;
9241
9242 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9243 reloc_status =
9244 Arm_relocate_functions::thm_alu11(view, object, psymval, address,
9245 thumb_bit);
9246 break;
9247
b10d2873 9248 case elfcpp::R_ARM_ALU_PC_G0_NC:
b10d2873 9249 case elfcpp::R_ARM_ALU_PC_G0:
b10d2873 9250 case elfcpp::R_ARM_ALU_PC_G1_NC:
b10d2873 9251 case elfcpp::R_ARM_ALU_PC_G1:
b10d2873 9252 case elfcpp::R_ARM_ALU_PC_G2:
b10d2873 9253 case elfcpp::R_ARM_ALU_SB_G0_NC:
b10d2873 9254 case elfcpp::R_ARM_ALU_SB_G0:
b10d2873 9255 case elfcpp::R_ARM_ALU_SB_G1_NC:
b10d2873 9256 case elfcpp::R_ARM_ALU_SB_G1:
b10d2873
ILT
9257 case elfcpp::R_ARM_ALU_SB_G2:
9258 reloc_status =
5c57f1be
DK
9259 Arm_relocate_functions::arm_grp_alu(view, object, psymval,
9260 reloc_property->group_index(),
9261 relative_address_base,
9262 thumb_bit, check_overflow);
b10d2873
ILT
9263 break;
9264
9265 case elfcpp::R_ARM_LDR_PC_G0:
b10d2873 9266 case elfcpp::R_ARM_LDR_PC_G1:
b10d2873 9267 case elfcpp::R_ARM_LDR_PC_G2:
b10d2873 9268 case elfcpp::R_ARM_LDR_SB_G0:
b10d2873 9269 case elfcpp::R_ARM_LDR_SB_G1:
b10d2873
ILT
9270 case elfcpp::R_ARM_LDR_SB_G2:
9271 reloc_status =
5c57f1be
DK
9272 Arm_relocate_functions::arm_grp_ldr(view, object, psymval,
9273 reloc_property->group_index(),
9274 relative_address_base);
b10d2873
ILT
9275 break;
9276
9277 case elfcpp::R_ARM_LDRS_PC_G0:
b10d2873 9278 case elfcpp::R_ARM_LDRS_PC_G1:
b10d2873 9279 case elfcpp::R_ARM_LDRS_PC_G2:
b10d2873 9280 case elfcpp::R_ARM_LDRS_SB_G0:
b10d2873 9281 case elfcpp::R_ARM_LDRS_SB_G1:
b10d2873
ILT
9282 case elfcpp::R_ARM_LDRS_SB_G2:
9283 reloc_status =
5c57f1be
DK
9284 Arm_relocate_functions::arm_grp_ldrs(view, object, psymval,
9285 reloc_property->group_index(),
9286 relative_address_base);
b10d2873
ILT
9287 break;
9288
9289 case elfcpp::R_ARM_LDC_PC_G0:
b10d2873 9290 case elfcpp::R_ARM_LDC_PC_G1:
b10d2873 9291 case elfcpp::R_ARM_LDC_PC_G2:
b10d2873 9292 case elfcpp::R_ARM_LDC_SB_G0:
b10d2873 9293 case elfcpp::R_ARM_LDC_SB_G1:
b10d2873
ILT
9294 case elfcpp::R_ARM_LDC_SB_G2:
9295 reloc_status =
5c57f1be
DK
9296 Arm_relocate_functions::arm_grp_ldc(view, object, psymval,
9297 reloc_property->group_index(),
9298 relative_address_base);
c121c671
DK
9299 break;
9300
f96accdf
DK
9301 // These are initial tls relocs, which are expected when
9302 // linking.
9303 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
9304 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9305 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
9306 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9307 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9308 reloc_status =
9309 this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
9310 view, address, view_size);
9311 break;
9312
3cef7179
ILT
9313 // The known and unknown unsupported and/or deprecated relocations.
9314 case elfcpp::R_ARM_PC24:
9315 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
9316 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
9317 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
c121c671 9318 default:
3cef7179
ILT
9319 // Just silently leave the method. We should get an appropriate error
9320 // message in the scan methods.
9321 break;
c121c671
DK
9322 }
9323
9324 // Report any errors.
9325 switch (reloc_status)
9326 {
9327 case Arm_relocate_functions::STATUS_OKAY:
9328 break;
9329 case Arm_relocate_functions::STATUS_OVERFLOW:
9330 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
a2c7281b
DK
9331 _("relocation overflow in %s"),
9332 reloc_property->name().c_str());
c121c671
DK
9333 break;
9334 case Arm_relocate_functions::STATUS_BAD_RELOC:
9335 gold_error_at_location(
9336 relinfo,
9337 relnum,
9338 rel.get_r_offset(),
a2c7281b
DK
9339 _("unexpected opcode while processing relocation %s"),
9340 reloc_property->name().c_str());
c121c671 9341 break;
4a657b0d
DK
9342 default:
9343 gold_unreachable();
9344 }
9345
9346 return true;
9347}
9348
f96accdf
DK
9349// Perform a TLS relocation.
9350
9351template<bool big_endian>
9352inline typename Arm_relocate_functions<big_endian>::Status
9353Target_arm<big_endian>::Relocate::relocate_tls(
9354 const Relocate_info<32, big_endian>* relinfo,
9355 Target_arm<big_endian>* target,
9356 size_t relnum,
9357 const elfcpp::Rel<32, big_endian>& rel,
9358 unsigned int r_type,
9359 const Sized_symbol<32>* gsym,
9360 const Symbol_value<32>* psymval,
9361 unsigned char* view,
4a54abbb 9362 elfcpp::Elf_types<32>::Elf_Addr address,
f96accdf
DK
9363 section_size_type /*view_size*/ )
9364{
9365 typedef Arm_relocate_functions<big_endian> ArmRelocFuncs;
4a54abbb 9366 typedef Relocate_functions<32, big_endian> RelocFuncs;
f96accdf
DK
9367 Output_segment* tls_segment = relinfo->layout->tls_segment();
9368
6fa2a40b 9369 const Sized_relobj_file<32, big_endian>* object = relinfo->object;
f96accdf
DK
9370
9371 elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
9372
9373 const bool is_final = (gsym == NULL
9374 ? !parameters->options().shared()
9375 : gsym->final_value_is_known());
9376 const tls::Tls_optimization optimized_type
9377 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
9378 switch (r_type)
9379 {
9380 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
2e702c99
RM
9381 {
9382 unsigned int got_type = GOT_TYPE_TLS_PAIR;
9383 unsigned int got_offset;
9384 if (gsym != NULL)
9385 {
9386 gold_assert(gsym->has_got_offset(got_type));
9387 got_offset = gsym->got_offset(got_type) - target->got_size();
9388 }
9389 else
9390 {
9391 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9392 gold_assert(object->local_has_got_offset(r_sym, got_type));
9393 got_offset = (object->local_got_offset(r_sym, got_type)
f96accdf 9394 - target->got_size());
2e702c99
RM
9395 }
9396 if (optimized_type == tls::TLSOPT_NONE)
9397 {
4a54abbb
DK
9398 Arm_address got_entry =
9399 target->got_plt_section()->address() + got_offset;
2e702c99
RM
9400
9401 // Relocate the field with the PC relative offset of the pair of
9402 // GOT entries.
29ab395d 9403 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
2e702c99
RM
9404 return ArmRelocFuncs::STATUS_OKAY;
9405 }
9406 }
f96accdf
DK
9407 break;
9408
9409 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9410 if (optimized_type == tls::TLSOPT_NONE)
2e702c99
RM
9411 {
9412 // Relocate the field with the offset of the GOT entry for
9413 // the module index.
9414 unsigned int got_offset;
9415 got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
f96accdf 9416 - target->got_size());
4a54abbb
DK
9417 Arm_address got_entry =
9418 target->got_plt_section()->address() + got_offset;
9419
2e702c99
RM
9420 // Relocate the field with the PC relative offset of the pair of
9421 // GOT entries.
9422 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
f96accdf 9423 return ArmRelocFuncs::STATUS_OKAY;
2e702c99 9424 }
f96accdf
DK
9425 break;
9426
9427 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
29ab395d 9428 RelocFuncs::rel32_unaligned(view, value);
f96accdf
DK
9429 return ArmRelocFuncs::STATUS_OKAY;
9430
9431 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9432 if (optimized_type == tls::TLSOPT_NONE)
2e702c99
RM
9433 {
9434 // Relocate the field with the offset of the GOT entry for
9435 // the tp-relative offset of the symbol.
f96accdf 9436 unsigned int got_type = GOT_TYPE_TLS_OFFSET;
2e702c99
RM
9437 unsigned int got_offset;
9438 if (gsym != NULL)
9439 {
9440 gold_assert(gsym->has_got_offset(got_type));
9441 got_offset = gsym->got_offset(got_type);
9442 }
9443 else
9444 {
9445 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9446 gold_assert(object->local_has_got_offset(r_sym, got_type));
9447 got_offset = object->local_got_offset(r_sym, got_type);
9448 }
9449
9450 // All GOT offsets are relative to the end of the GOT.
9451 got_offset -= target->got_size();
4a54abbb
DK
9452
9453 Arm_address got_entry =
9454 target->got_plt_section()->address() + got_offset;
9455
2e702c99 9456 // Relocate the field with the PC relative offset of the GOT entry.
29ab395d 9457 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
f96accdf 9458 return ArmRelocFuncs::STATUS_OKAY;
2e702c99 9459 }
f96accdf
DK
9460 break;
9461
9462 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9463 // If we're creating a shared library, a dynamic relocation will
9464 // have been created for this location, so do not apply it now.
9465 if (!parameters->options().shared())
2e702c99
RM
9466 {
9467 gold_assert(tls_segment != NULL);
4a54abbb
DK
9468
9469 // $tp points to the TCB, which is followed by the TLS, so we
9470 // need to add TCB size to the offset.
9471 Arm_address aligned_tcb_size =
9472 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
2e702c99 9473 RelocFuncs::rel32_unaligned(view, value + aligned_tcb_size);
4a54abbb 9474
2e702c99 9475 }
f96accdf 9476 return ArmRelocFuncs::STATUS_OKAY;
2e702c99 9477
f96accdf
DK
9478 default:
9479 gold_unreachable();
9480 }
9481
9482 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9483 _("unsupported reloc %u"),
9484 r_type);
9485 return ArmRelocFuncs::STATUS_BAD_RELOC;
9486}
9487
4a657b0d
DK
9488// Relocate section data.
9489
9490template<bool big_endian>
9491void
9492Target_arm<big_endian>::relocate_section(
9493 const Relocate_info<32, big_endian>* relinfo,
9494 unsigned int sh_type,
9495 const unsigned char* prelocs,
9496 size_t reloc_count,
9497 Output_section* output_section,
9498 bool needs_special_offset_handling,
9499 unsigned char* view,
ebabffbd 9500 Arm_address address,
364c7fa5
ILT
9501 section_size_type view_size,
9502 const Reloc_symbol_changes* reloc_symbol_changes)
4a657b0d
DK
9503{
9504 typedef typename Target_arm<big_endian>::Relocate Arm_relocate;
9505 gold_assert(sh_type == elfcpp::SHT_REL);
9506
218c5831
DK
9507 // See if we are relocating a relaxed input section. If so, the view
9508 // covers the whole output section and we need to adjust accordingly.
9509 if (needs_special_offset_handling)
43d12afe 9510 {
218c5831
DK
9511 const Output_relaxed_input_section* poris =
9512 output_section->find_relaxed_input_section(relinfo->object,
9513 relinfo->data_shndx);
9514 if (poris != NULL)
9515 {
9516 Arm_address section_address = poris->address();
9517 section_size_type section_size = poris->data_size();
9518
9519 gold_assert((section_address >= address)
9520 && ((section_address + section_size)
9521 <= (address + view_size)));
9522
9523 off_t offset = section_address - address;
9524 view += offset;
9525 address += offset;
9526 view_size = section_size;
9527 }
43d12afe
DK
9528 }
9529
4a657b0d 9530 gold::relocate_section<32, big_endian, Target_arm, elfcpp::SHT_REL,
168a4726 9531 Arm_relocate, gold::Default_comdat_behavior>(
4a657b0d
DK
9532 relinfo,
9533 this,
9534 prelocs,
9535 reloc_count,
9536 output_section,
9537 needs_special_offset_handling,
9538 view,
9539 address,
364c7fa5
ILT
9540 view_size,
9541 reloc_symbol_changes);
4a657b0d
DK
9542}
9543
9544// Return the size of a relocation while scanning during a relocatable
9545// link.
9546
9547template<bool big_endian>
9548unsigned int
9549Target_arm<big_endian>::Relocatable_size_for_reloc::get_size_for_reloc(
9550 unsigned int r_type,
9551 Relobj* object)
9552{
a6d1ef57 9553 r_type = get_real_reloc_type(r_type);
5c57f1be
DK
9554 const Arm_reloc_property* arp =
9555 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9556 if (arp != NULL)
9557 return arp->size();
9558 else
4a657b0d 9559 {
5c57f1be
DK
9560 std::string reloc_name =
9561 arm_reloc_property_table->reloc_name_in_error_message(r_type);
9562 gold_error(_("%s: unexpected %s in object file"),
9563 object->name().c_str(), reloc_name.c_str());
4a657b0d
DK
9564 return 0;
9565 }
9566}
9567
9568// Scan the relocs during a relocatable link.
9569
9570template<bool big_endian>
9571void
9572Target_arm<big_endian>::scan_relocatable_relocs(
4a657b0d 9573 Symbol_table* symtab,
2ea97941 9574 Layout* layout,
6fa2a40b 9575 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
9576 unsigned int data_shndx,
9577 unsigned int sh_type,
9578 const unsigned char* prelocs,
9579 size_t reloc_count,
9580 Output_section* output_section,
9581 bool needs_special_offset_handling,
9582 size_t local_symbol_count,
9583 const unsigned char* plocal_symbols,
9584 Relocatable_relocs* rr)
9585{
9586 gold_assert(sh_type == elfcpp::SHT_REL);
9587
5c388529 9588 typedef Arm_scan_relocatable_relocs<big_endian, elfcpp::SHT_REL,
4a657b0d
DK
9589 Relocatable_size_for_reloc> Scan_relocatable_relocs;
9590
9591 gold::scan_relocatable_relocs<32, big_endian, elfcpp::SHT_REL,
9592 Scan_relocatable_relocs>(
4a657b0d 9593 symtab,
2ea97941 9594 layout,
4a657b0d
DK
9595 object,
9596 data_shndx,
9597 prelocs,
9598 reloc_count,
9599 output_section,
9600 needs_special_offset_handling,
9601 local_symbol_count,
9602 plocal_symbols,
9603 rr);
9604}
9605
7404fe1b 9606// Emit relocations for a section.
4a657b0d
DK
9607
9608template<bool big_endian>
9609void
7404fe1b 9610Target_arm<big_endian>::relocate_relocs(
4a657b0d
DK
9611 const Relocate_info<32, big_endian>* relinfo,
9612 unsigned int sh_type,
9613 const unsigned char* prelocs,
9614 size_t reloc_count,
9615 Output_section* output_section,
62fe925a 9616 typename elfcpp::Elf_types<32>::Elf_Off offset_in_output_section,
4a657b0d
DK
9617 const Relocatable_relocs* rr,
9618 unsigned char* view,
ebabffbd 9619 Arm_address view_address,
4a657b0d
DK
9620 section_size_type view_size,
9621 unsigned char* reloc_view,
9622 section_size_type reloc_view_size)
9623{
9624 gold_assert(sh_type == elfcpp::SHT_REL);
9625
7404fe1b 9626 gold::relocate_relocs<32, big_endian, elfcpp::SHT_REL>(
4a657b0d
DK
9627 relinfo,
9628 prelocs,
9629 reloc_count,
9630 output_section,
9631 offset_in_output_section,
9632 rr,
9633 view,
9634 view_address,
9635 view_size,
9636 reloc_view,
9637 reloc_view_size);
9638}
9639
5c388529
DK
9640// Perform target-specific processing in a relocatable link. This is
9641// only used if we use the relocation strategy RELOC_SPECIAL.
9642
9643template<bool big_endian>
9644void
9645Target_arm<big_endian>::relocate_special_relocatable(
9646 const Relocate_info<32, big_endian>* relinfo,
9647 unsigned int sh_type,
9648 const unsigned char* preloc_in,
9649 size_t relnum,
9650 Output_section* output_section,
62fe925a 9651 typename elfcpp::Elf_types<32>::Elf_Off offset_in_output_section,
5c388529
DK
9652 unsigned char* view,
9653 elfcpp::Elf_types<32>::Elf_Addr view_address,
9654 section_size_type,
9655 unsigned char* preloc_out)
9656{
9657 // We can only handle REL type relocation sections.
9658 gold_assert(sh_type == elfcpp::SHT_REL);
9659
9660 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc Reltype;
9661 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc_write
9662 Reltype_write;
9663 const Arm_address invalid_address = static_cast<Arm_address>(0) - 1;
9664
9665 const Arm_relobj<big_endian>* object =
9666 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
9667 const unsigned int local_count = object->local_symbol_count();
9668
9669 Reltype reloc(preloc_in);
9670 Reltype_write reloc_write(preloc_out);
9671
9672 elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
9673 const unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
9674 const unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
9675
9676 const Arm_reloc_property* arp =
9677 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9678 gold_assert(arp != NULL);
9679
9680 // Get the new symbol index.
9681 // We only use RELOC_SPECIAL strategy in local relocations.
9682 gold_assert(r_sym < local_count);
9683
9684 // We are adjusting a section symbol. We need to find
9685 // the symbol table index of the section symbol for
9686 // the output section corresponding to input section
9687 // in which this symbol is defined.
9688 bool is_ordinary;
9689 unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
9690 gold_assert(is_ordinary);
9691 Output_section* os = object->output_section(shndx);
9692 gold_assert(os != NULL);
9693 gold_assert(os->needs_symtab_index());
9694 unsigned int new_symndx = os->symtab_index();
9695
9696 // Get the new offset--the location in the output section where
9697 // this relocation should be applied.
9698
9699 Arm_address offset = reloc.get_r_offset();
9700 Arm_address new_offset;
9701 if (offset_in_output_section != invalid_address)
9702 new_offset = offset + offset_in_output_section;
9703 else
9704 {
9705 section_offset_type sot_offset =
2e702c99 9706 convert_types<section_offset_type, Arm_address>(offset);
5c388529 9707 section_offset_type new_sot_offset =
2e702c99
RM
9708 output_section->output_offset(object, relinfo->data_shndx,
9709 sot_offset);
5c388529
DK
9710 gold_assert(new_sot_offset != -1);
9711 new_offset = new_sot_offset;
9712 }
9713
9714 // In an object file, r_offset is an offset within the section.
9715 // In an executable or dynamic object, generated by
9716 // --emit-relocs, r_offset is an absolute address.
9717 if (!parameters->options().relocatable())
9718 {
9719 new_offset += view_address;
9720 if (offset_in_output_section != invalid_address)
2e702c99 9721 new_offset -= offset_in_output_section;
5c388529
DK
9722 }
9723
9724 reloc_write.put_r_offset(new_offset);
9725 reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
9726
9727 // Handle the reloc addend.
9728 // The relocation uses a section symbol in the input file.
9729 // We are adjusting it to use a section symbol in the output
9730 // file. The input section symbol refers to some address in
9731 // the input section. We need the relocation in the output
9732 // file to refer to that same address. This adjustment to
9733 // the addend is the same calculation we use for a simple
9734 // absolute relocation for the input section symbol.
9735
9736 const Symbol_value<32>* psymval = object->local_symbol(r_sym);
9737
9738 // Handle THUMB bit.
9739 Symbol_value<32> symval;
9740 Arm_address thumb_bit =
9741 object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
9742 if (thumb_bit != 0
2e702c99 9743 && arp->uses_thumb_bit()
5c388529
DK
9744 && ((psymval->value(object, 0) & 1) != 0))
9745 {
9746 Arm_address stripped_value =
9747 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
9748 symval.set_output_value(stripped_value);
9749 psymval = &symval;
2e702c99 9750 }
5c388529
DK
9751
9752 unsigned char* paddend = view + offset;
9753 typename Arm_relocate_functions<big_endian>::Status reloc_status =
9754 Arm_relocate_functions<big_endian>::STATUS_OKAY;
9755 switch (r_type)
9756 {
9757 case elfcpp::R_ARM_ABS8:
9758 reloc_status = Arm_relocate_functions<big_endian>::abs8(paddend, object,
9759 psymval);
9760 break;
9761
9762 case elfcpp::R_ARM_ABS12:
9763 reloc_status = Arm_relocate_functions<big_endian>::abs12(paddend, object,
9764 psymval);
9765 break;
9766
9767 case elfcpp::R_ARM_ABS16:
9768 reloc_status = Arm_relocate_functions<big_endian>::abs16(paddend, object,
9769 psymval);
9770 break;
9771
9772 case elfcpp::R_ARM_THM_ABS5:
9773 reloc_status = Arm_relocate_functions<big_endian>::thm_abs5(paddend,
9774 object,
9775 psymval);
9776 break;
9777
9778 case elfcpp::R_ARM_MOVW_ABS_NC:
9779 case elfcpp::R_ARM_MOVW_PREL_NC:
9780 case elfcpp::R_ARM_MOVW_BREL_NC:
9781 case elfcpp::R_ARM_MOVW_BREL:
9782 reloc_status = Arm_relocate_functions<big_endian>::movw(
9783 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9784 break;
9785
9786 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
9787 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
9788 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
9789 case elfcpp::R_ARM_THM_MOVW_BREL:
9790 reloc_status = Arm_relocate_functions<big_endian>::thm_movw(
9791 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9792 break;
9793
9794 case elfcpp::R_ARM_THM_CALL:
9795 case elfcpp::R_ARM_THM_XPC22:
9796 case elfcpp::R_ARM_THM_JUMP24:
9797 reloc_status =
9798 Arm_relocate_functions<big_endian>::thumb_branch_common(
9799 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9800 false);
9801 break;
9802
9803 case elfcpp::R_ARM_PLT32:
9804 case elfcpp::R_ARM_CALL:
9805 case elfcpp::R_ARM_JUMP24:
9806 case elfcpp::R_ARM_XPC25:
9807 reloc_status =
2e702c99 9808 Arm_relocate_functions<big_endian>::arm_branch_common(
5c388529
DK
9809 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9810 false);
9811 break;
9812
9813 case elfcpp::R_ARM_THM_JUMP19:
9814 reloc_status =
9815 Arm_relocate_functions<big_endian>::thm_jump19(paddend, object,
9816 psymval, 0, thumb_bit);
9817 break;
9818
9819 case elfcpp::R_ARM_THM_JUMP6:
9820 reloc_status =
9821 Arm_relocate_functions<big_endian>::thm_jump6(paddend, object, psymval,
9822 0);
9823 break;
9824
9825 case elfcpp::R_ARM_THM_JUMP8:
9826 reloc_status =
9827 Arm_relocate_functions<big_endian>::thm_jump8(paddend, object, psymval,
9828 0);
9829 break;
9830
9831 case elfcpp::R_ARM_THM_JUMP11:
9832 reloc_status =
9833 Arm_relocate_functions<big_endian>::thm_jump11(paddend, object, psymval,
9834 0);
9835 break;
9836
9837 case elfcpp::R_ARM_PREL31:
9838 reloc_status =
9839 Arm_relocate_functions<big_endian>::prel31(paddend, object, psymval, 0,
9840 thumb_bit);
9841 break;
9842
9843 case elfcpp::R_ARM_THM_PC8:
9844 reloc_status =
9845 Arm_relocate_functions<big_endian>::thm_pc8(paddend, object, psymval,
9846 0);
9847 break;
9848
9849 case elfcpp::R_ARM_THM_PC12:
9850 reloc_status =
9851 Arm_relocate_functions<big_endian>::thm_pc12(paddend, object, psymval,
9852 0);
9853 break;
9854
9855 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9856 reloc_status =
9857 Arm_relocate_functions<big_endian>::thm_alu11(paddend, object, psymval,
9858 0, thumb_bit);
9859 break;
9860
9861 // These relocation truncate relocation results so we cannot handle them
9862 // in a relocatable link.
9863 case elfcpp::R_ARM_MOVT_ABS:
9864 case elfcpp::R_ARM_THM_MOVT_ABS:
9865 case elfcpp::R_ARM_MOVT_PREL:
9866 case elfcpp::R_ARM_MOVT_BREL:
9867 case elfcpp::R_ARM_THM_MOVT_PREL:
9868 case elfcpp::R_ARM_THM_MOVT_BREL:
9869 case elfcpp::R_ARM_ALU_PC_G0_NC:
9870 case elfcpp::R_ARM_ALU_PC_G0:
9871 case elfcpp::R_ARM_ALU_PC_G1_NC:
9872 case elfcpp::R_ARM_ALU_PC_G1:
9873 case elfcpp::R_ARM_ALU_PC_G2:
9874 case elfcpp::R_ARM_ALU_SB_G0_NC:
9875 case elfcpp::R_ARM_ALU_SB_G0:
9876 case elfcpp::R_ARM_ALU_SB_G1_NC:
9877 case elfcpp::R_ARM_ALU_SB_G1:
9878 case elfcpp::R_ARM_ALU_SB_G2:
9879 case elfcpp::R_ARM_LDR_PC_G0:
9880 case elfcpp::R_ARM_LDR_PC_G1:
9881 case elfcpp::R_ARM_LDR_PC_G2:
9882 case elfcpp::R_ARM_LDR_SB_G0:
9883 case elfcpp::R_ARM_LDR_SB_G1:
9884 case elfcpp::R_ARM_LDR_SB_G2:
9885 case elfcpp::R_ARM_LDRS_PC_G0:
9886 case elfcpp::R_ARM_LDRS_PC_G1:
9887 case elfcpp::R_ARM_LDRS_PC_G2:
9888 case elfcpp::R_ARM_LDRS_SB_G0:
9889 case elfcpp::R_ARM_LDRS_SB_G1:
9890 case elfcpp::R_ARM_LDRS_SB_G2:
9891 case elfcpp::R_ARM_LDC_PC_G0:
9892 case elfcpp::R_ARM_LDC_PC_G1:
9893 case elfcpp::R_ARM_LDC_PC_G2:
9894 case elfcpp::R_ARM_LDC_SB_G0:
9895 case elfcpp::R_ARM_LDC_SB_G1:
9896 case elfcpp::R_ARM_LDC_SB_G2:
9897 gold_error(_("cannot handle %s in a relocatable link"),
9898 arp->name().c_str());
9899 break;
9900
9901 default:
9902 gold_unreachable();
9903 }
9904
9905 // Report any errors.
9906 switch (reloc_status)
9907 {
9908 case Arm_relocate_functions<big_endian>::STATUS_OKAY:
9909 break;
9910 case Arm_relocate_functions<big_endian>::STATUS_OVERFLOW:
9911 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9912 _("relocation overflow in %s"),
9913 arp->name().c_str());
9914 break;
9915 case Arm_relocate_functions<big_endian>::STATUS_BAD_RELOC:
9916 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9917 _("unexpected opcode while processing relocation %s"),
9918 arp->name().c_str());
9919 break;
9920 default:
9921 gold_unreachable();
9922 }
9923}
9924
94cdfcff
DK
9925// Return the value to use for a dynamic symbol which requires special
9926// treatment. This is how we support equality comparisons of function
9927// pointers across shared library boundaries, as described in the
9928// processor specific ABI supplement.
9929
4a657b0d
DK
9930template<bool big_endian>
9931uint64_t
94cdfcff 9932Target_arm<big_endian>::do_dynsym_value(const Symbol* gsym) const
4a657b0d 9933{
94cdfcff
DK
9934 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
9935 return this->plt_section()->address() + gsym->plt_offset();
4a657b0d
DK
9936}
9937
9938// Map platform-specific relocs to real relocs
9939//
9940template<bool big_endian>
9941unsigned int
ca09d69a 9942Target_arm<big_endian>::get_real_reloc_type(unsigned int r_type)
4a657b0d
DK
9943{
9944 switch (r_type)
9945 {
9946 case elfcpp::R_ARM_TARGET1:
a6d1ef57
DK
9947 // This is either R_ARM_ABS32 or R_ARM_REL32;
9948 return elfcpp::R_ARM_ABS32;
4a657b0d
DK
9949
9950 case elfcpp::R_ARM_TARGET2:
9b547ce6 9951 // This can be any reloc type but usually is R_ARM_GOT_PREL
a6d1ef57 9952 return elfcpp::R_ARM_GOT_PREL;
4a657b0d
DK
9953
9954 default:
9955 return r_type;
9956 }
9957}
9958
d5b40221
DK
9959// Whether if two EABI versions V1 and V2 are compatible.
9960
9961template<bool big_endian>
9962bool
9963Target_arm<big_endian>::are_eabi_versions_compatible(
9964 elfcpp::Elf_Word v1,
9965 elfcpp::Elf_Word v2)
9966{
9967 // v4 and v5 are the same spec before and after it was released,
9968 // so allow mixing them.
106e8a6c
DK
9969 if ((v1 == elfcpp::EF_ARM_EABI_UNKNOWN || v2 == elfcpp::EF_ARM_EABI_UNKNOWN)
9970 || (v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5)
d5b40221
DK
9971 || (v1 == elfcpp::EF_ARM_EABI_VER5 && v2 == elfcpp::EF_ARM_EABI_VER4))
9972 return true;
9973
9974 return v1 == v2;
9975}
9976
9977// Combine FLAGS from an input object called NAME and the processor-specific
9978// flags in the ELF header of the output. Much of this is adapted from the
9979// processor-specific flags merging code in elf32_arm_merge_private_bfd_data
9980// in bfd/elf32-arm.c.
9981
9982template<bool big_endian>
9983void
9984Target_arm<big_endian>::merge_processor_specific_flags(
9985 const std::string& name,
9986 elfcpp::Elf_Word flags)
9987{
9988 if (this->are_processor_specific_flags_set())
9989 {
9990 elfcpp::Elf_Word out_flags = this->processor_specific_flags();
9991
9992 // Nothing to merge if flags equal to those in output.
9993 if (flags == out_flags)
9994 return;
9995
9996 // Complain about various flag mismatches.
9997 elfcpp::Elf_Word version1 = elfcpp::arm_eabi_version(flags);
9998 elfcpp::Elf_Word version2 = elfcpp::arm_eabi_version(out_flags);
7296d933
DK
9999 if (!this->are_eabi_versions_compatible(version1, version2)
10000 && parameters->options().warn_mismatch())
d5b40221
DK
10001 gold_error(_("Source object %s has EABI version %d but output has "
10002 "EABI version %d."),
10003 name.c_str(),
10004 (flags & elfcpp::EF_ARM_EABIMASK) >> 24,
10005 (out_flags & elfcpp::EF_ARM_EABIMASK) >> 24);
10006 }
10007 else
10008 {
10009 // If the input is the default architecture and had the default
10010 // flags then do not bother setting the flags for the output
10011 // architecture, instead allow future merges to do this. If no
10012 // future merges ever set these flags then they will retain their
10013 // uninitialised values, which surprise surprise, correspond
10014 // to the default values.
10015 if (flags == 0)
10016 return;
10017
10018 // This is the first time, just copy the flags.
10019 // We only copy the EABI version for now.
10020 this->set_processor_specific_flags(flags & elfcpp::EF_ARM_EABIMASK);
10021 }
10022}
10023
10024// Adjust ELF file header.
10025template<bool big_endian>
10026void
10027Target_arm<big_endian>::do_adjust_elf_header(
10028 unsigned char* view,
3bfcb652 10029 int len)
d5b40221
DK
10030{
10031 gold_assert(len == elfcpp::Elf_sizes<32>::ehdr_size);
10032
10033 elfcpp::Ehdr<32, big_endian> ehdr(view);
3bfcb652 10034 elfcpp::Elf_Word flags = this->processor_specific_flags();
d5b40221
DK
10035 unsigned char e_ident[elfcpp::EI_NIDENT];
10036 memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
10037
3bfcb652 10038 if (elfcpp::arm_eabi_version(flags)
d5b40221
DK
10039 == elfcpp::EF_ARM_EABI_UNKNOWN)
10040 e_ident[elfcpp::EI_OSABI] = elfcpp::ELFOSABI_ARM;
10041 else
10042 e_ident[elfcpp::EI_OSABI] = 0;
10043 e_ident[elfcpp::EI_ABIVERSION] = 0;
10044
10045 // FIXME: Do EF_ARM_BE8 adjustment.
10046
3bfcb652
NC
10047 // If we're working in EABI_VER5, set the hard/soft float ABI flags
10048 // as appropriate.
10049 if (elfcpp::arm_eabi_version(flags) == elfcpp::EF_ARM_EABI_VER5)
10050 {
10051 elfcpp::Elf_Half type = ehdr.get_e_type();
10052 if (type == elfcpp::ET_EXEC || type == elfcpp::ET_DYN)
10053 {
10054 Object_attribute* attr = this->get_aeabi_object_attribute(elfcpp::Tag_ABI_VFP_args);
10055 if (attr->int_value())
10056 flags |= elfcpp::EF_ARM_ABI_FLOAT_HARD;
10057 else
10058 flags |= elfcpp::EF_ARM_ABI_FLOAT_SOFT;
10059 this->set_processor_specific_flags(flags);
10060 }
10061 }
d5b40221
DK
10062 elfcpp::Ehdr_write<32, big_endian> oehdr(view);
10063 oehdr.put_e_ident(e_ident);
10064}
10065
10066// do_make_elf_object to override the same function in the base class.
6fa2a40b
CC
10067// We need to use a target-specific sub-class of
10068// Sized_relobj_file<32, big_endian> to store ARM specific information.
10069// Hence we need to have our own ELF object creation.
d5b40221
DK
10070
10071template<bool big_endian>
10072Object*
10073Target_arm<big_endian>::do_make_elf_object(
10074 const std::string& name,
10075 Input_file* input_file,
2ea97941 10076 off_t offset, const elfcpp::Ehdr<32, big_endian>& ehdr)
d5b40221
DK
10077{
10078 int et = ehdr.get_e_type();
f4a8b6d7
DK
10079 // ET_EXEC files are valid input for --just-symbols/-R,
10080 // and we treat them as relocatable objects.
10081 if (et == elfcpp::ET_REL
10082 || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
d5b40221
DK
10083 {
10084 Arm_relobj<big_endian>* obj =
2e702c99 10085 new Arm_relobj<big_endian>(name, input_file, offset, ehdr);
d5b40221
DK
10086 obj->setup();
10087 return obj;
10088 }
10089 else if (et == elfcpp::ET_DYN)
10090 {
10091 Sized_dynobj<32, big_endian>* obj =
2e702c99 10092 new Arm_dynobj<big_endian>(name, input_file, offset, ehdr);
d5b40221
DK
10093 obj->setup();
10094 return obj;
10095 }
10096 else
10097 {
10098 gold_error(_("%s: unsupported ELF file type %d"),
2e702c99 10099 name.c_str(), et);
d5b40221
DK
10100 return NULL;
10101 }
10102}
10103
a0351a69
DK
10104// Read the architecture from the Tag_also_compatible_with attribute, if any.
10105// Returns -1 if no architecture could be read.
10106// This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c.
10107
10108template<bool big_endian>
10109int
10110Target_arm<big_endian>::get_secondary_compatible_arch(
10111 const Attributes_section_data* pasd)
10112{
ca09d69a 10113 const Object_attribute* known_attributes =
a0351a69
DK
10114 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10115
10116 // Note: the tag and its argument below are uleb128 values, though
10117 // currently-defined values fit in one byte for each.
10118 const std::string& sv =
10119 known_attributes[elfcpp::Tag_also_compatible_with].string_value();
10120 if (sv.size() == 2
10121 && sv.data()[0] == elfcpp::Tag_CPU_arch
10122 && (sv.data()[1] & 128) != 128)
10123 return sv.data()[1];
10124
10125 // This tag is "safely ignorable", so don't complain if it looks funny.
10126 return -1;
10127}
10128
10129// Set, or unset, the architecture of the Tag_also_compatible_with attribute.
10130// The tag is removed if ARCH is -1.
10131// This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c.
10132
10133template<bool big_endian>
10134void
10135Target_arm<big_endian>::set_secondary_compatible_arch(
10136 Attributes_section_data* pasd,
10137 int arch)
10138{
ca09d69a 10139 Object_attribute* known_attributes =
a0351a69
DK
10140 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10141
10142 if (arch == -1)
10143 {
10144 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value("");
10145 return;
10146 }
10147
10148 // Note: the tag and its argument below are uleb128 values, though
10149 // currently-defined values fit in one byte for each.
10150 char sv[3];
10151 sv[0] = elfcpp::Tag_CPU_arch;
10152 gold_assert(arch != 0);
10153 sv[1] = arch;
10154 sv[2] = '\0';
10155
10156 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(sv);
10157}
10158
10159// Combine two values for Tag_CPU_arch, taking secondary compatibility tags
10160// into account.
10161// This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c.
10162
10163template<bool big_endian>
10164int
10165Target_arm<big_endian>::tag_cpu_arch_combine(
10166 const char* name,
10167 int oldtag,
10168 int* secondary_compat_out,
10169 int newtag,
10170 int secondary_compat)
10171{
10172#define T(X) elfcpp::TAG_CPU_ARCH_##X
10173 static const int v6t2[] =
10174 {
10175 T(V6T2), // PRE_V4.
10176 T(V6T2), // V4.
10177 T(V6T2), // V4T.
10178 T(V6T2), // V5T.
10179 T(V6T2), // V5TE.
10180 T(V6T2), // V5TEJ.
10181 T(V6T2), // V6.
10182 T(V7), // V6KZ.
10183 T(V6T2) // V6T2.
10184 };
10185 static const int v6k[] =
10186 {
10187 T(V6K), // PRE_V4.
10188 T(V6K), // V4.
10189 T(V6K), // V4T.
10190 T(V6K), // V5T.
10191 T(V6K), // V5TE.
10192 T(V6K), // V5TEJ.
10193 T(V6K), // V6.
10194 T(V6KZ), // V6KZ.
10195 T(V7), // V6T2.
10196 T(V6K) // V6K.
10197 };
10198 static const int v7[] =
10199 {
10200 T(V7), // PRE_V4.
10201 T(V7), // V4.
10202 T(V7), // V4T.
10203 T(V7), // V5T.
10204 T(V7), // V5TE.
10205 T(V7), // V5TEJ.
10206 T(V7), // V6.
10207 T(V7), // V6KZ.
10208 T(V7), // V6T2.
10209 T(V7), // V6K.
10210 T(V7) // V7.
10211 };
10212 static const int v6_m[] =
10213 {
10214 -1, // PRE_V4.
10215 -1, // V4.
10216 T(V6K), // V4T.
10217 T(V6K), // V5T.
10218 T(V6K), // V5TE.
10219 T(V6K), // V5TEJ.
10220 T(V6K), // V6.
10221 T(V6KZ), // V6KZ.
10222 T(V7), // V6T2.
10223 T(V6K), // V6K.
10224 T(V7), // V7.
10225 T(V6_M) // V6_M.
10226 };
10227 static const int v6s_m[] =
10228 {
10229 -1, // PRE_V4.
10230 -1, // V4.
10231 T(V6K), // V4T.
10232 T(V6K), // V5T.
10233 T(V6K), // V5TE.
10234 T(V6K), // V5TEJ.
10235 T(V6K), // V6.
10236 T(V6KZ), // V6KZ.
10237 T(V7), // V6T2.
10238 T(V6K), // V6K.
10239 T(V7), // V7.
10240 T(V6S_M), // V6_M.
10241 T(V6S_M) // V6S_M.
10242 };
10243 static const int v7e_m[] =
10244 {
10245 -1, // PRE_V4.
10246 -1, // V4.
10247 T(V7E_M), // V4T.
10248 T(V7E_M), // V5T.
10249 T(V7E_M), // V5TE.
10250 T(V7E_M), // V5TEJ.
10251 T(V7E_M), // V6.
10252 T(V7E_M), // V6KZ.
10253 T(V7E_M), // V6T2.
10254 T(V7E_M), // V6K.
10255 T(V7E_M), // V7.
10256 T(V7E_M), // V6_M.
10257 T(V7E_M), // V6S_M.
10258 T(V7E_M) // V7E_M.
10259 };
10260 static const int v4t_plus_v6_m[] =
10261 {
10262 -1, // PRE_V4.
10263 -1, // V4.
10264 T(V4T), // V4T.
10265 T(V5T), // V5T.
10266 T(V5TE), // V5TE.
10267 T(V5TEJ), // V5TEJ.
10268 T(V6), // V6.
10269 T(V6KZ), // V6KZ.
10270 T(V6T2), // V6T2.
10271 T(V6K), // V6K.
10272 T(V7), // V7.
10273 T(V6_M), // V6_M.
10274 T(V6S_M), // V6S_M.
10275 T(V7E_M), // V7E_M.
10276 T(V4T_PLUS_V6_M) // V4T plus V6_M.
10277 };
ca09d69a 10278 static const int* comb[] =
a0351a69
DK
10279 {
10280 v6t2,
10281 v6k,
10282 v7,
10283 v6_m,
10284 v6s_m,
10285 v7e_m,
10286 // Pseudo-architecture.
10287 v4t_plus_v6_m
10288 };
10289
10290 // Check we've not got a higher architecture than we know about.
10291
f62a3ca7 10292 if (oldtag > elfcpp::MAX_TAG_CPU_ARCH || newtag > elfcpp::MAX_TAG_CPU_ARCH)
a0351a69
DK
10293 {
10294 gold_error(_("%s: unknown CPU architecture"), name);
10295 return -1;
10296 }
10297
10298 // Override old tag if we have a Tag_also_compatible_with on the output.
10299
10300 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
10301 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
10302 oldtag = T(V4T_PLUS_V6_M);
10303
10304 // And override the new tag if we have a Tag_also_compatible_with on the
10305 // input.
10306
10307 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
10308 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
10309 newtag = T(V4T_PLUS_V6_M);
10310
10311 // Architectures before V6KZ add features monotonically.
10312 int tagh = std::max(oldtag, newtag);
10313 if (tagh <= elfcpp::TAG_CPU_ARCH_V6KZ)
10314 return tagh;
10315
10316 int tagl = std::min(oldtag, newtag);
10317 int result = comb[tagh - T(V6T2)][tagl];
10318
10319 // Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
10320 // as the canonical version.
10321 if (result == T(V4T_PLUS_V6_M))
10322 {
10323 result = T(V4T);
10324 *secondary_compat_out = T(V6_M);
10325 }
10326 else
10327 *secondary_compat_out = -1;
10328
10329 if (result == -1)
10330 {
10331 gold_error(_("%s: conflicting CPU architectures %d/%d"),
10332 name, oldtag, newtag);
10333 return -1;
10334 }
10335
10336 return result;
10337#undef T
10338}
10339
10340// Helper to print AEABI enum tag value.
10341
10342template<bool big_endian>
10343std::string
10344Target_arm<big_endian>::aeabi_enum_name(unsigned int value)
10345{
ca09d69a 10346 static const char* aeabi_enum_names[] =
a0351a69
DK
10347 { "", "variable-size", "32-bit", "" };
10348 const size_t aeabi_enum_names_size =
10349 sizeof(aeabi_enum_names) / sizeof(aeabi_enum_names[0]);
10350
10351 if (value < aeabi_enum_names_size)
10352 return std::string(aeabi_enum_names[value]);
10353 else
10354 {
10355 char buffer[100];
10356 sprintf(buffer, "<unknown value %u>", value);
10357 return std::string(buffer);
10358 }
10359}
10360
10361// Return the string value to store in TAG_CPU_name.
10362
10363template<bool big_endian>
10364std::string
10365Target_arm<big_endian>::tag_cpu_name_value(unsigned int value)
10366{
ca09d69a 10367 static const char* name_table[] = {
a0351a69
DK
10368 // These aren't real CPU names, but we can't guess
10369 // that from the architecture version alone.
10370 "Pre v4",
10371 "ARM v4",
10372 "ARM v4T",
10373 "ARM v5T",
10374 "ARM v5TE",
10375 "ARM v5TEJ",
10376 "ARM v6",
10377 "ARM v6KZ",
10378 "ARM v6T2",
10379 "ARM v6K",
10380 "ARM v7",
10381 "ARM v6-M",
10382 "ARM v6S-M",
10383 "ARM v7E-M"
10384 };
10385 const size_t name_table_size = sizeof(name_table) / sizeof(name_table[0]);
10386
10387 if (value < name_table_size)
10388 return std::string(name_table[value]);
10389 else
10390 {
10391 char buffer[100];
10392 sprintf(buffer, "<unknown CPU value %u>", value);
10393 return std::string(buffer);
2e702c99 10394 }
a0351a69
DK
10395}
10396
679af368
ILT
10397// Query attributes object to see if integer divide instructions may be
10398// present in an object.
10399
10400template<bool big_endian>
10401bool
10402Target_arm<big_endian>::attributes_accept_div(int arch, int profile,
10403 const Object_attribute* div_attr)
10404{
10405 switch (div_attr->int_value())
10406 {
10407 case 0:
10408 // Integer divide allowed if instruction contained in
10409 // archetecture.
10410 if (arch == elfcpp::TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M'))
10411 return true;
10412 else if (arch >= elfcpp::TAG_CPU_ARCH_V7E_M)
10413 return true;
10414 else
10415 return false;
10416
10417 case 1:
10418 // Integer divide explicitly prohibited.
10419 return false;
10420
10421 default:
10422 // Unrecognised case - treat as allowing divide everywhere.
10423 case 2:
10424 // Integer divide allowed in ARM state.
10425 return true;
10426 }
10427}
10428
10429// Query attributes object to see if integer divide instructions are
10430// forbidden to be in the object. This is not the inverse of
10431// attributes_accept_div.
10432
10433template<bool big_endian>
10434bool
10435Target_arm<big_endian>::attributes_forbid_div(const Object_attribute* div_attr)
10436{
10437 return div_attr->int_value() == 1;
10438}
10439
a0351a69
DK
10440// Merge object attributes from input file called NAME with those of the
10441// output. The input object attributes are in the object pointed by PASD.
10442
10443template<bool big_endian>
10444void
10445Target_arm<big_endian>::merge_object_attributes(
10446 const char* name,
10447 const Attributes_section_data* pasd)
10448{
10449 // Return if there is no attributes section data.
10450 if (pasd == NULL)
10451 return;
10452
10453 // If output has no object attributes, just copy.
da59ad79 10454 const int vendor = Object_attribute::OBJ_ATTR_PROC;
a0351a69
DK
10455 if (this->attributes_section_data_ == NULL)
10456 {
10457 this->attributes_section_data_ = new Attributes_section_data(*pasd);
da59ad79
DK
10458 Object_attribute* out_attr =
10459 this->attributes_section_data_->known_attributes(vendor);
10460
10461 // We do not output objects with Tag_MPextension_use_legacy - we move
10462 // the attribute's value to Tag_MPextension_use. */
10463 if (out_attr[elfcpp::Tag_MPextension_use_legacy].int_value() != 0)
10464 {
10465 if (out_attr[elfcpp::Tag_MPextension_use].int_value() != 0
10466 && out_attr[elfcpp::Tag_MPextension_use_legacy].int_value()
2e702c99 10467 != out_attr[elfcpp::Tag_MPextension_use].int_value())
da59ad79
DK
10468 {
10469 gold_error(_("%s has both the current and legacy "
10470 "Tag_MPextension_use attributes"),
10471 name);
10472 }
10473
10474 out_attr[elfcpp::Tag_MPextension_use] =
10475 out_attr[elfcpp::Tag_MPextension_use_legacy];
10476 out_attr[elfcpp::Tag_MPextension_use_legacy].set_type(0);
10477 out_attr[elfcpp::Tag_MPextension_use_legacy].set_int_value(0);
10478 }
10479
a0351a69
DK
10480 return;
10481 }
10482
a0351a69
DK
10483 const Object_attribute* in_attr = pasd->known_attributes(vendor);
10484 Object_attribute* out_attr =
10485 this->attributes_section_data_->known_attributes(vendor);
10486
10487 // This needs to happen before Tag_ABI_FP_number_model is merged. */
10488 if (in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
10489 != out_attr[elfcpp::Tag_ABI_VFP_args].int_value())
10490 {
10491 // Ignore mismatches if the object doesn't use floating point. */
10492 if (out_attr[elfcpp::Tag_ABI_FP_number_model].int_value() == 0)
10493 out_attr[elfcpp::Tag_ABI_VFP_args].set_int_value(
10494 in_attr[elfcpp::Tag_ABI_VFP_args].int_value());
7296d933
DK
10495 else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value() != 0
10496 && parameters->options().warn_mismatch())
2e702c99 10497 gold_error(_("%s uses VFP register arguments, output does not"),
a0351a69
DK
10498 name);
10499 }
10500
10501 for (int i = 4; i < Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES; ++i)
10502 {
10503 // Merge this attribute with existing attributes.
10504 switch (i)
10505 {
10506 case elfcpp::Tag_CPU_raw_name:
10507 case elfcpp::Tag_CPU_name:
10508 // These are merged after Tag_CPU_arch.
10509 break;
10510
10511 case elfcpp::Tag_ABI_optimization_goals:
10512 case elfcpp::Tag_ABI_FP_optimization_goals:
10513 // Use the first value seen.
10514 break;
10515
10516 case elfcpp::Tag_CPU_arch:
10517 {
10518 unsigned int saved_out_attr = out_attr->int_value();
10519 // Merge Tag_CPU_arch and Tag_also_compatible_with.
10520 int secondary_compat =
10521 this->get_secondary_compatible_arch(pasd);
10522 int secondary_compat_out =
10523 this->get_secondary_compatible_arch(
10524 this->attributes_section_data_);
10525 out_attr[i].set_int_value(
10526 tag_cpu_arch_combine(name, out_attr[i].int_value(),
10527 &secondary_compat_out,
10528 in_attr[i].int_value(),
10529 secondary_compat));
10530 this->set_secondary_compatible_arch(this->attributes_section_data_,
10531 secondary_compat_out);
10532
10533 // Merge Tag_CPU_name and Tag_CPU_raw_name.
10534 if (out_attr[i].int_value() == saved_out_attr)
10535 ; // Leave the names alone.
10536 else if (out_attr[i].int_value() == in_attr[i].int_value())
10537 {
10538 // The output architecture has been changed to match the
10539 // input architecture. Use the input names.
10540 out_attr[elfcpp::Tag_CPU_name].set_string_value(
10541 in_attr[elfcpp::Tag_CPU_name].string_value());
10542 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value(
10543 in_attr[elfcpp::Tag_CPU_raw_name].string_value());
10544 }
10545 else
10546 {
10547 out_attr[elfcpp::Tag_CPU_name].set_string_value("");
10548 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value("");
10549 }
10550
10551 // If we still don't have a value for Tag_CPU_name,
10552 // make one up now. Tag_CPU_raw_name remains blank.
10553 if (out_attr[elfcpp::Tag_CPU_name].string_value() == "")
10554 {
10555 const std::string cpu_name =
10556 this->tag_cpu_name_value(out_attr[i].int_value());
10557 // FIXME: If we see an unknown CPU, this will be set
10558 // to "<unknown CPU n>", where n is the attribute value.
10559 // This is different from BFD, which leaves the name alone.
10560 out_attr[elfcpp::Tag_CPU_name].set_string_value(cpu_name);
10561 }
10562 }
10563 break;
10564
10565 case elfcpp::Tag_ARM_ISA_use:
10566 case elfcpp::Tag_THUMB_ISA_use:
10567 case elfcpp::Tag_WMMX_arch:
10568 case elfcpp::Tag_Advanced_SIMD_arch:
10569 // ??? Do Advanced_SIMD (NEON) and WMMX conflict?
10570 case elfcpp::Tag_ABI_FP_rounding:
10571 case elfcpp::Tag_ABI_FP_exceptions:
10572 case elfcpp::Tag_ABI_FP_user_exceptions:
10573 case elfcpp::Tag_ABI_FP_number_model:
10574 case elfcpp::Tag_VFP_HP_extension:
10575 case elfcpp::Tag_CPU_unaligned_access:
10576 case elfcpp::Tag_T2EE_use:
10577 case elfcpp::Tag_Virtualization_use:
10578 case elfcpp::Tag_MPextension_use:
10579 // Use the largest value specified.
10580 if (in_attr[i].int_value() > out_attr[i].int_value())
10581 out_attr[i].set_int_value(in_attr[i].int_value());
10582 break;
10583
10584 case elfcpp::Tag_ABI_align8_preserved:
10585 case elfcpp::Tag_ABI_PCS_RO_data:
10586 // Use the smallest value specified.
10587 if (in_attr[i].int_value() < out_attr[i].int_value())
10588 out_attr[i].set_int_value(in_attr[i].int_value());
10589 break;
10590
10591 case elfcpp::Tag_ABI_align8_needed:
10592 if ((in_attr[i].int_value() > 0 || out_attr[i].int_value() > 0)
10593 && (in_attr[elfcpp::Tag_ABI_align8_preserved].int_value() == 0
10594 || (out_attr[elfcpp::Tag_ABI_align8_preserved].int_value()
10595 == 0)))
10596 {
9b547ce6 10597 // This error message should be enabled once all non-conforming
a0351a69
DK
10598 // binaries in the toolchain have had the attributes set
10599 // properly.
10600 // gold_error(_("output 8-byte data alignment conflicts with %s"),
10601 // name);
10602 }
10603 // Fall through.
10604 case elfcpp::Tag_ABI_FP_denormal:
10605 case elfcpp::Tag_ABI_PCS_GOT_use:
10606 {
10607 // These tags have 0 = don't care, 1 = strong requirement,
10608 // 2 = weak requirement.
10609 static const int order_021[3] = {0, 2, 1};
10610
10611 // Use the "greatest" from the sequence 0, 2, 1, or the largest
10612 // value if greater than 2 (for future-proofing).
10613 if ((in_attr[i].int_value() > 2
10614 && in_attr[i].int_value() > out_attr[i].int_value())
10615 || (in_attr[i].int_value() <= 2
10616 && out_attr[i].int_value() <= 2
10617 && (order_021[in_attr[i].int_value()]
10618 > order_021[out_attr[i].int_value()])))
10619 out_attr[i].set_int_value(in_attr[i].int_value());
10620 }
10621 break;
10622
10623 case elfcpp::Tag_CPU_arch_profile:
10624 if (out_attr[i].int_value() != in_attr[i].int_value())
10625 {
10626 // 0 will merge with anything.
10627 // 'A' and 'S' merge to 'A'.
10628 // 'R' and 'S' merge to 'R'.
10629 // 'M' and 'A|R|S' is an error.
10630 if (out_attr[i].int_value() == 0
10631 || (out_attr[i].int_value() == 'S'
10632 && (in_attr[i].int_value() == 'A'
10633 || in_attr[i].int_value() == 'R')))
10634 out_attr[i].set_int_value(in_attr[i].int_value());
10635 else if (in_attr[i].int_value() == 0
10636 || (in_attr[i].int_value() == 'S'
10637 && (out_attr[i].int_value() == 'A'
10638 || out_attr[i].int_value() == 'R')))
10639 ; // Do nothing.
7296d933 10640 else if (parameters->options().warn_mismatch())
a0351a69
DK
10641 {
10642 gold_error
10643 (_("conflicting architecture profiles %c/%c"),
10644 in_attr[i].int_value() ? in_attr[i].int_value() : '0',
10645 out_attr[i].int_value() ? out_attr[i].int_value() : '0');
10646 }
10647 }
10648 break;
10649 case elfcpp::Tag_VFP_arch:
10650 {
10651 static const struct
10652 {
10653 int ver;
10654 int regs;
10655 } vfp_versions[7] =
10656 {
10657 {0, 0},
10658 {1, 16},
10659 {2, 16},
10660 {3, 32},
10661 {3, 16},
10662 {4, 32},
10663 {4, 16}
10664 };
10665
10666 // Values greater than 6 aren't defined, so just pick the
10667 // biggest.
10668 if (in_attr[i].int_value() > 6
10669 && in_attr[i].int_value() > out_attr[i].int_value())
10670 {
10671 *out_attr = *in_attr;
10672 break;
10673 }
10674 // The output uses the superset of input features
10675 // (ISA version) and registers.
10676 int ver = std::max(vfp_versions[in_attr[i].int_value()].ver,
10677 vfp_versions[out_attr[i].int_value()].ver);
10678 int regs = std::max(vfp_versions[in_attr[i].int_value()].regs,
10679 vfp_versions[out_attr[i].int_value()].regs);
10680 // This assumes all possible supersets are also a valid
10681 // options.
10682 int newval;
10683 for (newval = 6; newval > 0; newval--)
10684 {
10685 if (regs == vfp_versions[newval].regs
10686 && ver == vfp_versions[newval].ver)
10687 break;
10688 }
10689 out_attr[i].set_int_value(newval);
10690 }
10691 break;
10692 case elfcpp::Tag_PCS_config:
10693 if (out_attr[i].int_value() == 0)
10694 out_attr[i].set_int_value(in_attr[i].int_value());
7296d933
DK
10695 else if (in_attr[i].int_value() != 0
10696 && out_attr[i].int_value() != 0
10697 && parameters->options().warn_mismatch())
a0351a69
DK
10698 {
10699 // It's sometimes ok to mix different configs, so this is only
10700 // a warning.
10701 gold_warning(_("%s: conflicting platform configuration"), name);
10702 }
10703 break;
10704 case elfcpp::Tag_ABI_PCS_R9_use:
10705 if (in_attr[i].int_value() != out_attr[i].int_value()
10706 && out_attr[i].int_value() != elfcpp::AEABI_R9_unused
7296d933
DK
10707 && in_attr[i].int_value() != elfcpp::AEABI_R9_unused
10708 && parameters->options().warn_mismatch())
a0351a69
DK
10709 {
10710 gold_error(_("%s: conflicting use of R9"), name);
10711 }
10712 if (out_attr[i].int_value() == elfcpp::AEABI_R9_unused)
10713 out_attr[i].set_int_value(in_attr[i].int_value());
10714 break;
10715 case elfcpp::Tag_ABI_PCS_RW_data:
10716 if (in_attr[i].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel
10717 && (in_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
10718 != elfcpp::AEABI_R9_SB)
10719 && (out_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
7296d933
DK
10720 != elfcpp::AEABI_R9_unused)
10721 && parameters->options().warn_mismatch())
a0351a69
DK
10722 {
10723 gold_error(_("%s: SB relative addressing conflicts with use "
10724 "of R9"),
7296d933 10725 name);
a0351a69
DK
10726 }
10727 // Use the smallest value specified.
10728 if (in_attr[i].int_value() < out_attr[i].int_value())
10729 out_attr[i].set_int_value(in_attr[i].int_value());
10730 break;
10731 case elfcpp::Tag_ABI_PCS_wchar_t:
a0351a69
DK
10732 if (out_attr[i].int_value()
10733 && in_attr[i].int_value()
7296d933 10734 && out_attr[i].int_value() != in_attr[i].int_value()
ce0d1972
DK
10735 && parameters->options().warn_mismatch()
10736 && parameters->options().wchar_size_warning())
a0351a69
DK
10737 {
10738 gold_warning(_("%s uses %u-byte wchar_t yet the output is to "
10739 "use %u-byte wchar_t; use of wchar_t values "
10740 "across objects may fail"),
10741 name, in_attr[i].int_value(),
10742 out_attr[i].int_value());
10743 }
10744 else if (in_attr[i].int_value() && !out_attr[i].int_value())
10745 out_attr[i].set_int_value(in_attr[i].int_value());
10746 break;
10747 case elfcpp::Tag_ABI_enum_size:
10748 if (in_attr[i].int_value() != elfcpp::AEABI_enum_unused)
10749 {
10750 if (out_attr[i].int_value() == elfcpp::AEABI_enum_unused
10751 || out_attr[i].int_value() == elfcpp::AEABI_enum_forced_wide)
10752 {
10753 // The existing object is compatible with anything.
10754 // Use whatever requirements the new object has.
10755 out_attr[i].set_int_value(in_attr[i].int_value());
10756 }
a0351a69 10757 else if (in_attr[i].int_value() != elfcpp::AEABI_enum_forced_wide
7296d933 10758 && out_attr[i].int_value() != in_attr[i].int_value()
ce0d1972
DK
10759 && parameters->options().warn_mismatch()
10760 && parameters->options().enum_size_warning())
a0351a69
DK
10761 {
10762 unsigned int in_value = in_attr[i].int_value();
10763 unsigned int out_value = out_attr[i].int_value();
10764 gold_warning(_("%s uses %s enums yet the output is to use "
10765 "%s enums; use of enum values across objects "
10766 "may fail"),
10767 name,
10768 this->aeabi_enum_name(in_value).c_str(),
10769 this->aeabi_enum_name(out_value).c_str());
10770 }
10771 }
10772 break;
10773 case elfcpp::Tag_ABI_VFP_args:
9b547ce6 10774 // Already done.
a0351a69
DK
10775 break;
10776 case elfcpp::Tag_ABI_WMMX_args:
7296d933
DK
10777 if (in_attr[i].int_value() != out_attr[i].int_value()
10778 && parameters->options().warn_mismatch())
a0351a69
DK
10779 {
10780 gold_error(_("%s uses iWMMXt register arguments, output does "
10781 "not"),
10782 name);
10783 }
10784 break;
10785 case Object_attribute::Tag_compatibility:
10786 // Merged in target-independent code.
10787 break;
10788 case elfcpp::Tag_ABI_HardFP_use:
10789 // 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP).
10790 if ((in_attr[i].int_value() == 1 && out_attr[i].int_value() == 2)
10791 || (in_attr[i].int_value() == 2 && out_attr[i].int_value() == 1))
10792 out_attr[i].set_int_value(3);
10793 else if (in_attr[i].int_value() > out_attr[i].int_value())
10794 out_attr[i].set_int_value(in_attr[i].int_value());
10795 break;
10796 case elfcpp::Tag_ABI_FP_16bit_format:
10797 if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
10798 {
7296d933
DK
10799 if (in_attr[i].int_value() != out_attr[i].int_value()
10800 && parameters->options().warn_mismatch())
a0351a69
DK
10801 gold_error(_("fp16 format mismatch between %s and output"),
10802 name);
10803 }
10804 if (in_attr[i].int_value() != 0)
10805 out_attr[i].set_int_value(in_attr[i].int_value());
10806 break;
10807
da59ad79 10808 case elfcpp::Tag_DIV_use:
679af368
ILT
10809 {
10810 // A value of zero on input means that the divide
10811 // instruction may be used if available in the base
10812 // architecture as specified via Tag_CPU_arch and
10813 // Tag_CPU_arch_profile. A value of 1 means that the user
10814 // did not want divide instructions. A value of 2
10815 // explicitly means that divide instructions were allowed
10816 // in ARM and Thumb state.
10817 int arch = this->
10818 get_aeabi_object_attribute(elfcpp::Tag_CPU_arch)->
10819 int_value();
10820 int profile = this->
10821 get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile)->
10822 int_value();
10823 if (in_attr[i].int_value() == out_attr[i].int_value())
10824 {
10825 // Do nothing.
10826 }
10827 else if (attributes_forbid_div(&in_attr[i])
10828 && !attributes_accept_div(arch, profile, &out_attr[i]))
10829 out_attr[i].set_int_value(1);
10830 else if (attributes_forbid_div(&out_attr[i])
10831 && attributes_accept_div(arch, profile, &in_attr[i]))
10832 out_attr[i].set_int_value(in_attr[i].int_value());
10833 else if (in_attr[i].int_value() == 2)
10834 out_attr[i].set_int_value(in_attr[i].int_value());
10835 }
da59ad79
DK
10836 break;
10837
10838 case elfcpp::Tag_MPextension_use_legacy:
10839 // We don't output objects with Tag_MPextension_use_legacy - we
10840 // move the value to Tag_MPextension_use.
10841 if (in_attr[i].int_value() != 0
10842 && in_attr[elfcpp::Tag_MPextension_use].int_value() != 0)
10843 {
10844 if (in_attr[elfcpp::Tag_MPextension_use].int_value()
10845 != in_attr[i].int_value())
10846 {
10847 gold_error(_("%s has has both the current and legacy "
2e702c99 10848 "Tag_MPextension_use attributes"),
da59ad79
DK
10849 name);
10850 }
10851 }
10852
10853 if (in_attr[i].int_value()
10854 > out_attr[elfcpp::Tag_MPextension_use].int_value())
10855 out_attr[elfcpp::Tag_MPextension_use] = in_attr[i];
10856
10857 break;
10858
a0351a69
DK
10859 case elfcpp::Tag_nodefaults:
10860 // This tag is set if it exists, but the value is unused (and is
10861 // typically zero). We don't actually need to do anything here -
10862 // the merge happens automatically when the type flags are merged
10863 // below.
10864 break;
10865 case elfcpp::Tag_also_compatible_with:
10866 // Already done in Tag_CPU_arch.
10867 break;
10868 case elfcpp::Tag_conformance:
10869 // Keep the attribute if it matches. Throw it away otherwise.
10870 // No attribute means no claim to conform.
10871 if (in_attr[i].string_value() != out_attr[i].string_value())
10872 out_attr[i].set_string_value("");
10873 break;
10874
10875 default:
10876 {
10877 const char* err_object = NULL;
10878
10879 // The "known_obj_attributes" table does contain some undefined
10880 // attributes. Ensure that there are unused.
10881 if (out_attr[i].int_value() != 0
10882 || out_attr[i].string_value() != "")
10883 err_object = "output";
10884 else if (in_attr[i].int_value() != 0
10885 || in_attr[i].string_value() != "")
10886 err_object = name;
10887
7296d933
DK
10888 if (err_object != NULL
10889 && parameters->options().warn_mismatch())
a0351a69
DK
10890 {
10891 // Attribute numbers >=64 (mod 128) can be safely ignored.
10892 if ((i & 127) < 64)
10893 gold_error(_("%s: unknown mandatory EABI object attribute "
10894 "%d"),
10895 err_object, i);
10896 else
10897 gold_warning(_("%s: unknown EABI object attribute %d"),
10898 err_object, i);
10899 }
10900
10901 // Only pass on attributes that match in both inputs.
10902 if (!in_attr[i].matches(out_attr[i]))
10903 {
10904 out_attr[i].set_int_value(0);
10905 out_attr[i].set_string_value("");
10906 }
10907 }
10908 }
10909
10910 // If out_attr was copied from in_attr then it won't have a type yet.
10911 if (in_attr[i].type() && !out_attr[i].type())
10912 out_attr[i].set_type(in_attr[i].type());
10913 }
10914
10915 // Merge Tag_compatibility attributes and any common GNU ones.
10916 this->attributes_section_data_->merge(name, pasd);
10917
10918 // Check for any attributes not known on ARM.
10919 typedef Vendor_object_attributes::Other_attributes Other_attributes;
10920 const Other_attributes* in_other_attributes = pasd->other_attributes(vendor);
10921 Other_attributes::const_iterator in_iter = in_other_attributes->begin();
10922 Other_attributes* out_other_attributes =
10923 this->attributes_section_data_->other_attributes(vendor);
10924 Other_attributes::iterator out_iter = out_other_attributes->begin();
10925
10926 while (in_iter != in_other_attributes->end()
10927 || out_iter != out_other_attributes->end())
10928 {
10929 const char* err_object = NULL;
10930 int err_tag = 0;
10931
10932 // The tags for each list are in numerical order.
10933 // If the tags are equal, then merge.
10934 if (out_iter != out_other_attributes->end()
10935 && (in_iter == in_other_attributes->end()
10936 || in_iter->first > out_iter->first))
10937 {
10938 // This attribute only exists in output. We can't merge, and we
10939 // don't know what the tag means, so delete it.
10940 err_object = "output";
10941 err_tag = out_iter->first;
10942 int saved_tag = out_iter->first;
10943 delete out_iter->second;
2e702c99 10944 out_other_attributes->erase(out_iter);
a0351a69
DK
10945 out_iter = out_other_attributes->upper_bound(saved_tag);
10946 }
10947 else if (in_iter != in_other_attributes->end()
10948 && (out_iter != out_other_attributes->end()
10949 || in_iter->first < out_iter->first))
10950 {
10951 // This attribute only exists in input. We can't merge, and we
10952 // don't know what the tag means, so ignore it.
10953 err_object = name;
10954 err_tag = in_iter->first;
10955 ++in_iter;
10956 }
10957 else // The tags are equal.
10958 {
10959 // As present, all attributes in the list are unknown, and
10960 // therefore can't be merged meaningfully.
10961 err_object = "output";
10962 err_tag = out_iter->first;
10963
10964 // Only pass on attributes that match in both inputs.
10965 if (!in_iter->second->matches(*(out_iter->second)))
10966 {
10967 // No match. Delete the attribute.
10968 int saved_tag = out_iter->first;
10969 delete out_iter->second;
10970 out_other_attributes->erase(out_iter);
10971 out_iter = out_other_attributes->upper_bound(saved_tag);
10972 }
10973 else
10974 {
10975 // Matched. Keep the attribute and move to the next.
10976 ++out_iter;
10977 ++in_iter;
10978 }
10979 }
10980
7296d933 10981 if (err_object && parameters->options().warn_mismatch())
a0351a69
DK
10982 {
10983 // Attribute numbers >=64 (mod 128) can be safely ignored. */
10984 if ((err_tag & 127) < 64)
10985 {
10986 gold_error(_("%s: unknown mandatory EABI object attribute %d"),
10987 err_object, err_tag);
10988 }
10989 else
10990 {
10991 gold_warning(_("%s: unknown EABI object attribute %d"),
10992 err_object, err_tag);
10993 }
10994 }
10995 }
10996}
10997
55da9579
DK
10998// Stub-generation methods for Target_arm.
10999
11000// Make a new Arm_input_section object.
11001
11002template<bool big_endian>
11003Arm_input_section<big_endian>*
11004Target_arm<big_endian>::new_arm_input_section(
2ea97941
ILT
11005 Relobj* relobj,
11006 unsigned int shndx)
55da9579 11007{
5ac169d4 11008 Section_id sid(relobj, shndx);
55da9579
DK
11009
11010 Arm_input_section<big_endian>* arm_input_section =
2ea97941 11011 new Arm_input_section<big_endian>(relobj, shndx);
55da9579
DK
11012 arm_input_section->init();
11013
11014 // Register new Arm_input_section in map for look-up.
11015 std::pair<typename Arm_input_section_map::iterator, bool> ins =
5ac169d4 11016 this->arm_input_section_map_.insert(std::make_pair(sid, arm_input_section));
55da9579
DK
11017
11018 // Make sure that it we have not created another Arm_input_section
11019 // for this input section already.
11020 gold_assert(ins.second);
11021
2e702c99 11022 return arm_input_section;
55da9579
DK
11023}
11024
11025// Find the Arm_input_section object corresponding to the SHNDX-th input
11026// section of RELOBJ.
11027
11028template<bool big_endian>
11029Arm_input_section<big_endian>*
11030Target_arm<big_endian>::find_arm_input_section(
2ea97941
ILT
11031 Relobj* relobj,
11032 unsigned int shndx) const
55da9579 11033{
5ac169d4 11034 Section_id sid(relobj, shndx);
55da9579 11035 typename Arm_input_section_map::const_iterator p =
5ac169d4 11036 this->arm_input_section_map_.find(sid);
55da9579
DK
11037 return (p != this->arm_input_section_map_.end()) ? p->second : NULL;
11038}
11039
11040// Make a new stub table.
11041
11042template<bool big_endian>
11043Stub_table<big_endian>*
11044Target_arm<big_endian>::new_stub_table(Arm_input_section<big_endian>* owner)
11045{
2ea97941 11046 Stub_table<big_endian>* stub_table =
55da9579 11047 new Stub_table<big_endian>(owner);
2ea97941 11048 this->stub_tables_.push_back(stub_table);
55da9579 11049
2ea97941
ILT
11050 stub_table->set_address(owner->address() + owner->data_size());
11051 stub_table->set_file_offset(owner->offset() + owner->data_size());
11052 stub_table->finalize_data_size();
55da9579 11053
2ea97941 11054 return stub_table;
55da9579
DK
11055}
11056
eb44217c
DK
11057// Scan a relocation for stub generation.
11058
11059template<bool big_endian>
11060void
11061Target_arm<big_endian>::scan_reloc_for_stub(
11062 const Relocate_info<32, big_endian>* relinfo,
11063 unsigned int r_type,
11064 const Sized_symbol<32>* gsym,
11065 unsigned int r_sym,
11066 const Symbol_value<32>* psymval,
11067 elfcpp::Elf_types<32>::Elf_Swxword addend,
11068 Arm_address address)
11069{
eb44217c
DK
11070 const Arm_relobj<big_endian>* arm_relobj =
11071 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
11072
11073 bool target_is_thumb;
11074 Symbol_value<32> symval;
11075 if (gsym != NULL)
11076 {
11077 // This is a global symbol. Determine if we use PLT and if the
11078 // final target is THUMB.
95a2c8d6 11079 if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
eb44217c
DK
11080 {
11081 // This uses a PLT, change the symbol value.
11082 symval.set_output_value(this->plt_section()->address()
11083 + gsym->plt_offset());
11084 psymval = &symval;
11085 target_is_thumb = false;
11086 }
11087 else if (gsym->is_undefined())
11088 // There is no need to generate a stub symbol is undefined.
11089 return;
11090 else
11091 {
11092 target_is_thumb =
11093 ((gsym->type() == elfcpp::STT_ARM_TFUNC)
11094 || (gsym->type() == elfcpp::STT_FUNC
11095 && !gsym->is_undefined()
11096 && ((psymval->value(arm_relobj, 0) & 1) != 0)));
11097 }
11098 }
11099 else
11100 {
11101 // This is a local symbol. Determine if the final target is THUMB.
11102 target_is_thumb = arm_relobj->local_symbol_is_thumb_function(r_sym);
11103 }
11104
11105 // Strip LSB if this points to a THUMB target.
5c57f1be
DK
11106 const Arm_reloc_property* reloc_property =
11107 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
11108 gold_assert(reloc_property != NULL);
eb44217c 11109 if (target_is_thumb
5c57f1be 11110 && reloc_property->uses_thumb_bit()
eb44217c
DK
11111 && ((psymval->value(arm_relobj, 0) & 1) != 0))
11112 {
11113 Arm_address stripped_value =
11114 psymval->value(arm_relobj, 0) & ~static_cast<Arm_address>(1);
11115 symval.set_output_value(stripped_value);
11116 psymval = &symval;
2e702c99 11117 }
eb44217c
DK
11118
11119 // Get the symbol value.
11120 Symbol_value<32>::Value value = psymval->value(arm_relobj, 0);
11121
11122 // Owing to pipelining, the PC relative branches below actually skip
11123 // two instructions when the branch offset is 0.
11124 Arm_address destination;
11125 switch (r_type)
11126 {
11127 case elfcpp::R_ARM_CALL:
11128 case elfcpp::R_ARM_JUMP24:
11129 case elfcpp::R_ARM_PLT32:
11130 // ARM branches.
11131 destination = value + addend + 8;
11132 break;
11133 case elfcpp::R_ARM_THM_CALL:
11134 case elfcpp::R_ARM_THM_XPC22:
11135 case elfcpp::R_ARM_THM_JUMP24:
11136 case elfcpp::R_ARM_THM_JUMP19:
11137 // THUMB branches.
11138 destination = value + addend + 4;
11139 break;
11140 default:
11141 gold_unreachable();
11142 }
11143
a120bc7f 11144 Reloc_stub* stub = NULL;
eb44217c
DK
11145 Stub_type stub_type =
11146 Reloc_stub::stub_type_for_reloc(r_type, address, destination,
11147 target_is_thumb);
a120bc7f
DK
11148 if (stub_type != arm_stub_none)
11149 {
11150 // Try looking up an existing stub from a stub table.
2e702c99 11151 Stub_table<big_endian>* stub_table =
a120bc7f
DK
11152 arm_relobj->stub_table(relinfo->data_shndx);
11153 gold_assert(stub_table != NULL);
2e702c99 11154
a120bc7f
DK
11155 // Locate stub by destination.
11156 Reloc_stub::Key stub_key(stub_type, gsym, arm_relobj, r_sym, addend);
eb44217c 11157
a120bc7f
DK
11158 // Create a stub if there is not one already
11159 stub = stub_table->find_reloc_stub(stub_key);
11160 if (stub == NULL)
11161 {
11162 // create a new stub and add it to stub table.
11163 stub = this->stub_factory().make_reloc_stub(stub_type);
11164 stub_table->add_reloc_stub(stub, stub_key);
11165 }
11166
11167 // Record the destination address.
11168 stub->set_destination_address(destination
11169 | (target_is_thumb ? 1 : 0));
eb44217c
DK
11170 }
11171
a120bc7f
DK
11172 // For Cortex-A8, we need to record a relocation at 4K page boundary.
11173 if (this->fix_cortex_a8_
11174 && (r_type == elfcpp::R_ARM_THM_JUMP24
11175 || r_type == elfcpp::R_ARM_THM_JUMP19
11176 || r_type == elfcpp::R_ARM_THM_CALL
11177 || r_type == elfcpp::R_ARM_THM_XPC22)
11178 && (address & 0xfffU) == 0xffeU)
11179 {
11180 // Found a candidate. Note we haven't checked the destination is
11181 // within 4K here: if we do so (and don't create a record) we can't
11182 // tell that a branch should have been relocated when scanning later.
11183 this->cortex_a8_relocs_info_[address] =
11184 new Cortex_a8_reloc(stub, r_type,
11185 destination | (target_is_thumb ? 1 : 0));
11186 }
eb44217c
DK
11187}
11188
11189// This function scans a relocation sections for stub generation.
11190// The template parameter Relocate must be a class type which provides
11191// a single function, relocate(), which implements the machine
11192// specific part of a relocation.
11193
11194// BIG_ENDIAN is the endianness of the data. SH_TYPE is the section type:
11195// SHT_REL or SHT_RELA.
11196
11197// PRELOCS points to the relocation data. RELOC_COUNT is the number
11198// of relocs. OUTPUT_SECTION is the output section.
11199// NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
11200// mapped to output offsets.
11201
11202// VIEW is the section data, VIEW_ADDRESS is its memory address, and
11203// VIEW_SIZE is the size. These refer to the input section, unless
11204// NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
11205// the output section.
11206
11207template<bool big_endian>
11208template<int sh_type>
11209void inline
11210Target_arm<big_endian>::scan_reloc_section_for_stubs(
11211 const Relocate_info<32, big_endian>* relinfo,
11212 const unsigned char* prelocs,
11213 size_t reloc_count,
11214 Output_section* output_section,
11215 bool needs_special_offset_handling,
11216 const unsigned char* view,
11217 elfcpp::Elf_types<32>::Elf_Addr view_address,
11218 section_size_type)
11219{
11220 typedef typename Reloc_types<sh_type, 32, big_endian>::Reloc Reltype;
11221 const int reloc_size =
11222 Reloc_types<sh_type, 32, big_endian>::reloc_size;
11223
11224 Arm_relobj<big_endian>* arm_object =
11225 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
11226 unsigned int local_count = arm_object->local_symbol_count();
11227
168a4726 11228 gold::Default_comdat_behavior default_comdat_behavior;
eb44217c
DK
11229 Comdat_behavior comdat_behavior = CB_UNDETERMINED;
11230
11231 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
11232 {
11233 Reltype reloc(prelocs);
11234
11235 typename elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
11236 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
11237 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
11238
11239 r_type = this->get_real_reloc_type(r_type);
11240
11241 // Only a few relocation types need stubs.
11242 if ((r_type != elfcpp::R_ARM_CALL)
2e702c99
RM
11243 && (r_type != elfcpp::R_ARM_JUMP24)
11244 && (r_type != elfcpp::R_ARM_PLT32)
11245 && (r_type != elfcpp::R_ARM_THM_CALL)
11246 && (r_type != elfcpp::R_ARM_THM_XPC22)
11247 && (r_type != elfcpp::R_ARM_THM_JUMP24)
11248 && (r_type != elfcpp::R_ARM_THM_JUMP19)
11249 && (r_type != elfcpp::R_ARM_V4BX))
eb44217c
DK
11250 continue;
11251
2ea97941 11252 section_offset_type offset =
eb44217c
DK
11253 convert_to_section_size_type(reloc.get_r_offset());
11254
11255 if (needs_special_offset_handling)
11256 {
2ea97941
ILT
11257 offset = output_section->output_offset(relinfo->object,
11258 relinfo->data_shndx,
11259 offset);
11260 if (offset == -1)
eb44217c
DK
11261 continue;
11262 }
11263
2fd9ae7a 11264 // Create a v4bx stub if --fix-v4bx-interworking is used.
a2162063
ILT
11265 if (r_type == elfcpp::R_ARM_V4BX)
11266 {
2fd9ae7a
DK
11267 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING)
11268 {
11269 // Get the BX instruction.
11270 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
11271 const Valtype* wv =
11272 reinterpret_cast<const Valtype*>(view + offset);
11273 elfcpp::Elf_types<32>::Elf_Swxword insn =
11274 elfcpp::Swap<32, big_endian>::readval(wv);
11275 const uint32_t reg = (insn & 0xf);
11276
11277 if (reg < 0xf)
11278 {
11279 // Try looking up an existing stub from a stub table.
11280 Stub_table<big_endian>* stub_table =
11281 arm_object->stub_table(relinfo->data_shndx);
11282 gold_assert(stub_table != NULL);
11283
11284 if (stub_table->find_arm_v4bx_stub(reg) == NULL)
11285 {
11286 // create a new stub and add it to stub table.
11287 Arm_v4bx_stub* stub =
2e702c99 11288 this->stub_factory().make_arm_v4bx_stub(reg);
2fd9ae7a
DK
11289 gold_assert(stub != NULL);
11290 stub_table->add_arm_v4bx_stub(stub);
11291 }
11292 }
11293 }
a2162063
ILT
11294 continue;
11295 }
11296
eb44217c
DK
11297 // Get the addend.
11298 Stub_addend_reader<sh_type, big_endian> stub_addend_reader;
11299 elfcpp::Elf_types<32>::Elf_Swxword addend =
2ea97941 11300 stub_addend_reader(r_type, view + offset, reloc);
eb44217c
DK
11301
11302 const Sized_symbol<32>* sym;
11303
11304 Symbol_value<32> symval;
11305 const Symbol_value<32> *psymval;
aa98ff75
DK
11306 bool is_defined_in_discarded_section;
11307 unsigned int shndx;
eb44217c
DK
11308 if (r_sym < local_count)
11309 {
11310 sym = NULL;
11311 psymval = arm_object->local_symbol(r_sym);
11312
2e702c99
RM
11313 // If the local symbol belongs to a section we are discarding,
11314 // and that section is a debug section, try to find the
11315 // corresponding kept section and map this symbol to its
11316 // counterpart in the kept section. The symbol must not
11317 // correspond to a section we are folding.
eb44217c 11318 bool is_ordinary;
aa98ff75
DK
11319 shndx = psymval->input_shndx(&is_ordinary);
11320 is_defined_in_discarded_section =
11321 (is_ordinary
11322 && shndx != elfcpp::SHN_UNDEF
11323 && !arm_object->is_section_included(shndx)
11324 && !relinfo->symtab->is_section_folded(arm_object, shndx));
11325
11326 // We need to compute the would-be final value of this local
11327 // symbol.
11328 if (!is_defined_in_discarded_section)
eb44217c 11329 {
6fa2a40b 11330 typedef Sized_relobj_file<32, big_endian> ObjType;
aa98ff75
DK
11331 typename ObjType::Compute_final_local_value_status status =
11332 arm_object->compute_final_local_value(r_sym, psymval, &symval,
2e702c99 11333 relinfo->symtab);
aa98ff75
DK
11334 if (status == ObjType::CFLV_OK)
11335 {
11336 // Currently we cannot handle a branch to a target in
11337 // a merged section. If this is the case, issue an error
11338 // and also free the merge symbol value.
11339 if (!symval.has_output_value())
11340 {
11341 const std::string& section_name =
11342 arm_object->section_name(shndx);
11343 arm_object->error(_("cannot handle branch to local %u "
11344 "in a merged section %s"),
11345 r_sym, section_name.c_str());
11346 }
11347 psymval = &symval;
11348 }
eb44217c 11349 else
aa98ff75
DK
11350 {
11351 // We cannot determine the final value.
2e702c99 11352 continue;
aa98ff75 11353 }
eb44217c
DK
11354 }
11355 }
11356 else
11357 {
aa98ff75
DK
11358 const Symbol* gsym;
11359 gsym = arm_object->global_symbol(r_sym);
eb44217c
DK
11360 gold_assert(gsym != NULL);
11361 if (gsym->is_forwarder())
11362 gsym = relinfo->symtab->resolve_forwards(gsym);
11363
11364 sym = static_cast<const Sized_symbol<32>*>(gsym);
aa98ff75 11365 if (sym->has_symtab_index() && sym->symtab_index() != -1U)
eb44217c
DK
11366 symval.set_output_symtab_index(sym->symtab_index());
11367 else
11368 symval.set_no_output_symtab_entry();
11369
11370 // We need to compute the would-be final value of this global
11371 // symbol.
11372 const Symbol_table* symtab = relinfo->symtab;
11373 const Sized_symbol<32>* sized_symbol =
11374 symtab->get_sized_symbol<32>(gsym);
11375 Symbol_table::Compute_final_value_status status;
11376 Arm_address value =
11377 symtab->compute_final_value<32>(sized_symbol, &status);
11378
11379 // Skip this if the symbol has not output section.
11380 if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
11381 continue;
eb44217c 11382 symval.set_output_value(value);
aa98ff75
DK
11383
11384 if (gsym->type() == elfcpp::STT_TLS)
11385 symval.set_is_tls_symbol();
11386 else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
11387 symval.set_is_ifunc_symbol();
eb44217c 11388 psymval = &symval;
aa98ff75
DK
11389
11390 is_defined_in_discarded_section =
11391 (gsym->is_defined_in_discarded_section()
11392 && gsym->is_undefined());
11393 shndx = 0;
11394 }
11395
11396 Symbol_value<32> symval2;
11397 if (is_defined_in_discarded_section)
11398 {
11399 if (comdat_behavior == CB_UNDETERMINED)
11400 {
11401 std::string name = arm_object->section_name(relinfo->data_shndx);
168a4726 11402 comdat_behavior = default_comdat_behavior.get(name.c_str());
aa98ff75
DK
11403 }
11404 if (comdat_behavior == CB_PRETEND)
11405 {
11406 // FIXME: This case does not work for global symbols.
11407 // We have no place to store the original section index.
11408 // Fortunately this does not matter for comdat sections,
11409 // only for sections explicitly discarded by a linker
11410 // script.
11411 bool found;
11412 typename elfcpp::Elf_types<32>::Elf_Addr value =
11413 arm_object->map_to_kept_section(shndx, &found);
11414 if (found)
11415 symval2.set_output_value(value + psymval->input_value());
11416 else
11417 symval2.set_output_value(0);
11418 }
11419 else
11420 {
11421 if (comdat_behavior == CB_WARNING)
11422 gold_warning_at_location(relinfo, i, offset,
11423 _("relocation refers to discarded "
11424 "section"));
11425 symval2.set_output_value(0);
11426 }
11427 symval2.set_no_output_symtab_entry();
11428 psymval = &symval2;
eb44217c
DK
11429 }
11430
11431 // If symbol is a section symbol, we don't know the actual type of
11432 // destination. Give up.
11433 if (psymval->is_section_symbol())
11434 continue;
11435
11436 this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
2ea97941 11437 addend, view_address + offset);
eb44217c
DK
11438 }
11439}
11440
11441// Scan an input section for stub generation.
11442
11443template<bool big_endian>
11444void
11445Target_arm<big_endian>::scan_section_for_stubs(
11446 const Relocate_info<32, big_endian>* relinfo,
11447 unsigned int sh_type,
11448 const unsigned char* prelocs,
11449 size_t reloc_count,
11450 Output_section* output_section,
11451 bool needs_special_offset_handling,
11452 const unsigned char* view,
11453 Arm_address view_address,
11454 section_size_type view_size)
11455{
11456 if (sh_type == elfcpp::SHT_REL)
11457 this->scan_reloc_section_for_stubs<elfcpp::SHT_REL>(
11458 relinfo,
11459 prelocs,
11460 reloc_count,
11461 output_section,
11462 needs_special_offset_handling,
11463 view,
11464 view_address,
11465 view_size);
11466 else if (sh_type == elfcpp::SHT_RELA)
11467 // We do not support RELA type relocations yet. This is provided for
11468 // completeness.
11469 this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
11470 relinfo,
11471 prelocs,
11472 reloc_count,
11473 output_section,
11474 needs_special_offset_handling,
11475 view,
11476 view_address,
11477 view_size);
11478 else
11479 gold_unreachable();
11480}
11481
11482// Group input sections for stub generation.
11483//
9b547ce6 11484// We group input sections in an output section so that the total size,
eb44217c
DK
11485// including any padding space due to alignment is smaller than GROUP_SIZE
11486// unless the only input section in group is bigger than GROUP_SIZE already.
11487// Then an ARM stub table is created to follow the last input section
11488// in group. For each group an ARM stub table is created an is placed
9b547ce6 11489// after the last group. If STUB_ALWAYS_AFTER_BRANCH is false, we further
eb44217c
DK
11490// extend the group after the stub table.
11491
11492template<bool big_endian>
11493void
11494Target_arm<big_endian>::group_sections(
2ea97941 11495 Layout* layout,
eb44217c 11496 section_size_type group_size,
f625ae50
DK
11497 bool stubs_always_after_branch,
11498 const Task* task)
eb44217c
DK
11499{
11500 // Group input sections and insert stub table
11501 Layout::Section_list section_list;
ec661b9d 11502 layout->get_executable_sections(&section_list);
eb44217c
DK
11503 for (Layout::Section_list::const_iterator p = section_list.begin();
11504 p != section_list.end();
11505 ++p)
11506 {
11507 Arm_output_section<big_endian>* output_section =
11508 Arm_output_section<big_endian>::as_arm_output_section(*p);
11509 output_section->group_sections(group_size, stubs_always_after_branch,
f625ae50 11510 this, task);
eb44217c
DK
11511 }
11512}
11513
11514// Relaxation hook. This is where we do stub generation.
11515
11516template<bool big_endian>
11517bool
11518Target_arm<big_endian>::do_relax(
11519 int pass,
11520 const Input_objects* input_objects,
11521 Symbol_table* symtab,
f625ae50
DK
11522 Layout* layout,
11523 const Task* task)
eb44217c
DK
11524{
11525 // No need to generate stubs if this is a relocatable link.
11526 gold_assert(!parameters->options().relocatable());
11527
11528 // If this is the first pass, we need to group input sections into
11529 // stub groups.
2b328d4e 11530 bool done_exidx_fixup = false;
6625d24e 11531 typedef typename Stub_table_list::iterator Stub_table_iterator;
eb44217c
DK
11532 if (pass == 1)
11533 {
11534 // Determine the stub group size. The group size is the absolute
11535 // value of the parameter --stub-group-size. If --stub-group-size
9b547ce6 11536 // is passed a negative value, we restrict stubs to be always after
eb44217c
DK
11537 // the stubbed branches.
11538 int32_t stub_group_size_param =
11539 parameters->options().stub_group_size();
11540 bool stubs_always_after_branch = stub_group_size_param < 0;
11541 section_size_type stub_group_size = abs(stub_group_size_param);
11542
11543 if (stub_group_size == 1)
11544 {
11545 // Default value.
11546 // Thumb branch range is +-4MB has to be used as the default
11547 // maximum size (a given section can contain both ARM and Thumb
a2c7281b
DK
11548 // code, so the worst case has to be taken into account). If we are
11549 // fixing cortex-a8 errata, the branch range has to be even smaller,
11550 // since wide conditional branch has a range of +-1MB only.
eb44217c 11551 //
25bbe950 11552 // This value is 48K less than that, which allows for 4096
eb44217c
DK
11553 // 12-byte stubs. If we exceed that, then we will fail to link.
11554 // The user will have to relink with an explicit group size
11555 // option.
25bbe950
DK
11556 stub_group_size = 4145152;
11557 }
11558
11559 // The Cortex-A8 erratum fix depends on stubs not being in the same 4K
11560 // page as the first half of a 32-bit branch straddling two 4K pages.
11561 // This is a crude way of enforcing that. In addition, long conditional
11562 // branches of THUMB-2 have a range of +-1M. If we are fixing cortex-A8
11563 // erratum, limit the group size to (1M - 12k) to avoid unreachable
11564 // cortex-A8 stubs from long conditional branches.
11565 if (this->fix_cortex_a8_)
11566 {
11567 stubs_always_after_branch = true;
11568 const section_size_type cortex_a8_group_size = 1024 * (1024 - 12);
11569 stub_group_size = std::max(stub_group_size, cortex_a8_group_size);
eb44217c
DK
11570 }
11571
f625ae50 11572 group_sections(layout, stub_group_size, stubs_always_after_branch, task);
2e702c99 11573
2b328d4e 11574 // Also fix .ARM.exidx section coverage.
131687b4
DK
11575 Arm_output_section<big_endian>* exidx_output_section = NULL;
11576 for (Layout::Section_list::const_iterator p =
11577 layout->section_list().begin();
11578 p != layout->section_list().end();
11579 ++p)
11580 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
11581 {
11582 if (exidx_output_section == NULL)
11583 exidx_output_section =
11584 Arm_output_section<big_endian>::as_arm_output_section(*p);
11585 else
11586 // We cannot handle this now.
11587 gold_error(_("multiple SHT_ARM_EXIDX sections %s and %s in a "
11588 "non-relocatable link"),
11589 exidx_output_section->name(),
11590 (*p)->name());
11591 }
11592
11593 if (exidx_output_section != NULL)
2b328d4e 11594 {
131687b4 11595 this->fix_exidx_coverage(layout, input_objects, exidx_output_section,
f625ae50 11596 symtab, task);
2b328d4e
DK
11597 done_exidx_fixup = true;
11598 }
eb44217c 11599 }
6625d24e
DK
11600 else
11601 {
11602 // If this is not the first pass, addresses and file offsets have
11603 // been reset at this point, set them here.
11604 for (Stub_table_iterator sp = this->stub_tables_.begin();
11605 sp != this->stub_tables_.end();
11606 ++sp)
11607 {
11608 Arm_input_section<big_endian>* owner = (*sp)->owner();
11609 off_t off = align_address(owner->original_size(),
11610 (*sp)->addralign());
11611 (*sp)->set_address_and_file_offset(owner->address() + off,
11612 owner->offset() + off);
11613 }
11614 }
eb44217c 11615
44272192
DK
11616 // The Cortex-A8 stubs are sensitive to layout of code sections. At the
11617 // beginning of each relaxation pass, just blow away all the stubs.
11618 // Alternatively, we could selectively remove only the stubs and reloc
11619 // information for code sections that have moved since the last pass.
11620 // That would require more book-keeping.
a120bc7f
DK
11621 if (this->fix_cortex_a8_)
11622 {
11623 // Clear all Cortex-A8 reloc information.
11624 for (typename Cortex_a8_relocs_info::const_iterator p =
11625 this->cortex_a8_relocs_info_.begin();
11626 p != this->cortex_a8_relocs_info_.end();
11627 ++p)
11628 delete p->second;
11629 this->cortex_a8_relocs_info_.clear();
44272192
DK
11630
11631 // Remove all Cortex-A8 stubs.
11632 for (Stub_table_iterator sp = this->stub_tables_.begin();
11633 sp != this->stub_tables_.end();
11634 ++sp)
11635 (*sp)->remove_all_cortex_a8_stubs();
a120bc7f 11636 }
2e702c99 11637
44272192 11638 // Scan relocs for relocation stubs
eb44217c
DK
11639 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
11640 op != input_objects->relobj_end();
11641 ++op)
11642 {
11643 Arm_relobj<big_endian>* arm_relobj =
11644 Arm_relobj<big_endian>::as_arm_relobj(*op);
f625ae50
DK
11645 // Lock the object so we can read from it. This is only called
11646 // single-threaded from Layout::finalize, so it is OK to lock.
11647 Task_lock_obj<Object> tl(task, arm_relobj);
2ea97941 11648 arm_relobj->scan_sections_for_stubs(this, symtab, layout);
eb44217c
DK
11649 }
11650
2fb7225c
DK
11651 // Check all stub tables to see if any of them have their data sizes
11652 // or addresses alignments changed. These are the only things that
11653 // matter.
eb44217c 11654 bool any_stub_table_changed = false;
8923b24c 11655 Unordered_set<const Output_section*> sections_needing_adjustment;
eb44217c
DK
11656 for (Stub_table_iterator sp = this->stub_tables_.begin();
11657 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
11658 ++sp)
11659 {
2fb7225c 11660 if ((*sp)->update_data_size_and_addralign())
8923b24c
DK
11661 {
11662 // Update data size of stub table owner.
11663 Arm_input_section<big_endian>* owner = (*sp)->owner();
11664 uint64_t address = owner->address();
11665 off_t offset = owner->offset();
11666 owner->reset_address_and_file_offset();
11667 owner->set_address_and_file_offset(address, offset);
11668
11669 sections_needing_adjustment.insert(owner->output_section());
11670 any_stub_table_changed = true;
11671 }
11672 }
11673
11674 // Output_section_data::output_section() returns a const pointer but we
11675 // need to update output sections, so we record all output sections needing
11676 // update above and scan the sections here to find out what sections need
11677 // to be updated.
f625ae50 11678 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
8923b24c
DK
11679 p != layout->section_list().end();
11680 ++p)
11681 {
11682 if (sections_needing_adjustment.find(*p)
11683 != sections_needing_adjustment.end())
11684 (*p)->set_section_offsets_need_adjustment();
eb44217c
DK
11685 }
11686
2b328d4e
DK
11687 // Stop relaxation if no EXIDX fix-up and no stub table change.
11688 bool continue_relaxation = done_exidx_fixup || any_stub_table_changed;
11689
2fb7225c 11690 // Finalize the stubs in the last relaxation pass.
2b328d4e 11691 if (!continue_relaxation)
e7eca48c
DK
11692 {
11693 for (Stub_table_iterator sp = this->stub_tables_.begin();
11694 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
11695 ++sp)
11696 (*sp)->finalize_stubs();
11697
11698 // Update output local symbol counts of objects if necessary.
11699 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
11700 op != input_objects->relobj_end();
11701 ++op)
11702 {
11703 Arm_relobj<big_endian>* arm_relobj =
11704 Arm_relobj<big_endian>::as_arm_relobj(*op);
11705
11706 // Update output local symbol counts. We need to discard local
11707 // symbols defined in parts of input sections that are discarded by
11708 // relaxation.
11709 if (arm_relobj->output_local_symbol_count_needs_update())
f625ae50
DK
11710 {
11711 // We need to lock the object's file to update it.
11712 Task_lock_obj<Object> tl(task, arm_relobj);
11713 arm_relobj->update_output_local_symbol_count();
11714 }
e7eca48c
DK
11715 }
11716 }
2fb7225c 11717
2b328d4e 11718 return continue_relaxation;
eb44217c
DK
11719}
11720
43d12afe
DK
11721// Relocate a stub.
11722
11723template<bool big_endian>
11724void
11725Target_arm<big_endian>::relocate_stub(
2fb7225c 11726 Stub* stub,
43d12afe
DK
11727 const Relocate_info<32, big_endian>* relinfo,
11728 Output_section* output_section,
11729 unsigned char* view,
11730 Arm_address address,
11731 section_size_type view_size)
11732{
11733 Relocate relocate;
2ea97941
ILT
11734 const Stub_template* stub_template = stub->stub_template();
11735 for (size_t i = 0; i < stub_template->reloc_count(); i++)
43d12afe 11736 {
2ea97941
ILT
11737 size_t reloc_insn_index = stub_template->reloc_insn_index(i);
11738 const Insn_template* insn = &stub_template->insns()[reloc_insn_index];
43d12afe
DK
11739
11740 unsigned int r_type = insn->r_type();
2ea97941 11741 section_size_type reloc_offset = stub_template->reloc_offset(i);
43d12afe
DK
11742 section_size_type reloc_size = insn->size();
11743 gold_assert(reloc_offset + reloc_size <= view_size);
11744
11745 // This is the address of the stub destination.
41263c05 11746 Arm_address target = stub->reloc_target(i) + insn->reloc_addend();
43d12afe
DK
11747 Symbol_value<32> symval;
11748 symval.set_output_value(target);
11749
11750 // Synthesize a fake reloc just in case. We don't have a symbol so
11751 // we use 0.
11752 unsigned char reloc_buffer[elfcpp::Elf_sizes<32>::rel_size];
11753 memset(reloc_buffer, 0, sizeof(reloc_buffer));
11754 elfcpp::Rel_write<32, big_endian> reloc_write(reloc_buffer);
11755 reloc_write.put_r_offset(reloc_offset);
11756 reloc_write.put_r_info(elfcpp::elf_r_info<32>(0, r_type));
11757 elfcpp::Rel<32, big_endian> rel(reloc_buffer);
11758
11759 relocate.relocate(relinfo, this, output_section,
11760 this->fake_relnum_for_stubs, rel, r_type,
11761 NULL, &symval, view + reloc_offset,
11762 address + reloc_offset, reloc_size);
11763 }
11764}
11765
a0351a69
DK
11766// Determine whether an object attribute tag takes an integer, a
11767// string or both.
11768
11769template<bool big_endian>
11770int
11771Target_arm<big_endian>::do_attribute_arg_type(int tag) const
11772{
11773 if (tag == Object_attribute::Tag_compatibility)
11774 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11775 | Object_attribute::ATTR_TYPE_FLAG_STR_VAL);
11776 else if (tag == elfcpp::Tag_nodefaults)
11777 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11778 | Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT);
11779 else if (tag == elfcpp::Tag_CPU_raw_name || tag == elfcpp::Tag_CPU_name)
11780 return Object_attribute::ATTR_TYPE_FLAG_STR_VAL;
11781 else if (tag < 32)
11782 return Object_attribute::ATTR_TYPE_FLAG_INT_VAL;
11783 else
11784 return ((tag & 1) != 0
11785 ? Object_attribute::ATTR_TYPE_FLAG_STR_VAL
11786 : Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
11787}
11788
11789// Reorder attributes.
11790//
11791// The ABI defines that Tag_conformance should be emitted first, and that
11792// Tag_nodefaults should be second (if either is defined). This sets those
11793// two positions, and bumps up the position of all the remaining tags to
11794// compensate.
11795
11796template<bool big_endian>
11797int
11798Target_arm<big_endian>::do_attributes_order(int num) const
11799{
11800 // Reorder the known object attributes in output. We want to move
11801 // Tag_conformance to position 4 and Tag_conformance to position 5
9b547ce6 11802 // and shift everything between 4 .. Tag_conformance - 1 to make room.
a0351a69
DK
11803 if (num == 4)
11804 return elfcpp::Tag_conformance;
11805 if (num == 5)
11806 return elfcpp::Tag_nodefaults;
11807 if ((num - 2) < elfcpp::Tag_nodefaults)
11808 return num - 2;
11809 if ((num - 1) < elfcpp::Tag_conformance)
11810 return num - 1;
11811 return num;
11812}
4a657b0d 11813
44272192
DK
11814// Scan a span of THUMB code for Cortex-A8 erratum.
11815
11816template<bool big_endian>
11817void
11818Target_arm<big_endian>::scan_span_for_cortex_a8_erratum(
11819 Arm_relobj<big_endian>* arm_relobj,
11820 unsigned int shndx,
11821 section_size_type span_start,
11822 section_size_type span_end,
11823 const unsigned char* view,
11824 Arm_address address)
11825{
11826 // Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
11827 //
11828 // The opcode is BLX.W, BL.W, B.W, Bcc.W
11829 // The branch target is in the same 4KB region as the
11830 // first half of the branch.
11831 // The instruction before the branch is a 32-bit
11832 // length non-branch instruction.
11833 section_size_type i = span_start;
11834 bool last_was_32bit = false;
11835 bool last_was_branch = false;
11836 while (i < span_end)
11837 {
11838 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11839 const Valtype* wv = reinterpret_cast<const Valtype*>(view + i);
11840 uint32_t insn = elfcpp::Swap<16, big_endian>::readval(wv);
11841 bool is_blx = false, is_b = false;
11842 bool is_bl = false, is_bcc = false;
11843
11844 bool insn_32bit = (insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000;
11845 if (insn_32bit)
11846 {
11847 // Load the rest of the insn (in manual-friendly order).
11848 insn = (insn << 16) | elfcpp::Swap<16, big_endian>::readval(wv + 1);
11849
11850 // Encoding T4: B<c>.W.
11851 is_b = (insn & 0xf800d000U) == 0xf0009000U;
11852 // Encoding T1: BL<c>.W.
2e702c99
RM
11853 is_bl = (insn & 0xf800d000U) == 0xf000d000U;
11854 // Encoding T2: BLX<c>.W.
11855 is_blx = (insn & 0xf800d000U) == 0xf000c000U;
44272192
DK
11856 // Encoding T3: B<c>.W (not permitted in IT block).
11857 is_bcc = ((insn & 0xf800d000U) == 0xf0008000U
11858 && (insn & 0x07f00000U) != 0x03800000U);
11859 }
11860
11861 bool is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
2e702c99 11862
44272192
DK
11863 // If this instruction is a 32-bit THUMB branch that crosses a 4K
11864 // page boundary and it follows 32-bit non-branch instruction,
11865 // we need to work around.
11866 if (is_32bit_branch
11867 && ((address + i) & 0xfffU) == 0xffeU
11868 && last_was_32bit
11869 && !last_was_branch)
11870 {
11871 // Check to see if there is a relocation stub for this branch.
11872 bool force_target_arm = false;
11873 bool force_target_thumb = false;
11874 const Cortex_a8_reloc* cortex_a8_reloc = NULL;
11875 Cortex_a8_relocs_info::const_iterator p =
11876 this->cortex_a8_relocs_info_.find(address + i);
11877
11878 if (p != this->cortex_a8_relocs_info_.end())
11879 {
11880 cortex_a8_reloc = p->second;
11881 bool target_is_thumb = (cortex_a8_reloc->destination() & 1) != 0;
11882
11883 if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11884 && !target_is_thumb)
11885 force_target_arm = true;
11886 else if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11887 && target_is_thumb)
11888 force_target_thumb = true;
11889 }
11890
11891 off_t offset;
11892 Stub_type stub_type = arm_stub_none;
11893
11894 // Check if we have an offending branch instruction.
11895 uint16_t upper_insn = (insn >> 16) & 0xffffU;
11896 uint16_t lower_insn = insn & 0xffffU;
2c54b4f4 11897 typedef class Arm_relocate_functions<big_endian> RelocFuncs;
44272192
DK
11898
11899 if (cortex_a8_reloc != NULL
11900 && cortex_a8_reloc->reloc_stub() != NULL)
11901 // We've already made a stub for this instruction, e.g.
11902 // it's a long branch or a Thumb->ARM stub. Assume that
11903 // stub will suffice to work around the A8 erratum (see
11904 // setting of always_after_branch above).
11905 ;
11906 else if (is_bcc)
11907 {
11908 offset = RelocFuncs::thumb32_cond_branch_offset(upper_insn,
11909 lower_insn);
11910 stub_type = arm_stub_a8_veneer_b_cond;
11911 }
11912 else if (is_b || is_bl || is_blx)
11913 {
11914 offset = RelocFuncs::thumb32_branch_offset(upper_insn,
11915 lower_insn);
11916 if (is_blx)
2e702c99 11917 offset &= ~3;
44272192
DK
11918
11919 stub_type = (is_blx
11920 ? arm_stub_a8_veneer_blx
11921 : (is_bl
11922 ? arm_stub_a8_veneer_bl
11923 : arm_stub_a8_veneer_b));
11924 }
11925
11926 if (stub_type != arm_stub_none)
11927 {
11928 Arm_address pc_for_insn = address + i + 4;
11929
11930 // The original instruction is a BL, but the target is
11931 // an ARM instruction. If we were not making a stub,
11932 // the BL would have been converted to a BLX. Use the
11933 // BLX stub instead in that case.
cd6eab1c 11934 if (this->may_use_v5t_interworking() && force_target_arm
44272192
DK
11935 && stub_type == arm_stub_a8_veneer_bl)
11936 {
11937 stub_type = arm_stub_a8_veneer_blx;
11938 is_blx = true;
11939 is_bl = false;
11940 }
11941 // Conversely, if the original instruction was
11942 // BLX but the target is Thumb mode, use the BL stub.
11943 else if (force_target_thumb
11944 && stub_type == arm_stub_a8_veneer_blx)
11945 {
11946 stub_type = arm_stub_a8_veneer_bl;
11947 is_blx = false;
11948 is_bl = true;
11949 }
11950
11951 if (is_blx)
11952 pc_for_insn &= ~3;
11953
2e702c99 11954 // If we found a relocation, use the proper destination,
44272192
DK
11955 // not the offset in the (unrelocated) instruction.
11956 // Note this is always done if we switched the stub type above.
2e702c99
RM
11957 if (cortex_a8_reloc != NULL)
11958 offset = (off_t) (cortex_a8_reloc->destination() - pc_for_insn);
44272192 11959
2e702c99 11960 Arm_address target = (pc_for_insn + offset) | (is_blx ? 0 : 1);
44272192
DK
11961
11962 // Add a new stub if destination address in in the same page.
2e702c99
RM
11963 if (((address + i) & ~0xfffU) == (target & ~0xfffU))
11964 {
44272192
DK
11965 Cortex_a8_stub* stub =
11966 this->stub_factory_.make_cortex_a8_stub(stub_type,
11967 arm_relobj, shndx,
11968 address + i,
11969 target, insn);
11970 Stub_table<big_endian>* stub_table =
11971 arm_relobj->stub_table(shndx);
11972 gold_assert(stub_table != NULL);
11973 stub_table->add_cortex_a8_stub(address + i, stub);
2e702c99
RM
11974 }
11975 }
11976 }
44272192
DK
11977
11978 i += insn_32bit ? 4 : 2;
11979 last_was_32bit = insn_32bit;
11980 last_was_branch = is_32bit_branch;
11981 }
11982}
11983
41263c05
DK
11984// Apply the Cortex-A8 workaround.
11985
11986template<bool big_endian>
11987void
11988Target_arm<big_endian>::apply_cortex_a8_workaround(
11989 const Cortex_a8_stub* stub,
11990 Arm_address stub_address,
11991 unsigned char* insn_view,
11992 Arm_address insn_address)
11993{
11994 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11995 Valtype* wv = reinterpret_cast<Valtype*>(insn_view);
11996 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
11997 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
11998 off_t branch_offset = stub_address - (insn_address + 4);
11999
2c54b4f4 12000 typedef class Arm_relocate_functions<big_endian> RelocFuncs;
41263c05
DK
12001 switch (stub->stub_template()->type())
12002 {
12003 case arm_stub_a8_veneer_b_cond:
9b547ce6 12004 // For a conditional branch, we re-write it to be an unconditional
0439c796
DK
12005 // branch to the stub. We use the THUMB-2 encoding here.
12006 upper_insn = 0xf000U;
12007 lower_insn = 0xb800U;
12008 // Fall through
41263c05
DK
12009 case arm_stub_a8_veneer_b:
12010 case arm_stub_a8_veneer_bl:
12011 case arm_stub_a8_veneer_blx:
12012 if ((lower_insn & 0x5000U) == 0x4000U)
12013 // For a BLX instruction, make sure that the relocation is
12014 // rounded up to a word boundary. This follows the semantics of
12015 // the instruction which specifies that bit 1 of the target
12016 // address will come from bit 1 of the base address.
12017 branch_offset = (branch_offset + 2) & ~3;
12018
12019 // Put BRANCH_OFFSET back into the insn.
bef2b434 12020 gold_assert(!Bits<25>::has_overflow32(branch_offset));
41263c05
DK
12021 upper_insn = RelocFuncs::thumb32_branch_upper(upper_insn, branch_offset);
12022 lower_insn = RelocFuncs::thumb32_branch_lower(lower_insn, branch_offset);
12023 break;
12024
12025 default:
12026 gold_unreachable();
12027 }
12028
12029 // Put the relocated value back in the object file:
12030 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
12031 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
12032}
12033
2e702c99
RM
12034// Target selector for ARM. Note this is never instantiated directly.
12035// It's only used in Target_selector_arm_nacl, below.
12036
4a657b0d
DK
12037template<bool big_endian>
12038class Target_selector_arm : public Target_selector
12039{
12040 public:
12041 Target_selector_arm()
12042 : Target_selector(elfcpp::EM_ARM, 32, big_endian,
03ef7571
ILT
12043 (big_endian ? "elf32-bigarm" : "elf32-littlearm"),
12044 (big_endian ? "armelfb" : "armelf"))
4a657b0d
DK
12045 { }
12046
12047 Target*
12048 do_instantiate_target()
12049 { return new Target_arm<big_endian>(); }
12050};
12051
2b328d4e
DK
12052// Fix .ARM.exidx section coverage.
12053
12054template<bool big_endian>
12055void
12056Target_arm<big_endian>::fix_exidx_coverage(
12057 Layout* layout,
131687b4 12058 const Input_objects* input_objects,
2b328d4e 12059 Arm_output_section<big_endian>* exidx_section,
f625ae50
DK
12060 Symbol_table* symtab,
12061 const Task* task)
2b328d4e
DK
12062{
12063 // We need to look at all the input sections in output in ascending
12064 // order of of output address. We do that by building a sorted list
12065 // of output sections by addresses. Then we looks at the output sections
12066 // in order. The input sections in an output section are already sorted
12067 // by addresses within the output section.
12068
12069 typedef std::set<Output_section*, output_section_address_less_than>
12070 Sorted_output_section_list;
12071 Sorted_output_section_list sorted_output_sections;
131687b4
DK
12072
12073 // Find out all the output sections of input sections pointed by
12074 // EXIDX input sections.
12075 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
12076 p != input_objects->relobj_end();
2b328d4e
DK
12077 ++p)
12078 {
131687b4
DK
12079 Arm_relobj<big_endian>* arm_relobj =
12080 Arm_relobj<big_endian>::as_arm_relobj(*p);
12081 std::vector<unsigned int> shndx_list;
12082 arm_relobj->get_exidx_shndx_list(&shndx_list);
12083 for (size_t i = 0; i < shndx_list.size(); ++i)
12084 {
12085 const Arm_exidx_input_section* exidx_input_section =
12086 arm_relobj->exidx_input_section_by_shndx(shndx_list[i]);
12087 gold_assert(exidx_input_section != NULL);
12088 if (!exidx_input_section->has_errors())
12089 {
12090 unsigned int text_shndx = exidx_input_section->link();
ca09d69a 12091 Output_section* os = arm_relobj->output_section(text_shndx);
131687b4
DK
12092 if (os != NULL && (os->flags() & elfcpp::SHF_ALLOC) != 0)
12093 sorted_output_sections.insert(os);
12094 }
12095 }
2b328d4e
DK
12096 }
12097
12098 // Go over the output sections in ascending order of output addresses.
12099 typedef typename Arm_output_section<big_endian>::Text_section_list
12100 Text_section_list;
12101 Text_section_list sorted_text_sections;
f625ae50 12102 for (typename Sorted_output_section_list::iterator p =
2b328d4e
DK
12103 sorted_output_sections.begin();
12104 p != sorted_output_sections.end();
12105 ++p)
12106 {
12107 Arm_output_section<big_endian>* arm_output_section =
12108 Arm_output_section<big_endian>::as_arm_output_section(*p);
12109 arm_output_section->append_text_sections_to_list(&sorted_text_sections);
2e702c99 12110 }
2b328d4e 12111
85fdf906 12112 exidx_section->fix_exidx_coverage(layout, sorted_text_sections, symtab,
f625ae50 12113 merge_exidx_entries(), task);
2b328d4e
DK
12114}
12115
647f1574
DK
12116template<bool big_endian>
12117void
12118Target_arm<big_endian>::do_define_standard_symbols(
12119 Symbol_table* symtab,
12120 Layout* layout)
12121{
12122 // Handle the .ARM.exidx section.
12123 Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
12124
12125 if (exidx_section != NULL)
12126 {
12127 // Create __exidx_start and __exidx_end symbols.
12128 symtab->define_in_output_data("__exidx_start",
12129 NULL, // version
12130 Symbol_table::PREDEFINED,
12131 exidx_section,
12132 0, // value
12133 0, // symsize
12134 elfcpp::STT_NOTYPE,
12135 elfcpp::STB_GLOBAL,
12136 elfcpp::STV_HIDDEN,
12137 0, // nonvis
12138 false, // offset_is_from_end
12139 true); // only_if_ref
12140
12141 symtab->define_in_output_data("__exidx_end",
12142 NULL, // version
12143 Symbol_table::PREDEFINED,
12144 exidx_section,
2e702c99 12145 0, // value
647f1574
DK
12146 0, // symsize
12147 elfcpp::STT_NOTYPE,
12148 elfcpp::STB_GLOBAL,
12149 elfcpp::STV_HIDDEN,
12150 0, // nonvis
12151 true, // offset_is_from_end
12152 true); // only_if_ref
12153 }
12154 else
12155 {
12156 // Define __exidx_start and __exidx_end even when .ARM.exidx
12157 // section is missing to match ld's behaviour.
12158 symtab->define_as_constant("__exidx_start", NULL,
2e702c99
RM
12159 Symbol_table::PREDEFINED,
12160 0, 0, elfcpp::STT_OBJECT,
12161 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
12162 true, false);
647f1574 12163 symtab->define_as_constant("__exidx_end", NULL,
2e702c99
RM
12164 Symbol_table::PREDEFINED,
12165 0, 0, elfcpp::STT_OBJECT,
12166 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
12167 true, false);
647f1574
DK
12168 }
12169}
12170
2e702c99
RM
12171// NaCl variant. It uses different PLT contents.
12172
12173template<bool big_endian>
12174class Output_data_plt_arm_nacl;
12175
12176template<bool big_endian>
12177class Target_arm_nacl : public Target_arm<big_endian>
12178{
12179 public:
12180 Target_arm_nacl()
12181 : Target_arm<big_endian>(&arm_nacl_info)
12182 { }
12183
12184 protected:
12185 virtual Output_data_plt_arm<big_endian>*
12186 do_make_data_plt(Layout* layout, Output_data_space* got_plt)
12187 { return new Output_data_plt_arm_nacl<big_endian>(layout, got_plt); }
12188
12189 private:
12190 static const Target::Target_info arm_nacl_info;
12191};
12192
12193template<bool big_endian>
12194const Target::Target_info Target_arm_nacl<big_endian>::arm_nacl_info =
12195{
12196 32, // size
12197 big_endian, // is_big_endian
12198 elfcpp::EM_ARM, // machine_code
12199 false, // has_make_symbol
12200 false, // has_resolve
12201 false, // has_code_fill
12202 true, // is_default_stack_executable
12203 false, // can_icf_inline_merge_sections
12204 '\0', // wrap_char
12205 "/lib/ld-nacl-arm.so.1", // dynamic_linker
12206 0x20000, // default_text_segment_address
12207 0x10000, // abi_pagesize (overridable by -z max-page-size)
12208 0x10000, // common_pagesize (overridable by -z common-page-size)
12209 true, // isolate_execinstr
12210 0x10000000, // rosegment_gap
12211 elfcpp::SHN_UNDEF, // small_common_shndx
12212 elfcpp::SHN_UNDEF, // large_common_shndx
12213 0, // small_common_section_flags
12214 0, // large_common_section_flags
12215 ".ARM.attributes", // attributes_section
12216 "aeabi" // attributes_vendor
12217};
12218
12219template<bool big_endian>
12220class Output_data_plt_arm_nacl : public Output_data_plt_arm<big_endian>
12221{
12222 public:
12223 Output_data_plt_arm_nacl(Layout* layout, Output_data_space* got_plt)
12224 : Output_data_plt_arm<big_endian>(layout, 16, got_plt)
12225 { }
12226
12227 protected:
12228 // Return the offset of the first non-reserved PLT entry.
12229 virtual unsigned int
12230 do_first_plt_entry_offset() const
12231 { return sizeof(first_plt_entry); }
12232
12233 // Return the size of a PLT entry.
12234 virtual unsigned int
12235 do_get_plt_entry_size() const
12236 { return sizeof(plt_entry); }
12237
12238 virtual void
12239 do_fill_first_plt_entry(unsigned char* pov,
12240 Arm_address got_address,
12241 Arm_address plt_address);
12242
12243 virtual void
12244 do_fill_plt_entry(unsigned char* pov,
12245 Arm_address got_address,
12246 Arm_address plt_address,
12247 unsigned int got_offset,
12248 unsigned int plt_offset);
12249
12250 private:
12251 inline uint32_t arm_movw_immediate(uint32_t value)
12252 {
12253 return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
12254 }
12255
12256 inline uint32_t arm_movt_immediate(uint32_t value)
12257 {
12258 return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
12259 }
12260
12261 // Template for the first PLT entry.
12262 static const uint32_t first_plt_entry[16];
12263
12264 // Template for subsequent PLT entries.
12265 static const uint32_t plt_entry[4];
12266};
12267
12268// The first entry in the PLT.
12269template<bool big_endian>
12270const uint32_t Output_data_plt_arm_nacl<big_endian>::first_plt_entry[16] =
12271{
12272 // First bundle:
12273 0xe300c000, // movw ip, #:lower16:&GOT[2]-.+8
12274 0xe340c000, // movt ip, #:upper16:&GOT[2]-.+8
12275 0xe08cc00f, // add ip, ip, pc
12276 0xe52dc008, // str ip, [sp, #-8]!
12277 // Second bundle:
edccdf7c 12278 0xe3ccc103, // bic ip, ip, #0xc0000000
2e702c99
RM
12279 0xe59cc000, // ldr ip, [ip]
12280 0xe3ccc13f, // bic ip, ip, #0xc000000f
12281 0xe12fff1c, // bx ip
12282 // Third bundle:
12283 0xe320f000, // nop
12284 0xe320f000, // nop
12285 0xe320f000, // nop
12286 // .Lplt_tail:
12287 0xe50dc004, // str ip, [sp, #-4]
12288 // Fourth bundle:
edccdf7c 12289 0xe3ccc103, // bic ip, ip, #0xc0000000
2e702c99
RM
12290 0xe59cc000, // ldr ip, [ip]
12291 0xe3ccc13f, // bic ip, ip, #0xc000000f
12292 0xe12fff1c, // bx ip
12293};
12294
12295template<bool big_endian>
12296void
12297Output_data_plt_arm_nacl<big_endian>::do_fill_first_plt_entry(
12298 unsigned char* pov,
12299 Arm_address got_address,
12300 Arm_address plt_address)
12301{
12302 // Write first PLT entry. All but first two words are constants.
12303 const size_t num_first_plt_words = (sizeof(first_plt_entry)
12304 / sizeof(first_plt_entry[0]));
12305
12306 int32_t got_displacement = got_address + 8 - (plt_address + 16);
12307
12308 elfcpp::Swap<32, big_endian>::writeval
12309 (pov + 0, first_plt_entry[0] | arm_movw_immediate (got_displacement));
12310 elfcpp::Swap<32, big_endian>::writeval
12311 (pov + 4, first_plt_entry[1] | arm_movt_immediate (got_displacement));
12312
12313 for (size_t i = 2; i < num_first_plt_words; ++i)
12314 elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
12315}
12316
12317// Subsequent entries in the PLT.
12318
12319template<bool big_endian>
12320const uint32_t Output_data_plt_arm_nacl<big_endian>::plt_entry[4] =
12321{
12322 0xe300c000, // movw ip, #:lower16:&GOT[n]-.+8
12323 0xe340c000, // movt ip, #:upper16:&GOT[n]-.+8
12324 0xe08cc00f, // add ip, ip, pc
12325 0xea000000, // b .Lplt_tail
12326};
12327
12328template<bool big_endian>
12329void
12330Output_data_plt_arm_nacl<big_endian>::do_fill_plt_entry(
12331 unsigned char* pov,
12332 Arm_address got_address,
12333 Arm_address plt_address,
12334 unsigned int got_offset,
12335 unsigned int plt_offset)
12336{
12337 // Calculate the displacement between the PLT slot and the
12338 // common tail that's part of the special initial PLT slot.
12339 int32_t tail_displacement = (plt_address + (11 * sizeof(uint32_t))
12340 - (plt_address + plt_offset
12341 + sizeof(plt_entry) + sizeof(uint32_t)));
12342 gold_assert((tail_displacement & 3) == 0);
12343 tail_displacement >>= 2;
12344
12345 gold_assert ((tail_displacement & 0xff000000) == 0
12346 || (-tail_displacement & 0xff000000) == 0);
12347
12348 // Calculate the displacement between the PLT slot and the entry
12349 // in the GOT. The offset accounts for the value produced by
12350 // adding to pc in the penultimate instruction of the PLT stub.
12351 const int32_t got_displacement = (got_address + got_offset
12352 - (plt_address + sizeof(plt_entry)));
12353
12354 elfcpp::Swap<32, big_endian>::writeval
12355 (pov + 0, plt_entry[0] | arm_movw_immediate (got_displacement));
12356 elfcpp::Swap<32, big_endian>::writeval
12357 (pov + 4, plt_entry[1] | arm_movt_immediate (got_displacement));
12358 elfcpp::Swap<32, big_endian>::writeval
12359 (pov + 8, plt_entry[2]);
12360 elfcpp::Swap<32, big_endian>::writeval
12361 (pov + 12, plt_entry[3] | (tail_displacement & 0x00ffffff));
12362}
12363
12364// Target selectors.
12365
12366template<bool big_endian>
12367class Target_selector_arm_nacl
12368 : public Target_selector_nacl<Target_selector_arm<big_endian>,
12369 Target_arm_nacl<big_endian> >
12370{
12371 public:
12372 Target_selector_arm_nacl()
12373 : Target_selector_nacl<Target_selector_arm<big_endian>,
12374 Target_arm_nacl<big_endian> >(
12375 "arm",
12376 big_endian ? "elf32-bigarm-nacl" : "elf32-littlearm-nacl",
12377 big_endian ? "armelfb_nacl" : "armelf_nacl")
12378 { }
12379};
12380
12381Target_selector_arm_nacl<false> target_selector_arm;
12382Target_selector_arm_nacl<true> target_selector_armbe;
4a657b0d
DK
12383
12384} // End anonymous namespace.