]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gold/arm.cc
Fix forced allocation of common (-d) during -r links.
[thirdparty/binutils-gdb.git] / gold / arm.cc
CommitLineData
4a657b0d
DK
1// arm.cc -- arm target support for gold.
2
6f2750fe 3// Copyright (C) 2009-2016 Free Software Foundation, Inc.
4a657b0d
DK
4// Written by Doug Kwan <dougkwan@google.com> based on the i386 code
5// by Ian Lance Taylor <iant@google.com>.
b569affa
DK
6// This file also contains borrowed and adapted code from
7// bfd/elf32-arm.c.
4a657b0d
DK
8
9// This file is part of gold.
10
11// This program is free software; you can redistribute it and/or modify
12// it under the terms of the GNU General Public License as published by
13// the Free Software Foundation; either version 3 of the License, or
14// (at your option) any later version.
15
16// This program is distributed in the hope that it will be useful,
17// but WITHOUT ANY WARRANTY; without even the implied warranty of
18// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19// GNU General Public License for more details.
20
21// You should have received a copy of the GNU General Public License
22// along with this program; if not, write to the Free Software
23// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
24// MA 02110-1301, USA.
25
26#include "gold.h"
27
28#include <cstring>
29#include <limits>
30#include <cstdio>
31#include <string>
56ee5e00 32#include <algorithm>
41263c05
DK
33#include <map>
34#include <utility>
2b328d4e 35#include <set>
4a657b0d
DK
36
37#include "elfcpp.h"
38#include "parameters.h"
39#include "reloc.h"
40#include "arm.h"
41#include "object.h"
42#include "symtab.h"
43#include "layout.h"
44#include "output.h"
45#include "copy-relocs.h"
46#include "target.h"
47#include "target-reloc.h"
48#include "target-select.h"
49#include "tls.h"
50#include "defstd.h"
f345227a 51#include "gc.h"
a0351a69 52#include "attributes.h"
0d31c79d 53#include "arm-reloc-property.h"
2e702c99 54#include "nacl.h"
4a657b0d
DK
55
56namespace
57{
58
59using namespace gold;
60
94cdfcff
DK
61template<bool big_endian>
62class Output_data_plt_arm;
63
2e702c99 64template<bool big_endian>
ce3e4980
PC
65class Output_data_plt_arm_short;
66
67template<bool big_endian>
68class Output_data_plt_arm_long;
2e702c99 69
56ee5e00
DK
70template<bool big_endian>
71class Stub_table;
72
73template<bool big_endian>
74class Arm_input_section;
75
af2cdeae
DK
76class Arm_exidx_cantunwind;
77
78class Arm_exidx_merged_section;
79
80d0d023
DK
80class Arm_exidx_fixup;
81
07f508a2
DK
82template<bool big_endian>
83class Arm_output_section;
84
993d07c1
DK
85class Arm_exidx_input_section;
86
07f508a2
DK
87template<bool big_endian>
88class Arm_relobj;
89
f96accdf
DK
90template<bool big_endian>
91class Arm_relocate_functions;
92
4a54abbb
DK
93template<bool big_endian>
94class Arm_output_data_got;
95
b569affa
DK
96template<bool big_endian>
97class Target_arm;
98
99// For convenience.
100typedef elfcpp::Elf_types<32>::Elf_Addr Arm_address;
101
102// Maximum branch offsets for ARM, THUMB and THUMB2.
103const int32_t ARM_MAX_FWD_BRANCH_OFFSET = ((((1 << 23) - 1) << 2) + 8);
104const int32_t ARM_MAX_BWD_BRANCH_OFFSET = ((-((1 << 23) << 2)) + 8);
105const int32_t THM_MAX_FWD_BRANCH_OFFSET = ((1 << 22) -2 + 4);
106const int32_t THM_MAX_BWD_BRANCH_OFFSET = (-(1 << 22) + 4);
107const int32_t THM2_MAX_FWD_BRANCH_OFFSET = (((1 << 24) - 2) + 4);
108const int32_t THM2_MAX_BWD_BRANCH_OFFSET = (-(1 << 24) + 4);
109
4a54abbb
DK
110// Thread Control Block size.
111const size_t ARM_TCB_SIZE = 8;
112
4a657b0d
DK
113// The arm target class.
114//
115// This is a very simple port of gold for ARM-EABI. It is intended for
b10d2873 116// supporting Android only for the time being.
2e702c99 117//
4a657b0d 118// TODOs:
0d31c79d 119// - Implement all static relocation types documented in arm-reloc.def.
94cdfcff
DK
120// - Make PLTs more flexible for different architecture features like
121// Thumb-2 and BE8.
11af873f 122// There are probably a lot more.
4a657b0d 123
0d31c79d
DK
124// Ideally we would like to avoid using global variables but this is used
125// very in many places and sometimes in loops. If we use a function
9b547ce6 126// returning a static instance of Arm_reloc_property_table, it will be very
0d31c79d
DK
127// slow in an threaded environment since the static instance needs to be
128// locked. The pointer is below initialized in the
129// Target::do_select_as_default_target() hook so that we do not spend time
130// building the table if we are not linking ARM objects.
131//
132// An alternative is to to process the information in arm-reloc.def in
133// compilation time and generate a representation of it in PODs only. That
134// way we can avoid initialization when the linker starts.
135
ca09d69a 136Arm_reloc_property_table* arm_reloc_property_table = NULL;
0d31c79d 137
b569affa
DK
138// Instruction template class. This class is similar to the insn_sequence
139// struct in bfd/elf32-arm.c.
140
141class Insn_template
142{
143 public:
144 // Types of instruction templates.
145 enum Type
146 {
147 THUMB16_TYPE = 1,
2e702c99 148 // THUMB16_SPECIAL_TYPE is used by sub-classes of Stub for instruction
bb0d3eb0
DK
149 // templates with class-specific semantics. Currently this is used
150 // only by the Cortex_a8_stub class for handling condition codes in
151 // conditional branches.
152 THUMB16_SPECIAL_TYPE,
b569affa
DK
153 THUMB32_TYPE,
154 ARM_TYPE,
155 DATA_TYPE
156 };
157
bb0d3eb0 158 // Factory methods to create instruction templates in different formats.
b569affa
DK
159
160 static const Insn_template
161 thumb16_insn(uint32_t data)
2e702c99 162 { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 0); }
b569affa 163
bb0d3eb0
DK
164 // A Thumb conditional branch, in which the proper condition is inserted
165 // when we build the stub.
b569affa
DK
166 static const Insn_template
167 thumb16_bcond_insn(uint32_t data)
2e702c99 168 { return Insn_template(data, THUMB16_SPECIAL_TYPE, elfcpp::R_ARM_NONE, 1); }
b569affa
DK
169
170 static const Insn_template
171 thumb32_insn(uint32_t data)
2e702c99 172 { return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_NONE, 0); }
b569affa
DK
173
174 static const Insn_template
175 thumb32_b_insn(uint32_t data, int reloc_addend)
176 {
177 return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_THM_JUMP24,
178 reloc_addend);
2e702c99 179 }
b569affa
DK
180
181 static const Insn_template
182 arm_insn(uint32_t data)
183 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_NONE, 0); }
184
185 static const Insn_template
186 arm_rel_insn(unsigned data, int reloc_addend)
187 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_JUMP24, reloc_addend); }
188
189 static const Insn_template
190 data_word(unsigned data, unsigned int r_type, int reloc_addend)
2e702c99 191 { return Insn_template(data, DATA_TYPE, r_type, reloc_addend); }
b569affa
DK
192
193 // Accessors. This class is used for read-only objects so no modifiers
194 // are provided.
195
196 uint32_t
197 data() const
198 { return this->data_; }
199
200 // Return the instruction sequence type of this.
201 Type
202 type() const
203 { return this->type_; }
204
205 // Return the ARM relocation type of this.
206 unsigned int
207 r_type() const
208 { return this->r_type_; }
209
210 int32_t
211 reloc_addend() const
212 { return this->reloc_addend_; }
213
bb0d3eb0 214 // Return size of instruction template in bytes.
b569affa
DK
215 size_t
216 size() const;
217
bb0d3eb0 218 // Return byte-alignment of instruction template.
b569affa
DK
219 unsigned
220 alignment() const;
221
222 private:
223 // We make the constructor private to ensure that only the factory
224 // methods are used.
225 inline
2ea97941
ILT
226 Insn_template(unsigned data, Type type, unsigned int r_type, int reloc_addend)
227 : data_(data), type_(type), r_type_(r_type), reloc_addend_(reloc_addend)
b569affa
DK
228 { }
229
230 // Instruction specific data. This is used to store information like
231 // some of the instruction bits.
232 uint32_t data_;
233 // Instruction template type.
234 Type type_;
235 // Relocation type if there is a relocation or R_ARM_NONE otherwise.
236 unsigned int r_type_;
237 // Relocation addend.
238 int32_t reloc_addend_;
239};
240
241// Macro for generating code to stub types. One entry per long/short
242// branch stub
243
244#define DEF_STUBS \
245 DEF_STUB(long_branch_any_any) \
246 DEF_STUB(long_branch_v4t_arm_thumb) \
247 DEF_STUB(long_branch_thumb_only) \
248 DEF_STUB(long_branch_v4t_thumb_thumb) \
249 DEF_STUB(long_branch_v4t_thumb_arm) \
250 DEF_STUB(short_branch_v4t_thumb_arm) \
251 DEF_STUB(long_branch_any_arm_pic) \
252 DEF_STUB(long_branch_any_thumb_pic) \
253 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
254 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
255 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
256 DEF_STUB(long_branch_thumb_only_pic) \
257 DEF_STUB(a8_veneer_b_cond) \
258 DEF_STUB(a8_veneer_b) \
259 DEF_STUB(a8_veneer_bl) \
a2162063
ILT
260 DEF_STUB(a8_veneer_blx) \
261 DEF_STUB(v4_veneer_bx)
b569affa
DK
262
263// Stub types.
264
265#define DEF_STUB(x) arm_stub_##x,
266typedef enum
267 {
268 arm_stub_none,
269 DEF_STUBS
270
271 // First reloc stub type.
272 arm_stub_reloc_first = arm_stub_long_branch_any_any,
273 // Last reloc stub type.
274 arm_stub_reloc_last = arm_stub_long_branch_thumb_only_pic,
275
276 // First Cortex-A8 stub type.
277 arm_stub_cortex_a8_first = arm_stub_a8_veneer_b_cond,
278 // Last Cortex-A8 stub type.
279 arm_stub_cortex_a8_last = arm_stub_a8_veneer_blx,
2e702c99 280
b569affa 281 // Last stub type.
a2162063 282 arm_stub_type_last = arm_stub_v4_veneer_bx
b569affa
DK
283 } Stub_type;
284#undef DEF_STUB
285
286// Stub template class. Templates are meant to be read-only objects.
287// A stub template for a stub type contains all read-only attributes
288// common to all stubs of the same type.
289
290class Stub_template
291{
292 public:
293 Stub_template(Stub_type, const Insn_template*, size_t);
294
295 ~Stub_template()
296 { }
297
298 // Return stub type.
299 Stub_type
300 type() const
301 { return this->type_; }
302
303 // Return an array of instruction templates.
304 const Insn_template*
305 insns() const
306 { return this->insns_; }
307
308 // Return size of template in number of instructions.
309 size_t
310 insn_count() const
311 { return this->insn_count_; }
312
313 // Return size of template in bytes.
314 size_t
315 size() const
316 { return this->size_; }
317
318 // Return alignment of the stub template.
319 unsigned
320 alignment() const
321 { return this->alignment_; }
2e702c99 322
b569affa
DK
323 // Return whether entry point is in thumb mode.
324 bool
325 entry_in_thumb_mode() const
326 { return this->entry_in_thumb_mode_; }
327
328 // Return number of relocations in this template.
329 size_t
330 reloc_count() const
331 { return this->relocs_.size(); }
332
333 // Return index of the I-th instruction with relocation.
334 size_t
335 reloc_insn_index(size_t i) const
336 {
337 gold_assert(i < this->relocs_.size());
338 return this->relocs_[i].first;
339 }
340
341 // Return the offset of the I-th instruction with relocation from the
342 // beginning of the stub.
343 section_size_type
344 reloc_offset(size_t i) const
345 {
346 gold_assert(i < this->relocs_.size());
347 return this->relocs_[i].second;
348 }
349
350 private:
351 // This contains information about an instruction template with a relocation
352 // and its offset from start of stub.
353 typedef std::pair<size_t, section_size_type> Reloc;
354
355 // A Stub_template may not be copied. We want to share templates as much
356 // as possible.
357 Stub_template(const Stub_template&);
358 Stub_template& operator=(const Stub_template&);
2e702c99 359
b569affa
DK
360 // Stub type.
361 Stub_type type_;
362 // Points to an array of Insn_templates.
363 const Insn_template* insns_;
364 // Number of Insn_templates in insns_[].
365 size_t insn_count_;
366 // Size of templated instructions in bytes.
367 size_t size_;
368 // Alignment of templated instructions.
369 unsigned alignment_;
370 // Flag to indicate if entry is in thumb mode.
371 bool entry_in_thumb_mode_;
372 // A table of reloc instruction indices and offsets. We can find these by
373 // looking at the instruction templates but we pre-compute and then stash
2e702c99 374 // them here for speed.
b569affa
DK
375 std::vector<Reloc> relocs_;
376};
377
378//
379// A class for code stubs. This is a base class for different type of
380// stubs used in the ARM target.
381//
382
383class Stub
384{
385 private:
386 static const section_offset_type invalid_offset =
387 static_cast<section_offset_type>(-1);
388
389 public:
2ea97941
ILT
390 Stub(const Stub_template* stub_template)
391 : stub_template_(stub_template), offset_(invalid_offset)
b569affa
DK
392 { }
393
394 virtual
395 ~Stub()
396 { }
397
398 // Return the stub template.
399 const Stub_template*
400 stub_template() const
401 { return this->stub_template_; }
402
403 // Return offset of code stub from beginning of its containing stub table.
404 section_offset_type
405 offset() const
406 {
407 gold_assert(this->offset_ != invalid_offset);
408 return this->offset_;
409 }
410
411 // Set offset of code stub from beginning of its containing stub table.
412 void
2ea97941
ILT
413 set_offset(section_offset_type offset)
414 { this->offset_ = offset; }
2e702c99 415
b569affa
DK
416 // Return the relocation target address of the i-th relocation in the
417 // stub. This must be defined in a child class.
418 Arm_address
419 reloc_target(size_t i)
420 { return this->do_reloc_target(i); }
421
422 // Write a stub at output VIEW. BIG_ENDIAN select how a stub is written.
423 void
424 write(unsigned char* view, section_size_type view_size, bool big_endian)
425 { this->do_write(view, view_size, big_endian); }
426
bb0d3eb0
DK
427 // Return the instruction for THUMB16_SPECIAL_TYPE instruction template
428 // for the i-th instruction.
429 uint16_t
430 thumb16_special(size_t i)
431 { return this->do_thumb16_special(i); }
432
b569affa
DK
433 protected:
434 // This must be defined in the child class.
435 virtual Arm_address
436 do_reloc_target(size_t) = 0;
437
bb0d3eb0 438 // This may be overridden in the child class.
b569affa 439 virtual void
bb0d3eb0
DK
440 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
441 {
442 if (big_endian)
443 this->do_fixed_endian_write<true>(view, view_size);
444 else
445 this->do_fixed_endian_write<false>(view, view_size);
446 }
2e702c99 447
bb0d3eb0
DK
448 // This must be overridden if a child class uses the THUMB16_SPECIAL_TYPE
449 // instruction template.
450 virtual uint16_t
451 do_thumb16_special(size_t)
452 { gold_unreachable(); }
453
b569affa 454 private:
bb0d3eb0
DK
455 // A template to implement do_write.
456 template<bool big_endian>
457 void inline
458 do_fixed_endian_write(unsigned char*, section_size_type);
459
b569affa
DK
460 // Its template.
461 const Stub_template* stub_template_;
462 // Offset within the section of containing this stub.
463 section_offset_type offset_;
464};
465
466// Reloc stub class. These are stubs we use to fix up relocation because
467// of limited branch ranges.
468
469class Reloc_stub : public Stub
470{
471 public:
472 static const unsigned int invalid_index = static_cast<unsigned int>(-1);
473 // We assume we never jump to this address.
474 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
475
476 // Return destination address.
477 Arm_address
478 destination_address() const
479 {
480 gold_assert(this->destination_address_ != this->invalid_address);
481 return this->destination_address_;
482 }
483
484 // Set destination address.
485 void
486 set_destination_address(Arm_address address)
487 {
488 gold_assert(address != this->invalid_address);
489 this->destination_address_ = address;
490 }
491
492 // Reset destination address.
493 void
494 reset_destination_address()
495 { this->destination_address_ = this->invalid_address; }
496
497 // Determine stub type for a branch of a relocation of R_TYPE going
498 // from BRANCH_ADDRESS to BRANCH_TARGET. If TARGET_IS_THUMB is set,
499 // the branch target is a thumb instruction. TARGET is used for look
500 // up ARM-specific linker settings.
501 static Stub_type
502 stub_type_for_reloc(unsigned int r_type, Arm_address branch_address,
503 Arm_address branch_target, bool target_is_thumb);
504
505 // Reloc_stub key. A key is logically a triplet of a stub type, a symbol
506 // and an addend. Since we treat global and local symbol differently, we
507 // use a Symbol object for a global symbol and a object-index pair for
508 // a local symbol.
509 class Key
510 {
511 public:
512 // If SYMBOL is not null, this is a global symbol, we ignore RELOBJ and
513 // R_SYM. Otherwise, this is a local symbol and RELOBJ must non-NULL
514 // and R_SYM must not be invalid_index.
2ea97941
ILT
515 Key(Stub_type stub_type, const Symbol* symbol, const Relobj* relobj,
516 unsigned int r_sym, int32_t addend)
517 : stub_type_(stub_type), addend_(addend)
b569affa 518 {
2ea97941 519 if (symbol != NULL)
b569affa
DK
520 {
521 this->r_sym_ = Reloc_stub::invalid_index;
2ea97941 522 this->u_.symbol = symbol;
b569affa
DK
523 }
524 else
525 {
2ea97941
ILT
526 gold_assert(relobj != NULL && r_sym != invalid_index);
527 this->r_sym_ = r_sym;
528 this->u_.relobj = relobj;
b569affa
DK
529 }
530 }
531
532 ~Key()
533 { }
534
535 // Accessors: Keys are meant to be read-only object so no modifiers are
536 // provided.
537
538 // Return stub type.
539 Stub_type
540 stub_type() const
541 { return this->stub_type_; }
542
543 // Return the local symbol index or invalid_index.
544 unsigned int
545 r_sym() const
546 { return this->r_sym_; }
547
548 // Return the symbol if there is one.
549 const Symbol*
550 symbol() const
551 { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
552
553 // Return the relobj if there is one.
554 const Relobj*
555 relobj() const
556 { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
557
558 // Whether this equals to another key k.
559 bool
2e702c99 560 eq(const Key& k) const
b569affa
DK
561 {
562 return ((this->stub_type_ == k.stub_type_)
563 && (this->r_sym_ == k.r_sym_)
564 && ((this->r_sym_ != Reloc_stub::invalid_index)
565 ? (this->u_.relobj == k.u_.relobj)
566 : (this->u_.symbol == k.u_.symbol))
567 && (this->addend_ == k.addend_));
568 }
569
570 // Return a hash value.
571 size_t
572 hash_value() const
573 {
574 return (this->stub_type_
575 ^ this->r_sym_
576 ^ gold::string_hash<char>(
577 (this->r_sym_ != Reloc_stub::invalid_index)
578 ? this->u_.relobj->name().c_str()
579 : this->u_.symbol->name())
580 ^ this->addend_);
581 }
582
583 // Functors for STL associative containers.
584 struct hash
585 {
586 size_t
587 operator()(const Key& k) const
588 { return k.hash_value(); }
589 };
590
591 struct equal_to
592 {
593 bool
594 operator()(const Key& k1, const Key& k2) const
595 { return k1.eq(k2); }
596 };
597
598 // Name of key. This is mainly for debugging.
599 std::string
202736be 600 name() const ATTRIBUTE_UNUSED;
b569affa
DK
601
602 private:
603 // Stub type.
604 Stub_type stub_type_;
605 // If this is a local symbol, this is the index in the defining object.
606 // Otherwise, it is invalid_index for a global symbol.
607 unsigned int r_sym_;
9b547ce6
RW
608 // If r_sym_ is an invalid index, this points to a global symbol.
609 // Otherwise, it points to a relobj. We used the unsized and target
2e702c99 610 // independent Symbol and Relobj classes instead of Sized_symbol<32> and
9b547ce6 611 // Arm_relobj, in order to avoid making the stub class a template
7296d933 612 // as most of the stub machinery is endianness-neutral. However, it
b569affa
DK
613 // may require a bit of casting done by users of this class.
614 union
615 {
616 const Symbol* symbol;
617 const Relobj* relobj;
618 } u_;
619 // Addend associated with a reloc.
620 int32_t addend_;
621 };
622
623 protected:
624 // Reloc_stubs are created via a stub factory. So these are protected.
2ea97941
ILT
625 Reloc_stub(const Stub_template* stub_template)
626 : Stub(stub_template), destination_address_(invalid_address)
b569affa
DK
627 { }
628
629 ~Reloc_stub()
630 { }
631
632 friend class Stub_factory;
633
b569affa
DK
634 // Return the relocation target address of the i-th relocation in the
635 // stub.
636 Arm_address
637 do_reloc_target(size_t i)
638 {
639 // All reloc stub have only one relocation.
640 gold_assert(i == 0);
641 return this->destination_address_;
642 }
643
bb0d3eb0
DK
644 private:
645 // Address of destination.
646 Arm_address destination_address_;
647};
b569affa 648
bb0d3eb0
DK
649// Cortex-A8 stub class. We need a Cortex-A8 stub to redirect any 32-bit
650// THUMB branch that meets the following conditions:
2e702c99 651//
bb0d3eb0
DK
652// 1. The branch straddles across a page boundary. i.e. lower 12-bit of
653// branch address is 0xffe.
654// 2. The branch target address is in the same page as the first word of the
655// branch.
656// 3. The branch follows a 32-bit instruction which is not a branch.
657//
658// To do the fix up, we need to store the address of the branch instruction
659// and its target at least. We also need to store the original branch
660// instruction bits for the condition code in a conditional branch. The
661// condition code is used in a special instruction template. We also want
662// to identify input sections needing Cortex-A8 workaround quickly. We store
663// extra information about object and section index of the code section
664// containing a branch being fixed up. The information is used to mark
665// the code section when we finalize the Cortex-A8 stubs.
666//
b569affa 667
bb0d3eb0
DK
668class Cortex_a8_stub : public Stub
669{
670 public:
671 ~Cortex_a8_stub()
672 { }
673
674 // Return the object of the code section containing the branch being fixed
675 // up.
676 Relobj*
677 relobj() const
678 { return this->relobj_; }
679
680 // Return the section index of the code section containing the branch being
681 // fixed up.
682 unsigned int
683 shndx() const
684 { return this->shndx_; }
685
686 // Return the source address of stub. This is the address of the original
687 // branch instruction. LSB is 1 always set to indicate that it is a THUMB
688 // instruction.
689 Arm_address
690 source_address() const
691 { return this->source_address_; }
692
693 // Return the destination address of the stub. This is the branch taken
694 // address of the original branch instruction. LSB is 1 if it is a THUMB
695 // instruction address.
696 Arm_address
697 destination_address() const
698 { return this->destination_address_; }
699
700 // Return the instruction being fixed up.
701 uint32_t
702 original_insn() const
703 { return this->original_insn_; }
704
705 protected:
706 // Cortex_a8_stubs are created via a stub factory. So these are protected.
707 Cortex_a8_stub(const Stub_template* stub_template, Relobj* relobj,
708 unsigned int shndx, Arm_address source_address,
709 Arm_address destination_address, uint32_t original_insn)
710 : Stub(stub_template), relobj_(relobj), shndx_(shndx),
711 source_address_(source_address | 1U),
712 destination_address_(destination_address),
713 original_insn_(original_insn)
714 { }
715
716 friend class Stub_factory;
717
718 // Return the relocation target address of the i-th relocation in the
719 // stub.
720 Arm_address
721 do_reloc_target(size_t i)
722 {
723 if (this->stub_template()->type() == arm_stub_a8_veneer_b_cond)
724 {
2e702c99
RM
725 // The conditional branch veneer has two relocations.
726 gold_assert(i < 2);
bb0d3eb0
DK
727 return i == 0 ? this->source_address_ + 4 : this->destination_address_;
728 }
729 else
730 {
2e702c99
RM
731 // All other Cortex-A8 stubs have only one relocation.
732 gold_assert(i == 0);
733 return this->destination_address_;
bb0d3eb0
DK
734 }
735 }
736
737 // Return an instruction for the THUMB16_SPECIAL_TYPE instruction template.
738 uint16_t
739 do_thumb16_special(size_t);
740
741 private:
742 // Object of the code section containing the branch being fixed up.
743 Relobj* relobj_;
744 // Section index of the code section containing the branch begin fixed up.
745 unsigned int shndx_;
746 // Source address of original branch.
747 Arm_address source_address_;
748 // Destination address of the original branch.
b569affa 749 Arm_address destination_address_;
bb0d3eb0
DK
750 // Original branch instruction. This is needed for copying the condition
751 // code from a condition branch to its stub.
752 uint32_t original_insn_;
b569affa
DK
753};
754
a2162063
ILT
755// ARMv4 BX Rx branch relocation stub class.
756class Arm_v4bx_stub : public Stub
757{
758 public:
759 ~Arm_v4bx_stub()
760 { }
761
762 // Return the associated register.
763 uint32_t
764 reg() const
765 { return this->reg_; }
766
767 protected:
768 // Arm V4BX stubs are created via a stub factory. So these are protected.
769 Arm_v4bx_stub(const Stub_template* stub_template, const uint32_t reg)
770 : Stub(stub_template), reg_(reg)
771 { }
772
773 friend class Stub_factory;
774
775 // Return the relocation target address of the i-th relocation in the
776 // stub.
777 Arm_address
778 do_reloc_target(size_t)
779 { gold_unreachable(); }
780
781 // This may be overridden in the child class.
782 virtual void
783 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
784 {
785 if (big_endian)
786 this->do_fixed_endian_v4bx_write<true>(view, view_size);
787 else
788 this->do_fixed_endian_v4bx_write<false>(view, view_size);
789 }
790
791 private:
792 // A template to implement do_write.
793 template<bool big_endian>
794 void inline
795 do_fixed_endian_v4bx_write(unsigned char* view, section_size_type)
796 {
797 const Insn_template* insns = this->stub_template()->insns();
798 elfcpp::Swap<32, big_endian>::writeval(view,
799 (insns[0].data()
800 + (this->reg_ << 16)));
801 view += insns[0].size();
802 elfcpp::Swap<32, big_endian>::writeval(view,
803 (insns[1].data() + this->reg_));
804 view += insns[1].size();
805 elfcpp::Swap<32, big_endian>::writeval(view,
806 (insns[2].data() + this->reg_));
807 }
808
809 // A register index (r0-r14), which is associated with the stub.
810 uint32_t reg_;
811};
812
b569affa
DK
813// Stub factory class.
814
815class Stub_factory
816{
817 public:
818 // Return the unique instance of this class.
819 static const Stub_factory&
820 get_instance()
821 {
822 static Stub_factory singleton;
823 return singleton;
824 }
825
826 // Make a relocation stub.
827 Reloc_stub*
828 make_reloc_stub(Stub_type stub_type) const
829 {
830 gold_assert(stub_type >= arm_stub_reloc_first
831 && stub_type <= arm_stub_reloc_last);
832 return new Reloc_stub(this->stub_templates_[stub_type]);
833 }
834
bb0d3eb0
DK
835 // Make a Cortex-A8 stub.
836 Cortex_a8_stub*
837 make_cortex_a8_stub(Stub_type stub_type, Relobj* relobj, unsigned int shndx,
838 Arm_address source, Arm_address destination,
839 uint32_t original_insn) const
840 {
841 gold_assert(stub_type >= arm_stub_cortex_a8_first
842 && stub_type <= arm_stub_cortex_a8_last);
843 return new Cortex_a8_stub(this->stub_templates_[stub_type], relobj, shndx,
844 source, destination, original_insn);
845 }
846
a2162063
ILT
847 // Make an ARM V4BX relocation stub.
848 // This method creates a stub from the arm_stub_v4_veneer_bx template only.
849 Arm_v4bx_stub*
850 make_arm_v4bx_stub(uint32_t reg) const
851 {
852 gold_assert(reg < 0xf);
853 return new Arm_v4bx_stub(this->stub_templates_[arm_stub_v4_veneer_bx],
854 reg);
855 }
856
b569affa
DK
857 private:
858 // Constructor and destructor are protected since we only return a single
859 // instance created in Stub_factory::get_instance().
2e702c99 860
b569affa
DK
861 Stub_factory();
862
863 // A Stub_factory may not be copied since it is a singleton.
864 Stub_factory(const Stub_factory&);
865 Stub_factory& operator=(Stub_factory&);
2e702c99 866
b569affa
DK
867 // Stub templates. These are initialized in the constructor.
868 const Stub_template* stub_templates_[arm_stub_type_last+1];
869};
870
56ee5e00
DK
871// A class to hold stubs for the ARM target.
872
873template<bool big_endian>
874class Stub_table : public Output_data
875{
876 public:
2ea97941 877 Stub_table(Arm_input_section<big_endian>* owner)
d099120c
DK
878 : Output_data(), owner_(owner), reloc_stubs_(), reloc_stubs_size_(0),
879 reloc_stubs_addralign_(1), cortex_a8_stubs_(), arm_v4bx_stubs_(0xf),
880 prev_data_size_(0), prev_addralign_(1)
56ee5e00
DK
881 { }
882
883 ~Stub_table()
884 { }
885
886 // Owner of this stub table.
887 Arm_input_section<big_endian>*
888 owner() const
889 { return this->owner_; }
890
891 // Whether this stub table is empty.
892 bool
893 empty() const
a2162063
ILT
894 {
895 return (this->reloc_stubs_.empty()
896 && this->cortex_a8_stubs_.empty()
897 && this->arm_v4bx_stubs_.empty());
898 }
56ee5e00
DK
899
900 // Return the current data size.
901 off_t
902 current_data_size() const
903 { return this->current_data_size_for_child(); }
904
9b547ce6
RW
905 // Add a STUB using KEY. The caller is responsible for avoiding addition
906 // if a STUB with the same key has already been added.
56ee5e00 907 void
2fb7225c
DK
908 add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key)
909 {
910 const Stub_template* stub_template = stub->stub_template();
911 gold_assert(stub_template->type() == key.stub_type());
912 this->reloc_stubs_[key] = stub;
d099120c
DK
913
914 // Assign stub offset early. We can do this because we never remove
915 // reloc stubs and they are in the beginning of the stub table.
916 uint64_t align = stub_template->alignment();
917 this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_, align);
918 stub->set_offset(this->reloc_stubs_size_);
919 this->reloc_stubs_size_ += stub_template->size();
920 this->reloc_stubs_addralign_ =
921 std::max(this->reloc_stubs_addralign_, align);
2fb7225c
DK
922 }
923
924 // Add a Cortex-A8 STUB that fixes up a THUMB branch at ADDRESS.
9b547ce6
RW
925 // The caller is responsible for avoiding addition if a STUB with the same
926 // address has already been added.
2fb7225c
DK
927 void
928 add_cortex_a8_stub(Arm_address address, Cortex_a8_stub* stub)
929 {
930 std::pair<Arm_address, Cortex_a8_stub*> value(address, stub);
931 this->cortex_a8_stubs_.insert(value);
932 }
933
a2162063
ILT
934 // Add an ARM V4BX relocation stub. A register index will be retrieved
935 // from the stub.
936 void
937 add_arm_v4bx_stub(Arm_v4bx_stub* stub)
938 {
939 gold_assert(stub != NULL && this->arm_v4bx_stubs_[stub->reg()] == NULL);
940 this->arm_v4bx_stubs_[stub->reg()] = stub;
941 }
942
2fb7225c
DK
943 // Remove all Cortex-A8 stubs.
944 void
945 remove_all_cortex_a8_stubs();
56ee5e00
DK
946
947 // Look up a relocation stub using KEY. Return NULL if there is none.
948 Reloc_stub*
949 find_reloc_stub(const Reloc_stub::Key& key) const
950 {
951 typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.find(key);
952 return (p != this->reloc_stubs_.end()) ? p->second : NULL;
953 }
954
a2162063
ILT
955 // Look up an arm v4bx relocation stub using the register index.
956 // Return NULL if there is none.
957 Arm_v4bx_stub*
958 find_arm_v4bx_stub(const uint32_t reg) const
959 {
960 gold_assert(reg < 0xf);
961 return this->arm_v4bx_stubs_[reg];
962 }
963
56ee5e00
DK
964 // Relocate stubs in this stub table.
965 void
966 relocate_stubs(const Relocate_info<32, big_endian>*,
967 Target_arm<big_endian>*, Output_section*,
968 unsigned char*, Arm_address, section_size_type);
969
2fb7225c
DK
970 // Update data size and alignment at the end of a relaxation pass. Return
971 // true if either data size or alignment is different from that of the
972 // previous relaxation pass.
973 bool
974 update_data_size_and_addralign();
975
976 // Finalize stubs. Set the offsets of all stubs and mark input sections
977 // needing the Cortex-A8 workaround.
978 void
979 finalize_stubs();
2e702c99 980
2fb7225c
DK
981 // Apply Cortex-A8 workaround to an address range.
982 void
983 apply_cortex_a8_workaround_to_address_range(Target_arm<big_endian>*,
984 unsigned char*, Arm_address,
985 section_size_type);
986
56ee5e00
DK
987 protected:
988 // Write out section contents.
989 void
990 do_write(Output_file*);
2e702c99 991
56ee5e00
DK
992 // Return the required alignment.
993 uint64_t
994 do_addralign() const
2fb7225c 995 { return this->prev_addralign_; }
56ee5e00
DK
996
997 // Reset address and file offset.
998 void
2fb7225c
DK
999 do_reset_address_and_file_offset()
1000 { this->set_current_data_size_for_child(this->prev_data_size_); }
56ee5e00 1001
2fb7225c
DK
1002 // Set final data size.
1003 void
1004 set_final_data_size()
1005 { this->set_data_size(this->current_data_size()); }
2e702c99 1006
56ee5e00 1007 private:
2fb7225c
DK
1008 // Relocate one stub.
1009 void
1010 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
1011 Target_arm<big_endian>*, Output_section*,
1012 unsigned char*, Arm_address, section_size_type);
1013
1014 // Unordered map of relocation stubs.
56ee5e00
DK
1015 typedef
1016 Unordered_map<Reloc_stub::Key, Reloc_stub*, Reloc_stub::Key::hash,
1017 Reloc_stub::Key::equal_to>
1018 Reloc_stub_map;
1019
2fb7225c
DK
1020 // List of Cortex-A8 stubs ordered by addresses of branches being
1021 // fixed up in output.
1022 typedef std::map<Arm_address, Cortex_a8_stub*> Cortex_a8_stub_list;
a2162063
ILT
1023 // List of Arm V4BX relocation stubs ordered by associated registers.
1024 typedef std::vector<Arm_v4bx_stub*> Arm_v4bx_stub_list;
2fb7225c 1025
56ee5e00
DK
1026 // Owner of this stub table.
1027 Arm_input_section<big_endian>* owner_;
56ee5e00
DK
1028 // The relocation stubs.
1029 Reloc_stub_map reloc_stubs_;
d099120c
DK
1030 // Size of reloc stubs.
1031 off_t reloc_stubs_size_;
1032 // Maximum address alignment of reloc stubs.
1033 uint64_t reloc_stubs_addralign_;
2fb7225c
DK
1034 // The cortex_a8_stubs.
1035 Cortex_a8_stub_list cortex_a8_stubs_;
a2162063
ILT
1036 // The Arm V4BX relocation stubs.
1037 Arm_v4bx_stub_list arm_v4bx_stubs_;
2fb7225c
DK
1038 // data size of this in the previous pass.
1039 off_t prev_data_size_;
1040 // address alignment of this in the previous pass.
1041 uint64_t prev_addralign_;
56ee5e00
DK
1042};
1043
af2cdeae
DK
1044// Arm_exidx_cantunwind class. This represents an EXIDX_CANTUNWIND entry
1045// we add to the end of an EXIDX input section that goes into the output.
1046
1047class Arm_exidx_cantunwind : public Output_section_data
1048{
1049 public:
1050 Arm_exidx_cantunwind(Relobj* relobj, unsigned int shndx)
1051 : Output_section_data(8, 4, true), relobj_(relobj), shndx_(shndx)
1052 { }
1053
1054 // Return the object containing the section pointed by this.
1055 Relobj*
1056 relobj() const
1057 { return this->relobj_; }
1058
1059 // Return the section index of the section pointed by this.
1060 unsigned int
1061 shndx() const
1062 { return this->shndx_; }
1063
1064 protected:
1065 void
1066 do_write(Output_file* of)
1067 {
1068 if (parameters->target().is_big_endian())
1069 this->do_fixed_endian_write<true>(of);
1070 else
1071 this->do_fixed_endian_write<false>(of);
1072 }
1073
aa98ff75
DK
1074 // Write to a map file.
1075 void
1076 do_print_to_mapfile(Mapfile* mapfile) const
1077 { mapfile->print_output_data(this, _("** ARM cantunwind")); }
1078
af2cdeae 1079 private:
7296d933 1080 // Implement do_write for a given endianness.
af2cdeae
DK
1081 template<bool big_endian>
1082 void inline
1083 do_fixed_endian_write(Output_file*);
2e702c99 1084
af2cdeae
DK
1085 // The object containing the section pointed by this.
1086 Relobj* relobj_;
1087 // The section index of the section pointed by this.
1088 unsigned int shndx_;
1089};
1090
1091// During EXIDX coverage fix-up, we compact an EXIDX section. The
1092// Offset map is used to map input section offset within the EXIDX section
2e702c99 1093// to the output offset from the start of this EXIDX section.
af2cdeae
DK
1094
1095typedef std::map<section_offset_type, section_offset_type>
1096 Arm_exidx_section_offset_map;
1097
1098// Arm_exidx_merged_section class. This represents an EXIDX input section
1099// with some of its entries merged.
1100
1101class Arm_exidx_merged_section : public Output_relaxed_input_section
1102{
1103 public:
1104 // Constructor for Arm_exidx_merged_section.
1105 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
1106 // SECTION_OFFSET_MAP points to a section offset map describing how
1107 // parts of the input section are mapped to output. DELETED_BYTES is
1108 // the number of bytes deleted from the EXIDX input section.
1109 Arm_exidx_merged_section(
1110 const Arm_exidx_input_section& exidx_input_section,
1111 const Arm_exidx_section_offset_map& section_offset_map,
1112 uint32_t deleted_bytes);
1113
f625ae50
DK
1114 // Build output contents.
1115 void
1116 build_contents(const unsigned char*, section_size_type);
1117
af2cdeae
DK
1118 // Return the original EXIDX input section.
1119 const Arm_exidx_input_section&
1120 exidx_input_section() const
1121 { return this->exidx_input_section_; }
1122
1123 // Return the section offset map.
1124 const Arm_exidx_section_offset_map&
1125 section_offset_map() const
1126 { return this->section_offset_map_; }
1127
1128 protected:
1129 // Write merged section into file OF.
1130 void
1131 do_write(Output_file* of);
1132
1133 bool
1134 do_output_offset(const Relobj*, unsigned int, section_offset_type,
1135 section_offset_type*) const;
1136
1137 private:
1138 // Original EXIDX input section.
1139 const Arm_exidx_input_section& exidx_input_section_;
1140 // Section offset map.
1141 const Arm_exidx_section_offset_map& section_offset_map_;
2e702c99 1142 // Merged section contents. We need to keep build the merged section
f625ae50
DK
1143 // and save it here to avoid accessing the original EXIDX section when
1144 // we cannot lock the sections' object.
1145 unsigned char* section_contents_;
af2cdeae
DK
1146};
1147
10ad9fe5
DK
1148// A class to wrap an ordinary input section containing executable code.
1149
1150template<bool big_endian>
1151class Arm_input_section : public Output_relaxed_input_section
1152{
1153 public:
2ea97941
ILT
1154 Arm_input_section(Relobj* relobj, unsigned int shndx)
1155 : Output_relaxed_input_section(relobj, shndx, 1),
f625ae50
DK
1156 original_addralign_(1), original_size_(0), stub_table_(NULL),
1157 original_contents_(NULL)
10ad9fe5
DK
1158 { }
1159
1160 ~Arm_input_section()
f625ae50 1161 { delete[] this->original_contents_; }
10ad9fe5
DK
1162
1163 // Initialize.
1164 void
1165 init();
2e702c99 1166
10ad9fe5
DK
1167 // Whether this is a stub table owner.
1168 bool
1169 is_stub_table_owner() const
1170 { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
1171
1172 // Return the stub table.
1173 Stub_table<big_endian>*
1174 stub_table() const
1175 { return this->stub_table_; }
1176
1177 // Set the stub_table.
1178 void
2ea97941
ILT
1179 set_stub_table(Stub_table<big_endian>* stub_table)
1180 { this->stub_table_ = stub_table; }
10ad9fe5 1181
07f508a2
DK
1182 // Downcast a base pointer to an Arm_input_section pointer. This is
1183 // not type-safe but we only use Arm_input_section not the base class.
1184 static Arm_input_section<big_endian>*
1185 as_arm_input_section(Output_relaxed_input_section* poris)
1186 { return static_cast<Arm_input_section<big_endian>*>(poris); }
1187
6625d24e
DK
1188 // Return the original size of the section.
1189 uint32_t
1190 original_size() const
1191 { return this->original_size_; }
1192
10ad9fe5
DK
1193 protected:
1194 // Write data to output file.
1195 void
1196 do_write(Output_file*);
1197
1198 // Return required alignment of this.
1199 uint64_t
1200 do_addralign() const
1201 {
1202 if (this->is_stub_table_owner())
1203 return std::max(this->stub_table_->addralign(),
6625d24e 1204 static_cast<uint64_t>(this->original_addralign_));
10ad9fe5
DK
1205 else
1206 return this->original_addralign_;
1207 }
1208
1209 // Finalize data size.
1210 void
1211 set_final_data_size();
1212
1213 // Reset address and file offset.
1214 void
1215 do_reset_address_and_file_offset();
1216
1217 // Output offset.
1218 bool
2ea97941
ILT
1219 do_output_offset(const Relobj* object, unsigned int shndx,
1220 section_offset_type offset,
2e702c99 1221 section_offset_type* poutput) const
10ad9fe5
DK
1222 {
1223 if ((object == this->relobj())
2ea97941
ILT
1224 && (shndx == this->shndx())
1225 && (offset >= 0)
0439c796
DK
1226 && (offset <=
1227 convert_types<section_offset_type, uint32_t>(this->original_size_)))
10ad9fe5 1228 {
2ea97941 1229 *poutput = offset;
10ad9fe5
DK
1230 return true;
1231 }
1232 else
1233 return false;
1234 }
1235
1236 private:
1237 // Copying is not allowed.
1238 Arm_input_section(const Arm_input_section&);
1239 Arm_input_section& operator=(const Arm_input_section&);
1240
1241 // Address alignment of the original input section.
6625d24e 1242 uint32_t original_addralign_;
10ad9fe5 1243 // Section size of the original input section.
6625d24e 1244 uint32_t original_size_;
10ad9fe5
DK
1245 // Stub table.
1246 Stub_table<big_endian>* stub_table_;
f625ae50
DK
1247 // Original section contents. We have to make a copy here since the file
1248 // containing the original section may not be locked when we need to access
1249 // the contents.
1250 unsigned char* original_contents_;
10ad9fe5
DK
1251};
1252
80d0d023
DK
1253// Arm_exidx_fixup class. This is used to define a number of methods
1254// and keep states for fixing up EXIDX coverage.
1255
1256class Arm_exidx_fixup
1257{
1258 public:
85fdf906
AH
1259 Arm_exidx_fixup(Output_section* exidx_output_section,
1260 bool merge_exidx_entries = true)
80d0d023
DK
1261 : exidx_output_section_(exidx_output_section), last_unwind_type_(UT_NONE),
1262 last_inlined_entry_(0), last_input_section_(NULL),
85fdf906
AH
1263 section_offset_map_(NULL), first_output_text_section_(NULL),
1264 merge_exidx_entries_(merge_exidx_entries)
80d0d023
DK
1265 { }
1266
1267 ~Arm_exidx_fixup()
1268 { delete this->section_offset_map_; }
1269
f625ae50
DK
1270 // Process an EXIDX section for entry merging. SECTION_CONTENTS points
1271 // to the EXIDX contents and SECTION_SIZE is the size of the contents. Return
1272 // number of bytes to be deleted in output. If parts of the input EXIDX
1273 // section are merged a heap allocated Arm_exidx_section_offset_map is store
1274 // in the located PSECTION_OFFSET_MAP. The caller owns the map and is
9b547ce6 1275 // responsible for releasing it.
80d0d023
DK
1276 template<bool big_endian>
1277 uint32_t
1278 process_exidx_section(const Arm_exidx_input_section* exidx_input_section,
f625ae50
DK
1279 const unsigned char* section_contents,
1280 section_size_type section_size,
80d0d023 1281 Arm_exidx_section_offset_map** psection_offset_map);
2e702c99 1282
80d0d023
DK
1283 // Append an EXIDX_CANTUNWIND entry pointing at the end of the last
1284 // input section, if there is not one already.
1285 void
1286 add_exidx_cantunwind_as_needed();
1287
546c7457
DK
1288 // Return the output section for the text section which is linked to the
1289 // first exidx input in output.
1290 Output_section*
1291 first_output_text_section() const
1292 { return this->first_output_text_section_; }
1293
80d0d023
DK
1294 private:
1295 // Copying is not allowed.
1296 Arm_exidx_fixup(const Arm_exidx_fixup&);
1297 Arm_exidx_fixup& operator=(const Arm_exidx_fixup&);
1298
1299 // Type of EXIDX unwind entry.
1300 enum Unwind_type
1301 {
1302 // No type.
1303 UT_NONE,
1304 // EXIDX_CANTUNWIND.
1305 UT_EXIDX_CANTUNWIND,
1306 // Inlined entry.
1307 UT_INLINED_ENTRY,
1308 // Normal entry.
1309 UT_NORMAL_ENTRY,
1310 };
1311
1312 // Process an EXIDX entry. We only care about the second word of the
1313 // entry. Return true if the entry can be deleted.
1314 bool
1315 process_exidx_entry(uint32_t second_word);
1316
1317 // Update the current section offset map during EXIDX section fix-up.
1318 // If there is no map, create one. INPUT_OFFSET is the offset of a
1319 // reference point, DELETED_BYTES is the number of deleted by in the
1320 // section so far. If DELETE_ENTRY is true, the reference point and
1321 // all offsets after the previous reference point are discarded.
1322 void
1323 update_offset_map(section_offset_type input_offset,
1324 section_size_type deleted_bytes, bool delete_entry);
1325
1326 // EXIDX output section.
1327 Output_section* exidx_output_section_;
1328 // Unwind type of the last EXIDX entry processed.
1329 Unwind_type last_unwind_type_;
1330 // Last seen inlined EXIDX entry.
1331 uint32_t last_inlined_entry_;
1332 // Last processed EXIDX input section.
2b328d4e 1333 const Arm_exidx_input_section* last_input_section_;
80d0d023
DK
1334 // Section offset map created in process_exidx_section.
1335 Arm_exidx_section_offset_map* section_offset_map_;
546c7457
DK
1336 // Output section for the text section which is linked to the first exidx
1337 // input in output.
1338 Output_section* first_output_text_section_;
85fdf906
AH
1339
1340 bool merge_exidx_entries_;
80d0d023
DK
1341};
1342
07f508a2
DK
1343// Arm output section class. This is defined mainly to add a number of
1344// stub generation methods.
1345
1346template<bool big_endian>
1347class Arm_output_section : public Output_section
1348{
1349 public:
2b328d4e
DK
1350 typedef std::vector<std::pair<Relobj*, unsigned int> > Text_section_list;
1351
c87e4302 1352 // We need to force SHF_LINK_ORDER in a SHT_ARM_EXIDX section.
2ea97941
ILT
1353 Arm_output_section(const char* name, elfcpp::Elf_Word type,
1354 elfcpp::Elf_Xword flags)
c87e4302
DK
1355 : Output_section(name, type,
1356 (type == elfcpp::SHT_ARM_EXIDX
1357 ? flags | elfcpp::SHF_LINK_ORDER
1358 : flags))
131687b4
DK
1359 {
1360 if (type == elfcpp::SHT_ARM_EXIDX)
1361 this->set_always_keeps_input_sections();
1362 }
07f508a2
DK
1363
1364 ~Arm_output_section()
1365 { }
2e702c99 1366
07f508a2
DK
1367 // Group input sections for stub generation.
1368 void
f625ae50 1369 group_sections(section_size_type, bool, Target_arm<big_endian>*, const Task*);
07f508a2
DK
1370
1371 // Downcast a base pointer to an Arm_output_section pointer. This is
1372 // not type-safe but we only use Arm_output_section not the base class.
1373 static Arm_output_section<big_endian>*
1374 as_arm_output_section(Output_section* os)
1375 { return static_cast<Arm_output_section<big_endian>*>(os); }
1376
2b328d4e
DK
1377 // Append all input text sections in this into LIST.
1378 void
1379 append_text_sections_to_list(Text_section_list* list);
1380
1381 // Fix EXIDX coverage of this EXIDX output section. SORTED_TEXT_SECTION
1382 // is a list of text input sections sorted in ascending order of their
1383 // output addresses.
1384 void
4a54abbb
DK
1385 fix_exidx_coverage(Layout* layout,
1386 const Text_section_list& sorted_text_section,
85fdf906 1387 Symbol_table* symtab,
f625ae50
DK
1388 bool merge_exidx_entries,
1389 const Task* task);
2b328d4e 1390
131687b4
DK
1391 // Link an EXIDX section into its corresponding text section.
1392 void
1393 set_exidx_section_link();
1394
07f508a2
DK
1395 private:
1396 // For convenience.
1397 typedef Output_section::Input_section Input_section;
1398 typedef Output_section::Input_section_list Input_section_list;
1399
1400 // Create a stub group.
1401 void create_stub_group(Input_section_list::const_iterator,
1402 Input_section_list::const_iterator,
1403 Input_section_list::const_iterator,
1404 Target_arm<big_endian>*,
f625ae50
DK
1405 std::vector<Output_relaxed_input_section*>*,
1406 const Task* task);
07f508a2
DK
1407};
1408
993d07c1
DK
1409// Arm_exidx_input_section class. This represents an EXIDX input section.
1410
1411class Arm_exidx_input_section
1412{
1413 public:
1414 static const section_offset_type invalid_offset =
1415 static_cast<section_offset_type>(-1);
1416
1417 Arm_exidx_input_section(Relobj* relobj, unsigned int shndx,
f625ae50
DK
1418 unsigned int link, uint32_t size,
1419 uint32_t addralign, uint32_t text_size)
993d07c1 1420 : relobj_(relobj), shndx_(shndx), link_(link), size_(size),
f625ae50 1421 addralign_(addralign), text_size_(text_size), has_errors_(false)
993d07c1
DK
1422 { }
1423
1424 ~Arm_exidx_input_section()
1425 { }
2e702c99 1426
993d07c1
DK
1427 // Accessors: This is a read-only class.
1428
1429 // Return the object containing this EXIDX input section.
1430 Relobj*
1431 relobj() const
1432 { return this->relobj_; }
1433
1434 // Return the section index of this EXIDX input section.
1435 unsigned int
1436 shndx() const
1437 { return this->shndx_; }
1438
1439 // Return the section index of linked text section in the same object.
1440 unsigned int
1441 link() const
1442 { return this->link_; }
1443
1444 // Return size of the EXIDX input section.
1445 uint32_t
1446 size() const
1447 { return this->size_; }
1448
f625ae50 1449 // Return address alignment of EXIDX input section.
993d07c1
DK
1450 uint32_t
1451 addralign() const
1452 { return this->addralign_; }
1453
f625ae50
DK
1454 // Return size of the associated text input section.
1455 uint32_t
1456 text_size() const
1457 { return this->text_size_; }
1458
131687b4
DK
1459 // Whether there are any errors in the EXIDX input section.
1460 bool
1461 has_errors() const
1462 { return this->has_errors_; }
1463
1464 // Set has-errors flag.
1465 void
1466 set_has_errors()
1467 { this->has_errors_ = true; }
1468
993d07c1
DK
1469 private:
1470 // Object containing this.
1471 Relobj* relobj_;
1472 // Section index of this.
1473 unsigned int shndx_;
1474 // text section linked to this in the same object.
1475 unsigned int link_;
1476 // Size of this. For ARM 32-bit is sufficient.
1477 uint32_t size_;
1478 // Address alignment of this. For ARM 32-bit is sufficient.
1479 uint32_t addralign_;
f625ae50
DK
1480 // Size of associated text section.
1481 uint32_t text_size_;
131687b4
DK
1482 // Whether this has any errors.
1483 bool has_errors_;
993d07c1
DK
1484};
1485
8ffa3667
DK
1486// Arm_relobj class.
1487
1488template<bool big_endian>
6fa2a40b 1489class Arm_relobj : public Sized_relobj_file<32, big_endian>
8ffa3667
DK
1490{
1491 public:
1492 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
1493
2ea97941 1494 Arm_relobj(const std::string& name, Input_file* input_file, off_t offset,
2e702c99 1495 const typename elfcpp::Ehdr<32, big_endian>& ehdr)
6fa2a40b 1496 : Sized_relobj_file<32, big_endian>(name, input_file, offset, ehdr),
a0351a69 1497 stub_tables_(), local_symbol_is_thumb_function_(),
20138696 1498 attributes_section_data_(NULL), mapping_symbols_info_(),
e7eca48c 1499 section_has_cortex_a8_workaround_(NULL), exidx_section_map_(),
7296d933
DK
1500 output_local_symbol_count_needs_update_(false),
1501 merge_flags_and_attributes_(true)
8ffa3667
DK
1502 { }
1503
1504 ~Arm_relobj()
a0351a69 1505 { delete this->attributes_section_data_; }
2e702c99 1506
8ffa3667
DK
1507 // Return the stub table of the SHNDX-th section if there is one.
1508 Stub_table<big_endian>*
2ea97941 1509 stub_table(unsigned int shndx) const
8ffa3667 1510 {
2ea97941
ILT
1511 gold_assert(shndx < this->stub_tables_.size());
1512 return this->stub_tables_[shndx];
8ffa3667
DK
1513 }
1514
1515 // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1516 void
2ea97941 1517 set_stub_table(unsigned int shndx, Stub_table<big_endian>* stub_table)
8ffa3667 1518 {
2ea97941
ILT
1519 gold_assert(shndx < this->stub_tables_.size());
1520 this->stub_tables_[shndx] = stub_table;
8ffa3667
DK
1521 }
1522
1523 // Whether a local symbol is a THUMB function. R_SYM is the symbol table
1524 // index. This is only valid after do_count_local_symbol is called.
1525 bool
1526 local_symbol_is_thumb_function(unsigned int r_sym) const
1527 {
1528 gold_assert(r_sym < this->local_symbol_is_thumb_function_.size());
1529 return this->local_symbol_is_thumb_function_[r_sym];
1530 }
2e702c99 1531
8ffa3667
DK
1532 // Scan all relocation sections for stub generation.
1533 void
1534 scan_sections_for_stubs(Target_arm<big_endian>*, const Symbol_table*,
1535 const Layout*);
1536
1537 // Convert regular input section with index SHNDX to a relaxed section.
1538 void
2ea97941 1539 convert_input_section_to_relaxed_section(unsigned shndx)
8ffa3667
DK
1540 {
1541 // The stubs have relocations and we need to process them after writing
1542 // out the stubs. So relocation now must follow section write.
2b328d4e 1543 this->set_section_offset(shndx, -1ULL);
8ffa3667
DK
1544 this->set_relocs_must_follow_section_writes();
1545 }
1546
1547 // Downcast a base pointer to an Arm_relobj pointer. This is
1548 // not type-safe but we only use Arm_relobj not the base class.
1549 static Arm_relobj<big_endian>*
2ea97941
ILT
1550 as_arm_relobj(Relobj* relobj)
1551 { return static_cast<Arm_relobj<big_endian>*>(relobj); }
8ffa3667 1552
d5b40221
DK
1553 // Processor-specific flags in ELF file header. This is valid only after
1554 // reading symbols.
1555 elfcpp::Elf_Word
1556 processor_specific_flags() const
1557 { return this->processor_specific_flags_; }
1558
a0351a69
DK
1559 // Attribute section data This is the contents of the .ARM.attribute section
1560 // if there is one.
1561 const Attributes_section_data*
1562 attributes_section_data() const
1563 { return this->attributes_section_data_; }
1564
20138696
DK
1565 // Mapping symbol location.
1566 typedef std::pair<unsigned int, Arm_address> Mapping_symbol_position;
1567
1568 // Functor for STL container.
1569 struct Mapping_symbol_position_less
1570 {
1571 bool
1572 operator()(const Mapping_symbol_position& p1,
1573 const Mapping_symbol_position& p2) const
1574 {
1575 return (p1.first < p2.first
1576 || (p1.first == p2.first && p1.second < p2.second));
1577 }
1578 };
2e702c99 1579
20138696
DK
1580 // We only care about the first character of a mapping symbol, so
1581 // we only store that instead of the whole symbol name.
1582 typedef std::map<Mapping_symbol_position, char,
1583 Mapping_symbol_position_less> Mapping_symbols_info;
1584
2fb7225c
DK
1585 // Whether a section contains any Cortex-A8 workaround.
1586 bool
1587 section_has_cortex_a8_workaround(unsigned int shndx) const
2e702c99 1588 {
2fb7225c
DK
1589 return (this->section_has_cortex_a8_workaround_ != NULL
1590 && (*this->section_has_cortex_a8_workaround_)[shndx]);
1591 }
2e702c99 1592
2fb7225c
DK
1593 // Mark a section that has Cortex-A8 workaround.
1594 void
1595 mark_section_for_cortex_a8_workaround(unsigned int shndx)
1596 {
1597 if (this->section_has_cortex_a8_workaround_ == NULL)
1598 this->section_has_cortex_a8_workaround_ =
1599 new std::vector<bool>(this->shnum(), false);
1600 (*this->section_has_cortex_a8_workaround_)[shndx] = true;
1601 }
1602
993d07c1
DK
1603 // Return the EXIDX section of an text section with index SHNDX or NULL
1604 // if the text section has no associated EXIDX section.
1605 const Arm_exidx_input_section*
1606 exidx_input_section_by_link(unsigned int shndx) const
1607 {
1608 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1609 return ((p != this->exidx_section_map_.end()
1610 && p->second->link() == shndx)
1611 ? p->second
1612 : NULL);
1613 }
1614
1615 // Return the EXIDX section with index SHNDX or NULL if there is none.
1616 const Arm_exidx_input_section*
1617 exidx_input_section_by_shndx(unsigned shndx) const
1618 {
1619 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1620 return ((p != this->exidx_section_map_.end()
1621 && p->second->shndx() == shndx)
1622 ? p->second
1623 : NULL);
1624 }
1625
e7eca48c
DK
1626 // Whether output local symbol count needs updating.
1627 bool
1628 output_local_symbol_count_needs_update() const
1629 { return this->output_local_symbol_count_needs_update_; }
1630
1631 // Set output_local_symbol_count_needs_update flag to be true.
1632 void
1633 set_output_local_symbol_count_needs_update()
1634 { this->output_local_symbol_count_needs_update_ = true; }
2e702c99 1635
e7eca48c
DK
1636 // Update output local symbol count at the end of relaxation.
1637 void
1638 update_output_local_symbol_count();
1639
7296d933
DK
1640 // Whether we want to merge processor-specific flags and attributes.
1641 bool
1642 merge_flags_and_attributes() const
1643 { return this->merge_flags_and_attributes_; }
2e702c99 1644
131687b4
DK
1645 // Export list of EXIDX section indices.
1646 void
1647 get_exidx_shndx_list(std::vector<unsigned int>* list) const
1648 {
1649 list->clear();
1650 for (Exidx_section_map::const_iterator p = this->exidx_section_map_.begin();
1651 p != this->exidx_section_map_.end();
1652 ++p)
1653 {
1654 if (p->second->shndx() == p->first)
1655 list->push_back(p->first);
1656 }
2e702c99 1657 // Sort list to make result independent of implementation of map.
131687b4
DK
1658 std::sort(list->begin(), list->end());
1659 }
1660
8ffa3667
DK
1661 protected:
1662 // Post constructor setup.
1663 void
1664 do_setup()
1665 {
1666 // Call parent's setup method.
6fa2a40b 1667 Sized_relobj_file<32, big_endian>::do_setup();
8ffa3667
DK
1668
1669 // Initialize look-up tables.
1670 Stub_table_list empty_stub_table_list(this->shnum(), NULL);
1671 this->stub_tables_.swap(empty_stub_table_list);
1672 }
1673
1674 // Count the local symbols.
1675 void
1676 do_count_local_symbols(Stringpool_template<char>*,
2e702c99 1677 Stringpool_template<char>*);
8ffa3667
DK
1678
1679 void
6fa2a40b
CC
1680 do_relocate_sections(
1681 const Symbol_table* symtab, const Layout* layout,
1682 const unsigned char* pshdrs, Output_file* of,
1683 typename Sized_relobj_file<32, big_endian>::Views* pivews);
8ffa3667 1684
d5b40221
DK
1685 // Read the symbol information.
1686 void
1687 do_read_symbols(Read_symbols_data* sd);
1688
99e5bff2
DK
1689 // Process relocs for garbage collection.
1690 void
1691 do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*);
1692
8ffa3667 1693 private:
44272192
DK
1694
1695 // Whether a section needs to be scanned for relocation stubs.
1696 bool
1697 section_needs_reloc_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1698 const Relobj::Output_sections&,
ca09d69a 1699 const Symbol_table*, const unsigned char*);
44272192 1700
cf846138
DK
1701 // Whether a section is a scannable text section.
1702 bool
1703 section_is_scannable(const elfcpp::Shdr<32, big_endian>&, unsigned int,
ca09d69a 1704 const Output_section*, const Symbol_table*);
cf846138 1705
44272192
DK
1706 // Whether a section needs to be scanned for the Cortex-A8 erratum.
1707 bool
1708 section_needs_cortex_a8_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1709 unsigned int, Output_section*,
ca09d69a 1710 const Symbol_table*);
44272192
DK
1711
1712 // Scan a section for the Cortex-A8 erratum.
1713 void
1714 scan_section_for_cortex_a8_erratum(const elfcpp::Shdr<32, big_endian>&,
1715 unsigned int, Output_section*,
1716 Target_arm<big_endian>*);
1717
c8761b9a 1718 // Find the linked text section of an EXIDX section by looking at the
9b547ce6 1719 // first relocation of the EXIDX section. PSHDR points to the section
c8761b9a
DK
1720 // headers of a relocation section and PSYMS points to the local symbols.
1721 // PSHNDX points to a location storing the text section index if found.
1722 // Return whether we can find the linked section.
1723 bool
1724 find_linked_text_section(const unsigned char* pshdr,
1725 const unsigned char* psyms, unsigned int* pshndx);
1726
1727 //
993d07c1 1728 // Make a new Arm_exidx_input_section object for EXIDX section with
c8761b9a
DK
1729 // index SHNDX and section header SHDR. TEXT_SHNDX is the section
1730 // index of the linked text section.
993d07c1
DK
1731 void
1732 make_exidx_input_section(unsigned int shndx,
c8761b9a 1733 const elfcpp::Shdr<32, big_endian>& shdr,
131687b4
DK
1734 unsigned int text_shndx,
1735 const elfcpp::Shdr<32, big_endian>& text_shdr);
993d07c1 1736
cb1be87e
DK
1737 // Return the output address of either a plain input section or a
1738 // relaxed input section. SHNDX is the section index.
1739 Arm_address
1740 simple_input_section_output_address(unsigned int, Output_section*);
1741
8ffa3667 1742 typedef std::vector<Stub_table<big_endian>*> Stub_table_list;
993d07c1
DK
1743 typedef Unordered_map<unsigned int, const Arm_exidx_input_section*>
1744 Exidx_section_map;
1745
1746 // List of stub tables.
8ffa3667
DK
1747 Stub_table_list stub_tables_;
1748 // Bit vector to tell if a local symbol is a thumb function or not.
1749 // This is only valid after do_count_local_symbol is called.
1750 std::vector<bool> local_symbol_is_thumb_function_;
d5b40221
DK
1751 // processor-specific flags in ELF file header.
1752 elfcpp::Elf_Word processor_specific_flags_;
a0351a69
DK
1753 // Object attributes if there is an .ARM.attributes section or NULL.
1754 Attributes_section_data* attributes_section_data_;
20138696
DK
1755 // Mapping symbols information.
1756 Mapping_symbols_info mapping_symbols_info_;
2fb7225c
DK
1757 // Bitmap to indicate sections with Cortex-A8 workaround or NULL.
1758 std::vector<bool>* section_has_cortex_a8_workaround_;
993d07c1
DK
1759 // Map a text section to its associated .ARM.exidx section, if there is one.
1760 Exidx_section_map exidx_section_map_;
e7eca48c
DK
1761 // Whether output local symbol count needs updating.
1762 bool output_local_symbol_count_needs_update_;
7296d933
DK
1763 // Whether we merge processor flags and attributes of this object to
1764 // output.
1765 bool merge_flags_and_attributes_;
d5b40221
DK
1766};
1767
1768// Arm_dynobj class.
1769
1770template<bool big_endian>
1771class Arm_dynobj : public Sized_dynobj<32, big_endian>
1772{
1773 public:
2ea97941 1774 Arm_dynobj(const std::string& name, Input_file* input_file, off_t offset,
d5b40221 1775 const elfcpp::Ehdr<32, big_endian>& ehdr)
2ea97941
ILT
1776 : Sized_dynobj<32, big_endian>(name, input_file, offset, ehdr),
1777 processor_specific_flags_(0), attributes_section_data_(NULL)
d5b40221 1778 { }
2e702c99 1779
d5b40221 1780 ~Arm_dynobj()
a0351a69 1781 { delete this->attributes_section_data_; }
d5b40221
DK
1782
1783 // Downcast a base pointer to an Arm_relobj pointer. This is
1784 // not type-safe but we only use Arm_relobj not the base class.
1785 static Arm_dynobj<big_endian>*
1786 as_arm_dynobj(Dynobj* dynobj)
1787 { return static_cast<Arm_dynobj<big_endian>*>(dynobj); }
1788
1789 // Processor-specific flags in ELF file header. This is valid only after
1790 // reading symbols.
1791 elfcpp::Elf_Word
1792 processor_specific_flags() const
1793 { return this->processor_specific_flags_; }
1794
a0351a69
DK
1795 // Attributes section data.
1796 const Attributes_section_data*
1797 attributes_section_data() const
1798 { return this->attributes_section_data_; }
1799
d5b40221
DK
1800 protected:
1801 // Read the symbol information.
1802 void
1803 do_read_symbols(Read_symbols_data* sd);
1804
1805 private:
1806 // processor-specific flags in ELF file header.
1807 elfcpp::Elf_Word processor_specific_flags_;
a0351a69
DK
1808 // Object attributes if there is an .ARM.attributes section or NULL.
1809 Attributes_section_data* attributes_section_data_;
8ffa3667
DK
1810};
1811
e9bbb538
DK
1812// Functor to read reloc addends during stub generation.
1813
1814template<int sh_type, bool big_endian>
1815struct Stub_addend_reader
1816{
1817 // Return the addend for a relocation of a particular type. Depending
1818 // on whether this is a REL or RELA relocation, read the addend from a
1819 // view or from a Reloc object.
1820 elfcpp::Elf_types<32>::Elf_Swxword
1821 operator()(
1822 unsigned int /* r_type */,
1823 const unsigned char* /* view */,
1824 const typename Reloc_types<sh_type,
ebd95253 1825 32, big_endian>::Reloc& /* reloc */) const;
e9bbb538
DK
1826};
1827
1828// Specialized Stub_addend_reader for SHT_REL type relocation sections.
1829
1830template<bool big_endian>
1831struct Stub_addend_reader<elfcpp::SHT_REL, big_endian>
1832{
1833 elfcpp::Elf_types<32>::Elf_Swxword
1834 operator()(
1835 unsigned int,
1836 const unsigned char*,
1837 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const;
1838};
1839
1840// Specialized Stub_addend_reader for RELA type relocation sections.
1841// We currently do not handle RELA type relocation sections but it is trivial
1842// to implement the addend reader. This is provided for completeness and to
1843// make it easier to add support for RELA relocation sections in the future.
1844
1845template<bool big_endian>
1846struct Stub_addend_reader<elfcpp::SHT_RELA, big_endian>
1847{
1848 elfcpp::Elf_types<32>::Elf_Swxword
1849 operator()(
1850 unsigned int,
1851 const unsigned char*,
1852 const typename Reloc_types<elfcpp::SHT_RELA, 32,
ebd95253
DK
1853 big_endian>::Reloc& reloc) const
1854 { return reloc.get_r_addend(); }
e9bbb538
DK
1855};
1856
a120bc7f
DK
1857// Cortex_a8_reloc class. We keep record of relocation that may need
1858// the Cortex-A8 erratum workaround.
1859
1860class Cortex_a8_reloc
1861{
1862 public:
1863 Cortex_a8_reloc(Reloc_stub* reloc_stub, unsigned r_type,
1864 Arm_address destination)
1865 : reloc_stub_(reloc_stub), r_type_(r_type), destination_(destination)
1866 { }
1867
1868 ~Cortex_a8_reloc()
1869 { }
1870
1871 // Accessors: This is a read-only class.
2e702c99 1872
a120bc7f
DK
1873 // Return the relocation stub associated with this relocation if there is
1874 // one.
1875 const Reloc_stub*
1876 reloc_stub() const
2e702c99
RM
1877 { return this->reloc_stub_; }
1878
a120bc7f
DK
1879 // Return the relocation type.
1880 unsigned int
1881 r_type() const
1882 { return this->r_type_; }
1883
1884 // Return the destination address of the relocation. LSB stores the THUMB
1885 // bit.
1886 Arm_address
1887 destination() const
1888 { return this->destination_; }
1889
1890 private:
1891 // Associated relocation stub if there is one, or NULL.
1892 const Reloc_stub* reloc_stub_;
1893 // Relocation type.
1894 unsigned int r_type_;
1895 // Destination address of this relocation. LSB is used to distinguish
1896 // ARM/THUMB mode.
1897 Arm_address destination_;
1898};
1899
4a54abbb
DK
1900// Arm_output_data_got class. We derive this from Output_data_got to add
1901// extra methods to handle TLS relocations in a static link.
1902
1903template<bool big_endian>
1904class Arm_output_data_got : public Output_data_got<32, big_endian>
1905{
1906 public:
1907 Arm_output_data_got(Symbol_table* symtab, Layout* layout)
1908 : Output_data_got<32, big_endian>(), symbol_table_(symtab), layout_(layout)
1909 { }
1910
1911 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
1912 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
1913 // applied in a static link.
1914 void
1915 add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1916 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
1917
1918 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
1919 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
1920 // relocation that needs to be applied in a static link.
1921 void
1922 add_static_reloc(unsigned int got_offset, unsigned int r_type,
6fa2a40b
CC
1923 Sized_relobj_file<32, big_endian>* relobj,
1924 unsigned int index)
4a54abbb
DK
1925 {
1926 this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
1927 index));
1928 }
1929
1930 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
1931 // The first one is initialized to be 1, which is the module index for
1932 // the main executable and the second one 0. A reloc of the type
1933 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
1934 // be applied by gold. GSYM is a global symbol.
1935 void
1936 add_tls_gd32_with_static_reloc(unsigned int got_type, Symbol* gsym);
1937
1938 // Same as the above but for a local symbol in OBJECT with INDEX.
1939 void
1940 add_tls_gd32_with_static_reloc(unsigned int got_type,
6fa2a40b 1941 Sized_relobj_file<32, big_endian>* object,
4a54abbb
DK
1942 unsigned int index);
1943
1944 protected:
1945 // Write out the GOT table.
1946 void
1947 do_write(Output_file*);
1948
1949 private:
1950 // This class represent dynamic relocations that need to be applied by
1951 // gold because we are using TLS relocations in a static link.
1952 class Static_reloc
1953 {
1954 public:
1955 Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1956 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
1957 { this->u_.global.symbol = gsym; }
1958
1959 Static_reloc(unsigned int got_offset, unsigned int r_type,
6fa2a40b 1960 Sized_relobj_file<32, big_endian>* relobj, unsigned int index)
4a54abbb
DK
1961 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
1962 {
1963 this->u_.local.relobj = relobj;
1964 this->u_.local.index = index;
1965 }
1966
1967 // Return the GOT offset.
1968 unsigned int
1969 got_offset() const
1970 { return this->got_offset_; }
1971
1972 // Relocation type.
1973 unsigned int
1974 r_type() const
1975 { return this->r_type_; }
1976
1977 // Whether the symbol is global or not.
1978 bool
1979 symbol_is_global() const
1980 { return this->symbol_is_global_; }
1981
1982 // For a relocation against a global symbol, the global symbol.
1983 Symbol*
1984 symbol() const
1985 {
1986 gold_assert(this->symbol_is_global_);
1987 return this->u_.global.symbol;
1988 }
1989
1990 // For a relocation against a local symbol, the defining object.
6fa2a40b 1991 Sized_relobj_file<32, big_endian>*
4a54abbb
DK
1992 relobj() const
1993 {
1994 gold_assert(!this->symbol_is_global_);
1995 return this->u_.local.relobj;
1996 }
1997
1998 // For a relocation against a local symbol, the local symbol index.
1999 unsigned int
2000 index() const
2001 {
2002 gold_assert(!this->symbol_is_global_);
2003 return this->u_.local.index;
2004 }
2005
2006 private:
2007 // GOT offset of the entry to which this relocation is applied.
2008 unsigned int got_offset_;
2009 // Type of relocation.
2010 unsigned int r_type_;
2011 // Whether this relocation is against a global symbol.
2012 bool symbol_is_global_;
2013 // A global or local symbol.
2014 union
2015 {
2016 struct
2017 {
2018 // For a global symbol, the symbol itself.
2019 Symbol* symbol;
2020 } global;
2021 struct
2022 {
2023 // For a local symbol, the object defining object.
6fa2a40b 2024 Sized_relobj_file<32, big_endian>* relobj;
4a54abbb
DK
2025 // For a local symbol, the symbol index.
2026 unsigned int index;
2027 } local;
2028 } u_;
2029 };
2030
2031 // Symbol table of the output object.
2032 Symbol_table* symbol_table_;
2033 // Layout of the output object.
2034 Layout* layout_;
2035 // Static relocs to be applied to the GOT.
2036 std::vector<Static_reloc> static_relocs_;
2037};
2038
9b547ce6 2039// The ARM target has many relocation types with odd-sizes or noncontiguous
5c388529
DK
2040// bits. The default handling of relocatable relocation cannot process these
2041// relocations. So we have to extend the default code.
2042
4d625b70 2043template<bool big_endian, typename Classify_reloc>
5c388529 2044class Arm_scan_relocatable_relocs :
4d625b70 2045 public Default_scan_relocatable_relocs<Classify_reloc>
5c388529
DK
2046{
2047 public:
2048 // Return the strategy to use for a local symbol which is a section
2049 // symbol, given the relocation type.
2050 inline Relocatable_relocs::Reloc_strategy
2051 local_section_strategy(unsigned int r_type, Relobj*)
2052 {
4d625b70 2053 if (Classify_reloc::sh_type == elfcpp::SHT_RELA)
5c388529
DK
2054 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
2055 else
2056 {
2057 if (r_type == elfcpp::R_ARM_TARGET1
2058 || r_type == elfcpp::R_ARM_TARGET2)
2059 {
2060 const Target_arm<big_endian>* arm_target =
2061 Target_arm<big_endian>::default_target();
2062 r_type = arm_target->get_real_reloc_type(r_type);
2063 }
2064
2065 switch(r_type)
2066 {
2067 // Relocations that write nothing. These exclude R_ARM_TARGET1
2068 // and R_ARM_TARGET2.
2069 case elfcpp::R_ARM_NONE:
2070 case elfcpp::R_ARM_V4BX:
2071 case elfcpp::R_ARM_TLS_GOTDESC:
2072 case elfcpp::R_ARM_TLS_CALL:
2073 case elfcpp::R_ARM_TLS_DESCSEQ:
2074 case elfcpp::R_ARM_THM_TLS_CALL:
2075 case elfcpp::R_ARM_GOTRELAX:
2076 case elfcpp::R_ARM_GNU_VTENTRY:
2077 case elfcpp::R_ARM_GNU_VTINHERIT:
2078 case elfcpp::R_ARM_THM_TLS_DESCSEQ16:
2079 case elfcpp::R_ARM_THM_TLS_DESCSEQ32:
2080 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
2081 // These should have been converted to something else above.
2082 case elfcpp::R_ARM_TARGET1:
2083 case elfcpp::R_ARM_TARGET2:
2084 gold_unreachable();
2c339f71 2085 // Relocations that write full 32 bits and
2e702c99 2086 // have alignment of 1.
5c388529
DK
2087 case elfcpp::R_ARM_ABS32:
2088 case elfcpp::R_ARM_REL32:
2089 case elfcpp::R_ARM_SBREL32:
2090 case elfcpp::R_ARM_GOTOFF32:
2091 case elfcpp::R_ARM_BASE_PREL:
2092 case elfcpp::R_ARM_GOT_BREL:
2093 case elfcpp::R_ARM_BASE_ABS:
2094 case elfcpp::R_ARM_ABS32_NOI:
2095 case elfcpp::R_ARM_REL32_NOI:
2096 case elfcpp::R_ARM_PLT32_ABS:
2097 case elfcpp::R_ARM_GOT_ABS:
2098 case elfcpp::R_ARM_GOT_PREL:
2099 case elfcpp::R_ARM_TLS_GD32:
2100 case elfcpp::R_ARM_TLS_LDM32:
2101 case elfcpp::R_ARM_TLS_LDO32:
2102 case elfcpp::R_ARM_TLS_IE32:
2103 case elfcpp::R_ARM_TLS_LE32:
2c339f71 2104 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4_UNALIGNED;
5c388529
DK
2105 default:
2106 // For all other static relocations, return RELOC_SPECIAL.
2107 return Relocatable_relocs::RELOC_SPECIAL;
2108 }
2109 }
2110 }
2111};
2112
4a657b0d
DK
2113template<bool big_endian>
2114class Target_arm : public Sized_target<32, big_endian>
2115{
2116 public:
2117 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
2118 Reloc_section;
2119
2daedcd6
DK
2120 // When were are relocating a stub, we pass this as the relocation number.
2121 static const size_t fake_relnum_for_stubs = static_cast<size_t>(-1);
2122
2e702c99
RM
2123 Target_arm(const Target::Target_info* info = &arm_info)
2124 : Sized_target<32, big_endian>(info),
fa89cc82
HS
2125 got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
2126 rel_dyn_(NULL), rel_irelative_(NULL), copy_relocs_(elfcpp::R_ARM_COPY),
f96accdf
DK
2127 got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
2128 stub_tables_(), stub_factory_(Stub_factory::get_instance()),
cd6eab1c 2129 should_force_pic_veneer_(false),
f96accdf 2130 arm_input_section_map_(), attributes_section_data_(NULL),
bc99685c
DK
2131 fix_cortex_a8_(false), cortex_a8_relocs_info_(),
2132 target1_reloc_(elfcpp::R_ARM_ABS32),
2133 // This can be any reloc type but usually is R_ARM_GOT_PREL.
2134 target2_reloc_(elfcpp::R_ARM_GOT_PREL)
2135 {
2136 if (parameters->options().user_set_target1_rel())
2137 {
2138 // FIXME: This is not strictly compatible with ld, which allows both
2139 // --target1-abs and --target-rel to be given.
2140 if (parameters->options().user_set_target1_abs())
2141 gold_error(_("Cannot use both --target1-abs and --target1-rel."));
2142 else
2143 this->target1_reloc_ = elfcpp::R_ARM_REL32;
2144 }
2145 // We don't need to handle --target1-abs because target1_reloc_ is set
2146 // to elfcpp::R_ARM_ABS32 in the member initializer list.
2147
2148 if (parameters->options().user_set_target2())
2149 {
2150 const char* target2 = parameters->options().target2();
2151 if (strcmp(target2, "rel") == 0)
2152 this->target2_reloc_ = elfcpp::R_ARM_REL32;
2153 else if (strcmp(target2, "abs") == 0)
2154 this->target2_reloc_ = elfcpp::R_ARM_ABS32;
2155 else if (strcmp(target2, "got-rel") == 0)
2156 this->target2_reloc_ = elfcpp::R_ARM_GOT_PREL;
2157 else
2158 gold_unreachable();
2159 }
2160 }
4a657b0d 2161
b569affa
DK
2162 // Whether we force PCI branch veneers.
2163 bool
2164 should_force_pic_veneer() const
2165 { return this->should_force_pic_veneer_; }
2166
2167 // Set PIC veneer flag.
2168 void
2169 set_should_force_pic_veneer(bool value)
2170 { this->should_force_pic_veneer_ = value; }
2e702c99 2171
b569affa
DK
2172 // Whether we use THUMB-2 instructions.
2173 bool
2174 using_thumb2() const
2175 {
a0351a69
DK
2176 Object_attribute* attr =
2177 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2178 int arch = attr->int_value();
2179 return arch == elfcpp::TAG_CPU_ARCH_V6T2 || arch >= elfcpp::TAG_CPU_ARCH_V7;
b569affa
DK
2180 }
2181
2182 // Whether we use THUMB/THUMB-2 instructions only.
2183 bool
2184 using_thumb_only() const
2185 {
a0351a69
DK
2186 Object_attribute* attr =
2187 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
323c532f
DK
2188
2189 if (attr->int_value() == elfcpp::TAG_CPU_ARCH_V6_M
2190 || attr->int_value() == elfcpp::TAG_CPU_ARCH_V6S_M)
2191 return true;
a0351a69
DK
2192 if (attr->int_value() != elfcpp::TAG_CPU_ARCH_V7
2193 && attr->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M)
2194 return false;
2195 attr = this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
2196 return attr->int_value() == 'M';
b569affa
DK
2197 }
2198
d204b6e9
DK
2199 // Whether we have an NOP instruction. If not, use mov r0, r0 instead.
2200 bool
2201 may_use_arm_nop() const
2202 {
a0351a69
DK
2203 Object_attribute* attr =
2204 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2205 int arch = attr->int_value();
2206 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2207 || arch == elfcpp::TAG_CPU_ARCH_V6K
2208 || arch == elfcpp::TAG_CPU_ARCH_V7
2209 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
d204b6e9
DK
2210 }
2211
51938283
DK
2212 // Whether we have THUMB-2 NOP.W instruction.
2213 bool
2214 may_use_thumb2_nop() const
2215 {
a0351a69
DK
2216 Object_attribute* attr =
2217 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2218 int arch = attr->int_value();
2219 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2220 || arch == elfcpp::TAG_CPU_ARCH_V7
2221 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
51938283 2222 }
cd6eab1c
ILT
2223
2224 // Whether we have v4T interworking instructions available.
2225 bool
2226 may_use_v4t_interworking() const
2227 {
2228 Object_attribute* attr =
2229 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2230 int arch = attr->int_value();
2231 return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
2232 && arch != elfcpp::TAG_CPU_ARCH_V4);
2233 }
2e702c99 2234
cd6eab1c
ILT
2235 // Whether we have v5T interworking instructions available.
2236 bool
2237 may_use_v5t_interworking() const
2238 {
2239 Object_attribute* attr =
2240 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2241 int arch = attr->int_value();
a8e2273b
ILT
2242 if (parameters->options().fix_arm1176())
2243 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2244 || arch == elfcpp::TAG_CPU_ARCH_V7
2245 || arch == elfcpp::TAG_CPU_ARCH_V6_M
2246 || arch == elfcpp::TAG_CPU_ARCH_V6S_M
2247 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2248 else
2249 return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
2250 && arch != elfcpp::TAG_CPU_ARCH_V4
2251 && arch != elfcpp::TAG_CPU_ARCH_V4T);
cd6eab1c 2252 }
2e702c99
RM
2253
2254 // Process the relocations to determine unreferenced sections for
4a657b0d
DK
2255 // garbage collection.
2256 void
ad0f2072 2257 gc_process_relocs(Symbol_table* symtab,
4a657b0d 2258 Layout* layout,
6fa2a40b 2259 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
2260 unsigned int data_shndx,
2261 unsigned int sh_type,
2262 const unsigned char* prelocs,
2263 size_t reloc_count,
2264 Output_section* output_section,
2265 bool needs_special_offset_handling,
2266 size_t local_symbol_count,
2267 const unsigned char* plocal_symbols);
2268
2269 // Scan the relocations to look for symbol adjustments.
2270 void
ad0f2072 2271 scan_relocs(Symbol_table* symtab,
4a657b0d 2272 Layout* layout,
6fa2a40b 2273 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
2274 unsigned int data_shndx,
2275 unsigned int sh_type,
2276 const unsigned char* prelocs,
2277 size_t reloc_count,
2278 Output_section* output_section,
2279 bool needs_special_offset_handling,
2280 size_t local_symbol_count,
2281 const unsigned char* plocal_symbols);
2282
2283 // Finalize the sections.
2284 void
f59f41f3 2285 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
4a657b0d 2286
94cdfcff 2287 // Return the value to use for a dynamic symbol which requires special
4a657b0d
DK
2288 // treatment.
2289 uint64_t
2290 do_dynsym_value(const Symbol*) const;
2291
fa89cc82
HS
2292 // Return the plt address for globals. Since we have irelative plt entries,
2293 // address calculation is not as straightforward as plt_address + plt_offset.
2294 uint64_t
2295 do_plt_address_for_global(const Symbol* gsym) const
2296 { return this->plt_section()->address_for_global(gsym); }
2297
2298 // Return the plt address for locals. Since we have irelative plt entries,
2299 // address calculation is not as straightforward as plt_address + plt_offset.
2300 uint64_t
2301 do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
2302 { return this->plt_section()->address_for_local(relobj, symndx); }
2303
4a657b0d
DK
2304 // Relocate a section.
2305 void
2306 relocate_section(const Relocate_info<32, big_endian>*,
2307 unsigned int sh_type,
2308 const unsigned char* prelocs,
2309 size_t reloc_count,
2310 Output_section* output_section,
2311 bool needs_special_offset_handling,
2312 unsigned char* view,
ebabffbd 2313 Arm_address view_address,
364c7fa5
ILT
2314 section_size_type view_size,
2315 const Reloc_symbol_changes*);
4a657b0d
DK
2316
2317 // Scan the relocs during a relocatable link.
2318 void
ad0f2072 2319 scan_relocatable_relocs(Symbol_table* symtab,
4a657b0d 2320 Layout* layout,
6fa2a40b 2321 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
2322 unsigned int data_shndx,
2323 unsigned int sh_type,
2324 const unsigned char* prelocs,
2325 size_t reloc_count,
2326 Output_section* output_section,
2327 bool needs_special_offset_handling,
2328 size_t local_symbol_count,
2329 const unsigned char* plocal_symbols,
2330 Relocatable_relocs*);
2331
4d625b70
CC
2332 // Scan the relocs for --emit-relocs.
2333 void
2334 emit_relocs_scan(Symbol_table* symtab,
2335 Layout* layout,
2336 Sized_relobj_file<32, big_endian>* object,
2337 unsigned int data_shndx,
2338 unsigned int sh_type,
2339 const unsigned char* prelocs,
2340 size_t reloc_count,
2341 Output_section* output_section,
2342 bool needs_special_offset_handling,
2343 size_t local_symbol_count,
2344 const unsigned char* plocal_syms,
2345 Relocatable_relocs* rr);
2346
7404fe1b 2347 // Emit relocations for a section.
4a657b0d 2348 void
7404fe1b
AM
2349 relocate_relocs(const Relocate_info<32, big_endian>*,
2350 unsigned int sh_type,
2351 const unsigned char* prelocs,
2352 size_t reloc_count,
2353 Output_section* output_section,
62fe925a
RM
2354 typename elfcpp::Elf_types<32>::Elf_Off
2355 offset_in_output_section,
7404fe1b
AM
2356 unsigned char* view,
2357 Arm_address view_address,
2358 section_size_type view_size,
2359 unsigned char* reloc_view,
2360 section_size_type reloc_view_size);
4a657b0d 2361
5c388529
DK
2362 // Perform target-specific processing in a relocatable link. This is
2363 // only used if we use the relocation strategy RELOC_SPECIAL.
2364 void
2365 relocate_special_relocatable(const Relocate_info<32, big_endian>* relinfo,
2366 unsigned int sh_type,
2367 const unsigned char* preloc_in,
2368 size_t relnum,
2369 Output_section* output_section,
62fe925a
RM
2370 typename elfcpp::Elf_types<32>::Elf_Off
2371 offset_in_output_section,
5c388529
DK
2372 unsigned char* view,
2373 typename elfcpp::Elf_types<32>::Elf_Addr
2374 view_address,
2375 section_size_type view_size,
2376 unsigned char* preloc_out);
2e702c99 2377
4a657b0d
DK
2378 // Return whether SYM is defined by the ABI.
2379 bool
2c54b4f4 2380 do_is_defined_by_abi(const Symbol* sym) const
4a657b0d
DK
2381 { return strcmp(sym->name(), "__tls_get_addr") == 0; }
2382
c8761b9a
DK
2383 // Return whether there is a GOT section.
2384 bool
2385 has_got_section() const
2386 { return this->got_ != NULL; }
2387
94cdfcff
DK
2388 // Return the size of the GOT section.
2389 section_size_type
0e70b911 2390 got_size() const
94cdfcff
DK
2391 {
2392 gold_assert(this->got_ != NULL);
2393 return this->got_->data_size();
2394 }
2395
0e70b911
CC
2396 // Return the number of entries in the GOT.
2397 unsigned int
2398 got_entry_count() const
2399 {
2400 if (!this->has_got_section())
2401 return 0;
2402 return this->got_size() / 4;
2403 }
2404
2405 // Return the number of entries in the PLT.
2406 unsigned int
2407 plt_entry_count() const;
2408
2409 // Return the offset of the first non-reserved PLT entry.
2410 unsigned int
2411 first_plt_entry_offset() const;
2412
2413 // Return the size of each PLT entry.
2414 unsigned int
2415 plt_entry_size() const;
2416
fa89cc82
HS
2417 // Get the section to use for IRELATIVE relocations, create it if necessary.
2418 Reloc_section*
2419 rel_irelative_section(Layout*);
2420
4a657b0d 2421 // Map platform-specific reloc types
bc99685c
DK
2422 unsigned int
2423 get_real_reloc_type(unsigned int r_type) const;
4a657b0d 2424
55da9579
DK
2425 //
2426 // Methods to support stub-generations.
2427 //
2e702c99 2428
55da9579
DK
2429 // Return the stub factory
2430 const Stub_factory&
2431 stub_factory() const
2432 { return this->stub_factory_; }
2433
2434 // Make a new Arm_input_section object.
2435 Arm_input_section<big_endian>*
2436 new_arm_input_section(Relobj*, unsigned int);
2437
2438 // Find the Arm_input_section object corresponding to the SHNDX-th input
2439 // section of RELOBJ.
2440 Arm_input_section<big_endian>*
2ea97941 2441 find_arm_input_section(Relobj* relobj, unsigned int shndx) const;
55da9579
DK
2442
2443 // Make a new Stub_table
2444 Stub_table<big_endian>*
2445 new_stub_table(Arm_input_section<big_endian>*);
2446
eb44217c
DK
2447 // Scan a section for stub generation.
2448 void
2449 scan_section_for_stubs(const Relocate_info<32, big_endian>*, unsigned int,
2450 const unsigned char*, size_t, Output_section*,
2451 bool, const unsigned char*, Arm_address,
2452 section_size_type);
2453
2e702c99 2454 // Relocate a stub.
43d12afe 2455 void
2fb7225c 2456 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
43d12afe
DK
2457 Output_section*, unsigned char*, Arm_address,
2458 section_size_type);
2e702c99 2459
b569affa 2460 // Get the default ARM target.
43d12afe 2461 static Target_arm<big_endian>*
b569affa
DK
2462 default_target()
2463 {
2464 gold_assert(parameters->target().machine_code() == elfcpp::EM_ARM
2465 && parameters->target().is_big_endian() == big_endian);
43d12afe
DK
2466 return static_cast<Target_arm<big_endian>*>(
2467 parameters->sized_target<32, big_endian>());
b569affa
DK
2468 }
2469
20138696
DK
2470 // Whether NAME belongs to a mapping symbol.
2471 static bool
2472 is_mapping_symbol_name(const char* name)
2473 {
2474 return (name
2475 && name[0] == '$'
2476 && (name[1] == 'a' || name[1] == 't' || name[1] == 'd')
2477 && (name[2] == '\0' || name[2] == '.'));
2478 }
2479
a120bc7f
DK
2480 // Whether we work around the Cortex-A8 erratum.
2481 bool
2482 fix_cortex_a8() const
2483 { return this->fix_cortex_a8_; }
2484
85fdf906
AH
2485 // Whether we merge exidx entries in debuginfo.
2486 bool
2487 merge_exidx_entries() const
2488 { return parameters->options().merge_exidx_entries(); }
2489
a2162063
ILT
2490 // Whether we fix R_ARM_V4BX relocation.
2491 // 0 - do not fix
2492 // 1 - replace with MOV instruction (armv4 target)
2493 // 2 - make interworking veneer (>= armv4t targets only)
9b2fd367 2494 General_options::Fix_v4bx
a2162063 2495 fix_v4bx() const
9b2fd367 2496 { return parameters->options().fix_v4bx(); }
a2162063 2497
44272192
DK
2498 // Scan a span of THUMB code section for Cortex-A8 erratum.
2499 void
2500 scan_span_for_cortex_a8_erratum(Arm_relobj<big_endian>*, unsigned int,
2501 section_size_type, section_size_type,
2502 const unsigned char*, Arm_address);
2503
41263c05
DK
2504 // Apply Cortex-A8 workaround to a branch.
2505 void
2506 apply_cortex_a8_workaround(const Cortex_a8_stub*, Arm_address,
2507 unsigned char*, Arm_address);
2508
d5b40221 2509 protected:
2e702c99
RM
2510 // Make the PLT-generator object.
2511 Output_data_plt_arm<big_endian>*
fa89cc82
HS
2512 make_data_plt(Layout* layout,
2513 Arm_output_data_got<big_endian>* got,
2514 Output_data_space* got_plt,
2515 Output_data_space* got_irelative)
2516 { return this->do_make_data_plt(layout, got, got_plt, got_irelative); }
2e702c99 2517
eb44217c
DK
2518 // Make an ELF object.
2519 Object*
2520 do_make_elf_object(const std::string&, Input_file*, off_t,
2521 const elfcpp::Ehdr<32, big_endian>& ehdr);
2522
2523 Object*
2524 do_make_elf_object(const std::string&, Input_file*, off_t,
2525 const elfcpp::Ehdr<32, !big_endian>&)
2526 { gold_unreachable(); }
2527
2528 Object*
2529 do_make_elf_object(const std::string&, Input_file*, off_t,
2530 const elfcpp::Ehdr<64, false>&)
2531 { gold_unreachable(); }
2532
2533 Object*
2534 do_make_elf_object(const std::string&, Input_file*, off_t,
2535 const elfcpp::Ehdr<64, true>&)
2536 { gold_unreachable(); }
2537
2538 // Make an output section.
2539 Output_section*
2540 do_make_output_section(const char* name, elfcpp::Elf_Word type,
2541 elfcpp::Elf_Xword flags)
2542 { return new Arm_output_section<big_endian>(name, type, flags); }
2543
d5b40221 2544 void
3bfcb652 2545 do_adjust_elf_header(unsigned char* view, int len);
d5b40221 2546
eb44217c
DK
2547 // We only need to generate stubs, and hence perform relaxation if we are
2548 // not doing relocatable linking.
2549 bool
2550 do_may_relax() const
2551 { return !parameters->options().relocatable(); }
2552
2553 bool
f625ae50 2554 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
eb44217c 2555
a0351a69
DK
2556 // Determine whether an object attribute tag takes an integer, a
2557 // string or both.
2558 int
2559 do_attribute_arg_type(int tag) const;
2560
2561 // Reorder tags during output.
2562 int
2563 do_attributes_order(int num) const;
2564
0d31c79d
DK
2565 // This is called when the target is selected as the default.
2566 void
2567 do_select_as_default_target()
2568 {
2569 // No locking is required since there should only be one default target.
2570 // We cannot have both the big-endian and little-endian ARM targets
2571 // as the default.
2572 gold_assert(arm_reloc_property_table == NULL);
2573 arm_reloc_property_table = new Arm_reloc_property_table();
2574 }
2575
b3ce541e
ILT
2576 // Virtual function which is set to return true by a target if
2577 // it can use relocation types to determine if a function's
2578 // pointer is taken.
2579 virtual bool
2580 do_can_check_for_function_pointers() const
2581 { return true; }
2582
2583 // Whether a section called SECTION_NAME may have function pointers to
2584 // sections not eligible for safe ICF folding.
2585 virtual bool
2586 do_section_may_have_icf_unsafe_pointers(const char* section_name) const
2587 {
2588 return (!is_prefix_of(".ARM.exidx", section_name)
2589 && !is_prefix_of(".ARM.extab", section_name)
2590 && Target::do_section_may_have_icf_unsafe_pointers(section_name));
2591 }
2e702c99 2592
647f1574
DK
2593 virtual void
2594 do_define_standard_symbols(Symbol_table*, Layout*);
2595
2e702c99 2596 virtual Output_data_plt_arm<big_endian>*
fa89cc82
HS
2597 do_make_data_plt(Layout* layout,
2598 Arm_output_data_got<big_endian>* got,
2599 Output_data_space* got_plt,
2600 Output_data_space* got_irelative)
2e702c99 2601 {
fa89cc82 2602 gold_assert(got_plt != NULL && got_irelative != NULL);
ce3e4980
PC
2603 if (parameters->options().long_plt())
2604 return new Output_data_plt_arm_long<big_endian>(
2605 layout, got, got_plt, got_irelative);
2606 else
2607 return new Output_data_plt_arm_short<big_endian>(
fa89cc82 2608 layout, got, got_plt, got_irelative);
2e702c99
RM
2609 }
2610
4a657b0d
DK
2611 private:
2612 // The class which scans relocations.
2613 class Scan
2614 {
2615 public:
2616 Scan()
bec53400 2617 : issued_non_pic_error_(false)
4a657b0d
DK
2618 { }
2619
95a2c8d6
RS
2620 static inline int
2621 get_reference_flags(unsigned int r_type);
2622
4a657b0d 2623 inline void
ad0f2072 2624 local(Symbol_table* symtab, Layout* layout, Target_arm* target,
6fa2a40b 2625 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
2626 unsigned int data_shndx,
2627 Output_section* output_section,
2628 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
bfdfa4cd
AM
2629 const elfcpp::Sym<32, big_endian>& lsym,
2630 bool is_discarded);
4a657b0d
DK
2631
2632 inline void
ad0f2072 2633 global(Symbol_table* symtab, Layout* layout, Target_arm* target,
6fa2a40b 2634 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
2635 unsigned int data_shndx,
2636 Output_section* output_section,
2637 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2638 Symbol* gsym);
2639
21bb3914
ST
2640 inline bool
2641 local_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2e702c99
RM
2642 Sized_relobj_file<32, big_endian>* ,
2643 unsigned int ,
2644 Output_section* ,
2645 const elfcpp::Rel<32, big_endian>& ,
21bb3914 2646 unsigned int ,
2e702c99 2647 const elfcpp::Sym<32, big_endian>&);
21bb3914
ST
2648
2649 inline bool
2650 global_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2e702c99
RM
2651 Sized_relobj_file<32, big_endian>* ,
2652 unsigned int ,
2653 Output_section* ,
2654 const elfcpp::Rel<32, big_endian>& ,
8a75a161 2655 unsigned int , Symbol*);
21bb3914 2656
4a657b0d
DK
2657 private:
2658 static void
6fa2a40b 2659 unsupported_reloc_local(Sized_relobj_file<32, big_endian>*,
4a657b0d
DK
2660 unsigned int r_type);
2661
2662 static void
6fa2a40b 2663 unsupported_reloc_global(Sized_relobj_file<32, big_endian>*,
4a657b0d 2664 unsigned int r_type, Symbol*);
bec53400
DK
2665
2666 void
2667 check_non_pic(Relobj*, unsigned int r_type);
2668
2669 // Almost identical to Symbol::needs_plt_entry except that it also
2670 // handles STT_ARM_TFUNC.
2671 static bool
2672 symbol_needs_plt_entry(const Symbol* sym)
2673 {
2674 // An undefined symbol from an executable does not need a PLT entry.
2675 if (sym->is_undefined() && !parameters->options().shared())
2676 return false;
2677
fa89cc82
HS
2678 if (sym->type() == elfcpp::STT_GNU_IFUNC)
2679 return true;
2680
bec53400
DK
2681 return (!parameters->doing_static_link()
2682 && (sym->type() == elfcpp::STT_FUNC
2683 || sym->type() == elfcpp::STT_ARM_TFUNC)
2684 && (sym->is_from_dynobj()
2685 || sym->is_undefined()
2686 || sym->is_preemptible()));
2687 }
2688
8a75a161
DK
2689 inline bool
2690 possible_function_pointer_reloc(unsigned int r_type);
2691
fa89cc82
HS
2692 // Whether a plt entry is needed for ifunc.
2693 bool
2694 reloc_needs_plt_for_ifunc(Sized_relobj_file<32, big_endian>*,
2695 unsigned int r_type);
2696
bec53400
DK
2697 // Whether we have issued an error about a non-PIC compilation.
2698 bool issued_non_pic_error_;
4a657b0d
DK
2699 };
2700
2701 // The class which implements relocation.
2702 class Relocate
2703 {
2704 public:
2705 Relocate()
2706 { }
2707
2708 ~Relocate()
2709 { }
2710
bec53400
DK
2711 // Return whether the static relocation needs to be applied.
2712 inline bool
2713 should_apply_static_reloc(const Sized_symbol<32>* gsym,
95a2c8d6 2714 unsigned int r_type,
bec53400
DK
2715 bool is_32bit,
2716 Output_section* output_section);
2717
4a657b0d
DK
2718 // Do a relocation. Return false if the caller should not issue
2719 // any warnings about this relocation.
2720 inline bool
91a65d2f
AM
2721 relocate(const Relocate_info<32, big_endian>*, unsigned int,
2722 Target_arm*, Output_section*, size_t, const unsigned char*,
2723 const Sized_symbol<32>*, const Symbol_value<32>*,
2724 unsigned char*, Arm_address, section_size_type);
c121c671
DK
2725
2726 // Return whether we want to pass flag NON_PIC_REF for this
f4e5969c
DK
2727 // reloc. This means the relocation type accesses a symbol not via
2728 // GOT or PLT.
c121c671 2729 static inline bool
ca09d69a 2730 reloc_is_non_pic(unsigned int r_type)
c121c671
DK
2731 {
2732 switch (r_type)
2733 {
f4e5969c
DK
2734 // These relocation types reference GOT or PLT entries explicitly.
2735 case elfcpp::R_ARM_GOT_BREL:
2736 case elfcpp::R_ARM_GOT_ABS:
2737 case elfcpp::R_ARM_GOT_PREL:
2738 case elfcpp::R_ARM_GOT_BREL12:
2739 case elfcpp::R_ARM_PLT32_ABS:
2740 case elfcpp::R_ARM_TLS_GD32:
2741 case elfcpp::R_ARM_TLS_LDM32:
2742 case elfcpp::R_ARM_TLS_IE32:
2743 case elfcpp::R_ARM_TLS_IE12GP:
2744
2745 // These relocate types may use PLT entries.
c121c671 2746 case elfcpp::R_ARM_CALL:
f4e5969c 2747 case elfcpp::R_ARM_THM_CALL:
c121c671 2748 case elfcpp::R_ARM_JUMP24:
f4e5969c
DK
2749 case elfcpp::R_ARM_THM_JUMP24:
2750 case elfcpp::R_ARM_THM_JUMP19:
2751 case elfcpp::R_ARM_PLT32:
2752 case elfcpp::R_ARM_THM_XPC22:
c3e4ae29
DK
2753 case elfcpp::R_ARM_PREL31:
2754 case elfcpp::R_ARM_SBREL31:
c121c671 2755 return false;
f4e5969c
DK
2756
2757 default:
2758 return true;
c121c671
DK
2759 }
2760 }
f96accdf
DK
2761
2762 private:
2763 // Do a TLS relocation.
2764 inline typename Arm_relocate_functions<big_endian>::Status
2765 relocate_tls(const Relocate_info<32, big_endian>*, Target_arm<big_endian>*,
2e702c99 2766 size_t, const elfcpp::Rel<32, big_endian>&, unsigned int,
f96accdf
DK
2767 const Sized_symbol<32>*, const Symbol_value<32>*,
2768 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
2769 section_size_type);
2770
4a657b0d
DK
2771 };
2772
4d625b70
CC
2773 // A class for inquiring about properties of a relocation,
2774 // used while scanning relocs during a relocatable link and
2775 // garbage collection.
2776 class Classify_reloc :
2777 public gold::Default_classify_reloc<elfcpp::SHT_REL, 32, big_endian>
4a657b0d
DK
2778 {
2779 public:
8a8880cb
CC
2780 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc
2781 Reltype;
2782
2783 // Return the explicit addend of the relocation (return 0 for SHT_REL).
2784 static typename elfcpp::Elf_types<32>::Elf_Swxword
2785 get_r_addend(const Reltype*)
2786 { return 0; }
2787
4d625b70
CC
2788 // Return the size of the addend of the relocation (only used for SHT_REL).
2789 static unsigned int
4a657b0d
DK
2790 get_size_for_reloc(unsigned int, Relobj*);
2791 };
2792
f96accdf
DK
2793 // Adjust TLS relocation type based on the options and whether this
2794 // is a local symbol.
2795 static tls::Tls_optimization
2796 optimize_tls_reloc(bool is_final, int r_type);
2797
94cdfcff 2798 // Get the GOT section, creating it if necessary.
4a54abbb 2799 Arm_output_data_got<big_endian>*
94cdfcff
DK
2800 got_section(Symbol_table*, Layout*);
2801
2802 // Get the GOT PLT section.
2803 Output_data_space*
2804 got_plt_section() const
2805 {
2806 gold_assert(this->got_plt_ != NULL);
2807 return this->got_plt_;
2808 }
2809
fa89cc82
HS
2810 // Create the PLT section.
2811 void
2812 make_plt_section(Symbol_table* symtab, Layout* layout);
2813
94cdfcff
DK
2814 // Create a PLT entry for a global symbol.
2815 void
2816 make_plt_entry(Symbol_table*, Layout*, Symbol*);
2817
fa89cc82
HS
2818 // Create a PLT entry for a local STT_GNU_IFUNC symbol.
2819 void
2820 make_local_ifunc_plt_entry(Symbol_table*, Layout*,
2821 Sized_relobj_file<32, big_endian>* relobj,
2822 unsigned int local_sym_index);
2823
f96accdf
DK
2824 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2825 void
2826 define_tls_base_symbol(Symbol_table*, Layout*);
2827
2828 // Create a GOT entry for the TLS module index.
2829 unsigned int
2830 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
6fa2a40b 2831 Sized_relobj_file<32, big_endian>* object);
f96accdf 2832
94cdfcff
DK
2833 // Get the PLT section.
2834 const Output_data_plt_arm<big_endian>*
2835 plt_section() const
2836 {
2837 gold_assert(this->plt_ != NULL);
2838 return this->plt_;
2839 }
2840
2841 // Get the dynamic reloc section, creating it if necessary.
2842 Reloc_section*
2843 rel_dyn_section(Layout*);
2844
f96accdf
DK
2845 // Get the section to use for TLS_DESC relocations.
2846 Reloc_section*
2847 rel_tls_desc_section(Layout*) const;
2848
94cdfcff
DK
2849 // Return true if the symbol may need a COPY relocation.
2850 // References from an executable object to non-function symbols
2851 // defined in a dynamic object may need a COPY relocation.
2852 bool
2853 may_need_copy_reloc(Symbol* gsym)
2854 {
966d4097
DK
2855 return (gsym->type() != elfcpp::STT_ARM_TFUNC
2856 && gsym->may_need_copy_reloc());
94cdfcff
DK
2857 }
2858
2859 // Add a potential copy relocation.
2860 void
2861 copy_reloc(Symbol_table* symtab, Layout* layout,
6fa2a40b 2862 Sized_relobj_file<32, big_endian>* object,
2ea97941 2863 unsigned int shndx, Output_section* output_section,
94cdfcff
DK
2864 Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc)
2865 {
859d7987 2866 unsigned int r_type = elfcpp::elf_r_type<32>(reloc.get_r_info());
94cdfcff
DK
2867 this->copy_relocs_.copy_reloc(symtab, layout,
2868 symtab->get_sized_symbol<32>(sym),
859d7987
CC
2869 object, shndx, output_section,
2870 r_type, reloc.get_r_offset(), 0,
94cdfcff
DK
2871 this->rel_dyn_section(layout));
2872 }
2873
d5b40221
DK
2874 // Whether two EABI versions are compatible.
2875 static bool
2876 are_eabi_versions_compatible(elfcpp::Elf_Word v1, elfcpp::Elf_Word v2);
2877
2878 // Merge processor-specific flags from input object and those in the ELF
2879 // header of the output.
2880 void
2881 merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word);
2882
a0351a69
DK
2883 // Get the secondary compatible architecture.
2884 static int
2885 get_secondary_compatible_arch(const Attributes_section_data*);
2886
2887 // Set the secondary compatible architecture.
2888 static void
2889 set_secondary_compatible_arch(Attributes_section_data*, int);
2890
2891 static int
2892 tag_cpu_arch_combine(const char*, int, int*, int, int);
2893
2894 // Helper to print AEABI enum tag value.
2895 static std::string
2896 aeabi_enum_name(unsigned int);
2897
2898 // Return string value for TAG_CPU_name.
2899 static std::string
2900 tag_cpu_name_value(unsigned int);
2901
679af368
ILT
2902 // Query attributes object to see if integer divide instructions may be
2903 // present in an object.
2904 static bool
2905 attributes_accept_div(int arch, int profile,
2906 const Object_attribute* div_attr);
2907
2908 // Query attributes object to see if integer divide instructions are
2909 // forbidden to be in the object. This is not the inverse of
2910 // attributes_accept_div.
2911 static bool
2912 attributes_forbid_div(const Object_attribute* div_attr);
2913
a0351a69
DK
2914 // Merge object attributes from input object and those in the output.
2915 void
2916 merge_object_attributes(const char*, const Attributes_section_data*);
2917
2918 // Helper to get an AEABI object attribute
2919 Object_attribute*
2920 get_aeabi_object_attribute(int tag) const
2921 {
2922 Attributes_section_data* pasd = this->attributes_section_data_;
2923 gold_assert(pasd != NULL);
2924 Object_attribute* attr =
2925 pasd->get_attribute(Object_attribute::OBJ_ATTR_PROC, tag);
2926 gold_assert(attr != NULL);
2927 return attr;
2928 }
2929
eb44217c
DK
2930 //
2931 // Methods to support stub-generations.
2932 //
d5b40221 2933
eb44217c
DK
2934 // Group input sections for stub generation.
2935 void
f625ae50 2936 group_sections(Layout*, section_size_type, bool, const Task*);
d5b40221 2937
eb44217c
DK
2938 // Scan a relocation for stub generation.
2939 void
2940 scan_reloc_for_stub(const Relocate_info<32, big_endian>*, unsigned int,
2941 const Sized_symbol<32>*, unsigned int,
2942 const Symbol_value<32>*,
2943 elfcpp::Elf_types<32>::Elf_Swxword, Arm_address);
d5b40221 2944
eb44217c
DK
2945 // Scan a relocation section for stub.
2946 template<int sh_type>
2947 void
2948 scan_reloc_section_for_stubs(
2949 const Relocate_info<32, big_endian>* relinfo,
2950 const unsigned char* prelocs,
2951 size_t reloc_count,
2952 Output_section* output_section,
2953 bool needs_special_offset_handling,
2954 const unsigned char* view,
2955 elfcpp::Elf_types<32>::Elf_Addr view_address,
2956 section_size_type);
d5b40221 2957
2b328d4e
DK
2958 // Fix .ARM.exidx section coverage.
2959 void
131687b4 2960 fix_exidx_coverage(Layout*, const Input_objects*,
f625ae50
DK
2961 Arm_output_section<big_endian>*, Symbol_table*,
2962 const Task*);
2b328d4e
DK
2963
2964 // Functors for STL set.
2965 struct output_section_address_less_than
2966 {
2967 bool
2968 operator()(const Output_section* s1, const Output_section* s2) const
2969 { return s1->address() < s2->address(); }
2970 };
2971
4a657b0d
DK
2972 // Information about this specific target which we pass to the
2973 // general Target structure.
2974 static const Target::Target_info arm_info;
94cdfcff
DK
2975
2976 // The types of GOT entries needed for this platform.
0e70b911
CC
2977 // These values are exposed to the ABI in an incremental link.
2978 // Do not renumber existing values without changing the version
2979 // number of the .gnu_incremental_inputs section.
94cdfcff
DK
2980 enum Got_type
2981 {
f96accdf
DK
2982 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
2983 GOT_TYPE_TLS_NOFFSET = 1, // GOT entry for negative TLS offset
2984 GOT_TYPE_TLS_OFFSET = 2, // GOT entry for positive TLS offset
2985 GOT_TYPE_TLS_PAIR = 3, // GOT entry for TLS module/offset pair
2986 GOT_TYPE_TLS_DESC = 4 // GOT entry for TLS_DESC pair
94cdfcff
DK
2987 };
2988
55da9579
DK
2989 typedef typename std::vector<Stub_table<big_endian>*> Stub_table_list;
2990
2991 // Map input section to Arm_input_section.
5ac169d4 2992 typedef Unordered_map<Section_id,
55da9579 2993 Arm_input_section<big_endian>*,
5ac169d4 2994 Section_id_hash>
55da9579 2995 Arm_input_section_map;
2e702c99 2996
a120bc7f
DK
2997 // Map output addresses to relocs for Cortex-A8 erratum.
2998 typedef Unordered_map<Arm_address, const Cortex_a8_reloc*>
2999 Cortex_a8_relocs_info;
3000
94cdfcff 3001 // The GOT section.
4a54abbb 3002 Arm_output_data_got<big_endian>* got_;
94cdfcff
DK
3003 // The PLT section.
3004 Output_data_plt_arm<big_endian>* plt_;
3005 // The GOT PLT section.
3006 Output_data_space* got_plt_;
fa89cc82
HS
3007 // The GOT section for IRELATIVE relocations.
3008 Output_data_space* got_irelative_;
94cdfcff
DK
3009 // The dynamic reloc section.
3010 Reloc_section* rel_dyn_;
fa89cc82
HS
3011 // The section to use for IRELATIVE relocs.
3012 Reloc_section* rel_irelative_;
94cdfcff
DK
3013 // Relocs saved to avoid a COPY reloc.
3014 Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_;
f96accdf
DK
3015 // Offset of the GOT entry for the TLS module index.
3016 unsigned int got_mod_index_offset_;
3017 // True if the _TLS_MODULE_BASE_ symbol has been defined.
3018 bool tls_base_symbol_defined_;
55da9579
DK
3019 // Vector of Stub_tables created.
3020 Stub_table_list stub_tables_;
3021 // Stub factory.
3022 const Stub_factory &stub_factory_;
b569affa
DK
3023 // Whether we force PIC branch veneers.
3024 bool should_force_pic_veneer_;
eb44217c
DK
3025 // Map for locating Arm_input_sections.
3026 Arm_input_section_map arm_input_section_map_;
a0351a69
DK
3027 // Attributes section data in output.
3028 Attributes_section_data* attributes_section_data_;
a120bc7f
DK
3029 // Whether we want to fix code for Cortex-A8 erratum.
3030 bool fix_cortex_a8_;
3031 // Map addresses to relocs for Cortex-A8 erratum.
3032 Cortex_a8_relocs_info cortex_a8_relocs_info_;
bc99685c
DK
3033 // What R_ARM_TARGET1 maps to. It can be R_ARM_REL32 or R_ARM_ABS32.
3034 unsigned int target1_reloc_;
3035 // What R_ARM_TARGET2 maps to. It should be one of R_ARM_REL32, R_ARM_ABS32
3036 // and R_ARM_GOT_PREL.
3037 unsigned int target2_reloc_;
4a657b0d
DK
3038};
3039
3040template<bool big_endian>
3041const Target::Target_info Target_arm<big_endian>::arm_info =
3042{
3043 32, // size
3044 big_endian, // is_big_endian
3045 elfcpp::EM_ARM, // machine_code
3046 false, // has_make_symbol
3047 false, // has_resolve
3048 false, // has_code_fill
3049 true, // is_default_stack_executable
b3ce541e 3050 false, // can_icf_inline_merge_sections
4a657b0d
DK
3051 '\0', // wrap_char
3052 "/usr/lib/libc.so.1", // dynamic_linker
3053 0x8000, // default_text_segment_address
3054 0x1000, // abi_pagesize (overridable by -z max-page-size)
8a5e3e08 3055 0x1000, // common_pagesize (overridable by -z common-page-size)
2e702c99
RM
3056 false, // isolate_execinstr
3057 0, // rosegment_gap
8a5e3e08
ILT
3058 elfcpp::SHN_UNDEF, // small_common_shndx
3059 elfcpp::SHN_UNDEF, // large_common_shndx
3060 0, // small_common_section_flags
05a352e6
DK
3061 0, // large_common_section_flags
3062 ".ARM.attributes", // attributes_section
a67858e0 3063 "aeabi", // attributes_vendor
8d9743bd
MK
3064 "_start", // entry_symbol_name
3065 32, // hash_entry_size
4a657b0d
DK
3066};
3067
c121c671
DK
3068// Arm relocate functions class
3069//
3070
3071template<bool big_endian>
3072class Arm_relocate_functions : public Relocate_functions<32, big_endian>
3073{
3074 public:
3075 typedef enum
3076 {
3077 STATUS_OKAY, // No error during relocation.
9b547ce6 3078 STATUS_OVERFLOW, // Relocation overflow.
c121c671
DK
3079 STATUS_BAD_RELOC // Relocation cannot be applied.
3080 } Status;
3081
3082 private:
3083 typedef Relocate_functions<32, big_endian> Base;
3084 typedef Arm_relocate_functions<big_endian> This;
3085
fd3c5f0b
ILT
3086 // Encoding of imm16 argument for movt and movw ARM instructions
3087 // from ARM ARM:
2e702c99 3088 //
fd3c5f0b
ILT
3089 // imm16 := imm4 | imm12
3090 //
2e702c99 3091 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
fd3c5f0b
ILT
3092 // +-------+---------------+-------+-------+-----------------------+
3093 // | | |imm4 | |imm12 |
3094 // +-------+---------------+-------+-------+-----------------------+
3095
3096 // Extract the relocation addend from VAL based on the ARM
3097 // instruction encoding described above.
3098 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3099 extract_arm_movw_movt_addend(
3100 typename elfcpp::Swap<32, big_endian>::Valtype val)
3101 {
3102 // According to the Elf ABI for ARM Architecture the immediate
3103 // field is sign-extended to form the addend.
bef2b434 3104 return Bits<16>::sign_extend32(((val >> 4) & 0xf000) | (val & 0xfff));
fd3c5f0b
ILT
3105 }
3106
3107 // Insert X into VAL based on the ARM instruction encoding described
3108 // above.
3109 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3110 insert_val_arm_movw_movt(
3111 typename elfcpp::Swap<32, big_endian>::Valtype val,
3112 typename elfcpp::Swap<32, big_endian>::Valtype x)
3113 {
3114 val &= 0xfff0f000;
3115 val |= x & 0x0fff;
3116 val |= (x & 0xf000) << 4;
3117 return val;
3118 }
3119
3120 // Encoding of imm16 argument for movt and movw Thumb2 instructions
3121 // from ARM ARM:
2e702c99 3122 //
fd3c5f0b
ILT
3123 // imm16 := imm4 | i | imm3 | imm8
3124 //
2e702c99 3125 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
fd3c5f0b
ILT
3126 // +---------+-+-----------+-------++-+-----+-------+---------------+
3127 // | |i| |imm4 || |imm3 | |imm8 |
3128 // +---------+-+-----------+-------++-+-----+-------+---------------+
3129
3130 // Extract the relocation addend from VAL based on the Thumb2
3131 // instruction encoding described above.
3132 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3133 extract_thumb_movw_movt_addend(
3134 typename elfcpp::Swap<32, big_endian>::Valtype val)
3135 {
3136 // According to the Elf ABI for ARM Architecture the immediate
3137 // field is sign-extended to form the addend.
bef2b434
ILT
3138 return Bits<16>::sign_extend32(((val >> 4) & 0xf000)
3139 | ((val >> 15) & 0x0800)
3140 | ((val >> 4) & 0x0700)
3141 | (val & 0x00ff));
fd3c5f0b
ILT
3142 }
3143
3144 // Insert X into VAL based on the Thumb2 instruction encoding
3145 // described above.
3146 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3147 insert_val_thumb_movw_movt(
3148 typename elfcpp::Swap<32, big_endian>::Valtype val,
3149 typename elfcpp::Swap<32, big_endian>::Valtype x)
3150 {
3151 val &= 0xfbf08f00;
3152 val |= (x & 0xf000) << 4;
3153 val |= (x & 0x0800) << 15;
3154 val |= (x & 0x0700) << 4;
3155 val |= (x & 0x00ff);
3156 return val;
3157 }
3158
b10d2873
ILT
3159 // Calculate the smallest constant Kn for the specified residual.
3160 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3161 static uint32_t
3162 calc_grp_kn(typename elfcpp::Swap<32, big_endian>::Valtype residual)
3163 {
3164 int32_t msb;
3165
3166 if (residual == 0)
3167 return 0;
3168 // Determine the most significant bit in the residual and
3169 // align the resulting value to a 2-bit boundary.
3170 for (msb = 30; (msb >= 0) && !(residual & (3 << msb)); msb -= 2)
3171 ;
3172 // The desired shift is now (msb - 6), or zero, whichever
3173 // is the greater.
3174 return (((msb - 6) < 0) ? 0 : (msb - 6));
3175 }
3176
3177 // Calculate the final residual for the specified group index.
3178 // If the passed group index is less than zero, the method will return
3179 // the value of the specified residual without any change.
3180 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3181 static typename elfcpp::Swap<32, big_endian>::Valtype
3182 calc_grp_residual(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3183 const int group)
3184 {
3185 for (int n = 0; n <= group; n++)
3186 {
3187 // Calculate which part of the value to mask.
3188 uint32_t shift = calc_grp_kn(residual);
3189 // Calculate the residual for the next time around.
3190 residual &= ~(residual & (0xff << shift));
3191 }
3192
3193 return residual;
3194 }
3195
3196 // Calculate the value of Gn for the specified group index.
3197 // We return it in the form of an encoded constant-and-rotation.
3198 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3199 static typename elfcpp::Swap<32, big_endian>::Valtype
3200 calc_grp_gn(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3201 const int group)
3202 {
3203 typename elfcpp::Swap<32, big_endian>::Valtype gn = 0;
3204 uint32_t shift = 0;
3205
3206 for (int n = 0; n <= group; n++)
3207 {
3208 // Calculate which part of the value to mask.
3209 shift = calc_grp_kn(residual);
3210 // Calculate Gn in 32-bit as well as encoded constant-and-rotation form.
3211 gn = residual & (0xff << shift);
3212 // Calculate the residual for the next time around.
3213 residual &= ~gn;
3214 }
3215 // Return Gn in the form of an encoded constant-and-rotation.
3216 return ((gn >> shift) | ((gn <= 0xff ? 0 : (32 - shift) / 2) << 8));
3217 }
3218
1521477a 3219 public:
d204b6e9
DK
3220 // Handle ARM long branches.
3221 static typename This::Status
3222 arm_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
ca09d69a 3223 unsigned char*, const Sized_symbol<32>*,
d204b6e9
DK
3224 const Arm_relobj<big_endian>*, unsigned int,
3225 const Symbol_value<32>*, Arm_address, Arm_address, bool);
c121c671 3226
51938283
DK
3227 // Handle THUMB long branches.
3228 static typename This::Status
3229 thumb_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
ca09d69a 3230 unsigned char*, const Sized_symbol<32>*,
51938283
DK
3231 const Arm_relobj<big_endian>*, unsigned int,
3232 const Symbol_value<32>*, Arm_address, Arm_address, bool);
3233
5e445df6 3234
089d69dc
DK
3235 // Return the branch offset of a 32-bit THUMB branch.
3236 static inline int32_t
3237 thumb32_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3238 {
3239 // We use the Thumb-2 encoding (backwards compatible with Thumb-1)
3240 // involving the J1 and J2 bits.
3241 uint32_t s = (upper_insn & (1U << 10)) >> 10;
3242 uint32_t upper = upper_insn & 0x3ffU;
3243 uint32_t lower = lower_insn & 0x7ffU;
3244 uint32_t j1 = (lower_insn & (1U << 13)) >> 13;
3245 uint32_t j2 = (lower_insn & (1U << 11)) >> 11;
3246 uint32_t i1 = j1 ^ s ? 0 : 1;
3247 uint32_t i2 = j2 ^ s ? 0 : 1;
3248
bef2b434
ILT
3249 return Bits<25>::sign_extend32((s << 24) | (i1 << 23) | (i2 << 22)
3250 | (upper << 12) | (lower << 1));
089d69dc
DK
3251 }
3252
3253 // Insert OFFSET to a 32-bit THUMB branch and return the upper instruction.
3254 // UPPER_INSN is the original upper instruction of the branch. Caller is
3255 // responsible for overflow checking and BLX offset adjustment.
3256 static inline uint16_t
3257 thumb32_branch_upper(uint16_t upper_insn, int32_t offset)
3258 {
3259 uint32_t s = offset < 0 ? 1 : 0;
3260 uint32_t bits = static_cast<uint32_t>(offset);
3261 return (upper_insn & ~0x7ffU) | ((bits >> 12) & 0x3ffU) | (s << 10);
3262 }
3263
3264 // Insert OFFSET to a 32-bit THUMB branch and return the lower instruction.
3265 // LOWER_INSN is the original lower instruction of the branch. Caller is
3266 // responsible for overflow checking and BLX offset adjustment.
3267 static inline uint16_t
3268 thumb32_branch_lower(uint16_t lower_insn, int32_t offset)
3269 {
3270 uint32_t s = offset < 0 ? 1 : 0;
3271 uint32_t bits = static_cast<uint32_t>(offset);
3272 return ((lower_insn & ~0x2fffU)
2e702c99
RM
3273 | ((((bits >> 23) & 1) ^ !s) << 13)
3274 | ((((bits >> 22) & 1) ^ !s) << 11)
3275 | ((bits >> 1) & 0x7ffU));
089d69dc
DK
3276 }
3277
3278 // Return the branch offset of a 32-bit THUMB conditional branch.
3279 static inline int32_t
3280 thumb32_cond_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3281 {
3282 uint32_t s = (upper_insn & 0x0400U) >> 10;
3283 uint32_t j1 = (lower_insn & 0x2000U) >> 13;
3284 uint32_t j2 = (lower_insn & 0x0800U) >> 11;
3285 uint32_t lower = (lower_insn & 0x07ffU);
3286 uint32_t upper = (s << 8) | (j2 << 7) | (j1 << 6) | (upper_insn & 0x003fU);
3287
bef2b434 3288 return Bits<21>::sign_extend32((upper << 12) | (lower << 1));
089d69dc
DK
3289 }
3290
3291 // Insert OFFSET to a 32-bit THUMB conditional branch and return the upper
3292 // instruction. UPPER_INSN is the original upper instruction of the branch.
3293 // Caller is responsible for overflow checking.
3294 static inline uint16_t
3295 thumb32_cond_branch_upper(uint16_t upper_insn, int32_t offset)
3296 {
3297 uint32_t s = offset < 0 ? 1 : 0;
3298 uint32_t bits = static_cast<uint32_t>(offset);
3299 return (upper_insn & 0xfbc0U) | (s << 10) | ((bits & 0x0003f000U) >> 12);
3300 }
3301
3302 // Insert OFFSET to a 32-bit THUMB conditional branch and return the lower
3303 // instruction. LOWER_INSN is the original lower instruction of the branch.
9b547ce6 3304 // The caller is responsible for overflow checking.
089d69dc
DK
3305 static inline uint16_t
3306 thumb32_cond_branch_lower(uint16_t lower_insn, int32_t offset)
3307 {
3308 uint32_t bits = static_cast<uint32_t>(offset);
3309 uint32_t j2 = (bits & 0x00080000U) >> 19;
3310 uint32_t j1 = (bits & 0x00040000U) >> 18;
3311 uint32_t lo = (bits & 0x00000ffeU) >> 1;
3312
3313 return (lower_insn & 0xd000U) | (j1 << 13) | (j2 << 11) | lo;
3314 }
3315
5e445df6
ILT
3316 // R_ARM_ABS8: S + A
3317 static inline typename This::Status
ca09d69a 3318 abs8(unsigned char* view,
6fa2a40b 3319 const Sized_relobj_file<32, big_endian>* object,
be8fcb75 3320 const Symbol_value<32>* psymval)
5e445df6
ILT
3321 {
3322 typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype;
5e445df6
ILT
3323 Valtype* wv = reinterpret_cast<Valtype*>(view);
3324 Valtype val = elfcpp::Swap<8, big_endian>::readval(wv);
bef2b434 3325 int32_t addend = Bits<8>::sign_extend32(val);
f6cccc2c 3326 Arm_address x = psymval->value(object, addend);
bef2b434 3327 val = Bits<32>::bit_select32(val, x, 0xffU);
5e445df6 3328 elfcpp::Swap<8, big_endian>::writeval(wv, val);
a2c7281b
DK
3329
3330 // R_ARM_ABS8 permits signed or unsigned results.
2c175ebc 3331 return (Bits<8>::has_signed_unsigned_overflow32(x)
5e445df6
ILT
3332 ? This::STATUS_OVERFLOW
3333 : This::STATUS_OKAY);
3334 }
3335
be8fcb75
ILT
3336 // R_ARM_THM_ABS5: S + A
3337 static inline typename This::Status
ca09d69a 3338 thm_abs5(unsigned char* view,
6fa2a40b 3339 const Sized_relobj_file<32, big_endian>* object,
be8fcb75
ILT
3340 const Symbol_value<32>* psymval)
3341 {
3342 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3343 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3344 Valtype* wv = reinterpret_cast<Valtype*>(view);
3345 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3346 Reltype addend = (val & 0x7e0U) >> 6;
2daedcd6 3347 Reltype x = psymval->value(object, addend);
bef2b434 3348 val = Bits<32>::bit_select32(val, x << 6, 0x7e0U);
be8fcb75 3349 elfcpp::Swap<16, big_endian>::writeval(wv, val);
2c175ebc 3350 return (Bits<5>::has_overflow32(x)
be8fcb75
ILT
3351 ? This::STATUS_OVERFLOW
3352 : This::STATUS_OKAY);
3353 }
3354
3355 // R_ARM_ABS12: S + A
3356 static inline typename This::Status
ca09d69a 3357 abs12(unsigned char* view,
6fa2a40b 3358 const Sized_relobj_file<32, big_endian>* object,
51938283 3359 const Symbol_value<32>* psymval)
be8fcb75
ILT
3360 {
3361 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3362 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3363 Valtype* wv = reinterpret_cast<Valtype*>(view);
3364 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3365 Reltype addend = val & 0x0fffU;
2daedcd6 3366 Reltype x = psymval->value(object, addend);
bef2b434 3367 val = Bits<32>::bit_select32(val, x, 0x0fffU);
be8fcb75 3368 elfcpp::Swap<32, big_endian>::writeval(wv, val);
bef2b434 3369 return (Bits<12>::has_overflow32(x)
be8fcb75
ILT
3370 ? This::STATUS_OVERFLOW
3371 : This::STATUS_OKAY);
3372 }
3373
3374 // R_ARM_ABS16: S + A
3375 static inline typename This::Status
ca09d69a 3376 abs16(unsigned char* view,
6fa2a40b 3377 const Sized_relobj_file<32, big_endian>* object,
51938283 3378 const Symbol_value<32>* psymval)
be8fcb75 3379 {
f6cccc2c 3380 typedef typename elfcpp::Swap_unaligned<16, big_endian>::Valtype Valtype;
f6cccc2c 3381 Valtype val = elfcpp::Swap_unaligned<16, big_endian>::readval(view);
bef2b434 3382 int32_t addend = Bits<16>::sign_extend32(val);
f6cccc2c 3383 Arm_address x = psymval->value(object, addend);
bef2b434 3384 val = Bits<32>::bit_select32(val, x, 0xffffU);
f6cccc2c
DK
3385 elfcpp::Swap_unaligned<16, big_endian>::writeval(view, val);
3386
3387 // R_ARM_ABS16 permits signed or unsigned results.
2c175ebc 3388 return (Bits<16>::has_signed_unsigned_overflow32(x)
be8fcb75
ILT
3389 ? This::STATUS_OVERFLOW
3390 : This::STATUS_OKAY);
3391 }
3392
c121c671
DK
3393 // R_ARM_ABS32: (S + A) | T
3394 static inline typename This::Status
ca09d69a 3395 abs32(unsigned char* view,
6fa2a40b 3396 const Sized_relobj_file<32, big_endian>* object,
c121c671 3397 const Symbol_value<32>* psymval,
2daedcd6 3398 Arm_address thumb_bit)
c121c671 3399 {
f6cccc2c
DK
3400 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3401 Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
2daedcd6 3402 Valtype x = psymval->value(object, addend) | thumb_bit;
f6cccc2c 3403 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
c121c671
DK
3404 return This::STATUS_OKAY;
3405 }
3406
3407 // R_ARM_REL32: (S + A) | T - P
3408 static inline typename This::Status
ca09d69a 3409 rel32(unsigned char* view,
6fa2a40b 3410 const Sized_relobj_file<32, big_endian>* object,
c121c671 3411 const Symbol_value<32>* psymval,
ebabffbd 3412 Arm_address address,
2daedcd6 3413 Arm_address thumb_bit)
c121c671 3414 {
f6cccc2c
DK
3415 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3416 Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
2daedcd6 3417 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
f6cccc2c 3418 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
c121c671
DK
3419 return This::STATUS_OKAY;
3420 }
3421
089d69dc
DK
3422 // R_ARM_THM_JUMP24: (S + A) | T - P
3423 static typename This::Status
ca09d69a 3424 thm_jump19(unsigned char* view, const Arm_relobj<big_endian>* object,
089d69dc
DK
3425 const Symbol_value<32>* psymval, Arm_address address,
3426 Arm_address thumb_bit);
3427
800d0f56
ILT
3428 // R_ARM_THM_JUMP6: S + A – P
3429 static inline typename This::Status
ca09d69a 3430 thm_jump6(unsigned char* view,
6fa2a40b 3431 const Sized_relobj_file<32, big_endian>* object,
800d0f56
ILT
3432 const Symbol_value<32>* psymval,
3433 Arm_address address)
3434 {
3435 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3436 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3437 Valtype* wv = reinterpret_cast<Valtype*>(view);
3438 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3439 // bit[9]:bit[7:3]:’0’ (mask: 0x02f8)
3440 Reltype addend = (((val & 0x0200) >> 3) | ((val & 0x00f8) >> 2));
3441 Reltype x = (psymval->value(object, addend) - address);
3442 val = (val & 0xfd07) | ((x & 0x0040) << 3) | ((val & 0x003e) << 2);
3443 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3444 // CZB does only forward jumps.
3445 return ((x > 0x007e)
3446 ? This::STATUS_OVERFLOW
3447 : This::STATUS_OKAY);
3448 }
3449
3450 // R_ARM_THM_JUMP8: S + A – P
3451 static inline typename This::Status
ca09d69a 3452 thm_jump8(unsigned char* view,
6fa2a40b 3453 const Sized_relobj_file<32, big_endian>* object,
800d0f56
ILT
3454 const Symbol_value<32>* psymval,
3455 Arm_address address)
3456 {
3457 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
800d0f56
ILT
3458 Valtype* wv = reinterpret_cast<Valtype*>(view);
3459 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
bef2b434 3460 int32_t addend = Bits<8>::sign_extend32((val & 0x00ff) << 1);
57eb9b50
DK
3461 int32_t x = (psymval->value(object, addend) - address);
3462 elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xff00)
2e702c99 3463 | ((x & 0x01fe) >> 1)));
57eb9b50 3464 // We do a 9-bit overflow check because x is right-shifted by 1 bit.
bef2b434 3465 return (Bits<9>::has_overflow32(x)
800d0f56
ILT
3466 ? This::STATUS_OVERFLOW
3467 : This::STATUS_OKAY);
3468 }
3469
3470 // R_ARM_THM_JUMP11: S + A – P
3471 static inline typename This::Status
ca09d69a 3472 thm_jump11(unsigned char* view,
6fa2a40b 3473 const Sized_relobj_file<32, big_endian>* object,
800d0f56
ILT
3474 const Symbol_value<32>* psymval,
3475 Arm_address address)
3476 {
3477 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
800d0f56
ILT
3478 Valtype* wv = reinterpret_cast<Valtype*>(view);
3479 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
bef2b434 3480 int32_t addend = Bits<11>::sign_extend32((val & 0x07ff) << 1);
57eb9b50
DK
3481 int32_t x = (psymval->value(object, addend) - address);
3482 elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xf800)
2e702c99 3483 | ((x & 0x0ffe) >> 1)));
57eb9b50 3484 // We do a 12-bit overflow check because x is right-shifted by 1 bit.
bef2b434 3485 return (Bits<12>::has_overflow32(x)
800d0f56
ILT
3486 ? This::STATUS_OVERFLOW
3487 : This::STATUS_OKAY);
3488 }
3489
c121c671
DK
3490 // R_ARM_BASE_PREL: B(S) + A - P
3491 static inline typename This::Status
3492 base_prel(unsigned char* view,
ebabffbd
DK
3493 Arm_address origin,
3494 Arm_address address)
c121c671
DK
3495 {
3496 Base::rel32(view, origin - address);
3497 return STATUS_OKAY;
3498 }
3499
be8fcb75
ILT
3500 // R_ARM_BASE_ABS: B(S) + A
3501 static inline typename This::Status
3502 base_abs(unsigned char* view,
f4e5969c 3503 Arm_address origin)
be8fcb75
ILT
3504 {
3505 Base::rel32(view, origin);
3506 return STATUS_OKAY;
3507 }
3508
c121c671
DK
3509 // R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG
3510 static inline typename This::Status
3511 got_brel(unsigned char* view,
3512 typename elfcpp::Swap<32, big_endian>::Valtype got_offset)
3513 {
3514 Base::rel32(view, got_offset);
3515 return This::STATUS_OKAY;
3516 }
3517
f4e5969c 3518 // R_ARM_GOT_PREL: GOT(S) + A - P
7f5309a5 3519 static inline typename This::Status
ca09d69a 3520 got_prel(unsigned char* view,
f4e5969c 3521 Arm_address got_entry,
ebabffbd 3522 Arm_address address)
7f5309a5 3523 {
f4e5969c 3524 Base::rel32(view, got_entry - address);
7f5309a5
ILT
3525 return This::STATUS_OKAY;
3526 }
3527
c121c671
DK
3528 // R_ARM_PREL: (S + A) | T - P
3529 static inline typename This::Status
ca09d69a 3530 prel31(unsigned char* view,
6fa2a40b 3531 const Sized_relobj_file<32, big_endian>* object,
c121c671 3532 const Symbol_value<32>* psymval,
ebabffbd 3533 Arm_address address,
2daedcd6 3534 Arm_address thumb_bit)
c121c671 3535 {
f6cccc2c
DK
3536 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3537 Valtype val = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
bef2b434 3538 Valtype addend = Bits<31>::sign_extend32(val);
2daedcd6 3539 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
bef2b434 3540 val = Bits<32>::bit_select32(val, x, 0x7fffffffU);
f6cccc2c 3541 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, val);
bef2b434
ILT
3542 return (Bits<31>::has_overflow32(x)
3543 ? This::STATUS_OVERFLOW
3544 : This::STATUS_OKAY);
c121c671 3545 }
fd3c5f0b 3546
5c57f1be 3547 // R_ARM_MOVW_ABS_NC: (S + A) | T (relative address base is )
c2a122b6 3548 // R_ARM_MOVW_PREL_NC: (S + A) | T - P
5c57f1be
DK
3549 // R_ARM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3550 // R_ARM_MOVW_BREL: ((S + A) | T) - B(S)
02961d7e 3551 static inline typename This::Status
5c57f1be 3552 movw(unsigned char* view,
6fa2a40b 3553 const Sized_relobj_file<32, big_endian>* object,
5c57f1be
DK
3554 const Symbol_value<32>* psymval,
3555 Arm_address relative_address_base,
3556 Arm_address thumb_bit,
3557 bool check_overflow)
02961d7e
ILT
3558 {
3559 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3560 Valtype* wv = reinterpret_cast<Valtype*>(view);
3561 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3562 Valtype addend = This::extract_arm_movw_movt_addend(val);
5c57f1be
DK
3563 Valtype x = ((psymval->value(object, addend) | thumb_bit)
3564 - relative_address_base);
02961d7e
ILT
3565 val = This::insert_val_arm_movw_movt(val, x);
3566 elfcpp::Swap<32, big_endian>::writeval(wv, val);
bef2b434 3567 return ((check_overflow && Bits<16>::has_overflow32(x))
5c57f1be
DK
3568 ? This::STATUS_OVERFLOW
3569 : This::STATUS_OKAY);
02961d7e
ILT
3570 }
3571
5c57f1be 3572 // R_ARM_MOVT_ABS: S + A (relative address base is 0)
c2a122b6 3573 // R_ARM_MOVT_PREL: S + A - P
5c57f1be 3574 // R_ARM_MOVT_BREL: S + A - B(S)
c2a122b6 3575 static inline typename This::Status
5c57f1be 3576 movt(unsigned char* view,
6fa2a40b 3577 const Sized_relobj_file<32, big_endian>* object,
5c57f1be
DK
3578 const Symbol_value<32>* psymval,
3579 Arm_address relative_address_base)
c2a122b6
ILT
3580 {
3581 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3582 Valtype* wv = reinterpret_cast<Valtype*>(view);
3583 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3584 Valtype addend = This::extract_arm_movw_movt_addend(val);
5c57f1be 3585 Valtype x = (psymval->value(object, addend) - relative_address_base) >> 16;
c2a122b6
ILT
3586 val = This::insert_val_arm_movw_movt(val, x);
3587 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5c57f1be 3588 // FIXME: IHI0044D says that we should check for overflow.
c2a122b6
ILT
3589 return This::STATUS_OKAY;
3590 }
3591
5c57f1be 3592 // R_ARM_THM_MOVW_ABS_NC: S + A | T (relative_address_base is 0)
c2a122b6 3593 // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
5c57f1be
DK
3594 // R_ARM_THM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3595 // R_ARM_THM_MOVW_BREL: ((S + A) | T) - B(S)
02961d7e 3596 static inline typename This::Status
ca09d69a 3597 thm_movw(unsigned char* view,
6fa2a40b 3598 const Sized_relobj_file<32, big_endian>* object,
5c57f1be
DK
3599 const Symbol_value<32>* psymval,
3600 Arm_address relative_address_base,
3601 Arm_address thumb_bit,
3602 bool check_overflow)
02961d7e
ILT
3603 {
3604 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3605 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3606 Valtype* wv = reinterpret_cast<Valtype*>(view);
3607 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3608 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3609 Reltype addend = This::extract_thumb_movw_movt_addend(val);
5c57f1be
DK
3610 Reltype x =
3611 (psymval->value(object, addend) | thumb_bit) - relative_address_base;
02961d7e
ILT
3612 val = This::insert_val_thumb_movw_movt(val, x);
3613 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3614 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
bef2b434 3615 return ((check_overflow && Bits<16>::has_overflow32(x))
2e702c99 3616 ? This::STATUS_OVERFLOW
5c57f1be 3617 : This::STATUS_OKAY);
02961d7e
ILT
3618 }
3619
5c57f1be 3620 // R_ARM_THM_MOVT_ABS: S + A (relative address base is 0)
c2a122b6 3621 // R_ARM_THM_MOVT_PREL: S + A - P
5c57f1be 3622 // R_ARM_THM_MOVT_BREL: S + A - B(S)
c2a122b6 3623 static inline typename This::Status
5c57f1be 3624 thm_movt(unsigned char* view,
6fa2a40b 3625 const Sized_relobj_file<32, big_endian>* object,
5c57f1be
DK
3626 const Symbol_value<32>* psymval,
3627 Arm_address relative_address_base)
c2a122b6
ILT
3628 {
3629 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3630 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3631 Valtype* wv = reinterpret_cast<Valtype*>(view);
3632 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3633 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3634 Reltype addend = This::extract_thumb_movw_movt_addend(val);
5c57f1be 3635 Reltype x = (psymval->value(object, addend) - relative_address_base) >> 16;
c2a122b6
ILT
3636 val = This::insert_val_thumb_movw_movt(val, x);
3637 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3638 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3639 return This::STATUS_OKAY;
3640 }
a2162063 3641
11b861d5
DK
3642 // R_ARM_THM_ALU_PREL_11_0: ((S + A) | T) - Pa (Thumb32)
3643 static inline typename This::Status
3644 thm_alu11(unsigned char* view,
6fa2a40b 3645 const Sized_relobj_file<32, big_endian>* object,
11b861d5
DK
3646 const Symbol_value<32>* psymval,
3647 Arm_address address,
3648 Arm_address thumb_bit)
3649 {
3650 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3651 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3652 Valtype* wv = reinterpret_cast<Valtype*>(view);
3653 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3654 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3655
3656 // f e d c b|a|9|8 7 6 5|4|3 2 1 0||f|e d c|b a 9 8|7 6 5 4 3 2 1 0
3657 // -----------------------------------------------------------------------
3658 // ADD{S} 1 1 1 1 0|i|0|1 0 0 0|S|1 1 0 1||0|imm3 |Rd |imm8
3659 // ADDW 1 1 1 1 0|i|1|0 0 0 0|0|1 1 0 1||0|imm3 |Rd |imm8
3660 // ADR[+] 1 1 1 1 0|i|1|0 0 0 0|0|1 1 1 1||0|imm3 |Rd |imm8
3661 // SUB{S} 1 1 1 1 0|i|0|1 1 0 1|S|1 1 0 1||0|imm3 |Rd |imm8
3662 // SUBW 1 1 1 1 0|i|1|0 1 0 1|0|1 1 0 1||0|imm3 |Rd |imm8
3663 // ADR[-] 1 1 1 1 0|i|1|0 1 0 1|0|1 1 1 1||0|imm3 |Rd |imm8
3664
3665 // Determine a sign for the addend.
3666 const int sign = ((insn & 0xf8ef0000) == 0xf0ad0000
3667 || (insn & 0xf8ef0000) == 0xf0af0000) ? -1 : 1;
3668 // Thumb2 addend encoding:
3669 // imm12 := i | imm3 | imm8
3670 int32_t addend = (insn & 0xff)
3671 | ((insn & 0x00007000) >> 4)
3672 | ((insn & 0x04000000) >> 15);
3673 // Apply a sign to the added.
3674 addend *= sign;
3675
3676 int32_t x = (psymval->value(object, addend) | thumb_bit)
3677 - (address & 0xfffffffc);
3678 Reltype val = abs(x);
3679 // Mask out the value and a distinct part of the ADD/SUB opcode
3680 // (bits 7:5 of opword).
3681 insn = (insn & 0xfb0f8f00)
3682 | (val & 0xff)
3683 | ((val & 0x700) << 4)
3684 | ((val & 0x800) << 15);
3685 // Set the opcode according to whether the value to go in the
3686 // place is negative.
3687 if (x < 0)
3688 insn |= 0x00a00000;
3689
3690 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3691 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3692 return ((val > 0xfff) ?
2e702c99 3693 This::STATUS_OVERFLOW : This::STATUS_OKAY);
11b861d5
DK
3694 }
3695
3696 // R_ARM_THM_PC8: S + A - Pa (Thumb)
3697 static inline typename This::Status
3698 thm_pc8(unsigned char* view,
6fa2a40b 3699 const Sized_relobj_file<32, big_endian>* object,
11b861d5
DK
3700 const Symbol_value<32>* psymval,
3701 Arm_address address)
3702 {
3703 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3704 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3705 Valtype* wv = reinterpret_cast<Valtype*>(view);
3706 Valtype insn = elfcpp::Swap<16, big_endian>::readval(wv);
3707 Reltype addend = ((insn & 0x00ff) << 2);
3708 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3709 Reltype val = abs(x);
3710 insn = (insn & 0xff00) | ((val & 0x03fc) >> 2);
3711
3712 elfcpp::Swap<16, big_endian>::writeval(wv, insn);
3713 return ((val > 0x03fc)
3714 ? This::STATUS_OVERFLOW
3715 : This::STATUS_OKAY);
3716 }
3717
3718 // R_ARM_THM_PC12: S + A - Pa (Thumb32)
3719 static inline typename This::Status
3720 thm_pc12(unsigned char* view,
6fa2a40b 3721 const Sized_relobj_file<32, big_endian>* object,
11b861d5
DK
3722 const Symbol_value<32>* psymval,
3723 Arm_address address)
3724 {
3725 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3726 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3727 Valtype* wv = reinterpret_cast<Valtype*>(view);
3728 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3729 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3730 // Determine a sign for the addend (positive if the U bit is 1).
3731 const int sign = (insn & 0x00800000) ? 1 : -1;
3732 int32_t addend = (insn & 0xfff);
3733 // Apply a sign to the added.
3734 addend *= sign;
3735
3736 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3737 Reltype val = abs(x);
3738 // Mask out and apply the value and the U bit.
3739 insn = (insn & 0xff7ff000) | (val & 0xfff);
3740 // Set the U bit according to whether the value to go in the
3741 // place is positive.
3742 if (x >= 0)
3743 insn |= 0x00800000;
3744
3745 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3746 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3747 return ((val > 0xfff) ?
2e702c99 3748 This::STATUS_OVERFLOW : This::STATUS_OKAY);
11b861d5
DK
3749 }
3750
a2162063
ILT
3751 // R_ARM_V4BX
3752 static inline typename This::Status
3753 v4bx(const Relocate_info<32, big_endian>* relinfo,
ca09d69a 3754 unsigned char* view,
a2162063
ILT
3755 const Arm_relobj<big_endian>* object,
3756 const Arm_address address,
3757 const bool is_interworking)
3758 {
3759
3760 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3761 Valtype* wv = reinterpret_cast<Valtype*>(view);
3762 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3763
3764 // Ensure that we have a BX instruction.
3765 gold_assert((val & 0x0ffffff0) == 0x012fff10);
3766 const uint32_t reg = (val & 0xf);
3767 if (is_interworking && reg != 0xf)
3768 {
3769 Stub_table<big_endian>* stub_table =
3770 object->stub_table(relinfo->data_shndx);
3771 gold_assert(stub_table != NULL);
3772
3773 Arm_v4bx_stub* stub = stub_table->find_arm_v4bx_stub(reg);
3774 gold_assert(stub != NULL);
3775
3776 int32_t veneer_address =
3777 stub_table->address() + stub->offset() - 8 - address;
3778 gold_assert((veneer_address <= ARM_MAX_FWD_BRANCH_OFFSET)
3779 && (veneer_address >= ARM_MAX_BWD_BRANCH_OFFSET));
3780 // Replace with a branch to veneer (B <addr>)
3781 val = (val & 0xf0000000) | 0x0a000000
3782 | ((veneer_address >> 2) & 0x00ffffff);
3783 }
3784 else
3785 {
3786 // Preserve Rm (lowest four bits) and the condition code
3787 // (highest four bits). Other bits encode MOV PC,Rm.
3788 val = (val & 0xf000000f) | 0x01a0f000;
3789 }
3790 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3791 return This::STATUS_OKAY;
3792 }
b10d2873
ILT
3793
3794 // R_ARM_ALU_PC_G0_NC: ((S + A) | T) - P
3795 // R_ARM_ALU_PC_G0: ((S + A) | T) - P
3796 // R_ARM_ALU_PC_G1_NC: ((S + A) | T) - P
3797 // R_ARM_ALU_PC_G1: ((S + A) | T) - P
3798 // R_ARM_ALU_PC_G2: ((S + A) | T) - P
3799 // R_ARM_ALU_SB_G0_NC: ((S + A) | T) - B(S)
3800 // R_ARM_ALU_SB_G0: ((S + A) | T) - B(S)
3801 // R_ARM_ALU_SB_G1_NC: ((S + A) | T) - B(S)
3802 // R_ARM_ALU_SB_G1: ((S + A) | T) - B(S)
3803 // R_ARM_ALU_SB_G2: ((S + A) | T) - B(S)
3804 static inline typename This::Status
3805 arm_grp_alu(unsigned char* view,
6fa2a40b 3806 const Sized_relobj_file<32, big_endian>* object,
b10d2873
ILT
3807 const Symbol_value<32>* psymval,
3808 const int group,
3809 Arm_address address,
3810 Arm_address thumb_bit,
3811 bool check_overflow)
3812 {
5c57f1be 3813 gold_assert(group >= 0 && group < 3);
b10d2873
ILT
3814 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3815 Valtype* wv = reinterpret_cast<Valtype*>(view);
3816 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3817
3818 // ALU group relocations are allowed only for the ADD/SUB instructions.
3819 // (0x00800000 - ADD, 0x00400000 - SUB)
3820 const Valtype opcode = insn & 0x01e00000;
3821 if (opcode != 0x00800000 && opcode != 0x00400000)
3822 return This::STATUS_BAD_RELOC;
3823
3824 // Determine a sign for the addend.
3825 const int sign = (opcode == 0x00800000) ? 1 : -1;
3826 // shifter = rotate_imm * 2
3827 const uint32_t shifter = (insn & 0xf00) >> 7;
3828 // Initial addend value.
3829 int32_t addend = insn & 0xff;
3830 // Rotate addend right by shifter.
3831 addend = (addend >> shifter) | (addend << (32 - shifter));
3832 // Apply a sign to the added.
3833 addend *= sign;
3834
3835 int32_t x = ((psymval->value(object, addend) | thumb_bit) - address);
3836 Valtype gn = Arm_relocate_functions::calc_grp_gn(abs(x), group);
3837 // Check for overflow if required
3838 if (check_overflow
3839 && (Arm_relocate_functions::calc_grp_residual(abs(x), group) != 0))
3840 return This::STATUS_OVERFLOW;
3841
3842 // Mask out the value and the ADD/SUB part of the opcode; take care
3843 // not to destroy the S bit.
3844 insn &= 0xff1ff000;
3845 // Set the opcode according to whether the value to go in the
3846 // place is negative.
3847 insn |= ((x < 0) ? 0x00400000 : 0x00800000);
3848 // Encode the offset (encoded Gn).
3849 insn |= gn;
3850
3851 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3852 return This::STATUS_OKAY;
3853 }
3854
3855 // R_ARM_LDR_PC_G0: S + A - P
3856 // R_ARM_LDR_PC_G1: S + A - P
3857 // R_ARM_LDR_PC_G2: S + A - P
3858 // R_ARM_LDR_SB_G0: S + A - B(S)
3859 // R_ARM_LDR_SB_G1: S + A - B(S)
3860 // R_ARM_LDR_SB_G2: S + A - B(S)
3861 static inline typename This::Status
3862 arm_grp_ldr(unsigned char* view,
6fa2a40b 3863 const Sized_relobj_file<32, big_endian>* object,
b10d2873
ILT
3864 const Symbol_value<32>* psymval,
3865 const int group,
3866 Arm_address address)
3867 {
5c57f1be 3868 gold_assert(group >= 0 && group < 3);
b10d2873
ILT
3869 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3870 Valtype* wv = reinterpret_cast<Valtype*>(view);
3871 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3872
3873 const int sign = (insn & 0x00800000) ? 1 : -1;
3874 int32_t addend = (insn & 0xfff) * sign;
3875 int32_t x = (psymval->value(object, addend) - address);
3876 // Calculate the relevant G(n-1) value to obtain this stage residual.
3877 Valtype residual =
3878 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3879 if (residual >= 0x1000)
3880 return This::STATUS_OVERFLOW;
3881
3882 // Mask out the value and U bit.
3883 insn &= 0xff7ff000;
3884 // Set the U bit for non-negative values.
3885 if (x >= 0)
3886 insn |= 0x00800000;
3887 insn |= residual;
3888
3889 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3890 return This::STATUS_OKAY;
3891 }
3892
3893 // R_ARM_LDRS_PC_G0: S + A - P
3894 // R_ARM_LDRS_PC_G1: S + A - P
3895 // R_ARM_LDRS_PC_G2: S + A - P
3896 // R_ARM_LDRS_SB_G0: S + A - B(S)
3897 // R_ARM_LDRS_SB_G1: S + A - B(S)
3898 // R_ARM_LDRS_SB_G2: S + A - B(S)
3899 static inline typename This::Status
3900 arm_grp_ldrs(unsigned char* view,
6fa2a40b 3901 const Sized_relobj_file<32, big_endian>* object,
b10d2873
ILT
3902 const Symbol_value<32>* psymval,
3903 const int group,
3904 Arm_address address)
3905 {
5c57f1be 3906 gold_assert(group >= 0 && group < 3);
b10d2873
ILT
3907 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3908 Valtype* wv = reinterpret_cast<Valtype*>(view);
3909 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3910
3911 const int sign = (insn & 0x00800000) ? 1 : -1;
3912 int32_t addend = (((insn & 0xf00) >> 4) + (insn & 0xf)) * sign;
3913 int32_t x = (psymval->value(object, addend) - address);
3914 // Calculate the relevant G(n-1) value to obtain this stage residual.
3915 Valtype residual =
3916 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3917 if (residual >= 0x100)
3918 return This::STATUS_OVERFLOW;
3919
3920 // Mask out the value and U bit.
3921 insn &= 0xff7ff0f0;
3922 // Set the U bit for non-negative values.
3923 if (x >= 0)
3924 insn |= 0x00800000;
3925 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
3926
3927 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3928 return This::STATUS_OKAY;
3929 }
3930
3931 // R_ARM_LDC_PC_G0: S + A - P
3932 // R_ARM_LDC_PC_G1: S + A - P
3933 // R_ARM_LDC_PC_G2: S + A - P
3934 // R_ARM_LDC_SB_G0: S + A - B(S)
3935 // R_ARM_LDC_SB_G1: S + A - B(S)
3936 // R_ARM_LDC_SB_G2: S + A - B(S)
3937 static inline typename This::Status
3938 arm_grp_ldc(unsigned char* view,
6fa2a40b 3939 const Sized_relobj_file<32, big_endian>* object,
b10d2873
ILT
3940 const Symbol_value<32>* psymval,
3941 const int group,
3942 Arm_address address)
3943 {
5c57f1be 3944 gold_assert(group >= 0 && group < 3);
b10d2873
ILT
3945 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3946 Valtype* wv = reinterpret_cast<Valtype*>(view);
3947 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3948
3949 const int sign = (insn & 0x00800000) ? 1 : -1;
3950 int32_t addend = ((insn & 0xff) << 2) * sign;
3951 int32_t x = (psymval->value(object, addend) - address);
3952 // Calculate the relevant G(n-1) value to obtain this stage residual.
3953 Valtype residual =
3954 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3955 if ((residual & 0x3) != 0 || residual >= 0x400)
3956 return This::STATUS_OVERFLOW;
3957
3958 // Mask out the value and U bit.
3959 insn &= 0xff7fff00;
3960 // Set the U bit for non-negative values.
3961 if (x >= 0)
3962 insn |= 0x00800000;
3963 insn |= (residual >> 2);
3964
3965 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3966 return This::STATUS_OKAY;
3967 }
c121c671
DK
3968};
3969
d204b6e9
DK
3970// Relocate ARM long branches. This handles relocation types
3971// R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25.
3972// If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3973// undefined and we do not use PLT in this relocation. In such a case,
3974// the branch is converted into an NOP.
3975
3976template<bool big_endian>
3977typename Arm_relocate_functions<big_endian>::Status
3978Arm_relocate_functions<big_endian>::arm_branch_common(
3979 unsigned int r_type,
3980 const Relocate_info<32, big_endian>* relinfo,
ca09d69a 3981 unsigned char* view,
d204b6e9
DK
3982 const Sized_symbol<32>* gsym,
3983 const Arm_relobj<big_endian>* object,
3984 unsigned int r_sym,
3985 const Symbol_value<32>* psymval,
3986 Arm_address address,
3987 Arm_address thumb_bit,
3988 bool is_weakly_undefined_without_plt)
3989{
3990 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3991 Valtype* wv = reinterpret_cast<Valtype*>(view);
3992 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
2e702c99 3993
d204b6e9 3994 bool insn_is_b = (((val >> 28) & 0xf) <= 0xe)
2e702c99 3995 && ((val & 0x0f000000UL) == 0x0a000000UL);
d204b6e9
DK
3996 bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL;
3997 bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe)
3998 && ((val & 0x0f000000UL) == 0x0b000000UL);
3999 bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL;
4000 bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL;
4001
4002 // Check that the instruction is valid.
4003 if (r_type == elfcpp::R_ARM_CALL)
4004 {
4005 if (!insn_is_uncond_bl && !insn_is_blx)
4006 return This::STATUS_BAD_RELOC;
4007 }
4008 else if (r_type == elfcpp::R_ARM_JUMP24)
4009 {
4010 if (!insn_is_b && !insn_is_cond_bl)
4011 return This::STATUS_BAD_RELOC;
4012 }
4013 else if (r_type == elfcpp::R_ARM_PLT32)
4014 {
4015 if (!insn_is_any_branch)
4016 return This::STATUS_BAD_RELOC;
4017 }
4018 else if (r_type == elfcpp::R_ARM_XPC25)
4019 {
4020 // FIXME: AAELF document IH0044C does not say much about it other
4021 // than it being obsolete.
4022 if (!insn_is_any_branch)
4023 return This::STATUS_BAD_RELOC;
4024 }
4025 else
4026 gold_unreachable();
4027
4028 // A branch to an undefined weak symbol is turned into a jump to
4029 // the next instruction unless a PLT entry will be created.
4030 // Do the same for local undefined symbols.
4031 // The jump to the next instruction is optimized as a NOP depending
4032 // on the architecture.
4033 const Target_arm<big_endian>* arm_target =
4034 Target_arm<big_endian>::default_target();
4035 if (is_weakly_undefined_without_plt)
4036 {
5c388529 4037 gold_assert(!parameters->options().relocatable());
d204b6e9
DK
4038 Valtype cond = val & 0xf0000000U;
4039 if (arm_target->may_use_arm_nop())
4040 val = cond | 0x0320f000;
4041 else
4042 val = cond | 0x01a00000; // Using pre-UAL nop: mov r0, r0.
4043 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4044 return This::STATUS_OKAY;
4045 }
2e702c99 4046
bef2b434 4047 Valtype addend = Bits<26>::sign_extend32(val << 2);
d204b6e9
DK
4048 Valtype branch_target = psymval->value(object, addend);
4049 int32_t branch_offset = branch_target - address;
4050
4051 // We need a stub if the branch offset is too large or if we need
4052 // to switch mode.
cd6eab1c 4053 bool may_use_blx = arm_target->may_use_v5t_interworking();
d204b6e9 4054 Reloc_stub* stub = NULL;
5c388529
DK
4055
4056 if (!parameters->options().relocatable()
bef2b434 4057 && (Bits<26>::has_overflow32(branch_offset)
5c388529
DK
4058 || ((thumb_bit != 0)
4059 && !(may_use_blx && r_type == elfcpp::R_ARM_CALL))))
d204b6e9 4060 {
2a2b6d42
DK
4061 Valtype unadjusted_branch_target = psymval->value(object, 0);
4062
d204b6e9 4063 Stub_type stub_type =
2a2b6d42
DK
4064 Reloc_stub::stub_type_for_reloc(r_type, address,
4065 unadjusted_branch_target,
d204b6e9
DK
4066 (thumb_bit != 0));
4067 if (stub_type != arm_stub_none)
4068 {
2ea97941 4069 Stub_table<big_endian>* stub_table =
d204b6e9 4070 object->stub_table(relinfo->data_shndx);
2ea97941 4071 gold_assert(stub_table != NULL);
d204b6e9
DK
4072
4073 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
2ea97941 4074 stub = stub_table->find_reloc_stub(stub_key);
d204b6e9
DK
4075 gold_assert(stub != NULL);
4076 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
2ea97941 4077 branch_target = stub_table->address() + stub->offset() + addend;
d204b6e9 4078 branch_offset = branch_target - address;
bef2b434 4079 gold_assert(!Bits<26>::has_overflow32(branch_offset));
d204b6e9
DK
4080 }
4081 }
4082
4083 // At this point, if we still need to switch mode, the instruction
4084 // must either be a BLX or a BL that can be converted to a BLX.
4085 if (thumb_bit != 0)
4086 {
4087 // Turn BL to BLX.
4088 gold_assert(may_use_blx && r_type == elfcpp::R_ARM_CALL);
4089 val = (val & 0xffffff) | 0xfa000000 | ((branch_offset & 2) << 23);
4090 }
4091
bef2b434 4092 val = Bits<32>::bit_select32(val, (branch_offset >> 2), 0xffffffUL);
d204b6e9 4093 elfcpp::Swap<32, big_endian>::writeval(wv, val);
bef2b434
ILT
4094 return (Bits<26>::has_overflow32(branch_offset)
4095 ? This::STATUS_OVERFLOW
4096 : This::STATUS_OKAY);
d204b6e9
DK
4097}
4098
51938283
DK
4099// Relocate THUMB long branches. This handles relocation types
4100// R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22.
4101// If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
4102// undefined and we do not use PLT in this relocation. In such a case,
4103// the branch is converted into an NOP.
4104
4105template<bool big_endian>
4106typename Arm_relocate_functions<big_endian>::Status
4107Arm_relocate_functions<big_endian>::thumb_branch_common(
4108 unsigned int r_type,
4109 const Relocate_info<32, big_endian>* relinfo,
ca09d69a 4110 unsigned char* view,
51938283
DK
4111 const Sized_symbol<32>* gsym,
4112 const Arm_relobj<big_endian>* object,
4113 unsigned int r_sym,
4114 const Symbol_value<32>* psymval,
4115 Arm_address address,
4116 Arm_address thumb_bit,
4117 bool is_weakly_undefined_without_plt)
4118{
4119 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4120 Valtype* wv = reinterpret_cast<Valtype*>(view);
4121 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4122 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4123
4124 // FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference
4125 // into account.
4126 bool is_bl_insn = (lower_insn & 0x1000U) == 0x1000U;
4127 bool is_blx_insn = (lower_insn & 0x1000U) == 0x0000U;
2e702c99 4128
51938283
DK
4129 // Check that the instruction is valid.
4130 if (r_type == elfcpp::R_ARM_THM_CALL)
4131 {
4132 if (!is_bl_insn && !is_blx_insn)
4133 return This::STATUS_BAD_RELOC;
4134 }
4135 else if (r_type == elfcpp::R_ARM_THM_JUMP24)
4136 {
4137 // This cannot be a BLX.
4138 if (!is_bl_insn)
4139 return This::STATUS_BAD_RELOC;
4140 }
4141 else if (r_type == elfcpp::R_ARM_THM_XPC22)
4142 {
4143 // Check for Thumb to Thumb call.
4144 if (!is_blx_insn)
4145 return This::STATUS_BAD_RELOC;
4146 if (thumb_bit != 0)
4147 {
4148 gold_warning(_("%s: Thumb BLX instruction targets "
4149 "thumb function '%s'."),
4150 object->name().c_str(),
2e702c99 4151 (gsym ? gsym->name() : "(local)"));
51938283
DK
4152 // Convert BLX to BL.
4153 lower_insn |= 0x1000U;
4154 }
4155 }
4156 else
4157 gold_unreachable();
4158
4159 // A branch to an undefined weak symbol is turned into a jump to
4160 // the next instruction unless a PLT entry will be created.
4161 // The jump to the next instruction is optimized as a NOP.W for
4162 // Thumb-2 enabled architectures.
4163 const Target_arm<big_endian>* arm_target =
4164 Target_arm<big_endian>::default_target();
4165 if (is_weakly_undefined_without_plt)
4166 {
5c388529 4167 gold_assert(!parameters->options().relocatable());
51938283
DK
4168 if (arm_target->may_use_thumb2_nop())
4169 {
4170 elfcpp::Swap<16, big_endian>::writeval(wv, 0xf3af);
4171 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0x8000);
4172 }
4173 else
4174 {
4175 elfcpp::Swap<16, big_endian>::writeval(wv, 0xe000);
4176 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0xbf00);
4177 }
4178 return This::STATUS_OKAY;
4179 }
2e702c99 4180
089d69dc 4181 int32_t addend = This::thumb32_branch_offset(upper_insn, lower_insn);
51938283 4182 Arm_address branch_target = psymval->value(object, addend);
a2c7281b
DK
4183
4184 // For BLX, bit 1 of target address comes from bit 1 of base address.
cd6eab1c 4185 bool may_use_blx = arm_target->may_use_v5t_interworking();
a2c7281b 4186 if (thumb_bit == 0 && may_use_blx)
bef2b434 4187 branch_target = Bits<32>::bit_select32(branch_target, address, 0x2);
a2c7281b 4188
51938283
DK
4189 int32_t branch_offset = branch_target - address;
4190
4191 // We need a stub if the branch offset is too large or if we need
4192 // to switch mode.
51938283 4193 bool thumb2 = arm_target->using_thumb2();
5c388529 4194 if (!parameters->options().relocatable()
bef2b434
ILT
4195 && ((!thumb2 && Bits<23>::has_overflow32(branch_offset))
4196 || (thumb2 && Bits<25>::has_overflow32(branch_offset))
5c388529
DK
4197 || ((thumb_bit == 0)
4198 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4199 || r_type == elfcpp::R_ARM_THM_JUMP24))))
51938283 4200 {
2a2b6d42
DK
4201 Arm_address unadjusted_branch_target = psymval->value(object, 0);
4202
51938283 4203 Stub_type stub_type =
2a2b6d42
DK
4204 Reloc_stub::stub_type_for_reloc(r_type, address,
4205 unadjusted_branch_target,
51938283 4206 (thumb_bit != 0));
2a2b6d42 4207
51938283
DK
4208 if (stub_type != arm_stub_none)
4209 {
2ea97941 4210 Stub_table<big_endian>* stub_table =
51938283 4211 object->stub_table(relinfo->data_shndx);
2ea97941 4212 gold_assert(stub_table != NULL);
51938283
DK
4213
4214 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
2ea97941 4215 Reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
51938283
DK
4216 gold_assert(stub != NULL);
4217 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
2ea97941 4218 branch_target = stub_table->address() + stub->offset() + addend;
2e702c99 4219 if (thumb_bit == 0 && may_use_blx)
bef2b434 4220 branch_target = Bits<32>::bit_select32(branch_target, address, 0x2);
51938283
DK
4221 branch_offset = branch_target - address;
4222 }
4223 }
4224
4225 // At this point, if we still need to switch mode, the instruction
4226 // must either be a BLX or a BL that can be converted to a BLX.
4227 if (thumb_bit == 0)
4228 {
4229 gold_assert(may_use_blx
4230 && (r_type == elfcpp::R_ARM_THM_CALL
4231 || r_type == elfcpp::R_ARM_THM_XPC22));
4232 // Make sure this is a BLX.
4233 lower_insn &= ~0x1000U;
4234 }
4235 else
4236 {
4237 // Make sure this is a BL.
4238 lower_insn |= 0x1000U;
4239 }
4240
a2c7281b
DK
4241 // For a BLX instruction, make sure that the relocation is rounded up
4242 // to a word boundary. This follows the semantics of the instruction
4243 // which specifies that bit 1 of the target address will come from bit
4244 // 1 of the base address.
51938283 4245 if ((lower_insn & 0x5000U) == 0x4000U)
a2c7281b 4246 gold_assert((branch_offset & 3) == 0);
51938283
DK
4247
4248 // Put BRANCH_OFFSET back into the insn. Assumes two's complement.
4249 // We use the Thumb-2 encoding, which is safe even if dealing with
4250 // a Thumb-1 instruction by virtue of our overflow check above. */
089d69dc
DK
4251 upper_insn = This::thumb32_branch_upper(upper_insn, branch_offset);
4252 lower_insn = This::thumb32_branch_lower(lower_insn, branch_offset);
51938283
DK
4253
4254 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4255 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4256
bef2b434 4257 gold_assert(!Bits<25>::has_overflow32(branch_offset));
a2c7281b 4258
51938283 4259 return ((thumb2
bef2b434
ILT
4260 ? Bits<25>::has_overflow32(branch_offset)
4261 : Bits<23>::has_overflow32(branch_offset))
089d69dc
DK
4262 ? This::STATUS_OVERFLOW
4263 : This::STATUS_OKAY);
4264}
4265
4266// Relocate THUMB-2 long conditional branches.
4267// If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
4268// undefined and we do not use PLT in this relocation. In such a case,
4269// the branch is converted into an NOP.
4270
4271template<bool big_endian>
4272typename Arm_relocate_functions<big_endian>::Status
4273Arm_relocate_functions<big_endian>::thm_jump19(
ca09d69a 4274 unsigned char* view,
089d69dc
DK
4275 const Arm_relobj<big_endian>* object,
4276 const Symbol_value<32>* psymval,
4277 Arm_address address,
4278 Arm_address thumb_bit)
4279{
4280 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4281 Valtype* wv = reinterpret_cast<Valtype*>(view);
4282 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4283 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4284 int32_t addend = This::thumb32_cond_branch_offset(upper_insn, lower_insn);
4285
4286 Arm_address branch_target = psymval->value(object, addend);
4287 int32_t branch_offset = branch_target - address;
4288
4289 // ??? Should handle interworking? GCC might someday try to
4290 // use this for tail calls.
4291 // FIXME: We do support thumb entry to PLT yet.
4292 if (thumb_bit == 0)
4293 {
4294 gold_error(_("conditional branch to PLT in THUMB-2 not supported yet."));
4295 return This::STATUS_BAD_RELOC;
4296 }
4297
4298 // Put RELOCATION back into the insn.
4299 upper_insn = This::thumb32_cond_branch_upper(upper_insn, branch_offset);
4300 lower_insn = This::thumb32_cond_branch_lower(lower_insn, branch_offset);
4301
4302 // Put the relocated value back in the object file:
4303 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4304 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4305
bef2b434 4306 return (Bits<21>::has_overflow32(branch_offset)
51938283
DK
4307 ? This::STATUS_OVERFLOW
4308 : This::STATUS_OKAY);
4309}
4310
94cdfcff
DK
4311// Get the GOT section, creating it if necessary.
4312
4313template<bool big_endian>
4a54abbb 4314Arm_output_data_got<big_endian>*
94cdfcff
DK
4315Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
4316{
4317 if (this->got_ == NULL)
4318 {
4319 gold_assert(symtab != NULL && layout != NULL);
4320
7b8957f8
DK
4321 // When using -z now, we can treat .got as a relro section.
4322 // Without -z now, it is modified after program startup by lazy
4323 // PLT relocations.
4324 bool is_got_relro = parameters->options().now();
4325 Output_section_order got_order = (is_got_relro
4326 ? ORDER_RELRO_LAST
4327 : ORDER_DATA);
4328
4329 // Unlike some targets (.e.g x86), ARM does not use separate .got and
4330 // .got.plt sections in output. The output .got section contains both
4331 // PLT and non-PLT GOT entries.
4a54abbb 4332 this->got_ = new Arm_output_data_got<big_endian>(symtab, layout);
94cdfcff 4333
82742395 4334 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
0c91cf04 4335 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
7b8957f8 4336 this->got_, got_order, is_got_relro);
22f0da72 4337
94cdfcff
DK
4338 // The old GNU linker creates a .got.plt section. We just
4339 // create another set of data in the .got section. Note that we
4340 // always create a PLT if we create a GOT, although the PLT
4341 // might be empty.
4342 this->got_plt_ = new Output_data_space(4, "** GOT PLT");
82742395 4343 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
0c91cf04 4344 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
7b8957f8 4345 this->got_plt_, got_order, is_got_relro);
94cdfcff
DK
4346
4347 // The first three entries are reserved.
4348 this->got_plt_->set_current_data_size(3 * 4);
4349
4350 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
4351 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
99fff23b 4352 Symbol_table::PREDEFINED,
94cdfcff
DK
4353 this->got_plt_,
4354 0, 0, elfcpp::STT_OBJECT,
4355 elfcpp::STB_LOCAL,
4356 elfcpp::STV_HIDDEN, 0,
4357 false, false);
fa89cc82
HS
4358
4359 // If there are any IRELATIVE relocations, they get GOT entries
4360 // in .got.plt after the jump slot entries.
4361 this->got_irelative_ = new Output_data_space(4, "** GOT IRELATIVE PLT");
4362 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4363 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4364 this->got_irelative_,
4365 got_order, is_got_relro);
4366
94cdfcff
DK
4367 }
4368 return this->got_;
4369}
4370
4371// Get the dynamic reloc section, creating it if necessary.
4372
4373template<bool big_endian>
4374typename Target_arm<big_endian>::Reloc_section*
4375Target_arm<big_endian>::rel_dyn_section(Layout* layout)
4376{
4377 if (this->rel_dyn_ == NULL)
4378 {
4379 gold_assert(layout != NULL);
fa89cc82
HS
4380 // Create both relocation sections in the same place, so as to ensure
4381 // their relative order in the output section.
94cdfcff 4382 this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
fa89cc82 4383 this->rel_irelative_ = new Reloc_section(false);
94cdfcff 4384 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
22f0da72
ILT
4385 elfcpp::SHF_ALLOC, this->rel_dyn_,
4386 ORDER_DYNAMIC_RELOCS, false);
fa89cc82
HS
4387 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
4388 elfcpp::SHF_ALLOC, this->rel_irelative_,
4389 ORDER_DYNAMIC_RELOCS, false);
94cdfcff
DK
4390 }
4391 return this->rel_dyn_;
4392}
4393
fa89cc82
HS
4394
4395// Get the section to use for IRELATIVE relocs, creating it if necessary. These
4396// go in .rela.dyn, but only after all other dynamic relocations. They need to
4397// follow the other dynamic relocations so that they can refer to global
4398// variables initialized by those relocs.
4399
4400template<bool big_endian>
4401typename Target_arm<big_endian>::Reloc_section*
4402Target_arm<big_endian>::rel_irelative_section(Layout* layout)
4403{
4404 if (this->rel_irelative_ == NULL)
4405 {
4406 // Delegate the creation to rel_dyn_section so as to ensure their order in
4407 // the output section.
4408 this->rel_dyn_section(layout);
4409 gold_assert(this->rel_irelative_ != NULL
4410 && (this->rel_dyn_->output_section()
4411 == this->rel_irelative_->output_section()));
4412 }
4413 return this->rel_irelative_;
4414}
4415
4416
b569affa
DK
4417// Insn_template methods.
4418
4419// Return byte size of an instruction template.
4420
4421size_t
4422Insn_template::size() const
4423{
4424 switch (this->type())
4425 {
4426 case THUMB16_TYPE:
2fb7225c 4427 case THUMB16_SPECIAL_TYPE:
b569affa
DK
4428 return 2;
4429 case ARM_TYPE:
4430 case THUMB32_TYPE:
4431 case DATA_TYPE:
4432 return 4;
4433 default:
4434 gold_unreachable();
4435 }
4436}
4437
4438// Return alignment of an instruction template.
4439
4440unsigned
4441Insn_template::alignment() const
4442{
4443 switch (this->type())
4444 {
4445 case THUMB16_TYPE:
2fb7225c 4446 case THUMB16_SPECIAL_TYPE:
b569affa
DK
4447 case THUMB32_TYPE:
4448 return 2;
4449 case ARM_TYPE:
4450 case DATA_TYPE:
4451 return 4;
4452 default:
4453 gold_unreachable();
4454 }
4455}
4456
4457// Stub_template methods.
4458
4459Stub_template::Stub_template(
2ea97941
ILT
4460 Stub_type type, const Insn_template* insns,
4461 size_t insn_count)
4462 : type_(type), insns_(insns), insn_count_(insn_count), alignment_(1),
b569affa
DK
4463 entry_in_thumb_mode_(false), relocs_()
4464{
2ea97941 4465 off_t offset = 0;
b569affa
DK
4466
4467 // Compute byte size and alignment of stub template.
2ea97941 4468 for (size_t i = 0; i < insn_count; i++)
b569affa 4469 {
2ea97941
ILT
4470 unsigned insn_alignment = insns[i].alignment();
4471 size_t insn_size = insns[i].size();
4472 gold_assert((offset & (insn_alignment - 1)) == 0);
b569affa 4473 this->alignment_ = std::max(this->alignment_, insn_alignment);
2ea97941 4474 switch (insns[i].type())
b569affa
DK
4475 {
4476 case Insn_template::THUMB16_TYPE:
089d69dc 4477 case Insn_template::THUMB16_SPECIAL_TYPE:
b569affa
DK
4478 if (i == 0)
4479 this->entry_in_thumb_mode_ = true;
4480 break;
4481
4482 case Insn_template::THUMB32_TYPE:
2e702c99 4483 if (insns[i].r_type() != elfcpp::R_ARM_NONE)
2ea97941 4484 this->relocs_.push_back(Reloc(i, offset));
b569affa
DK
4485 if (i == 0)
4486 this->entry_in_thumb_mode_ = true;
2e702c99 4487 break;
b569affa
DK
4488
4489 case Insn_template::ARM_TYPE:
4490 // Handle cases where the target is encoded within the
4491 // instruction.
2ea97941
ILT
4492 if (insns[i].r_type() == elfcpp::R_ARM_JUMP24)
4493 this->relocs_.push_back(Reloc(i, offset));
b569affa
DK
4494 break;
4495
4496 case Insn_template::DATA_TYPE:
4497 // Entry point cannot be data.
4498 gold_assert(i != 0);
2ea97941 4499 this->relocs_.push_back(Reloc(i, offset));
b569affa
DK
4500 break;
4501
4502 default:
4503 gold_unreachable();
4504 }
2e702c99 4505 offset += insn_size;
b569affa 4506 }
2ea97941 4507 this->size_ = offset;
b569affa
DK
4508}
4509
bb0d3eb0
DK
4510// Stub methods.
4511
7296d933 4512// Template to implement do_write for a specific target endianness.
bb0d3eb0
DK
4513
4514template<bool big_endian>
4515void inline
4516Stub::do_fixed_endian_write(unsigned char* view, section_size_type view_size)
4517{
4518 const Stub_template* stub_template = this->stub_template();
4519 const Insn_template* insns = stub_template->insns();
4520
4521 // FIXME: We do not handle BE8 encoding yet.
4522 unsigned char* pov = view;
4523 for (size_t i = 0; i < stub_template->insn_count(); i++)
4524 {
4525 switch (insns[i].type())
4526 {
4527 case Insn_template::THUMB16_TYPE:
4528 elfcpp::Swap<16, big_endian>::writeval(pov, insns[i].data() & 0xffff);
4529 break;
4530 case Insn_template::THUMB16_SPECIAL_TYPE:
4531 elfcpp::Swap<16, big_endian>::writeval(
4532 pov,
4533 this->thumb16_special(i));
4534 break;
4535 case Insn_template::THUMB32_TYPE:
4536 {
4537 uint32_t hi = (insns[i].data() >> 16) & 0xffff;
4538 uint32_t lo = insns[i].data() & 0xffff;
4539 elfcpp::Swap<16, big_endian>::writeval(pov, hi);
4540 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo);
4541 }
2e702c99 4542 break;
bb0d3eb0
DK
4543 case Insn_template::ARM_TYPE:
4544 case Insn_template::DATA_TYPE:
4545 elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data());
4546 break;
4547 default:
4548 gold_unreachable();
4549 }
4550 pov += insns[i].size();
4551 }
4552 gold_assert(static_cast<section_size_type>(pov - view) == view_size);
2e702c99 4553}
bb0d3eb0 4554
b569affa
DK
4555// Reloc_stub::Key methods.
4556
4557// Dump a Key as a string for debugging.
4558
4559std::string
4560Reloc_stub::Key::name() const
4561{
4562 if (this->r_sym_ == invalid_index)
4563 {
4564 // Global symbol key name
4565 // <stub-type>:<symbol name>:<addend>.
4566 const std::string sym_name = this->u_.symbol->name();
4567 // We need to print two hex number and two colons. So just add 100 bytes
4568 // to the symbol name size.
4569 size_t len = sym_name.size() + 100;
4570 char* buffer = new char[len];
4571 int c = snprintf(buffer, len, "%d:%s:%x", this->stub_type_,
4572 sym_name.c_str(), this->addend_);
4573 gold_assert(c > 0 && c < static_cast<int>(len));
4574 delete[] buffer;
4575 return std::string(buffer);
4576 }
4577 else
4578 {
4579 // local symbol key name
4580 // <stub-type>:<object>:<r_sym>:<addend>.
4581 const size_t len = 200;
4582 char buffer[len];
4583 int c = snprintf(buffer, len, "%d:%p:%u:%x", this->stub_type_,
4584 this->u_.relobj, this->r_sym_, this->addend_);
4585 gold_assert(c > 0 && c < static_cast<int>(len));
4586 return std::string(buffer);
4587 }
4588}
4589
4590// Reloc_stub methods.
4591
4592// Determine the type of stub needed, if any, for a relocation of R_TYPE at
4593// LOCATION to DESTINATION.
4594// This code is based on the arm_type_of_stub function in
9b547ce6 4595// bfd/elf32-arm.c. We have changed the interface a little to keep the Stub
b569affa
DK
4596// class simple.
4597
4598Stub_type
4599Reloc_stub::stub_type_for_reloc(
4600 unsigned int r_type,
4601 Arm_address location,
4602 Arm_address destination,
4603 bool target_is_thumb)
4604{
4605 Stub_type stub_type = arm_stub_none;
4606
4607 // This is a bit ugly but we want to avoid using a templated class for
4608 // big and little endianities.
4609 bool may_use_blx;
cdb06167 4610 bool should_force_pic_veneer = parameters->options().pic_veneer();
b569affa
DK
4611 bool thumb2;
4612 bool thumb_only;
4613 if (parameters->target().is_big_endian())
4614 {
43d12afe 4615 const Target_arm<true>* big_endian_target =
b569affa 4616 Target_arm<true>::default_target();
cd6eab1c 4617 may_use_blx = big_endian_target->may_use_v5t_interworking();
cdb06167 4618 should_force_pic_veneer |= big_endian_target->should_force_pic_veneer();
43d12afe
DK
4619 thumb2 = big_endian_target->using_thumb2();
4620 thumb_only = big_endian_target->using_thumb_only();
b569affa
DK
4621 }
4622 else
4623 {
43d12afe 4624 const Target_arm<false>* little_endian_target =
b569affa 4625 Target_arm<false>::default_target();
cd6eab1c 4626 may_use_blx = little_endian_target->may_use_v5t_interworking();
cdb06167
HS
4627 should_force_pic_veneer |=
4628 little_endian_target->should_force_pic_veneer();
43d12afe
DK
4629 thumb2 = little_endian_target->using_thumb2();
4630 thumb_only = little_endian_target->using_thumb_only();
b569affa
DK
4631 }
4632
a2c7281b 4633 int64_t branch_offset;
90cff06f
DK
4634 bool output_is_position_independent =
4635 parameters->options().output_is_position_independent();
b569affa
DK
4636 if (r_type == elfcpp::R_ARM_THM_CALL || r_type == elfcpp::R_ARM_THM_JUMP24)
4637 {
a2c7281b
DK
4638 // For THUMB BLX instruction, bit 1 of target comes from bit 1 of the
4639 // base address (instruction address + 4).
4640 if ((r_type == elfcpp::R_ARM_THM_CALL) && may_use_blx && !target_is_thumb)
bef2b434 4641 destination = Bits<32>::bit_select32(destination, location, 0x2);
a2c7281b 4642 branch_offset = static_cast<int64_t>(destination) - location;
2e702c99 4643
b569affa
DK
4644 // Handle cases where:
4645 // - this call goes too far (different Thumb/Thumb2 max
4646 // distance)
4647 // - it's a Thumb->Arm call and blx is not available, or it's a
4648 // Thumb->Arm branch (not bl). A stub is needed in this case.
4649 if ((!thumb2
4650 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4651 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
4652 || (thumb2
4653 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4654 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4655 || ((!target_is_thumb)
4656 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4657 || (r_type == elfcpp::R_ARM_THM_JUMP24))))
4658 {
4659 if (target_is_thumb)
4660 {
4661 // Thumb to thumb.
4662 if (!thumb_only)
4663 {
90cff06f 4664 stub_type = (output_is_position_independent
51938283 4665 || should_force_pic_veneer)
b569affa
DK
4666 // PIC stubs.
4667 ? ((may_use_blx
4668 && (r_type == elfcpp::R_ARM_THM_CALL))
4669 // V5T and above. Stub starts with ARM code, so
4670 // we must be able to switch mode before
4671 // reaching it, which is only possible for 'bl'
4672 // (ie R_ARM_THM_CALL relocation).
4673 ? arm_stub_long_branch_any_thumb_pic
4674 // On V4T, use Thumb code only.
4675 : arm_stub_long_branch_v4t_thumb_thumb_pic)
4676
4677 // non-PIC stubs.
4678 : ((may_use_blx
4679 && (r_type == elfcpp::R_ARM_THM_CALL))
4680 ? arm_stub_long_branch_any_any // V5T and above.
4681 : arm_stub_long_branch_v4t_thumb_thumb); // V4T.
4682 }
4683 else
4684 {
90cff06f 4685 stub_type = (output_is_position_independent
51938283 4686 || should_force_pic_veneer)
b569affa
DK
4687 ? arm_stub_long_branch_thumb_only_pic // PIC stub.
4688 : arm_stub_long_branch_thumb_only; // non-PIC stub.
4689 }
4690 }
4691 else
4692 {
4693 // Thumb to arm.
2e702c99 4694
b569affa
DK
4695 // FIXME: We should check that the input section is from an
4696 // object that has interwork enabled.
4697
90cff06f 4698 stub_type = (output_is_position_independent
b569affa
DK
4699 || should_force_pic_veneer)
4700 // PIC stubs.
4701 ? ((may_use_blx
4702 && (r_type == elfcpp::R_ARM_THM_CALL))
4703 ? arm_stub_long_branch_any_arm_pic // V5T and above.
4704 : arm_stub_long_branch_v4t_thumb_arm_pic) // V4T.
4705
4706 // non-PIC stubs.
4707 : ((may_use_blx
4708 && (r_type == elfcpp::R_ARM_THM_CALL))
4709 ? arm_stub_long_branch_any_any // V5T and above.
4710 : arm_stub_long_branch_v4t_thumb_arm); // V4T.
4711
4712 // Handle v4t short branches.
4713 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4714 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4715 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4716 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4717 }
4718 }
4719 }
4720 else if (r_type == elfcpp::R_ARM_CALL
4721 || r_type == elfcpp::R_ARM_JUMP24
4722 || r_type == elfcpp::R_ARM_PLT32)
4723 {
a2c7281b 4724 branch_offset = static_cast<int64_t>(destination) - location;
b569affa
DK
4725 if (target_is_thumb)
4726 {
4727 // Arm to thumb.
4728
4729 // FIXME: We should check that the input section is from an
4730 // object that has interwork enabled.
4731
4732 // We have an extra 2-bytes reach because of
4733 // the mode change (bit 24 (H) of BLX encoding).
4734 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4735 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4736 || ((r_type == elfcpp::R_ARM_CALL) && !may_use_blx)
4737 || (r_type == elfcpp::R_ARM_JUMP24)
4738 || (r_type == elfcpp::R_ARM_PLT32))
4739 {
90cff06f 4740 stub_type = (output_is_position_independent
b569affa
DK
4741 || should_force_pic_veneer)
4742 // PIC stubs.
4743 ? (may_use_blx
4744 ? arm_stub_long_branch_any_thumb_pic// V5T and above.
4745 : arm_stub_long_branch_v4t_arm_thumb_pic) // V4T stub.
4746
4747 // non-PIC stubs.
4748 : (may_use_blx
4749 ? arm_stub_long_branch_any_any // V5T and above.
4750 : arm_stub_long_branch_v4t_arm_thumb); // V4T.
4751 }
4752 }
4753 else
4754 {
4755 // Arm to arm.
4756 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4757 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4758 {
90cff06f 4759 stub_type = (output_is_position_independent
b569affa
DK
4760 || should_force_pic_veneer)
4761 ? arm_stub_long_branch_any_arm_pic // PIC stubs.
4762 : arm_stub_long_branch_any_any; /// non-PIC.
4763 }
4764 }
4765 }
4766
4767 return stub_type;
4768}
4769
bb0d3eb0 4770// Cortex_a8_stub methods.
b569affa 4771
bb0d3eb0
DK
4772// Return the instruction for a THUMB16_SPECIAL_TYPE instruction template.
4773// I is the position of the instruction template in the stub template.
b569affa 4774
bb0d3eb0
DK
4775uint16_t
4776Cortex_a8_stub::do_thumb16_special(size_t i)
b569affa 4777{
bb0d3eb0
DK
4778 // The only use of this is to copy condition code from a conditional
4779 // branch being worked around to the corresponding conditional branch in
4780 // to the stub.
4781 gold_assert(this->stub_template()->type() == arm_stub_a8_veneer_b_cond
4782 && i == 0);
4783 uint16_t data = this->stub_template()->insns()[i].data();
4784 gold_assert((data & 0xff00U) == 0xd000U);
4785 data |= ((this->original_insn_ >> 22) & 0xf) << 8;
4786 return data;
b569affa
DK
4787}
4788
4789// Stub_factory methods.
4790
4791Stub_factory::Stub_factory()
4792{
4793 // The instruction template sequences are declared as static
4794 // objects and initialized first time the constructor runs.
2e702c99 4795
b569affa
DK
4796 // Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
4797 // to reach the stub if necessary.
4798 static const Insn_template elf32_arm_stub_long_branch_any_any[] =
4799 {
4800 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4801 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
2e702c99 4802 // dcd R_ARM_ABS32(X)
b569affa 4803 };
2e702c99 4804
b569affa
DK
4805 // V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
4806 // available.
4807 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb[] =
4808 {
4809 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4810 Insn_template::arm_insn(0xe12fff1c), // bx ip
4811 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
2e702c99 4812 // dcd R_ARM_ABS32(X)
b569affa 4813 };
2e702c99 4814
b569affa
DK
4815 // Thumb -> Thumb long branch stub. Used on M-profile architectures.
4816 static const Insn_template elf32_arm_stub_long_branch_thumb_only[] =
4817 {
4818 Insn_template::thumb16_insn(0xb401), // push {r0}
4819 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4820 Insn_template::thumb16_insn(0x4684), // mov ip, r0
4821 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4822 Insn_template::thumb16_insn(0x4760), // bx ip
4823 Insn_template::thumb16_insn(0xbf00), // nop
4824 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
2e702c99 4825 // dcd R_ARM_ABS32(X)
b569affa 4826 };
2e702c99 4827
b569affa
DK
4828 // V4T Thumb -> Thumb long branch stub. Using the stack is not
4829 // allowed.
4830 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
4831 {
4832 Insn_template::thumb16_insn(0x4778), // bx pc
4833 Insn_template::thumb16_insn(0x46c0), // nop
4834 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4835 Insn_template::arm_insn(0xe12fff1c), // bx ip
4836 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
2e702c99 4837 // dcd R_ARM_ABS32(X)
b569affa 4838 };
2e702c99 4839
b569affa
DK
4840 // V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
4841 // available.
4842 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm[] =
4843 {
4844 Insn_template::thumb16_insn(0x4778), // bx pc
4845 Insn_template::thumb16_insn(0x46c0), // nop
4846 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4847 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
2e702c99 4848 // dcd R_ARM_ABS32(X)
b569affa 4849 };
2e702c99 4850
b569affa
DK
4851 // V4T Thumb -> ARM short branch stub. Shorter variant of the above
4852 // one, when the destination is close enough.
4853 static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm[] =
4854 {
4855 Insn_template::thumb16_insn(0x4778), // bx pc
4856 Insn_template::thumb16_insn(0x46c0), // nop
4857 Insn_template::arm_rel_insn(0xea000000, -8), // b (X-8)
4858 };
2e702c99 4859
b569affa
DK
4860 // ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
4861 // blx to reach the stub if necessary.
4862 static const Insn_template elf32_arm_stub_long_branch_any_arm_pic[] =
4863 {
4864 Insn_template::arm_insn(0xe59fc000), // ldr r12, [pc]
4865 Insn_template::arm_insn(0xe08ff00c), // add pc, pc, ip
4866 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
2e702c99 4867 // dcd R_ARM_REL32(X-4)
b569affa 4868 };
2e702c99 4869
b569affa
DK
4870 // ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
4871 // blx to reach the stub if necessary. We can not add into pc;
4872 // it is not guaranteed to mode switch (different in ARMv6 and
4873 // ARMv7).
4874 static const Insn_template elf32_arm_stub_long_branch_any_thumb_pic[] =
4875 {
4876 Insn_template::arm_insn(0xe59fc004), // ldr r12, [pc, #4]
4877 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4878 Insn_template::arm_insn(0xe12fff1c), // bx ip
4879 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
2e702c99 4880 // dcd R_ARM_REL32(X)
b569affa 4881 };
2e702c99 4882
b569affa
DK
4883 // V4T ARM -> ARM long branch stub, PIC.
4884 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
4885 {
4886 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4887 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4888 Insn_template::arm_insn(0xe12fff1c), // bx ip
4889 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
2e702c99 4890 // dcd R_ARM_REL32(X)
b569affa 4891 };
2e702c99 4892
b569affa
DK
4893 // V4T Thumb -> ARM long branch stub, PIC.
4894 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
4895 {
4896 Insn_template::thumb16_insn(0x4778), // bx pc
4897 Insn_template::thumb16_insn(0x46c0), // nop
4898 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4899 Insn_template::arm_insn(0xe08cf00f), // add pc, ip, pc
4900 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
2e702c99 4901 // dcd R_ARM_REL32(X)
b569affa 4902 };
2e702c99 4903
b569affa
DK
4904 // Thumb -> Thumb long branch stub, PIC. Used on M-profile
4905 // architectures.
4906 static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic[] =
4907 {
4908 Insn_template::thumb16_insn(0xb401), // push {r0}
4909 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4910 Insn_template::thumb16_insn(0x46fc), // mov ip, pc
4911 Insn_template::thumb16_insn(0x4484), // add ip, r0
4912 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4913 Insn_template::thumb16_insn(0x4760), // bx ip
4914 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 4),
2e702c99 4915 // dcd R_ARM_REL32(X)
b569affa 4916 };
2e702c99 4917
b569affa
DK
4918 // V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
4919 // allowed.
4920 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
4921 {
4922 Insn_template::thumb16_insn(0x4778), // bx pc
4923 Insn_template::thumb16_insn(0x46c0), // nop
4924 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4925 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4926 Insn_template::arm_insn(0xe12fff1c), // bx ip
4927 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
2e702c99 4928 // dcd R_ARM_REL32(X)
b569affa 4929 };
2e702c99 4930
b569affa 4931 // Cortex-A8 erratum-workaround stubs.
2e702c99 4932
b569affa
DK
4933 // Stub used for conditional branches (which may be beyond +/-1MB away,
4934 // so we can't use a conditional branch to reach this stub).
2e702c99 4935
b569affa
DK
4936 // original code:
4937 //
4938 // b<cond> X
4939 // after:
4940 //
4941 static const Insn_template elf32_arm_stub_a8_veneer_b_cond[] =
4942 {
4943 Insn_template::thumb16_bcond_insn(0xd001), // b<cond>.n true
4944 Insn_template::thumb32_b_insn(0xf000b800, -4), // b.w after
4945 Insn_template::thumb32_b_insn(0xf000b800, -4) // true:
2e702c99 4946 // b.w X
b569affa 4947 };
2e702c99 4948
b569affa 4949 // Stub used for b.w and bl.w instructions.
2e702c99 4950
b569affa
DK
4951 static const Insn_template elf32_arm_stub_a8_veneer_b[] =
4952 {
4953 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4954 };
2e702c99 4955
b569affa
DK
4956 static const Insn_template elf32_arm_stub_a8_veneer_bl[] =
4957 {
4958 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4959 };
2e702c99 4960
b569affa
DK
4961 // Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
4962 // instruction (which switches to ARM mode) to point to this stub. Jump to
4963 // the real destination using an ARM-mode branch.
bb0d3eb0 4964 static const Insn_template elf32_arm_stub_a8_veneer_blx[] =
b569affa
DK
4965 {
4966 Insn_template::arm_rel_insn(0xea000000, -8) // b dest
4967 };
4968
a2162063
ILT
4969 // Stub used to provide an interworking for R_ARM_V4BX relocation
4970 // (bx r[n] instruction).
4971 static const Insn_template elf32_arm_stub_v4_veneer_bx[] =
4972 {
4973 Insn_template::arm_insn(0xe3100001), // tst r<n>, #1
4974 Insn_template::arm_insn(0x01a0f000), // moveq pc, r<n>
4975 Insn_template::arm_insn(0xe12fff10) // bx r<n>
4976 };
4977
b569affa
DK
4978 // Fill in the stub template look-up table. Stub templates are constructed
4979 // per instance of Stub_factory for fast look-up without locking
4980 // in a thread-enabled environment.
4981
4982 this->stub_templates_[arm_stub_none] =
4983 new Stub_template(arm_stub_none, NULL, 0);
4984
4985#define DEF_STUB(x) \
4986 do \
4987 { \
4988 size_t array_size \
4989 = sizeof(elf32_arm_stub_##x) / sizeof(elf32_arm_stub_##x[0]); \
4990 Stub_type type = arm_stub_##x; \
4991 this->stub_templates_[type] = \
4992 new Stub_template(type, elf32_arm_stub_##x, array_size); \
4993 } \
4994 while (0);
4995
4996 DEF_STUBS
4997#undef DEF_STUB
4998}
4999
56ee5e00
DK
5000// Stub_table methods.
5001
9b547ce6 5002// Remove all Cortex-A8 stub.
56ee5e00
DK
5003
5004template<bool big_endian>
5005void
2fb7225c
DK
5006Stub_table<big_endian>::remove_all_cortex_a8_stubs()
5007{
5008 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
5009 p != this->cortex_a8_stubs_.end();
5010 ++p)
5011 delete p->second;
5012 this->cortex_a8_stubs_.clear();
5013}
5014
5015// Relocate one stub. This is a helper for Stub_table::relocate_stubs().
5016
5017template<bool big_endian>
5018void
5019Stub_table<big_endian>::relocate_stub(
5020 Stub* stub,
5021 const Relocate_info<32, big_endian>* relinfo,
5022 Target_arm<big_endian>* arm_target,
5023 Output_section* output_section,
5024 unsigned char* view,
5025 Arm_address address,
5026 section_size_type view_size)
56ee5e00 5027{
2ea97941 5028 const Stub_template* stub_template = stub->stub_template();
2fb7225c
DK
5029 if (stub_template->reloc_count() != 0)
5030 {
5031 // Adjust view to cover the stub only.
5032 section_size_type offset = stub->offset();
5033 section_size_type stub_size = stub_template->size();
5034 gold_assert(offset + stub_size <= view_size);
5035
5036 arm_target->relocate_stub(stub, relinfo, output_section, view + offset,
5037 address + offset, stub_size);
5038 }
56ee5e00
DK
5039}
5040
2fb7225c
DK
5041// Relocate all stubs in this stub table.
5042
56ee5e00
DK
5043template<bool big_endian>
5044void
5045Stub_table<big_endian>::relocate_stubs(
5046 const Relocate_info<32, big_endian>* relinfo,
5047 Target_arm<big_endian>* arm_target,
2ea97941 5048 Output_section* output_section,
56ee5e00 5049 unsigned char* view,
2ea97941 5050 Arm_address address,
56ee5e00
DK
5051 section_size_type view_size)
5052{
5053 // If we are passed a view bigger than the stub table's. we need to
5054 // adjust the view.
2ea97941 5055 gold_assert(address == this->address()
56ee5e00
DK
5056 && (view_size
5057 == static_cast<section_size_type>(this->data_size())));
5058
2fb7225c
DK
5059 // Relocate all relocation stubs.
5060 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
5061 p != this->reloc_stubs_.end();
5062 ++p)
5063 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
5064 address, view_size);
5065
5066 // Relocate all Cortex-A8 stubs.
5067 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
5068 p != this->cortex_a8_stubs_.end();
5069 ++p)
5070 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
5071 address, view_size);
a2162063
ILT
5072
5073 // Relocate all ARM V4BX stubs.
5074 for (Arm_v4bx_stub_list::iterator p = this->arm_v4bx_stubs_.begin();
5075 p != this->arm_v4bx_stubs_.end();
5076 ++p)
5077 {
5078 if (*p != NULL)
5079 this->relocate_stub(*p, relinfo, arm_target, output_section, view,
5080 address, view_size);
5081 }
2fb7225c
DK
5082}
5083
5084// Write out the stubs to file.
5085
5086template<bool big_endian>
5087void
5088Stub_table<big_endian>::do_write(Output_file* of)
5089{
5090 off_t offset = this->offset();
5091 const section_size_type oview_size =
5092 convert_to_section_size_type(this->data_size());
5093 unsigned char* const oview = of->get_output_view(offset, oview_size);
5094
5095 // Write relocation stubs.
56ee5e00
DK
5096 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
5097 p != this->reloc_stubs_.end();
5098 ++p)
5099 {
5100 Reloc_stub* stub = p->second;
2fb7225c
DK
5101 Arm_address address = this->address() + stub->offset();
5102 gold_assert(address
5103 == align_address(address,
5104 stub->stub_template()->alignment()));
5105 stub->write(oview + stub->offset(), stub->stub_template()->size(),
5106 big_endian);
56ee5e00 5107 }
2fb7225c
DK
5108
5109 // Write Cortex-A8 stubs.
5110 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5111 p != this->cortex_a8_stubs_.end();
5112 ++p)
5113 {
5114 Cortex_a8_stub* stub = p->second;
5115 Arm_address address = this->address() + stub->offset();
5116 gold_assert(address
5117 == align_address(address,
5118 stub->stub_template()->alignment()));
5119 stub->write(oview + stub->offset(), stub->stub_template()->size(),
5120 big_endian);
5121 }
5122
a2162063
ILT
5123 // Write ARM V4BX relocation stubs.
5124 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5125 p != this->arm_v4bx_stubs_.end();
5126 ++p)
5127 {
5128 if (*p == NULL)
5129 continue;
5130
5131 Arm_address address = this->address() + (*p)->offset();
5132 gold_assert(address
5133 == align_address(address,
5134 (*p)->stub_template()->alignment()));
5135 (*p)->write(oview + (*p)->offset(), (*p)->stub_template()->size(),
5136 big_endian);
5137 }
5138
2fb7225c 5139 of->write_output_view(this->offset(), oview_size, oview);
56ee5e00
DK
5140}
5141
2fb7225c
DK
5142// Update the data size and address alignment of the stub table at the end
5143// of a relaxation pass. Return true if either the data size or the
5144// alignment changed in this relaxation pass.
5145
5146template<bool big_endian>
5147bool
5148Stub_table<big_endian>::update_data_size_and_addralign()
5149{
2fb7225c 5150 // Go over all stubs in table to compute data size and address alignment.
d099120c
DK
5151 off_t size = this->reloc_stubs_size_;
5152 unsigned addralign = this->reloc_stubs_addralign_;
2fb7225c
DK
5153
5154 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5155 p != this->cortex_a8_stubs_.end();
5156 ++p)
5157 {
5158 const Stub_template* stub_template = p->second->stub_template();
5159 addralign = std::max(addralign, stub_template->alignment());
5160 size = (align_address(size, stub_template->alignment())
5161 + stub_template->size());
5162 }
5163
a2162063
ILT
5164 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5165 p != this->arm_v4bx_stubs_.end();
5166 ++p)
5167 {
5168 if (*p == NULL)
5169 continue;
5170
5171 const Stub_template* stub_template = (*p)->stub_template();
5172 addralign = std::max(addralign, stub_template->alignment());
5173 size = (align_address(size, stub_template->alignment())
5174 + stub_template->size());
5175 }
5176
2fb7225c
DK
5177 // Check if either data size or alignment changed in this pass.
5178 // Update prev_data_size_ and prev_addralign_. These will be used
5179 // as the current data size and address alignment for the next pass.
5180 bool changed = size != this->prev_data_size_;
2e702c99 5181 this->prev_data_size_ = size;
2fb7225c
DK
5182
5183 if (addralign != this->prev_addralign_)
5184 changed = true;
5185 this->prev_addralign_ = addralign;
5186
5187 return changed;
5188}
5189
5190// Finalize the stubs. This sets the offsets of the stubs within the stub
5191// table. It also marks all input sections needing Cortex-A8 workaround.
56ee5e00
DK
5192
5193template<bool big_endian>
5194void
2fb7225c 5195Stub_table<big_endian>::finalize_stubs()
56ee5e00 5196{
d099120c 5197 off_t off = this->reloc_stubs_size_;
2fb7225c
DK
5198 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5199 p != this->cortex_a8_stubs_.end();
5200 ++p)
5201 {
5202 Cortex_a8_stub* stub = p->second;
5203 const Stub_template* stub_template = stub->stub_template();
5204 uint64_t stub_addralign = stub_template->alignment();
5205 off = align_address(off, stub_addralign);
5206 stub->set_offset(off);
5207 off += stub_template->size();
5208
5209 // Mark input section so that we can determine later if a code section
5210 // needs the Cortex-A8 workaround quickly.
5211 Arm_relobj<big_endian>* arm_relobj =
5212 Arm_relobj<big_endian>::as_arm_relobj(stub->relobj());
5213 arm_relobj->mark_section_for_cortex_a8_workaround(stub->shndx());
5214 }
5215
a2162063
ILT
5216 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5217 p != this->arm_v4bx_stubs_.end();
5218 ++p)
5219 {
5220 if (*p == NULL)
5221 continue;
5222
5223 const Stub_template* stub_template = (*p)->stub_template();
5224 uint64_t stub_addralign = stub_template->alignment();
5225 off = align_address(off, stub_addralign);
5226 (*p)->set_offset(off);
5227 off += stub_template->size();
5228 }
5229
2fb7225c 5230 gold_assert(off <= this->prev_data_size_);
56ee5e00
DK
5231}
5232
2fb7225c
DK
5233// Apply Cortex-A8 workaround to an address range between VIEW_ADDRESS
5234// and VIEW_ADDRESS + VIEW_SIZE - 1. VIEW points to the mapped address
5235// of the address range seen by the linker.
56ee5e00
DK
5236
5237template<bool big_endian>
5238void
2fb7225c
DK
5239Stub_table<big_endian>::apply_cortex_a8_workaround_to_address_range(
5240 Target_arm<big_endian>* arm_target,
5241 unsigned char* view,
5242 Arm_address view_address,
5243 section_size_type view_size)
56ee5e00 5244{
2fb7225c
DK
5245 // Cortex-A8 stubs are sorted by addresses of branches being fixed up.
5246 for (Cortex_a8_stub_list::const_iterator p =
5247 this->cortex_a8_stubs_.lower_bound(view_address);
5248 ((p != this->cortex_a8_stubs_.end())
5249 && (p->first < (view_address + view_size)));
5250 ++p)
56ee5e00 5251 {
2fb7225c
DK
5252 // We do not store the THUMB bit in the LSB of either the branch address
5253 // or the stub offset. There is no need to strip the LSB.
5254 Arm_address branch_address = p->first;
5255 const Cortex_a8_stub* stub = p->second;
5256 Arm_address stub_address = this->address() + stub->offset();
5257
5258 // Offset of the branch instruction relative to this view.
5259 section_size_type offset =
5260 convert_to_section_size_type(branch_address - view_address);
5261 gold_assert((offset + 4) <= view_size);
5262
5263 arm_target->apply_cortex_a8_workaround(stub, stub_address,
5264 view + offset, branch_address);
5265 }
56ee5e00
DK
5266}
5267
10ad9fe5
DK
5268// Arm_input_section methods.
5269
5270// Initialize an Arm_input_section.
5271
5272template<bool big_endian>
5273void
5274Arm_input_section<big_endian>::init()
5275{
2ea97941
ILT
5276 Relobj* relobj = this->relobj();
5277 unsigned int shndx = this->shndx();
10ad9fe5 5278
f625ae50
DK
5279 // We have to cache original size, alignment and contents to avoid locking
5280 // the original file.
6625d24e
DK
5281 this->original_addralign_ =
5282 convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
f625ae50
DK
5283
5284 // This is not efficient but we expect only a small number of relaxed
5285 // input sections for stubs.
5286 section_size_type section_size;
5287 const unsigned char* section_contents =
5288 relobj->section_contents(shndx, &section_size, false);
6625d24e
DK
5289 this->original_size_ =
5290 convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
10ad9fe5 5291
f625ae50
DK
5292 gold_assert(this->original_contents_ == NULL);
5293 this->original_contents_ = new unsigned char[section_size];
5294 memcpy(this->original_contents_, section_contents, section_size);
5295
10ad9fe5
DK
5296 // We want to make this look like the original input section after
5297 // output sections are finalized.
2ea97941
ILT
5298 Output_section* os = relobj->output_section(shndx);
5299 off_t offset = relobj->output_section_offset(shndx);
5300 gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
5301 this->set_address(os->address() + offset);
5302 this->set_file_offset(os->offset() + offset);
10ad9fe5
DK
5303
5304 this->set_current_data_size(this->original_size_);
5305 this->finalize_data_size();
5306}
5307
5308template<bool big_endian>
5309void
5310Arm_input_section<big_endian>::do_write(Output_file* of)
5311{
5312 // We have to write out the original section content.
f625ae50
DK
5313 gold_assert(this->original_contents_ != NULL);
5314 of->write(this->offset(), this->original_contents_,
2e702c99 5315 this->original_size_);
10ad9fe5
DK
5316
5317 // If this owns a stub table and it is not empty, write it.
5318 if (this->is_stub_table_owner() && !this->stub_table_->empty())
5319 this->stub_table_->write(of);
5320}
5321
5322// Finalize data size.
5323
5324template<bool big_endian>
5325void
5326Arm_input_section<big_endian>::set_final_data_size()
5327{
153e7da4
DK
5328 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5329
10ad9fe5
DK
5330 if (this->is_stub_table_owner())
5331 {
6625d24e 5332 this->stub_table_->finalize_data_size();
153e7da4 5333 off = align_address(off, this->stub_table_->addralign());
153e7da4 5334 off += this->stub_table_->data_size();
10ad9fe5 5335 }
153e7da4 5336 this->set_data_size(off);
10ad9fe5
DK
5337}
5338
5339// Reset address and file offset.
5340
5341template<bool big_endian>
5342void
5343Arm_input_section<big_endian>::do_reset_address_and_file_offset()
5344{
5345 // Size of the original input section contents.
5346 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5347
5348 // If this is a stub table owner, account for the stub table size.
5349 if (this->is_stub_table_owner())
5350 {
2ea97941 5351 Stub_table<big_endian>* stub_table = this->stub_table_;
10ad9fe5
DK
5352
5353 // Reset the stub table's address and file offset. The
5354 // current data size for child will be updated after that.
5355 stub_table_->reset_address_and_file_offset();
5356 off = align_address(off, stub_table_->addralign());
2ea97941 5357 off += stub_table->current_data_size();
10ad9fe5
DK
5358 }
5359
5360 this->set_current_data_size(off);
5361}
5362
af2cdeae
DK
5363// Arm_exidx_cantunwind methods.
5364
7296d933 5365// Write this to Output file OF for a fixed endianness.
af2cdeae
DK
5366
5367template<bool big_endian>
5368void
5369Arm_exidx_cantunwind::do_fixed_endian_write(Output_file* of)
5370{
5371 off_t offset = this->offset();
5372 const section_size_type oview_size = 8;
5373 unsigned char* const oview = of->get_output_view(offset, oview_size);
2e702c99 5374
af2cdeae
DK
5375 Output_section* os = this->relobj_->output_section(this->shndx_);
5376 gold_assert(os != NULL);
5377
5378 Arm_relobj<big_endian>* arm_relobj =
5379 Arm_relobj<big_endian>::as_arm_relobj(this->relobj_);
5380 Arm_address output_offset =
5381 arm_relobj->get_output_section_offset(this->shndx_);
5382 Arm_address section_start;
f625ae50
DK
5383 section_size_type section_size;
5384
5385 // Find out the end of the text section referred by this.
7296d933 5386 if (output_offset != Arm_relobj<big_endian>::invalid_address)
f625ae50
DK
5387 {
5388 section_start = os->address() + output_offset;
5389 const Arm_exidx_input_section* exidx_input_section =
2e702c99 5390 arm_relobj->exidx_input_section_by_link(this->shndx_);
f625ae50
DK
5391 gold_assert(exidx_input_section != NULL);
5392 section_size =
5393 convert_to_section_size_type(exidx_input_section->text_size());
5394 }
af2cdeae
DK
5395 else
5396 {
5397 // Currently this only happens for a relaxed section.
5398 const Output_relaxed_input_section* poris =
5399 os->find_relaxed_input_section(this->relobj_, this->shndx_);
5400 gold_assert(poris != NULL);
5401 section_start = poris->address();
f625ae50 5402 section_size = convert_to_section_size_type(poris->data_size());
af2cdeae
DK
5403 }
5404
5405 // We always append this to the end of an EXIDX section.
f625ae50 5406 Arm_address output_address = section_start + section_size;
af2cdeae
DK
5407
5408 // Write out the entry. The first word either points to the beginning
5409 // or after the end of a text section. The second word is the special
5410 // EXIDX_CANTUNWIND value.
e7eca48c 5411 uint32_t prel31_offset = output_address - this->address();
bef2b434 5412 if (Bits<31>::has_overflow32(offset))
e7eca48c 5413 gold_error(_("PREL31 overflow in EXIDX_CANTUNWIND entry"));
f6cccc2c
DK
5414 elfcpp::Swap_unaligned<32, big_endian>::writeval(oview,
5415 prel31_offset & 0x7fffffffU);
5416 elfcpp::Swap_unaligned<32, big_endian>::writeval(oview + 4,
5417 elfcpp::EXIDX_CANTUNWIND);
af2cdeae
DK
5418
5419 of->write_output_view(this->offset(), oview_size, oview);
5420}
5421
5422// Arm_exidx_merged_section methods.
5423
5424// Constructor for Arm_exidx_merged_section.
5425// EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
5426// SECTION_OFFSET_MAP points to a section offset map describing how
5427// parts of the input section are mapped to output. DELETED_BYTES is
5428// the number of bytes deleted from the EXIDX input section.
5429
5430Arm_exidx_merged_section::Arm_exidx_merged_section(
5431 const Arm_exidx_input_section& exidx_input_section,
5432 const Arm_exidx_section_offset_map& section_offset_map,
5433 uint32_t deleted_bytes)
5434 : Output_relaxed_input_section(exidx_input_section.relobj(),
5435 exidx_input_section.shndx(),
5436 exidx_input_section.addralign()),
5437 exidx_input_section_(exidx_input_section),
5438 section_offset_map_(section_offset_map)
5439{
f625ae50
DK
5440 // If we retain or discard the whole EXIDX input section, we would
5441 // not be here.
5442 gold_assert(deleted_bytes != 0
5443 && deleted_bytes != this->exidx_input_section_.size());
5444
af2cdeae 5445 // Fix size here so that we do not need to implement set_final_data_size.
f625ae50
DK
5446 uint32_t size = exidx_input_section.size() - deleted_bytes;
5447 this->set_data_size(size);
af2cdeae 5448 this->fix_data_size();
f625ae50
DK
5449
5450 // Allocate buffer for section contents and build contents.
5451 this->section_contents_ = new unsigned char[size];
5452}
5453
5454// Build the contents of a merged EXIDX output section.
5455
5456void
5457Arm_exidx_merged_section::build_contents(
5458 const unsigned char* original_contents,
5459 section_size_type original_size)
5460{
5461 // Go over spans of input offsets and write only those that are not
5462 // discarded.
5463 section_offset_type in_start = 0;
5464 section_offset_type out_start = 0;
5465 section_offset_type in_max =
5466 convert_types<section_offset_type>(original_size);
5467 section_offset_type out_max =
5468 convert_types<section_offset_type>(this->data_size());
5469 for (Arm_exidx_section_offset_map::const_iterator p =
2e702c99 5470 this->section_offset_map_.begin();
f625ae50
DK
5471 p != this->section_offset_map_.end();
5472 ++p)
5473 {
5474 section_offset_type in_end = p->first;
5475 gold_assert(in_end >= in_start);
5476 section_offset_type out_end = p->second;
5477 size_t in_chunk_size = convert_types<size_t>(in_end - in_start + 1);
5478 if (out_end != -1)
5479 {
5480 size_t out_chunk_size =
5481 convert_types<size_t>(out_end - out_start + 1);
5482
5483 gold_assert(out_chunk_size == in_chunk_size
5484 && in_end < in_max && out_end < out_max);
5485
5486 memcpy(this->section_contents_ + out_start,
5487 original_contents + in_start,
5488 out_chunk_size);
5489 out_start += out_chunk_size;
5490 }
5491 in_start += in_chunk_size;
5492 }
af2cdeae
DK
5493}
5494
5495// Given an input OBJECT, an input section index SHNDX within that
5496// object, and an OFFSET relative to the start of that input
5497// section, return whether or not the corresponding offset within
5498// the output section is known. If this function returns true, it
5499// sets *POUTPUT to the output offset. The value -1 indicates that
5500// this input offset is being discarded.
5501
5502bool
5503Arm_exidx_merged_section::do_output_offset(
5504 const Relobj* relobj,
5505 unsigned int shndx,
5506 section_offset_type offset,
5507 section_offset_type* poutput) const
5508{
5509 // We only handle offsets for the original EXIDX input section.
5510 if (relobj != this->exidx_input_section_.relobj()
5511 || shndx != this->exidx_input_section_.shndx())
5512 return false;
5513
c7f3c371
DK
5514 section_offset_type section_size =
5515 convert_types<section_offset_type>(this->exidx_input_section_.size());
5516 if (offset < 0 || offset >= section_size)
af2cdeae
DK
5517 // Input offset is out of valid range.
5518 *poutput = -1;
5519 else
5520 {
5521 // We need to look up the section offset map to determine the output
5522 // offset. Find the reference point in map that is first offset
5523 // bigger than or equal to this offset.
5524 Arm_exidx_section_offset_map::const_iterator p =
5525 this->section_offset_map_.lower_bound(offset);
5526
5527 // The section offset maps are build such that this should not happen if
5528 // input offset is in the valid range.
5529 gold_assert(p != this->section_offset_map_.end());
5530
5531 // We need to check if this is dropped.
5532 section_offset_type ref = p->first;
5533 section_offset_type mapped_ref = p->second;
5534
5535 if (mapped_ref != Arm_exidx_input_section::invalid_offset)
5536 // Offset is present in output.
5537 *poutput = mapped_ref + (offset - ref);
5538 else
5539 // Offset is discarded owing to EXIDX entry merging.
5540 *poutput = -1;
5541 }
2e702c99 5542
af2cdeae
DK
5543 return true;
5544}
5545
5546// Write this to output file OF.
5547
5548void
5549Arm_exidx_merged_section::do_write(Output_file* of)
5550{
af2cdeae
DK
5551 off_t offset = this->offset();
5552 const section_size_type oview_size = this->data_size();
5553 unsigned char* const oview = of->get_output_view(offset, oview_size);
2e702c99 5554
af2cdeae
DK
5555 Output_section* os = this->relobj()->output_section(this->shndx());
5556 gold_assert(os != NULL);
5557
f625ae50 5558 memcpy(oview, this->section_contents_, oview_size);
af2cdeae
DK
5559 of->write_output_view(this->offset(), oview_size, oview);
5560}
5561
80d0d023
DK
5562// Arm_exidx_fixup methods.
5563
5564// Append an EXIDX_CANTUNWIND in the current output section if the last entry
5565// is not an EXIDX_CANTUNWIND entry already. The new EXIDX_CANTUNWIND entry
5566// points to the end of the last seen EXIDX section.
5567
5568void
5569Arm_exidx_fixup::add_exidx_cantunwind_as_needed()
5570{
5571 if (this->last_unwind_type_ != UT_EXIDX_CANTUNWIND
5572 && this->last_input_section_ != NULL)
5573 {
5574 Relobj* relobj = this->last_input_section_->relobj();
2b328d4e 5575 unsigned int text_shndx = this->last_input_section_->link();
80d0d023 5576 Arm_exidx_cantunwind* cantunwind =
2b328d4e 5577 new Arm_exidx_cantunwind(relobj, text_shndx);
80d0d023
DK
5578 this->exidx_output_section_->add_output_section_data(cantunwind);
5579 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5580 }
5581}
5582
5583// Process an EXIDX section entry in input. Return whether this entry
5584// can be deleted in the output. SECOND_WORD in the second word of the
5585// EXIDX entry.
5586
5587bool
5588Arm_exidx_fixup::process_exidx_entry(uint32_t second_word)
5589{
5590 bool delete_entry;
5591 if (second_word == elfcpp::EXIDX_CANTUNWIND)
5592 {
5593 // Merge if previous entry is also an EXIDX_CANTUNWIND.
5594 delete_entry = this->last_unwind_type_ == UT_EXIDX_CANTUNWIND;
5595 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5596 }
5597 else if ((second_word & 0x80000000) != 0)
5598 {
5599 // Inlined unwinding data. Merge if equal to previous.
85fdf906
AH
5600 delete_entry = (merge_exidx_entries_
5601 && this->last_unwind_type_ == UT_INLINED_ENTRY
80d0d023
DK
5602 && this->last_inlined_entry_ == second_word);
5603 this->last_unwind_type_ = UT_INLINED_ENTRY;
5604 this->last_inlined_entry_ = second_word;
5605 }
5606 else
5607 {
5608 // Normal table entry. In theory we could merge these too,
5609 // but duplicate entries are likely to be much less common.
5610 delete_entry = false;
5611 this->last_unwind_type_ = UT_NORMAL_ENTRY;
5612 }
5613 return delete_entry;
5614}
5615
5616// Update the current section offset map during EXIDX section fix-up.
5617// If there is no map, create one. INPUT_OFFSET is the offset of a
5618// reference point, DELETED_BYTES is the number of deleted by in the
5619// section so far. If DELETE_ENTRY is true, the reference point and
5620// all offsets after the previous reference point are discarded.
5621
5622void
5623Arm_exidx_fixup::update_offset_map(
5624 section_offset_type input_offset,
5625 section_size_type deleted_bytes,
5626 bool delete_entry)
5627{
5628 if (this->section_offset_map_ == NULL)
5629 this->section_offset_map_ = new Arm_exidx_section_offset_map();
4fcd97eb
DK
5630 section_offset_type output_offset;
5631 if (delete_entry)
5632 output_offset = Arm_exidx_input_section::invalid_offset;
5633 else
5634 output_offset = input_offset - deleted_bytes;
80d0d023
DK
5635 (*this->section_offset_map_)[input_offset] = output_offset;
5636}
5637
5638// Process EXIDX_INPUT_SECTION for EXIDX entry merging. Return the number of
f625ae50
DK
5639// bytes deleted. SECTION_CONTENTS points to the contents of the EXIDX
5640// section and SECTION_SIZE is the number of bytes pointed by SECTION_CONTENTS.
5641// If some entries are merged, also store a pointer to a newly created
5642// Arm_exidx_section_offset_map object in *PSECTION_OFFSET_MAP. The caller
5643// owns the map and is responsible for releasing it after use.
80d0d023
DK
5644
5645template<bool big_endian>
5646uint32_t
5647Arm_exidx_fixup::process_exidx_section(
5648 const Arm_exidx_input_section* exidx_input_section,
f625ae50
DK
5649 const unsigned char* section_contents,
5650 section_size_type section_size,
80d0d023
DK
5651 Arm_exidx_section_offset_map** psection_offset_map)
5652{
5653 Relobj* relobj = exidx_input_section->relobj();
5654 unsigned shndx = exidx_input_section->shndx();
80d0d023
DK
5655
5656 if ((section_size % 8) != 0)
5657 {
5658 // Something is wrong with this section. Better not touch it.
5659 gold_error(_("uneven .ARM.exidx section size in %s section %u"),
5660 relobj->name().c_str(), shndx);
5661 this->last_input_section_ = exidx_input_section;
5662 this->last_unwind_type_ = UT_NONE;
5663 return 0;
5664 }
2e702c99 5665
80d0d023
DK
5666 uint32_t deleted_bytes = 0;
5667 bool prev_delete_entry = false;
5668 gold_assert(this->section_offset_map_ == NULL);
5669
5670 for (section_size_type i = 0; i < section_size; i += 8)
5671 {
5672 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5673 const Valtype* wv =
5674 reinterpret_cast<const Valtype*>(section_contents + i + 4);
5675 uint32_t second_word = elfcpp::Swap<32, big_endian>::readval(wv);
5676
5677 bool delete_entry = this->process_exidx_entry(second_word);
5678
5679 // Entry deletion causes changes in output offsets. We use a std::map
5680 // to record these. And entry (x, y) means input offset x
5681 // is mapped to output offset y. If y is invalid_offset, then x is
5682 // dropped in the output. Because of the way std::map::lower_bound
5683 // works, we record the last offset in a region w.r.t to keeping or
5684 // dropping. If there is no entry (x0, y0) for an input offset x0,
5685 // the output offset y0 of it is determined by the output offset y1 of
5686 // the smallest input offset x1 > x0 that there is an (x1, y1) entry
9b547ce6 5687 // in the map. If y1 is not -1, then y0 = y1 + x0 - x1. Otherwise, y1
80d0d023
DK
5688 // y0 is also -1.
5689 if (delete_entry != prev_delete_entry && i != 0)
5690 this->update_offset_map(i - 1, deleted_bytes, prev_delete_entry);
5691
5692 // Update total deleted bytes for this entry.
5693 if (delete_entry)
5694 deleted_bytes += 8;
5695
5696 prev_delete_entry = delete_entry;
5697 }
2e702c99 5698
80d0d023
DK
5699 // If section offset map is not NULL, make an entry for the end of
5700 // section.
5701 if (this->section_offset_map_ != NULL)
5702 update_offset_map(section_size - 1, deleted_bytes, prev_delete_entry);
5703
5704 *psection_offset_map = this->section_offset_map_;
5705 this->section_offset_map_ = NULL;
5706 this->last_input_section_ = exidx_input_section;
2e702c99 5707
546c7457
DK
5708 // Set the first output text section so that we can link the EXIDX output
5709 // section to it. Ignore any EXIDX input section that is completely merged.
5710 if (this->first_output_text_section_ == NULL
5711 && deleted_bytes != section_size)
5712 {
5713 unsigned int link = exidx_input_section->link();
5714 Output_section* os = relobj->output_section(link);
5715 gold_assert(os != NULL);
5716 this->first_output_text_section_ = os;
5717 }
5718
80d0d023
DK
5719 return deleted_bytes;
5720}
5721
07f508a2
DK
5722// Arm_output_section methods.
5723
5724// Create a stub group for input sections from BEGIN to END. OWNER
5725// points to the input section to be the owner a new stub table.
5726
5727template<bool big_endian>
5728void
5729Arm_output_section<big_endian>::create_stub_group(
5730 Input_section_list::const_iterator begin,
5731 Input_section_list::const_iterator end,
5732 Input_section_list::const_iterator owner,
5733 Target_arm<big_endian>* target,
f625ae50
DK
5734 std::vector<Output_relaxed_input_section*>* new_relaxed_sections,
5735 const Task* task)
07f508a2 5736{
2b328d4e
DK
5737 // We use a different kind of relaxed section in an EXIDX section.
5738 // The static casting from Output_relaxed_input_section to
5739 // Arm_input_section is invalid in an EXIDX section. We are okay
2e702c99 5740 // because we should not be calling this for an EXIDX section.
2b328d4e
DK
5741 gold_assert(this->type() != elfcpp::SHT_ARM_EXIDX);
5742
07f508a2
DK
5743 // Currently we convert ordinary input sections into relaxed sections only
5744 // at this point but we may want to support creating relaxed input section
5745 // very early. So we check here to see if owner is already a relaxed
5746 // section.
2e702c99 5747
07f508a2
DK
5748 Arm_input_section<big_endian>* arm_input_section;
5749 if (owner->is_relaxed_input_section())
5750 {
5751 arm_input_section =
5752 Arm_input_section<big_endian>::as_arm_input_section(
5753 owner->relaxed_input_section());
5754 }
5755 else
5756 {
5757 gold_assert(owner->is_input_section());
f625ae50
DK
5758 // Create a new relaxed input section. We need to lock the original
5759 // file.
5760 Task_lock_obj<Object> tl(task, owner->relobj());
07f508a2
DK
5761 arm_input_section =
5762 target->new_arm_input_section(owner->relobj(), owner->shndx());
5763 new_relaxed_sections->push_back(arm_input_section);
5764 }
5765
5766 // Create a stub table.
2ea97941 5767 Stub_table<big_endian>* stub_table =
07f508a2
DK
5768 target->new_stub_table(arm_input_section);
5769
2ea97941 5770 arm_input_section->set_stub_table(stub_table);
2e702c99 5771
07f508a2
DK
5772 Input_section_list::const_iterator p = begin;
5773 Input_section_list::const_iterator prev_p;
5774
5775 // Look for input sections or relaxed input sections in [begin ... end].
5776 do
5777 {
5778 if (p->is_input_section() || p->is_relaxed_input_section())
5779 {
5780 // The stub table information for input sections live
5781 // in their objects.
5782 Arm_relobj<big_endian>* arm_relobj =
5783 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
2ea97941 5784 arm_relobj->set_stub_table(p->shndx(), stub_table);
07f508a2
DK
5785 }
5786 prev_p = p++;
5787 }
5788 while (prev_p != end);
5789}
5790
5791// Group input sections for stub generation. GROUP_SIZE is roughly the limit
5792// of stub groups. We grow a stub group by adding input section until the
5793// size is just below GROUP_SIZE. The last input section will be converted
5794// into a stub table. If STUB_ALWAYS_AFTER_BRANCH is false, we also add
5795// input section after the stub table, effectively double the group size.
2e702c99 5796//
07f508a2
DK
5797// This is similar to the group_sections() function in elf32-arm.c but is
5798// implemented differently.
5799
5800template<bool big_endian>
5801void
5802Arm_output_section<big_endian>::group_sections(
5803 section_size_type group_size,
5804 bool stubs_always_after_branch,
f625ae50
DK
5805 Target_arm<big_endian>* target,
5806 const Task* task)
07f508a2 5807{
07f508a2
DK
5808 // States for grouping.
5809 typedef enum
5810 {
5811 // No group is being built.
5812 NO_GROUP,
5813 // A group is being built but the stub table is not found yet.
5814 // We keep group a stub group until the size is just under GROUP_SIZE.
5815 // The last input section in the group will be used as the stub table.
5816 FINDING_STUB_SECTION,
5817 // A group is being built and we have already found a stub table.
5818 // We enter this state to grow a stub group by adding input section
5819 // after the stub table. This effectively doubles the group size.
5820 HAS_STUB_SECTION
5821 } State;
5822
5823 // Any newly created relaxed sections are stored here.
5824 std::vector<Output_relaxed_input_section*> new_relaxed_sections;
5825
5826 State state = NO_GROUP;
5827 section_size_type off = 0;
5828 section_size_type group_begin_offset = 0;
5829 section_size_type group_end_offset = 0;
5830 section_size_type stub_table_end_offset = 0;
5831 Input_section_list::const_iterator group_begin =
5832 this->input_sections().end();
2ea97941 5833 Input_section_list::const_iterator stub_table =
07f508a2
DK
5834 this->input_sections().end();
5835 Input_section_list::const_iterator group_end = this->input_sections().end();
5836 for (Input_section_list::const_iterator p = this->input_sections().begin();
5837 p != this->input_sections().end();
5838 ++p)
5839 {
5840 section_size_type section_begin_offset =
5841 align_address(off, p->addralign());
5842 section_size_type section_end_offset =
2e702c99
RM
5843 section_begin_offset + p->data_size();
5844
9b547ce6 5845 // Check to see if we should group the previously seen sections.
e9bbb538 5846 switch (state)
07f508a2
DK
5847 {
5848 case NO_GROUP:
5849 break;
5850
5851 case FINDING_STUB_SECTION:
5852 // Adding this section makes the group larger than GROUP_SIZE.
5853 if (section_end_offset - group_begin_offset >= group_size)
5854 {
5855 if (stubs_always_after_branch)
2e702c99 5856 {
07f508a2
DK
5857 gold_assert(group_end != this->input_sections().end());
5858 this->create_stub_group(group_begin, group_end, group_end,
f625ae50
DK
5859 target, &new_relaxed_sections,
5860 task);
07f508a2
DK
5861 state = NO_GROUP;
5862 }
5863 else
5864 {
5865 // But wait, there's more! Input sections up to
5866 // stub_group_size bytes after the stub table can be
5867 // handled by it too.
5868 state = HAS_STUB_SECTION;
2ea97941 5869 stub_table = group_end;
07f508a2
DK
5870 stub_table_end_offset = group_end_offset;
5871 }
5872 }
5873 break;
5874
5875 case HAS_STUB_SECTION:
5876 // Adding this section makes the post stub-section group larger
5877 // than GROUP_SIZE.
5878 if (section_end_offset - stub_table_end_offset >= group_size)
5879 {
5880 gold_assert(group_end != this->input_sections().end());
2ea97941 5881 this->create_stub_group(group_begin, group_end, stub_table,
f625ae50 5882 target, &new_relaxed_sections, task);
07f508a2
DK
5883 state = NO_GROUP;
5884 }
5885 break;
5886
5887 default:
5888 gold_unreachable();
2e702c99 5889 }
07f508a2
DK
5890
5891 // If we see an input section and currently there is no group, start
f625ae50
DK
5892 // a new one. Skip any empty sections. We look at the data size
5893 // instead of calling p->relobj()->section_size() to avoid locking.
07f508a2 5894 if ((p->is_input_section() || p->is_relaxed_input_section())
f625ae50 5895 && (p->data_size() != 0))
07f508a2
DK
5896 {
5897 if (state == NO_GROUP)
5898 {
5899 state = FINDING_STUB_SECTION;
5900 group_begin = p;
5901 group_begin_offset = section_begin_offset;
5902 }
5903
5904 // Keep track of the last input section seen.
5905 group_end = p;
5906 group_end_offset = section_end_offset;
5907 }
5908
5909 off = section_end_offset;
5910 }
5911
5912 // Create a stub group for any ungrouped sections.
5913 if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
5914 {
5915 gold_assert(group_end != this->input_sections().end());
5916 this->create_stub_group(group_begin, group_end,
5917 (state == FINDING_STUB_SECTION
5918 ? group_end
2ea97941 5919 : stub_table),
f625ae50 5920 target, &new_relaxed_sections, task);
07f508a2
DK
5921 }
5922
5923 // Convert input section into relaxed input section in a batch.
5924 if (!new_relaxed_sections.empty())
5925 this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
5926
5927 // Update the section offsets
5928 for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
5929 {
5930 Arm_relobj<big_endian>* arm_relobj =
5931 Arm_relobj<big_endian>::as_arm_relobj(
5932 new_relaxed_sections[i]->relobj());
2ea97941 5933 unsigned int shndx = new_relaxed_sections[i]->shndx();
07f508a2 5934 // Tell Arm_relobj that this input section is converted.
2ea97941 5935 arm_relobj->convert_input_section_to_relaxed_section(shndx);
07f508a2
DK
5936 }
5937}
5938
2b328d4e
DK
5939// Append non empty text sections in this to LIST in ascending
5940// order of their position in this.
5941
5942template<bool big_endian>
5943void
5944Arm_output_section<big_endian>::append_text_sections_to_list(
5945 Text_section_list* list)
5946{
2b328d4e
DK
5947 gold_assert((this->flags() & elfcpp::SHF_ALLOC) != 0);
5948
5949 for (Input_section_list::const_iterator p = this->input_sections().begin();
5950 p != this->input_sections().end();
5951 ++p)
5952 {
5953 // We only care about plain or relaxed input sections. We also
5954 // ignore any merged sections.
a60af0db 5955 if (p->is_input_section() || p->is_relaxed_input_section())
2b328d4e
DK
5956 list->push_back(Text_section_list::value_type(p->relobj(),
5957 p->shndx()));
5958 }
5959}
5960
5961template<bool big_endian>
5962void
5963Arm_output_section<big_endian>::fix_exidx_coverage(
4a54abbb 5964 Layout* layout,
2b328d4e 5965 const Text_section_list& sorted_text_sections,
85fdf906 5966 Symbol_table* symtab,
f625ae50
DK
5967 bool merge_exidx_entries,
5968 const Task* task)
2b328d4e
DK
5969{
5970 // We should only do this for the EXIDX output section.
5971 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
5972
5973 // We don't want the relaxation loop to undo these changes, so we discard
5974 // the current saved states and take another one after the fix-up.
5975 this->discard_states();
5976
5977 // Remove all input sections.
5978 uint64_t address = this->address();
6625d24e
DK
5979 typedef std::list<Output_section::Input_section> Input_section_list;
5980 Input_section_list input_sections;
2b328d4e
DK
5981 this->reset_address_and_file_offset();
5982 this->get_input_sections(address, std::string(""), &input_sections);
5983
5984 if (!this->input_sections().empty())
5985 gold_error(_("Found non-EXIDX input sections in EXIDX output section"));
2e702c99 5986
2b328d4e
DK
5987 // Go through all the known input sections and record them.
5988 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
6625d24e
DK
5989 typedef Unordered_map<Section_id, const Output_section::Input_section*,
5990 Section_id_hash> Text_to_exidx_map;
5991 Text_to_exidx_map text_to_exidx_map;
5992 for (Input_section_list::const_iterator p = input_sections.begin();
2b328d4e
DK
5993 p != input_sections.end();
5994 ++p)
5995 {
5996 // This should never happen. At this point, we should only see
5997 // plain EXIDX input sections.
5998 gold_assert(!p->is_relaxed_input_section());
6625d24e 5999 text_to_exidx_map[Section_id(p->relobj(), p->shndx())] = &(*p);
2b328d4e
DK
6000 }
6001
85fdf906 6002 Arm_exidx_fixup exidx_fixup(this, merge_exidx_entries);
2b328d4e
DK
6003
6004 // Go over the sorted text sections.
6625d24e 6005 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
2b328d4e
DK
6006 Section_id_set processed_input_sections;
6007 for (Text_section_list::const_iterator p = sorted_text_sections.begin();
6008 p != sorted_text_sections.end();
6009 ++p)
6010 {
6011 Relobj* relobj = p->first;
6012 unsigned int shndx = p->second;
6013
6014 Arm_relobj<big_endian>* arm_relobj =
6015 Arm_relobj<big_endian>::as_arm_relobj(relobj);
6016 const Arm_exidx_input_section* exidx_input_section =
6017 arm_relobj->exidx_input_section_by_link(shndx);
6018
131687b4
DK
6019 // If this text section has no EXIDX section or if the EXIDX section
6020 // has errors, force an EXIDX_CANTUNWIND entry pointing to the end
6021 // of the last seen EXIDX section.
6022 if (exidx_input_section == NULL || exidx_input_section->has_errors())
2b328d4e
DK
6023 {
6024 exidx_fixup.add_exidx_cantunwind_as_needed();
6025 continue;
6026 }
6027
6028 Relobj* exidx_relobj = exidx_input_section->relobj();
6029 unsigned int exidx_shndx = exidx_input_section->shndx();
6030 Section_id sid(exidx_relobj, exidx_shndx);
6625d24e
DK
6031 Text_to_exidx_map::const_iterator iter = text_to_exidx_map.find(sid);
6032 if (iter == text_to_exidx_map.end())
2b328d4e
DK
6033 {
6034 // This is odd. We have not seen this EXIDX input section before.
4a54abbb
DK
6035 // We cannot do fix-up. If we saw a SECTIONS clause in a script,
6036 // issue a warning instead. We assume the user knows what he
6037 // or she is doing. Otherwise, this is an error.
6038 if (layout->script_options()->saw_sections_clause())
6039 gold_warning(_("unwinding may not work because EXIDX input section"
6040 " %u of %s is not in EXIDX output section"),
6041 exidx_shndx, exidx_relobj->name().c_str());
6042 else
6043 gold_error(_("unwinding may not work because EXIDX input section"
6044 " %u of %s is not in EXIDX output section"),
6045 exidx_shndx, exidx_relobj->name().c_str());
6046
2b328d4e
DK
6047 exidx_fixup.add_exidx_cantunwind_as_needed();
6048 continue;
6049 }
6050
f625ae50
DK
6051 // We need to access the contents of the EXIDX section, lock the
6052 // object here.
6053 Task_lock_obj<Object> tl(task, exidx_relobj);
6054 section_size_type exidx_size;
6055 const unsigned char* exidx_contents =
2e702c99 6056 exidx_relobj->section_contents(exidx_shndx, &exidx_size, false);
f625ae50 6057
2b328d4e
DK
6058 // Fix up coverage and append input section to output data list.
6059 Arm_exidx_section_offset_map* section_offset_map = NULL;
6060 uint32_t deleted_bytes =
2e702c99 6061 exidx_fixup.process_exidx_section<big_endian>(exidx_input_section,
f625ae50
DK
6062 exidx_contents,
6063 exidx_size,
2b328d4e
DK
6064 &section_offset_map);
6065
6066 if (deleted_bytes == exidx_input_section->size())
6067 {
6068 // The whole EXIDX section got merged. Remove it from output.
6069 gold_assert(section_offset_map == NULL);
6070 exidx_relobj->set_output_section(exidx_shndx, NULL);
e7eca48c
DK
6071
6072 // All local symbols defined in this input section will be dropped.
6073 // We need to adjust output local symbol count.
6074 arm_relobj->set_output_local_symbol_count_needs_update();
2b328d4e
DK
6075 }
6076 else if (deleted_bytes > 0)
6077 {
6078 // Some entries are merged. We need to convert this EXIDX input
6079 // section into a relaxed section.
6080 gold_assert(section_offset_map != NULL);
f625ae50 6081
2b328d4e
DK
6082 Arm_exidx_merged_section* merged_section =
6083 new Arm_exidx_merged_section(*exidx_input_section,
6084 *section_offset_map, deleted_bytes);
f625ae50
DK
6085 merged_section->build_contents(exidx_contents, exidx_size);
6086
d06fb4d1
DK
6087 const std::string secname = exidx_relobj->section_name(exidx_shndx);
6088 this->add_relaxed_input_section(layout, merged_section, secname);
2b328d4e 6089 arm_relobj->convert_input_section_to_relaxed_section(exidx_shndx);
e7eca48c
DK
6090
6091 // All local symbols defined in discarded portions of this input
6092 // section will be dropped. We need to adjust output local symbol
6093 // count.
6094 arm_relobj->set_output_local_symbol_count_needs_update();
2b328d4e
DK
6095 }
6096 else
6097 {
6098 // Just add back the EXIDX input section.
6099 gold_assert(section_offset_map == NULL);
6625d24e
DK
6100 const Output_section::Input_section* pis = iter->second;
6101 gold_assert(pis->is_input_section());
6102 this->add_script_input_section(*pis);
2b328d4e
DK
6103 }
6104
2e702c99 6105 processed_input_sections.insert(Section_id(exidx_relobj, exidx_shndx));
2b328d4e
DK
6106 }
6107
6108 // Insert an EXIDX_CANTUNWIND entry at the end of output if necessary.
6109 exidx_fixup.add_exidx_cantunwind_as_needed();
6110
6111 // Remove any known EXIDX input sections that are not processed.
6625d24e 6112 for (Input_section_list::const_iterator p = input_sections.begin();
2b328d4e
DK
6113 p != input_sections.end();
6114 ++p)
6115 {
6116 if (processed_input_sections.find(Section_id(p->relobj(), p->shndx()))
6117 == processed_input_sections.end())
6118 {
131687b4
DK
6119 // We discard a known EXIDX section because its linked
6120 // text section has been folded by ICF. We also discard an
6121 // EXIDX section with error, the output does not matter in this
6122 // case. We do this to avoid triggering asserts.
2b328d4e
DK
6123 Arm_relobj<big_endian>* arm_relobj =
6124 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
6125 const Arm_exidx_input_section* exidx_input_section =
6126 arm_relobj->exidx_input_section_by_shndx(p->shndx());
6127 gold_assert(exidx_input_section != NULL);
131687b4
DK
6128 if (!exidx_input_section->has_errors())
6129 {
6130 unsigned int text_shndx = exidx_input_section->link();
6131 gold_assert(symtab->is_section_folded(p->relobj(), text_shndx));
6132 }
2b328d4e 6133
04ceb17c
DK
6134 // Remove this from link. We also need to recount the
6135 // local symbols.
2b328d4e 6136 p->relobj()->set_output_section(p->shndx(), NULL);
04ceb17c 6137 arm_relobj->set_output_local_symbol_count_needs_update();
2b328d4e
DK
6138 }
6139 }
2e702c99 6140
546c7457
DK
6141 // Link exidx output section to the first seen output section and
6142 // set correct entry size.
6143 this->set_link_section(exidx_fixup.first_output_text_section());
6144 this->set_entsize(8);
6145
2b328d4e
DK
6146 // Make changes permanent.
6147 this->save_states();
6148 this->set_section_offsets_need_adjustment();
6149}
6150
131687b4
DK
6151// Link EXIDX output sections to text output sections.
6152
6153template<bool big_endian>
6154void
6155Arm_output_section<big_endian>::set_exidx_section_link()
6156{
6157 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
6158 if (!this->input_sections().empty())
6159 {
6160 Input_section_list::const_iterator p = this->input_sections().begin();
6161 Arm_relobj<big_endian>* arm_relobj =
6162 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
6163 unsigned exidx_shndx = p->shndx();
6164 const Arm_exidx_input_section* exidx_input_section =
6165 arm_relobj->exidx_input_section_by_shndx(exidx_shndx);
6166 gold_assert(exidx_input_section != NULL);
6167 unsigned int text_shndx = exidx_input_section->link();
6168 Output_section* os = arm_relobj->output_section(text_shndx);
6169 this->set_link_section(os);
6170 }
6171}
6172
8ffa3667
DK
6173// Arm_relobj methods.
6174
cf846138
DK
6175// Determine if an input section is scannable for stub processing. SHDR is
6176// the header of the section and SHNDX is the section index. OS is the output
6177// section for the input section and SYMTAB is the global symbol table used to
6178// look up ICF information.
6179
6180template<bool big_endian>
6181bool
6182Arm_relobj<big_endian>::section_is_scannable(
6183 const elfcpp::Shdr<32, big_endian>& shdr,
6184 unsigned int shndx,
6185 const Output_section* os,
ca09d69a 6186 const Symbol_table* symtab)
cf846138
DK
6187{
6188 // Skip any empty sections, unallocated sections or sections whose
6189 // type are not SHT_PROGBITS.
6190 if (shdr.get_sh_size() == 0
6191 || (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
6192 || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
6193 return false;
6194
6195 // Skip any discarded or ICF'ed sections.
6196 if (os == NULL || symtab->is_section_folded(this, shndx))
6197 return false;
6198
6199 // If this requires special offset handling, check to see if it is
6200 // a relaxed section. If this is not, then it is a merged section that
6201 // we cannot handle.
6202 if (this->is_output_section_offset_invalid(shndx))
6203 {
6204 const Output_relaxed_input_section* poris =
6205 os->find_relaxed_input_section(this, shndx);
6206 if (poris == NULL)
6207 return false;
6208 }
6209
6210 return true;
6211}
6212
44272192
DK
6213// Determine if we want to scan the SHNDX-th section for relocation stubs.
6214// This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6215
6216template<bool big_endian>
6217bool
6218Arm_relobj<big_endian>::section_needs_reloc_stub_scanning(
6219 const elfcpp::Shdr<32, big_endian>& shdr,
6220 const Relobj::Output_sections& out_sections,
ca09d69a 6221 const Symbol_table* symtab,
2b328d4e 6222 const unsigned char* pshdrs)
44272192
DK
6223{
6224 unsigned int sh_type = shdr.get_sh_type();
6225 if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
6226 return false;
6227
6228 // Ignore empty section.
6229 off_t sh_size = shdr.get_sh_size();
6230 if (sh_size == 0)
6231 return false;
6232
44272192
DK
6233 // Ignore reloc section with unexpected symbol table. The
6234 // error will be reported in the final link.
6235 if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
6236 return false;
6237
b521dfe4
DK
6238 unsigned int reloc_size;
6239 if (sh_type == elfcpp::SHT_REL)
6240 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6241 else
6242 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
44272192
DK
6243
6244 // Ignore reloc section with unexpected entsize or uneven size.
6245 // The error will be reported in the final link.
6246 if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
6247 return false;
6248
cf846138
DK
6249 // Ignore reloc section with bad info. This error will be
6250 // reported in the final link.
6251 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6252 if (index >= this->shnum())
6253 return false;
6254
6255 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6256 const elfcpp::Shdr<32, big_endian> text_shdr(pshdrs + index * shdr_size);
6257 return this->section_is_scannable(text_shdr, index,
6258 out_sections[index], symtab);
44272192
DK
6259}
6260
cb1be87e
DK
6261// Return the output address of either a plain input section or a relaxed
6262// input section. SHNDX is the section index. We define and use this
6263// instead of calling Output_section::output_address because that is slow
6264// for large output.
6265
6266template<bool big_endian>
6267Arm_address
6268Arm_relobj<big_endian>::simple_input_section_output_address(
6269 unsigned int shndx,
6270 Output_section* os)
6271{
6272 if (this->is_output_section_offset_invalid(shndx))
6273 {
6274 const Output_relaxed_input_section* poris =
6275 os->find_relaxed_input_section(this, shndx);
6276 // We do not handle merged sections here.
6277 gold_assert(poris != NULL);
6278 return poris->address();
6279 }
6280 else
6281 return os->address() + this->get_output_section_offset(shndx);
6282}
6283
44272192
DK
6284// Determine if we want to scan the SHNDX-th section for non-relocation stubs.
6285// This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6286
6287template<bool big_endian>
6288bool
6289Arm_relobj<big_endian>::section_needs_cortex_a8_stub_scanning(
6290 const elfcpp::Shdr<32, big_endian>& shdr,
6291 unsigned int shndx,
6292 Output_section* os,
6293 const Symbol_table* symtab)
6294{
cf846138 6295 if (!this->section_is_scannable(shdr, shndx, os, symtab))
44272192
DK
6296 return false;
6297
44272192
DK
6298 // If the section does not cross any 4K-boundaries, it does not need to
6299 // be scanned.
cb1be87e 6300 Arm_address address = this->simple_input_section_output_address(shndx, os);
44272192
DK
6301 if ((address & ~0xfffU) == ((address + shdr.get_sh_size() - 1) & ~0xfffU))
6302 return false;
6303
6304 return true;
6305}
6306
6307// Scan a section for Cortex-A8 workaround.
6308
6309template<bool big_endian>
6310void
6311Arm_relobj<big_endian>::scan_section_for_cortex_a8_erratum(
6312 const elfcpp::Shdr<32, big_endian>& shdr,
6313 unsigned int shndx,
6314 Output_section* os,
6315 Target_arm<big_endian>* arm_target)
6316{
c8761b9a
DK
6317 // Look for the first mapping symbol in this section. It should be
6318 // at (shndx, 0).
6319 Mapping_symbol_position section_start(shndx, 0);
6320 typename Mapping_symbols_info::const_iterator p =
6321 this->mapping_symbols_info_.lower_bound(section_start);
6322
6323 // There are no mapping symbols for this section. Treat it as a data-only
61163dfa 6324 // section.
c8761b9a 6325 if (p == this->mapping_symbols_info_.end() || p->first.first != shndx)
61163dfa 6326 return;
c8761b9a 6327
cb1be87e
DK
6328 Arm_address output_address =
6329 this->simple_input_section_output_address(shndx, os);
44272192
DK
6330
6331 // Get the section contents.
6332 section_size_type input_view_size = 0;
6333 const unsigned char* input_view =
6334 this->section_contents(shndx, &input_view_size, false);
6335
6336 // We need to go through the mapping symbols to determine what to
6337 // scan. There are two reasons. First, we should look at THUMB code and
6338 // THUMB code only. Second, we only want to look at the 4K-page boundary
6339 // to speed up the scanning.
2e702c99 6340
44272192
DK
6341 while (p != this->mapping_symbols_info_.end()
6342 && p->first.first == shndx)
6343 {
6344 typename Mapping_symbols_info::const_iterator next =
6345 this->mapping_symbols_info_.upper_bound(p->first);
6346
6347 // Only scan part of a section with THUMB code.
6348 if (p->second == 't')
6349 {
6350 // Determine the end of this range.
6351 section_size_type span_start =
6352 convert_to_section_size_type(p->first.second);
6353 section_size_type span_end;
6354 if (next != this->mapping_symbols_info_.end()
6355 && next->first.first == shndx)
6356 span_end = convert_to_section_size_type(next->first.second);
6357 else
6358 span_end = convert_to_section_size_type(shdr.get_sh_size());
2e702c99 6359
44272192
DK
6360 if (((span_start + output_address) & ~0xfffUL)
6361 != ((span_end + output_address - 1) & ~0xfffUL))
6362 {
6363 arm_target->scan_span_for_cortex_a8_erratum(this, shndx,
6364 span_start, span_end,
6365 input_view,
6366 output_address);
6367 }
6368 }
6369
2e702c99 6370 p = next;
44272192
DK
6371 }
6372}
6373
8ffa3667
DK
6374// Scan relocations for stub generation.
6375
6376template<bool big_endian>
6377void
6378Arm_relobj<big_endian>::scan_sections_for_stubs(
6379 Target_arm<big_endian>* arm_target,
6380 const Symbol_table* symtab,
2ea97941 6381 const Layout* layout)
8ffa3667 6382{
2ea97941
ILT
6383 unsigned int shnum = this->shnum();
6384 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
8ffa3667
DK
6385
6386 // Read the section headers.
6387 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
2ea97941 6388 shnum * shdr_size,
8ffa3667
DK
6389 true, true);
6390
6391 // To speed up processing, we set up hash tables for fast lookup of
6392 // input offsets to output addresses.
6393 this->initialize_input_to_output_maps();
6394
6395 const Relobj::Output_sections& out_sections(this->output_sections());
6396
6397 Relocate_info<32, big_endian> relinfo;
8ffa3667 6398 relinfo.symtab = symtab;
2ea97941 6399 relinfo.layout = layout;
8ffa3667
DK
6400 relinfo.object = this;
6401
44272192 6402 // Do relocation stubs scanning.
2ea97941
ILT
6403 const unsigned char* p = pshdrs + shdr_size;
6404 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
8ffa3667 6405 {
44272192 6406 const elfcpp::Shdr<32, big_endian> shdr(p);
2b328d4e
DK
6407 if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
6408 pshdrs))
8ffa3667 6409 {
44272192
DK
6410 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6411 Arm_address output_offset = this->get_output_section_offset(index);
6412 Arm_address output_address;
7296d933 6413 if (output_offset != invalid_address)
44272192
DK
6414 output_address = out_sections[index]->address() + output_offset;
6415 else
6416 {
6417 // Currently this only happens for a relaxed section.
6418 const Output_relaxed_input_section* poris =
6419 out_sections[index]->find_relaxed_input_section(this, index);
6420 gold_assert(poris != NULL);
6421 output_address = poris->address();
6422 }
8ffa3667 6423
44272192
DK
6424 // Get the relocations.
6425 const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
6426 shdr.get_sh_size(),
6427 true, false);
6428
6429 // Get the section contents. This does work for the case in which
6430 // we modify the contents of an input section. We need to pass the
6431 // output view under such circumstances.
6432 section_size_type input_view_size = 0;
6433 const unsigned char* input_view =
6434 this->section_contents(index, &input_view_size, false);
6435
6436 relinfo.reloc_shndx = i;
6437 relinfo.data_shndx = index;
6438 unsigned int sh_type = shdr.get_sh_type();
b521dfe4
DK
6439 unsigned int reloc_size;
6440 if (sh_type == elfcpp::SHT_REL)
6441 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6442 else
6443 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
44272192
DK
6444
6445 Output_section* os = out_sections[index];
6446 arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
6447 shdr.get_sh_size() / reloc_size,
6448 os,
6449 output_offset == invalid_address,
6450 input_view, output_address,
6451 input_view_size);
8ffa3667 6452 }
44272192 6453 }
8ffa3667 6454
44272192
DK
6455 // Do Cortex-A8 erratum stubs scanning. This has to be done for a section
6456 // after its relocation section, if there is one, is processed for
6457 // relocation stubs. Merging this loop with the one above would have been
6458 // complicated since we would have had to make sure that relocation stub
6459 // scanning is done first.
6460 if (arm_target->fix_cortex_a8())
6461 {
6462 const unsigned char* p = pshdrs + shdr_size;
6463 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
8ffa3667 6464 {
44272192
DK
6465 const elfcpp::Shdr<32, big_endian> shdr(p);
6466 if (this->section_needs_cortex_a8_stub_scanning(shdr, i,
6467 out_sections[i],
6468 symtab))
6469 this->scan_section_for_cortex_a8_erratum(shdr, i, out_sections[i],
6470 arm_target);
8ffa3667 6471 }
8ffa3667
DK
6472 }
6473
6474 // After we've done the relocations, we release the hash tables,
6475 // since we no longer need them.
6476 this->free_input_to_output_maps();
6477}
6478
6479// Count the local symbols. The ARM backend needs to know if a symbol
6480// is a THUMB function or not. For global symbols, it is easy because
6481// the Symbol object keeps the ELF symbol type. For local symbol it is
6482// harder because we cannot access this information. So we override the
6483// do_count_local_symbol in parent and scan local symbols to mark
6484// THUMB functions. This is not the most efficient way but I do not want to
9b547ce6 6485// slow down other ports by calling a per symbol target hook inside
2e702c99 6486// Sized_relobj_file<size, big_endian>::do_count_local_symbols.
8ffa3667
DK
6487
6488template<bool big_endian>
6489void
6490Arm_relobj<big_endian>::do_count_local_symbols(
6491 Stringpool_template<char>* pool,
6492 Stringpool_template<char>* dynpool)
6493{
6494 // We need to fix-up the values of any local symbols whose type are
6495 // STT_ARM_TFUNC.
2e702c99 6496
8ffa3667 6497 // Ask parent to count the local symbols.
6fa2a40b 6498 Sized_relobj_file<32, big_endian>::do_count_local_symbols(pool, dynpool);
8ffa3667
DK
6499 const unsigned int loccount = this->local_symbol_count();
6500 if (loccount == 0)
6501 return;
6502
9b547ce6 6503 // Initialize the thumb function bit-vector.
8ffa3667
DK
6504 std::vector<bool> empty_vector(loccount, false);
6505 this->local_symbol_is_thumb_function_.swap(empty_vector);
6506
6507 // Read the symbol table section header.
2ea97941 6508 const unsigned int symtab_shndx = this->symtab_shndx();
8ffa3667 6509 elfcpp::Shdr<32, big_endian>
2ea97941 6510 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
8ffa3667
DK
6511 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6512
6513 // Read the local symbols.
2ea97941 6514 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
8ffa3667 6515 gold_assert(loccount == symtabshdr.get_sh_info());
2ea97941 6516 off_t locsize = loccount * sym_size;
8ffa3667
DK
6517 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6518 locsize, true, true);
6519
20138696
DK
6520 // For mapping symbol processing, we need to read the symbol names.
6521 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
6522 if (strtab_shndx >= this->shnum())
6523 {
6524 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
6525 return;
6526 }
6527
6528 elfcpp::Shdr<32, big_endian>
6529 strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
6530 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
6531 {
6532 this->error(_("symbol table name section has wrong type: %u"),
2e702c99 6533 static_cast<unsigned int>(strtabshdr.get_sh_type()));
20138696
DK
6534 return;
6535 }
6536 const char* pnames =
6537 reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
6538 strtabshdr.get_sh_size(),
6539 false, false));
6540
8ffa3667
DK
6541 // Loop over the local symbols and mark any local symbols pointing
6542 // to THUMB functions.
6543
6544 // Skip the first dummy symbol.
2ea97941 6545 psyms += sym_size;
6fa2a40b 6546 typename Sized_relobj_file<32, big_endian>::Local_values* plocal_values =
8ffa3667 6547 this->local_values();
2ea97941 6548 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
8ffa3667
DK
6549 {
6550 elfcpp::Sym<32, big_endian> sym(psyms);
6551 elfcpp::STT st_type = sym.get_st_type();
6552 Symbol_value<32>& lv((*plocal_values)[i]);
6553 Arm_address input_value = lv.input_value();
6554
20138696
DK
6555 // Check to see if this is a mapping symbol.
6556 const char* sym_name = pnames + sym.get_st_name();
6557 if (Target_arm<big_endian>::is_mapping_symbol_name(sym_name))
6558 {
24af6f92
DK
6559 bool is_ordinary;
6560 unsigned int input_shndx =
6561 this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
6562 gold_assert(is_ordinary);
20138696
DK
6563
6564 // Strip of LSB in case this is a THUMB symbol.
6565 Mapping_symbol_position msp(input_shndx, input_value & ~1U);
6566 this->mapping_symbols_info_[msp] = sym_name[1];
6567 }
6568
8ffa3667
DK
6569 if (st_type == elfcpp::STT_ARM_TFUNC
6570 || (st_type == elfcpp::STT_FUNC && ((input_value & 1) != 0)))
6571 {
6572 // This is a THUMB function. Mark this and canonicalize the
6573 // symbol value by setting LSB.
6574 this->local_symbol_is_thumb_function_[i] = true;
6575 if ((input_value & 1) == 0)
6576 lv.set_input_value(input_value | 1);
6577 }
6578 }
6579}
6580
6581// Relocate sections.
6582template<bool big_endian>
6583void
6584Arm_relobj<big_endian>::do_relocate_sections(
8ffa3667 6585 const Symbol_table* symtab,
2ea97941 6586 const Layout* layout,
8ffa3667 6587 const unsigned char* pshdrs,
aa98ff75 6588 Output_file* of,
6fa2a40b 6589 typename Sized_relobj_file<32, big_endian>::Views* pviews)
8ffa3667
DK
6590{
6591 // Call parent to relocate sections.
6fa2a40b 6592 Sized_relobj_file<32, big_endian>::do_relocate_sections(symtab, layout,
2e702c99 6593 pshdrs, of, pviews);
8ffa3667
DK
6594
6595 // We do not generate stubs if doing a relocatable link.
6596 if (parameters->options().relocatable())
6597 return;
6598
6599 // Relocate stub tables.
2ea97941 6600 unsigned int shnum = this->shnum();
8ffa3667
DK
6601
6602 Target_arm<big_endian>* arm_target =
6603 Target_arm<big_endian>::default_target();
6604
6605 Relocate_info<32, big_endian> relinfo;
8ffa3667 6606 relinfo.symtab = symtab;
2ea97941 6607 relinfo.layout = layout;
8ffa3667
DK
6608 relinfo.object = this;
6609
2ea97941 6610 for (unsigned int i = 1; i < shnum; ++i)
8ffa3667
DK
6611 {
6612 Arm_input_section<big_endian>* arm_input_section =
6613 arm_target->find_arm_input_section(this, i);
6614
41263c05
DK
6615 if (arm_input_section != NULL
6616 && arm_input_section->is_stub_table_owner()
6617 && !arm_input_section->stub_table()->empty())
6618 {
6619 // We cannot discard a section if it owns a stub table.
6620 Output_section* os = this->output_section(i);
6621 gold_assert(os != NULL);
6622
6623 relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
6624 relinfo.reloc_shdr = NULL;
6625 relinfo.data_shndx = i;
6626 relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size;
6627
6628 gold_assert((*pviews)[i].view != NULL);
6629
6630 // We are passed the output section view. Adjust it to cover the
6631 // stub table only.
6632 Stub_table<big_endian>* stub_table = arm_input_section->stub_table();
6633 gold_assert((stub_table->address() >= (*pviews)[i].address)
6634 && ((stub_table->address() + stub_table->data_size())
6635 <= (*pviews)[i].address + (*pviews)[i].view_size));
6636
6637 off_t offset = stub_table->address() - (*pviews)[i].address;
6638 unsigned char* view = (*pviews)[i].view + offset;
6639 Arm_address address = stub_table->address();
6640 section_size_type view_size = stub_table->data_size();
2e702c99 6641
41263c05
DK
6642 stub_table->relocate_stubs(&relinfo, arm_target, os, view, address,
6643 view_size);
6644 }
6645
6646 // Apply Cortex A8 workaround if applicable.
6647 if (this->section_has_cortex_a8_workaround(i))
6648 {
6649 unsigned char* view = (*pviews)[i].view;
6650 Arm_address view_address = (*pviews)[i].address;
6651 section_size_type view_size = (*pviews)[i].view_size;
6652 Stub_table<big_endian>* stub_table = this->stub_tables_[i];
6653
6654 // Adjust view to cover section.
6655 Output_section* os = this->output_section(i);
6656 gold_assert(os != NULL);
cb1be87e
DK
6657 Arm_address section_address =
6658 this->simple_input_section_output_address(i, os);
41263c05
DK
6659 uint64_t section_size = this->section_size(i);
6660
6661 gold_assert(section_address >= view_address
6662 && ((section_address + section_size)
6663 <= (view_address + view_size)));
6664
6665 unsigned char* section_view = view + (section_address - view_address);
6666
6667 // Apply the Cortex-A8 workaround to the output address range
6668 // corresponding to this input section.
6669 stub_table->apply_cortex_a8_workaround_to_address_range(
6670 arm_target,
6671 section_view,
6672 section_address,
6673 section_size);
6674 }
9f84726c
BS
6675 // BE8 swapping
6676 if (parameters->options().be8())
6677 {
6678 section_size_type span_start, span_end;
6679 elfcpp::Shdr<32, big_endian>
6680 shdr(pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size);
6681 Mapping_symbol_position section_start(i, 0);
6682 typename Mapping_symbols_info::const_iterator p =
6683 this->mapping_symbols_info_.lower_bound(section_start);
6684 unsigned char* view = (*pviews)[i].view;
6685 Arm_address view_address = (*pviews)[i].address;
6686 section_size_type view_size = (*pviews)[i].view_size;
6687 while (p != this->mapping_symbols_info_.end()
6688 && p->first.first == i)
6689 {
6690 typename Mapping_symbols_info::const_iterator next =
6691 this->mapping_symbols_info_.upper_bound(p->first);
6692
6693 // Only swap arm or thumb code.
6694 if ((p->second == 'a') || (p->second == 't'))
6695 {
6696 Output_section* os = this->output_section(i);
6697 gold_assert(os != NULL);
6698 Arm_address section_address =
6699 this->simple_input_section_output_address(i, os);
6700 span_start = convert_to_section_size_type(p->first.second);
6701 if (next != this->mapping_symbols_info_.end()
6702 && next->first.first == i)
6703 span_end =
6704 convert_to_section_size_type(next->first.second);
6705 else
6706 span_end =
6707 convert_to_section_size_type(shdr.get_sh_size());
6708 unsigned char* section_view =
6709 view + (section_address - view_address);
6710 uint64_t section_size = this->section_size(i);
6711
6712 gold_assert(section_address >= view_address
6713 && ((section_address + section_size)
6714 <= (view_address + view_size)));
6715
6716 // Set Output view for swapping
6717 unsigned char *oview = section_view + span_start;
6718 unsigned int index = 0;
6719 if (p->second == 'a')
6720 {
6721 while (index + 3 < (span_end - span_start))
6722 {
6723 typedef typename elfcpp::Swap<32, big_endian>
6724 ::Valtype Valtype;
6725 Valtype* wv =
6726 reinterpret_cast<Valtype*>(oview+index);
6727 uint32_t val = elfcpp::Swap<32, false>::readval(wv);
6728 elfcpp::Swap<32, true>::writeval(wv, val);
6729 index += 4;
6730 }
6731 }
6732 else if (p->second == 't')
6733 {
6734 while (index + 1 < (span_end - span_start))
6735 {
6736 typedef typename elfcpp::Swap<16, big_endian>
6737 ::Valtype Valtype;
6738 Valtype* wv =
6739 reinterpret_cast<Valtype*>(oview+index);
6740 uint16_t val = elfcpp::Swap<16, false>::readval(wv);
6741 elfcpp::Swap<16, true>::writeval(wv, val);
6742 index += 2;
6743 }
6744 }
6745 }
6746 p = next;
6747 }
6748 }
8ffa3667
DK
6749 }
6750}
6751
9b547ce6 6752// Find the linked text section of an EXIDX section by looking at the first
c8761b9a 6753// relocation. 4.4.1 of the EHABI specifications says that an EXIDX section
9b547ce6 6754// must be linked to its associated code section via the sh_link field of
c8761b9a
DK
6755// its section header. However, some tools are broken and the link is not
6756// always set. LD just drops such an EXIDX section silently, causing the
6757// associated code not unwindabled. Here we try a little bit harder to
6758// discover the linked code section.
6759//
6760// PSHDR points to the section header of a relocation section of an EXIDX
6761// section. If we can find a linked text section, return true and
6762// store the text section index in the location PSHNDX. Otherwise
6763// return false.
a0351a69
DK
6764
6765template<bool big_endian>
c8761b9a
DK
6766bool
6767Arm_relobj<big_endian>::find_linked_text_section(
6768 const unsigned char* pshdr,
6769 const unsigned char* psyms,
6770 unsigned int* pshndx)
a0351a69 6771{
c8761b9a 6772 elfcpp::Shdr<32, big_endian> shdr(pshdr);
2e702c99 6773
c8761b9a
DK
6774 // If there is no relocation, we cannot find the linked text section.
6775 size_t reloc_size;
6776 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6777 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6778 else
6779 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6780 size_t reloc_count = shdr.get_sh_size() / reloc_size;
2e702c99 6781
c8761b9a
DK
6782 // Get the relocations.
6783 const unsigned char* prelocs =
2e702c99 6784 this->get_view(shdr.get_sh_offset(), shdr.get_sh_size(), true, false);
993d07c1 6785
c8761b9a
DK
6786 // Find the REL31 relocation for the first word of the first EXIDX entry.
6787 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
a0351a69 6788 {
c8761b9a
DK
6789 Arm_address r_offset;
6790 typename elfcpp::Elf_types<32>::Elf_WXword r_info;
6791 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6792 {
6793 typename elfcpp::Rel<32, big_endian> reloc(prelocs);
6794 r_info = reloc.get_r_info();
6795 r_offset = reloc.get_r_offset();
6796 }
6797 else
6798 {
6799 typename elfcpp::Rela<32, big_endian> reloc(prelocs);
6800 r_info = reloc.get_r_info();
6801 r_offset = reloc.get_r_offset();
6802 }
6803
6804 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
6805 if (r_type != elfcpp::R_ARM_PREL31 && r_type != elfcpp::R_ARM_SBREL31)
6806 continue;
6807
6808 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
6809 if (r_sym == 0
6810 || r_sym >= this->local_symbol_count()
6811 || r_offset != 0)
6812 continue;
6813
6814 // This is the relocation for the first word of the first EXIDX entry.
6815 // We expect to see a local section symbol.
6816 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6817 elfcpp::Sym<32, big_endian> sym(psyms + r_sym * sym_size);
6818 if (sym.get_st_type() == elfcpp::STT_SECTION)
6819 {
24af6f92
DK
6820 bool is_ordinary;
6821 *pshndx =
6822 this->adjust_sym_shndx(r_sym, sym.get_st_shndx(), &is_ordinary);
6823 gold_assert(is_ordinary);
c8761b9a
DK
6824 return true;
6825 }
6826 else
6827 return false;
993d07c1 6828 }
c8761b9a
DK
6829
6830 return false;
6831}
6832
6833// Make an EXIDX input section object for an EXIDX section whose index is
6834// SHNDX. SHDR is the section header of the EXIDX section and TEXT_SHNDX
6835// is the section index of the linked text section.
6836
6837template<bool big_endian>
6838void
6839Arm_relobj<big_endian>::make_exidx_input_section(
6840 unsigned int shndx,
6841 const elfcpp::Shdr<32, big_endian>& shdr,
131687b4
DK
6842 unsigned int text_shndx,
6843 const elfcpp::Shdr<32, big_endian>& text_shdr)
c8761b9a 6844{
993d07c1
DK
6845 // Create an Arm_exidx_input_section object for this EXIDX section.
6846 Arm_exidx_input_section* exidx_input_section =
6847 new Arm_exidx_input_section(this, shndx, text_shndx, shdr.get_sh_size(),
f625ae50
DK
6848 shdr.get_sh_addralign(),
6849 text_shdr.get_sh_size());
993d07c1 6850
993d07c1
DK
6851 gold_assert(this->exidx_section_map_[shndx] == NULL);
6852 this->exidx_section_map_[shndx] = exidx_input_section;
131687b4
DK
6853
6854 if (text_shndx == elfcpp::SHN_UNDEF || text_shndx >= this->shnum())
6855 {
6856 gold_error(_("EXIDX section %s(%u) links to invalid section %u in %s"),
6857 this->section_name(shndx).c_str(), shndx, text_shndx,
6858 this->name().c_str());
6859 exidx_input_section->set_has_errors();
2e702c99 6860 }
131687b4
DK
6861 else if (this->exidx_section_map_[text_shndx] != NULL)
6862 {
6863 unsigned other_exidx_shndx =
6864 this->exidx_section_map_[text_shndx]->shndx();
6865 gold_error(_("EXIDX sections %s(%u) and %s(%u) both link to text section"
6866 "%s(%u) in %s"),
6867 this->section_name(shndx).c_str(), shndx,
6868 this->section_name(other_exidx_shndx).c_str(),
6869 other_exidx_shndx, this->section_name(text_shndx).c_str(),
6870 text_shndx, this->name().c_str());
6871 exidx_input_section->set_has_errors();
6872 }
6873 else
6874 this->exidx_section_map_[text_shndx] = exidx_input_section;
6875
6876 // Check section flags of text section.
6877 if ((text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
6878 {
6879 gold_error(_("EXIDX section %s(%u) links to non-allocated section %s(%u) "
6880 " in %s"),
6881 this->section_name(shndx).c_str(), shndx,
6882 this->section_name(text_shndx).c_str(), text_shndx,
6883 this->name().c_str());
6884 exidx_input_section->set_has_errors();
6885 }
6886 else if ((text_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) == 0)
9b547ce6 6887 // I would like to make this an error but currently ld just ignores
131687b4
DK
6888 // this.
6889 gold_warning(_("EXIDX section %s(%u) links to non-executable section "
6890 "%s(%u) in %s"),
6891 this->section_name(shndx).c_str(), shndx,
6892 this->section_name(text_shndx).c_str(), text_shndx,
6893 this->name().c_str());
a0351a69
DK
6894}
6895
d5b40221
DK
6896// Read the symbol information.
6897
6898template<bool big_endian>
6899void
6900Arm_relobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6901{
6902 // Call parent class to read symbol information.
f35c4853 6903 this->base_read_symbols(sd);
d5b40221 6904
7296d933
DK
6905 // If this input file is a binary file, it has no processor
6906 // specific flags and attributes section.
6907 Input_file::Format format = this->input_file()->format();
6908 if (format != Input_file::FORMAT_ELF)
6909 {
6910 gold_assert(format == Input_file::FORMAT_BINARY);
6911 this->merge_flags_and_attributes_ = false;
6912 return;
6913 }
6914
d5b40221
DK
6915 // Read processor-specific flags in ELF file header.
6916 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6917 elfcpp::Elf_sizes<32>::ehdr_size,
6918 true, false);
6919 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6920 this->processor_specific_flags_ = ehdr.get_e_flags();
993d07c1
DK
6921
6922 // Go over the section headers and look for .ARM.attributes and .ARM.exidx
6923 // sections.
c8761b9a 6924 std::vector<unsigned int> deferred_exidx_sections;
993d07c1 6925 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
c8761b9a 6926 const unsigned char* pshdrs = sd->section_headers->data();
ca09d69a 6927 const unsigned char* ps = pshdrs + shdr_size;
7296d933 6928 bool must_merge_flags_and_attributes = false;
993d07c1
DK
6929 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6930 {
6931 elfcpp::Shdr<32, big_endian> shdr(ps);
7296d933
DK
6932
6933 // Sometimes an object has no contents except the section name string
6934 // table and an empty symbol table with the undefined symbol. We
6935 // don't want to merge processor-specific flags from such an object.
6936 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
6937 {
6938 // Symbol table is not empty.
6939 const elfcpp::Elf_types<32>::Elf_WXword sym_size =
6940 elfcpp::Elf_sizes<32>::sym_size;
6941 if (shdr.get_sh_size() > sym_size)
6942 must_merge_flags_and_attributes = true;
6943 }
6944 else if (shdr.get_sh_type() != elfcpp::SHT_STRTAB)
6945 // If this is neither an empty symbol table nor a string table,
6946 // be conservative.
6947 must_merge_flags_and_attributes = true;
6948
993d07c1
DK
6949 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6950 {
2e702c99 6951 gold_assert(this->attributes_section_data_ == NULL);
993d07c1
DK
6952 section_offset_type section_offset = shdr.get_sh_offset();
6953 section_size_type section_size =
6954 convert_to_section_size_type(shdr.get_sh_size());
f625ae50
DK
6955 const unsigned char* view =
6956 this->get_view(section_offset, section_size, true, false);
993d07c1 6957 this->attributes_section_data_ =
f625ae50 6958 new Attributes_section_data(view, section_size);
993d07c1
DK
6959 }
6960 else if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
c8761b9a
DK
6961 {
6962 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
131687b4 6963 if (text_shndx == elfcpp::SHN_UNDEF)
c8761b9a
DK
6964 deferred_exidx_sections.push_back(i);
6965 else
131687b4
DK
6966 {
6967 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6968 + text_shndx * shdr_size);
6969 this->make_exidx_input_section(i, shdr, text_shndx, text_shdr);
6970 }
c9484ea5
DK
6971 // EHABI 4.4.1 requires that SHF_LINK_ORDER flag to be set.
6972 if ((shdr.get_sh_flags() & elfcpp::SHF_LINK_ORDER) == 0)
6973 gold_warning(_("SHF_LINK_ORDER not set in EXIDX section %s of %s"),
6974 this->section_name(i).c_str(), this->name().c_str());
c8761b9a
DK
6975 }
6976 }
6977
7296d933
DK
6978 // This is rare.
6979 if (!must_merge_flags_and_attributes)
6980 {
131687b4 6981 gold_assert(deferred_exidx_sections.empty());
7296d933
DK
6982 this->merge_flags_and_attributes_ = false;
6983 return;
6984 }
6985
2e702c99 6986 // Some tools are broken and they do not set the link of EXIDX sections.
c8761b9a
DK
6987 // We look at the first relocation to figure out the linked sections.
6988 if (!deferred_exidx_sections.empty())
6989 {
6990 // We need to go over the section headers again to find the mapping
6991 // from sections being relocated to their relocation sections. This is
6992 // a bit inefficient as we could do that in the loop above. However,
6993 // we do not expect any deferred EXIDX sections normally. So we do not
6994 // want to slow down the most common path.
6995 typedef Unordered_map<unsigned int, unsigned int> Reloc_map;
6996 Reloc_map reloc_map;
6997 ps = pshdrs + shdr_size;
6998 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6999 {
7000 elfcpp::Shdr<32, big_endian> shdr(ps);
7001 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
7002 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
7003 {
7004 unsigned int info_shndx = this->adjust_shndx(shdr.get_sh_info());
7005 if (info_shndx >= this->shnum())
7006 gold_error(_("relocation section %u has invalid info %u"),
7007 i, info_shndx);
7008 Reloc_map::value_type value(info_shndx, i);
7009 std::pair<Reloc_map::iterator, bool> result =
7010 reloc_map.insert(value);
7011 if (!result.second)
7012 gold_error(_("section %u has multiple relocation sections "
7013 "%u and %u"),
7014 info_shndx, i, reloc_map[info_shndx]);
7015 }
7016 }
7017
7018 // Read the symbol table section header.
7019 const unsigned int symtab_shndx = this->symtab_shndx();
7020 elfcpp::Shdr<32, big_endian>
7021 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
7022 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
7023
7024 // Read the local symbols.
7025 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
7026 const unsigned int loccount = this->local_symbol_count();
7027 gold_assert(loccount == symtabshdr.get_sh_info());
7028 off_t locsize = loccount * sym_size;
7029 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
7030 locsize, true, true);
7031
2e702c99 7032 // Process the deferred EXIDX sections.
f625ae50 7033 for (unsigned int i = 0; i < deferred_exidx_sections.size(); ++i)
c8761b9a
DK
7034 {
7035 unsigned int shndx = deferred_exidx_sections[i];
7036 elfcpp::Shdr<32, big_endian> shdr(pshdrs + shndx * shdr_size);
131687b4 7037 unsigned int text_shndx = elfcpp::SHN_UNDEF;
c8761b9a 7038 Reloc_map::const_iterator it = reloc_map.find(shndx);
131687b4
DK
7039 if (it != reloc_map.end())
7040 find_linked_text_section(pshdrs + it->second * shdr_size,
7041 psyms, &text_shndx);
7042 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
7043 + text_shndx * shdr_size);
7044 this->make_exidx_input_section(shndx, shdr, text_shndx, text_shdr);
c8761b9a 7045 }
993d07c1 7046 }
d5b40221
DK
7047}
7048
99e5bff2 7049// Process relocations for garbage collection. The ARM target uses .ARM.exidx
2e702c99 7050// sections for unwinding. These sections are referenced implicitly by
9b547ce6 7051// text sections linked in the section headers. If we ignore these implicit
99e5bff2
DK
7052// references, the .ARM.exidx sections and any .ARM.extab sections they use
7053// will be garbage-collected incorrectly. Hence we override the same function
7054// in the base class to handle these implicit references.
7055
7056template<bool big_endian>
7057void
7058Arm_relobj<big_endian>::do_gc_process_relocs(Symbol_table* symtab,
7059 Layout* layout,
7060 Read_relocs_data* rd)
7061{
7062 // First, call base class method to process relocations in this object.
6fa2a40b 7063 Sized_relobj_file<32, big_endian>::do_gc_process_relocs(symtab, layout, rd);
99e5bff2 7064
4a54abbb
DK
7065 // If --gc-sections is not specified, there is nothing more to do.
7066 // This happens when --icf is used but --gc-sections is not.
7067 if (!parameters->options().gc_sections())
7068 return;
2e702c99 7069
99e5bff2
DK
7070 unsigned int shnum = this->shnum();
7071 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
7072 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
7073 shnum * shdr_size,
7074 true, true);
7075
7076 // Scan section headers for sections of type SHT_ARM_EXIDX. Add references
7077 // to these from the linked text sections.
7078 const unsigned char* ps = pshdrs + shdr_size;
7079 for (unsigned int i = 1; i < shnum; ++i, ps += shdr_size)
7080 {
7081 elfcpp::Shdr<32, big_endian> shdr(ps);
7082 if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
7083 {
7084 // Found an .ARM.exidx section, add it to the set of reachable
7085 // sections from its linked text section.
7086 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
7087 symtab->gc()->add_reference(this, text_shndx, this, i);
7088 }
7089 }
7090}
7091
e7eca48c
DK
7092// Update output local symbol count. Owing to EXIDX entry merging, some local
7093// symbols will be removed in output. Adjust output local symbol count
7094// accordingly. We can only changed the static output local symbol count. It
7095// is too late to change the dynamic symbols.
7096
7097template<bool big_endian>
7098void
7099Arm_relobj<big_endian>::update_output_local_symbol_count()
7100{
7101 // Caller should check that this needs updating. We want caller checking
7102 // because output_local_symbol_count_needs_update() is most likely inlined.
7103 gold_assert(this->output_local_symbol_count_needs_update_);
7104
7105 gold_assert(this->symtab_shndx() != -1U);
7106 if (this->symtab_shndx() == 0)
7107 {
7108 // This object has no symbols. Weird but legal.
7109 return;
7110 }
7111
7112 // Read the symbol table section header.
7113 const unsigned int symtab_shndx = this->symtab_shndx();
7114 elfcpp::Shdr<32, big_endian>
7115 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
7116 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
7117
7118 // Read the local symbols.
7119 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
7120 const unsigned int loccount = this->local_symbol_count();
7121 gold_assert(loccount == symtabshdr.get_sh_info());
7122 off_t locsize = loccount * sym_size;
7123 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
7124 locsize, true, true);
7125
7126 // Loop over the local symbols.
7127
6fa2a40b 7128 typedef typename Sized_relobj_file<32, big_endian>::Output_sections
e7eca48c
DK
7129 Output_sections;
7130 const Output_sections& out_sections(this->output_sections());
7131 unsigned int shnum = this->shnum();
7132 unsigned int count = 0;
7133 // Skip the first, dummy, symbol.
7134 psyms += sym_size;
7135 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
7136 {
7137 elfcpp::Sym<32, big_endian> sym(psyms);
7138
7139 Symbol_value<32>& lv((*this->local_values())[i]);
7140
7141 // This local symbol was already discarded by do_count_local_symbols.
9177756d 7142 if (lv.is_output_symtab_index_set() && !lv.has_output_symtab_entry())
e7eca48c
DK
7143 continue;
7144
7145 bool is_ordinary;
7146 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
7147 &is_ordinary);
7148
7149 if (shndx < shnum)
7150 {
7151 Output_section* os = out_sections[shndx];
7152
7153 // This local symbol no longer has an output section. Discard it.
7154 if (os == NULL)
7155 {
7156 lv.set_no_output_symtab_entry();
7157 continue;
7158 }
7159
7160 // Currently we only discard parts of EXIDX input sections.
7161 // We explicitly check for a merged EXIDX input section to avoid
7162 // calling Output_section_data::output_offset unless necessary.
7163 if ((this->get_output_section_offset(shndx) == invalid_address)
7164 && (this->exidx_input_section_by_shndx(shndx) != NULL))
7165 {
7166 section_offset_type output_offset =
7167 os->output_offset(this, shndx, lv.input_value());
7168 if (output_offset == -1)
7169 {
7170 // This symbol is defined in a part of an EXIDX input section
7171 // that is discarded due to entry merging.
7172 lv.set_no_output_symtab_entry();
7173 continue;
2e702c99 7174 }
e7eca48c
DK
7175 }
7176 }
7177
7178 ++count;
7179 }
7180
7181 this->set_output_local_symbol_count(count);
7182 this->output_local_symbol_count_needs_update_ = false;
7183}
7184
d5b40221
DK
7185// Arm_dynobj methods.
7186
7187// Read the symbol information.
7188
7189template<bool big_endian>
7190void
7191Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
7192{
7193 // Call parent class to read symbol information.
f35c4853 7194 this->base_read_symbols(sd);
d5b40221
DK
7195
7196 // Read processor-specific flags in ELF file header.
7197 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
7198 elfcpp::Elf_sizes<32>::ehdr_size,
7199 true, false);
7200 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
7201 this->processor_specific_flags_ = ehdr.get_e_flags();
993d07c1
DK
7202
7203 // Read the attributes section if there is one.
7204 // We read from the end because gas seems to put it near the end of
7205 // the section headers.
7206 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
ca09d69a 7207 const unsigned char* ps =
993d07c1
DK
7208 sd->section_headers->data() + shdr_size * (this->shnum() - 1);
7209 for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size)
7210 {
7211 elfcpp::Shdr<32, big_endian> shdr(ps);
7212 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
7213 {
7214 section_offset_type section_offset = shdr.get_sh_offset();
7215 section_size_type section_size =
7216 convert_to_section_size_type(shdr.get_sh_size());
f625ae50
DK
7217 const unsigned char* view =
7218 this->get_view(section_offset, section_size, true, false);
993d07c1 7219 this->attributes_section_data_ =
f625ae50 7220 new Attributes_section_data(view, section_size);
993d07c1
DK
7221 break;
7222 }
7223 }
d5b40221
DK
7224}
7225
e9bbb538
DK
7226// Stub_addend_reader methods.
7227
7228// Read the addend of a REL relocation of type R_TYPE at VIEW.
7229
7230template<bool big_endian>
7231elfcpp::Elf_types<32>::Elf_Swxword
7232Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()(
7233 unsigned int r_type,
7234 const unsigned char* view,
7235 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const
7236{
2c54b4f4 7237 typedef class Arm_relocate_functions<big_endian> RelocFuncs;
2e702c99 7238
e9bbb538
DK
7239 switch (r_type)
7240 {
7241 case elfcpp::R_ARM_CALL:
7242 case elfcpp::R_ARM_JUMP24:
7243 case elfcpp::R_ARM_PLT32:
7244 {
7245 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7246 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7247 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
bef2b434 7248 return Bits<26>::sign_extend32(val << 2);
e9bbb538
DK
7249 }
7250
7251 case elfcpp::R_ARM_THM_CALL:
7252 case elfcpp::R_ARM_THM_JUMP24:
7253 case elfcpp::R_ARM_THM_XPC22:
7254 {
e9bbb538
DK
7255 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7256 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7257 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7258 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
089d69dc 7259 return RelocFuncs::thumb32_branch_offset(upper_insn, lower_insn);
e9bbb538
DK
7260 }
7261
7262 case elfcpp::R_ARM_THM_JUMP19:
7263 {
7264 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7265 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7266 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7267 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
089d69dc 7268 return RelocFuncs::thumb32_cond_branch_offset(upper_insn, lower_insn);
e9bbb538
DK
7269 }
7270
7271 default:
7272 gold_unreachable();
7273 }
7274}
7275
4a54abbb
DK
7276// Arm_output_data_got methods.
7277
7278// Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
7279// The first one is initialized to be 1, which is the module index for
7280// the main executable and the second one 0. A reloc of the type
7281// R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
7282// be applied by gold. GSYM is a global symbol.
7283//
7284template<bool big_endian>
7285void
7286Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7287 unsigned int got_type,
7288 Symbol* gsym)
7289{
7290 if (gsym->has_got_offset(got_type))
7291 return;
7292
7293 // We are doing a static link. Just mark it as belong to module 1,
7294 // the executable.
7295 unsigned int got_offset = this->add_constant(1);
2e702c99 7296 gsym->set_got_offset(got_type, got_offset);
4a54abbb
DK
7297 got_offset = this->add_constant(0);
7298 this->static_relocs_.push_back(Static_reloc(got_offset,
7299 elfcpp::R_ARM_TLS_DTPOFF32,
7300 gsym));
7301}
7302
7303// Same as the above but for a local symbol.
7304
7305template<bool big_endian>
7306void
7307Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7308 unsigned int got_type,
6fa2a40b 7309 Sized_relobj_file<32, big_endian>* object,
4a54abbb
DK
7310 unsigned int index)
7311{
7312 if (object->local_has_got_offset(index, got_type))
7313 return;
7314
7315 // We are doing a static link. Just mark it as belong to module 1,
7316 // the executable.
7317 unsigned int got_offset = this->add_constant(1);
7318 object->set_local_got_offset(index, got_type, got_offset);
7319 got_offset = this->add_constant(0);
2e702c99
RM
7320 this->static_relocs_.push_back(Static_reloc(got_offset,
7321 elfcpp::R_ARM_TLS_DTPOFF32,
4a54abbb
DK
7322 object, index));
7323}
7324
7325template<bool big_endian>
7326void
7327Arm_output_data_got<big_endian>::do_write(Output_file* of)
7328{
7329 // Call parent to write out GOT.
7330 Output_data_got<32, big_endian>::do_write(of);
7331
7332 // We are done if there is no fix up.
7333 if (this->static_relocs_.empty())
7334 return;
7335
7336 gold_assert(parameters->doing_static_link());
7337
7338 const off_t offset = this->offset();
7339 const section_size_type oview_size =
7340 convert_to_section_size_type(this->data_size());
7341 unsigned char* const oview = of->get_output_view(offset, oview_size);
7342
7343 Output_segment* tls_segment = this->layout_->tls_segment();
7344 gold_assert(tls_segment != NULL);
2e702c99 7345
4a54abbb
DK
7346 // The thread pointer $tp points to the TCB, which is followed by the
7347 // TLS. So we need to adjust $tp relative addressing by this amount.
7348 Arm_address aligned_tcb_size =
7349 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
7350
7351 for (size_t i = 0; i < this->static_relocs_.size(); ++i)
7352 {
7353 Static_reloc& reloc(this->static_relocs_[i]);
2e702c99 7354
4a54abbb
DK
7355 Arm_address value;
7356 if (!reloc.symbol_is_global())
7357 {
6fa2a40b 7358 Sized_relobj_file<32, big_endian>* object = reloc.relobj();
4a54abbb
DK
7359 const Symbol_value<32>* psymval =
7360 reloc.relobj()->local_symbol(reloc.index());
7361
7362 // We are doing static linking. Issue an error and skip this
7363 // relocation if the symbol is undefined or in a discarded_section.
7364 bool is_ordinary;
7365 unsigned int shndx = psymval->input_shndx(&is_ordinary);
7366 if ((shndx == elfcpp::SHN_UNDEF)
7367 || (is_ordinary
7368 && shndx != elfcpp::SHN_UNDEF
7369 && !object->is_section_included(shndx)
7370 && !this->symbol_table_->is_section_folded(object, shndx)))
7371 {
7372 gold_error(_("undefined or discarded local symbol %u from "
7373 " object %s in GOT"),
7374 reloc.index(), reloc.relobj()->name().c_str());
7375 continue;
7376 }
2e702c99 7377
4a54abbb
DK
7378 value = psymval->value(object, 0);
7379 }
7380 else
7381 {
7382 const Symbol* gsym = reloc.symbol();
7383 gold_assert(gsym != NULL);
7384 if (gsym->is_forwarder())
7385 gsym = this->symbol_table_->resolve_forwards(gsym);
7386
7387 // We are doing static linking. Issue an error and skip this
7388 // relocation if the symbol is undefined or in a discarded_section
7389 // unless it is a weakly_undefined symbol.
7390 if ((gsym->is_defined_in_discarded_section()
7391 || gsym->is_undefined())
7392 && !gsym->is_weak_undefined())
7393 {
7394 gold_error(_("undefined or discarded symbol %s in GOT"),
7395 gsym->name());
7396 continue;
7397 }
7398
7399 if (!gsym->is_weak_undefined())
7400 {
7401 const Sized_symbol<32>* sym =
7402 static_cast<const Sized_symbol<32>*>(gsym);
7403 value = sym->value();
7404 }
7405 else
7406 value = 0;
7407 }
7408
7409 unsigned got_offset = reloc.got_offset();
7410 gold_assert(got_offset < oview_size);
7411
7412 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7413 Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
7414 Valtype x;
7415 switch (reloc.r_type())
7416 {
7417 case elfcpp::R_ARM_TLS_DTPOFF32:
7418 x = value;
7419 break;
7420 case elfcpp::R_ARM_TLS_TPOFF32:
7421 x = value + aligned_tcb_size;
7422 break;
7423 default:
7424 gold_unreachable();
7425 }
7426 elfcpp::Swap<32, big_endian>::writeval(wv, x);
7427 }
7428
7429 of->write_output_view(offset, oview_size, oview);
7430}
7431
94cdfcff 7432// A class to handle the PLT data.
2e702c99
RM
7433// This is an abstract base class that handles most of the linker details
7434// but does not know the actual contents of PLT entries. The derived
7435// classes below fill in those details.
94cdfcff
DK
7436
7437template<bool big_endian>
7438class Output_data_plt_arm : public Output_section_data
7439{
7440 public:
fa89cc82
HS
7441 // Unlike aarch64, which records symbol value in "addend" field of relocations
7442 // and could be done at the same time an IRelative reloc is created for the
7443 // symbol, arm puts the symbol value into "GOT" table, which, however, is
7444 // issued later in Output_data_plt_arm::do_write(). So we have a struct here
7445 // to keep necessary symbol information for later use in do_write. We usually
7446 // have only a very limited number of ifuncs, so the extra data required here
7447 // is also limited.
7448
7449 struct IRelative_data
7450 {
7451 IRelative_data(Sized_symbol<32>* sized_symbol)
7452 : symbol_is_global_(true)
7453 {
7454 u_.global = sized_symbol;
7455 }
7456
7457 IRelative_data(Sized_relobj_file<32, big_endian>* relobj,
7458 unsigned int index)
7459 : symbol_is_global_(false)
7460 {
7461 u_.local.relobj = relobj;
7462 u_.local.index = index;
7463 }
7464
7465 union
7466 {
7467 Sized_symbol<32>* global;
7468
7469 struct
7470 {
7471 Sized_relobj_file<32, big_endian>* relobj;
7472 unsigned int index;
7473 } local;
7474 } u_;
7475
7476 bool symbol_is_global_;
7477 };
7478
94cdfcff
DK
7479 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
7480 Reloc_section;
7481
fa89cc82
HS
7482 Output_data_plt_arm(Layout* layout, uint64_t addralign,
7483 Arm_output_data_got<big_endian>* got,
7484 Output_data_space* got_plt,
7485 Output_data_space* got_irelative);
94cdfcff
DK
7486
7487 // Add an entry to the PLT.
7488 void
fa89cc82
HS
7489 add_entry(Symbol_table* symtab, Layout* layout, Symbol* gsym);
7490
7491 // Add the relocation for a plt entry.
7492 void
7493 add_relocation(Symbol_table* symtab, Layout* layout,
7494 Symbol* gsym, unsigned int got_offset);
7495
7496 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
7497 unsigned int
7498 add_local_ifunc_entry(Symbol_table* symtab, Layout*,
7499 Sized_relobj_file<32, big_endian>* relobj,
7500 unsigned int local_sym_index);
94cdfcff
DK
7501
7502 // Return the .rel.plt section data.
7503 const Reloc_section*
7504 rel_plt() const
7505 { return this->rel_; }
7506
fa89cc82
HS
7507 // Return the PLT relocation container for IRELATIVE.
7508 Reloc_section*
7509 rel_irelative(Symbol_table*, Layout*);
7510
0e70b911
CC
7511 // Return the number of PLT entries.
7512 unsigned int
7513 entry_count() const
fa89cc82 7514 { return this->count_ + this->irelative_count_; }
0e70b911
CC
7515
7516 // Return the offset of the first non-reserved PLT entry.
2e702c99
RM
7517 unsigned int
7518 first_plt_entry_offset() const
7519 { return this->do_first_plt_entry_offset(); }
0e70b911
CC
7520
7521 // Return the size of a PLT entry.
2e702c99
RM
7522 unsigned int
7523 get_plt_entry_size() const
7524 { return this->do_get_plt_entry_size(); }
0e70b911 7525
fa89cc82
HS
7526 // Return the PLT address for globals.
7527 uint32_t
7528 address_for_global(const Symbol*) const;
7529
7530 // Return the PLT address for locals.
7531 uint32_t
7532 address_for_local(const Relobj*, unsigned int symndx) const;
7533
94cdfcff 7534 protected:
2e702c99
RM
7535 // Fill in the first PLT entry.
7536 void
7537 fill_first_plt_entry(unsigned char* pov,
7538 Arm_address got_address,
7539 Arm_address plt_address)
7540 { this->do_fill_first_plt_entry(pov, got_address, plt_address); }
7541
7542 void
7543 fill_plt_entry(unsigned char* pov,
7544 Arm_address got_address,
7545 Arm_address plt_address,
7546 unsigned int got_offset,
7547 unsigned int plt_offset)
7548 { do_fill_plt_entry(pov, got_address, plt_address, got_offset, plt_offset); }
7549
7550 virtual unsigned int
7551 do_first_plt_entry_offset() const = 0;
7552
7553 virtual unsigned int
7554 do_get_plt_entry_size() const = 0;
7555
7556 virtual void
7557 do_fill_first_plt_entry(unsigned char* pov,
7558 Arm_address got_address,
7559 Arm_address plt_address) = 0;
7560
7561 virtual void
7562 do_fill_plt_entry(unsigned char* pov,
7563 Arm_address got_address,
7564 Arm_address plt_address,
7565 unsigned int got_offset,
7566 unsigned int plt_offset) = 0;
7567
94cdfcff
DK
7568 void
7569 do_adjust_output_section(Output_section* os);
7570
7571 // Write to a map file.
7572 void
7573 do_print_to_mapfile(Mapfile* mapfile) const
7574 { mapfile->print_output_data(this, _("** PLT")); }
7575
7576 private:
94cdfcff
DK
7577 // Set the final size.
7578 void
7579 set_final_data_size()
7580 {
2e702c99 7581 this->set_data_size(this->first_plt_entry_offset()
fa89cc82
HS
7582 + ((this->count_ + this->irelative_count_)
7583 * this->get_plt_entry_size()));
94cdfcff
DK
7584 }
7585
7586 // Write out the PLT data.
7587 void
7588 do_write(Output_file*);
7589
fa89cc82
HS
7590 // Record irelative symbol data.
7591 void insert_irelative_data(const IRelative_data& idata)
7592 { irelative_data_vec_.push_back(idata); }
7593
94cdfcff
DK
7594 // The reloc section.
7595 Reloc_section* rel_;
fa89cc82
HS
7596 // The IRELATIVE relocs, if necessary. These must follow the
7597 // regular PLT relocations.
7598 Reloc_section* irelative_rel_;
7599 // The .got section.
7600 Arm_output_data_got<big_endian>* got_;
94cdfcff
DK
7601 // The .got.plt section.
7602 Output_data_space* got_plt_;
fa89cc82
HS
7603 // The part of the .got.plt section used for IRELATIVE relocs.
7604 Output_data_space* got_irelative_;
94cdfcff
DK
7605 // The number of PLT entries.
7606 unsigned int count_;
fa89cc82
HS
7607 // Number of PLT entries with R_ARM_IRELATIVE relocs. These
7608 // follow the regular PLT entries.
7609 unsigned int irelative_count_;
7610 // Vector for irelative data.
7611 typedef std::vector<IRelative_data> IRelative_data_vec;
7612 IRelative_data_vec irelative_data_vec_;
94cdfcff
DK
7613};
7614
7615// Create the PLT section. The ordinary .got section is an argument,
7616// since we need to refer to the start. We also create our own .got
7617// section just for PLT entries.
7618
7619template<bool big_endian>
fa89cc82
HS
7620Output_data_plt_arm<big_endian>::Output_data_plt_arm(
7621 Layout* layout, uint64_t addralign,
7622 Arm_output_data_got<big_endian>* got,
7623 Output_data_space* got_plt,
7624 Output_data_space* got_irelative)
7625 : Output_section_data(addralign), irelative_rel_(NULL),
7626 got_(got), got_plt_(got_plt), got_irelative_(got_irelative),
7627 count_(0), irelative_count_(0)
94cdfcff
DK
7628{
7629 this->rel_ = new Reloc_section(false);
2ea97941 7630 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
22f0da72
ILT
7631 elfcpp::SHF_ALLOC, this->rel_,
7632 ORDER_DYNAMIC_PLT_RELOCS, false);
94cdfcff
DK
7633}
7634
7635template<bool big_endian>
7636void
7637Output_data_plt_arm<big_endian>::do_adjust_output_section(Output_section* os)
7638{
7639 os->set_entsize(0);
7640}
7641
7642// Add an entry to the PLT.
7643
7644template<bool big_endian>
7645void
fa89cc82
HS
7646Output_data_plt_arm<big_endian>::add_entry(Symbol_table* symtab,
7647 Layout* layout,
7648 Symbol* gsym)
94cdfcff
DK
7649{
7650 gold_assert(!gsym->has_plt_offset());
7651
fa89cc82
HS
7652 unsigned int* entry_count;
7653 Output_section_data_build* got;
7654
7655 // We have 2 different types of plt entry here, normal and ifunc.
7656
7657 // For normal plt, the offset begins with first_plt_entry_offset(20), and the
7658 // 1st entry offset would be 20, the second 32, third 44 ... etc.
7659
7660 // For ifunc plt, the offset begins with 0. So the first offset would 0,
7661 // second 12, third 24 ... etc.
7662
7663 // IFunc plt entries *always* come after *normal* plt entries.
7664
7665 // Notice, when computing the plt address of a certain symbol, "plt_address +
7666 // plt_offset" is no longer correct. Use target->plt_address_for_global() or
7667 // target->plt_address_for_local() instead.
7668
7669 int begin_offset = 0;
7670 if (gsym->type() == elfcpp::STT_GNU_IFUNC
7671 && gsym->can_use_relative_reloc(false))
7672 {
7673 entry_count = &this->irelative_count_;
7674 got = this->got_irelative_;
7675 // For irelative plt entries, offset is relative to the end of normal plt
7676 // entries, so it starts from 0.
7677 begin_offset = 0;
7678 // Record symbol information.
7679 this->insert_irelative_data(
7680 IRelative_data(symtab->get_sized_symbol<32>(gsym)));
7681 }
7682 else
7683 {
7684 entry_count = &this->count_;
7685 got = this->got_plt_;
7686 // Note that for normal plt entries, when setting the PLT offset we skip
7687 // the initial reserved PLT entry.
7688 begin_offset = this->first_plt_entry_offset();
7689 }
7690
7691 gsym->set_plt_offset(begin_offset
7692 + (*entry_count) * this->get_plt_entry_size());
94cdfcff 7693
fa89cc82 7694 ++(*entry_count);
94cdfcff 7695
fa89cc82 7696 section_offset_type got_offset = got->current_data_size();
94cdfcff
DK
7697
7698 // Every PLT entry needs a GOT entry which points back to the PLT
7699 // entry (this will be changed by the dynamic linker, normally
7700 // lazily when the function is called).
fa89cc82 7701 got->set_current_data_size(got_offset + 4);
94cdfcff
DK
7702
7703 // Every PLT entry needs a reloc.
fa89cc82 7704 this->add_relocation(symtab, layout, gsym, got_offset);
94cdfcff
DK
7705
7706 // Note that we don't need to save the symbol. The contents of the
7707 // PLT are independent of which symbols are used. The symbols only
7708 // appear in the relocations.
7709}
7710
fa89cc82
HS
7711// Add an entry to the PLT for a local STT_GNU_IFUNC symbol. Return
7712// the PLT offset.
7713
7714template<bool big_endian>
7715unsigned int
7716Output_data_plt_arm<big_endian>::add_local_ifunc_entry(
7717 Symbol_table* symtab,
7718 Layout* layout,
7719 Sized_relobj_file<32, big_endian>* relobj,
7720 unsigned int local_sym_index)
7721{
7722 this->insert_irelative_data(IRelative_data(relobj, local_sym_index));
7723
7724 // Notice, when computingthe plt entry address, "plt_address + plt_offset" is
7725 // no longer correct. Use target->plt_address_for_local() instead.
7726 unsigned int plt_offset = this->irelative_count_ * this->get_plt_entry_size();
7727 ++this->irelative_count_;
7728
7729 section_offset_type got_offset = this->got_irelative_->current_data_size();
7730
7731 // Every PLT entry needs a GOT entry which points back to the PLT
7732 // entry.
7733 this->got_irelative_->set_current_data_size(got_offset + 4);
7734
7735
7736 // Every PLT entry needs a reloc.
7737 Reloc_section* rel = this->rel_irelative(symtab, layout);
7738 rel->add_symbolless_local_addend(relobj, local_sym_index,
7739 elfcpp::R_ARM_IRELATIVE,
7740 this->got_irelative_, got_offset);
7741 return plt_offset;
7742}
7743
7744
7745// Add the relocation for a PLT entry.
7746
7747template<bool big_endian>
7748void
7749Output_data_plt_arm<big_endian>::add_relocation(
7750 Symbol_table* symtab, Layout* layout, Symbol* gsym, unsigned int got_offset)
7751{
7752 if (gsym->type() == elfcpp::STT_GNU_IFUNC
7753 && gsym->can_use_relative_reloc(false))
7754 {
7755 Reloc_section* rel = this->rel_irelative(symtab, layout);
7756 rel->add_symbolless_global_addend(gsym, elfcpp::R_ARM_IRELATIVE,
7757 this->got_irelative_, got_offset);
7758 }
7759 else
7760 {
7761 gsym->set_needs_dynsym_entry();
7762 this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_,
7763 got_offset);
7764 }
7765}
7766
7767
7768// Create the irelative relocation data.
7769
7770template<bool big_endian>
7771typename Output_data_plt_arm<big_endian>::Reloc_section*
7772Output_data_plt_arm<big_endian>::rel_irelative(Symbol_table* symtab,
7773 Layout* layout)
7774{
7775 if (this->irelative_rel_ == NULL)
7776 {
7777 // Since irelative relocations goes into 'rel.dyn', we delegate the
7778 // creation of irelative_rel_ to where rel_dyn section gets created.
7779 Target_arm<big_endian>* arm_target =
7780 Target_arm<big_endian>::default_target();
7781 this->irelative_rel_ = arm_target->rel_irelative_section(layout);
7782
7783 // Make sure we have a place for the TLSDESC relocations, in
7784 // case we see any later on.
7785 // this->rel_tlsdesc(layout);
7786 if (parameters->doing_static_link())
7787 {
7788 // A statically linked executable will only have a .rel.plt section to
7789 // hold R_ARM_IRELATIVE relocs for STT_GNU_IFUNC symbols. The library
7790 // will use these symbols to locate the IRELATIVE relocs at program
7791 // startup time.
7792 symtab->define_in_output_data("__rel_iplt_start", NULL,
7793 Symbol_table::PREDEFINED,
7794 this->irelative_rel_, 0, 0,
7795 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
7796 elfcpp::STV_HIDDEN, 0, false, true);
7797 symtab->define_in_output_data("__rel_iplt_end", NULL,
7798 Symbol_table::PREDEFINED,
7799 this->irelative_rel_, 0, 0,
7800 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
7801 elfcpp::STV_HIDDEN, 0, true, true);
7802 }
7803 }
7804 return this->irelative_rel_;
7805}
7806
7807
7808// Return the PLT address for a global symbol.
7809
7810template<bool big_endian>
7811uint32_t
7812Output_data_plt_arm<big_endian>::address_for_global(const Symbol* gsym) const
7813{
7814 uint64_t begin_offset = 0;
7815 if (gsym->type() == elfcpp::STT_GNU_IFUNC
7816 && gsym->can_use_relative_reloc(false))
7817 {
7818 begin_offset = (this->first_plt_entry_offset() +
7819 this->count_ * this->get_plt_entry_size());
7820 }
7821 return this->address() + begin_offset + gsym->plt_offset();
7822}
7823
7824
7825// Return the PLT address for a local symbol. These are always
7826// IRELATIVE relocs.
7827
7828template<bool big_endian>
7829uint32_t
7830Output_data_plt_arm<big_endian>::address_for_local(
7831 const Relobj* object,
7832 unsigned int r_sym) const
7833{
7834 return (this->address()
7835 + this->first_plt_entry_offset()
7836 + this->count_ * this->get_plt_entry_size()
7837 + object->local_plt_offset(r_sym));
7838}
7839
7840
2e702c99
RM
7841template<bool big_endian>
7842class Output_data_plt_arm_standard : public Output_data_plt_arm<big_endian>
7843{
7844 public:
fa89cc82
HS
7845 Output_data_plt_arm_standard(Layout* layout,
7846 Arm_output_data_got<big_endian>* got,
7847 Output_data_space* got_plt,
7848 Output_data_space* got_irelative)
7849 : Output_data_plt_arm<big_endian>(layout, 4, got, got_plt, got_irelative)
2e702c99
RM
7850 { }
7851
7852 protected:
7853 // Return the offset of the first non-reserved PLT entry.
7854 virtual unsigned int
7855 do_first_plt_entry_offset() const
7856 { return sizeof(first_plt_entry); }
7857
2e702c99
RM
7858 virtual void
7859 do_fill_first_plt_entry(unsigned char* pov,
7860 Arm_address got_address,
7861 Arm_address plt_address);
7862
2e702c99
RM
7863 private:
7864 // Template for the first PLT entry.
7865 static const uint32_t first_plt_entry[5];
2e702c99
RM
7866};
7867
94cdfcff
DK
7868// ARM PLTs.
7869// FIXME: This is not very flexible. Right now this has only been tested
7870// on armv5te. If we are to support additional architecture features like
7871// Thumb-2 or BE8, we need to make this more flexible like GNU ld.
7872
7873// The first entry in the PLT.
7874template<bool big_endian>
2e702c99 7875const uint32_t Output_data_plt_arm_standard<big_endian>::first_plt_entry[5] =
94cdfcff
DK
7876{
7877 0xe52de004, // str lr, [sp, #-4]!
7878 0xe59fe004, // ldr lr, [pc, #4]
2e702c99 7879 0xe08fe00e, // add lr, pc, lr
94cdfcff
DK
7880 0xe5bef008, // ldr pc, [lr, #8]!
7881 0x00000000, // &GOT[0] - .
7882};
7883
2e702c99
RM
7884template<bool big_endian>
7885void
7886Output_data_plt_arm_standard<big_endian>::do_fill_first_plt_entry(
7887 unsigned char* pov,
7888 Arm_address got_address,
7889 Arm_address plt_address)
7890{
7891 // Write first PLT entry. All but the last word are constants.
7892 const size_t num_first_plt_words = (sizeof(first_plt_entry)
ce3e4980 7893 / sizeof(first_plt_entry[0]));
2e702c99 7894 for (size_t i = 0; i < num_first_plt_words - 1; i++)
9f84726c
BS
7895 {
7896 if (parameters->options().be8())
7897 {
7898 elfcpp::Swap<32, false>::writeval(pov + i * 4,
7899 first_plt_entry[i]);
7900 }
7901 else
7902 {
7903 elfcpp::Swap<32, big_endian>::writeval(pov + i * 4,
7904 first_plt_entry[i]);
7905 }
7906 }
2e702c99
RM
7907 // Last word in first PLT entry is &GOT[0] - .
7908 elfcpp::Swap<32, big_endian>::writeval(pov + 16,
7909 got_address - (plt_address + 16));
7910}
7911
94cdfcff 7912// Subsequent entries in the PLT.
ce3e4980
PC
7913// This class generates short (12-byte) entries, for displacements up to 2^28.
7914
7915template<bool big_endian>
7916class Output_data_plt_arm_short : public Output_data_plt_arm_standard<big_endian>
7917{
7918 public:
7919 Output_data_plt_arm_short(Layout* layout,
7920 Arm_output_data_got<big_endian>* got,
7921 Output_data_space* got_plt,
7922 Output_data_space* got_irelative)
7923 : Output_data_plt_arm_standard<big_endian>(layout, got, got_plt, got_irelative)
7924 { }
7925
7926 protected:
7927 // Return the size of a PLT entry.
7928 virtual unsigned int
7929 do_get_plt_entry_size() const
7930 { return sizeof(plt_entry); }
7931
7932 virtual void
7933 do_fill_plt_entry(unsigned char* pov,
7934 Arm_address got_address,
7935 Arm_address plt_address,
7936 unsigned int got_offset,
7937 unsigned int plt_offset);
7938
7939 private:
7940 // Template for subsequent PLT entries.
7941 static const uint32_t plt_entry[3];
7942};
94cdfcff
DK
7943
7944template<bool big_endian>
ce3e4980 7945const uint32_t Output_data_plt_arm_short<big_endian>::plt_entry[3] =
94cdfcff
DK
7946{
7947 0xe28fc600, // add ip, pc, #0xNN00000
7948 0xe28cca00, // add ip, ip, #0xNN000
7949 0xe5bcf000, // ldr pc, [ip, #0xNNN]!
7950};
7951
2e702c99
RM
7952template<bool big_endian>
7953void
ce3e4980 7954Output_data_plt_arm_short<big_endian>::do_fill_plt_entry(
2e702c99
RM
7955 unsigned char* pov,
7956 Arm_address got_address,
7957 Arm_address plt_address,
7958 unsigned int got_offset,
7959 unsigned int plt_offset)
7960{
7961 int32_t offset = ((got_address + got_offset)
7962 - (plt_address + plt_offset + 8));
ce3e4980
PC
7963 if (offset < 0 || offset > 0x0fffffff)
7964 gold_error(_("PLT offset too large, try linking with --long-plt"));
2e702c99 7965
2e702c99 7966 uint32_t plt_insn0 = plt_entry[0] | ((offset >> 20) & 0xff);
2e702c99 7967 uint32_t plt_insn1 = plt_entry[1] | ((offset >> 12) & 0xff);
2e702c99 7968 uint32_t plt_insn2 = plt_entry[2] | (offset & 0xfff);
9f84726c
BS
7969
7970 if (parameters->options().be8())
7971 {
7972 elfcpp::Swap<32, false>::writeval(pov, plt_insn0);
7973 elfcpp::Swap<32, false>::writeval(pov + 4, plt_insn1);
7974 elfcpp::Swap<32, false>::writeval(pov + 8, plt_insn2);
7975 }
7976 else
7977 {
7978 elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
7979 elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
7980 elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
7981 }
2e702c99
RM
7982}
7983
ce3e4980
PC
7984// This class generates long (16-byte) entries, for arbitrary displacements.
7985
7986template<bool big_endian>
7987class Output_data_plt_arm_long : public Output_data_plt_arm_standard<big_endian>
7988{
7989 public:
7990 Output_data_plt_arm_long(Layout* layout,
7991 Arm_output_data_got<big_endian>* got,
7992 Output_data_space* got_plt,
7993 Output_data_space* got_irelative)
7994 : Output_data_plt_arm_standard<big_endian>(layout, got, got_plt, got_irelative)
7995 { }
7996
7997 protected:
7998 // Return the size of a PLT entry.
7999 virtual unsigned int
8000 do_get_plt_entry_size() const
8001 { return sizeof(plt_entry); }
8002
8003 virtual void
8004 do_fill_plt_entry(unsigned char* pov,
8005 Arm_address got_address,
8006 Arm_address plt_address,
8007 unsigned int got_offset,
8008 unsigned int plt_offset);
8009
8010 private:
8011 // Template for subsequent PLT entries.
8012 static const uint32_t plt_entry[4];
8013};
8014
8015template<bool big_endian>
8016const uint32_t Output_data_plt_arm_long<big_endian>::plt_entry[4] =
8017{
8018 0xe28fc200, // add ip, pc, #0xN0000000
8019 0xe28cc600, // add ip, ip, #0xNN00000
8020 0xe28cca00, // add ip, ip, #0xNN000
8021 0xe5bcf000, // ldr pc, [ip, #0xNNN]!
8022};
8023
8024template<bool big_endian>
8025void
8026Output_data_plt_arm_long<big_endian>::do_fill_plt_entry(
8027 unsigned char* pov,
8028 Arm_address got_address,
8029 Arm_address plt_address,
8030 unsigned int got_offset,
8031 unsigned int plt_offset)
8032{
8033 int32_t offset = ((got_address + got_offset)
8034 - (plt_address + plt_offset + 8));
8035
8036 uint32_t plt_insn0 = plt_entry[0] | (offset >> 28);
ce3e4980 8037 uint32_t plt_insn1 = plt_entry[1] | ((offset >> 20) & 0xff);
ce3e4980 8038 uint32_t plt_insn2 = plt_entry[2] | ((offset >> 12) & 0xff);
ce3e4980 8039 uint32_t plt_insn3 = plt_entry[3] | (offset & 0xfff);
9f84726c
BS
8040
8041 if (parameters->options().be8())
8042 {
8043 elfcpp::Swap<32, false>::writeval(pov, plt_insn0);
8044 elfcpp::Swap<32, false>::writeval(pov + 4, plt_insn1);
8045 elfcpp::Swap<32, false>::writeval(pov + 8, plt_insn2);
8046 elfcpp::Swap<32, false>::writeval(pov + 12, plt_insn3);
8047 }
8048 else
8049 {
8050 elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
8051 elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
8052 elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
8053 elfcpp::Swap<32, big_endian>::writeval(pov + 12, plt_insn3);
8054 }
ce3e4980
PC
8055}
8056
94cdfcff
DK
8057// Write out the PLT. This uses the hand-coded instructions above,
8058// and adjusts them as needed. This is all specified by the arm ELF
8059// Processor Supplement.
8060
8061template<bool big_endian>
8062void
8063Output_data_plt_arm<big_endian>::do_write(Output_file* of)
8064{
2ea97941 8065 const off_t offset = this->offset();
94cdfcff
DK
8066 const section_size_type oview_size =
8067 convert_to_section_size_type(this->data_size());
2ea97941 8068 unsigned char* const oview = of->get_output_view(offset, oview_size);
94cdfcff
DK
8069
8070 const off_t got_file_offset = this->got_plt_->offset();
fa89cc82
HS
8071 gold_assert(got_file_offset + this->got_plt_->data_size()
8072 == this->got_irelative_->offset());
94cdfcff 8073 const section_size_type got_size =
fa89cc82
HS
8074 convert_to_section_size_type(this->got_plt_->data_size()
8075 + this->got_irelative_->data_size());
94cdfcff
DK
8076 unsigned char* const got_view = of->get_output_view(got_file_offset,
8077 got_size);
8078 unsigned char* pov = oview;
8079
ebabffbd
DK
8080 Arm_address plt_address = this->address();
8081 Arm_address got_address = this->got_plt_->address();
94cdfcff 8082
2e702c99
RM
8083 // Write first PLT entry.
8084 this->fill_first_plt_entry(pov, got_address, plt_address);
8085 pov += this->first_plt_entry_offset();
94cdfcff
DK
8086
8087 unsigned char* got_pov = got_view;
8088
8089 memset(got_pov, 0, 12);
8090 got_pov += 12;
8091
2e702c99 8092 unsigned int plt_offset = this->first_plt_entry_offset();
94cdfcff 8093 unsigned int got_offset = 12;
fa89cc82
HS
8094 const unsigned int count = this->count_ + this->irelative_count_;
8095 gold_assert(this->irelative_count_ == this->irelative_data_vec_.size());
94cdfcff
DK
8096 for (unsigned int i = 0;
8097 i < count;
8098 ++i,
2e702c99 8099 pov += this->get_plt_entry_size(),
94cdfcff 8100 got_pov += 4,
2e702c99 8101 plt_offset += this->get_plt_entry_size(),
94cdfcff
DK
8102 got_offset += 4)
8103 {
8104 // Set and adjust the PLT entry itself.
2e702c99
RM
8105 this->fill_plt_entry(pov, got_address, plt_address,
8106 got_offset, plt_offset);
94cdfcff 8107
fa89cc82
HS
8108 Arm_address value;
8109 if (i < this->count_)
8110 {
8111 // For non-irelative got entries, the value is the beginning of plt.
8112 value = plt_address;
8113 }
8114 else
8115 {
8116 // For irelative got entries, the value is the (global/local) symbol
8117 // address.
8118 const IRelative_data& idata =
8119 this->irelative_data_vec_[i - this->count_];
8120 if (idata.symbol_is_global_)
8121 {
8122 // Set the entry in the GOT for irelative symbols. The content is
8123 // the address of the ifunc, not the address of plt start.
8124 const Sized_symbol<32>* sized_symbol = idata.u_.global;
8125 gold_assert(sized_symbol->type() == elfcpp::STT_GNU_IFUNC);
8126 value = sized_symbol->value();
8127 }
8128 else
8129 {
8130 value = idata.u_.local.relobj->local_symbol_value(
8131 idata.u_.local.index, 0);
8132 }
8133 }
8134 elfcpp::Swap<32, big_endian>::writeval(got_pov, value);
94cdfcff
DK
8135 }
8136
8137 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
8138 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
8139
2ea97941 8140 of->write_output_view(offset, oview_size, oview);
94cdfcff
DK
8141 of->write_output_view(got_file_offset, got_size, got_view);
8142}
8143
fa89cc82 8144
94cdfcff
DK
8145// Create a PLT entry for a global symbol.
8146
8147template<bool big_endian>
8148void
2ea97941 8149Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout,
94cdfcff
DK
8150 Symbol* gsym)
8151{
8152 if (gsym->has_plt_offset())
8153 return;
8154
fa89cc82
HS
8155 if (this->plt_ == NULL)
8156 this->make_plt_section(symtab, layout);
8157
8158 this->plt_->add_entry(symtab, layout, gsym);
8159}
8160
8161
8162// Create the PLT section.
8163template<bool big_endian>
8164void
8165Target_arm<big_endian>::make_plt_section(
8166 Symbol_table* symtab, Layout* layout)
8167{
94cdfcff
DK
8168 if (this->plt_ == NULL)
8169 {
fa89cc82 8170 // Create the GOT section first.
2ea97941 8171 this->got_section(symtab, layout);
94cdfcff 8172
fa89cc82
HS
8173 // GOT for irelatives is create along with got.plt.
8174 gold_assert(this->got_ != NULL
8175 && this->got_plt_ != NULL
8176 && this->got_irelative_ != NULL);
8177 this->plt_ = this->make_data_plt(layout, this->got_, this->got_plt_,
8178 this->got_irelative_);
2e702c99 8179
2ea97941
ILT
8180 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
8181 (elfcpp::SHF_ALLOC
8182 | elfcpp::SHF_EXECINSTR),
22f0da72 8183 this->plt_, ORDER_PLT, false);
07f107f3
WN
8184 symtab->define_in_output_data("$a", NULL,
8185 Symbol_table::PREDEFINED,
8186 this->plt_,
8187 0, 0, elfcpp::STT_NOTYPE,
8188 elfcpp::STB_LOCAL,
8189 elfcpp::STV_DEFAULT, 0,
8190 false, false);
94cdfcff 8191 }
94cdfcff
DK
8192}
8193
fa89cc82
HS
8194
8195// Make a PLT entry for a local STT_GNU_IFUNC symbol.
8196
8197template<bool big_endian>
8198void
8199Target_arm<big_endian>::make_local_ifunc_plt_entry(
8200 Symbol_table* symtab, Layout* layout,
8201 Sized_relobj_file<32, big_endian>* relobj,
8202 unsigned int local_sym_index)
8203{
8204 if (relobj->local_has_plt_offset(local_sym_index))
8205 return;
8206 if (this->plt_ == NULL)
8207 this->make_plt_section(symtab, layout);
8208 unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
8209 relobj,
8210 local_sym_index);
8211 relobj->set_local_plt_offset(local_sym_index, plt_offset);
8212}
8213
8214
0e70b911
CC
8215// Return the number of entries in the PLT.
8216
8217template<bool big_endian>
8218unsigned int
8219Target_arm<big_endian>::plt_entry_count() const
8220{
8221 if (this->plt_ == NULL)
8222 return 0;
8223 return this->plt_->entry_count();
8224}
8225
8226// Return the offset of the first non-reserved PLT entry.
8227
8228template<bool big_endian>
8229unsigned int
8230Target_arm<big_endian>::first_plt_entry_offset() const
8231{
2e702c99 8232 return this->plt_->first_plt_entry_offset();
0e70b911
CC
8233}
8234
8235// Return the size of each PLT entry.
8236
8237template<bool big_endian>
8238unsigned int
8239Target_arm<big_endian>::plt_entry_size() const
8240{
2e702c99 8241 return this->plt_->get_plt_entry_size();
0e70b911
CC
8242}
8243
f96accdf
DK
8244// Get the section to use for TLS_DESC relocations.
8245
8246template<bool big_endian>
8247typename Target_arm<big_endian>::Reloc_section*
8248Target_arm<big_endian>::rel_tls_desc_section(Layout* layout) const
8249{
8250 return this->plt_section()->rel_tls_desc(layout);
8251}
8252
8253// Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
8254
8255template<bool big_endian>
8256void
8257Target_arm<big_endian>::define_tls_base_symbol(
8258 Symbol_table* symtab,
8259 Layout* layout)
8260{
8261 if (this->tls_base_symbol_defined_)
8262 return;
8263
8264 Output_segment* tls_segment = layout->tls_segment();
8265 if (tls_segment != NULL)
8266 {
8267 bool is_exec = parameters->options().output_is_executable();
8268 symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
8269 Symbol_table::PREDEFINED,
8270 tls_segment, 0, 0,
8271 elfcpp::STT_TLS,
8272 elfcpp::STB_LOCAL,
8273 elfcpp::STV_HIDDEN, 0,
8274 (is_exec
8275 ? Symbol::SEGMENT_END
8276 : Symbol::SEGMENT_START),
8277 true);
8278 }
8279 this->tls_base_symbol_defined_ = true;
8280}
8281
8282// Create a GOT entry for the TLS module index.
8283
8284template<bool big_endian>
8285unsigned int
8286Target_arm<big_endian>::got_mod_index_entry(
8287 Symbol_table* symtab,
8288 Layout* layout,
6fa2a40b 8289 Sized_relobj_file<32, big_endian>* object)
f96accdf
DK
8290{
8291 if (this->got_mod_index_offset_ == -1U)
8292 {
8293 gold_assert(symtab != NULL && layout != NULL && object != NULL);
4a54abbb
DK
8294 Arm_output_data_got<big_endian>* got = this->got_section(symtab, layout);
8295 unsigned int got_offset;
8296 if (!parameters->doing_static_link())
8297 {
8298 got_offset = got->add_constant(0);
8299 Reloc_section* rel_dyn = this->rel_dyn_section(layout);
8300 rel_dyn->add_local(object, 0, elfcpp::R_ARM_TLS_DTPMOD32, got,
8301 got_offset);
8302 }
8303 else
8304 {
8305 // We are doing a static link. Just mark it as belong to module 1,
8306 // the executable.
8307 got_offset = got->add_constant(1);
8308 }
8309
f96accdf
DK
8310 got->add_constant(0);
8311 this->got_mod_index_offset_ = got_offset;
8312 }
8313 return this->got_mod_index_offset_;
8314}
8315
8316// Optimize the TLS relocation type based on what we know about the
8317// symbol. IS_FINAL is true if the final address of this symbol is
8318// known at link time.
8319
8320template<bool big_endian>
8321tls::Tls_optimization
8322Target_arm<big_endian>::optimize_tls_reloc(bool, int)
8323{
8324 // FIXME: Currently we do not do any TLS optimization.
8325 return tls::TLSOPT_NONE;
8326}
8327
95a2c8d6
RS
8328// Get the Reference_flags for a particular relocation.
8329
8330template<bool big_endian>
8331int
8332Target_arm<big_endian>::Scan::get_reference_flags(unsigned int r_type)
8333{
8334 switch (r_type)
8335 {
8336 case elfcpp::R_ARM_NONE:
8337 case elfcpp::R_ARM_V4BX:
8338 case elfcpp::R_ARM_GNU_VTENTRY:
8339 case elfcpp::R_ARM_GNU_VTINHERIT:
8340 // No symbol reference.
8341 return 0;
8342
8343 case elfcpp::R_ARM_ABS32:
8344 case elfcpp::R_ARM_ABS16:
8345 case elfcpp::R_ARM_ABS12:
8346 case elfcpp::R_ARM_THM_ABS5:
8347 case elfcpp::R_ARM_ABS8:
8348 case elfcpp::R_ARM_BASE_ABS:
8349 case elfcpp::R_ARM_MOVW_ABS_NC:
8350 case elfcpp::R_ARM_MOVT_ABS:
8351 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8352 case elfcpp::R_ARM_THM_MOVT_ABS:
8353 case elfcpp::R_ARM_ABS32_NOI:
8354 return Symbol::ABSOLUTE_REF;
8355
8356 case elfcpp::R_ARM_REL32:
8357 case elfcpp::R_ARM_LDR_PC_G0:
8358 case elfcpp::R_ARM_SBREL32:
8359 case elfcpp::R_ARM_THM_PC8:
8360 case elfcpp::R_ARM_BASE_PREL:
8361 case elfcpp::R_ARM_MOVW_PREL_NC:
8362 case elfcpp::R_ARM_MOVT_PREL:
8363 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8364 case elfcpp::R_ARM_THM_MOVT_PREL:
8365 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
8366 case elfcpp::R_ARM_THM_PC12:
8367 case elfcpp::R_ARM_REL32_NOI:
8368 case elfcpp::R_ARM_ALU_PC_G0_NC:
8369 case elfcpp::R_ARM_ALU_PC_G0:
8370 case elfcpp::R_ARM_ALU_PC_G1_NC:
8371 case elfcpp::R_ARM_ALU_PC_G1:
8372 case elfcpp::R_ARM_ALU_PC_G2:
8373 case elfcpp::R_ARM_LDR_PC_G1:
8374 case elfcpp::R_ARM_LDR_PC_G2:
8375 case elfcpp::R_ARM_LDRS_PC_G0:
8376 case elfcpp::R_ARM_LDRS_PC_G1:
8377 case elfcpp::R_ARM_LDRS_PC_G2:
8378 case elfcpp::R_ARM_LDC_PC_G0:
8379 case elfcpp::R_ARM_LDC_PC_G1:
8380 case elfcpp::R_ARM_LDC_PC_G2:
8381 case elfcpp::R_ARM_ALU_SB_G0_NC:
8382 case elfcpp::R_ARM_ALU_SB_G0:
8383 case elfcpp::R_ARM_ALU_SB_G1_NC:
8384 case elfcpp::R_ARM_ALU_SB_G1:
8385 case elfcpp::R_ARM_ALU_SB_G2:
8386 case elfcpp::R_ARM_LDR_SB_G0:
8387 case elfcpp::R_ARM_LDR_SB_G1:
8388 case elfcpp::R_ARM_LDR_SB_G2:
8389 case elfcpp::R_ARM_LDRS_SB_G0:
8390 case elfcpp::R_ARM_LDRS_SB_G1:
8391 case elfcpp::R_ARM_LDRS_SB_G2:
8392 case elfcpp::R_ARM_LDC_SB_G0:
8393 case elfcpp::R_ARM_LDC_SB_G1:
8394 case elfcpp::R_ARM_LDC_SB_G2:
8395 case elfcpp::R_ARM_MOVW_BREL_NC:
8396 case elfcpp::R_ARM_MOVT_BREL:
8397 case elfcpp::R_ARM_MOVW_BREL:
8398 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8399 case elfcpp::R_ARM_THM_MOVT_BREL:
8400 case elfcpp::R_ARM_THM_MOVW_BREL:
8401 case elfcpp::R_ARM_GOTOFF32:
8402 case elfcpp::R_ARM_GOTOFF12:
95a2c8d6
RS
8403 case elfcpp::R_ARM_SBREL31:
8404 return Symbol::RELATIVE_REF;
8405
8406 case elfcpp::R_ARM_PLT32:
8407 case elfcpp::R_ARM_CALL:
8408 case elfcpp::R_ARM_JUMP24:
8409 case elfcpp::R_ARM_THM_CALL:
8410 case elfcpp::R_ARM_THM_JUMP24:
8411 case elfcpp::R_ARM_THM_JUMP19:
8412 case elfcpp::R_ARM_THM_JUMP6:
8413 case elfcpp::R_ARM_THM_JUMP11:
8414 case elfcpp::R_ARM_THM_JUMP8:
017257f8
DK
8415 // R_ARM_PREL31 is not used to relocate call/jump instructions but
8416 // in unwind tables. It may point to functions via PLTs.
8417 // So we treat it like call/jump relocations above.
8418 case elfcpp::R_ARM_PREL31:
95a2c8d6
RS
8419 return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
8420
8421 case elfcpp::R_ARM_GOT_BREL:
8422 case elfcpp::R_ARM_GOT_ABS:
8423 case elfcpp::R_ARM_GOT_PREL:
8424 // Absolute in GOT.
8425 return Symbol::ABSOLUTE_REF;
8426
8427 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8428 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8429 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8430 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8431 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8432 return Symbol::TLS_REF;
8433
8434 case elfcpp::R_ARM_TARGET1:
8435 case elfcpp::R_ARM_TARGET2:
8436 case elfcpp::R_ARM_COPY:
8437 case elfcpp::R_ARM_GLOB_DAT:
8438 case elfcpp::R_ARM_JUMP_SLOT:
8439 case elfcpp::R_ARM_RELATIVE:
8440 case elfcpp::R_ARM_PC24:
8441 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8442 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8443 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
8444 default:
8445 // Not expected. We will give an error later.
8446 return 0;
8447 }
8448}
8449
4a657b0d
DK
8450// Report an unsupported relocation against a local symbol.
8451
8452template<bool big_endian>
8453void
8454Target_arm<big_endian>::Scan::unsupported_reloc_local(
6fa2a40b 8455 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
8456 unsigned int r_type)
8457{
8458 gold_error(_("%s: unsupported reloc %u against local symbol"),
8459 object->name().c_str(), r_type);
8460}
8461
bec53400
DK
8462// We are about to emit a dynamic relocation of type R_TYPE. If the
8463// dynamic linker does not support it, issue an error. The GNU linker
8464// only issues a non-PIC error for an allocated read-only section.
8465// Here we know the section is allocated, but we don't know that it is
8466// read-only. But we check for all the relocation types which the
8467// glibc dynamic linker supports, so it seems appropriate to issue an
8468// error even if the section is not read-only.
8469
8470template<bool big_endian>
8471void
8472Target_arm<big_endian>::Scan::check_non_pic(Relobj* object,
8473 unsigned int r_type)
8474{
8475 switch (r_type)
8476 {
8477 // These are the relocation types supported by glibc for ARM.
8478 case elfcpp::R_ARM_RELATIVE:
8479 case elfcpp::R_ARM_COPY:
8480 case elfcpp::R_ARM_GLOB_DAT:
8481 case elfcpp::R_ARM_JUMP_SLOT:
8482 case elfcpp::R_ARM_ABS32:
be8fcb75 8483 case elfcpp::R_ARM_ABS32_NOI:
fa89cc82 8484 case elfcpp::R_ARM_IRELATIVE:
bec53400
DK
8485 case elfcpp::R_ARM_PC24:
8486 // FIXME: The following 3 types are not supported by Android's dynamic
8487 // linker.
8488 case elfcpp::R_ARM_TLS_DTPMOD32:
8489 case elfcpp::R_ARM_TLS_DTPOFF32:
8490 case elfcpp::R_ARM_TLS_TPOFF32:
8491 return;
8492
8493 default:
c8761b9a
DK
8494 {
8495 // This prevents us from issuing more than one error per reloc
8496 // section. But we can still wind up issuing more than one
8497 // error per object file.
8498 if (this->issued_non_pic_error_)
8499 return;
8500 const Arm_reloc_property* reloc_property =
8501 arm_reloc_property_table->get_reloc_property(r_type);
8502 gold_assert(reloc_property != NULL);
8503 object->error(_("requires unsupported dynamic reloc %s; "
8504 "recompile with -fPIC"),
8505 reloc_property->name().c_str());
8506 this->issued_non_pic_error_ = true;
bec53400 8507 return;
c8761b9a 8508 }
bec53400
DK
8509
8510 case elfcpp::R_ARM_NONE:
8511 gold_unreachable();
8512 }
8513}
8514
fa89cc82
HS
8515
8516// Return whether we need to make a PLT entry for a relocation of the
8517// given type against a STT_GNU_IFUNC symbol.
8518
8519template<bool big_endian>
8520bool
8521Target_arm<big_endian>::Scan::reloc_needs_plt_for_ifunc(
8522 Sized_relobj_file<32, big_endian>* object,
8523 unsigned int r_type)
8524{
8525 int flags = Scan::get_reference_flags(r_type);
8526 if (flags & Symbol::TLS_REF)
8527 {
8528 gold_error(_("%s: unsupported TLS reloc %u for IFUNC symbol"),
8529 object->name().c_str(), r_type);
8530 return false;
8531 }
8532 return flags != 0;
8533}
8534
8535
4a657b0d 8536// Scan a relocation for a local symbol.
bec53400
DK
8537// FIXME: This only handles a subset of relocation types used by Android
8538// on ARM v5te devices.
4a657b0d
DK
8539
8540template<bool big_endian>
8541inline void
ad0f2072 8542Target_arm<big_endian>::Scan::local(Symbol_table* symtab,
2ea97941 8543 Layout* layout,
bec53400 8544 Target_arm* target,
6fa2a40b 8545 Sized_relobj_file<32, big_endian>* object,
bec53400
DK
8546 unsigned int data_shndx,
8547 Output_section* output_section,
8548 const elfcpp::Rel<32, big_endian>& reloc,
4a657b0d 8549 unsigned int r_type,
bfdfa4cd
AM
8550 const elfcpp::Sym<32, big_endian>& lsym,
8551 bool is_discarded)
4a657b0d 8552{
bfdfa4cd
AM
8553 if (is_discarded)
8554 return;
8555
bc99685c 8556 r_type = target->get_real_reloc_type(r_type);
fa89cc82
HS
8557
8558 // A local STT_GNU_IFUNC symbol may require a PLT entry.
8559 bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
8560 if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type))
8561 {
8562 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8563 target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
8564 }
8565
4a657b0d
DK
8566 switch (r_type)
8567 {
8568 case elfcpp::R_ARM_NONE:
e4782e83
DK
8569 case elfcpp::R_ARM_V4BX:
8570 case elfcpp::R_ARM_GNU_VTENTRY:
8571 case elfcpp::R_ARM_GNU_VTINHERIT:
4a657b0d
DK
8572 break;
8573
bec53400 8574 case elfcpp::R_ARM_ABS32:
be8fcb75 8575 case elfcpp::R_ARM_ABS32_NOI:
bec53400
DK
8576 // If building a shared library (or a position-independent
8577 // executable), we need to create a dynamic relocation for
8578 // this location. The relocation applied at link time will
8579 // apply the link-time value, so we flag the location with
8580 // an R_ARM_RELATIVE relocation so the dynamic loader can
8581 // relocate it easily.
8582 if (parameters->options().output_is_position_independent())
8583 {
2ea97941 8584 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
bec53400 8585 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
2e702c99
RM
8586 // If we are to add more other reloc types than R_ARM_ABS32,
8587 // we need to add check_non_pic(object, r_type) here.
bec53400
DK
8588 rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE,
8589 output_section, data_shndx,
fa89cc82 8590 reloc.get_r_offset(), is_ifunc);
bec53400
DK
8591 }
8592 break;
8593
e4782e83
DK
8594 case elfcpp::R_ARM_ABS16:
8595 case elfcpp::R_ARM_ABS12:
be8fcb75
ILT
8596 case elfcpp::R_ARM_THM_ABS5:
8597 case elfcpp::R_ARM_ABS8:
be8fcb75 8598 case elfcpp::R_ARM_BASE_ABS:
fd3c5f0b
ILT
8599 case elfcpp::R_ARM_MOVW_ABS_NC:
8600 case elfcpp::R_ARM_MOVT_ABS:
8601 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8602 case elfcpp::R_ARM_THM_MOVT_ABS:
e4782e83
DK
8603 // If building a shared library (or a position-independent
8604 // executable), we need to create a dynamic relocation for
8605 // this location. Because the addend needs to remain in the
8606 // data section, we need to be careful not to apply this
8607 // relocation statically.
8608 if (parameters->options().output_is_position_independent())
2e702c99 8609 {
e4782e83 8610 check_non_pic(object, r_type);
2e702c99 8611 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
e4782e83 8612 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
2e702c99 8613 if (lsym.get_st_type() != elfcpp::STT_SECTION)
e4782e83
DK
8614 rel_dyn->add_local(object, r_sym, r_type, output_section,
8615 data_shndx, reloc.get_r_offset());
2e702c99
RM
8616 else
8617 {
8618 gold_assert(lsym.get_st_value() == 0);
e4782e83
DK
8619 unsigned int shndx = lsym.get_st_shndx();
8620 bool is_ordinary;
8621 shndx = object->adjust_sym_shndx(r_sym, shndx,
8622 &is_ordinary);
8623 if (!is_ordinary)
8624 object->error(_("section symbol %u has bad shndx %u"),
8625 r_sym, shndx);
8626 else
8627 rel_dyn->add_local_section(object, shndx,
8628 r_type, output_section,
8629 data_shndx, reloc.get_r_offset());
2e702c99
RM
8630 }
8631 }
e4782e83
DK
8632 break;
8633
e4782e83
DK
8634 case elfcpp::R_ARM_REL32:
8635 case elfcpp::R_ARM_LDR_PC_G0:
8636 case elfcpp::R_ARM_SBREL32:
8637 case elfcpp::R_ARM_THM_CALL:
8638 case elfcpp::R_ARM_THM_PC8:
8639 case elfcpp::R_ARM_BASE_PREL:
8640 case elfcpp::R_ARM_PLT32:
8641 case elfcpp::R_ARM_CALL:
8642 case elfcpp::R_ARM_JUMP24:
8643 case elfcpp::R_ARM_THM_JUMP24:
e4782e83
DK
8644 case elfcpp::R_ARM_SBREL31:
8645 case elfcpp::R_ARM_PREL31:
c2a122b6
ILT
8646 case elfcpp::R_ARM_MOVW_PREL_NC:
8647 case elfcpp::R_ARM_MOVT_PREL:
8648 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8649 case elfcpp::R_ARM_THM_MOVT_PREL:
e4782e83 8650 case elfcpp::R_ARM_THM_JUMP19:
800d0f56 8651 case elfcpp::R_ARM_THM_JUMP6:
11b861d5 8652 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
e4782e83
DK
8653 case elfcpp::R_ARM_THM_PC12:
8654 case elfcpp::R_ARM_REL32_NOI:
b10d2873
ILT
8655 case elfcpp::R_ARM_ALU_PC_G0_NC:
8656 case elfcpp::R_ARM_ALU_PC_G0:
8657 case elfcpp::R_ARM_ALU_PC_G1_NC:
8658 case elfcpp::R_ARM_ALU_PC_G1:
8659 case elfcpp::R_ARM_ALU_PC_G2:
e4782e83
DK
8660 case elfcpp::R_ARM_LDR_PC_G1:
8661 case elfcpp::R_ARM_LDR_PC_G2:
8662 case elfcpp::R_ARM_LDRS_PC_G0:
8663 case elfcpp::R_ARM_LDRS_PC_G1:
8664 case elfcpp::R_ARM_LDRS_PC_G2:
8665 case elfcpp::R_ARM_LDC_PC_G0:
8666 case elfcpp::R_ARM_LDC_PC_G1:
8667 case elfcpp::R_ARM_LDC_PC_G2:
b10d2873
ILT
8668 case elfcpp::R_ARM_ALU_SB_G0_NC:
8669 case elfcpp::R_ARM_ALU_SB_G0:
8670 case elfcpp::R_ARM_ALU_SB_G1_NC:
8671 case elfcpp::R_ARM_ALU_SB_G1:
8672 case elfcpp::R_ARM_ALU_SB_G2:
b10d2873
ILT
8673 case elfcpp::R_ARM_LDR_SB_G0:
8674 case elfcpp::R_ARM_LDR_SB_G1:
8675 case elfcpp::R_ARM_LDR_SB_G2:
b10d2873
ILT
8676 case elfcpp::R_ARM_LDRS_SB_G0:
8677 case elfcpp::R_ARM_LDRS_SB_G1:
8678 case elfcpp::R_ARM_LDRS_SB_G2:
b10d2873
ILT
8679 case elfcpp::R_ARM_LDC_SB_G0:
8680 case elfcpp::R_ARM_LDC_SB_G1:
8681 case elfcpp::R_ARM_LDC_SB_G2:
e4782e83
DK
8682 case elfcpp::R_ARM_MOVW_BREL_NC:
8683 case elfcpp::R_ARM_MOVT_BREL:
8684 case elfcpp::R_ARM_MOVW_BREL:
8685 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8686 case elfcpp::R_ARM_THM_MOVT_BREL:
8687 case elfcpp::R_ARM_THM_MOVW_BREL:
8688 case elfcpp::R_ARM_THM_JUMP11:
8689 case elfcpp::R_ARM_THM_JUMP8:
8690 // We don't need to do anything for a relative addressing relocation
8691 // against a local symbol if it does not reference the GOT.
bec53400
DK
8692 break;
8693
8694 case elfcpp::R_ARM_GOTOFF32:
e4782e83 8695 case elfcpp::R_ARM_GOTOFF12:
bec53400 8696 // We need a GOT section:
2ea97941 8697 target->got_section(symtab, layout);
bec53400
DK
8698 break;
8699
bec53400 8700 case elfcpp::R_ARM_GOT_BREL:
7f5309a5 8701 case elfcpp::R_ARM_GOT_PREL:
bec53400
DK
8702 {
8703 // The symbol requires a GOT entry.
4a54abbb 8704 Arm_output_data_got<big_endian>* got =
2ea97941 8705 target->got_section(symtab, layout);
bec53400
DK
8706 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8707 if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
8708 {
8709 // If we are generating a shared object, we need to add a
8710 // dynamic RELATIVE relocation for this symbol's GOT entry.
8711 if (parameters->options().output_is_position_independent())
8712 {
2ea97941
ILT
8713 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8714 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
bec53400 8715 rel_dyn->add_local_relative(
2ea97941
ILT
8716 object, r_sym, elfcpp::R_ARM_RELATIVE, got,
8717 object->local_got_offset(r_sym, GOT_TYPE_STANDARD));
bec53400
DK
8718 }
8719 }
8720 }
8721 break;
8722
8723 case elfcpp::R_ARM_TARGET1:
e4782e83 8724 case elfcpp::R_ARM_TARGET2:
bec53400
DK
8725 // This should have been mapped to another type already.
8726 // Fall through.
8727 case elfcpp::R_ARM_COPY:
8728 case elfcpp::R_ARM_GLOB_DAT:
8729 case elfcpp::R_ARM_JUMP_SLOT:
8730 case elfcpp::R_ARM_RELATIVE:
8731 // These are relocations which should only be seen by the
8732 // dynamic linker, and should never be seen here.
8733 gold_error(_("%s: unexpected reloc %u in object file"),
8734 object->name().c_str(), r_type);
8735 break;
8736
f96accdf
DK
8737
8738 // These are initial TLS relocs, which are expected when
8739 // linking.
8740 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8741 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8742 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8743 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8744 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8745 {
8746 bool output_is_shared = parameters->options().shared();
8747 const tls::Tls_optimization optimized_type
2e702c99 8748 = Target_arm<big_endian>::optimize_tls_reloc(!output_is_shared,
f96accdf
DK
8749 r_type);
8750 switch (r_type)
8751 {
8752 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8753 if (optimized_type == tls::TLSOPT_NONE)
8754 {
2e702c99
RM
8755 // Create a pair of GOT entries for the module index and
8756 // dtv-relative offset.
8757 Arm_output_data_got<big_endian>* got
8758 = target->got_section(symtab, layout);
8759 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
f96accdf
DK
8760 unsigned int shndx = lsym.get_st_shndx();
8761 bool is_ordinary;
8762 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
8763 if (!is_ordinary)
4a54abbb
DK
8764 {
8765 object->error(_("local symbol %u has bad shndx %u"),
8766 r_sym, shndx);
8767 break;
8768 }
8769
8770 if (!parameters->doing_static_link())
f96accdf
DK
8771 got->add_local_pair_with_rel(object, r_sym, shndx,
8772 GOT_TYPE_TLS_PAIR,
8773 target->rel_dyn_section(layout),
bd73a62d 8774 elfcpp::R_ARM_TLS_DTPMOD32);
4a54abbb
DK
8775 else
8776 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR,
8777 object, r_sym);
f96accdf
DK
8778 }
8779 else
8780 // FIXME: TLS optimization not supported yet.
8781 gold_unreachable();
8782 break;
8783
8784 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8785 if (optimized_type == tls::TLSOPT_NONE)
8786 {
2e702c99
RM
8787 // Create a GOT entry for the module index.
8788 target->got_mod_index_entry(symtab, layout, object);
f96accdf
DK
8789 }
8790 else
8791 // FIXME: TLS optimization not supported yet.
8792 gold_unreachable();
8793 break;
8794
8795 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8796 break;
8797
8798 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8799 layout->set_has_static_tls();
8800 if (optimized_type == tls::TLSOPT_NONE)
8801 {
4a54abbb
DK
8802 // Create a GOT entry for the tp-relative offset.
8803 Arm_output_data_got<big_endian>* got
8804 = target->got_section(symtab, layout);
8805 unsigned int r_sym =
8806 elfcpp::elf_r_sym<32>(reloc.get_r_info());
8807 if (!parameters->doing_static_link())
8808 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
8809 target->rel_dyn_section(layout),
8810 elfcpp::R_ARM_TLS_TPOFF32);
8811 else if (!object->local_has_got_offset(r_sym,
8812 GOT_TYPE_TLS_OFFSET))
8813 {
8814 got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
8815 unsigned int got_offset =
8816 object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
8817 got->add_static_reloc(got_offset,
8818 elfcpp::R_ARM_TLS_TPOFF32, object,
8819 r_sym);
8820 }
f96accdf
DK
8821 }
8822 else
8823 // FIXME: TLS optimization not supported yet.
8824 gold_unreachable();
8825 break;
8826
8827 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8828 layout->set_has_static_tls();
8829 if (output_is_shared)
8830 {
2e702c99
RM
8831 // We need to create a dynamic relocation.
8832 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
8833 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
f96accdf
DK
8834 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8835 rel_dyn->add_local(object, r_sym, elfcpp::R_ARM_TLS_TPOFF32,
8836 output_section, data_shndx,
8837 reloc.get_r_offset());
8838 }
8839 break;
8840
8841 default:
8842 gold_unreachable();
8843 }
8844 }
8845 break;
8846
3cef7179
ILT
8847 case elfcpp::R_ARM_PC24:
8848 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8849 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8850 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
4a657b0d
DK
8851 default:
8852 unsupported_reloc_local(object, r_type);
8853 break;
8854 }
8855}
8856
8857// Report an unsupported relocation against a global symbol.
8858
8859template<bool big_endian>
8860void
8861Target_arm<big_endian>::Scan::unsupported_reloc_global(
6fa2a40b 8862 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
8863 unsigned int r_type,
8864 Symbol* gsym)
8865{
8866 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
8867 object->name().c_str(), r_type, gsym->demangled_name().c_str());
8868}
8869
8a75a161
DK
8870template<bool big_endian>
8871inline bool
8872Target_arm<big_endian>::Scan::possible_function_pointer_reloc(
8873 unsigned int r_type)
8874{
8875 switch (r_type)
8876 {
8877 case elfcpp::R_ARM_PC24:
8878 case elfcpp::R_ARM_THM_CALL:
8879 case elfcpp::R_ARM_PLT32:
8880 case elfcpp::R_ARM_CALL:
8881 case elfcpp::R_ARM_JUMP24:
8882 case elfcpp::R_ARM_THM_JUMP24:
8883 case elfcpp::R_ARM_SBREL31:
8884 case elfcpp::R_ARM_PREL31:
8885 case elfcpp::R_ARM_THM_JUMP19:
8886 case elfcpp::R_ARM_THM_JUMP6:
8887 case elfcpp::R_ARM_THM_JUMP11:
8888 case elfcpp::R_ARM_THM_JUMP8:
8889 // All the relocations above are branches except SBREL31 and PREL31.
8890 return false;
8891
8892 default:
8893 // Be conservative and assume this is a function pointer.
8894 return true;
8895 }
8896}
8897
8898template<bool big_endian>
8899inline bool
8900Target_arm<big_endian>::Scan::local_reloc_may_be_function_pointer(
8901 Symbol_table*,
8902 Layout*,
8903 Target_arm<big_endian>* target,
6fa2a40b 8904 Sized_relobj_file<32, big_endian>*,
8a75a161
DK
8905 unsigned int,
8906 Output_section*,
8907 const elfcpp::Rel<32, big_endian>&,
8908 unsigned int r_type,
8909 const elfcpp::Sym<32, big_endian>&)
8910{
8911 r_type = target->get_real_reloc_type(r_type);
8912 return possible_function_pointer_reloc(r_type);
8913}
8914
8915template<bool big_endian>
8916inline bool
8917Target_arm<big_endian>::Scan::global_reloc_may_be_function_pointer(
8918 Symbol_table*,
8919 Layout*,
8920 Target_arm<big_endian>* target,
6fa2a40b 8921 Sized_relobj_file<32, big_endian>*,
8a75a161
DK
8922 unsigned int,
8923 Output_section*,
8924 const elfcpp::Rel<32, big_endian>&,
8925 unsigned int r_type,
8926 Symbol* gsym)
8927{
8928 // GOT is not a function.
8929 if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8930 return false;
8931
8932 r_type = target->get_real_reloc_type(r_type);
8933 return possible_function_pointer_reloc(r_type);
8934}
8935
4a657b0d
DK
8936// Scan a relocation for a global symbol.
8937
8938template<bool big_endian>
8939inline void
ad0f2072 8940Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
2ea97941 8941 Layout* layout,
bec53400 8942 Target_arm* target,
6fa2a40b 8943 Sized_relobj_file<32, big_endian>* object,
bec53400
DK
8944 unsigned int data_shndx,
8945 Output_section* output_section,
8946 const elfcpp::Rel<32, big_endian>& reloc,
4a657b0d
DK
8947 unsigned int r_type,
8948 Symbol* gsym)
8949{
c8761b9a
DK
8950 // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
8951 // section. We check here to avoid creating a dynamic reloc against
8952 // _GLOBAL_OFFSET_TABLE_.
8953 if (!target->has_got_section()
8954 && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8955 target->got_section(symtab, layout);
8956
fa89cc82
HS
8957 // A STT_GNU_IFUNC symbol may require a PLT entry.
8958 if (gsym->type() == elfcpp::STT_GNU_IFUNC
8959 && this->reloc_needs_plt_for_ifunc(object, r_type))
8960 target->make_plt_entry(symtab, layout, gsym);
8961
bc99685c 8962 r_type = target->get_real_reloc_type(r_type);
4a657b0d
DK
8963 switch (r_type)
8964 {
8965 case elfcpp::R_ARM_NONE:
e4782e83
DK
8966 case elfcpp::R_ARM_V4BX:
8967 case elfcpp::R_ARM_GNU_VTENTRY:
8968 case elfcpp::R_ARM_GNU_VTINHERIT:
4a657b0d
DK
8969 break;
8970
bec53400 8971 case elfcpp::R_ARM_ABS32:
e4782e83
DK
8972 case elfcpp::R_ARM_ABS16:
8973 case elfcpp::R_ARM_ABS12:
8974 case elfcpp::R_ARM_THM_ABS5:
8975 case elfcpp::R_ARM_ABS8:
8976 case elfcpp::R_ARM_BASE_ABS:
8977 case elfcpp::R_ARM_MOVW_ABS_NC:
8978 case elfcpp::R_ARM_MOVT_ABS:
8979 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8980 case elfcpp::R_ARM_THM_MOVT_ABS:
be8fcb75 8981 case elfcpp::R_ARM_ABS32_NOI:
e4782e83 8982 // Absolute addressing relocations.
bec53400 8983 {
2e702c99
RM
8984 // Make a PLT entry if necessary.
8985 if (this->symbol_needs_plt_entry(gsym))
8986 {
8987 target->make_plt_entry(symtab, layout, gsym);
8988 // Since this is not a PC-relative relocation, we may be
8989 // taking the address of a function. In that case we need to
8990 // set the entry in the dynamic symbol table to the address of
8991 // the PLT entry.
8992 if (gsym->is_from_dynobj() && !parameters->options().shared())
8993 gsym->set_needs_dynsym_value();
8994 }
8995 // Make a dynamic relocation if necessary.
8996 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
8997 {
a82bef93
ST
8998 if (!parameters->options().output_is_position_independent()
8999 && gsym->may_need_copy_reloc())
2e702c99
RM
9000 {
9001 target->copy_reloc(symtab, layout, object,
9002 data_shndx, output_section, gsym, reloc);
9003 }
fa89cc82
HS
9004 else if ((r_type == elfcpp::R_ARM_ABS32
9005 || r_type == elfcpp::R_ARM_ABS32_NOI)
9006 && gsym->type() == elfcpp::STT_GNU_IFUNC
9007 && gsym->can_use_relative_reloc(false)
9008 && !gsym->is_from_dynobj()
9009 && !gsym->is_undefined()
9010 && !gsym->is_preemptible())
9011 {
9012 // Use an IRELATIVE reloc for a locally defined STT_GNU_IFUNC
9013 // symbol. This makes a function address in a PIE executable
9014 // match the address in a shared library that it links against.
9015 Reloc_section* rel_irelative =
9016 target->rel_irelative_section(layout);
9017 unsigned int r_type = elfcpp::R_ARM_IRELATIVE;
9018 rel_irelative->add_symbolless_global_addend(
9019 gsym, r_type, output_section, object,
9020 data_shndx, reloc.get_r_offset());
9021 }
2e702c99 9022 else if ((r_type == elfcpp::R_ARM_ABS32
e4782e83 9023 || r_type == elfcpp::R_ARM_ABS32_NOI)
2e702c99
RM
9024 && gsym->can_use_relative_reloc(false))
9025 {
9026 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
9027 rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
9028 output_section, object,
9029 data_shndx, reloc.get_r_offset());
9030 }
9031 else
9032 {
e4782e83 9033 check_non_pic(object, r_type);
2e702c99
RM
9034 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
9035 rel_dyn->add_global(gsym, r_type, output_section, object,
9036 data_shndx, reloc.get_r_offset());
9037 }
9038 }
bec53400
DK
9039 }
9040 break;
9041
e4782e83
DK
9042 case elfcpp::R_ARM_GOTOFF32:
9043 case elfcpp::R_ARM_GOTOFF12:
9044 // We need a GOT section.
9045 target->got_section(symtab, layout);
9046 break;
2e702c99 9047
e4782e83
DK
9048 case elfcpp::R_ARM_REL32:
9049 case elfcpp::R_ARM_LDR_PC_G0:
9050 case elfcpp::R_ARM_SBREL32:
9051 case elfcpp::R_ARM_THM_PC8:
9052 case elfcpp::R_ARM_BASE_PREL:
c2a122b6
ILT
9053 case elfcpp::R_ARM_MOVW_PREL_NC:
9054 case elfcpp::R_ARM_MOVT_PREL:
9055 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
9056 case elfcpp::R_ARM_THM_MOVT_PREL:
11b861d5 9057 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
e4782e83
DK
9058 case elfcpp::R_ARM_THM_PC12:
9059 case elfcpp::R_ARM_REL32_NOI:
b10d2873
ILT
9060 case elfcpp::R_ARM_ALU_PC_G0_NC:
9061 case elfcpp::R_ARM_ALU_PC_G0:
9062 case elfcpp::R_ARM_ALU_PC_G1_NC:
9063 case elfcpp::R_ARM_ALU_PC_G1:
9064 case elfcpp::R_ARM_ALU_PC_G2:
e4782e83
DK
9065 case elfcpp::R_ARM_LDR_PC_G1:
9066 case elfcpp::R_ARM_LDR_PC_G2:
9067 case elfcpp::R_ARM_LDRS_PC_G0:
9068 case elfcpp::R_ARM_LDRS_PC_G1:
9069 case elfcpp::R_ARM_LDRS_PC_G2:
9070 case elfcpp::R_ARM_LDC_PC_G0:
9071 case elfcpp::R_ARM_LDC_PC_G1:
9072 case elfcpp::R_ARM_LDC_PC_G2:
b10d2873
ILT
9073 case elfcpp::R_ARM_ALU_SB_G0_NC:
9074 case elfcpp::R_ARM_ALU_SB_G0:
9075 case elfcpp::R_ARM_ALU_SB_G1_NC:
9076 case elfcpp::R_ARM_ALU_SB_G1:
9077 case elfcpp::R_ARM_ALU_SB_G2:
b10d2873
ILT
9078 case elfcpp::R_ARM_LDR_SB_G0:
9079 case elfcpp::R_ARM_LDR_SB_G1:
9080 case elfcpp::R_ARM_LDR_SB_G2:
b10d2873
ILT
9081 case elfcpp::R_ARM_LDRS_SB_G0:
9082 case elfcpp::R_ARM_LDRS_SB_G1:
9083 case elfcpp::R_ARM_LDRS_SB_G2:
b10d2873
ILT
9084 case elfcpp::R_ARM_LDC_SB_G0:
9085 case elfcpp::R_ARM_LDC_SB_G1:
9086 case elfcpp::R_ARM_LDC_SB_G2:
e4782e83
DK
9087 case elfcpp::R_ARM_MOVW_BREL_NC:
9088 case elfcpp::R_ARM_MOVT_BREL:
9089 case elfcpp::R_ARM_MOVW_BREL:
9090 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
9091 case elfcpp::R_ARM_THM_MOVT_BREL:
9092 case elfcpp::R_ARM_THM_MOVW_BREL:
9093 // Relative addressing relocations.
bec53400
DK
9094 {
9095 // Make a dynamic relocation if necessary.
95a2c8d6 9096 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
bec53400 9097 {
a82bef93
ST
9098 if (parameters->options().output_is_executable()
9099 && target->may_need_copy_reloc(gsym))
bec53400 9100 {
2ea97941 9101 target->copy_reloc(symtab, layout, object,
bec53400
DK
9102 data_shndx, output_section, gsym, reloc);
9103 }
9104 else
9105 {
9106 check_non_pic(object, r_type);
2ea97941 9107 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
bec53400
DK
9108 rel_dyn->add_global(gsym, r_type, output_section, object,
9109 data_shndx, reloc.get_r_offset());
9110 }
9111 }
9112 }
9113 break;
9114
f4e5969c 9115 case elfcpp::R_ARM_THM_CALL:
bec53400 9116 case elfcpp::R_ARM_PLT32:
e4782e83
DK
9117 case elfcpp::R_ARM_CALL:
9118 case elfcpp::R_ARM_JUMP24:
9119 case elfcpp::R_ARM_THM_JUMP24:
9120 case elfcpp::R_ARM_SBREL31:
c9a2c125 9121 case elfcpp::R_ARM_PREL31:
e4782e83
DK
9122 case elfcpp::R_ARM_THM_JUMP19:
9123 case elfcpp::R_ARM_THM_JUMP6:
9124 case elfcpp::R_ARM_THM_JUMP11:
9125 case elfcpp::R_ARM_THM_JUMP8:
9126 // All the relocation above are branches except for the PREL31 ones.
9127 // A PREL31 relocation can point to a personality function in a shared
9128 // library. In that case we want to use a PLT because we want to
9b547ce6 9129 // call the personality routine and the dynamic linkers we care about
e4782e83
DK
9130 // do not support dynamic PREL31 relocations. An REL31 relocation may
9131 // point to a function whose unwinding behaviour is being described but
9132 // we will not mistakenly generate a PLT for that because we should use
9133 // a local section symbol.
9134
bec53400
DK
9135 // If the symbol is fully resolved, this is just a relative
9136 // local reloc. Otherwise we need a PLT entry.
9137 if (gsym->final_value_is_known())
9138 break;
9139 // If building a shared library, we can also skip the PLT entry
9140 // if the symbol is defined in the output file and is protected
9141 // or hidden.
9142 if (gsym->is_defined()
9143 && !gsym->is_from_dynobj()
9144 && !gsym->is_preemptible())
9145 break;
2ea97941 9146 target->make_plt_entry(symtab, layout, gsym);
bec53400
DK
9147 break;
9148
bec53400 9149 case elfcpp::R_ARM_GOT_BREL:
e4782e83 9150 case elfcpp::R_ARM_GOT_ABS:
7f5309a5 9151 case elfcpp::R_ARM_GOT_PREL:
bec53400
DK
9152 {
9153 // The symbol requires a GOT entry.
4a54abbb 9154 Arm_output_data_got<big_endian>* got =
2ea97941 9155 target->got_section(symtab, layout);
bec53400 9156 if (gsym->final_value_is_known())
fa89cc82
HS
9157 {
9158 // For a STT_GNU_IFUNC symbol we want the PLT address.
9159 if (gsym->type() == elfcpp::STT_GNU_IFUNC)
9160 got->add_global_plt(gsym, GOT_TYPE_STANDARD);
9161 else
9162 got->add_global(gsym, GOT_TYPE_STANDARD);
9163 }
bec53400
DK
9164 else
9165 {
9166 // If this symbol is not fully resolved, we need to add a
9167 // GOT entry with a dynamic relocation.
2ea97941 9168 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
bec53400
DK
9169 if (gsym->is_from_dynobj()
9170 || gsym->is_undefined()
fa40b62a
DK
9171 || gsym->is_preemptible()
9172 || (gsym->visibility() == elfcpp::STV_PROTECTED
fa89cc82
HS
9173 && parameters->options().shared())
9174 || (gsym->type() == elfcpp::STT_GNU_IFUNC
9175 && parameters->options().output_is_position_independent()))
bec53400
DK
9176 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
9177 rel_dyn, elfcpp::R_ARM_GLOB_DAT);
9178 else
9179 {
fa89cc82
HS
9180 // For a STT_GNU_IFUNC symbol we want to write the PLT
9181 // offset into the GOT, so that function pointer
9182 // comparisons work correctly.
9183 bool is_new;
9184 if (gsym->type() != elfcpp::STT_GNU_IFUNC)
9185 is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
9186 else
9187 {
9188 is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
9189 // Tell the dynamic linker to use the PLT address
9190 // when resolving relocations.
9191 if (gsym->is_from_dynobj()
9192 && !parameters->options().shared())
9193 gsym->set_needs_dynsym_value();
9194 }
9195 if (is_new)
bec53400
DK
9196 rel_dyn->add_global_relative(
9197 gsym, elfcpp::R_ARM_RELATIVE, got,
9198 gsym->got_offset(GOT_TYPE_STANDARD));
9199 }
9200 }
9201 }
9202 break;
9203
9204 case elfcpp::R_ARM_TARGET1:
e4782e83
DK
9205 case elfcpp::R_ARM_TARGET2:
9206 // These should have been mapped to other types already.
bec53400
DK
9207 // Fall through.
9208 case elfcpp::R_ARM_COPY:
9209 case elfcpp::R_ARM_GLOB_DAT:
9210 case elfcpp::R_ARM_JUMP_SLOT:
9211 case elfcpp::R_ARM_RELATIVE:
9212 // These are relocations which should only be seen by the
9213 // dynamic linker, and should never be seen here.
9214 gold_error(_("%s: unexpected reloc %u in object file"),
9215 object->name().c_str(), r_type);
9216 break;
9217
f96accdf
DK
9218 // These are initial tls relocs, which are expected when
9219 // linking.
9220 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
9221 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9222 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
9223 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9224 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9225 {
9226 const bool is_final = gsym->final_value_is_known();
9227 const tls::Tls_optimization optimized_type
2e702c99 9228 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
f96accdf
DK
9229 switch (r_type)
9230 {
9231 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
9232 if (optimized_type == tls::TLSOPT_NONE)
9233 {
2e702c99
RM
9234 // Create a pair of GOT entries for the module index and
9235 // dtv-relative offset.
9236 Arm_output_data_got<big_endian>* got
9237 = target->got_section(symtab, layout);
4a54abbb
DK
9238 if (!parameters->doing_static_link())
9239 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
9240 target->rel_dyn_section(layout),
9241 elfcpp::R_ARM_TLS_DTPMOD32,
9242 elfcpp::R_ARM_TLS_DTPOFF32);
9243 else
9244 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR, gsym);
f96accdf
DK
9245 }
9246 else
9247 // FIXME: TLS optimization not supported yet.
9248 gold_unreachable();
9249 break;
9250
9251 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9252 if (optimized_type == tls::TLSOPT_NONE)
9253 {
2e702c99
RM
9254 // Create a GOT entry for the module index.
9255 target->got_mod_index_entry(symtab, layout, object);
f96accdf
DK
9256 }
9257 else
9258 // FIXME: TLS optimization not supported yet.
9259 gold_unreachable();
9260 break;
9261
9262 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
9263 break;
9264
9265 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9266 layout->set_has_static_tls();
9267 if (optimized_type == tls::TLSOPT_NONE)
9268 {
4a54abbb
DK
9269 // Create a GOT entry for the tp-relative offset.
9270 Arm_output_data_got<big_endian>* got
9271 = target->got_section(symtab, layout);
9272 if (!parameters->doing_static_link())
9273 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
9274 target->rel_dyn_section(layout),
9275 elfcpp::R_ARM_TLS_TPOFF32);
9276 else if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
9277 {
9278 got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
9279 unsigned int got_offset =
9280 gsym->got_offset(GOT_TYPE_TLS_OFFSET);
9281 got->add_static_reloc(got_offset,
9282 elfcpp::R_ARM_TLS_TPOFF32, gsym);
9283 }
f96accdf
DK
9284 }
9285 else
9286 // FIXME: TLS optimization not supported yet.
9287 gold_unreachable();
9288 break;
9289
9290 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9291 layout->set_has_static_tls();
9292 if (parameters->options().shared())
9293 {
2e702c99
RM
9294 // We need to create a dynamic relocation.
9295 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
9296 rel_dyn->add_global(gsym, elfcpp::R_ARM_TLS_TPOFF32,
f96accdf 9297 output_section, object,
2e702c99 9298 data_shndx, reloc.get_r_offset());
f96accdf
DK
9299 }
9300 break;
9301
9302 default:
9303 gold_unreachable();
9304 }
9305 }
9306 break;
9307
3cef7179
ILT
9308 case elfcpp::R_ARM_PC24:
9309 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
9310 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
9311 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
4a657b0d
DK
9312 default:
9313 unsupported_reloc_global(object, r_type, gsym);
9314 break;
9315 }
9316}
9317
9318// Process relocations for gc.
9319
9320template<bool big_endian>
9321void
6fa2a40b
CC
9322Target_arm<big_endian>::gc_process_relocs(
9323 Symbol_table* symtab,
9324 Layout* layout,
9325 Sized_relobj_file<32, big_endian>* object,
9326 unsigned int data_shndx,
9327 unsigned int,
9328 const unsigned char* prelocs,
9329 size_t reloc_count,
9330 Output_section* output_section,
9331 bool needs_special_offset_handling,
9332 size_t local_symbol_count,
9333 const unsigned char* plocal_symbols)
4a657b0d
DK
9334{
9335 typedef Target_arm<big_endian> Arm;
2ea97941 9336 typedef typename Target_arm<big_endian>::Scan Scan;
4a657b0d 9337
4d625b70 9338 gold::gc_process_relocs<32, big_endian, Arm, Scan, Classify_reloc>(
4a657b0d 9339 symtab,
2ea97941 9340 layout,
4a657b0d
DK
9341 this,
9342 object,
9343 data_shndx,
9344 prelocs,
9345 reloc_count,
9346 output_section,
9347 needs_special_offset_handling,
9348 local_symbol_count,
9349 plocal_symbols);
9350}
9351
9352// Scan relocations for a section.
9353
9354template<bool big_endian>
9355void
ad0f2072 9356Target_arm<big_endian>::scan_relocs(Symbol_table* symtab,
2ea97941 9357 Layout* layout,
6fa2a40b 9358 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
9359 unsigned int data_shndx,
9360 unsigned int sh_type,
9361 const unsigned char* prelocs,
9362 size_t reloc_count,
9363 Output_section* output_section,
9364 bool needs_special_offset_handling,
9365 size_t local_symbol_count,
9366 const unsigned char* plocal_symbols)
9367{
4a657b0d
DK
9368 if (sh_type == elfcpp::SHT_RELA)
9369 {
9370 gold_error(_("%s: unsupported RELA reloc section"),
9371 object->name().c_str());
9372 return;
9373 }
9374
4d625b70 9375 gold::scan_relocs<32, big_endian, Target_arm, Scan, Classify_reloc>(
4a657b0d 9376 symtab,
2ea97941 9377 layout,
4a657b0d
DK
9378 this,
9379 object,
9380 data_shndx,
9381 prelocs,
9382 reloc_count,
9383 output_section,
9384 needs_special_offset_handling,
9385 local_symbol_count,
9386 plocal_symbols);
9387}
9388
9389// Finalize the sections.
9390
9391template<bool big_endian>
9392void
d5b40221 9393Target_arm<big_endian>::do_finalize_sections(
2ea97941 9394 Layout* layout,
f59f41f3 9395 const Input_objects* input_objects,
647f1574 9396 Symbol_table*)
4a657b0d 9397{
3e235302 9398 bool merged_any_attributes = false;
d5b40221
DK
9399 // Merge processor-specific flags.
9400 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
9401 p != input_objects->relobj_end();
9402 ++p)
9403 {
9404 Arm_relobj<big_endian>* arm_relobj =
9405 Arm_relobj<big_endian>::as_arm_relobj(*p);
7296d933
DK
9406 if (arm_relobj->merge_flags_and_attributes())
9407 {
9408 this->merge_processor_specific_flags(
9409 arm_relobj->name(),
9410 arm_relobj->processor_specific_flags());
9411 this->merge_object_attributes(arm_relobj->name().c_str(),
9412 arm_relobj->attributes_section_data());
3e235302 9413 merged_any_attributes = true;
7296d933 9414 }
2e702c99 9415 }
d5b40221
DK
9416
9417 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
9418 p != input_objects->dynobj_end();
9419 ++p)
9420 {
9421 Arm_dynobj<big_endian>* arm_dynobj =
9422 Arm_dynobj<big_endian>::as_arm_dynobj(*p);
9423 this->merge_processor_specific_flags(
9424 arm_dynobj->name(),
9425 arm_dynobj->processor_specific_flags());
a0351a69
DK
9426 this->merge_object_attributes(arm_dynobj->name().c_str(),
9427 arm_dynobj->attributes_section_data());
3e235302 9428 merged_any_attributes = true;
d5b40221
DK
9429 }
9430
da59ad79
DK
9431 // Create an empty uninitialized attribute section if we still don't have it
9432 // at this moment. This happens if there is no attributes sections in all
9433 // inputs.
9434 if (this->attributes_section_data_ == NULL)
9435 this->attributes_section_data_ = new Attributes_section_data(NULL, 0);
9436
41263c05 9437 const Object_attribute* cpu_arch_attr =
a0351a69 9438 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
41263c05
DK
9439 // Check if we need to use Cortex-A8 workaround.
9440 if (parameters->options().user_set_fix_cortex_a8())
9441 this->fix_cortex_a8_ = parameters->options().fix_cortex_a8();
9442 else
9443 {
9444 // If neither --fix-cortex-a8 nor --no-fix-cortex-a8 is used, turn on
9445 // Cortex-A8 erratum workaround for ARMv7-A or ARMv7 with unknown
2e702c99 9446 // profile.
41263c05
DK
9447 const Object_attribute* cpu_arch_profile_attr =
9448 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
9449 this->fix_cortex_a8_ =
9450 (cpu_arch_attr->int_value() == elfcpp::TAG_CPU_ARCH_V7
2e702c99
RM
9451 && (cpu_arch_profile_attr->int_value() == 'A'
9452 || cpu_arch_profile_attr->int_value() == 0));
41263c05 9453 }
2e702c99 9454
a2162063
ILT
9455 // Check if we can use V4BX interworking.
9456 // The V4BX interworking stub contains BX instruction,
9457 // which is not specified for some profiles.
9b2fd367 9458 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
cd6eab1c 9459 && !this->may_use_v4t_interworking())
a2162063 9460 gold_error(_("unable to provide V4BX reloc interworking fix up; "
2e702c99 9461 "the target profile does not support BX instruction"));
a2162063 9462
94cdfcff 9463 // Fill in some more dynamic tags.
ea715a34
ILT
9464 const Reloc_section* rel_plt = (this->plt_ == NULL
9465 ? NULL
9466 : this->plt_->rel_plt());
9467 layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
612a8d3d 9468 this->rel_dyn_, true, false);
94cdfcff
DK
9469
9470 // Emit any relocs we saved in an attempt to avoid generating COPY
9471 // relocs.
9472 if (this->copy_relocs_.any_saved_relocs())
2ea97941 9473 this->copy_relocs_.emit(this->rel_dyn_section(layout));
11af873f 9474
f59f41f3 9475 // Handle the .ARM.exidx section.
2ea97941 9476 Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
11af873f 9477
731ca54a
RÁE
9478 if (!parameters->options().relocatable())
9479 {
9480 if (exidx_section != NULL
2e702c99
RM
9481 && exidx_section->type() == elfcpp::SHT_ARM_EXIDX)
9482 {
9483 // For the ARM target, we need to add a PT_ARM_EXIDX segment for
9484 // the .ARM.exidx section.
9485 if (!layout->script_options()->saw_phdrs_clause())
9486 {
9487 gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0,
9488 0)
9489 == NULL);
9490 Output_segment* exidx_segment =
9491 layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R);
9492 exidx_segment->add_output_section_to_nonload(exidx_section,
9493 elfcpp::PF_R);
9494 }
9495 }
11af873f 9496 }
a0351a69 9497
3e235302
DK
9498 // Create an .ARM.attributes section if we have merged any attributes
9499 // from inputs.
9500 if (merged_any_attributes)
7296d933
DK
9501 {
9502 Output_attributes_section_data* attributes_section =
9503 new Output_attributes_section_data(*this->attributes_section_data_);
9504 layout->add_output_section_data(".ARM.attributes",
9505 elfcpp::SHT_ARM_ATTRIBUTES, 0,
22f0da72 9506 attributes_section, ORDER_INVALID,
7296d933
DK
9507 false);
9508 }
131687b4
DK
9509
9510 // Fix up links in section EXIDX headers.
9511 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
9512 p != layout->section_list().end();
9513 ++p)
9514 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
9515 {
9516 Arm_output_section<big_endian>* os =
9517 Arm_output_section<big_endian>::as_arm_output_section(*p);
9518 os->set_exidx_section_link();
9519 }
4a657b0d
DK
9520}
9521
bec53400
DK
9522// Return whether a direct absolute static relocation needs to be applied.
9523// In cases where Scan::local() or Scan::global() has created
9524// a dynamic relocation other than R_ARM_RELATIVE, the addend
9525// of the relocation is carried in the data, and we must not
9526// apply the static relocation.
9527
9528template<bool big_endian>
9529inline bool
9530Target_arm<big_endian>::Relocate::should_apply_static_reloc(
9531 const Sized_symbol<32>* gsym,
95a2c8d6 9532 unsigned int r_type,
bec53400
DK
9533 bool is_32bit,
9534 Output_section* output_section)
9535{
9536 // If the output section is not allocated, then we didn't call
9537 // scan_relocs, we didn't create a dynamic reloc, and we must apply
9538 // the reloc here.
9539 if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
9540 return true;
9541
95a2c8d6
RS
9542 int ref_flags = Scan::get_reference_flags(r_type);
9543
bec53400
DK
9544 // For local symbols, we will have created a non-RELATIVE dynamic
9545 // relocation only if (a) the output is position independent,
9546 // (b) the relocation is absolute (not pc- or segment-relative), and
9547 // (c) the relocation is not 32 bits wide.
9548 if (gsym == NULL)
9549 return !(parameters->options().output_is_position_independent()
9550 && (ref_flags & Symbol::ABSOLUTE_REF)
9551 && !is_32bit);
9552
9553 // For global symbols, we use the same helper routines used in the
9554 // scan pass. If we did not create a dynamic relocation, or if we
9555 // created a RELATIVE dynamic relocation, we should apply the static
9556 // relocation.
9557 bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
9558 bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
9559 && gsym->can_use_relative_reloc(ref_flags
9560 & Symbol::FUNCTION_CALL);
9561 return !has_dyn || is_rel;
9562}
9563
4a657b0d
DK
9564// Perform a relocation.
9565
9566template<bool big_endian>
9567inline bool
9568Target_arm<big_endian>::Relocate::relocate(
c121c671 9569 const Relocate_info<32, big_endian>* relinfo,
91a65d2f 9570 unsigned int,
c121c671 9571 Target_arm* target,
ca09d69a 9572 Output_section* output_section,
c121c671 9573 size_t relnum,
91a65d2f 9574 const unsigned char* preloc,
c121c671
DK
9575 const Sized_symbol<32>* gsym,
9576 const Symbol_value<32>* psymval,
9577 unsigned char* view,
ebabffbd 9578 Arm_address address,
f96accdf 9579 section_size_type view_size)
4a657b0d 9580{
0e804863
ILT
9581 if (view == NULL)
9582 return true;
9583
c121c671
DK
9584 typedef Arm_relocate_functions<big_endian> Arm_relocate_functions;
9585
91a65d2f
AM
9586 const elfcpp::Rel<32, big_endian> rel(preloc);
9587 unsigned int r_type = elfcpp::elf_r_type<32>(rel.get_r_info());
bc99685c 9588 r_type = target->get_real_reloc_type(r_type);
5c57f1be
DK
9589 const Arm_reloc_property* reloc_property =
9590 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9591 if (reloc_property == NULL)
9592 {
9593 std::string reloc_name =
9594 arm_reloc_property_table->reloc_name_in_error_message(r_type);
9595 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9596 _("cannot relocate %s in object file"),
9597 reloc_name.c_str());
9598 return true;
9599 }
c121c671 9600
2daedcd6
DK
9601 const Arm_relobj<big_endian>* object =
9602 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
c121c671 9603
2daedcd6
DK
9604 // If the final branch target of a relocation is THUMB instruction, this
9605 // is 1. Otherwise it is 0.
9606 Arm_address thumb_bit = 0;
c121c671 9607 Symbol_value<32> symval;
d204b6e9 9608 bool is_weakly_undefined_without_plt = false;
bca7fb63
DK
9609 bool have_got_offset = false;
9610 unsigned int got_offset = 0;
9611
9612 // If the relocation uses the GOT entry of a symbol instead of the symbol
9613 // itself, we don't care about whether the symbol is defined or what kind
9614 // of symbol it is.
9615 if (reloc_property->uses_got_entry())
9616 {
9617 // Get the GOT offset.
9618 // The GOT pointer points to the end of the GOT section.
9619 // We need to subtract the size of the GOT section to get
9620 // the actual offset to use in the relocation.
9621 // TODO: We should move GOT offset computing code in TLS relocations
9622 // to here.
9623 switch (r_type)
9624 {
9625 case elfcpp::R_ARM_GOT_BREL:
9626 case elfcpp::R_ARM_GOT_PREL:
9627 if (gsym != NULL)
9628 {
9629 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
9630 got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
9631 - target->got_size());
9632 }
9633 else
9634 {
9635 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9636 gold_assert(object->local_has_got_offset(r_sym,
9637 GOT_TYPE_STANDARD));
9638 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
9639 - target->got_size());
9640 }
9641 have_got_offset = true;
9642 break;
9643
9644 default:
9645 break;
9646 }
9647 }
9648 else if (relnum != Target_arm<big_endian>::fake_relnum_for_stubs)
c121c671 9649 {
2daedcd6
DK
9650 if (gsym != NULL)
9651 {
9652 // This is a global symbol. Determine if we use PLT and if the
9653 // final target is THUMB.
95a2c8d6 9654 if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
2daedcd6
DK
9655 {
9656 // This uses a PLT, change the symbol value.
fa89cc82 9657 symval.set_output_value(target->plt_address_for_global(gsym));
2daedcd6
DK
9658 psymval = &symval;
9659 }
d204b6e9
DK
9660 else if (gsym->is_weak_undefined())
9661 {
9662 // This is a weakly undefined symbol and we do not use PLT
9663 // for this relocation. A branch targeting this symbol will
9664 // be converted into an NOP.
9665 is_weakly_undefined_without_plt = true;
9666 }
b2286c10
DK
9667 else if (gsym->is_undefined() && reloc_property->uses_symbol())
9668 {
9669 // This relocation uses the symbol value but the symbol is
9670 // undefined. Exit early and have the caller reporting an
9671 // error.
9672 return true;
9673 }
2daedcd6
DK
9674 else
9675 {
9676 // Set thumb bit if symbol:
9677 // -Has type STT_ARM_TFUNC or
9678 // -Has type STT_FUNC, is defined and with LSB in value set.
9679 thumb_bit =
9680 (((gsym->type() == elfcpp::STT_ARM_TFUNC)
9681 || (gsym->type() == elfcpp::STT_FUNC
9682 && !gsym->is_undefined()
9683 && ((psymval->value(object, 0) & 1) != 0)))
9684 ? 1
9685 : 0);
9686 }
9687 }
9688 else
9689 {
2e702c99
RM
9690 // This is a local symbol. Determine if the final target is THUMB.
9691 // We saved this information when all the local symbols were read.
2daedcd6
DK
9692 elfcpp::Elf_types<32>::Elf_WXword r_info = rel.get_r_info();
9693 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
9694 thumb_bit = object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
fa89cc82
HS
9695
9696 if (psymval->is_ifunc_symbol() && object->local_has_plt_offset(r_sym))
9697 {
9698 symval.set_output_value(
9699 target->plt_address_for_local(object, r_sym));
9700 psymval = &symval;
9701 }
2daedcd6
DK
9702 }
9703 }
9704 else
9705 {
9706 // This is a fake relocation synthesized for a stub. It does not have
9707 // a real symbol. We just look at the LSB of the symbol value to
9708 // determine if the target is THUMB or not.
9709 thumb_bit = ((psymval->value(object, 0) & 1) != 0);
c121c671
DK
9710 }
9711
2daedcd6
DK
9712 // Strip LSB if this points to a THUMB target.
9713 if (thumb_bit != 0
2e702c99 9714 && reloc_property->uses_thumb_bit()
2daedcd6
DK
9715 && ((psymval->value(object, 0) & 1) != 0))
9716 {
9717 Arm_address stripped_value =
9718 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
9719 symval.set_output_value(stripped_value);
9720 psymval = &symval;
2e702c99 9721 }
2daedcd6 9722
d204b6e9
DK
9723 // To look up relocation stubs, we need to pass the symbol table index of
9724 // a local symbol.
9725 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9726
b10d2873
ILT
9727 // Get the addressing origin of the output segment defining the
9728 // symbol gsym if needed (AAELF 4.6.1.2 Relocation types).
9729 Arm_address sym_origin = 0;
5c57f1be 9730 if (reloc_property->uses_symbol_base())
b10d2873
ILT
9731 {
9732 if (r_type == elfcpp::R_ARM_BASE_ABS && gsym == NULL)
9733 // R_ARM_BASE_ABS with the NULL symbol will give the
9734 // absolute address of the GOT origin (GOT_ORG) (see ARM IHI
9735 // 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
9736 sym_origin = target->got_plt_section()->address();
9737 else if (gsym == NULL)
9738 sym_origin = 0;
9739 else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
9740 sym_origin = gsym->output_segment()->vaddr();
9741 else if (gsym->source() == Symbol::IN_OUTPUT_DATA)
9742 sym_origin = gsym->output_data()->address();
9743
9744 // TODO: Assumes the segment base to be zero for the global symbols
9745 // till the proper support for the segment-base-relative addressing
9746 // will be implemented. This is consistent with GNU ld.
9747 }
9748
5c57f1be
DK
9749 // For relative addressing relocation, find out the relative address base.
9750 Arm_address relative_address_base = 0;
9751 switch(reloc_property->relative_address_base())
9752 {
9753 case Arm_reloc_property::RAB_NONE:
f96accdf
DK
9754 // Relocations with relative address bases RAB_TLS and RAB_tp are
9755 // handled by relocate_tls. So we do not need to do anything here.
9756 case Arm_reloc_property::RAB_TLS:
9757 case Arm_reloc_property::RAB_tp:
5c57f1be
DK
9758 break;
9759 case Arm_reloc_property::RAB_B_S:
9760 relative_address_base = sym_origin;
9761 break;
9762 case Arm_reloc_property::RAB_GOT_ORG:
9763 relative_address_base = target->got_plt_section()->address();
9764 break;
9765 case Arm_reloc_property::RAB_P:
9766 relative_address_base = address;
9767 break;
9768 case Arm_reloc_property::RAB_Pa:
9769 relative_address_base = address & 0xfffffffcU;
9770 break;
9771 default:
2e702c99 9772 gold_unreachable();
5c57f1be 9773 }
2e702c99 9774
c121c671
DK
9775 typename Arm_relocate_functions::Status reloc_status =
9776 Arm_relocate_functions::STATUS_OKAY;
5c57f1be 9777 bool check_overflow = reloc_property->checks_overflow();
4a657b0d
DK
9778 switch (r_type)
9779 {
9780 case elfcpp::R_ARM_NONE:
9781 break;
9782
5e445df6 9783 case elfcpp::R_ARM_ABS8:
95a2c8d6 9784 if (should_apply_static_reloc(gsym, r_type, false, output_section))
be8fcb75
ILT
9785 reloc_status = Arm_relocate_functions::abs8(view, object, psymval);
9786 break;
9787
9788 case elfcpp::R_ARM_ABS12:
95a2c8d6 9789 if (should_apply_static_reloc(gsym, r_type, false, output_section))
be8fcb75
ILT
9790 reloc_status = Arm_relocate_functions::abs12(view, object, psymval);
9791 break;
9792
9793 case elfcpp::R_ARM_ABS16:
95a2c8d6 9794 if (should_apply_static_reloc(gsym, r_type, false, output_section))
be8fcb75 9795 reloc_status = Arm_relocate_functions::abs16(view, object, psymval);
5e445df6
ILT
9796 break;
9797
c121c671 9798 case elfcpp::R_ARM_ABS32:
95a2c8d6 9799 if (should_apply_static_reloc(gsym, r_type, true, output_section))
c121c671 9800 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
2daedcd6 9801 thumb_bit);
c121c671
DK
9802 break;
9803
be8fcb75 9804 case elfcpp::R_ARM_ABS32_NOI:
95a2c8d6 9805 if (should_apply_static_reloc(gsym, r_type, true, output_section))
be8fcb75
ILT
9806 // No thumb bit for this relocation: (S + A)
9807 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
f4e5969c 9808 0);
be8fcb75
ILT
9809 break;
9810
fd3c5f0b 9811 case elfcpp::R_ARM_MOVW_ABS_NC:
95a2c8d6 9812 if (should_apply_static_reloc(gsym, r_type, false, output_section))
5c57f1be
DK
9813 reloc_status = Arm_relocate_functions::movw(view, object, psymval,
9814 0, thumb_bit,
9815 check_overflow);
fd3c5f0b
ILT
9816 break;
9817
9818 case elfcpp::R_ARM_MOVT_ABS:
95a2c8d6 9819 if (should_apply_static_reloc(gsym, r_type, false, output_section))
5c57f1be 9820 reloc_status = Arm_relocate_functions::movt(view, object, psymval, 0);
fd3c5f0b
ILT
9821 break;
9822
9823 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
95a2c8d6 9824 if (should_apply_static_reloc(gsym, r_type, false, output_section))
5c57f1be 9825 reloc_status = Arm_relocate_functions::thm_movw(view, object, psymval,
2e702c99 9826 0, thumb_bit, false);
fd3c5f0b
ILT
9827 break;
9828
9829 case elfcpp::R_ARM_THM_MOVT_ABS:
95a2c8d6 9830 if (should_apply_static_reloc(gsym, r_type, false, output_section))
5c57f1be
DK
9831 reloc_status = Arm_relocate_functions::thm_movt(view, object,
9832 psymval, 0);
fd3c5f0b
ILT
9833 break;
9834
c2a122b6 9835 case elfcpp::R_ARM_MOVW_PREL_NC:
02961d7e 9836 case elfcpp::R_ARM_MOVW_BREL_NC:
02961d7e 9837 case elfcpp::R_ARM_MOVW_BREL:
5c57f1be
DK
9838 reloc_status =
9839 Arm_relocate_functions::movw(view, object, psymval,
9840 relative_address_base, thumb_bit,
9841 check_overflow);
c2a122b6
ILT
9842 break;
9843
9844 case elfcpp::R_ARM_MOVT_PREL:
02961d7e 9845 case elfcpp::R_ARM_MOVT_BREL:
5c57f1be
DK
9846 reloc_status =
9847 Arm_relocate_functions::movt(view, object, psymval,
9848 relative_address_base);
c2a122b6
ILT
9849 break;
9850
9851 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
02961d7e 9852 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
02961d7e 9853 case elfcpp::R_ARM_THM_MOVW_BREL:
5c57f1be
DK
9854 reloc_status =
9855 Arm_relocate_functions::thm_movw(view, object, psymval,
9856 relative_address_base,
9857 thumb_bit, check_overflow);
c2a122b6
ILT
9858 break;
9859
9860 case elfcpp::R_ARM_THM_MOVT_PREL:
02961d7e 9861 case elfcpp::R_ARM_THM_MOVT_BREL:
5c57f1be
DK
9862 reloc_status =
9863 Arm_relocate_functions::thm_movt(view, object, psymval,
9864 relative_address_base);
02961d7e 9865 break;
2e702c99 9866
c121c671
DK
9867 case elfcpp::R_ARM_REL32:
9868 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
2daedcd6 9869 address, thumb_bit);
c121c671
DK
9870 break;
9871
be8fcb75 9872 case elfcpp::R_ARM_THM_ABS5:
95a2c8d6 9873 if (should_apply_static_reloc(gsym, r_type, false, output_section))
be8fcb75
ILT
9874 reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval);
9875 break;
9876
1521477a 9877 // Thumb long branches.
c121c671 9878 case elfcpp::R_ARM_THM_CALL:
51938283 9879 case elfcpp::R_ARM_THM_XPC22:
1521477a 9880 case elfcpp::R_ARM_THM_JUMP24:
51938283 9881 reloc_status =
1521477a
DK
9882 Arm_relocate_functions::thumb_branch_common(
9883 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9884 thumb_bit, is_weakly_undefined_without_plt);
51938283
DK
9885 break;
9886
c121c671
DK
9887 case elfcpp::R_ARM_GOTOFF32:
9888 {
ebabffbd 9889 Arm_address got_origin;
c121c671
DK
9890 got_origin = target->got_plt_section()->address();
9891 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
2daedcd6 9892 got_origin, thumb_bit);
c121c671
DK
9893 }
9894 break;
9895
9896 case elfcpp::R_ARM_BASE_PREL:
b10d2873
ILT
9897 gold_assert(gsym != NULL);
9898 reloc_status =
9899 Arm_relocate_functions::base_prel(view, sym_origin, address);
c121c671
DK
9900 break;
9901
be8fcb75 9902 case elfcpp::R_ARM_BASE_ABS:
95a2c8d6 9903 if (should_apply_static_reloc(gsym, r_type, false, output_section))
b10d2873 9904 reloc_status = Arm_relocate_functions::base_abs(view, sym_origin);
be8fcb75
ILT
9905 break;
9906
c121c671
DK
9907 case elfcpp::R_ARM_GOT_BREL:
9908 gold_assert(have_got_offset);
9909 reloc_status = Arm_relocate_functions::got_brel(view, got_offset);
9910 break;
9911
7f5309a5
ILT
9912 case elfcpp::R_ARM_GOT_PREL:
9913 gold_assert(have_got_offset);
9914 // Get the address origin for GOT PLT, which is allocated right
9915 // after the GOT section, to calculate an absolute address of
9916 // the symbol GOT entry (got_origin + got_offset).
ebabffbd 9917 Arm_address got_origin;
7f5309a5
ILT
9918 got_origin = target->got_plt_section()->address();
9919 reloc_status = Arm_relocate_functions::got_prel(view,
9920 got_origin + got_offset,
9921 address);
9922 break;
9923
c121c671 9924 case elfcpp::R_ARM_PLT32:
1521477a
DK
9925 case elfcpp::R_ARM_CALL:
9926 case elfcpp::R_ARM_JUMP24:
9927 case elfcpp::R_ARM_XPC25:
c121c671
DK
9928 gold_assert(gsym == NULL
9929 || gsym->has_plt_offset()
9930 || gsym->final_value_is_known()
9931 || (gsym->is_defined()
9932 && !gsym->is_from_dynobj()
9933 && !gsym->is_preemptible()));
d204b6e9 9934 reloc_status =
2e702c99 9935 Arm_relocate_functions::arm_branch_common(
1521477a
DK
9936 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9937 thumb_bit, is_weakly_undefined_without_plt);
51938283
DK
9938 break;
9939
41263c05
DK
9940 case elfcpp::R_ARM_THM_JUMP19:
9941 reloc_status =
9942 Arm_relocate_functions::thm_jump19(view, object, psymval, address,
9943 thumb_bit);
9944 break;
9945
800d0f56
ILT
9946 case elfcpp::R_ARM_THM_JUMP6:
9947 reloc_status =
9948 Arm_relocate_functions::thm_jump6(view, object, psymval, address);
9949 break;
9950
9951 case elfcpp::R_ARM_THM_JUMP8:
9952 reloc_status =
9953 Arm_relocate_functions::thm_jump8(view, object, psymval, address);
9954 break;
9955
9956 case elfcpp::R_ARM_THM_JUMP11:
9957 reloc_status =
9958 Arm_relocate_functions::thm_jump11(view, object, psymval, address);
9959 break;
9960
c121c671
DK
9961 case elfcpp::R_ARM_PREL31:
9962 reloc_status = Arm_relocate_functions::prel31(view, object, psymval,
2daedcd6 9963 address, thumb_bit);
c121c671
DK
9964 break;
9965
a2162063 9966 case elfcpp::R_ARM_V4BX:
9b2fd367
DK
9967 if (target->fix_v4bx() > General_options::FIX_V4BX_NONE)
9968 {
9969 const bool is_v4bx_interworking =
9970 (target->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING);
9971 reloc_status =
9972 Arm_relocate_functions::v4bx(relinfo, view, object, address,
9973 is_v4bx_interworking);
9974 }
a2162063
ILT
9975 break;
9976
11b861d5
DK
9977 case elfcpp::R_ARM_THM_PC8:
9978 reloc_status =
9979 Arm_relocate_functions::thm_pc8(view, object, psymval, address);
9980 break;
9981
9982 case elfcpp::R_ARM_THM_PC12:
9983 reloc_status =
9984 Arm_relocate_functions::thm_pc12(view, object, psymval, address);
9985 break;
9986
9987 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9988 reloc_status =
9989 Arm_relocate_functions::thm_alu11(view, object, psymval, address,
9990 thumb_bit);
9991 break;
9992
b10d2873 9993 case elfcpp::R_ARM_ALU_PC_G0_NC:
b10d2873 9994 case elfcpp::R_ARM_ALU_PC_G0:
b10d2873 9995 case elfcpp::R_ARM_ALU_PC_G1_NC:
b10d2873 9996 case elfcpp::R_ARM_ALU_PC_G1:
b10d2873 9997 case elfcpp::R_ARM_ALU_PC_G2:
b10d2873 9998 case elfcpp::R_ARM_ALU_SB_G0_NC:
b10d2873 9999 case elfcpp::R_ARM_ALU_SB_G0:
b10d2873 10000 case elfcpp::R_ARM_ALU_SB_G1_NC:
b10d2873 10001 case elfcpp::R_ARM_ALU_SB_G1:
b10d2873
ILT
10002 case elfcpp::R_ARM_ALU_SB_G2:
10003 reloc_status =
5c57f1be
DK
10004 Arm_relocate_functions::arm_grp_alu(view, object, psymval,
10005 reloc_property->group_index(),
10006 relative_address_base,
10007 thumb_bit, check_overflow);
b10d2873
ILT
10008 break;
10009
10010 case elfcpp::R_ARM_LDR_PC_G0:
b10d2873 10011 case elfcpp::R_ARM_LDR_PC_G1:
b10d2873 10012 case elfcpp::R_ARM_LDR_PC_G2:
b10d2873 10013 case elfcpp::R_ARM_LDR_SB_G0:
b10d2873 10014 case elfcpp::R_ARM_LDR_SB_G1:
b10d2873
ILT
10015 case elfcpp::R_ARM_LDR_SB_G2:
10016 reloc_status =
5c57f1be
DK
10017 Arm_relocate_functions::arm_grp_ldr(view, object, psymval,
10018 reloc_property->group_index(),
10019 relative_address_base);
b10d2873
ILT
10020 break;
10021
10022 case elfcpp::R_ARM_LDRS_PC_G0:
b10d2873 10023 case elfcpp::R_ARM_LDRS_PC_G1:
b10d2873 10024 case elfcpp::R_ARM_LDRS_PC_G2:
b10d2873 10025 case elfcpp::R_ARM_LDRS_SB_G0:
b10d2873 10026 case elfcpp::R_ARM_LDRS_SB_G1:
b10d2873
ILT
10027 case elfcpp::R_ARM_LDRS_SB_G2:
10028 reloc_status =
5c57f1be
DK
10029 Arm_relocate_functions::arm_grp_ldrs(view, object, psymval,
10030 reloc_property->group_index(),
10031 relative_address_base);
b10d2873
ILT
10032 break;
10033
10034 case elfcpp::R_ARM_LDC_PC_G0:
b10d2873 10035 case elfcpp::R_ARM_LDC_PC_G1:
b10d2873 10036 case elfcpp::R_ARM_LDC_PC_G2:
b10d2873 10037 case elfcpp::R_ARM_LDC_SB_G0:
b10d2873 10038 case elfcpp::R_ARM_LDC_SB_G1:
b10d2873
ILT
10039 case elfcpp::R_ARM_LDC_SB_G2:
10040 reloc_status =
5c57f1be
DK
10041 Arm_relocate_functions::arm_grp_ldc(view, object, psymval,
10042 reloc_property->group_index(),
10043 relative_address_base);
c121c671
DK
10044 break;
10045
f96accdf
DK
10046 // These are initial tls relocs, which are expected when
10047 // linking.
10048 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
10049 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
10050 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
10051 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
10052 case elfcpp::R_ARM_TLS_LE32: // Local-exec
10053 reloc_status =
10054 this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
10055 view, address, view_size);
10056 break;
10057
3cef7179
ILT
10058 // The known and unknown unsupported and/or deprecated relocations.
10059 case elfcpp::R_ARM_PC24:
10060 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
10061 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
10062 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
c121c671 10063 default:
3cef7179
ILT
10064 // Just silently leave the method. We should get an appropriate error
10065 // message in the scan methods.
10066 break;
c121c671
DK
10067 }
10068
10069 // Report any errors.
10070 switch (reloc_status)
10071 {
10072 case Arm_relocate_functions::STATUS_OKAY:
10073 break;
10074 case Arm_relocate_functions::STATUS_OVERFLOW:
10075 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
a2c7281b
DK
10076 _("relocation overflow in %s"),
10077 reloc_property->name().c_str());
c121c671
DK
10078 break;
10079 case Arm_relocate_functions::STATUS_BAD_RELOC:
10080 gold_error_at_location(
10081 relinfo,
10082 relnum,
10083 rel.get_r_offset(),
a2c7281b
DK
10084 _("unexpected opcode while processing relocation %s"),
10085 reloc_property->name().c_str());
c121c671 10086 break;
4a657b0d
DK
10087 default:
10088 gold_unreachable();
10089 }
10090
10091 return true;
10092}
10093
f96accdf
DK
10094// Perform a TLS relocation.
10095
10096template<bool big_endian>
10097inline typename Arm_relocate_functions<big_endian>::Status
10098Target_arm<big_endian>::Relocate::relocate_tls(
10099 const Relocate_info<32, big_endian>* relinfo,
10100 Target_arm<big_endian>* target,
10101 size_t relnum,
10102 const elfcpp::Rel<32, big_endian>& rel,
10103 unsigned int r_type,
10104 const Sized_symbol<32>* gsym,
10105 const Symbol_value<32>* psymval,
10106 unsigned char* view,
4a54abbb 10107 elfcpp::Elf_types<32>::Elf_Addr address,
f96accdf
DK
10108 section_size_type /*view_size*/ )
10109{
10110 typedef Arm_relocate_functions<big_endian> ArmRelocFuncs;
4a54abbb 10111 typedef Relocate_functions<32, big_endian> RelocFuncs;
f96accdf
DK
10112 Output_segment* tls_segment = relinfo->layout->tls_segment();
10113
6fa2a40b 10114 const Sized_relobj_file<32, big_endian>* object = relinfo->object;
f96accdf
DK
10115
10116 elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
10117
10118 const bool is_final = (gsym == NULL
10119 ? !parameters->options().shared()
10120 : gsym->final_value_is_known());
10121 const tls::Tls_optimization optimized_type
10122 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
10123 switch (r_type)
10124 {
10125 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
2e702c99
RM
10126 {
10127 unsigned int got_type = GOT_TYPE_TLS_PAIR;
10128 unsigned int got_offset;
10129 if (gsym != NULL)
10130 {
10131 gold_assert(gsym->has_got_offset(got_type));
10132 got_offset = gsym->got_offset(got_type) - target->got_size();
10133 }
10134 else
10135 {
10136 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
10137 gold_assert(object->local_has_got_offset(r_sym, got_type));
10138 got_offset = (object->local_got_offset(r_sym, got_type)
f96accdf 10139 - target->got_size());
2e702c99
RM
10140 }
10141 if (optimized_type == tls::TLSOPT_NONE)
10142 {
4a54abbb
DK
10143 Arm_address got_entry =
10144 target->got_plt_section()->address() + got_offset;
2e702c99
RM
10145
10146 // Relocate the field with the PC relative offset of the pair of
10147 // GOT entries.
29ab395d 10148 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
2e702c99
RM
10149 return ArmRelocFuncs::STATUS_OKAY;
10150 }
10151 }
f96accdf
DK
10152 break;
10153
10154 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
10155 if (optimized_type == tls::TLSOPT_NONE)
2e702c99
RM
10156 {
10157 // Relocate the field with the offset of the GOT entry for
10158 // the module index.
10159 unsigned int got_offset;
10160 got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
f96accdf 10161 - target->got_size());
4a54abbb
DK
10162 Arm_address got_entry =
10163 target->got_plt_section()->address() + got_offset;
10164
2e702c99
RM
10165 // Relocate the field with the PC relative offset of the pair of
10166 // GOT entries.
10167 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
f96accdf 10168 return ArmRelocFuncs::STATUS_OKAY;
2e702c99 10169 }
f96accdf
DK
10170 break;
10171
10172 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
29ab395d 10173 RelocFuncs::rel32_unaligned(view, value);
f96accdf
DK
10174 return ArmRelocFuncs::STATUS_OKAY;
10175
10176 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
10177 if (optimized_type == tls::TLSOPT_NONE)
2e702c99
RM
10178 {
10179 // Relocate the field with the offset of the GOT entry for
10180 // the tp-relative offset of the symbol.
f96accdf 10181 unsigned int got_type = GOT_TYPE_TLS_OFFSET;
2e702c99
RM
10182 unsigned int got_offset;
10183 if (gsym != NULL)
10184 {
10185 gold_assert(gsym->has_got_offset(got_type));
10186 got_offset = gsym->got_offset(got_type);
10187 }
10188 else
10189 {
10190 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
10191 gold_assert(object->local_has_got_offset(r_sym, got_type));
10192 got_offset = object->local_got_offset(r_sym, got_type);
10193 }
10194
10195 // All GOT offsets are relative to the end of the GOT.
10196 got_offset -= target->got_size();
4a54abbb
DK
10197
10198 Arm_address got_entry =
10199 target->got_plt_section()->address() + got_offset;
10200
2e702c99 10201 // Relocate the field with the PC relative offset of the GOT entry.
29ab395d 10202 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
f96accdf 10203 return ArmRelocFuncs::STATUS_OKAY;
2e702c99 10204 }
f96accdf
DK
10205 break;
10206
10207 case elfcpp::R_ARM_TLS_LE32: // Local-exec
10208 // If we're creating a shared library, a dynamic relocation will
10209 // have been created for this location, so do not apply it now.
10210 if (!parameters->options().shared())
2e702c99
RM
10211 {
10212 gold_assert(tls_segment != NULL);
4a54abbb
DK
10213
10214 // $tp points to the TCB, which is followed by the TLS, so we
10215 // need to add TCB size to the offset.
10216 Arm_address aligned_tcb_size =
10217 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
2e702c99 10218 RelocFuncs::rel32_unaligned(view, value + aligned_tcb_size);
4a54abbb 10219
2e702c99 10220 }
f96accdf 10221 return ArmRelocFuncs::STATUS_OKAY;
2e702c99 10222
f96accdf
DK
10223 default:
10224 gold_unreachable();
10225 }
10226
10227 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
10228 _("unsupported reloc %u"),
10229 r_type);
10230 return ArmRelocFuncs::STATUS_BAD_RELOC;
10231}
10232
4a657b0d
DK
10233// Relocate section data.
10234
10235template<bool big_endian>
10236void
10237Target_arm<big_endian>::relocate_section(
10238 const Relocate_info<32, big_endian>* relinfo,
10239 unsigned int sh_type,
10240 const unsigned char* prelocs,
10241 size_t reloc_count,
10242 Output_section* output_section,
10243 bool needs_special_offset_handling,
10244 unsigned char* view,
ebabffbd 10245 Arm_address address,
364c7fa5
ILT
10246 section_size_type view_size,
10247 const Reloc_symbol_changes* reloc_symbol_changes)
4a657b0d
DK
10248{
10249 typedef typename Target_arm<big_endian>::Relocate Arm_relocate;
10250 gold_assert(sh_type == elfcpp::SHT_REL);
10251
218c5831
DK
10252 // See if we are relocating a relaxed input section. If so, the view
10253 // covers the whole output section and we need to adjust accordingly.
10254 if (needs_special_offset_handling)
43d12afe 10255 {
218c5831
DK
10256 const Output_relaxed_input_section* poris =
10257 output_section->find_relaxed_input_section(relinfo->object,
10258 relinfo->data_shndx);
10259 if (poris != NULL)
10260 {
10261 Arm_address section_address = poris->address();
10262 section_size_type section_size = poris->data_size();
10263
10264 gold_assert((section_address >= address)
10265 && ((section_address + section_size)
10266 <= (address + view_size)));
10267
10268 off_t offset = section_address - address;
10269 view += offset;
10270 address += offset;
10271 view_size = section_size;
10272 }
43d12afe
DK
10273 }
10274
4d625b70
CC
10275 gold::relocate_section<32, big_endian, Target_arm, Arm_relocate,
10276 gold::Default_comdat_behavior, Classify_reloc>(
4a657b0d
DK
10277 relinfo,
10278 this,
10279 prelocs,
10280 reloc_count,
10281 output_section,
10282 needs_special_offset_handling,
10283 view,
10284 address,
364c7fa5
ILT
10285 view_size,
10286 reloc_symbol_changes);
4a657b0d
DK
10287}
10288
10289// Return the size of a relocation while scanning during a relocatable
10290// link.
10291
10292template<bool big_endian>
10293unsigned int
4d625b70 10294Target_arm<big_endian>::Classify_reloc::get_size_for_reloc(
4a657b0d
DK
10295 unsigned int r_type,
10296 Relobj* object)
10297{
bc99685c
DK
10298 Target_arm<big_endian>* arm_target =
10299 Target_arm<big_endian>::default_target();
10300 r_type = arm_target->get_real_reloc_type(r_type);
5c57f1be
DK
10301 const Arm_reloc_property* arp =
10302 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
10303 if (arp != NULL)
10304 return arp->size();
10305 else
4a657b0d 10306 {
5c57f1be
DK
10307 std::string reloc_name =
10308 arm_reloc_property_table->reloc_name_in_error_message(r_type);
10309 gold_error(_("%s: unexpected %s in object file"),
10310 object->name().c_str(), reloc_name.c_str());
4a657b0d
DK
10311 return 0;
10312 }
10313}
10314
10315// Scan the relocs during a relocatable link.
10316
10317template<bool big_endian>
10318void
10319Target_arm<big_endian>::scan_relocatable_relocs(
4a657b0d 10320 Symbol_table* symtab,
2ea97941 10321 Layout* layout,
6fa2a40b 10322 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
10323 unsigned int data_shndx,
10324 unsigned int sh_type,
10325 const unsigned char* prelocs,
10326 size_t reloc_count,
10327 Output_section* output_section,
10328 bool needs_special_offset_handling,
10329 size_t local_symbol_count,
10330 const unsigned char* plocal_symbols,
10331 Relocatable_relocs* rr)
10332{
4d625b70
CC
10333 typedef Arm_scan_relocatable_relocs<big_endian, Classify_reloc>
10334 Scan_relocatable_relocs;
4a657b0d 10335
4d625b70 10336 gold_assert(sh_type == elfcpp::SHT_REL);
4a657b0d 10337
4d625b70 10338 gold::scan_relocatable_relocs<32, big_endian, Scan_relocatable_relocs>(
4a657b0d 10339 symtab,
2ea97941 10340 layout,
4a657b0d
DK
10341 object,
10342 data_shndx,
10343 prelocs,
10344 reloc_count,
10345 output_section,
10346 needs_special_offset_handling,
10347 local_symbol_count,
10348 plocal_symbols,
10349 rr);
10350}
10351
4d625b70
CC
10352// Scan the relocs for --emit-relocs.
10353
10354template<bool big_endian>
10355void
10356Target_arm<big_endian>::emit_relocs_scan(Symbol_table* symtab,
10357 Layout* layout,
10358 Sized_relobj_file<32, big_endian>* object,
10359 unsigned int data_shndx,
10360 unsigned int sh_type,
10361 const unsigned char* prelocs,
10362 size_t reloc_count,
10363 Output_section* output_section,
10364 bool needs_special_offset_handling,
10365 size_t local_symbol_count,
10366 const unsigned char* plocal_syms,
10367 Relocatable_relocs* rr)
10368{
10369 typedef gold::Default_classify_reloc<elfcpp::SHT_REL, 32, big_endian>
10370 Classify_reloc;
10371 typedef gold::Default_emit_relocs_strategy<Classify_reloc>
10372 Emit_relocs_strategy;
10373
10374 gold_assert(sh_type == elfcpp::SHT_REL);
10375
10376 gold::scan_relocatable_relocs<32, big_endian, Emit_relocs_strategy>(
10377 symtab,
10378 layout,
10379 object,
10380 data_shndx,
10381 prelocs,
10382 reloc_count,
10383 output_section,
10384 needs_special_offset_handling,
10385 local_symbol_count,
10386 plocal_syms,
10387 rr);
10388}
10389
7404fe1b 10390// Emit relocations for a section.
4a657b0d
DK
10391
10392template<bool big_endian>
10393void
7404fe1b 10394Target_arm<big_endian>::relocate_relocs(
4a657b0d
DK
10395 const Relocate_info<32, big_endian>* relinfo,
10396 unsigned int sh_type,
10397 const unsigned char* prelocs,
10398 size_t reloc_count,
10399 Output_section* output_section,
62fe925a 10400 typename elfcpp::Elf_types<32>::Elf_Off offset_in_output_section,
4a657b0d 10401 unsigned char* view,
ebabffbd 10402 Arm_address view_address,
4a657b0d
DK
10403 section_size_type view_size,
10404 unsigned char* reloc_view,
10405 section_size_type reloc_view_size)
10406{
10407 gold_assert(sh_type == elfcpp::SHT_REL);
10408
4d625b70 10409 gold::relocate_relocs<32, big_endian, Classify_reloc>(
4a657b0d
DK
10410 relinfo,
10411 prelocs,
10412 reloc_count,
10413 output_section,
10414 offset_in_output_section,
4a657b0d
DK
10415 view,
10416 view_address,
10417 view_size,
10418 reloc_view,
10419 reloc_view_size);
10420}
10421
5c388529
DK
10422// Perform target-specific processing in a relocatable link. This is
10423// only used if we use the relocation strategy RELOC_SPECIAL.
10424
10425template<bool big_endian>
10426void
10427Target_arm<big_endian>::relocate_special_relocatable(
10428 const Relocate_info<32, big_endian>* relinfo,
10429 unsigned int sh_type,
10430 const unsigned char* preloc_in,
10431 size_t relnum,
10432 Output_section* output_section,
62fe925a 10433 typename elfcpp::Elf_types<32>::Elf_Off offset_in_output_section,
5c388529
DK
10434 unsigned char* view,
10435 elfcpp::Elf_types<32>::Elf_Addr view_address,
10436 section_size_type,
10437 unsigned char* preloc_out)
10438{
10439 // We can only handle REL type relocation sections.
10440 gold_assert(sh_type == elfcpp::SHT_REL);
10441
10442 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc Reltype;
10443 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc_write
10444 Reltype_write;
10445 const Arm_address invalid_address = static_cast<Arm_address>(0) - 1;
10446
10447 const Arm_relobj<big_endian>* object =
10448 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
10449 const unsigned int local_count = object->local_symbol_count();
10450
10451 Reltype reloc(preloc_in);
10452 Reltype_write reloc_write(preloc_out);
10453
10454 elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
10455 const unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
10456 const unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
10457
10458 const Arm_reloc_property* arp =
10459 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
10460 gold_assert(arp != NULL);
10461
10462 // Get the new symbol index.
10463 // We only use RELOC_SPECIAL strategy in local relocations.
10464 gold_assert(r_sym < local_count);
10465
10466 // We are adjusting a section symbol. We need to find
10467 // the symbol table index of the section symbol for
10468 // the output section corresponding to input section
10469 // in which this symbol is defined.
10470 bool is_ordinary;
10471 unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
10472 gold_assert(is_ordinary);
10473 Output_section* os = object->output_section(shndx);
10474 gold_assert(os != NULL);
10475 gold_assert(os->needs_symtab_index());
10476 unsigned int new_symndx = os->symtab_index();
10477
10478 // Get the new offset--the location in the output section where
10479 // this relocation should be applied.
10480
10481 Arm_address offset = reloc.get_r_offset();
10482 Arm_address new_offset;
10483 if (offset_in_output_section != invalid_address)
10484 new_offset = offset + offset_in_output_section;
10485 else
10486 {
10487 section_offset_type sot_offset =
2e702c99 10488 convert_types<section_offset_type, Arm_address>(offset);
5c388529 10489 section_offset_type new_sot_offset =
2e702c99
RM
10490 output_section->output_offset(object, relinfo->data_shndx,
10491 sot_offset);
5c388529
DK
10492 gold_assert(new_sot_offset != -1);
10493 new_offset = new_sot_offset;
10494 }
10495
10496 // In an object file, r_offset is an offset within the section.
10497 // In an executable or dynamic object, generated by
10498 // --emit-relocs, r_offset is an absolute address.
10499 if (!parameters->options().relocatable())
10500 {
10501 new_offset += view_address;
10502 if (offset_in_output_section != invalid_address)
2e702c99 10503 new_offset -= offset_in_output_section;
5c388529
DK
10504 }
10505
10506 reloc_write.put_r_offset(new_offset);
10507 reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
10508
10509 // Handle the reloc addend.
10510 // The relocation uses a section symbol in the input file.
10511 // We are adjusting it to use a section symbol in the output
10512 // file. The input section symbol refers to some address in
10513 // the input section. We need the relocation in the output
10514 // file to refer to that same address. This adjustment to
10515 // the addend is the same calculation we use for a simple
10516 // absolute relocation for the input section symbol.
10517
10518 const Symbol_value<32>* psymval = object->local_symbol(r_sym);
10519
10520 // Handle THUMB bit.
10521 Symbol_value<32> symval;
10522 Arm_address thumb_bit =
10523 object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
10524 if (thumb_bit != 0
2e702c99 10525 && arp->uses_thumb_bit()
5c388529
DK
10526 && ((psymval->value(object, 0) & 1) != 0))
10527 {
10528 Arm_address stripped_value =
10529 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
10530 symval.set_output_value(stripped_value);
10531 psymval = &symval;
2e702c99 10532 }
5c388529
DK
10533
10534 unsigned char* paddend = view + offset;
10535 typename Arm_relocate_functions<big_endian>::Status reloc_status =
10536 Arm_relocate_functions<big_endian>::STATUS_OKAY;
10537 switch (r_type)
10538 {
10539 case elfcpp::R_ARM_ABS8:
10540 reloc_status = Arm_relocate_functions<big_endian>::abs8(paddend, object,
10541 psymval);
10542 break;
10543
10544 case elfcpp::R_ARM_ABS12:
10545 reloc_status = Arm_relocate_functions<big_endian>::abs12(paddend, object,
10546 psymval);
10547 break;
10548
10549 case elfcpp::R_ARM_ABS16:
10550 reloc_status = Arm_relocate_functions<big_endian>::abs16(paddend, object,
10551 psymval);
10552 break;
10553
10554 case elfcpp::R_ARM_THM_ABS5:
10555 reloc_status = Arm_relocate_functions<big_endian>::thm_abs5(paddend,
10556 object,
10557 psymval);
10558 break;
10559
10560 case elfcpp::R_ARM_MOVW_ABS_NC:
10561 case elfcpp::R_ARM_MOVW_PREL_NC:
10562 case elfcpp::R_ARM_MOVW_BREL_NC:
10563 case elfcpp::R_ARM_MOVW_BREL:
10564 reloc_status = Arm_relocate_functions<big_endian>::movw(
10565 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
10566 break;
10567
10568 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
10569 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
10570 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
10571 case elfcpp::R_ARM_THM_MOVW_BREL:
10572 reloc_status = Arm_relocate_functions<big_endian>::thm_movw(
10573 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
10574 break;
10575
10576 case elfcpp::R_ARM_THM_CALL:
10577 case elfcpp::R_ARM_THM_XPC22:
10578 case elfcpp::R_ARM_THM_JUMP24:
10579 reloc_status =
10580 Arm_relocate_functions<big_endian>::thumb_branch_common(
10581 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
10582 false);
10583 break;
10584
10585 case elfcpp::R_ARM_PLT32:
10586 case elfcpp::R_ARM_CALL:
10587 case elfcpp::R_ARM_JUMP24:
10588 case elfcpp::R_ARM_XPC25:
10589 reloc_status =
2e702c99 10590 Arm_relocate_functions<big_endian>::arm_branch_common(
5c388529
DK
10591 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
10592 false);
10593 break;
10594
10595 case elfcpp::R_ARM_THM_JUMP19:
10596 reloc_status =
10597 Arm_relocate_functions<big_endian>::thm_jump19(paddend, object,
10598 psymval, 0, thumb_bit);
10599 break;
10600
10601 case elfcpp::R_ARM_THM_JUMP6:
10602 reloc_status =
10603 Arm_relocate_functions<big_endian>::thm_jump6(paddend, object, psymval,
10604 0);
10605 break;
10606
10607 case elfcpp::R_ARM_THM_JUMP8:
10608 reloc_status =
10609 Arm_relocate_functions<big_endian>::thm_jump8(paddend, object, psymval,
10610 0);
10611 break;
10612
10613 case elfcpp::R_ARM_THM_JUMP11:
10614 reloc_status =
10615 Arm_relocate_functions<big_endian>::thm_jump11(paddend, object, psymval,
10616 0);
10617 break;
10618
10619 case elfcpp::R_ARM_PREL31:
10620 reloc_status =
10621 Arm_relocate_functions<big_endian>::prel31(paddend, object, psymval, 0,
10622 thumb_bit);
10623 break;
10624
10625 case elfcpp::R_ARM_THM_PC8:
10626 reloc_status =
10627 Arm_relocate_functions<big_endian>::thm_pc8(paddend, object, psymval,
10628 0);
10629 break;
10630
10631 case elfcpp::R_ARM_THM_PC12:
10632 reloc_status =
10633 Arm_relocate_functions<big_endian>::thm_pc12(paddend, object, psymval,
10634 0);
10635 break;
10636
10637 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
10638 reloc_status =
10639 Arm_relocate_functions<big_endian>::thm_alu11(paddend, object, psymval,
10640 0, thumb_bit);
10641 break;
10642
10643 // These relocation truncate relocation results so we cannot handle them
10644 // in a relocatable link.
10645 case elfcpp::R_ARM_MOVT_ABS:
10646 case elfcpp::R_ARM_THM_MOVT_ABS:
10647 case elfcpp::R_ARM_MOVT_PREL:
10648 case elfcpp::R_ARM_MOVT_BREL:
10649 case elfcpp::R_ARM_THM_MOVT_PREL:
10650 case elfcpp::R_ARM_THM_MOVT_BREL:
10651 case elfcpp::R_ARM_ALU_PC_G0_NC:
10652 case elfcpp::R_ARM_ALU_PC_G0:
10653 case elfcpp::R_ARM_ALU_PC_G1_NC:
10654 case elfcpp::R_ARM_ALU_PC_G1:
10655 case elfcpp::R_ARM_ALU_PC_G2:
10656 case elfcpp::R_ARM_ALU_SB_G0_NC:
10657 case elfcpp::R_ARM_ALU_SB_G0:
10658 case elfcpp::R_ARM_ALU_SB_G1_NC:
10659 case elfcpp::R_ARM_ALU_SB_G1:
10660 case elfcpp::R_ARM_ALU_SB_G2:
10661 case elfcpp::R_ARM_LDR_PC_G0:
10662 case elfcpp::R_ARM_LDR_PC_G1:
10663 case elfcpp::R_ARM_LDR_PC_G2:
10664 case elfcpp::R_ARM_LDR_SB_G0:
10665 case elfcpp::R_ARM_LDR_SB_G1:
10666 case elfcpp::R_ARM_LDR_SB_G2:
10667 case elfcpp::R_ARM_LDRS_PC_G0:
10668 case elfcpp::R_ARM_LDRS_PC_G1:
10669 case elfcpp::R_ARM_LDRS_PC_G2:
10670 case elfcpp::R_ARM_LDRS_SB_G0:
10671 case elfcpp::R_ARM_LDRS_SB_G1:
10672 case elfcpp::R_ARM_LDRS_SB_G2:
10673 case elfcpp::R_ARM_LDC_PC_G0:
10674 case elfcpp::R_ARM_LDC_PC_G1:
10675 case elfcpp::R_ARM_LDC_PC_G2:
10676 case elfcpp::R_ARM_LDC_SB_G0:
10677 case elfcpp::R_ARM_LDC_SB_G1:
10678 case elfcpp::R_ARM_LDC_SB_G2:
10679 gold_error(_("cannot handle %s in a relocatable link"),
10680 arp->name().c_str());
10681 break;
10682
10683 default:
10684 gold_unreachable();
10685 }
10686
10687 // Report any errors.
10688 switch (reloc_status)
10689 {
10690 case Arm_relocate_functions<big_endian>::STATUS_OKAY:
10691 break;
10692 case Arm_relocate_functions<big_endian>::STATUS_OVERFLOW:
10693 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
10694 _("relocation overflow in %s"),
10695 arp->name().c_str());
10696 break;
10697 case Arm_relocate_functions<big_endian>::STATUS_BAD_RELOC:
10698 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
10699 _("unexpected opcode while processing relocation %s"),
10700 arp->name().c_str());
10701 break;
10702 default:
10703 gold_unreachable();
10704 }
10705}
10706
94cdfcff
DK
10707// Return the value to use for a dynamic symbol which requires special
10708// treatment. This is how we support equality comparisons of function
10709// pointers across shared library boundaries, as described in the
10710// processor specific ABI supplement.
10711
4a657b0d
DK
10712template<bool big_endian>
10713uint64_t
94cdfcff 10714Target_arm<big_endian>::do_dynsym_value(const Symbol* gsym) const
4a657b0d 10715{
94cdfcff 10716 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
fa89cc82 10717 return this->plt_address_for_global(gsym);
4a657b0d
DK
10718}
10719
10720// Map platform-specific relocs to real relocs
10721//
10722template<bool big_endian>
10723unsigned int
bc99685c 10724Target_arm<big_endian>::get_real_reloc_type(unsigned int r_type) const
4a657b0d
DK
10725{
10726 switch (r_type)
10727 {
10728 case elfcpp::R_ARM_TARGET1:
bc99685c 10729 return this->target1_reloc_;
4a657b0d
DK
10730
10731 case elfcpp::R_ARM_TARGET2:
bc99685c 10732 return this->target2_reloc_;
4a657b0d
DK
10733
10734 default:
10735 return r_type;
10736 }
10737}
10738
d5b40221
DK
10739// Whether if two EABI versions V1 and V2 are compatible.
10740
10741template<bool big_endian>
10742bool
10743Target_arm<big_endian>::are_eabi_versions_compatible(
10744 elfcpp::Elf_Word v1,
10745 elfcpp::Elf_Word v2)
10746{
10747 // v4 and v5 are the same spec before and after it was released,
10748 // so allow mixing them.
106e8a6c
DK
10749 if ((v1 == elfcpp::EF_ARM_EABI_UNKNOWN || v2 == elfcpp::EF_ARM_EABI_UNKNOWN)
10750 || (v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5)
d5b40221
DK
10751 || (v1 == elfcpp::EF_ARM_EABI_VER5 && v2 == elfcpp::EF_ARM_EABI_VER4))
10752 return true;
10753
10754 return v1 == v2;
10755}
10756
10757// Combine FLAGS from an input object called NAME and the processor-specific
10758// flags in the ELF header of the output. Much of this is adapted from the
10759// processor-specific flags merging code in elf32_arm_merge_private_bfd_data
10760// in bfd/elf32-arm.c.
10761
10762template<bool big_endian>
10763void
10764Target_arm<big_endian>::merge_processor_specific_flags(
10765 const std::string& name,
10766 elfcpp::Elf_Word flags)
10767{
10768 if (this->are_processor_specific_flags_set())
10769 {
10770 elfcpp::Elf_Word out_flags = this->processor_specific_flags();
10771
10772 // Nothing to merge if flags equal to those in output.
10773 if (flags == out_flags)
10774 return;
10775
10776 // Complain about various flag mismatches.
10777 elfcpp::Elf_Word version1 = elfcpp::arm_eabi_version(flags);
10778 elfcpp::Elf_Word version2 = elfcpp::arm_eabi_version(out_flags);
7296d933
DK
10779 if (!this->are_eabi_versions_compatible(version1, version2)
10780 && parameters->options().warn_mismatch())
d5b40221
DK
10781 gold_error(_("Source object %s has EABI version %d but output has "
10782 "EABI version %d."),
10783 name.c_str(),
10784 (flags & elfcpp::EF_ARM_EABIMASK) >> 24,
10785 (out_flags & elfcpp::EF_ARM_EABIMASK) >> 24);
10786 }
10787 else
10788 {
10789 // If the input is the default architecture and had the default
10790 // flags then do not bother setting the flags for the output
10791 // architecture, instead allow future merges to do this. If no
10792 // future merges ever set these flags then they will retain their
10793 // uninitialised values, which surprise surprise, correspond
10794 // to the default values.
10795 if (flags == 0)
10796 return;
10797
10798 // This is the first time, just copy the flags.
10799 // We only copy the EABI version for now.
10800 this->set_processor_specific_flags(flags & elfcpp::EF_ARM_EABIMASK);
10801 }
10802}
10803
10804// Adjust ELF file header.
10805template<bool big_endian>
10806void
10807Target_arm<big_endian>::do_adjust_elf_header(
10808 unsigned char* view,
3bfcb652 10809 int len)
d5b40221
DK
10810{
10811 gold_assert(len == elfcpp::Elf_sizes<32>::ehdr_size);
10812
10813 elfcpp::Ehdr<32, big_endian> ehdr(view);
3bfcb652 10814 elfcpp::Elf_Word flags = this->processor_specific_flags();
d5b40221
DK
10815 unsigned char e_ident[elfcpp::EI_NIDENT];
10816 memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
10817
3bfcb652 10818 if (elfcpp::arm_eabi_version(flags)
d5b40221
DK
10819 == elfcpp::EF_ARM_EABI_UNKNOWN)
10820 e_ident[elfcpp::EI_OSABI] = elfcpp::ELFOSABI_ARM;
10821 else
10822 e_ident[elfcpp::EI_OSABI] = 0;
10823 e_ident[elfcpp::EI_ABIVERSION] = 0;
10824
9f84726c
BS
10825 // Do EF_ARM_BE8 adjustment.
10826 if (parameters->options().be8() && !big_endian)
10827 gold_error("BE8 images only valid in big-endian mode.");
10828 if (parameters->options().be8())
10829 {
10830 flags |= elfcpp::EF_ARM_BE8;
10831 this->set_processor_specific_flags(flags);
10832 }
d5b40221 10833
3bfcb652
NC
10834 // If we're working in EABI_VER5, set the hard/soft float ABI flags
10835 // as appropriate.
10836 if (elfcpp::arm_eabi_version(flags) == elfcpp::EF_ARM_EABI_VER5)
10837 {
10838 elfcpp::Elf_Half type = ehdr.get_e_type();
10839 if (type == elfcpp::ET_EXEC || type == elfcpp::ET_DYN)
10840 {
10841 Object_attribute* attr = this->get_aeabi_object_attribute(elfcpp::Tag_ABI_VFP_args);
f12d1e8a 10842 if (attr->int_value() == elfcpp::AEABI_VFP_args_vfp)
3bfcb652
NC
10843 flags |= elfcpp::EF_ARM_ABI_FLOAT_HARD;
10844 else
10845 flags |= elfcpp::EF_ARM_ABI_FLOAT_SOFT;
10846 this->set_processor_specific_flags(flags);
10847 }
10848 }
d5b40221
DK
10849 elfcpp::Ehdr_write<32, big_endian> oehdr(view);
10850 oehdr.put_e_ident(e_ident);
2bca0377 10851 oehdr.put_e_flags(this->processor_specific_flags());
d5b40221
DK
10852}
10853
10854// do_make_elf_object to override the same function in the base class.
6fa2a40b
CC
10855// We need to use a target-specific sub-class of
10856// Sized_relobj_file<32, big_endian> to store ARM specific information.
10857// Hence we need to have our own ELF object creation.
d5b40221
DK
10858
10859template<bool big_endian>
10860Object*
10861Target_arm<big_endian>::do_make_elf_object(
10862 const std::string& name,
10863 Input_file* input_file,
2ea97941 10864 off_t offset, const elfcpp::Ehdr<32, big_endian>& ehdr)
d5b40221
DK
10865{
10866 int et = ehdr.get_e_type();
f4a8b6d7
DK
10867 // ET_EXEC files are valid input for --just-symbols/-R,
10868 // and we treat them as relocatable objects.
10869 if (et == elfcpp::ET_REL
10870 || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
d5b40221
DK
10871 {
10872 Arm_relobj<big_endian>* obj =
2e702c99 10873 new Arm_relobj<big_endian>(name, input_file, offset, ehdr);
d5b40221
DK
10874 obj->setup();
10875 return obj;
10876 }
10877 else if (et == elfcpp::ET_DYN)
10878 {
10879 Sized_dynobj<32, big_endian>* obj =
2e702c99 10880 new Arm_dynobj<big_endian>(name, input_file, offset, ehdr);
d5b40221
DK
10881 obj->setup();
10882 return obj;
10883 }
10884 else
10885 {
10886 gold_error(_("%s: unsupported ELF file type %d"),
2e702c99 10887 name.c_str(), et);
d5b40221
DK
10888 return NULL;
10889 }
10890}
10891
a0351a69
DK
10892// Read the architecture from the Tag_also_compatible_with attribute, if any.
10893// Returns -1 if no architecture could be read.
10894// This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c.
10895
10896template<bool big_endian>
10897int
10898Target_arm<big_endian>::get_secondary_compatible_arch(
10899 const Attributes_section_data* pasd)
10900{
ca09d69a 10901 const Object_attribute* known_attributes =
a0351a69
DK
10902 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10903
10904 // Note: the tag and its argument below are uleb128 values, though
10905 // currently-defined values fit in one byte for each.
10906 const std::string& sv =
10907 known_attributes[elfcpp::Tag_also_compatible_with].string_value();
10908 if (sv.size() == 2
10909 && sv.data()[0] == elfcpp::Tag_CPU_arch
10910 && (sv.data()[1] & 128) != 128)
10911 return sv.data()[1];
10912
10913 // This tag is "safely ignorable", so don't complain if it looks funny.
10914 return -1;
10915}
10916
10917// Set, or unset, the architecture of the Tag_also_compatible_with attribute.
10918// The tag is removed if ARCH is -1.
10919// This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c.
10920
10921template<bool big_endian>
10922void
10923Target_arm<big_endian>::set_secondary_compatible_arch(
10924 Attributes_section_data* pasd,
10925 int arch)
10926{
ca09d69a 10927 Object_attribute* known_attributes =
a0351a69
DK
10928 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10929
10930 if (arch == -1)
10931 {
10932 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value("");
10933 return;
10934 }
10935
10936 // Note: the tag and its argument below are uleb128 values, though
10937 // currently-defined values fit in one byte for each.
10938 char sv[3];
10939 sv[0] = elfcpp::Tag_CPU_arch;
10940 gold_assert(arch != 0);
10941 sv[1] = arch;
10942 sv[2] = '\0';
10943
10944 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(sv);
10945}
10946
10947// Combine two values for Tag_CPU_arch, taking secondary compatibility tags
10948// into account.
10949// This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c.
10950
10951template<bool big_endian>
10952int
10953Target_arm<big_endian>::tag_cpu_arch_combine(
10954 const char* name,
10955 int oldtag,
10956 int* secondary_compat_out,
10957 int newtag,
10958 int secondary_compat)
10959{
10960#define T(X) elfcpp::TAG_CPU_ARCH_##X
10961 static const int v6t2[] =
10962 {
10963 T(V6T2), // PRE_V4.
10964 T(V6T2), // V4.
10965 T(V6T2), // V4T.
10966 T(V6T2), // V5T.
10967 T(V6T2), // V5TE.
10968 T(V6T2), // V5TEJ.
10969 T(V6T2), // V6.
10970 T(V7), // V6KZ.
10971 T(V6T2) // V6T2.
10972 };
10973 static const int v6k[] =
10974 {
10975 T(V6K), // PRE_V4.
10976 T(V6K), // V4.
10977 T(V6K), // V4T.
10978 T(V6K), // V5T.
10979 T(V6K), // V5TE.
10980 T(V6K), // V5TEJ.
10981 T(V6K), // V6.
10982 T(V6KZ), // V6KZ.
10983 T(V7), // V6T2.
10984 T(V6K) // V6K.
10985 };
10986 static const int v7[] =
10987 {
10988 T(V7), // PRE_V4.
10989 T(V7), // V4.
10990 T(V7), // V4T.
10991 T(V7), // V5T.
10992 T(V7), // V5TE.
10993 T(V7), // V5TEJ.
10994 T(V7), // V6.
10995 T(V7), // V6KZ.
10996 T(V7), // V6T2.
10997 T(V7), // V6K.
10998 T(V7) // V7.
10999 };
11000 static const int v6_m[] =
11001 {
11002 -1, // PRE_V4.
11003 -1, // V4.
11004 T(V6K), // V4T.
11005 T(V6K), // V5T.
11006 T(V6K), // V5TE.
11007 T(V6K), // V5TEJ.
11008 T(V6K), // V6.
11009 T(V6KZ), // V6KZ.
11010 T(V7), // V6T2.
11011 T(V6K), // V6K.
11012 T(V7), // V7.
11013 T(V6_M) // V6_M.
11014 };
11015 static const int v6s_m[] =
11016 {
11017 -1, // PRE_V4.
11018 -1, // V4.
11019 T(V6K), // V4T.
11020 T(V6K), // V5T.
11021 T(V6K), // V5TE.
11022 T(V6K), // V5TEJ.
11023 T(V6K), // V6.
11024 T(V6KZ), // V6KZ.
11025 T(V7), // V6T2.
11026 T(V6K), // V6K.
11027 T(V7), // V7.
11028 T(V6S_M), // V6_M.
11029 T(V6S_M) // V6S_M.
11030 };
11031 static const int v7e_m[] =
11032 {
11033 -1, // PRE_V4.
11034 -1, // V4.
11035 T(V7E_M), // V4T.
11036 T(V7E_M), // V5T.
11037 T(V7E_M), // V5TE.
11038 T(V7E_M), // V5TEJ.
11039 T(V7E_M), // V6.
11040 T(V7E_M), // V6KZ.
11041 T(V7E_M), // V6T2.
11042 T(V7E_M), // V6K.
11043 T(V7E_M), // V7.
11044 T(V7E_M), // V6_M.
11045 T(V7E_M), // V6S_M.
11046 T(V7E_M) // V7E_M.
11047 };
24491327
HS
11048 static const int v8[] =
11049 {
11050 T(V8), // PRE_V4.
11051 T(V8), // V4.
11052 T(V8), // V4T.
11053 T(V8), // V5T.
11054 T(V8), // V5TE.
11055 T(V8), // V5TEJ.
11056 T(V8), // V6.
11057 T(V8), // V6KZ.
11058 T(V8), // V6T2.
11059 T(V8), // V6K.
11060 T(V8), // V7.
11061 T(V8), // V6_M.
11062 T(V8), // V6S_M.
11063 T(V8), // V7E_M.
11064 T(V8) // V8.
11065 };
a0351a69
DK
11066 static const int v4t_plus_v6_m[] =
11067 {
11068 -1, // PRE_V4.
11069 -1, // V4.
11070 T(V4T), // V4T.
11071 T(V5T), // V5T.
11072 T(V5TE), // V5TE.
11073 T(V5TEJ), // V5TEJ.
11074 T(V6), // V6.
11075 T(V6KZ), // V6KZ.
11076 T(V6T2), // V6T2.
11077 T(V6K), // V6K.
11078 T(V7), // V7.
11079 T(V6_M), // V6_M.
11080 T(V6S_M), // V6S_M.
11081 T(V7E_M), // V7E_M.
24491327 11082 T(V8), // V8.
a0351a69
DK
11083 T(V4T_PLUS_V6_M) // V4T plus V6_M.
11084 };
ca09d69a 11085 static const int* comb[] =
a0351a69
DK
11086 {
11087 v6t2,
11088 v6k,
11089 v7,
11090 v6_m,
11091 v6s_m,
11092 v7e_m,
24491327 11093 v8,
a0351a69
DK
11094 // Pseudo-architecture.
11095 v4t_plus_v6_m
11096 };
11097
11098 // Check we've not got a higher architecture than we know about.
11099
f62a3ca7 11100 if (oldtag > elfcpp::MAX_TAG_CPU_ARCH || newtag > elfcpp::MAX_TAG_CPU_ARCH)
a0351a69
DK
11101 {
11102 gold_error(_("%s: unknown CPU architecture"), name);
11103 return -1;
11104 }
11105
11106 // Override old tag if we have a Tag_also_compatible_with on the output.
11107
11108 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
11109 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
11110 oldtag = T(V4T_PLUS_V6_M);
11111
11112 // And override the new tag if we have a Tag_also_compatible_with on the
11113 // input.
11114
11115 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
11116 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
11117 newtag = T(V4T_PLUS_V6_M);
11118
11119 // Architectures before V6KZ add features monotonically.
11120 int tagh = std::max(oldtag, newtag);
11121 if (tagh <= elfcpp::TAG_CPU_ARCH_V6KZ)
11122 return tagh;
11123
11124 int tagl = std::min(oldtag, newtag);
11125 int result = comb[tagh - T(V6T2)][tagl];
11126
11127 // Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
11128 // as the canonical version.
11129 if (result == T(V4T_PLUS_V6_M))
11130 {
11131 result = T(V4T);
11132 *secondary_compat_out = T(V6_M);
11133 }
11134 else
11135 *secondary_compat_out = -1;
11136
11137 if (result == -1)
11138 {
11139 gold_error(_("%s: conflicting CPU architectures %d/%d"),
11140 name, oldtag, newtag);
11141 return -1;
11142 }
11143
11144 return result;
11145#undef T
11146}
11147
11148// Helper to print AEABI enum tag value.
11149
11150template<bool big_endian>
11151std::string
11152Target_arm<big_endian>::aeabi_enum_name(unsigned int value)
11153{
ca09d69a 11154 static const char* aeabi_enum_names[] =
a0351a69
DK
11155 { "", "variable-size", "32-bit", "" };
11156 const size_t aeabi_enum_names_size =
11157 sizeof(aeabi_enum_names) / sizeof(aeabi_enum_names[0]);
11158
11159 if (value < aeabi_enum_names_size)
11160 return std::string(aeabi_enum_names[value]);
11161 else
11162 {
11163 char buffer[100];
11164 sprintf(buffer, "<unknown value %u>", value);
11165 return std::string(buffer);
11166 }
11167}
11168
11169// Return the string value to store in TAG_CPU_name.
11170
11171template<bool big_endian>
11172std::string
11173Target_arm<big_endian>::tag_cpu_name_value(unsigned int value)
11174{
ca09d69a 11175 static const char* name_table[] = {
a0351a69
DK
11176 // These aren't real CPU names, but we can't guess
11177 // that from the architecture version alone.
11178 "Pre v4",
11179 "ARM v4",
11180 "ARM v4T",
11181 "ARM v5T",
11182 "ARM v5TE",
11183 "ARM v5TEJ",
11184 "ARM v6",
11185 "ARM v6KZ",
11186 "ARM v6T2",
11187 "ARM v6K",
11188 "ARM v7",
11189 "ARM v6-M",
11190 "ARM v6S-M",
24491327
HS
11191 "ARM v7E-M",
11192 "ARM v8"
a0351a69
DK
11193 };
11194 const size_t name_table_size = sizeof(name_table) / sizeof(name_table[0]);
11195
11196 if (value < name_table_size)
11197 return std::string(name_table[value]);
11198 else
11199 {
11200 char buffer[100];
11201 sprintf(buffer, "<unknown CPU value %u>", value);
11202 return std::string(buffer);
2e702c99 11203 }
a0351a69
DK
11204}
11205
679af368
ILT
11206// Query attributes object to see if integer divide instructions may be
11207// present in an object.
11208
11209template<bool big_endian>
11210bool
11211Target_arm<big_endian>::attributes_accept_div(int arch, int profile,
11212 const Object_attribute* div_attr)
11213{
11214 switch (div_attr->int_value())
11215 {
11216 case 0:
11217 // Integer divide allowed if instruction contained in
5c3024d2 11218 // architecture.
679af368
ILT
11219 if (arch == elfcpp::TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M'))
11220 return true;
11221 else if (arch >= elfcpp::TAG_CPU_ARCH_V7E_M)
11222 return true;
11223 else
11224 return false;
11225
11226 case 1:
11227 // Integer divide explicitly prohibited.
11228 return false;
11229
11230 default:
11231 // Unrecognised case - treat as allowing divide everywhere.
11232 case 2:
11233 // Integer divide allowed in ARM state.
11234 return true;
11235 }
11236}
11237
11238// Query attributes object to see if integer divide instructions are
11239// forbidden to be in the object. This is not the inverse of
11240// attributes_accept_div.
11241
11242template<bool big_endian>
11243bool
11244Target_arm<big_endian>::attributes_forbid_div(const Object_attribute* div_attr)
11245{
11246 return div_attr->int_value() == 1;
11247}
11248
a0351a69
DK
11249// Merge object attributes from input file called NAME with those of the
11250// output. The input object attributes are in the object pointed by PASD.
11251
11252template<bool big_endian>
11253void
11254Target_arm<big_endian>::merge_object_attributes(
11255 const char* name,
11256 const Attributes_section_data* pasd)
11257{
11258 // Return if there is no attributes section data.
11259 if (pasd == NULL)
11260 return;
11261
11262 // If output has no object attributes, just copy.
da59ad79 11263 const int vendor = Object_attribute::OBJ_ATTR_PROC;
a0351a69
DK
11264 if (this->attributes_section_data_ == NULL)
11265 {
11266 this->attributes_section_data_ = new Attributes_section_data(*pasd);
da59ad79
DK
11267 Object_attribute* out_attr =
11268 this->attributes_section_data_->known_attributes(vendor);
11269
11270 // We do not output objects with Tag_MPextension_use_legacy - we move
11271 // the attribute's value to Tag_MPextension_use. */
11272 if (out_attr[elfcpp::Tag_MPextension_use_legacy].int_value() != 0)
11273 {
11274 if (out_attr[elfcpp::Tag_MPextension_use].int_value() != 0
11275 && out_attr[elfcpp::Tag_MPextension_use_legacy].int_value()
2e702c99 11276 != out_attr[elfcpp::Tag_MPextension_use].int_value())
da59ad79
DK
11277 {
11278 gold_error(_("%s has both the current and legacy "
11279 "Tag_MPextension_use attributes"),
11280 name);
11281 }
11282
11283 out_attr[elfcpp::Tag_MPextension_use] =
11284 out_attr[elfcpp::Tag_MPextension_use_legacy];
11285 out_attr[elfcpp::Tag_MPextension_use_legacy].set_type(0);
11286 out_attr[elfcpp::Tag_MPextension_use_legacy].set_int_value(0);
11287 }
11288
a0351a69
DK
11289 return;
11290 }
11291
a0351a69
DK
11292 const Object_attribute* in_attr = pasd->known_attributes(vendor);
11293 Object_attribute* out_attr =
11294 this->attributes_section_data_->known_attributes(vendor);
11295
11296 // This needs to happen before Tag_ABI_FP_number_model is merged. */
11297 if (in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
11298 != out_attr[elfcpp::Tag_ABI_VFP_args].int_value())
11299 {
11300 // Ignore mismatches if the object doesn't use floating point. */
5c294fee 11301 if (out_attr[elfcpp::Tag_ABI_FP_number_model].int_value()
f12d1e8a 11302 == elfcpp::AEABI_FP_number_model_none
5c294fee 11303 || (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value()
f12d1e8a 11304 != elfcpp::AEABI_FP_number_model_none
5c294fee 11305 && out_attr[elfcpp::Tag_ABI_VFP_args].int_value()
f12d1e8a 11306 == elfcpp::AEABI_VFP_args_compatible))
a0351a69
DK
11307 out_attr[elfcpp::Tag_ABI_VFP_args].set_int_value(
11308 in_attr[elfcpp::Tag_ABI_VFP_args].int_value());
5c294fee 11309 else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value()
f12d1e8a 11310 != elfcpp::AEABI_FP_number_model_none
5c294fee 11311 && in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
f12d1e8a 11312 != elfcpp::AEABI_VFP_args_compatible
7296d933 11313 && parameters->options().warn_mismatch())
2e702c99 11314 gold_error(_("%s uses VFP register arguments, output does not"),
a0351a69
DK
11315 name);
11316 }
11317
11318 for (int i = 4; i < Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES; ++i)
11319 {
11320 // Merge this attribute with existing attributes.
11321 switch (i)
11322 {
11323 case elfcpp::Tag_CPU_raw_name:
11324 case elfcpp::Tag_CPU_name:
11325 // These are merged after Tag_CPU_arch.
11326 break;
11327
11328 case elfcpp::Tag_ABI_optimization_goals:
11329 case elfcpp::Tag_ABI_FP_optimization_goals:
11330 // Use the first value seen.
11331 break;
11332
11333 case elfcpp::Tag_CPU_arch:
11334 {
11335 unsigned int saved_out_attr = out_attr->int_value();
11336 // Merge Tag_CPU_arch and Tag_also_compatible_with.
11337 int secondary_compat =
11338 this->get_secondary_compatible_arch(pasd);
11339 int secondary_compat_out =
11340 this->get_secondary_compatible_arch(
11341 this->attributes_section_data_);
11342 out_attr[i].set_int_value(
11343 tag_cpu_arch_combine(name, out_attr[i].int_value(),
11344 &secondary_compat_out,
11345 in_attr[i].int_value(),
11346 secondary_compat));
11347 this->set_secondary_compatible_arch(this->attributes_section_data_,
11348 secondary_compat_out);
11349
11350 // Merge Tag_CPU_name and Tag_CPU_raw_name.
11351 if (out_attr[i].int_value() == saved_out_attr)
11352 ; // Leave the names alone.
11353 else if (out_attr[i].int_value() == in_attr[i].int_value())
11354 {
11355 // The output architecture has been changed to match the
11356 // input architecture. Use the input names.
11357 out_attr[elfcpp::Tag_CPU_name].set_string_value(
11358 in_attr[elfcpp::Tag_CPU_name].string_value());
11359 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value(
11360 in_attr[elfcpp::Tag_CPU_raw_name].string_value());
11361 }
11362 else
11363 {
11364 out_attr[elfcpp::Tag_CPU_name].set_string_value("");
11365 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value("");
11366 }
11367
11368 // If we still don't have a value for Tag_CPU_name,
11369 // make one up now. Tag_CPU_raw_name remains blank.
11370 if (out_attr[elfcpp::Tag_CPU_name].string_value() == "")
11371 {
11372 const std::string cpu_name =
11373 this->tag_cpu_name_value(out_attr[i].int_value());
11374 // FIXME: If we see an unknown CPU, this will be set
11375 // to "<unknown CPU n>", where n is the attribute value.
11376 // This is different from BFD, which leaves the name alone.
11377 out_attr[elfcpp::Tag_CPU_name].set_string_value(cpu_name);
11378 }
11379 }
11380 break;
11381
11382 case elfcpp::Tag_ARM_ISA_use:
11383 case elfcpp::Tag_THUMB_ISA_use:
11384 case elfcpp::Tag_WMMX_arch:
11385 case elfcpp::Tag_Advanced_SIMD_arch:
11386 // ??? Do Advanced_SIMD (NEON) and WMMX conflict?
11387 case elfcpp::Tag_ABI_FP_rounding:
11388 case elfcpp::Tag_ABI_FP_exceptions:
11389 case elfcpp::Tag_ABI_FP_user_exceptions:
11390 case elfcpp::Tag_ABI_FP_number_model:
11391 case elfcpp::Tag_VFP_HP_extension:
11392 case elfcpp::Tag_CPU_unaligned_access:
11393 case elfcpp::Tag_T2EE_use:
11394 case elfcpp::Tag_Virtualization_use:
11395 case elfcpp::Tag_MPextension_use:
11396 // Use the largest value specified.
11397 if (in_attr[i].int_value() > out_attr[i].int_value())
11398 out_attr[i].set_int_value(in_attr[i].int_value());
11399 break;
11400
11401 case elfcpp::Tag_ABI_align8_preserved:
11402 case elfcpp::Tag_ABI_PCS_RO_data:
11403 // Use the smallest value specified.
11404 if (in_attr[i].int_value() < out_attr[i].int_value())
11405 out_attr[i].set_int_value(in_attr[i].int_value());
11406 break;
11407
11408 case elfcpp::Tag_ABI_align8_needed:
11409 if ((in_attr[i].int_value() > 0 || out_attr[i].int_value() > 0)
11410 && (in_attr[elfcpp::Tag_ABI_align8_preserved].int_value() == 0
11411 || (out_attr[elfcpp::Tag_ABI_align8_preserved].int_value()
11412 == 0)))
11413 {
9b547ce6 11414 // This error message should be enabled once all non-conforming
a0351a69
DK
11415 // binaries in the toolchain have had the attributes set
11416 // properly.
11417 // gold_error(_("output 8-byte data alignment conflicts with %s"),
11418 // name);
11419 }
11420 // Fall through.
11421 case elfcpp::Tag_ABI_FP_denormal:
11422 case elfcpp::Tag_ABI_PCS_GOT_use:
11423 {
11424 // These tags have 0 = don't care, 1 = strong requirement,
11425 // 2 = weak requirement.
11426 static const int order_021[3] = {0, 2, 1};
11427
11428 // Use the "greatest" from the sequence 0, 2, 1, or the largest
11429 // value if greater than 2 (for future-proofing).
11430 if ((in_attr[i].int_value() > 2
11431 && in_attr[i].int_value() > out_attr[i].int_value())
11432 || (in_attr[i].int_value() <= 2
11433 && out_attr[i].int_value() <= 2
11434 && (order_021[in_attr[i].int_value()]
11435 > order_021[out_attr[i].int_value()])))
11436 out_attr[i].set_int_value(in_attr[i].int_value());
11437 }
11438 break;
11439
11440 case elfcpp::Tag_CPU_arch_profile:
11441 if (out_attr[i].int_value() != in_attr[i].int_value())
11442 {
11443 // 0 will merge with anything.
11444 // 'A' and 'S' merge to 'A'.
11445 // 'R' and 'S' merge to 'R'.
11446 // 'M' and 'A|R|S' is an error.
11447 if (out_attr[i].int_value() == 0
11448 || (out_attr[i].int_value() == 'S'
11449 && (in_attr[i].int_value() == 'A'
11450 || in_attr[i].int_value() == 'R')))
11451 out_attr[i].set_int_value(in_attr[i].int_value());
11452 else if (in_attr[i].int_value() == 0
11453 || (in_attr[i].int_value() == 'S'
11454 && (out_attr[i].int_value() == 'A'
11455 || out_attr[i].int_value() == 'R')))
11456 ; // Do nothing.
7296d933 11457 else if (parameters->options().warn_mismatch())
a0351a69
DK
11458 {
11459 gold_error
11460 (_("conflicting architecture profiles %c/%c"),
11461 in_attr[i].int_value() ? in_attr[i].int_value() : '0',
11462 out_attr[i].int_value() ? out_attr[i].int_value() : '0');
11463 }
11464 }
11465 break;
11466 case elfcpp::Tag_VFP_arch:
11467 {
11468 static const struct
11469 {
11470 int ver;
11471 int regs;
11472 } vfp_versions[7] =
11473 {
11474 {0, 0},
11475 {1, 16},
11476 {2, 16},
11477 {3, 32},
11478 {3, 16},
11479 {4, 32},
11480 {4, 16}
11481 };
11482
11483 // Values greater than 6 aren't defined, so just pick the
11484 // biggest.
11485 if (in_attr[i].int_value() > 6
11486 && in_attr[i].int_value() > out_attr[i].int_value())
11487 {
11488 *out_attr = *in_attr;
11489 break;
11490 }
11491 // The output uses the superset of input features
11492 // (ISA version) and registers.
11493 int ver = std::max(vfp_versions[in_attr[i].int_value()].ver,
11494 vfp_versions[out_attr[i].int_value()].ver);
11495 int regs = std::max(vfp_versions[in_attr[i].int_value()].regs,
11496 vfp_versions[out_attr[i].int_value()].regs);
11497 // This assumes all possible supersets are also a valid
11498 // options.
11499 int newval;
11500 for (newval = 6; newval > 0; newval--)
11501 {
11502 if (regs == vfp_versions[newval].regs
11503 && ver == vfp_versions[newval].ver)
11504 break;
11505 }
11506 out_attr[i].set_int_value(newval);
11507 }
11508 break;
11509 case elfcpp::Tag_PCS_config:
11510 if (out_attr[i].int_value() == 0)
11511 out_attr[i].set_int_value(in_attr[i].int_value());
7296d933
DK
11512 else if (in_attr[i].int_value() != 0
11513 && out_attr[i].int_value() != 0
11514 && parameters->options().warn_mismatch())
a0351a69
DK
11515 {
11516 // It's sometimes ok to mix different configs, so this is only
11517 // a warning.
11518 gold_warning(_("%s: conflicting platform configuration"), name);
11519 }
11520 break;
11521 case elfcpp::Tag_ABI_PCS_R9_use:
11522 if (in_attr[i].int_value() != out_attr[i].int_value()
11523 && out_attr[i].int_value() != elfcpp::AEABI_R9_unused
7296d933
DK
11524 && in_attr[i].int_value() != elfcpp::AEABI_R9_unused
11525 && parameters->options().warn_mismatch())
a0351a69
DK
11526 {
11527 gold_error(_("%s: conflicting use of R9"), name);
11528 }
11529 if (out_attr[i].int_value() == elfcpp::AEABI_R9_unused)
11530 out_attr[i].set_int_value(in_attr[i].int_value());
11531 break;
11532 case elfcpp::Tag_ABI_PCS_RW_data:
11533 if (in_attr[i].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel
11534 && (in_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
11535 != elfcpp::AEABI_R9_SB)
11536 && (out_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
7296d933
DK
11537 != elfcpp::AEABI_R9_unused)
11538 && parameters->options().warn_mismatch())
a0351a69
DK
11539 {
11540 gold_error(_("%s: SB relative addressing conflicts with use "
11541 "of R9"),
7296d933 11542 name);
a0351a69
DK
11543 }
11544 // Use the smallest value specified.
11545 if (in_attr[i].int_value() < out_attr[i].int_value())
11546 out_attr[i].set_int_value(in_attr[i].int_value());
11547 break;
11548 case elfcpp::Tag_ABI_PCS_wchar_t:
a0351a69
DK
11549 if (out_attr[i].int_value()
11550 && in_attr[i].int_value()
7296d933 11551 && out_attr[i].int_value() != in_attr[i].int_value()
ce0d1972
DK
11552 && parameters->options().warn_mismatch()
11553 && parameters->options().wchar_size_warning())
a0351a69
DK
11554 {
11555 gold_warning(_("%s uses %u-byte wchar_t yet the output is to "
11556 "use %u-byte wchar_t; use of wchar_t values "
11557 "across objects may fail"),
11558 name, in_attr[i].int_value(),
11559 out_attr[i].int_value());
11560 }
11561 else if (in_attr[i].int_value() && !out_attr[i].int_value())
11562 out_attr[i].set_int_value(in_attr[i].int_value());
11563 break;
11564 case elfcpp::Tag_ABI_enum_size:
11565 if (in_attr[i].int_value() != elfcpp::AEABI_enum_unused)
11566 {
11567 if (out_attr[i].int_value() == elfcpp::AEABI_enum_unused
11568 || out_attr[i].int_value() == elfcpp::AEABI_enum_forced_wide)
11569 {
11570 // The existing object is compatible with anything.
11571 // Use whatever requirements the new object has.
11572 out_attr[i].set_int_value(in_attr[i].int_value());
11573 }
a0351a69 11574 else if (in_attr[i].int_value() != elfcpp::AEABI_enum_forced_wide
7296d933 11575 && out_attr[i].int_value() != in_attr[i].int_value()
ce0d1972
DK
11576 && parameters->options().warn_mismatch()
11577 && parameters->options().enum_size_warning())
a0351a69
DK
11578 {
11579 unsigned int in_value = in_attr[i].int_value();
11580 unsigned int out_value = out_attr[i].int_value();
11581 gold_warning(_("%s uses %s enums yet the output is to use "
11582 "%s enums; use of enum values across objects "
11583 "may fail"),
11584 name,
11585 this->aeabi_enum_name(in_value).c_str(),
11586 this->aeabi_enum_name(out_value).c_str());
11587 }
11588 }
11589 break;
11590 case elfcpp::Tag_ABI_VFP_args:
9b547ce6 11591 // Already done.
a0351a69
DK
11592 break;
11593 case elfcpp::Tag_ABI_WMMX_args:
7296d933
DK
11594 if (in_attr[i].int_value() != out_attr[i].int_value()
11595 && parameters->options().warn_mismatch())
a0351a69
DK
11596 {
11597 gold_error(_("%s uses iWMMXt register arguments, output does "
11598 "not"),
11599 name);
11600 }
11601 break;
11602 case Object_attribute::Tag_compatibility:
11603 // Merged in target-independent code.
11604 break;
11605 case elfcpp::Tag_ABI_HardFP_use:
11606 // 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP).
11607 if ((in_attr[i].int_value() == 1 && out_attr[i].int_value() == 2)
11608 || (in_attr[i].int_value() == 2 && out_attr[i].int_value() == 1))
11609 out_attr[i].set_int_value(3);
11610 else if (in_attr[i].int_value() > out_attr[i].int_value())
11611 out_attr[i].set_int_value(in_attr[i].int_value());
11612 break;
11613 case elfcpp::Tag_ABI_FP_16bit_format:
11614 if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
11615 {
7296d933
DK
11616 if (in_attr[i].int_value() != out_attr[i].int_value()
11617 && parameters->options().warn_mismatch())
a0351a69
DK
11618 gold_error(_("fp16 format mismatch between %s and output"),
11619 name);
11620 }
11621 if (in_attr[i].int_value() != 0)
11622 out_attr[i].set_int_value(in_attr[i].int_value());
11623 break;
11624
da59ad79 11625 case elfcpp::Tag_DIV_use:
679af368
ILT
11626 {
11627 // A value of zero on input means that the divide
11628 // instruction may be used if available in the base
11629 // architecture as specified via Tag_CPU_arch and
11630 // Tag_CPU_arch_profile. A value of 1 means that the user
11631 // did not want divide instructions. A value of 2
11632 // explicitly means that divide instructions were allowed
11633 // in ARM and Thumb state.
11634 int arch = this->
11635 get_aeabi_object_attribute(elfcpp::Tag_CPU_arch)->
11636 int_value();
11637 int profile = this->
11638 get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile)->
11639 int_value();
11640 if (in_attr[i].int_value() == out_attr[i].int_value())
11641 {
11642 // Do nothing.
11643 }
11644 else if (attributes_forbid_div(&in_attr[i])
43819297 11645 && !attributes_accept_div(arch, profile, &out_attr[i]))
679af368
ILT
11646 out_attr[i].set_int_value(1);
11647 else if (attributes_forbid_div(&out_attr[i])
11648 && attributes_accept_div(arch, profile, &in_attr[i]))
11649 out_attr[i].set_int_value(in_attr[i].int_value());
11650 else if (in_attr[i].int_value() == 2)
11651 out_attr[i].set_int_value(in_attr[i].int_value());
11652 }
da59ad79
DK
11653 break;
11654
11655 case elfcpp::Tag_MPextension_use_legacy:
11656 // We don't output objects with Tag_MPextension_use_legacy - we
11657 // move the value to Tag_MPextension_use.
11658 if (in_attr[i].int_value() != 0
11659 && in_attr[elfcpp::Tag_MPextension_use].int_value() != 0)
11660 {
11661 if (in_attr[elfcpp::Tag_MPextension_use].int_value()
11662 != in_attr[i].int_value())
11663 {
11664 gold_error(_("%s has has both the current and legacy "
2e702c99 11665 "Tag_MPextension_use attributes"),
da59ad79
DK
11666 name);
11667 }
11668 }
11669
11670 if (in_attr[i].int_value()
11671 > out_attr[elfcpp::Tag_MPextension_use].int_value())
11672 out_attr[elfcpp::Tag_MPextension_use] = in_attr[i];
11673
11674 break;
11675
a0351a69
DK
11676 case elfcpp::Tag_nodefaults:
11677 // This tag is set if it exists, but the value is unused (and is
11678 // typically zero). We don't actually need to do anything here -
11679 // the merge happens automatically when the type flags are merged
11680 // below.
11681 break;
11682 case elfcpp::Tag_also_compatible_with:
11683 // Already done in Tag_CPU_arch.
11684 break;
11685 case elfcpp::Tag_conformance:
11686 // Keep the attribute if it matches. Throw it away otherwise.
11687 // No attribute means no claim to conform.
11688 if (in_attr[i].string_value() != out_attr[i].string_value())
11689 out_attr[i].set_string_value("");
11690 break;
11691
11692 default:
11693 {
11694 const char* err_object = NULL;
11695
11696 // The "known_obj_attributes" table does contain some undefined
11697 // attributes. Ensure that there are unused.
11698 if (out_attr[i].int_value() != 0
11699 || out_attr[i].string_value() != "")
11700 err_object = "output";
11701 else if (in_attr[i].int_value() != 0
11702 || in_attr[i].string_value() != "")
11703 err_object = name;
11704
7296d933
DK
11705 if (err_object != NULL
11706 && parameters->options().warn_mismatch())
a0351a69
DK
11707 {
11708 // Attribute numbers >=64 (mod 128) can be safely ignored.
11709 if ((i & 127) < 64)
11710 gold_error(_("%s: unknown mandatory EABI object attribute "
11711 "%d"),
11712 err_object, i);
11713 else
11714 gold_warning(_("%s: unknown EABI object attribute %d"),
11715 err_object, i);
11716 }
11717
11718 // Only pass on attributes that match in both inputs.
11719 if (!in_attr[i].matches(out_attr[i]))
11720 {
11721 out_attr[i].set_int_value(0);
11722 out_attr[i].set_string_value("");
11723 }
11724 }
11725 }
11726
11727 // If out_attr was copied from in_attr then it won't have a type yet.
11728 if (in_attr[i].type() && !out_attr[i].type())
11729 out_attr[i].set_type(in_attr[i].type());
11730 }
11731
11732 // Merge Tag_compatibility attributes and any common GNU ones.
11733 this->attributes_section_data_->merge(name, pasd);
11734
11735 // Check for any attributes not known on ARM.
11736 typedef Vendor_object_attributes::Other_attributes Other_attributes;
11737 const Other_attributes* in_other_attributes = pasd->other_attributes(vendor);
11738 Other_attributes::const_iterator in_iter = in_other_attributes->begin();
11739 Other_attributes* out_other_attributes =
11740 this->attributes_section_data_->other_attributes(vendor);
11741 Other_attributes::iterator out_iter = out_other_attributes->begin();
11742
11743 while (in_iter != in_other_attributes->end()
11744 || out_iter != out_other_attributes->end())
11745 {
11746 const char* err_object = NULL;
11747 int err_tag = 0;
11748
11749 // The tags for each list are in numerical order.
11750 // If the tags are equal, then merge.
11751 if (out_iter != out_other_attributes->end()
11752 && (in_iter == in_other_attributes->end()
11753 || in_iter->first > out_iter->first))
11754 {
11755 // This attribute only exists in output. We can't merge, and we
11756 // don't know what the tag means, so delete it.
11757 err_object = "output";
11758 err_tag = out_iter->first;
11759 int saved_tag = out_iter->first;
11760 delete out_iter->second;
2e702c99 11761 out_other_attributes->erase(out_iter);
a0351a69
DK
11762 out_iter = out_other_attributes->upper_bound(saved_tag);
11763 }
11764 else if (in_iter != in_other_attributes->end()
11765 && (out_iter != out_other_attributes->end()
11766 || in_iter->first < out_iter->first))
11767 {
11768 // This attribute only exists in input. We can't merge, and we
11769 // don't know what the tag means, so ignore it.
11770 err_object = name;
11771 err_tag = in_iter->first;
11772 ++in_iter;
11773 }
11774 else // The tags are equal.
11775 {
11776 // As present, all attributes in the list are unknown, and
11777 // therefore can't be merged meaningfully.
11778 err_object = "output";
11779 err_tag = out_iter->first;
11780
11781 // Only pass on attributes that match in both inputs.
11782 if (!in_iter->second->matches(*(out_iter->second)))
11783 {
11784 // No match. Delete the attribute.
11785 int saved_tag = out_iter->first;
11786 delete out_iter->second;
11787 out_other_attributes->erase(out_iter);
11788 out_iter = out_other_attributes->upper_bound(saved_tag);
11789 }
11790 else
11791 {
11792 // Matched. Keep the attribute and move to the next.
11793 ++out_iter;
11794 ++in_iter;
11795 }
11796 }
11797
7296d933 11798 if (err_object && parameters->options().warn_mismatch())
a0351a69
DK
11799 {
11800 // Attribute numbers >=64 (mod 128) can be safely ignored. */
11801 if ((err_tag & 127) < 64)
11802 {
11803 gold_error(_("%s: unknown mandatory EABI object attribute %d"),
11804 err_object, err_tag);
11805 }
11806 else
11807 {
11808 gold_warning(_("%s: unknown EABI object attribute %d"),
11809 err_object, err_tag);
11810 }
11811 }
11812 }
11813}
11814
55da9579
DK
11815// Stub-generation methods for Target_arm.
11816
11817// Make a new Arm_input_section object.
11818
11819template<bool big_endian>
11820Arm_input_section<big_endian>*
11821Target_arm<big_endian>::new_arm_input_section(
2ea97941
ILT
11822 Relobj* relobj,
11823 unsigned int shndx)
55da9579 11824{
5ac169d4 11825 Section_id sid(relobj, shndx);
55da9579
DK
11826
11827 Arm_input_section<big_endian>* arm_input_section =
2ea97941 11828 new Arm_input_section<big_endian>(relobj, shndx);
55da9579
DK
11829 arm_input_section->init();
11830
11831 // Register new Arm_input_section in map for look-up.
11832 std::pair<typename Arm_input_section_map::iterator, bool> ins =
5ac169d4 11833 this->arm_input_section_map_.insert(std::make_pair(sid, arm_input_section));
55da9579
DK
11834
11835 // Make sure that it we have not created another Arm_input_section
11836 // for this input section already.
11837 gold_assert(ins.second);
11838
2e702c99 11839 return arm_input_section;
55da9579
DK
11840}
11841
11842// Find the Arm_input_section object corresponding to the SHNDX-th input
11843// section of RELOBJ.
11844
11845template<bool big_endian>
11846Arm_input_section<big_endian>*
11847Target_arm<big_endian>::find_arm_input_section(
2ea97941
ILT
11848 Relobj* relobj,
11849 unsigned int shndx) const
55da9579 11850{
5ac169d4 11851 Section_id sid(relobj, shndx);
55da9579 11852 typename Arm_input_section_map::const_iterator p =
5ac169d4 11853 this->arm_input_section_map_.find(sid);
55da9579
DK
11854 return (p != this->arm_input_section_map_.end()) ? p->second : NULL;
11855}
11856
11857// Make a new stub table.
11858
11859template<bool big_endian>
11860Stub_table<big_endian>*
11861Target_arm<big_endian>::new_stub_table(Arm_input_section<big_endian>* owner)
11862{
2ea97941 11863 Stub_table<big_endian>* stub_table =
55da9579 11864 new Stub_table<big_endian>(owner);
2ea97941 11865 this->stub_tables_.push_back(stub_table);
55da9579 11866
2ea97941
ILT
11867 stub_table->set_address(owner->address() + owner->data_size());
11868 stub_table->set_file_offset(owner->offset() + owner->data_size());
11869 stub_table->finalize_data_size();
55da9579 11870
2ea97941 11871 return stub_table;
55da9579
DK
11872}
11873
eb44217c
DK
11874// Scan a relocation for stub generation.
11875
11876template<bool big_endian>
11877void
11878Target_arm<big_endian>::scan_reloc_for_stub(
11879 const Relocate_info<32, big_endian>* relinfo,
11880 unsigned int r_type,
11881 const Sized_symbol<32>* gsym,
11882 unsigned int r_sym,
11883 const Symbol_value<32>* psymval,
11884 elfcpp::Elf_types<32>::Elf_Swxword addend,
11885 Arm_address address)
11886{
eb44217c
DK
11887 const Arm_relobj<big_endian>* arm_relobj =
11888 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
11889
11890 bool target_is_thumb;
11891 Symbol_value<32> symval;
11892 if (gsym != NULL)
11893 {
11894 // This is a global symbol. Determine if we use PLT and if the
11895 // final target is THUMB.
95a2c8d6 11896 if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
eb44217c
DK
11897 {
11898 // This uses a PLT, change the symbol value.
fa89cc82 11899 symval.set_output_value(this->plt_address_for_global(gsym));
eb44217c
DK
11900 psymval = &symval;
11901 target_is_thumb = false;
11902 }
11903 else if (gsym->is_undefined())
11904 // There is no need to generate a stub symbol is undefined.
11905 return;
11906 else
11907 {
11908 target_is_thumb =
11909 ((gsym->type() == elfcpp::STT_ARM_TFUNC)
11910 || (gsym->type() == elfcpp::STT_FUNC
11911 && !gsym->is_undefined()
11912 && ((psymval->value(arm_relobj, 0) & 1) != 0)));
11913 }
11914 }
11915 else
11916 {
11917 // This is a local symbol. Determine if the final target is THUMB.
11918 target_is_thumb = arm_relobj->local_symbol_is_thumb_function(r_sym);
11919 }
11920
11921 // Strip LSB if this points to a THUMB target.
5c57f1be
DK
11922 const Arm_reloc_property* reloc_property =
11923 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
11924 gold_assert(reloc_property != NULL);
eb44217c 11925 if (target_is_thumb
5c57f1be 11926 && reloc_property->uses_thumb_bit()
eb44217c
DK
11927 && ((psymval->value(arm_relobj, 0) & 1) != 0))
11928 {
11929 Arm_address stripped_value =
11930 psymval->value(arm_relobj, 0) & ~static_cast<Arm_address>(1);
11931 symval.set_output_value(stripped_value);
11932 psymval = &symval;
2e702c99 11933 }
eb44217c
DK
11934
11935 // Get the symbol value.
11936 Symbol_value<32>::Value value = psymval->value(arm_relobj, 0);
11937
11938 // Owing to pipelining, the PC relative branches below actually skip
11939 // two instructions when the branch offset is 0.
11940 Arm_address destination;
11941 switch (r_type)
11942 {
11943 case elfcpp::R_ARM_CALL:
11944 case elfcpp::R_ARM_JUMP24:
11945 case elfcpp::R_ARM_PLT32:
11946 // ARM branches.
11947 destination = value + addend + 8;
11948 break;
11949 case elfcpp::R_ARM_THM_CALL:
11950 case elfcpp::R_ARM_THM_XPC22:
11951 case elfcpp::R_ARM_THM_JUMP24:
11952 case elfcpp::R_ARM_THM_JUMP19:
11953 // THUMB branches.
11954 destination = value + addend + 4;
11955 break;
11956 default:
11957 gold_unreachable();
11958 }
11959
a120bc7f 11960 Reloc_stub* stub = NULL;
eb44217c
DK
11961 Stub_type stub_type =
11962 Reloc_stub::stub_type_for_reloc(r_type, address, destination,
11963 target_is_thumb);
a120bc7f
DK
11964 if (stub_type != arm_stub_none)
11965 {
11966 // Try looking up an existing stub from a stub table.
2e702c99 11967 Stub_table<big_endian>* stub_table =
a120bc7f
DK
11968 arm_relobj->stub_table(relinfo->data_shndx);
11969 gold_assert(stub_table != NULL);
2e702c99 11970
a120bc7f
DK
11971 // Locate stub by destination.
11972 Reloc_stub::Key stub_key(stub_type, gsym, arm_relobj, r_sym, addend);
eb44217c 11973
a120bc7f
DK
11974 // Create a stub if there is not one already
11975 stub = stub_table->find_reloc_stub(stub_key);
11976 if (stub == NULL)
11977 {
11978 // create a new stub and add it to stub table.
11979 stub = this->stub_factory().make_reloc_stub(stub_type);
11980 stub_table->add_reloc_stub(stub, stub_key);
11981 }
11982
11983 // Record the destination address.
11984 stub->set_destination_address(destination
11985 | (target_is_thumb ? 1 : 0));
eb44217c
DK
11986 }
11987
a120bc7f
DK
11988 // For Cortex-A8, we need to record a relocation at 4K page boundary.
11989 if (this->fix_cortex_a8_
11990 && (r_type == elfcpp::R_ARM_THM_JUMP24
11991 || r_type == elfcpp::R_ARM_THM_JUMP19
11992 || r_type == elfcpp::R_ARM_THM_CALL
11993 || r_type == elfcpp::R_ARM_THM_XPC22)
11994 && (address & 0xfffU) == 0xffeU)
11995 {
11996 // Found a candidate. Note we haven't checked the destination is
11997 // within 4K here: if we do so (and don't create a record) we can't
11998 // tell that a branch should have been relocated when scanning later.
11999 this->cortex_a8_relocs_info_[address] =
12000 new Cortex_a8_reloc(stub, r_type,
12001 destination | (target_is_thumb ? 1 : 0));
12002 }
eb44217c
DK
12003}
12004
12005// This function scans a relocation sections for stub generation.
12006// The template parameter Relocate must be a class type which provides
12007// a single function, relocate(), which implements the machine
12008// specific part of a relocation.
12009
12010// BIG_ENDIAN is the endianness of the data. SH_TYPE is the section type:
12011// SHT_REL or SHT_RELA.
12012
12013// PRELOCS points to the relocation data. RELOC_COUNT is the number
12014// of relocs. OUTPUT_SECTION is the output section.
12015// NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
12016// mapped to output offsets.
12017
12018// VIEW is the section data, VIEW_ADDRESS is its memory address, and
12019// VIEW_SIZE is the size. These refer to the input section, unless
12020// NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
12021// the output section.
12022
12023template<bool big_endian>
12024template<int sh_type>
12025void inline
12026Target_arm<big_endian>::scan_reloc_section_for_stubs(
12027 const Relocate_info<32, big_endian>* relinfo,
12028 const unsigned char* prelocs,
12029 size_t reloc_count,
12030 Output_section* output_section,
12031 bool needs_special_offset_handling,
12032 const unsigned char* view,
12033 elfcpp::Elf_types<32>::Elf_Addr view_address,
12034 section_size_type)
12035{
12036 typedef typename Reloc_types<sh_type, 32, big_endian>::Reloc Reltype;
12037 const int reloc_size =
12038 Reloc_types<sh_type, 32, big_endian>::reloc_size;
12039
12040 Arm_relobj<big_endian>* arm_object =
12041 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
12042 unsigned int local_count = arm_object->local_symbol_count();
12043
168a4726 12044 gold::Default_comdat_behavior default_comdat_behavior;
eb44217c
DK
12045 Comdat_behavior comdat_behavior = CB_UNDETERMINED;
12046
12047 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
12048 {
12049 Reltype reloc(prelocs);
12050
12051 typename elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
12052 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
12053 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
12054
12055 r_type = this->get_real_reloc_type(r_type);
12056
12057 // Only a few relocation types need stubs.
12058 if ((r_type != elfcpp::R_ARM_CALL)
2e702c99
RM
12059 && (r_type != elfcpp::R_ARM_JUMP24)
12060 && (r_type != elfcpp::R_ARM_PLT32)
12061 && (r_type != elfcpp::R_ARM_THM_CALL)
12062 && (r_type != elfcpp::R_ARM_THM_XPC22)
12063 && (r_type != elfcpp::R_ARM_THM_JUMP24)
12064 && (r_type != elfcpp::R_ARM_THM_JUMP19)
12065 && (r_type != elfcpp::R_ARM_V4BX))
eb44217c
DK
12066 continue;
12067
2ea97941 12068 section_offset_type offset =
eb44217c
DK
12069 convert_to_section_size_type(reloc.get_r_offset());
12070
12071 if (needs_special_offset_handling)
12072 {
2ea97941
ILT
12073 offset = output_section->output_offset(relinfo->object,
12074 relinfo->data_shndx,
12075 offset);
12076 if (offset == -1)
eb44217c
DK
12077 continue;
12078 }
12079
2fd9ae7a 12080 // Create a v4bx stub if --fix-v4bx-interworking is used.
a2162063
ILT
12081 if (r_type == elfcpp::R_ARM_V4BX)
12082 {
2fd9ae7a
DK
12083 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING)
12084 {
12085 // Get the BX instruction.
12086 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
12087 const Valtype* wv =
12088 reinterpret_cast<const Valtype*>(view + offset);
12089 elfcpp::Elf_types<32>::Elf_Swxword insn =
12090 elfcpp::Swap<32, big_endian>::readval(wv);
12091 const uint32_t reg = (insn & 0xf);
12092
12093 if (reg < 0xf)
12094 {
12095 // Try looking up an existing stub from a stub table.
12096 Stub_table<big_endian>* stub_table =
12097 arm_object->stub_table(relinfo->data_shndx);
12098 gold_assert(stub_table != NULL);
12099
12100 if (stub_table->find_arm_v4bx_stub(reg) == NULL)
12101 {
12102 // create a new stub and add it to stub table.
12103 Arm_v4bx_stub* stub =
2e702c99 12104 this->stub_factory().make_arm_v4bx_stub(reg);
2fd9ae7a
DK
12105 gold_assert(stub != NULL);
12106 stub_table->add_arm_v4bx_stub(stub);
12107 }
12108 }
12109 }
a2162063
ILT
12110 continue;
12111 }
12112
eb44217c
DK
12113 // Get the addend.
12114 Stub_addend_reader<sh_type, big_endian> stub_addend_reader;
12115 elfcpp::Elf_types<32>::Elf_Swxword addend =
2ea97941 12116 stub_addend_reader(r_type, view + offset, reloc);
eb44217c
DK
12117
12118 const Sized_symbol<32>* sym;
12119
12120 Symbol_value<32> symval;
12121 const Symbol_value<32> *psymval;
aa98ff75
DK
12122 bool is_defined_in_discarded_section;
12123 unsigned int shndx;
eb44217c
DK
12124 if (r_sym < local_count)
12125 {
12126 sym = NULL;
12127 psymval = arm_object->local_symbol(r_sym);
12128
2e702c99
RM
12129 // If the local symbol belongs to a section we are discarding,
12130 // and that section is a debug section, try to find the
12131 // corresponding kept section and map this symbol to its
12132 // counterpart in the kept section. The symbol must not
12133 // correspond to a section we are folding.
eb44217c 12134 bool is_ordinary;
aa98ff75
DK
12135 shndx = psymval->input_shndx(&is_ordinary);
12136 is_defined_in_discarded_section =
12137 (is_ordinary
12138 && shndx != elfcpp::SHN_UNDEF
12139 && !arm_object->is_section_included(shndx)
12140 && !relinfo->symtab->is_section_folded(arm_object, shndx));
12141
12142 // We need to compute the would-be final value of this local
12143 // symbol.
12144 if (!is_defined_in_discarded_section)
eb44217c 12145 {
6fa2a40b 12146 typedef Sized_relobj_file<32, big_endian> ObjType;
0f125432
CC
12147 if (psymval->is_section_symbol())
12148 symval.set_is_section_symbol();
aa98ff75
DK
12149 typename ObjType::Compute_final_local_value_status status =
12150 arm_object->compute_final_local_value(r_sym, psymval, &symval,
2e702c99 12151 relinfo->symtab);
aa98ff75
DK
12152 if (status == ObjType::CFLV_OK)
12153 {
12154 // Currently we cannot handle a branch to a target in
12155 // a merged section. If this is the case, issue an error
12156 // and also free the merge symbol value.
12157 if (!symval.has_output_value())
12158 {
12159 const std::string& section_name =
12160 arm_object->section_name(shndx);
12161 arm_object->error(_("cannot handle branch to local %u "
12162 "in a merged section %s"),
12163 r_sym, section_name.c_str());
12164 }
12165 psymval = &symval;
12166 }
eb44217c 12167 else
aa98ff75
DK
12168 {
12169 // We cannot determine the final value.
2e702c99 12170 continue;
aa98ff75 12171 }
eb44217c
DK
12172 }
12173 }
12174 else
12175 {
aa98ff75
DK
12176 const Symbol* gsym;
12177 gsym = arm_object->global_symbol(r_sym);
eb44217c
DK
12178 gold_assert(gsym != NULL);
12179 if (gsym->is_forwarder())
12180 gsym = relinfo->symtab->resolve_forwards(gsym);
12181
12182 sym = static_cast<const Sized_symbol<32>*>(gsym);
aa98ff75 12183 if (sym->has_symtab_index() && sym->symtab_index() != -1U)
eb44217c
DK
12184 symval.set_output_symtab_index(sym->symtab_index());
12185 else
12186 symval.set_no_output_symtab_entry();
12187
12188 // We need to compute the would-be final value of this global
12189 // symbol.
12190 const Symbol_table* symtab = relinfo->symtab;
12191 const Sized_symbol<32>* sized_symbol =
12192 symtab->get_sized_symbol<32>(gsym);
12193 Symbol_table::Compute_final_value_status status;
12194 Arm_address value =
12195 symtab->compute_final_value<32>(sized_symbol, &status);
12196
12197 // Skip this if the symbol has not output section.
12198 if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
12199 continue;
eb44217c 12200 symval.set_output_value(value);
aa98ff75
DK
12201
12202 if (gsym->type() == elfcpp::STT_TLS)
12203 symval.set_is_tls_symbol();
12204 else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
12205 symval.set_is_ifunc_symbol();
eb44217c 12206 psymval = &symval;
aa98ff75
DK
12207
12208 is_defined_in_discarded_section =
12209 (gsym->is_defined_in_discarded_section()
12210 && gsym->is_undefined());
12211 shndx = 0;
12212 }
12213
12214 Symbol_value<32> symval2;
12215 if (is_defined_in_discarded_section)
12216 {
12217 if (comdat_behavior == CB_UNDETERMINED)
12218 {
12219 std::string name = arm_object->section_name(relinfo->data_shndx);
168a4726 12220 comdat_behavior = default_comdat_behavior.get(name.c_str());
aa98ff75
DK
12221 }
12222 if (comdat_behavior == CB_PRETEND)
12223 {
12224 // FIXME: This case does not work for global symbols.
12225 // We have no place to store the original section index.
12226 // Fortunately this does not matter for comdat sections,
12227 // only for sections explicitly discarded by a linker
12228 // script.
12229 bool found;
12230 typename elfcpp::Elf_types<32>::Elf_Addr value =
12231 arm_object->map_to_kept_section(shndx, &found);
12232 if (found)
12233 symval2.set_output_value(value + psymval->input_value());
12234 else
12235 symval2.set_output_value(0);
12236 }
12237 else
12238 {
12239 if (comdat_behavior == CB_WARNING)
12240 gold_warning_at_location(relinfo, i, offset,
12241 _("relocation refers to discarded "
12242 "section"));
12243 symval2.set_output_value(0);
12244 }
12245 symval2.set_no_output_symtab_entry();
12246 psymval = &symval2;
eb44217c
DK
12247 }
12248
12249 // If symbol is a section symbol, we don't know the actual type of
12250 // destination. Give up.
12251 if (psymval->is_section_symbol())
12252 continue;
12253
12254 this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
2ea97941 12255 addend, view_address + offset);
eb44217c
DK
12256 }
12257}
12258
12259// Scan an input section for stub generation.
12260
12261template<bool big_endian>
12262void
12263Target_arm<big_endian>::scan_section_for_stubs(
12264 const Relocate_info<32, big_endian>* relinfo,
12265 unsigned int sh_type,
12266 const unsigned char* prelocs,
12267 size_t reloc_count,
12268 Output_section* output_section,
12269 bool needs_special_offset_handling,
12270 const unsigned char* view,
12271 Arm_address view_address,
12272 section_size_type view_size)
12273{
12274 if (sh_type == elfcpp::SHT_REL)
12275 this->scan_reloc_section_for_stubs<elfcpp::SHT_REL>(
12276 relinfo,
12277 prelocs,
12278 reloc_count,
12279 output_section,
12280 needs_special_offset_handling,
12281 view,
12282 view_address,
12283 view_size);
12284 else if (sh_type == elfcpp::SHT_RELA)
12285 // We do not support RELA type relocations yet. This is provided for
12286 // completeness.
12287 this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
12288 relinfo,
12289 prelocs,
12290 reloc_count,
12291 output_section,
12292 needs_special_offset_handling,
12293 view,
12294 view_address,
12295 view_size);
12296 else
12297 gold_unreachable();
12298}
12299
12300// Group input sections for stub generation.
12301//
9b547ce6 12302// We group input sections in an output section so that the total size,
eb44217c
DK
12303// including any padding space due to alignment is smaller than GROUP_SIZE
12304// unless the only input section in group is bigger than GROUP_SIZE already.
12305// Then an ARM stub table is created to follow the last input section
12306// in group. For each group an ARM stub table is created an is placed
9b547ce6 12307// after the last group. If STUB_ALWAYS_AFTER_BRANCH is false, we further
eb44217c
DK
12308// extend the group after the stub table.
12309
12310template<bool big_endian>
12311void
12312Target_arm<big_endian>::group_sections(
2ea97941 12313 Layout* layout,
eb44217c 12314 section_size_type group_size,
f625ae50
DK
12315 bool stubs_always_after_branch,
12316 const Task* task)
eb44217c
DK
12317{
12318 // Group input sections and insert stub table
12319 Layout::Section_list section_list;
ec661b9d 12320 layout->get_executable_sections(&section_list);
eb44217c
DK
12321 for (Layout::Section_list::const_iterator p = section_list.begin();
12322 p != section_list.end();
12323 ++p)
12324 {
12325 Arm_output_section<big_endian>* output_section =
12326 Arm_output_section<big_endian>::as_arm_output_section(*p);
12327 output_section->group_sections(group_size, stubs_always_after_branch,
f625ae50 12328 this, task);
eb44217c
DK
12329 }
12330}
12331
12332// Relaxation hook. This is where we do stub generation.
12333
12334template<bool big_endian>
12335bool
12336Target_arm<big_endian>::do_relax(
12337 int pass,
12338 const Input_objects* input_objects,
12339 Symbol_table* symtab,
f625ae50
DK
12340 Layout* layout,
12341 const Task* task)
eb44217c
DK
12342{
12343 // No need to generate stubs if this is a relocatable link.
12344 gold_assert(!parameters->options().relocatable());
12345
12346 // If this is the first pass, we need to group input sections into
12347 // stub groups.
2b328d4e 12348 bool done_exidx_fixup = false;
6625d24e 12349 typedef typename Stub_table_list::iterator Stub_table_iterator;
eb44217c
DK
12350 if (pass == 1)
12351 {
12352 // Determine the stub group size. The group size is the absolute
12353 // value of the parameter --stub-group-size. If --stub-group-size
9b547ce6 12354 // is passed a negative value, we restrict stubs to be always after
eb44217c
DK
12355 // the stubbed branches.
12356 int32_t stub_group_size_param =
12357 parameters->options().stub_group_size();
12358 bool stubs_always_after_branch = stub_group_size_param < 0;
12359 section_size_type stub_group_size = abs(stub_group_size_param);
12360
12361 if (stub_group_size == 1)
12362 {
12363 // Default value.
12364 // Thumb branch range is +-4MB has to be used as the default
12365 // maximum size (a given section can contain both ARM and Thumb
a2c7281b
DK
12366 // code, so the worst case has to be taken into account). If we are
12367 // fixing cortex-a8 errata, the branch range has to be even smaller,
12368 // since wide conditional branch has a range of +-1MB only.
eb44217c 12369 //
25bbe950 12370 // This value is 48K less than that, which allows for 4096
eb44217c
DK
12371 // 12-byte stubs. If we exceed that, then we will fail to link.
12372 // The user will have to relink with an explicit group size
12373 // option.
25bbe950
DK
12374 stub_group_size = 4145152;
12375 }
12376
12377 // The Cortex-A8 erratum fix depends on stubs not being in the same 4K
12378 // page as the first half of a 32-bit branch straddling two 4K pages.
12379 // This is a crude way of enforcing that. In addition, long conditional
12380 // branches of THUMB-2 have a range of +-1M. If we are fixing cortex-A8
12381 // erratum, limit the group size to (1M - 12k) to avoid unreachable
12382 // cortex-A8 stubs from long conditional branches.
12383 if (this->fix_cortex_a8_)
12384 {
12385 stubs_always_after_branch = true;
12386 const section_size_type cortex_a8_group_size = 1024 * (1024 - 12);
12387 stub_group_size = std::max(stub_group_size, cortex_a8_group_size);
eb44217c
DK
12388 }
12389
f625ae50 12390 group_sections(layout, stub_group_size, stubs_always_after_branch, task);
2e702c99 12391
2b328d4e 12392 // Also fix .ARM.exidx section coverage.
131687b4
DK
12393 Arm_output_section<big_endian>* exidx_output_section = NULL;
12394 for (Layout::Section_list::const_iterator p =
12395 layout->section_list().begin();
12396 p != layout->section_list().end();
12397 ++p)
12398 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
12399 {
12400 if (exidx_output_section == NULL)
12401 exidx_output_section =
12402 Arm_output_section<big_endian>::as_arm_output_section(*p);
12403 else
12404 // We cannot handle this now.
12405 gold_error(_("multiple SHT_ARM_EXIDX sections %s and %s in a "
12406 "non-relocatable link"),
12407 exidx_output_section->name(),
12408 (*p)->name());
12409 }
12410
12411 if (exidx_output_section != NULL)
2b328d4e 12412 {
131687b4 12413 this->fix_exidx_coverage(layout, input_objects, exidx_output_section,
f625ae50 12414 symtab, task);
2b328d4e
DK
12415 done_exidx_fixup = true;
12416 }
eb44217c 12417 }
6625d24e
DK
12418 else
12419 {
12420 // If this is not the first pass, addresses and file offsets have
12421 // been reset at this point, set them here.
12422 for (Stub_table_iterator sp = this->stub_tables_.begin();
12423 sp != this->stub_tables_.end();
12424 ++sp)
12425 {
12426 Arm_input_section<big_endian>* owner = (*sp)->owner();
12427 off_t off = align_address(owner->original_size(),
12428 (*sp)->addralign());
12429 (*sp)->set_address_and_file_offset(owner->address() + off,
12430 owner->offset() + off);
12431 }
12432 }
eb44217c 12433
44272192
DK
12434 // The Cortex-A8 stubs are sensitive to layout of code sections. At the
12435 // beginning of each relaxation pass, just blow away all the stubs.
12436 // Alternatively, we could selectively remove only the stubs and reloc
12437 // information for code sections that have moved since the last pass.
12438 // That would require more book-keeping.
a120bc7f
DK
12439 if (this->fix_cortex_a8_)
12440 {
12441 // Clear all Cortex-A8 reloc information.
12442 for (typename Cortex_a8_relocs_info::const_iterator p =
12443 this->cortex_a8_relocs_info_.begin();
12444 p != this->cortex_a8_relocs_info_.end();
12445 ++p)
12446 delete p->second;
12447 this->cortex_a8_relocs_info_.clear();
44272192
DK
12448
12449 // Remove all Cortex-A8 stubs.
12450 for (Stub_table_iterator sp = this->stub_tables_.begin();
12451 sp != this->stub_tables_.end();
12452 ++sp)
12453 (*sp)->remove_all_cortex_a8_stubs();
a120bc7f 12454 }
2e702c99 12455
44272192 12456 // Scan relocs for relocation stubs
eb44217c
DK
12457 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
12458 op != input_objects->relobj_end();
12459 ++op)
12460 {
12461 Arm_relobj<big_endian>* arm_relobj =
12462 Arm_relobj<big_endian>::as_arm_relobj(*op);
f625ae50
DK
12463 // Lock the object so we can read from it. This is only called
12464 // single-threaded from Layout::finalize, so it is OK to lock.
12465 Task_lock_obj<Object> tl(task, arm_relobj);
2ea97941 12466 arm_relobj->scan_sections_for_stubs(this, symtab, layout);
eb44217c
DK
12467 }
12468
2fb7225c
DK
12469 // Check all stub tables to see if any of them have their data sizes
12470 // or addresses alignments changed. These are the only things that
12471 // matter.
eb44217c 12472 bool any_stub_table_changed = false;
8923b24c 12473 Unordered_set<const Output_section*> sections_needing_adjustment;
eb44217c
DK
12474 for (Stub_table_iterator sp = this->stub_tables_.begin();
12475 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
12476 ++sp)
12477 {
2fb7225c 12478 if ((*sp)->update_data_size_and_addralign())
8923b24c
DK
12479 {
12480 // Update data size of stub table owner.
12481 Arm_input_section<big_endian>* owner = (*sp)->owner();
12482 uint64_t address = owner->address();
12483 off_t offset = owner->offset();
12484 owner->reset_address_and_file_offset();
12485 owner->set_address_and_file_offset(address, offset);
12486
12487 sections_needing_adjustment.insert(owner->output_section());
12488 any_stub_table_changed = true;
12489 }
12490 }
12491
12492 // Output_section_data::output_section() returns a const pointer but we
12493 // need to update output sections, so we record all output sections needing
12494 // update above and scan the sections here to find out what sections need
12495 // to be updated.
f625ae50 12496 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
8923b24c
DK
12497 p != layout->section_list().end();
12498 ++p)
12499 {
12500 if (sections_needing_adjustment.find(*p)
12501 != sections_needing_adjustment.end())
12502 (*p)->set_section_offsets_need_adjustment();
eb44217c
DK
12503 }
12504
2b328d4e
DK
12505 // Stop relaxation if no EXIDX fix-up and no stub table change.
12506 bool continue_relaxation = done_exidx_fixup || any_stub_table_changed;
12507
2fb7225c 12508 // Finalize the stubs in the last relaxation pass.
2b328d4e 12509 if (!continue_relaxation)
e7eca48c
DK
12510 {
12511 for (Stub_table_iterator sp = this->stub_tables_.begin();
12512 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
12513 ++sp)
12514 (*sp)->finalize_stubs();
12515
12516 // Update output local symbol counts of objects if necessary.
12517 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
12518 op != input_objects->relobj_end();
12519 ++op)
12520 {
12521 Arm_relobj<big_endian>* arm_relobj =
12522 Arm_relobj<big_endian>::as_arm_relobj(*op);
12523
12524 // Update output local symbol counts. We need to discard local
12525 // symbols defined in parts of input sections that are discarded by
12526 // relaxation.
12527 if (arm_relobj->output_local_symbol_count_needs_update())
f625ae50
DK
12528 {
12529 // We need to lock the object's file to update it.
12530 Task_lock_obj<Object> tl(task, arm_relobj);
12531 arm_relobj->update_output_local_symbol_count();
12532 }
e7eca48c
DK
12533 }
12534 }
2fb7225c 12535
2b328d4e 12536 return continue_relaxation;
eb44217c
DK
12537}
12538
43d12afe
DK
12539// Relocate a stub.
12540
12541template<bool big_endian>
12542void
12543Target_arm<big_endian>::relocate_stub(
2fb7225c 12544 Stub* stub,
43d12afe
DK
12545 const Relocate_info<32, big_endian>* relinfo,
12546 Output_section* output_section,
12547 unsigned char* view,
12548 Arm_address address,
12549 section_size_type view_size)
12550{
12551 Relocate relocate;
2ea97941
ILT
12552 const Stub_template* stub_template = stub->stub_template();
12553 for (size_t i = 0; i < stub_template->reloc_count(); i++)
43d12afe 12554 {
2ea97941
ILT
12555 size_t reloc_insn_index = stub_template->reloc_insn_index(i);
12556 const Insn_template* insn = &stub_template->insns()[reloc_insn_index];
43d12afe
DK
12557
12558 unsigned int r_type = insn->r_type();
2ea97941 12559 section_size_type reloc_offset = stub_template->reloc_offset(i);
43d12afe
DK
12560 section_size_type reloc_size = insn->size();
12561 gold_assert(reloc_offset + reloc_size <= view_size);
12562
12563 // This is the address of the stub destination.
41263c05 12564 Arm_address target = stub->reloc_target(i) + insn->reloc_addend();
43d12afe
DK
12565 Symbol_value<32> symval;
12566 symval.set_output_value(target);
12567
12568 // Synthesize a fake reloc just in case. We don't have a symbol so
12569 // we use 0.
12570 unsigned char reloc_buffer[elfcpp::Elf_sizes<32>::rel_size];
12571 memset(reloc_buffer, 0, sizeof(reloc_buffer));
12572 elfcpp::Rel_write<32, big_endian> reloc_write(reloc_buffer);
12573 reloc_write.put_r_offset(reloc_offset);
12574 reloc_write.put_r_info(elfcpp::elf_r_info<32>(0, r_type));
43d12afe 12575
91a65d2f
AM
12576 relocate.relocate(relinfo, elfcpp::SHT_REL, this, output_section,
12577 this->fake_relnum_for_stubs, reloc_buffer,
43d12afe
DK
12578 NULL, &symval, view + reloc_offset,
12579 address + reloc_offset, reloc_size);
12580 }
12581}
12582
a0351a69
DK
12583// Determine whether an object attribute tag takes an integer, a
12584// string or both.
12585
12586template<bool big_endian>
12587int
12588Target_arm<big_endian>::do_attribute_arg_type(int tag) const
12589{
12590 if (tag == Object_attribute::Tag_compatibility)
12591 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
12592 | Object_attribute::ATTR_TYPE_FLAG_STR_VAL);
12593 else if (tag == elfcpp::Tag_nodefaults)
12594 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
12595 | Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT);
12596 else if (tag == elfcpp::Tag_CPU_raw_name || tag == elfcpp::Tag_CPU_name)
12597 return Object_attribute::ATTR_TYPE_FLAG_STR_VAL;
12598 else if (tag < 32)
12599 return Object_attribute::ATTR_TYPE_FLAG_INT_VAL;
12600 else
12601 return ((tag & 1) != 0
12602 ? Object_attribute::ATTR_TYPE_FLAG_STR_VAL
12603 : Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
12604}
12605
12606// Reorder attributes.
12607//
12608// The ABI defines that Tag_conformance should be emitted first, and that
12609// Tag_nodefaults should be second (if either is defined). This sets those
12610// two positions, and bumps up the position of all the remaining tags to
12611// compensate.
12612
12613template<bool big_endian>
12614int
12615Target_arm<big_endian>::do_attributes_order(int num) const
12616{
12617 // Reorder the known object attributes in output. We want to move
12618 // Tag_conformance to position 4 and Tag_conformance to position 5
9b547ce6 12619 // and shift everything between 4 .. Tag_conformance - 1 to make room.
a0351a69
DK
12620 if (num == 4)
12621 return elfcpp::Tag_conformance;
12622 if (num == 5)
12623 return elfcpp::Tag_nodefaults;
12624 if ((num - 2) < elfcpp::Tag_nodefaults)
12625 return num - 2;
12626 if ((num - 1) < elfcpp::Tag_conformance)
12627 return num - 1;
12628 return num;
12629}
4a657b0d 12630
44272192
DK
12631// Scan a span of THUMB code for Cortex-A8 erratum.
12632
12633template<bool big_endian>
12634void
12635Target_arm<big_endian>::scan_span_for_cortex_a8_erratum(
12636 Arm_relobj<big_endian>* arm_relobj,
12637 unsigned int shndx,
12638 section_size_type span_start,
12639 section_size_type span_end,
12640 const unsigned char* view,
12641 Arm_address address)
12642{
12643 // Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
12644 //
12645 // The opcode is BLX.W, BL.W, B.W, Bcc.W
12646 // The branch target is in the same 4KB region as the
12647 // first half of the branch.
12648 // The instruction before the branch is a 32-bit
12649 // length non-branch instruction.
12650 section_size_type i = span_start;
12651 bool last_was_32bit = false;
12652 bool last_was_branch = false;
12653 while (i < span_end)
12654 {
12655 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
12656 const Valtype* wv = reinterpret_cast<const Valtype*>(view + i);
12657 uint32_t insn = elfcpp::Swap<16, big_endian>::readval(wv);
12658 bool is_blx = false, is_b = false;
12659 bool is_bl = false, is_bcc = false;
12660
12661 bool insn_32bit = (insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000;
12662 if (insn_32bit)
12663 {
12664 // Load the rest of the insn (in manual-friendly order).
12665 insn = (insn << 16) | elfcpp::Swap<16, big_endian>::readval(wv + 1);
12666
12667 // Encoding T4: B<c>.W.
12668 is_b = (insn & 0xf800d000U) == 0xf0009000U;
12669 // Encoding T1: BL<c>.W.
2e702c99
RM
12670 is_bl = (insn & 0xf800d000U) == 0xf000d000U;
12671 // Encoding T2: BLX<c>.W.
12672 is_blx = (insn & 0xf800d000U) == 0xf000c000U;
44272192
DK
12673 // Encoding T3: B<c>.W (not permitted in IT block).
12674 is_bcc = ((insn & 0xf800d000U) == 0xf0008000U
12675 && (insn & 0x07f00000U) != 0x03800000U);
12676 }
12677
12678 bool is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
2e702c99 12679
44272192
DK
12680 // If this instruction is a 32-bit THUMB branch that crosses a 4K
12681 // page boundary and it follows 32-bit non-branch instruction,
12682 // we need to work around.
12683 if (is_32bit_branch
12684 && ((address + i) & 0xfffU) == 0xffeU
12685 && last_was_32bit
12686 && !last_was_branch)
12687 {
12688 // Check to see if there is a relocation stub for this branch.
12689 bool force_target_arm = false;
12690 bool force_target_thumb = false;
12691 const Cortex_a8_reloc* cortex_a8_reloc = NULL;
12692 Cortex_a8_relocs_info::const_iterator p =
12693 this->cortex_a8_relocs_info_.find(address + i);
12694
12695 if (p != this->cortex_a8_relocs_info_.end())
12696 {
12697 cortex_a8_reloc = p->second;
12698 bool target_is_thumb = (cortex_a8_reloc->destination() & 1) != 0;
12699
12700 if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
12701 && !target_is_thumb)
12702 force_target_arm = true;
12703 else if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
12704 && target_is_thumb)
12705 force_target_thumb = true;
12706 }
12707
12708 off_t offset;
12709 Stub_type stub_type = arm_stub_none;
12710
12711 // Check if we have an offending branch instruction.
12712 uint16_t upper_insn = (insn >> 16) & 0xffffU;
12713 uint16_t lower_insn = insn & 0xffffU;
2c54b4f4 12714 typedef class Arm_relocate_functions<big_endian> RelocFuncs;
44272192
DK
12715
12716 if (cortex_a8_reloc != NULL
12717 && cortex_a8_reloc->reloc_stub() != NULL)
12718 // We've already made a stub for this instruction, e.g.
12719 // it's a long branch or a Thumb->ARM stub. Assume that
12720 // stub will suffice to work around the A8 erratum (see
12721 // setting of always_after_branch above).
12722 ;
12723 else if (is_bcc)
12724 {
12725 offset = RelocFuncs::thumb32_cond_branch_offset(upper_insn,
12726 lower_insn);
12727 stub_type = arm_stub_a8_veneer_b_cond;
12728 }
12729 else if (is_b || is_bl || is_blx)
12730 {
12731 offset = RelocFuncs::thumb32_branch_offset(upper_insn,
12732 lower_insn);
12733 if (is_blx)
2e702c99 12734 offset &= ~3;
44272192
DK
12735
12736 stub_type = (is_blx
12737 ? arm_stub_a8_veneer_blx
12738 : (is_bl
12739 ? arm_stub_a8_veneer_bl
12740 : arm_stub_a8_veneer_b));
12741 }
12742
12743 if (stub_type != arm_stub_none)
12744 {
12745 Arm_address pc_for_insn = address + i + 4;
12746
12747 // The original instruction is a BL, but the target is
12748 // an ARM instruction. If we were not making a stub,
12749 // the BL would have been converted to a BLX. Use the
12750 // BLX stub instead in that case.
cd6eab1c 12751 if (this->may_use_v5t_interworking() && force_target_arm
44272192
DK
12752 && stub_type == arm_stub_a8_veneer_bl)
12753 {
12754 stub_type = arm_stub_a8_veneer_blx;
12755 is_blx = true;
12756 is_bl = false;
12757 }
12758 // Conversely, if the original instruction was
12759 // BLX but the target is Thumb mode, use the BL stub.
12760 else if (force_target_thumb
12761 && stub_type == arm_stub_a8_veneer_blx)
12762 {
12763 stub_type = arm_stub_a8_veneer_bl;
12764 is_blx = false;
12765 is_bl = true;
12766 }
12767
12768 if (is_blx)
12769 pc_for_insn &= ~3;
12770
2e702c99 12771 // If we found a relocation, use the proper destination,
44272192
DK
12772 // not the offset in the (unrelocated) instruction.
12773 // Note this is always done if we switched the stub type above.
2e702c99
RM
12774 if (cortex_a8_reloc != NULL)
12775 offset = (off_t) (cortex_a8_reloc->destination() - pc_for_insn);
44272192 12776
2e702c99 12777 Arm_address target = (pc_for_insn + offset) | (is_blx ? 0 : 1);
44272192
DK
12778
12779 // Add a new stub if destination address in in the same page.
2e702c99
RM
12780 if (((address + i) & ~0xfffU) == (target & ~0xfffU))
12781 {
44272192
DK
12782 Cortex_a8_stub* stub =
12783 this->stub_factory_.make_cortex_a8_stub(stub_type,
12784 arm_relobj, shndx,
12785 address + i,
12786 target, insn);
12787 Stub_table<big_endian>* stub_table =
12788 arm_relobj->stub_table(shndx);
12789 gold_assert(stub_table != NULL);
12790 stub_table->add_cortex_a8_stub(address + i, stub);
2e702c99
RM
12791 }
12792 }
12793 }
44272192
DK
12794
12795 i += insn_32bit ? 4 : 2;
12796 last_was_32bit = insn_32bit;
12797 last_was_branch = is_32bit_branch;
12798 }
12799}
12800
41263c05
DK
12801// Apply the Cortex-A8 workaround.
12802
12803template<bool big_endian>
12804void
12805Target_arm<big_endian>::apply_cortex_a8_workaround(
12806 const Cortex_a8_stub* stub,
12807 Arm_address stub_address,
12808 unsigned char* insn_view,
12809 Arm_address insn_address)
12810{
12811 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
12812 Valtype* wv = reinterpret_cast<Valtype*>(insn_view);
12813 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
12814 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
12815 off_t branch_offset = stub_address - (insn_address + 4);
12816
2c54b4f4 12817 typedef class Arm_relocate_functions<big_endian> RelocFuncs;
41263c05
DK
12818 switch (stub->stub_template()->type())
12819 {
12820 case arm_stub_a8_veneer_b_cond:
9b547ce6 12821 // For a conditional branch, we re-write it to be an unconditional
0439c796
DK
12822 // branch to the stub. We use the THUMB-2 encoding here.
12823 upper_insn = 0xf000U;
12824 lower_insn = 0xb800U;
d8e90251 12825 // Fall through.
41263c05
DK
12826 case arm_stub_a8_veneer_b:
12827 case arm_stub_a8_veneer_bl:
12828 case arm_stub_a8_veneer_blx:
12829 if ((lower_insn & 0x5000U) == 0x4000U)
12830 // For a BLX instruction, make sure that the relocation is
12831 // rounded up to a word boundary. This follows the semantics of
12832 // the instruction which specifies that bit 1 of the target
12833 // address will come from bit 1 of the base address.
12834 branch_offset = (branch_offset + 2) & ~3;
12835
12836 // Put BRANCH_OFFSET back into the insn.
bef2b434 12837 gold_assert(!Bits<25>::has_overflow32(branch_offset));
41263c05
DK
12838 upper_insn = RelocFuncs::thumb32_branch_upper(upper_insn, branch_offset);
12839 lower_insn = RelocFuncs::thumb32_branch_lower(lower_insn, branch_offset);
12840 break;
12841
12842 default:
12843 gold_unreachable();
12844 }
12845
12846 // Put the relocated value back in the object file:
12847 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
12848 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
12849}
12850
2e702c99
RM
12851// Target selector for ARM. Note this is never instantiated directly.
12852// It's only used in Target_selector_arm_nacl, below.
12853
4a657b0d
DK
12854template<bool big_endian>
12855class Target_selector_arm : public Target_selector
12856{
12857 public:
12858 Target_selector_arm()
12859 : Target_selector(elfcpp::EM_ARM, 32, big_endian,
03ef7571
ILT
12860 (big_endian ? "elf32-bigarm" : "elf32-littlearm"),
12861 (big_endian ? "armelfb" : "armelf"))
4a657b0d
DK
12862 { }
12863
12864 Target*
12865 do_instantiate_target()
12866 { return new Target_arm<big_endian>(); }
12867};
12868
2b328d4e
DK
12869// Fix .ARM.exidx section coverage.
12870
12871template<bool big_endian>
12872void
12873Target_arm<big_endian>::fix_exidx_coverage(
12874 Layout* layout,
131687b4 12875 const Input_objects* input_objects,
2b328d4e 12876 Arm_output_section<big_endian>* exidx_section,
f625ae50
DK
12877 Symbol_table* symtab,
12878 const Task* task)
2b328d4e
DK
12879{
12880 // We need to look at all the input sections in output in ascending
12881 // order of of output address. We do that by building a sorted list
12882 // of output sections by addresses. Then we looks at the output sections
12883 // in order. The input sections in an output section are already sorted
12884 // by addresses within the output section.
12885
12886 typedef std::set<Output_section*, output_section_address_less_than>
12887 Sorted_output_section_list;
12888 Sorted_output_section_list sorted_output_sections;
131687b4
DK
12889
12890 // Find out all the output sections of input sections pointed by
12891 // EXIDX input sections.
12892 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
12893 p != input_objects->relobj_end();
2b328d4e
DK
12894 ++p)
12895 {
131687b4
DK
12896 Arm_relobj<big_endian>* arm_relobj =
12897 Arm_relobj<big_endian>::as_arm_relobj(*p);
12898 std::vector<unsigned int> shndx_list;
12899 arm_relobj->get_exidx_shndx_list(&shndx_list);
12900 for (size_t i = 0; i < shndx_list.size(); ++i)
12901 {
12902 const Arm_exidx_input_section* exidx_input_section =
12903 arm_relobj->exidx_input_section_by_shndx(shndx_list[i]);
12904 gold_assert(exidx_input_section != NULL);
12905 if (!exidx_input_section->has_errors())
12906 {
12907 unsigned int text_shndx = exidx_input_section->link();
ca09d69a 12908 Output_section* os = arm_relobj->output_section(text_shndx);
131687b4
DK
12909 if (os != NULL && (os->flags() & elfcpp::SHF_ALLOC) != 0)
12910 sorted_output_sections.insert(os);
12911 }
12912 }
2b328d4e
DK
12913 }
12914
12915 // Go over the output sections in ascending order of output addresses.
12916 typedef typename Arm_output_section<big_endian>::Text_section_list
12917 Text_section_list;
12918 Text_section_list sorted_text_sections;
f625ae50 12919 for (typename Sorted_output_section_list::iterator p =
2b328d4e
DK
12920 sorted_output_sections.begin();
12921 p != sorted_output_sections.end();
12922 ++p)
12923 {
12924 Arm_output_section<big_endian>* arm_output_section =
12925 Arm_output_section<big_endian>::as_arm_output_section(*p);
12926 arm_output_section->append_text_sections_to_list(&sorted_text_sections);
2e702c99 12927 }
2b328d4e 12928
85fdf906 12929 exidx_section->fix_exidx_coverage(layout, sorted_text_sections, symtab,
f625ae50 12930 merge_exidx_entries(), task);
2b328d4e
DK
12931}
12932
647f1574
DK
12933template<bool big_endian>
12934void
12935Target_arm<big_endian>::do_define_standard_symbols(
12936 Symbol_table* symtab,
12937 Layout* layout)
12938{
12939 // Handle the .ARM.exidx section.
12940 Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
12941
12942 if (exidx_section != NULL)
12943 {
12944 // Create __exidx_start and __exidx_end symbols.
12945 symtab->define_in_output_data("__exidx_start",
12946 NULL, // version
12947 Symbol_table::PREDEFINED,
12948 exidx_section,
12949 0, // value
12950 0, // symsize
12951 elfcpp::STT_NOTYPE,
12952 elfcpp::STB_GLOBAL,
12953 elfcpp::STV_HIDDEN,
12954 0, // nonvis
12955 false, // offset_is_from_end
12956 true); // only_if_ref
12957
12958 symtab->define_in_output_data("__exidx_end",
12959 NULL, // version
12960 Symbol_table::PREDEFINED,
12961 exidx_section,
2e702c99 12962 0, // value
647f1574
DK
12963 0, // symsize
12964 elfcpp::STT_NOTYPE,
12965 elfcpp::STB_GLOBAL,
12966 elfcpp::STV_HIDDEN,
12967 0, // nonvis
12968 true, // offset_is_from_end
12969 true); // only_if_ref
12970 }
12971 else
12972 {
12973 // Define __exidx_start and __exidx_end even when .ARM.exidx
12974 // section is missing to match ld's behaviour.
12975 symtab->define_as_constant("__exidx_start", NULL,
2e702c99
RM
12976 Symbol_table::PREDEFINED,
12977 0, 0, elfcpp::STT_OBJECT,
12978 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
12979 true, false);
647f1574 12980 symtab->define_as_constant("__exidx_end", NULL,
2e702c99
RM
12981 Symbol_table::PREDEFINED,
12982 0, 0, elfcpp::STT_OBJECT,
12983 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
12984 true, false);
647f1574
DK
12985 }
12986}
12987
2e702c99
RM
12988// NaCl variant. It uses different PLT contents.
12989
12990template<bool big_endian>
12991class Output_data_plt_arm_nacl;
12992
12993template<bool big_endian>
12994class Target_arm_nacl : public Target_arm<big_endian>
12995{
12996 public:
12997 Target_arm_nacl()
12998 : Target_arm<big_endian>(&arm_nacl_info)
12999 { }
13000
13001 protected:
13002 virtual Output_data_plt_arm<big_endian>*
fa89cc82
HS
13003 do_make_data_plt(
13004 Layout* layout,
13005 Arm_output_data_got<big_endian>* got,
13006 Output_data_space* got_plt,
13007 Output_data_space* got_irelative)
13008 { return new Output_data_plt_arm_nacl<big_endian>(
13009 layout, got, got_plt, got_irelative); }
2e702c99
RM
13010
13011 private:
13012 static const Target::Target_info arm_nacl_info;
13013};
13014
13015template<bool big_endian>
13016const Target::Target_info Target_arm_nacl<big_endian>::arm_nacl_info =
13017{
13018 32, // size
13019 big_endian, // is_big_endian
13020 elfcpp::EM_ARM, // machine_code
13021 false, // has_make_symbol
13022 false, // has_resolve
13023 false, // has_code_fill
13024 true, // is_default_stack_executable
13025 false, // can_icf_inline_merge_sections
13026 '\0', // wrap_char
13027 "/lib/ld-nacl-arm.so.1", // dynamic_linker
13028 0x20000, // default_text_segment_address
13029 0x10000, // abi_pagesize (overridable by -z max-page-size)
13030 0x10000, // common_pagesize (overridable by -z common-page-size)
13031 true, // isolate_execinstr
13032 0x10000000, // rosegment_gap
13033 elfcpp::SHN_UNDEF, // small_common_shndx
13034 elfcpp::SHN_UNDEF, // large_common_shndx
13035 0, // small_common_section_flags
13036 0, // large_common_section_flags
13037 ".ARM.attributes", // attributes_section
a67858e0 13038 "aeabi", // attributes_vendor
8d9743bd
MK
13039 "_start", // entry_symbol_name
13040 32, // hash_entry_size
2e702c99
RM
13041};
13042
13043template<bool big_endian>
13044class Output_data_plt_arm_nacl : public Output_data_plt_arm<big_endian>
13045{
13046 public:
fa89cc82
HS
13047 Output_data_plt_arm_nacl(
13048 Layout* layout,
13049 Arm_output_data_got<big_endian>* got,
13050 Output_data_space* got_plt,
13051 Output_data_space* got_irelative)
13052 : Output_data_plt_arm<big_endian>(layout, 16, got, got_plt, got_irelative)
2e702c99
RM
13053 { }
13054
13055 protected:
13056 // Return the offset of the first non-reserved PLT entry.
13057 virtual unsigned int
13058 do_first_plt_entry_offset() const
13059 { return sizeof(first_plt_entry); }
13060
13061 // Return the size of a PLT entry.
13062 virtual unsigned int
13063 do_get_plt_entry_size() const
13064 { return sizeof(plt_entry); }
13065
13066 virtual void
13067 do_fill_first_plt_entry(unsigned char* pov,
13068 Arm_address got_address,
13069 Arm_address plt_address);
13070
13071 virtual void
13072 do_fill_plt_entry(unsigned char* pov,
13073 Arm_address got_address,
13074 Arm_address plt_address,
13075 unsigned int got_offset,
13076 unsigned int plt_offset);
13077
13078 private:
13079 inline uint32_t arm_movw_immediate(uint32_t value)
13080 {
13081 return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
13082 }
13083
13084 inline uint32_t arm_movt_immediate(uint32_t value)
13085 {
13086 return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
13087 }
13088
13089 // Template for the first PLT entry.
13090 static const uint32_t first_plt_entry[16];
13091
13092 // Template for subsequent PLT entries.
13093 static const uint32_t plt_entry[4];
13094};
13095
13096// The first entry in the PLT.
13097template<bool big_endian>
13098const uint32_t Output_data_plt_arm_nacl<big_endian>::first_plt_entry[16] =
13099{
13100 // First bundle:
13101 0xe300c000, // movw ip, #:lower16:&GOT[2]-.+8
13102 0xe340c000, // movt ip, #:upper16:&GOT[2]-.+8
13103 0xe08cc00f, // add ip, ip, pc
13104 0xe52dc008, // str ip, [sp, #-8]!
13105 // Second bundle:
edccdf7c 13106 0xe3ccc103, // bic ip, ip, #0xc0000000
2e702c99
RM
13107 0xe59cc000, // ldr ip, [ip]
13108 0xe3ccc13f, // bic ip, ip, #0xc000000f
13109 0xe12fff1c, // bx ip
13110 // Third bundle:
13111 0xe320f000, // nop
13112 0xe320f000, // nop
13113 0xe320f000, // nop
13114 // .Lplt_tail:
13115 0xe50dc004, // str ip, [sp, #-4]
13116 // Fourth bundle:
edccdf7c 13117 0xe3ccc103, // bic ip, ip, #0xc0000000
2e702c99
RM
13118 0xe59cc000, // ldr ip, [ip]
13119 0xe3ccc13f, // bic ip, ip, #0xc000000f
13120 0xe12fff1c, // bx ip
13121};
13122
13123template<bool big_endian>
13124void
13125Output_data_plt_arm_nacl<big_endian>::do_fill_first_plt_entry(
13126 unsigned char* pov,
13127 Arm_address got_address,
13128 Arm_address plt_address)
13129{
13130 // Write first PLT entry. All but first two words are constants.
13131 const size_t num_first_plt_words = (sizeof(first_plt_entry)
13132 / sizeof(first_plt_entry[0]));
13133
13134 int32_t got_displacement = got_address + 8 - (plt_address + 16);
13135
13136 elfcpp::Swap<32, big_endian>::writeval
13137 (pov + 0, first_plt_entry[0] | arm_movw_immediate (got_displacement));
13138 elfcpp::Swap<32, big_endian>::writeval
13139 (pov + 4, first_plt_entry[1] | arm_movt_immediate (got_displacement));
13140
13141 for (size_t i = 2; i < num_first_plt_words; ++i)
13142 elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
13143}
13144
13145// Subsequent entries in the PLT.
13146
13147template<bool big_endian>
13148const uint32_t Output_data_plt_arm_nacl<big_endian>::plt_entry[4] =
13149{
13150 0xe300c000, // movw ip, #:lower16:&GOT[n]-.+8
13151 0xe340c000, // movt ip, #:upper16:&GOT[n]-.+8
13152 0xe08cc00f, // add ip, ip, pc
13153 0xea000000, // b .Lplt_tail
13154};
13155
13156template<bool big_endian>
13157void
13158Output_data_plt_arm_nacl<big_endian>::do_fill_plt_entry(
13159 unsigned char* pov,
13160 Arm_address got_address,
13161 Arm_address plt_address,
13162 unsigned int got_offset,
13163 unsigned int plt_offset)
13164{
13165 // Calculate the displacement between the PLT slot and the
13166 // common tail that's part of the special initial PLT slot.
13167 int32_t tail_displacement = (plt_address + (11 * sizeof(uint32_t))
13168 - (plt_address + plt_offset
13169 + sizeof(plt_entry) + sizeof(uint32_t)));
13170 gold_assert((tail_displacement & 3) == 0);
13171 tail_displacement >>= 2;
13172
13173 gold_assert ((tail_displacement & 0xff000000) == 0
13174 || (-tail_displacement & 0xff000000) == 0);
13175
13176 // Calculate the displacement between the PLT slot and the entry
13177 // in the GOT. The offset accounts for the value produced by
13178 // adding to pc in the penultimate instruction of the PLT stub.
13179 const int32_t got_displacement = (got_address + got_offset
13180 - (plt_address + sizeof(plt_entry)));
13181
13182 elfcpp::Swap<32, big_endian>::writeval
13183 (pov + 0, plt_entry[0] | arm_movw_immediate (got_displacement));
13184 elfcpp::Swap<32, big_endian>::writeval
13185 (pov + 4, plt_entry[1] | arm_movt_immediate (got_displacement));
13186 elfcpp::Swap<32, big_endian>::writeval
13187 (pov + 8, plt_entry[2]);
13188 elfcpp::Swap<32, big_endian>::writeval
13189 (pov + 12, plt_entry[3] | (tail_displacement & 0x00ffffff));
13190}
13191
13192// Target selectors.
13193
13194template<bool big_endian>
13195class Target_selector_arm_nacl
13196 : public Target_selector_nacl<Target_selector_arm<big_endian>,
13197 Target_arm_nacl<big_endian> >
13198{
13199 public:
13200 Target_selector_arm_nacl()
13201 : Target_selector_nacl<Target_selector_arm<big_endian>,
13202 Target_arm_nacl<big_endian> >(
13203 "arm",
13204 big_endian ? "elf32-bigarm-nacl" : "elf32-littlearm-nacl",
13205 big_endian ? "armelfb_nacl" : "armelf_nacl")
13206 { }
13207};
13208
13209Target_selector_arm_nacl<false> target_selector_arm;
13210Target_selector_arm_nacl<true> target_selector_armbe;
4a657b0d
DK
13211
13212} // End anonymous namespace.