]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gold/arm.cc
2011-06-24 Tristan Gingold <gingold@adacore.com>
[thirdparty/binutils-gdb.git] / gold / arm.cc
CommitLineData
4a657b0d
DK
1// arm.cc -- arm target support for gold.
2
b10d2873 3// Copyright 2009, 2010 Free Software Foundation, Inc.
4a657b0d
DK
4// Written by Doug Kwan <dougkwan@google.com> based on the i386 code
5// by Ian Lance Taylor <iant@google.com>.
b569affa
DK
6// This file also contains borrowed and adapted code from
7// bfd/elf32-arm.c.
4a657b0d
DK
8
9// This file is part of gold.
10
11// This program is free software; you can redistribute it and/or modify
12// it under the terms of the GNU General Public License as published by
13// the Free Software Foundation; either version 3 of the License, or
14// (at your option) any later version.
15
16// This program is distributed in the hope that it will be useful,
17// but WITHOUT ANY WARRANTY; without even the implied warranty of
18// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19// GNU General Public License for more details.
20
21// You should have received a copy of the GNU General Public License
22// along with this program; if not, write to the Free Software
23// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
24// MA 02110-1301, USA.
25
26#include "gold.h"
27
28#include <cstring>
29#include <limits>
30#include <cstdio>
31#include <string>
56ee5e00 32#include <algorithm>
41263c05
DK
33#include <map>
34#include <utility>
2b328d4e 35#include <set>
4a657b0d
DK
36
37#include "elfcpp.h"
38#include "parameters.h"
39#include "reloc.h"
40#include "arm.h"
41#include "object.h"
42#include "symtab.h"
43#include "layout.h"
44#include "output.h"
45#include "copy-relocs.h"
46#include "target.h"
47#include "target-reloc.h"
48#include "target-select.h"
49#include "tls.h"
50#include "defstd.h"
f345227a 51#include "gc.h"
a0351a69 52#include "attributes.h"
0d31c79d 53#include "arm-reloc-property.h"
4a657b0d
DK
54
55namespace
56{
57
58using namespace gold;
59
94cdfcff
DK
60template<bool big_endian>
61class Output_data_plt_arm;
62
56ee5e00
DK
63template<bool big_endian>
64class Stub_table;
65
66template<bool big_endian>
67class Arm_input_section;
68
af2cdeae
DK
69class Arm_exidx_cantunwind;
70
71class Arm_exidx_merged_section;
72
80d0d023
DK
73class Arm_exidx_fixup;
74
07f508a2
DK
75template<bool big_endian>
76class Arm_output_section;
77
993d07c1
DK
78class Arm_exidx_input_section;
79
07f508a2
DK
80template<bool big_endian>
81class Arm_relobj;
82
f96accdf
DK
83template<bool big_endian>
84class Arm_relocate_functions;
85
4a54abbb
DK
86template<bool big_endian>
87class Arm_output_data_got;
88
b569affa
DK
89template<bool big_endian>
90class Target_arm;
91
92// For convenience.
93typedef elfcpp::Elf_types<32>::Elf_Addr Arm_address;
94
95// Maximum branch offsets for ARM, THUMB and THUMB2.
96const int32_t ARM_MAX_FWD_BRANCH_OFFSET = ((((1 << 23) - 1) << 2) + 8);
97const int32_t ARM_MAX_BWD_BRANCH_OFFSET = ((-((1 << 23) << 2)) + 8);
98const int32_t THM_MAX_FWD_BRANCH_OFFSET = ((1 << 22) -2 + 4);
99const int32_t THM_MAX_BWD_BRANCH_OFFSET = (-(1 << 22) + 4);
100const int32_t THM2_MAX_FWD_BRANCH_OFFSET = (((1 << 24) - 2) + 4);
101const int32_t THM2_MAX_BWD_BRANCH_OFFSET = (-(1 << 24) + 4);
102
4a54abbb
DK
103// Thread Control Block size.
104const size_t ARM_TCB_SIZE = 8;
105
4a657b0d
DK
106// The arm target class.
107//
108// This is a very simple port of gold for ARM-EABI. It is intended for
b10d2873 109// supporting Android only for the time being.
4a657b0d 110//
4a657b0d 111// TODOs:
0d31c79d 112// - Implement all static relocation types documented in arm-reloc.def.
94cdfcff
DK
113// - Make PLTs more flexible for different architecture features like
114// Thumb-2 and BE8.
11af873f 115// There are probably a lot more.
4a657b0d 116
0d31c79d
DK
117// Ideally we would like to avoid using global variables but this is used
118// very in many places and sometimes in loops. If we use a function
9b547ce6 119// returning a static instance of Arm_reloc_property_table, it will be very
0d31c79d
DK
120// slow in an threaded environment since the static instance needs to be
121// locked. The pointer is below initialized in the
122// Target::do_select_as_default_target() hook so that we do not spend time
123// building the table if we are not linking ARM objects.
124//
125// An alternative is to to process the information in arm-reloc.def in
126// compilation time and generate a representation of it in PODs only. That
127// way we can avoid initialization when the linker starts.
128
ca09d69a 129Arm_reloc_property_table* arm_reloc_property_table = NULL;
0d31c79d 130
b569affa
DK
131// Instruction template class. This class is similar to the insn_sequence
132// struct in bfd/elf32-arm.c.
133
134class Insn_template
135{
136 public:
137 // Types of instruction templates.
138 enum Type
139 {
140 THUMB16_TYPE = 1,
bb0d3eb0
DK
141 // THUMB16_SPECIAL_TYPE is used by sub-classes of Stub for instruction
142 // templates with class-specific semantics. Currently this is used
143 // only by the Cortex_a8_stub class for handling condition codes in
144 // conditional branches.
145 THUMB16_SPECIAL_TYPE,
b569affa
DK
146 THUMB32_TYPE,
147 ARM_TYPE,
148 DATA_TYPE
149 };
150
bb0d3eb0 151 // Factory methods to create instruction templates in different formats.
b569affa
DK
152
153 static const Insn_template
154 thumb16_insn(uint32_t data)
155 { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 0); }
156
bb0d3eb0
DK
157 // A Thumb conditional branch, in which the proper condition is inserted
158 // when we build the stub.
b569affa
DK
159 static const Insn_template
160 thumb16_bcond_insn(uint32_t data)
bb0d3eb0 161 { return Insn_template(data, THUMB16_SPECIAL_TYPE, elfcpp::R_ARM_NONE, 1); }
b569affa
DK
162
163 static const Insn_template
164 thumb32_insn(uint32_t data)
165 { return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_NONE, 0); }
166
167 static const Insn_template
168 thumb32_b_insn(uint32_t data, int reloc_addend)
169 {
170 return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_THM_JUMP24,
171 reloc_addend);
172 }
173
174 static const Insn_template
175 arm_insn(uint32_t data)
176 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_NONE, 0); }
177
178 static const Insn_template
179 arm_rel_insn(unsigned data, int reloc_addend)
180 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_JUMP24, reloc_addend); }
181
182 static const Insn_template
183 data_word(unsigned data, unsigned int r_type, int reloc_addend)
184 { return Insn_template(data, DATA_TYPE, r_type, reloc_addend); }
185
186 // Accessors. This class is used for read-only objects so no modifiers
187 // are provided.
188
189 uint32_t
190 data() const
191 { return this->data_; }
192
193 // Return the instruction sequence type of this.
194 Type
195 type() const
196 { return this->type_; }
197
198 // Return the ARM relocation type of this.
199 unsigned int
200 r_type() const
201 { return this->r_type_; }
202
203 int32_t
204 reloc_addend() const
205 { return this->reloc_addend_; }
206
bb0d3eb0 207 // Return size of instruction template in bytes.
b569affa
DK
208 size_t
209 size() const;
210
bb0d3eb0 211 // Return byte-alignment of instruction template.
b569affa
DK
212 unsigned
213 alignment() const;
214
215 private:
216 // We make the constructor private to ensure that only the factory
217 // methods are used.
218 inline
2ea97941
ILT
219 Insn_template(unsigned data, Type type, unsigned int r_type, int reloc_addend)
220 : data_(data), type_(type), r_type_(r_type), reloc_addend_(reloc_addend)
b569affa
DK
221 { }
222
223 // Instruction specific data. This is used to store information like
224 // some of the instruction bits.
225 uint32_t data_;
226 // Instruction template type.
227 Type type_;
228 // Relocation type if there is a relocation or R_ARM_NONE otherwise.
229 unsigned int r_type_;
230 // Relocation addend.
231 int32_t reloc_addend_;
232};
233
234// Macro for generating code to stub types. One entry per long/short
235// branch stub
236
237#define DEF_STUBS \
238 DEF_STUB(long_branch_any_any) \
239 DEF_STUB(long_branch_v4t_arm_thumb) \
240 DEF_STUB(long_branch_thumb_only) \
241 DEF_STUB(long_branch_v4t_thumb_thumb) \
242 DEF_STUB(long_branch_v4t_thumb_arm) \
243 DEF_STUB(short_branch_v4t_thumb_arm) \
244 DEF_STUB(long_branch_any_arm_pic) \
245 DEF_STUB(long_branch_any_thumb_pic) \
246 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
247 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
248 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
249 DEF_STUB(long_branch_thumb_only_pic) \
250 DEF_STUB(a8_veneer_b_cond) \
251 DEF_STUB(a8_veneer_b) \
252 DEF_STUB(a8_veneer_bl) \
a2162063
ILT
253 DEF_STUB(a8_veneer_blx) \
254 DEF_STUB(v4_veneer_bx)
b569affa
DK
255
256// Stub types.
257
258#define DEF_STUB(x) arm_stub_##x,
259typedef enum
260 {
261 arm_stub_none,
262 DEF_STUBS
263
264 // First reloc stub type.
265 arm_stub_reloc_first = arm_stub_long_branch_any_any,
266 // Last reloc stub type.
267 arm_stub_reloc_last = arm_stub_long_branch_thumb_only_pic,
268
269 // First Cortex-A8 stub type.
270 arm_stub_cortex_a8_first = arm_stub_a8_veneer_b_cond,
271 // Last Cortex-A8 stub type.
272 arm_stub_cortex_a8_last = arm_stub_a8_veneer_blx,
273
274 // Last stub type.
a2162063 275 arm_stub_type_last = arm_stub_v4_veneer_bx
b569affa
DK
276 } Stub_type;
277#undef DEF_STUB
278
279// Stub template class. Templates are meant to be read-only objects.
280// A stub template for a stub type contains all read-only attributes
281// common to all stubs of the same type.
282
283class Stub_template
284{
285 public:
286 Stub_template(Stub_type, const Insn_template*, size_t);
287
288 ~Stub_template()
289 { }
290
291 // Return stub type.
292 Stub_type
293 type() const
294 { return this->type_; }
295
296 // Return an array of instruction templates.
297 const Insn_template*
298 insns() const
299 { return this->insns_; }
300
301 // Return size of template in number of instructions.
302 size_t
303 insn_count() const
304 { return this->insn_count_; }
305
306 // Return size of template in bytes.
307 size_t
308 size() const
309 { return this->size_; }
310
311 // Return alignment of the stub template.
312 unsigned
313 alignment() const
314 { return this->alignment_; }
315
316 // Return whether entry point is in thumb mode.
317 bool
318 entry_in_thumb_mode() const
319 { return this->entry_in_thumb_mode_; }
320
321 // Return number of relocations in this template.
322 size_t
323 reloc_count() const
324 { return this->relocs_.size(); }
325
326 // Return index of the I-th instruction with relocation.
327 size_t
328 reloc_insn_index(size_t i) const
329 {
330 gold_assert(i < this->relocs_.size());
331 return this->relocs_[i].first;
332 }
333
334 // Return the offset of the I-th instruction with relocation from the
335 // beginning of the stub.
336 section_size_type
337 reloc_offset(size_t i) const
338 {
339 gold_assert(i < this->relocs_.size());
340 return this->relocs_[i].second;
341 }
342
343 private:
344 // This contains information about an instruction template with a relocation
345 // and its offset from start of stub.
346 typedef std::pair<size_t, section_size_type> Reloc;
347
348 // A Stub_template may not be copied. We want to share templates as much
349 // as possible.
350 Stub_template(const Stub_template&);
351 Stub_template& operator=(const Stub_template&);
352
353 // Stub type.
354 Stub_type type_;
355 // Points to an array of Insn_templates.
356 const Insn_template* insns_;
357 // Number of Insn_templates in insns_[].
358 size_t insn_count_;
359 // Size of templated instructions in bytes.
360 size_t size_;
361 // Alignment of templated instructions.
362 unsigned alignment_;
363 // Flag to indicate if entry is in thumb mode.
364 bool entry_in_thumb_mode_;
365 // A table of reloc instruction indices and offsets. We can find these by
366 // looking at the instruction templates but we pre-compute and then stash
367 // them here for speed.
368 std::vector<Reloc> relocs_;
369};
370
371//
372// A class for code stubs. This is a base class for different type of
373// stubs used in the ARM target.
374//
375
376class Stub
377{
378 private:
379 static const section_offset_type invalid_offset =
380 static_cast<section_offset_type>(-1);
381
382 public:
2ea97941
ILT
383 Stub(const Stub_template* stub_template)
384 : stub_template_(stub_template), offset_(invalid_offset)
b569affa
DK
385 { }
386
387 virtual
388 ~Stub()
389 { }
390
391 // Return the stub template.
392 const Stub_template*
393 stub_template() const
394 { return this->stub_template_; }
395
396 // Return offset of code stub from beginning of its containing stub table.
397 section_offset_type
398 offset() const
399 {
400 gold_assert(this->offset_ != invalid_offset);
401 return this->offset_;
402 }
403
404 // Set offset of code stub from beginning of its containing stub table.
405 void
2ea97941
ILT
406 set_offset(section_offset_type offset)
407 { this->offset_ = offset; }
b569affa
DK
408
409 // Return the relocation target address of the i-th relocation in the
410 // stub. This must be defined in a child class.
411 Arm_address
412 reloc_target(size_t i)
413 { return this->do_reloc_target(i); }
414
415 // Write a stub at output VIEW. BIG_ENDIAN select how a stub is written.
416 void
417 write(unsigned char* view, section_size_type view_size, bool big_endian)
418 { this->do_write(view, view_size, big_endian); }
419
bb0d3eb0
DK
420 // Return the instruction for THUMB16_SPECIAL_TYPE instruction template
421 // for the i-th instruction.
422 uint16_t
423 thumb16_special(size_t i)
424 { return this->do_thumb16_special(i); }
425
b569affa
DK
426 protected:
427 // This must be defined in the child class.
428 virtual Arm_address
429 do_reloc_target(size_t) = 0;
430
bb0d3eb0 431 // This may be overridden in the child class.
b569affa 432 virtual void
bb0d3eb0
DK
433 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
434 {
435 if (big_endian)
436 this->do_fixed_endian_write<true>(view, view_size);
437 else
438 this->do_fixed_endian_write<false>(view, view_size);
439 }
b569affa 440
bb0d3eb0
DK
441 // This must be overridden if a child class uses the THUMB16_SPECIAL_TYPE
442 // instruction template.
443 virtual uint16_t
444 do_thumb16_special(size_t)
445 { gold_unreachable(); }
446
b569affa 447 private:
bb0d3eb0
DK
448 // A template to implement do_write.
449 template<bool big_endian>
450 void inline
451 do_fixed_endian_write(unsigned char*, section_size_type);
452
b569affa
DK
453 // Its template.
454 const Stub_template* stub_template_;
455 // Offset within the section of containing this stub.
456 section_offset_type offset_;
457};
458
459// Reloc stub class. These are stubs we use to fix up relocation because
460// of limited branch ranges.
461
462class Reloc_stub : public Stub
463{
464 public:
465 static const unsigned int invalid_index = static_cast<unsigned int>(-1);
466 // We assume we never jump to this address.
467 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
468
469 // Return destination address.
470 Arm_address
471 destination_address() const
472 {
473 gold_assert(this->destination_address_ != this->invalid_address);
474 return this->destination_address_;
475 }
476
477 // Set destination address.
478 void
479 set_destination_address(Arm_address address)
480 {
481 gold_assert(address != this->invalid_address);
482 this->destination_address_ = address;
483 }
484
485 // Reset destination address.
486 void
487 reset_destination_address()
488 { this->destination_address_ = this->invalid_address; }
489
490 // Determine stub type for a branch of a relocation of R_TYPE going
491 // from BRANCH_ADDRESS to BRANCH_TARGET. If TARGET_IS_THUMB is set,
492 // the branch target is a thumb instruction. TARGET is used for look
493 // up ARM-specific linker settings.
494 static Stub_type
495 stub_type_for_reloc(unsigned int r_type, Arm_address branch_address,
496 Arm_address branch_target, bool target_is_thumb);
497
498 // Reloc_stub key. A key is logically a triplet of a stub type, a symbol
499 // and an addend. Since we treat global and local symbol differently, we
500 // use a Symbol object for a global symbol and a object-index pair for
501 // a local symbol.
502 class Key
503 {
504 public:
505 // If SYMBOL is not null, this is a global symbol, we ignore RELOBJ and
506 // R_SYM. Otherwise, this is a local symbol and RELOBJ must non-NULL
507 // and R_SYM must not be invalid_index.
2ea97941
ILT
508 Key(Stub_type stub_type, const Symbol* symbol, const Relobj* relobj,
509 unsigned int r_sym, int32_t addend)
510 : stub_type_(stub_type), addend_(addend)
b569affa 511 {
2ea97941 512 if (symbol != NULL)
b569affa
DK
513 {
514 this->r_sym_ = Reloc_stub::invalid_index;
2ea97941 515 this->u_.symbol = symbol;
b569affa
DK
516 }
517 else
518 {
2ea97941
ILT
519 gold_assert(relobj != NULL && r_sym != invalid_index);
520 this->r_sym_ = r_sym;
521 this->u_.relobj = relobj;
b569affa
DK
522 }
523 }
524
525 ~Key()
526 { }
527
528 // Accessors: Keys are meant to be read-only object so no modifiers are
529 // provided.
530
531 // Return stub type.
532 Stub_type
533 stub_type() const
534 { return this->stub_type_; }
535
536 // Return the local symbol index or invalid_index.
537 unsigned int
538 r_sym() const
539 { return this->r_sym_; }
540
541 // Return the symbol if there is one.
542 const Symbol*
543 symbol() const
544 { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
545
546 // Return the relobj if there is one.
547 const Relobj*
548 relobj() const
549 { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
550
551 // Whether this equals to another key k.
552 bool
553 eq(const Key& k) const
554 {
555 return ((this->stub_type_ == k.stub_type_)
556 && (this->r_sym_ == k.r_sym_)
557 && ((this->r_sym_ != Reloc_stub::invalid_index)
558 ? (this->u_.relobj == k.u_.relobj)
559 : (this->u_.symbol == k.u_.symbol))
560 && (this->addend_ == k.addend_));
561 }
562
563 // Return a hash value.
564 size_t
565 hash_value() const
566 {
567 return (this->stub_type_
568 ^ this->r_sym_
569 ^ gold::string_hash<char>(
570 (this->r_sym_ != Reloc_stub::invalid_index)
571 ? this->u_.relobj->name().c_str()
572 : this->u_.symbol->name())
573 ^ this->addend_);
574 }
575
576 // Functors for STL associative containers.
577 struct hash
578 {
579 size_t
580 operator()(const Key& k) const
581 { return k.hash_value(); }
582 };
583
584 struct equal_to
585 {
586 bool
587 operator()(const Key& k1, const Key& k2) const
588 { return k1.eq(k2); }
589 };
590
591 // Name of key. This is mainly for debugging.
592 std::string
593 name() const;
594
595 private:
596 // Stub type.
597 Stub_type stub_type_;
598 // If this is a local symbol, this is the index in the defining object.
599 // Otherwise, it is invalid_index for a global symbol.
600 unsigned int r_sym_;
9b547ce6
RW
601 // If r_sym_ is an invalid index, this points to a global symbol.
602 // Otherwise, it points to a relobj. We used the unsized and target
eb44217c 603 // independent Symbol and Relobj classes instead of Sized_symbol<32> and
9b547ce6 604 // Arm_relobj, in order to avoid making the stub class a template
7296d933 605 // as most of the stub machinery is endianness-neutral. However, it
b569affa
DK
606 // may require a bit of casting done by users of this class.
607 union
608 {
609 const Symbol* symbol;
610 const Relobj* relobj;
611 } u_;
612 // Addend associated with a reloc.
613 int32_t addend_;
614 };
615
616 protected:
617 // Reloc_stubs are created via a stub factory. So these are protected.
2ea97941
ILT
618 Reloc_stub(const Stub_template* stub_template)
619 : Stub(stub_template), destination_address_(invalid_address)
b569affa
DK
620 { }
621
622 ~Reloc_stub()
623 { }
624
625 friend class Stub_factory;
626
b569affa
DK
627 // Return the relocation target address of the i-th relocation in the
628 // stub.
629 Arm_address
630 do_reloc_target(size_t i)
631 {
632 // All reloc stub have only one relocation.
633 gold_assert(i == 0);
634 return this->destination_address_;
635 }
636
bb0d3eb0
DK
637 private:
638 // Address of destination.
639 Arm_address destination_address_;
640};
b569affa 641
bb0d3eb0
DK
642// Cortex-A8 stub class. We need a Cortex-A8 stub to redirect any 32-bit
643// THUMB branch that meets the following conditions:
644//
645// 1. The branch straddles across a page boundary. i.e. lower 12-bit of
646// branch address is 0xffe.
647// 2. The branch target address is in the same page as the first word of the
648// branch.
649// 3. The branch follows a 32-bit instruction which is not a branch.
650//
651// To do the fix up, we need to store the address of the branch instruction
652// and its target at least. We also need to store the original branch
653// instruction bits for the condition code in a conditional branch. The
654// condition code is used in a special instruction template. We also want
655// to identify input sections needing Cortex-A8 workaround quickly. We store
656// extra information about object and section index of the code section
657// containing a branch being fixed up. The information is used to mark
658// the code section when we finalize the Cortex-A8 stubs.
659//
b569affa 660
bb0d3eb0
DK
661class Cortex_a8_stub : public Stub
662{
663 public:
664 ~Cortex_a8_stub()
665 { }
666
667 // Return the object of the code section containing the branch being fixed
668 // up.
669 Relobj*
670 relobj() const
671 { return this->relobj_; }
672
673 // Return the section index of the code section containing the branch being
674 // fixed up.
675 unsigned int
676 shndx() const
677 { return this->shndx_; }
678
679 // Return the source address of stub. This is the address of the original
680 // branch instruction. LSB is 1 always set to indicate that it is a THUMB
681 // instruction.
682 Arm_address
683 source_address() const
684 { return this->source_address_; }
685
686 // Return the destination address of the stub. This is the branch taken
687 // address of the original branch instruction. LSB is 1 if it is a THUMB
688 // instruction address.
689 Arm_address
690 destination_address() const
691 { return this->destination_address_; }
692
693 // Return the instruction being fixed up.
694 uint32_t
695 original_insn() const
696 { return this->original_insn_; }
697
698 protected:
699 // Cortex_a8_stubs are created via a stub factory. So these are protected.
700 Cortex_a8_stub(const Stub_template* stub_template, Relobj* relobj,
701 unsigned int shndx, Arm_address source_address,
702 Arm_address destination_address, uint32_t original_insn)
703 : Stub(stub_template), relobj_(relobj), shndx_(shndx),
704 source_address_(source_address | 1U),
705 destination_address_(destination_address),
706 original_insn_(original_insn)
707 { }
708
709 friend class Stub_factory;
710
711 // Return the relocation target address of the i-th relocation in the
712 // stub.
713 Arm_address
714 do_reloc_target(size_t i)
715 {
716 if (this->stub_template()->type() == arm_stub_a8_veneer_b_cond)
717 {
718 // The conditional branch veneer has two relocations.
719 gold_assert(i < 2);
720 return i == 0 ? this->source_address_ + 4 : this->destination_address_;
721 }
722 else
723 {
724 // All other Cortex-A8 stubs have only one relocation.
725 gold_assert(i == 0);
726 return this->destination_address_;
727 }
728 }
729
730 // Return an instruction for the THUMB16_SPECIAL_TYPE instruction template.
731 uint16_t
732 do_thumb16_special(size_t);
733
734 private:
735 // Object of the code section containing the branch being fixed up.
736 Relobj* relobj_;
737 // Section index of the code section containing the branch begin fixed up.
738 unsigned int shndx_;
739 // Source address of original branch.
740 Arm_address source_address_;
741 // Destination address of the original branch.
b569affa 742 Arm_address destination_address_;
bb0d3eb0
DK
743 // Original branch instruction. This is needed for copying the condition
744 // code from a condition branch to its stub.
745 uint32_t original_insn_;
b569affa
DK
746};
747
a2162063
ILT
748// ARMv4 BX Rx branch relocation stub class.
749class Arm_v4bx_stub : public Stub
750{
751 public:
752 ~Arm_v4bx_stub()
753 { }
754
755 // Return the associated register.
756 uint32_t
757 reg() const
758 { return this->reg_; }
759
760 protected:
761 // Arm V4BX stubs are created via a stub factory. So these are protected.
762 Arm_v4bx_stub(const Stub_template* stub_template, const uint32_t reg)
763 : Stub(stub_template), reg_(reg)
764 { }
765
766 friend class Stub_factory;
767
768 // Return the relocation target address of the i-th relocation in the
769 // stub.
770 Arm_address
771 do_reloc_target(size_t)
772 { gold_unreachable(); }
773
774 // This may be overridden in the child class.
775 virtual void
776 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
777 {
778 if (big_endian)
779 this->do_fixed_endian_v4bx_write<true>(view, view_size);
780 else
781 this->do_fixed_endian_v4bx_write<false>(view, view_size);
782 }
783
784 private:
785 // A template to implement do_write.
786 template<bool big_endian>
787 void inline
788 do_fixed_endian_v4bx_write(unsigned char* view, section_size_type)
789 {
790 const Insn_template* insns = this->stub_template()->insns();
791 elfcpp::Swap<32, big_endian>::writeval(view,
792 (insns[0].data()
793 + (this->reg_ << 16)));
794 view += insns[0].size();
795 elfcpp::Swap<32, big_endian>::writeval(view,
796 (insns[1].data() + this->reg_));
797 view += insns[1].size();
798 elfcpp::Swap<32, big_endian>::writeval(view,
799 (insns[2].data() + this->reg_));
800 }
801
802 // A register index (r0-r14), which is associated with the stub.
803 uint32_t reg_;
804};
805
b569affa
DK
806// Stub factory class.
807
808class Stub_factory
809{
810 public:
811 // Return the unique instance of this class.
812 static const Stub_factory&
813 get_instance()
814 {
815 static Stub_factory singleton;
816 return singleton;
817 }
818
819 // Make a relocation stub.
820 Reloc_stub*
821 make_reloc_stub(Stub_type stub_type) const
822 {
823 gold_assert(stub_type >= arm_stub_reloc_first
824 && stub_type <= arm_stub_reloc_last);
825 return new Reloc_stub(this->stub_templates_[stub_type]);
826 }
827
bb0d3eb0
DK
828 // Make a Cortex-A8 stub.
829 Cortex_a8_stub*
830 make_cortex_a8_stub(Stub_type stub_type, Relobj* relobj, unsigned int shndx,
831 Arm_address source, Arm_address destination,
832 uint32_t original_insn) const
833 {
834 gold_assert(stub_type >= arm_stub_cortex_a8_first
835 && stub_type <= arm_stub_cortex_a8_last);
836 return new Cortex_a8_stub(this->stub_templates_[stub_type], relobj, shndx,
837 source, destination, original_insn);
838 }
839
a2162063
ILT
840 // Make an ARM V4BX relocation stub.
841 // This method creates a stub from the arm_stub_v4_veneer_bx template only.
842 Arm_v4bx_stub*
843 make_arm_v4bx_stub(uint32_t reg) const
844 {
845 gold_assert(reg < 0xf);
846 return new Arm_v4bx_stub(this->stub_templates_[arm_stub_v4_veneer_bx],
847 reg);
848 }
849
b569affa
DK
850 private:
851 // Constructor and destructor are protected since we only return a single
852 // instance created in Stub_factory::get_instance().
853
854 Stub_factory();
855
856 // A Stub_factory may not be copied since it is a singleton.
857 Stub_factory(const Stub_factory&);
858 Stub_factory& operator=(Stub_factory&);
859
860 // Stub templates. These are initialized in the constructor.
861 const Stub_template* stub_templates_[arm_stub_type_last+1];
862};
863
56ee5e00
DK
864// A class to hold stubs for the ARM target.
865
866template<bool big_endian>
867class Stub_table : public Output_data
868{
869 public:
2ea97941 870 Stub_table(Arm_input_section<big_endian>* owner)
d099120c
DK
871 : Output_data(), owner_(owner), reloc_stubs_(), reloc_stubs_size_(0),
872 reloc_stubs_addralign_(1), cortex_a8_stubs_(), arm_v4bx_stubs_(0xf),
873 prev_data_size_(0), prev_addralign_(1)
56ee5e00
DK
874 { }
875
876 ~Stub_table()
877 { }
878
879 // Owner of this stub table.
880 Arm_input_section<big_endian>*
881 owner() const
882 { return this->owner_; }
883
884 // Whether this stub table is empty.
885 bool
886 empty() const
a2162063
ILT
887 {
888 return (this->reloc_stubs_.empty()
889 && this->cortex_a8_stubs_.empty()
890 && this->arm_v4bx_stubs_.empty());
891 }
56ee5e00
DK
892
893 // Return the current data size.
894 off_t
895 current_data_size() const
896 { return this->current_data_size_for_child(); }
897
9b547ce6
RW
898 // Add a STUB using KEY. The caller is responsible for avoiding addition
899 // if a STUB with the same key has already been added.
56ee5e00 900 void
2fb7225c
DK
901 add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key)
902 {
903 const Stub_template* stub_template = stub->stub_template();
904 gold_assert(stub_template->type() == key.stub_type());
905 this->reloc_stubs_[key] = stub;
d099120c
DK
906
907 // Assign stub offset early. We can do this because we never remove
908 // reloc stubs and they are in the beginning of the stub table.
909 uint64_t align = stub_template->alignment();
910 this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_, align);
911 stub->set_offset(this->reloc_stubs_size_);
912 this->reloc_stubs_size_ += stub_template->size();
913 this->reloc_stubs_addralign_ =
914 std::max(this->reloc_stubs_addralign_, align);
2fb7225c
DK
915 }
916
917 // Add a Cortex-A8 STUB that fixes up a THUMB branch at ADDRESS.
9b547ce6
RW
918 // The caller is responsible for avoiding addition if a STUB with the same
919 // address has already been added.
2fb7225c
DK
920 void
921 add_cortex_a8_stub(Arm_address address, Cortex_a8_stub* stub)
922 {
923 std::pair<Arm_address, Cortex_a8_stub*> value(address, stub);
924 this->cortex_a8_stubs_.insert(value);
925 }
926
a2162063
ILT
927 // Add an ARM V4BX relocation stub. A register index will be retrieved
928 // from the stub.
929 void
930 add_arm_v4bx_stub(Arm_v4bx_stub* stub)
931 {
932 gold_assert(stub != NULL && this->arm_v4bx_stubs_[stub->reg()] == NULL);
933 this->arm_v4bx_stubs_[stub->reg()] = stub;
934 }
935
2fb7225c
DK
936 // Remove all Cortex-A8 stubs.
937 void
938 remove_all_cortex_a8_stubs();
56ee5e00
DK
939
940 // Look up a relocation stub using KEY. Return NULL if there is none.
941 Reloc_stub*
942 find_reloc_stub(const Reloc_stub::Key& key) const
943 {
944 typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.find(key);
945 return (p != this->reloc_stubs_.end()) ? p->second : NULL;
946 }
947
a2162063
ILT
948 // Look up an arm v4bx relocation stub using the register index.
949 // Return NULL if there is none.
950 Arm_v4bx_stub*
951 find_arm_v4bx_stub(const uint32_t reg) const
952 {
953 gold_assert(reg < 0xf);
954 return this->arm_v4bx_stubs_[reg];
955 }
956
56ee5e00
DK
957 // Relocate stubs in this stub table.
958 void
959 relocate_stubs(const Relocate_info<32, big_endian>*,
960 Target_arm<big_endian>*, Output_section*,
961 unsigned char*, Arm_address, section_size_type);
962
2fb7225c
DK
963 // Update data size and alignment at the end of a relaxation pass. Return
964 // true if either data size or alignment is different from that of the
965 // previous relaxation pass.
966 bool
967 update_data_size_and_addralign();
968
969 // Finalize stubs. Set the offsets of all stubs and mark input sections
970 // needing the Cortex-A8 workaround.
971 void
972 finalize_stubs();
973
974 // Apply Cortex-A8 workaround to an address range.
975 void
976 apply_cortex_a8_workaround_to_address_range(Target_arm<big_endian>*,
977 unsigned char*, Arm_address,
978 section_size_type);
979
56ee5e00
DK
980 protected:
981 // Write out section contents.
982 void
983 do_write(Output_file*);
984
985 // Return the required alignment.
986 uint64_t
987 do_addralign() const
2fb7225c 988 { return this->prev_addralign_; }
56ee5e00
DK
989
990 // Reset address and file offset.
991 void
2fb7225c
DK
992 do_reset_address_and_file_offset()
993 { this->set_current_data_size_for_child(this->prev_data_size_); }
56ee5e00 994
2fb7225c
DK
995 // Set final data size.
996 void
997 set_final_data_size()
998 { this->set_data_size(this->current_data_size()); }
999
56ee5e00 1000 private:
2fb7225c
DK
1001 // Relocate one stub.
1002 void
1003 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
1004 Target_arm<big_endian>*, Output_section*,
1005 unsigned char*, Arm_address, section_size_type);
1006
1007 // Unordered map of relocation stubs.
56ee5e00
DK
1008 typedef
1009 Unordered_map<Reloc_stub::Key, Reloc_stub*, Reloc_stub::Key::hash,
1010 Reloc_stub::Key::equal_to>
1011 Reloc_stub_map;
1012
2fb7225c
DK
1013 // List of Cortex-A8 stubs ordered by addresses of branches being
1014 // fixed up in output.
1015 typedef std::map<Arm_address, Cortex_a8_stub*> Cortex_a8_stub_list;
a2162063
ILT
1016 // List of Arm V4BX relocation stubs ordered by associated registers.
1017 typedef std::vector<Arm_v4bx_stub*> Arm_v4bx_stub_list;
2fb7225c 1018
56ee5e00
DK
1019 // Owner of this stub table.
1020 Arm_input_section<big_endian>* owner_;
56ee5e00
DK
1021 // The relocation stubs.
1022 Reloc_stub_map reloc_stubs_;
d099120c
DK
1023 // Size of reloc stubs.
1024 off_t reloc_stubs_size_;
1025 // Maximum address alignment of reloc stubs.
1026 uint64_t reloc_stubs_addralign_;
2fb7225c
DK
1027 // The cortex_a8_stubs.
1028 Cortex_a8_stub_list cortex_a8_stubs_;
a2162063
ILT
1029 // The Arm V4BX relocation stubs.
1030 Arm_v4bx_stub_list arm_v4bx_stubs_;
2fb7225c
DK
1031 // data size of this in the previous pass.
1032 off_t prev_data_size_;
1033 // address alignment of this in the previous pass.
1034 uint64_t prev_addralign_;
56ee5e00
DK
1035};
1036
af2cdeae
DK
1037// Arm_exidx_cantunwind class. This represents an EXIDX_CANTUNWIND entry
1038// we add to the end of an EXIDX input section that goes into the output.
1039
1040class Arm_exidx_cantunwind : public Output_section_data
1041{
1042 public:
1043 Arm_exidx_cantunwind(Relobj* relobj, unsigned int shndx)
1044 : Output_section_data(8, 4, true), relobj_(relobj), shndx_(shndx)
1045 { }
1046
1047 // Return the object containing the section pointed by this.
1048 Relobj*
1049 relobj() const
1050 { return this->relobj_; }
1051
1052 // Return the section index of the section pointed by this.
1053 unsigned int
1054 shndx() const
1055 { return this->shndx_; }
1056
1057 protected:
1058 void
1059 do_write(Output_file* of)
1060 {
1061 if (parameters->target().is_big_endian())
1062 this->do_fixed_endian_write<true>(of);
1063 else
1064 this->do_fixed_endian_write<false>(of);
1065 }
1066
aa98ff75
DK
1067 // Write to a map file.
1068 void
1069 do_print_to_mapfile(Mapfile* mapfile) const
1070 { mapfile->print_output_data(this, _("** ARM cantunwind")); }
1071
af2cdeae 1072 private:
7296d933 1073 // Implement do_write for a given endianness.
af2cdeae
DK
1074 template<bool big_endian>
1075 void inline
1076 do_fixed_endian_write(Output_file*);
1077
1078 // The object containing the section pointed by this.
1079 Relobj* relobj_;
1080 // The section index of the section pointed by this.
1081 unsigned int shndx_;
1082};
1083
1084// During EXIDX coverage fix-up, we compact an EXIDX section. The
1085// Offset map is used to map input section offset within the EXIDX section
1086// to the output offset from the start of this EXIDX section.
1087
1088typedef std::map<section_offset_type, section_offset_type>
1089 Arm_exidx_section_offset_map;
1090
1091// Arm_exidx_merged_section class. This represents an EXIDX input section
1092// with some of its entries merged.
1093
1094class Arm_exidx_merged_section : public Output_relaxed_input_section
1095{
1096 public:
1097 // Constructor for Arm_exidx_merged_section.
1098 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
1099 // SECTION_OFFSET_MAP points to a section offset map describing how
1100 // parts of the input section are mapped to output. DELETED_BYTES is
1101 // the number of bytes deleted from the EXIDX input section.
1102 Arm_exidx_merged_section(
1103 const Arm_exidx_input_section& exidx_input_section,
1104 const Arm_exidx_section_offset_map& section_offset_map,
1105 uint32_t deleted_bytes);
1106
f625ae50
DK
1107 // Build output contents.
1108 void
1109 build_contents(const unsigned char*, section_size_type);
1110
af2cdeae
DK
1111 // Return the original EXIDX input section.
1112 const Arm_exidx_input_section&
1113 exidx_input_section() const
1114 { return this->exidx_input_section_; }
1115
1116 // Return the section offset map.
1117 const Arm_exidx_section_offset_map&
1118 section_offset_map() const
1119 { return this->section_offset_map_; }
1120
1121 protected:
1122 // Write merged section into file OF.
1123 void
1124 do_write(Output_file* of);
1125
1126 bool
1127 do_output_offset(const Relobj*, unsigned int, section_offset_type,
1128 section_offset_type*) const;
1129
1130 private:
1131 // Original EXIDX input section.
1132 const Arm_exidx_input_section& exidx_input_section_;
1133 // Section offset map.
1134 const Arm_exidx_section_offset_map& section_offset_map_;
f625ae50
DK
1135 // Merged section contents. We need to keep build the merged section
1136 // and save it here to avoid accessing the original EXIDX section when
1137 // we cannot lock the sections' object.
1138 unsigned char* section_contents_;
af2cdeae
DK
1139};
1140
10ad9fe5
DK
1141// A class to wrap an ordinary input section containing executable code.
1142
1143template<bool big_endian>
1144class Arm_input_section : public Output_relaxed_input_section
1145{
1146 public:
2ea97941
ILT
1147 Arm_input_section(Relobj* relobj, unsigned int shndx)
1148 : Output_relaxed_input_section(relobj, shndx, 1),
f625ae50
DK
1149 original_addralign_(1), original_size_(0), stub_table_(NULL),
1150 original_contents_(NULL)
10ad9fe5
DK
1151 { }
1152
1153 ~Arm_input_section()
f625ae50 1154 { delete[] this->original_contents_; }
10ad9fe5
DK
1155
1156 // Initialize.
1157 void
1158 init();
1159
1160 // Whether this is a stub table owner.
1161 bool
1162 is_stub_table_owner() const
1163 { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
1164
1165 // Return the stub table.
1166 Stub_table<big_endian>*
1167 stub_table() const
1168 { return this->stub_table_; }
1169
1170 // Set the stub_table.
1171 void
2ea97941
ILT
1172 set_stub_table(Stub_table<big_endian>* stub_table)
1173 { this->stub_table_ = stub_table; }
10ad9fe5 1174
07f508a2
DK
1175 // Downcast a base pointer to an Arm_input_section pointer. This is
1176 // not type-safe but we only use Arm_input_section not the base class.
1177 static Arm_input_section<big_endian>*
1178 as_arm_input_section(Output_relaxed_input_section* poris)
1179 { return static_cast<Arm_input_section<big_endian>*>(poris); }
1180
6625d24e
DK
1181 // Return the original size of the section.
1182 uint32_t
1183 original_size() const
1184 { return this->original_size_; }
1185
10ad9fe5
DK
1186 protected:
1187 // Write data to output file.
1188 void
1189 do_write(Output_file*);
1190
1191 // Return required alignment of this.
1192 uint64_t
1193 do_addralign() const
1194 {
1195 if (this->is_stub_table_owner())
1196 return std::max(this->stub_table_->addralign(),
6625d24e 1197 static_cast<uint64_t>(this->original_addralign_));
10ad9fe5
DK
1198 else
1199 return this->original_addralign_;
1200 }
1201
1202 // Finalize data size.
1203 void
1204 set_final_data_size();
1205
1206 // Reset address and file offset.
1207 void
1208 do_reset_address_and_file_offset();
1209
1210 // Output offset.
1211 bool
2ea97941
ILT
1212 do_output_offset(const Relobj* object, unsigned int shndx,
1213 section_offset_type offset,
10ad9fe5
DK
1214 section_offset_type* poutput) const
1215 {
1216 if ((object == this->relobj())
2ea97941
ILT
1217 && (shndx == this->shndx())
1218 && (offset >= 0)
0439c796
DK
1219 && (offset <=
1220 convert_types<section_offset_type, uint32_t>(this->original_size_)))
10ad9fe5 1221 {
2ea97941 1222 *poutput = offset;
10ad9fe5
DK
1223 return true;
1224 }
1225 else
1226 return false;
1227 }
1228
1229 private:
1230 // Copying is not allowed.
1231 Arm_input_section(const Arm_input_section&);
1232 Arm_input_section& operator=(const Arm_input_section&);
1233
1234 // Address alignment of the original input section.
6625d24e 1235 uint32_t original_addralign_;
10ad9fe5 1236 // Section size of the original input section.
6625d24e 1237 uint32_t original_size_;
10ad9fe5
DK
1238 // Stub table.
1239 Stub_table<big_endian>* stub_table_;
f625ae50
DK
1240 // Original section contents. We have to make a copy here since the file
1241 // containing the original section may not be locked when we need to access
1242 // the contents.
1243 unsigned char* original_contents_;
10ad9fe5
DK
1244};
1245
80d0d023
DK
1246// Arm_exidx_fixup class. This is used to define a number of methods
1247// and keep states for fixing up EXIDX coverage.
1248
1249class Arm_exidx_fixup
1250{
1251 public:
85fdf906
AH
1252 Arm_exidx_fixup(Output_section* exidx_output_section,
1253 bool merge_exidx_entries = true)
80d0d023
DK
1254 : exidx_output_section_(exidx_output_section), last_unwind_type_(UT_NONE),
1255 last_inlined_entry_(0), last_input_section_(NULL),
85fdf906
AH
1256 section_offset_map_(NULL), first_output_text_section_(NULL),
1257 merge_exidx_entries_(merge_exidx_entries)
80d0d023
DK
1258 { }
1259
1260 ~Arm_exidx_fixup()
1261 { delete this->section_offset_map_; }
1262
f625ae50
DK
1263 // Process an EXIDX section for entry merging. SECTION_CONTENTS points
1264 // to the EXIDX contents and SECTION_SIZE is the size of the contents. Return
1265 // number of bytes to be deleted in output. If parts of the input EXIDX
1266 // section are merged a heap allocated Arm_exidx_section_offset_map is store
1267 // in the located PSECTION_OFFSET_MAP. The caller owns the map and is
9b547ce6 1268 // responsible for releasing it.
80d0d023
DK
1269 template<bool big_endian>
1270 uint32_t
1271 process_exidx_section(const Arm_exidx_input_section* exidx_input_section,
f625ae50
DK
1272 const unsigned char* section_contents,
1273 section_size_type section_size,
80d0d023
DK
1274 Arm_exidx_section_offset_map** psection_offset_map);
1275
1276 // Append an EXIDX_CANTUNWIND entry pointing at the end of the last
1277 // input section, if there is not one already.
1278 void
1279 add_exidx_cantunwind_as_needed();
1280
546c7457
DK
1281 // Return the output section for the text section which is linked to the
1282 // first exidx input in output.
1283 Output_section*
1284 first_output_text_section() const
1285 { return this->first_output_text_section_; }
1286
80d0d023
DK
1287 private:
1288 // Copying is not allowed.
1289 Arm_exidx_fixup(const Arm_exidx_fixup&);
1290 Arm_exidx_fixup& operator=(const Arm_exidx_fixup&);
1291
1292 // Type of EXIDX unwind entry.
1293 enum Unwind_type
1294 {
1295 // No type.
1296 UT_NONE,
1297 // EXIDX_CANTUNWIND.
1298 UT_EXIDX_CANTUNWIND,
1299 // Inlined entry.
1300 UT_INLINED_ENTRY,
1301 // Normal entry.
1302 UT_NORMAL_ENTRY,
1303 };
1304
1305 // Process an EXIDX entry. We only care about the second word of the
1306 // entry. Return true if the entry can be deleted.
1307 bool
1308 process_exidx_entry(uint32_t second_word);
1309
1310 // Update the current section offset map during EXIDX section fix-up.
1311 // If there is no map, create one. INPUT_OFFSET is the offset of a
1312 // reference point, DELETED_BYTES is the number of deleted by in the
1313 // section so far. If DELETE_ENTRY is true, the reference point and
1314 // all offsets after the previous reference point are discarded.
1315 void
1316 update_offset_map(section_offset_type input_offset,
1317 section_size_type deleted_bytes, bool delete_entry);
1318
1319 // EXIDX output section.
1320 Output_section* exidx_output_section_;
1321 // Unwind type of the last EXIDX entry processed.
1322 Unwind_type last_unwind_type_;
1323 // Last seen inlined EXIDX entry.
1324 uint32_t last_inlined_entry_;
1325 // Last processed EXIDX input section.
2b328d4e 1326 const Arm_exidx_input_section* last_input_section_;
80d0d023
DK
1327 // Section offset map created in process_exidx_section.
1328 Arm_exidx_section_offset_map* section_offset_map_;
546c7457
DK
1329 // Output section for the text section which is linked to the first exidx
1330 // input in output.
1331 Output_section* first_output_text_section_;
85fdf906
AH
1332
1333 bool merge_exidx_entries_;
80d0d023
DK
1334};
1335
07f508a2
DK
1336// Arm output section class. This is defined mainly to add a number of
1337// stub generation methods.
1338
1339template<bool big_endian>
1340class Arm_output_section : public Output_section
1341{
1342 public:
2b328d4e
DK
1343 typedef std::vector<std::pair<Relobj*, unsigned int> > Text_section_list;
1344
c87e4302 1345 // We need to force SHF_LINK_ORDER in a SHT_ARM_EXIDX section.
2ea97941
ILT
1346 Arm_output_section(const char* name, elfcpp::Elf_Word type,
1347 elfcpp::Elf_Xword flags)
c87e4302
DK
1348 : Output_section(name, type,
1349 (type == elfcpp::SHT_ARM_EXIDX
1350 ? flags | elfcpp::SHF_LINK_ORDER
1351 : flags))
131687b4
DK
1352 {
1353 if (type == elfcpp::SHT_ARM_EXIDX)
1354 this->set_always_keeps_input_sections();
1355 }
07f508a2
DK
1356
1357 ~Arm_output_section()
1358 { }
1359
1360 // Group input sections for stub generation.
1361 void
f625ae50 1362 group_sections(section_size_type, bool, Target_arm<big_endian>*, const Task*);
07f508a2
DK
1363
1364 // Downcast a base pointer to an Arm_output_section pointer. This is
1365 // not type-safe but we only use Arm_output_section not the base class.
1366 static Arm_output_section<big_endian>*
1367 as_arm_output_section(Output_section* os)
1368 { return static_cast<Arm_output_section<big_endian>*>(os); }
1369
2b328d4e
DK
1370 // Append all input text sections in this into LIST.
1371 void
1372 append_text_sections_to_list(Text_section_list* list);
1373
1374 // Fix EXIDX coverage of this EXIDX output section. SORTED_TEXT_SECTION
1375 // is a list of text input sections sorted in ascending order of their
1376 // output addresses.
1377 void
4a54abbb
DK
1378 fix_exidx_coverage(Layout* layout,
1379 const Text_section_list& sorted_text_section,
85fdf906 1380 Symbol_table* symtab,
f625ae50
DK
1381 bool merge_exidx_entries,
1382 const Task* task);
2b328d4e 1383
131687b4
DK
1384 // Link an EXIDX section into its corresponding text section.
1385 void
1386 set_exidx_section_link();
1387
07f508a2
DK
1388 private:
1389 // For convenience.
1390 typedef Output_section::Input_section Input_section;
1391 typedef Output_section::Input_section_list Input_section_list;
1392
1393 // Create a stub group.
1394 void create_stub_group(Input_section_list::const_iterator,
1395 Input_section_list::const_iterator,
1396 Input_section_list::const_iterator,
1397 Target_arm<big_endian>*,
f625ae50
DK
1398 std::vector<Output_relaxed_input_section*>*,
1399 const Task* task);
07f508a2
DK
1400};
1401
993d07c1
DK
1402// Arm_exidx_input_section class. This represents an EXIDX input section.
1403
1404class Arm_exidx_input_section
1405{
1406 public:
1407 static const section_offset_type invalid_offset =
1408 static_cast<section_offset_type>(-1);
1409
1410 Arm_exidx_input_section(Relobj* relobj, unsigned int shndx,
f625ae50
DK
1411 unsigned int link, uint32_t size,
1412 uint32_t addralign, uint32_t text_size)
993d07c1 1413 : relobj_(relobj), shndx_(shndx), link_(link), size_(size),
f625ae50 1414 addralign_(addralign), text_size_(text_size), has_errors_(false)
993d07c1
DK
1415 { }
1416
1417 ~Arm_exidx_input_section()
1418 { }
1419
1420 // Accessors: This is a read-only class.
1421
1422 // Return the object containing this EXIDX input section.
1423 Relobj*
1424 relobj() const
1425 { return this->relobj_; }
1426
1427 // Return the section index of this EXIDX input section.
1428 unsigned int
1429 shndx() const
1430 { return this->shndx_; }
1431
1432 // Return the section index of linked text section in the same object.
1433 unsigned int
1434 link() const
1435 { return this->link_; }
1436
1437 // Return size of the EXIDX input section.
1438 uint32_t
1439 size() const
1440 { return this->size_; }
1441
f625ae50 1442 // Return address alignment of EXIDX input section.
993d07c1
DK
1443 uint32_t
1444 addralign() const
1445 { return this->addralign_; }
1446
f625ae50
DK
1447 // Return size of the associated text input section.
1448 uint32_t
1449 text_size() const
1450 { return this->text_size_; }
1451
131687b4
DK
1452 // Whether there are any errors in the EXIDX input section.
1453 bool
1454 has_errors() const
1455 { return this->has_errors_; }
1456
1457 // Set has-errors flag.
1458 void
1459 set_has_errors()
1460 { this->has_errors_ = true; }
1461
993d07c1
DK
1462 private:
1463 // Object containing this.
1464 Relobj* relobj_;
1465 // Section index of this.
1466 unsigned int shndx_;
1467 // text section linked to this in the same object.
1468 unsigned int link_;
1469 // Size of this. For ARM 32-bit is sufficient.
1470 uint32_t size_;
1471 // Address alignment of this. For ARM 32-bit is sufficient.
1472 uint32_t addralign_;
f625ae50
DK
1473 // Size of associated text section.
1474 uint32_t text_size_;
131687b4
DK
1475 // Whether this has any errors.
1476 bool has_errors_;
993d07c1
DK
1477};
1478
8ffa3667
DK
1479// Arm_relobj class.
1480
1481template<bool big_endian>
6fa2a40b 1482class Arm_relobj : public Sized_relobj_file<32, big_endian>
8ffa3667
DK
1483{
1484 public:
1485 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
1486
2ea97941 1487 Arm_relobj(const std::string& name, Input_file* input_file, off_t offset,
8ffa3667 1488 const typename elfcpp::Ehdr<32, big_endian>& ehdr)
6fa2a40b 1489 : Sized_relobj_file<32, big_endian>(name, input_file, offset, ehdr),
a0351a69 1490 stub_tables_(), local_symbol_is_thumb_function_(),
20138696 1491 attributes_section_data_(NULL), mapping_symbols_info_(),
e7eca48c 1492 section_has_cortex_a8_workaround_(NULL), exidx_section_map_(),
7296d933
DK
1493 output_local_symbol_count_needs_update_(false),
1494 merge_flags_and_attributes_(true)
8ffa3667
DK
1495 { }
1496
1497 ~Arm_relobj()
a0351a69 1498 { delete this->attributes_section_data_; }
8ffa3667
DK
1499
1500 // Return the stub table of the SHNDX-th section if there is one.
1501 Stub_table<big_endian>*
2ea97941 1502 stub_table(unsigned int shndx) const
8ffa3667 1503 {
2ea97941
ILT
1504 gold_assert(shndx < this->stub_tables_.size());
1505 return this->stub_tables_[shndx];
8ffa3667
DK
1506 }
1507
1508 // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1509 void
2ea97941 1510 set_stub_table(unsigned int shndx, Stub_table<big_endian>* stub_table)
8ffa3667 1511 {
2ea97941
ILT
1512 gold_assert(shndx < this->stub_tables_.size());
1513 this->stub_tables_[shndx] = stub_table;
8ffa3667
DK
1514 }
1515
1516 // Whether a local symbol is a THUMB function. R_SYM is the symbol table
1517 // index. This is only valid after do_count_local_symbol is called.
1518 bool
1519 local_symbol_is_thumb_function(unsigned int r_sym) const
1520 {
1521 gold_assert(r_sym < this->local_symbol_is_thumb_function_.size());
1522 return this->local_symbol_is_thumb_function_[r_sym];
1523 }
1524
1525 // Scan all relocation sections for stub generation.
1526 void
1527 scan_sections_for_stubs(Target_arm<big_endian>*, const Symbol_table*,
1528 const Layout*);
1529
1530 // Convert regular input section with index SHNDX to a relaxed section.
1531 void
2ea97941 1532 convert_input_section_to_relaxed_section(unsigned shndx)
8ffa3667
DK
1533 {
1534 // The stubs have relocations and we need to process them after writing
1535 // out the stubs. So relocation now must follow section write.
2b328d4e 1536 this->set_section_offset(shndx, -1ULL);
8ffa3667
DK
1537 this->set_relocs_must_follow_section_writes();
1538 }
1539
1540 // Downcast a base pointer to an Arm_relobj pointer. This is
1541 // not type-safe but we only use Arm_relobj not the base class.
1542 static Arm_relobj<big_endian>*
2ea97941
ILT
1543 as_arm_relobj(Relobj* relobj)
1544 { return static_cast<Arm_relobj<big_endian>*>(relobj); }
8ffa3667 1545
d5b40221
DK
1546 // Processor-specific flags in ELF file header. This is valid only after
1547 // reading symbols.
1548 elfcpp::Elf_Word
1549 processor_specific_flags() const
1550 { return this->processor_specific_flags_; }
1551
a0351a69
DK
1552 // Attribute section data This is the contents of the .ARM.attribute section
1553 // if there is one.
1554 const Attributes_section_data*
1555 attributes_section_data() const
1556 { return this->attributes_section_data_; }
1557
20138696
DK
1558 // Mapping symbol location.
1559 typedef std::pair<unsigned int, Arm_address> Mapping_symbol_position;
1560
1561 // Functor for STL container.
1562 struct Mapping_symbol_position_less
1563 {
1564 bool
1565 operator()(const Mapping_symbol_position& p1,
1566 const Mapping_symbol_position& p2) const
1567 {
1568 return (p1.first < p2.first
1569 || (p1.first == p2.first && p1.second < p2.second));
1570 }
1571 };
1572
1573 // We only care about the first character of a mapping symbol, so
1574 // we only store that instead of the whole symbol name.
1575 typedef std::map<Mapping_symbol_position, char,
1576 Mapping_symbol_position_less> Mapping_symbols_info;
1577
2fb7225c
DK
1578 // Whether a section contains any Cortex-A8 workaround.
1579 bool
1580 section_has_cortex_a8_workaround(unsigned int shndx) const
1581 {
1582 return (this->section_has_cortex_a8_workaround_ != NULL
1583 && (*this->section_has_cortex_a8_workaround_)[shndx]);
1584 }
1585
1586 // Mark a section that has Cortex-A8 workaround.
1587 void
1588 mark_section_for_cortex_a8_workaround(unsigned int shndx)
1589 {
1590 if (this->section_has_cortex_a8_workaround_ == NULL)
1591 this->section_has_cortex_a8_workaround_ =
1592 new std::vector<bool>(this->shnum(), false);
1593 (*this->section_has_cortex_a8_workaround_)[shndx] = true;
1594 }
1595
993d07c1
DK
1596 // Return the EXIDX section of an text section with index SHNDX or NULL
1597 // if the text section has no associated EXIDX section.
1598 const Arm_exidx_input_section*
1599 exidx_input_section_by_link(unsigned int shndx) const
1600 {
1601 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1602 return ((p != this->exidx_section_map_.end()
1603 && p->second->link() == shndx)
1604 ? p->second
1605 : NULL);
1606 }
1607
1608 // Return the EXIDX section with index SHNDX or NULL if there is none.
1609 const Arm_exidx_input_section*
1610 exidx_input_section_by_shndx(unsigned shndx) const
1611 {
1612 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1613 return ((p != this->exidx_section_map_.end()
1614 && p->second->shndx() == shndx)
1615 ? p->second
1616 : NULL);
1617 }
1618
e7eca48c
DK
1619 // Whether output local symbol count needs updating.
1620 bool
1621 output_local_symbol_count_needs_update() const
1622 { return this->output_local_symbol_count_needs_update_; }
1623
1624 // Set output_local_symbol_count_needs_update flag to be true.
1625 void
1626 set_output_local_symbol_count_needs_update()
1627 { this->output_local_symbol_count_needs_update_ = true; }
1628
1629 // Update output local symbol count at the end of relaxation.
1630 void
1631 update_output_local_symbol_count();
1632
7296d933
DK
1633 // Whether we want to merge processor-specific flags and attributes.
1634 bool
1635 merge_flags_and_attributes() const
1636 { return this->merge_flags_and_attributes_; }
1637
131687b4
DK
1638 // Export list of EXIDX section indices.
1639 void
1640 get_exidx_shndx_list(std::vector<unsigned int>* list) const
1641 {
1642 list->clear();
1643 for (Exidx_section_map::const_iterator p = this->exidx_section_map_.begin();
1644 p != this->exidx_section_map_.end();
1645 ++p)
1646 {
1647 if (p->second->shndx() == p->first)
1648 list->push_back(p->first);
1649 }
1650 // Sort list to make result independent of implementation of map.
1651 std::sort(list->begin(), list->end());
1652 }
1653
8ffa3667
DK
1654 protected:
1655 // Post constructor setup.
1656 void
1657 do_setup()
1658 {
1659 // Call parent's setup method.
6fa2a40b 1660 Sized_relobj_file<32, big_endian>::do_setup();
8ffa3667
DK
1661
1662 // Initialize look-up tables.
1663 Stub_table_list empty_stub_table_list(this->shnum(), NULL);
1664 this->stub_tables_.swap(empty_stub_table_list);
1665 }
1666
1667 // Count the local symbols.
1668 void
1669 do_count_local_symbols(Stringpool_template<char>*,
1670 Stringpool_template<char>*);
1671
1672 void
6fa2a40b
CC
1673 do_relocate_sections(
1674 const Symbol_table* symtab, const Layout* layout,
1675 const unsigned char* pshdrs, Output_file* of,
1676 typename Sized_relobj_file<32, big_endian>::Views* pivews);
8ffa3667 1677
d5b40221
DK
1678 // Read the symbol information.
1679 void
1680 do_read_symbols(Read_symbols_data* sd);
1681
99e5bff2
DK
1682 // Process relocs for garbage collection.
1683 void
1684 do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*);
1685
8ffa3667 1686 private:
44272192
DK
1687
1688 // Whether a section needs to be scanned for relocation stubs.
1689 bool
1690 section_needs_reloc_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1691 const Relobj::Output_sections&,
ca09d69a 1692 const Symbol_table*, const unsigned char*);
44272192 1693
cf846138
DK
1694 // Whether a section is a scannable text section.
1695 bool
1696 section_is_scannable(const elfcpp::Shdr<32, big_endian>&, unsigned int,
ca09d69a 1697 const Output_section*, const Symbol_table*);
cf846138 1698
44272192
DK
1699 // Whether a section needs to be scanned for the Cortex-A8 erratum.
1700 bool
1701 section_needs_cortex_a8_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1702 unsigned int, Output_section*,
ca09d69a 1703 const Symbol_table*);
44272192
DK
1704
1705 // Scan a section for the Cortex-A8 erratum.
1706 void
1707 scan_section_for_cortex_a8_erratum(const elfcpp::Shdr<32, big_endian>&,
1708 unsigned int, Output_section*,
1709 Target_arm<big_endian>*);
1710
c8761b9a 1711 // Find the linked text section of an EXIDX section by looking at the
9b547ce6 1712 // first relocation of the EXIDX section. PSHDR points to the section
c8761b9a
DK
1713 // headers of a relocation section and PSYMS points to the local symbols.
1714 // PSHNDX points to a location storing the text section index if found.
1715 // Return whether we can find the linked section.
1716 bool
1717 find_linked_text_section(const unsigned char* pshdr,
1718 const unsigned char* psyms, unsigned int* pshndx);
1719
1720 //
993d07c1 1721 // Make a new Arm_exidx_input_section object for EXIDX section with
c8761b9a
DK
1722 // index SHNDX and section header SHDR. TEXT_SHNDX is the section
1723 // index of the linked text section.
993d07c1
DK
1724 void
1725 make_exidx_input_section(unsigned int shndx,
c8761b9a 1726 const elfcpp::Shdr<32, big_endian>& shdr,
131687b4
DK
1727 unsigned int text_shndx,
1728 const elfcpp::Shdr<32, big_endian>& text_shdr);
993d07c1 1729
cb1be87e
DK
1730 // Return the output address of either a plain input section or a
1731 // relaxed input section. SHNDX is the section index.
1732 Arm_address
1733 simple_input_section_output_address(unsigned int, Output_section*);
1734
8ffa3667 1735 typedef std::vector<Stub_table<big_endian>*> Stub_table_list;
993d07c1
DK
1736 typedef Unordered_map<unsigned int, const Arm_exidx_input_section*>
1737 Exidx_section_map;
1738
1739 // List of stub tables.
8ffa3667
DK
1740 Stub_table_list stub_tables_;
1741 // Bit vector to tell if a local symbol is a thumb function or not.
1742 // This is only valid after do_count_local_symbol is called.
1743 std::vector<bool> local_symbol_is_thumb_function_;
d5b40221
DK
1744 // processor-specific flags in ELF file header.
1745 elfcpp::Elf_Word processor_specific_flags_;
a0351a69
DK
1746 // Object attributes if there is an .ARM.attributes section or NULL.
1747 Attributes_section_data* attributes_section_data_;
20138696
DK
1748 // Mapping symbols information.
1749 Mapping_symbols_info mapping_symbols_info_;
2fb7225c
DK
1750 // Bitmap to indicate sections with Cortex-A8 workaround or NULL.
1751 std::vector<bool>* section_has_cortex_a8_workaround_;
993d07c1
DK
1752 // Map a text section to its associated .ARM.exidx section, if there is one.
1753 Exidx_section_map exidx_section_map_;
e7eca48c
DK
1754 // Whether output local symbol count needs updating.
1755 bool output_local_symbol_count_needs_update_;
7296d933
DK
1756 // Whether we merge processor flags and attributes of this object to
1757 // output.
1758 bool merge_flags_and_attributes_;
d5b40221
DK
1759};
1760
1761// Arm_dynobj class.
1762
1763template<bool big_endian>
1764class Arm_dynobj : public Sized_dynobj<32, big_endian>
1765{
1766 public:
2ea97941 1767 Arm_dynobj(const std::string& name, Input_file* input_file, off_t offset,
d5b40221 1768 const elfcpp::Ehdr<32, big_endian>& ehdr)
2ea97941
ILT
1769 : Sized_dynobj<32, big_endian>(name, input_file, offset, ehdr),
1770 processor_specific_flags_(0), attributes_section_data_(NULL)
d5b40221
DK
1771 { }
1772
1773 ~Arm_dynobj()
a0351a69 1774 { delete this->attributes_section_data_; }
d5b40221
DK
1775
1776 // Downcast a base pointer to an Arm_relobj pointer. This is
1777 // not type-safe but we only use Arm_relobj not the base class.
1778 static Arm_dynobj<big_endian>*
1779 as_arm_dynobj(Dynobj* dynobj)
1780 { return static_cast<Arm_dynobj<big_endian>*>(dynobj); }
1781
1782 // Processor-specific flags in ELF file header. This is valid only after
1783 // reading symbols.
1784 elfcpp::Elf_Word
1785 processor_specific_flags() const
1786 { return this->processor_specific_flags_; }
1787
a0351a69
DK
1788 // Attributes section data.
1789 const Attributes_section_data*
1790 attributes_section_data() const
1791 { return this->attributes_section_data_; }
1792
d5b40221
DK
1793 protected:
1794 // Read the symbol information.
1795 void
1796 do_read_symbols(Read_symbols_data* sd);
1797
1798 private:
1799 // processor-specific flags in ELF file header.
1800 elfcpp::Elf_Word processor_specific_flags_;
a0351a69
DK
1801 // Object attributes if there is an .ARM.attributes section or NULL.
1802 Attributes_section_data* attributes_section_data_;
8ffa3667
DK
1803};
1804
e9bbb538
DK
1805// Functor to read reloc addends during stub generation.
1806
1807template<int sh_type, bool big_endian>
1808struct Stub_addend_reader
1809{
1810 // Return the addend for a relocation of a particular type. Depending
1811 // on whether this is a REL or RELA relocation, read the addend from a
1812 // view or from a Reloc object.
1813 elfcpp::Elf_types<32>::Elf_Swxword
1814 operator()(
1815 unsigned int /* r_type */,
1816 const unsigned char* /* view */,
1817 const typename Reloc_types<sh_type,
ebd95253 1818 32, big_endian>::Reloc& /* reloc */) const;
e9bbb538
DK
1819};
1820
1821// Specialized Stub_addend_reader for SHT_REL type relocation sections.
1822
1823template<bool big_endian>
1824struct Stub_addend_reader<elfcpp::SHT_REL, big_endian>
1825{
1826 elfcpp::Elf_types<32>::Elf_Swxword
1827 operator()(
1828 unsigned int,
1829 const unsigned char*,
1830 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const;
1831};
1832
1833// Specialized Stub_addend_reader for RELA type relocation sections.
1834// We currently do not handle RELA type relocation sections but it is trivial
1835// to implement the addend reader. This is provided for completeness and to
1836// make it easier to add support for RELA relocation sections in the future.
1837
1838template<bool big_endian>
1839struct Stub_addend_reader<elfcpp::SHT_RELA, big_endian>
1840{
1841 elfcpp::Elf_types<32>::Elf_Swxword
1842 operator()(
1843 unsigned int,
1844 const unsigned char*,
1845 const typename Reloc_types<elfcpp::SHT_RELA, 32,
ebd95253
DK
1846 big_endian>::Reloc& reloc) const
1847 { return reloc.get_r_addend(); }
e9bbb538
DK
1848};
1849
a120bc7f
DK
1850// Cortex_a8_reloc class. We keep record of relocation that may need
1851// the Cortex-A8 erratum workaround.
1852
1853class Cortex_a8_reloc
1854{
1855 public:
1856 Cortex_a8_reloc(Reloc_stub* reloc_stub, unsigned r_type,
1857 Arm_address destination)
1858 : reloc_stub_(reloc_stub), r_type_(r_type), destination_(destination)
1859 { }
1860
1861 ~Cortex_a8_reloc()
1862 { }
1863
1864 // Accessors: This is a read-only class.
1865
1866 // Return the relocation stub associated with this relocation if there is
1867 // one.
1868 const Reloc_stub*
1869 reloc_stub() const
1870 { return this->reloc_stub_; }
1871
1872 // Return the relocation type.
1873 unsigned int
1874 r_type() const
1875 { return this->r_type_; }
1876
1877 // Return the destination address of the relocation. LSB stores the THUMB
1878 // bit.
1879 Arm_address
1880 destination() const
1881 { return this->destination_; }
1882
1883 private:
1884 // Associated relocation stub if there is one, or NULL.
1885 const Reloc_stub* reloc_stub_;
1886 // Relocation type.
1887 unsigned int r_type_;
1888 // Destination address of this relocation. LSB is used to distinguish
1889 // ARM/THUMB mode.
1890 Arm_address destination_;
1891};
1892
4a54abbb
DK
1893// Arm_output_data_got class. We derive this from Output_data_got to add
1894// extra methods to handle TLS relocations in a static link.
1895
1896template<bool big_endian>
1897class Arm_output_data_got : public Output_data_got<32, big_endian>
1898{
1899 public:
1900 Arm_output_data_got(Symbol_table* symtab, Layout* layout)
1901 : Output_data_got<32, big_endian>(), symbol_table_(symtab), layout_(layout)
1902 { }
1903
1904 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
1905 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
1906 // applied in a static link.
1907 void
1908 add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1909 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
1910
1911 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
1912 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
1913 // relocation that needs to be applied in a static link.
1914 void
1915 add_static_reloc(unsigned int got_offset, unsigned int r_type,
6fa2a40b
CC
1916 Sized_relobj_file<32, big_endian>* relobj,
1917 unsigned int index)
4a54abbb
DK
1918 {
1919 this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
1920 index));
1921 }
1922
1923 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
1924 // The first one is initialized to be 1, which is the module index for
1925 // the main executable and the second one 0. A reloc of the type
1926 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
1927 // be applied by gold. GSYM is a global symbol.
1928 void
1929 add_tls_gd32_with_static_reloc(unsigned int got_type, Symbol* gsym);
1930
1931 // Same as the above but for a local symbol in OBJECT with INDEX.
1932 void
1933 add_tls_gd32_with_static_reloc(unsigned int got_type,
6fa2a40b 1934 Sized_relobj_file<32, big_endian>* object,
4a54abbb
DK
1935 unsigned int index);
1936
1937 protected:
1938 // Write out the GOT table.
1939 void
1940 do_write(Output_file*);
1941
1942 private:
1943 // This class represent dynamic relocations that need to be applied by
1944 // gold because we are using TLS relocations in a static link.
1945 class Static_reloc
1946 {
1947 public:
1948 Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1949 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
1950 { this->u_.global.symbol = gsym; }
1951
1952 Static_reloc(unsigned int got_offset, unsigned int r_type,
6fa2a40b 1953 Sized_relobj_file<32, big_endian>* relobj, unsigned int index)
4a54abbb
DK
1954 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
1955 {
1956 this->u_.local.relobj = relobj;
1957 this->u_.local.index = index;
1958 }
1959
1960 // Return the GOT offset.
1961 unsigned int
1962 got_offset() const
1963 { return this->got_offset_; }
1964
1965 // Relocation type.
1966 unsigned int
1967 r_type() const
1968 { return this->r_type_; }
1969
1970 // Whether the symbol is global or not.
1971 bool
1972 symbol_is_global() const
1973 { return this->symbol_is_global_; }
1974
1975 // For a relocation against a global symbol, the global symbol.
1976 Symbol*
1977 symbol() const
1978 {
1979 gold_assert(this->symbol_is_global_);
1980 return this->u_.global.symbol;
1981 }
1982
1983 // For a relocation against a local symbol, the defining object.
6fa2a40b 1984 Sized_relobj_file<32, big_endian>*
4a54abbb
DK
1985 relobj() const
1986 {
1987 gold_assert(!this->symbol_is_global_);
1988 return this->u_.local.relobj;
1989 }
1990
1991 // For a relocation against a local symbol, the local symbol index.
1992 unsigned int
1993 index() const
1994 {
1995 gold_assert(!this->symbol_is_global_);
1996 return this->u_.local.index;
1997 }
1998
1999 private:
2000 // GOT offset of the entry to which this relocation is applied.
2001 unsigned int got_offset_;
2002 // Type of relocation.
2003 unsigned int r_type_;
2004 // Whether this relocation is against a global symbol.
2005 bool symbol_is_global_;
2006 // A global or local symbol.
2007 union
2008 {
2009 struct
2010 {
2011 // For a global symbol, the symbol itself.
2012 Symbol* symbol;
2013 } global;
2014 struct
2015 {
2016 // For a local symbol, the object defining object.
6fa2a40b 2017 Sized_relobj_file<32, big_endian>* relobj;
4a54abbb
DK
2018 // For a local symbol, the symbol index.
2019 unsigned int index;
2020 } local;
2021 } u_;
2022 };
2023
2024 // Symbol table of the output object.
2025 Symbol_table* symbol_table_;
2026 // Layout of the output object.
2027 Layout* layout_;
2028 // Static relocs to be applied to the GOT.
2029 std::vector<Static_reloc> static_relocs_;
2030};
2031
9b547ce6 2032// The ARM target has many relocation types with odd-sizes or noncontiguous
5c388529
DK
2033// bits. The default handling of relocatable relocation cannot process these
2034// relocations. So we have to extend the default code.
2035
2036template<bool big_endian, int sh_type, typename Classify_reloc>
2037class Arm_scan_relocatable_relocs :
2038 public Default_scan_relocatable_relocs<sh_type, Classify_reloc>
2039{
2040 public:
2041 // Return the strategy to use for a local symbol which is a section
2042 // symbol, given the relocation type.
2043 inline Relocatable_relocs::Reloc_strategy
2044 local_section_strategy(unsigned int r_type, Relobj*)
2045 {
2046 if (sh_type == elfcpp::SHT_RELA)
2047 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
2048 else
2049 {
2050 if (r_type == elfcpp::R_ARM_TARGET1
2051 || r_type == elfcpp::R_ARM_TARGET2)
2052 {
2053 const Target_arm<big_endian>* arm_target =
2054 Target_arm<big_endian>::default_target();
2055 r_type = arm_target->get_real_reloc_type(r_type);
2056 }
2057
2058 switch(r_type)
2059 {
2060 // Relocations that write nothing. These exclude R_ARM_TARGET1
2061 // and R_ARM_TARGET2.
2062 case elfcpp::R_ARM_NONE:
2063 case elfcpp::R_ARM_V4BX:
2064 case elfcpp::R_ARM_TLS_GOTDESC:
2065 case elfcpp::R_ARM_TLS_CALL:
2066 case elfcpp::R_ARM_TLS_DESCSEQ:
2067 case elfcpp::R_ARM_THM_TLS_CALL:
2068 case elfcpp::R_ARM_GOTRELAX:
2069 case elfcpp::R_ARM_GNU_VTENTRY:
2070 case elfcpp::R_ARM_GNU_VTINHERIT:
2071 case elfcpp::R_ARM_THM_TLS_DESCSEQ16:
2072 case elfcpp::R_ARM_THM_TLS_DESCSEQ32:
2073 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
2074 // These should have been converted to something else above.
2075 case elfcpp::R_ARM_TARGET1:
2076 case elfcpp::R_ARM_TARGET2:
2077 gold_unreachable();
2078 // Relocations that write full 32 bits.
2079 case elfcpp::R_ARM_ABS32:
2080 case elfcpp::R_ARM_REL32:
2081 case elfcpp::R_ARM_SBREL32:
2082 case elfcpp::R_ARM_GOTOFF32:
2083 case elfcpp::R_ARM_BASE_PREL:
2084 case elfcpp::R_ARM_GOT_BREL:
2085 case elfcpp::R_ARM_BASE_ABS:
2086 case elfcpp::R_ARM_ABS32_NOI:
2087 case elfcpp::R_ARM_REL32_NOI:
2088 case elfcpp::R_ARM_PLT32_ABS:
2089 case elfcpp::R_ARM_GOT_ABS:
2090 case elfcpp::R_ARM_GOT_PREL:
2091 case elfcpp::R_ARM_TLS_GD32:
2092 case elfcpp::R_ARM_TLS_LDM32:
2093 case elfcpp::R_ARM_TLS_LDO32:
2094 case elfcpp::R_ARM_TLS_IE32:
2095 case elfcpp::R_ARM_TLS_LE32:
2096 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4;
2097 default:
2098 // For all other static relocations, return RELOC_SPECIAL.
2099 return Relocatable_relocs::RELOC_SPECIAL;
2100 }
2101 }
2102 }
2103};
2104
c121c671
DK
2105// Utilities for manipulating integers of up to 32-bits
2106
2107namespace utils
2108{
2109 // Sign extend an n-bit unsigned integer stored in an uint32_t into
2110 // an int32_t. NO_BITS must be between 1 to 32.
2111 template<int no_bits>
2112 static inline int32_t
2113 sign_extend(uint32_t bits)
2114 {
96d49306 2115 gold_assert(no_bits >= 0 && no_bits <= 32);
c121c671
DK
2116 if (no_bits == 32)
2117 return static_cast<int32_t>(bits);
2118 uint32_t mask = (~((uint32_t) 0)) >> (32 - no_bits);
2119 bits &= mask;
2120 uint32_t top_bit = 1U << (no_bits - 1);
2121 int32_t as_signed = static_cast<int32_t>(bits);
2122 return (bits & top_bit) ? as_signed + (-top_bit * 2) : as_signed;
2123 }
2124
2125 // Detects overflow of an NO_BITS integer stored in a uint32_t.
2126 template<int no_bits>
2127 static inline bool
2128 has_overflow(uint32_t bits)
2129 {
96d49306 2130 gold_assert(no_bits >= 0 && no_bits <= 32);
c121c671
DK
2131 if (no_bits == 32)
2132 return false;
2133 int32_t max = (1 << (no_bits - 1)) - 1;
2134 int32_t min = -(1 << (no_bits - 1));
2135 int32_t as_signed = static_cast<int32_t>(bits);
2136 return as_signed > max || as_signed < min;
2137 }
2138
5e445df6
ILT
2139 // Detects overflow of an NO_BITS integer stored in a uint32_t when it
2140 // fits in the given number of bits as either a signed or unsigned value.
2141 // For example, has_signed_unsigned_overflow<8> would check
2142 // -128 <= bits <= 255
2143 template<int no_bits>
2144 static inline bool
2145 has_signed_unsigned_overflow(uint32_t bits)
2146 {
2147 gold_assert(no_bits >= 2 && no_bits <= 32);
2148 if (no_bits == 32)
2149 return false;
2150 int32_t max = static_cast<int32_t>((1U << no_bits) - 1);
2151 int32_t min = -(1 << (no_bits - 1));
2152 int32_t as_signed = static_cast<int32_t>(bits);
2153 return as_signed > max || as_signed < min;
2154 }
2155
c121c671
DK
2156 // Select bits from A and B using bits in MASK. For each n in [0..31],
2157 // the n-th bit in the result is chosen from the n-th bits of A and B.
2158 // A zero selects A and a one selects B.
2159 static inline uint32_t
2160 bit_select(uint32_t a, uint32_t b, uint32_t mask)
2161 { return (a & ~mask) | (b & mask); }
2162};
2163
4a657b0d
DK
2164template<bool big_endian>
2165class Target_arm : public Sized_target<32, big_endian>
2166{
2167 public:
2168 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
2169 Reloc_section;
2170
2daedcd6
DK
2171 // When were are relocating a stub, we pass this as the relocation number.
2172 static const size_t fake_relnum_for_stubs = static_cast<size_t>(-1);
2173
a6d1ef57
DK
2174 Target_arm()
2175 : Sized_target<32, big_endian>(&arm_info),
2176 got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
f96accdf
DK
2177 copy_relocs_(elfcpp::R_ARM_COPY), dynbss_(NULL),
2178 got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
2179 stub_tables_(), stub_factory_(Stub_factory::get_instance()),
2180 may_use_blx_(false), should_force_pic_veneer_(false),
2181 arm_input_section_map_(), attributes_section_data_(NULL),
2182 fix_cortex_a8_(false), cortex_a8_relocs_info_()
a6d1ef57 2183 { }
4a657b0d 2184
8a75a161
DK
2185 // Virtual function which is set to return true by a target if
2186 // it can use relocation types to determine if a function's
2187 // pointer is taken.
2188 virtual bool
2189 can_check_for_function_pointers() const
2190 { return true; }
2191
2192 // Whether a section called SECTION_NAME may have function pointers to
2193 // sections not eligible for safe ICF folding.
2194 virtual bool
2195 section_may_have_icf_unsafe_pointers(const char* section_name) const
2196 {
2197 return (!is_prefix_of(".ARM.exidx", section_name)
2198 && !is_prefix_of(".ARM.extab", section_name)
2199 && Target::section_may_have_icf_unsafe_pointers(section_name));
2200 }
2201
b569affa
DK
2202 // Whether we can use BLX.
2203 bool
2204 may_use_blx() const
2205 { return this->may_use_blx_; }
2206
2207 // Set use-BLX flag.
2208 void
2209 set_may_use_blx(bool value)
2210 { this->may_use_blx_ = value; }
2211
2212 // Whether we force PCI branch veneers.
2213 bool
2214 should_force_pic_veneer() const
2215 { return this->should_force_pic_veneer_; }
2216
2217 // Set PIC veneer flag.
2218 void
2219 set_should_force_pic_veneer(bool value)
2220 { this->should_force_pic_veneer_ = value; }
2221
2222 // Whether we use THUMB-2 instructions.
2223 bool
2224 using_thumb2() const
2225 {
a0351a69
DK
2226 Object_attribute* attr =
2227 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2228 int arch = attr->int_value();
2229 return arch == elfcpp::TAG_CPU_ARCH_V6T2 || arch >= elfcpp::TAG_CPU_ARCH_V7;
b569affa
DK
2230 }
2231
2232 // Whether we use THUMB/THUMB-2 instructions only.
2233 bool
2234 using_thumb_only() const
2235 {
a0351a69
DK
2236 Object_attribute* attr =
2237 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
323c532f
DK
2238
2239 if (attr->int_value() == elfcpp::TAG_CPU_ARCH_V6_M
2240 || attr->int_value() == elfcpp::TAG_CPU_ARCH_V6S_M)
2241 return true;
a0351a69
DK
2242 if (attr->int_value() != elfcpp::TAG_CPU_ARCH_V7
2243 && attr->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M)
2244 return false;
2245 attr = this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
2246 return attr->int_value() == 'M';
b569affa
DK
2247 }
2248
d204b6e9
DK
2249 // Whether we have an NOP instruction. If not, use mov r0, r0 instead.
2250 bool
2251 may_use_arm_nop() const
2252 {
a0351a69
DK
2253 Object_attribute* attr =
2254 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2255 int arch = attr->int_value();
2256 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2257 || arch == elfcpp::TAG_CPU_ARCH_V6K
2258 || arch == elfcpp::TAG_CPU_ARCH_V7
2259 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
d204b6e9
DK
2260 }
2261
51938283
DK
2262 // Whether we have THUMB-2 NOP.W instruction.
2263 bool
2264 may_use_thumb2_nop() const
2265 {
a0351a69
DK
2266 Object_attribute* attr =
2267 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2268 int arch = attr->int_value();
2269 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2270 || arch == elfcpp::TAG_CPU_ARCH_V7
2271 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
51938283
DK
2272 }
2273
4a657b0d
DK
2274 // Process the relocations to determine unreferenced sections for
2275 // garbage collection.
2276 void
ad0f2072 2277 gc_process_relocs(Symbol_table* symtab,
4a657b0d 2278 Layout* layout,
6fa2a40b 2279 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
2280 unsigned int data_shndx,
2281 unsigned int sh_type,
2282 const unsigned char* prelocs,
2283 size_t reloc_count,
2284 Output_section* output_section,
2285 bool needs_special_offset_handling,
2286 size_t local_symbol_count,
2287 const unsigned char* plocal_symbols);
2288
2289 // Scan the relocations to look for symbol adjustments.
2290 void
ad0f2072 2291 scan_relocs(Symbol_table* symtab,
4a657b0d 2292 Layout* layout,
6fa2a40b 2293 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
2294 unsigned int data_shndx,
2295 unsigned int sh_type,
2296 const unsigned char* prelocs,
2297 size_t reloc_count,
2298 Output_section* output_section,
2299 bool needs_special_offset_handling,
2300 size_t local_symbol_count,
2301 const unsigned char* plocal_symbols);
2302
2303 // Finalize the sections.
2304 void
f59f41f3 2305 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
4a657b0d 2306
94cdfcff 2307 // Return the value to use for a dynamic symbol which requires special
4a657b0d
DK
2308 // treatment.
2309 uint64_t
2310 do_dynsym_value(const Symbol*) const;
2311
2312 // Relocate a section.
2313 void
2314 relocate_section(const Relocate_info<32, big_endian>*,
2315 unsigned int sh_type,
2316 const unsigned char* prelocs,
2317 size_t reloc_count,
2318 Output_section* output_section,
2319 bool needs_special_offset_handling,
2320 unsigned char* view,
ebabffbd 2321 Arm_address view_address,
364c7fa5
ILT
2322 section_size_type view_size,
2323 const Reloc_symbol_changes*);
4a657b0d
DK
2324
2325 // Scan the relocs during a relocatable link.
2326 void
ad0f2072 2327 scan_relocatable_relocs(Symbol_table* symtab,
4a657b0d 2328 Layout* layout,
6fa2a40b 2329 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
2330 unsigned int data_shndx,
2331 unsigned int sh_type,
2332 const unsigned char* prelocs,
2333 size_t reloc_count,
2334 Output_section* output_section,
2335 bool needs_special_offset_handling,
2336 size_t local_symbol_count,
2337 const unsigned char* plocal_symbols,
2338 Relocatable_relocs*);
2339
2340 // Relocate a section during a relocatable link.
2341 void
2342 relocate_for_relocatable(const Relocate_info<32, big_endian>*,
2343 unsigned int sh_type,
2344 const unsigned char* prelocs,
2345 size_t reloc_count,
2346 Output_section* output_section,
2347 off_t offset_in_output_section,
2348 const Relocatable_relocs*,
2349 unsigned char* view,
ebabffbd 2350 Arm_address view_address,
4a657b0d
DK
2351 section_size_type view_size,
2352 unsigned char* reloc_view,
2353 section_size_type reloc_view_size);
2354
5c388529
DK
2355 // Perform target-specific processing in a relocatable link. This is
2356 // only used if we use the relocation strategy RELOC_SPECIAL.
2357 void
2358 relocate_special_relocatable(const Relocate_info<32, big_endian>* relinfo,
2359 unsigned int sh_type,
2360 const unsigned char* preloc_in,
2361 size_t relnum,
2362 Output_section* output_section,
2363 off_t offset_in_output_section,
2364 unsigned char* view,
2365 typename elfcpp::Elf_types<32>::Elf_Addr
2366 view_address,
2367 section_size_type view_size,
2368 unsigned char* preloc_out);
2369
4a657b0d
DK
2370 // Return whether SYM is defined by the ABI.
2371 bool
2372 do_is_defined_by_abi(Symbol* sym) const
2373 { return strcmp(sym->name(), "__tls_get_addr") == 0; }
2374
c8761b9a
DK
2375 // Return whether there is a GOT section.
2376 bool
2377 has_got_section() const
2378 { return this->got_ != NULL; }
2379
94cdfcff
DK
2380 // Return the size of the GOT section.
2381 section_size_type
0e70b911 2382 got_size() const
94cdfcff
DK
2383 {
2384 gold_assert(this->got_ != NULL);
2385 return this->got_->data_size();
2386 }
2387
0e70b911
CC
2388 // Return the number of entries in the GOT.
2389 unsigned int
2390 got_entry_count() const
2391 {
2392 if (!this->has_got_section())
2393 return 0;
2394 return this->got_size() / 4;
2395 }
2396
2397 // Return the number of entries in the PLT.
2398 unsigned int
2399 plt_entry_count() const;
2400
2401 // Return the offset of the first non-reserved PLT entry.
2402 unsigned int
2403 first_plt_entry_offset() const;
2404
2405 // Return the size of each PLT entry.
2406 unsigned int
2407 plt_entry_size() const;
2408
4a657b0d 2409 // Map platform-specific reloc types
a6d1ef57 2410 static unsigned int
ca09d69a 2411 get_real_reloc_type(unsigned int r_type);
4a657b0d 2412
55da9579
DK
2413 //
2414 // Methods to support stub-generations.
2415 //
2416
2417 // Return the stub factory
2418 const Stub_factory&
2419 stub_factory() const
2420 { return this->stub_factory_; }
2421
2422 // Make a new Arm_input_section object.
2423 Arm_input_section<big_endian>*
2424 new_arm_input_section(Relobj*, unsigned int);
2425
2426 // Find the Arm_input_section object corresponding to the SHNDX-th input
2427 // section of RELOBJ.
2428 Arm_input_section<big_endian>*
2ea97941 2429 find_arm_input_section(Relobj* relobj, unsigned int shndx) const;
55da9579
DK
2430
2431 // Make a new Stub_table
2432 Stub_table<big_endian>*
2433 new_stub_table(Arm_input_section<big_endian>*);
2434
eb44217c
DK
2435 // Scan a section for stub generation.
2436 void
2437 scan_section_for_stubs(const Relocate_info<32, big_endian>*, unsigned int,
2438 const unsigned char*, size_t, Output_section*,
2439 bool, const unsigned char*, Arm_address,
2440 section_size_type);
2441
43d12afe
DK
2442 // Relocate a stub.
2443 void
2fb7225c 2444 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
43d12afe
DK
2445 Output_section*, unsigned char*, Arm_address,
2446 section_size_type);
2447
b569affa 2448 // Get the default ARM target.
43d12afe 2449 static Target_arm<big_endian>*
b569affa
DK
2450 default_target()
2451 {
2452 gold_assert(parameters->target().machine_code() == elfcpp::EM_ARM
2453 && parameters->target().is_big_endian() == big_endian);
43d12afe
DK
2454 return static_cast<Target_arm<big_endian>*>(
2455 parameters->sized_target<32, big_endian>());
b569affa
DK
2456 }
2457
20138696
DK
2458 // Whether NAME belongs to a mapping symbol.
2459 static bool
2460 is_mapping_symbol_name(const char* name)
2461 {
2462 return (name
2463 && name[0] == '$'
2464 && (name[1] == 'a' || name[1] == 't' || name[1] == 'd')
2465 && (name[2] == '\0' || name[2] == '.'));
2466 }
2467
a120bc7f
DK
2468 // Whether we work around the Cortex-A8 erratum.
2469 bool
2470 fix_cortex_a8() const
2471 { return this->fix_cortex_a8_; }
2472
85fdf906
AH
2473 // Whether we merge exidx entries in debuginfo.
2474 bool
2475 merge_exidx_entries() const
2476 { return parameters->options().merge_exidx_entries(); }
2477
a2162063
ILT
2478 // Whether we fix R_ARM_V4BX relocation.
2479 // 0 - do not fix
2480 // 1 - replace with MOV instruction (armv4 target)
2481 // 2 - make interworking veneer (>= armv4t targets only)
9b2fd367 2482 General_options::Fix_v4bx
a2162063 2483 fix_v4bx() const
9b2fd367 2484 { return parameters->options().fix_v4bx(); }
a2162063 2485
44272192
DK
2486 // Scan a span of THUMB code section for Cortex-A8 erratum.
2487 void
2488 scan_span_for_cortex_a8_erratum(Arm_relobj<big_endian>*, unsigned int,
2489 section_size_type, section_size_type,
2490 const unsigned char*, Arm_address);
2491
41263c05
DK
2492 // Apply Cortex-A8 workaround to a branch.
2493 void
2494 apply_cortex_a8_workaround(const Cortex_a8_stub*, Arm_address,
2495 unsigned char*, Arm_address);
2496
d5b40221 2497 protected:
eb44217c
DK
2498 // Make an ELF object.
2499 Object*
2500 do_make_elf_object(const std::string&, Input_file*, off_t,
2501 const elfcpp::Ehdr<32, big_endian>& ehdr);
2502
2503 Object*
2504 do_make_elf_object(const std::string&, Input_file*, off_t,
2505 const elfcpp::Ehdr<32, !big_endian>&)
2506 { gold_unreachable(); }
2507
2508 Object*
2509 do_make_elf_object(const std::string&, Input_file*, off_t,
2510 const elfcpp::Ehdr<64, false>&)
2511 { gold_unreachable(); }
2512
2513 Object*
2514 do_make_elf_object(const std::string&, Input_file*, off_t,
2515 const elfcpp::Ehdr<64, true>&)
2516 { gold_unreachable(); }
2517
2518 // Make an output section.
2519 Output_section*
2520 do_make_output_section(const char* name, elfcpp::Elf_Word type,
2521 elfcpp::Elf_Xword flags)
2522 { return new Arm_output_section<big_endian>(name, type, flags); }
2523
d5b40221
DK
2524 void
2525 do_adjust_elf_header(unsigned char* view, int len) const;
2526
eb44217c
DK
2527 // We only need to generate stubs, and hence perform relaxation if we are
2528 // not doing relocatable linking.
2529 bool
2530 do_may_relax() const
2531 { return !parameters->options().relocatable(); }
2532
2533 bool
f625ae50 2534 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
eb44217c 2535
a0351a69
DK
2536 // Determine whether an object attribute tag takes an integer, a
2537 // string or both.
2538 int
2539 do_attribute_arg_type(int tag) const;
2540
2541 // Reorder tags during output.
2542 int
2543 do_attributes_order(int num) const;
2544
0d31c79d
DK
2545 // This is called when the target is selected as the default.
2546 void
2547 do_select_as_default_target()
2548 {
2549 // No locking is required since there should only be one default target.
2550 // We cannot have both the big-endian and little-endian ARM targets
2551 // as the default.
2552 gold_assert(arm_reloc_property_table == NULL);
2553 arm_reloc_property_table = new Arm_reloc_property_table();
2554 }
2555
4a657b0d
DK
2556 private:
2557 // The class which scans relocations.
2558 class Scan
2559 {
2560 public:
2561 Scan()
bec53400 2562 : issued_non_pic_error_(false)
4a657b0d
DK
2563 { }
2564
95a2c8d6
RS
2565 static inline int
2566 get_reference_flags(unsigned int r_type);
2567
4a657b0d 2568 inline void
ad0f2072 2569 local(Symbol_table* symtab, Layout* layout, Target_arm* target,
6fa2a40b 2570 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
2571 unsigned int data_shndx,
2572 Output_section* output_section,
2573 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2574 const elfcpp::Sym<32, big_endian>& lsym);
2575
2576 inline void
ad0f2072 2577 global(Symbol_table* symtab, Layout* layout, Target_arm* target,
6fa2a40b 2578 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
2579 unsigned int data_shndx,
2580 Output_section* output_section,
2581 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2582 Symbol* gsym);
2583
21bb3914
ST
2584 inline bool
2585 local_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
6fa2a40b 2586 Sized_relobj_file<32, big_endian>* ,
21bb3914
ST
2587 unsigned int ,
2588 Output_section* ,
2589 const elfcpp::Rel<32, big_endian>& ,
2590 unsigned int ,
8a75a161 2591 const elfcpp::Sym<32, big_endian>&);
21bb3914
ST
2592
2593 inline bool
2594 global_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
6fa2a40b 2595 Sized_relobj_file<32, big_endian>* ,
21bb3914
ST
2596 unsigned int ,
2597 Output_section* ,
2598 const elfcpp::Rel<32, big_endian>& ,
8a75a161 2599 unsigned int , Symbol*);
21bb3914 2600
4a657b0d
DK
2601 private:
2602 static void
6fa2a40b 2603 unsupported_reloc_local(Sized_relobj_file<32, big_endian>*,
4a657b0d
DK
2604 unsigned int r_type);
2605
2606 static void
6fa2a40b 2607 unsupported_reloc_global(Sized_relobj_file<32, big_endian>*,
4a657b0d 2608 unsigned int r_type, Symbol*);
bec53400
DK
2609
2610 void
2611 check_non_pic(Relobj*, unsigned int r_type);
2612
2613 // Almost identical to Symbol::needs_plt_entry except that it also
2614 // handles STT_ARM_TFUNC.
2615 static bool
2616 symbol_needs_plt_entry(const Symbol* sym)
2617 {
2618 // An undefined symbol from an executable does not need a PLT entry.
2619 if (sym->is_undefined() && !parameters->options().shared())
2620 return false;
2621
2622 return (!parameters->doing_static_link()
2623 && (sym->type() == elfcpp::STT_FUNC
2624 || sym->type() == elfcpp::STT_ARM_TFUNC)
2625 && (sym->is_from_dynobj()
2626 || sym->is_undefined()
2627 || sym->is_preemptible()));
2628 }
2629
8a75a161
DK
2630 inline bool
2631 possible_function_pointer_reloc(unsigned int r_type);
2632
bec53400
DK
2633 // Whether we have issued an error about a non-PIC compilation.
2634 bool issued_non_pic_error_;
4a657b0d
DK
2635 };
2636
2637 // The class which implements relocation.
2638 class Relocate
2639 {
2640 public:
2641 Relocate()
2642 { }
2643
2644 ~Relocate()
2645 { }
2646
bec53400
DK
2647 // Return whether the static relocation needs to be applied.
2648 inline bool
2649 should_apply_static_reloc(const Sized_symbol<32>* gsym,
95a2c8d6 2650 unsigned int r_type,
bec53400
DK
2651 bool is_32bit,
2652 Output_section* output_section);
2653
4a657b0d
DK
2654 // Do a relocation. Return false if the caller should not issue
2655 // any warnings about this relocation.
2656 inline bool
2657 relocate(const Relocate_info<32, big_endian>*, Target_arm*,
2658 Output_section*, size_t relnum,
2659 const elfcpp::Rel<32, big_endian>&,
2660 unsigned int r_type, const Sized_symbol<32>*,
2661 const Symbol_value<32>*,
ebabffbd 2662 unsigned char*, Arm_address,
4a657b0d 2663 section_size_type);
c121c671
DK
2664
2665 // Return whether we want to pass flag NON_PIC_REF for this
f4e5969c
DK
2666 // reloc. This means the relocation type accesses a symbol not via
2667 // GOT or PLT.
c121c671 2668 static inline bool
ca09d69a 2669 reloc_is_non_pic(unsigned int r_type)
c121c671
DK
2670 {
2671 switch (r_type)
2672 {
f4e5969c
DK
2673 // These relocation types reference GOT or PLT entries explicitly.
2674 case elfcpp::R_ARM_GOT_BREL:
2675 case elfcpp::R_ARM_GOT_ABS:
2676 case elfcpp::R_ARM_GOT_PREL:
2677 case elfcpp::R_ARM_GOT_BREL12:
2678 case elfcpp::R_ARM_PLT32_ABS:
2679 case elfcpp::R_ARM_TLS_GD32:
2680 case elfcpp::R_ARM_TLS_LDM32:
2681 case elfcpp::R_ARM_TLS_IE32:
2682 case elfcpp::R_ARM_TLS_IE12GP:
2683
2684 // These relocate types may use PLT entries.
c121c671 2685 case elfcpp::R_ARM_CALL:
f4e5969c 2686 case elfcpp::R_ARM_THM_CALL:
c121c671 2687 case elfcpp::R_ARM_JUMP24:
f4e5969c
DK
2688 case elfcpp::R_ARM_THM_JUMP24:
2689 case elfcpp::R_ARM_THM_JUMP19:
2690 case elfcpp::R_ARM_PLT32:
2691 case elfcpp::R_ARM_THM_XPC22:
c3e4ae29
DK
2692 case elfcpp::R_ARM_PREL31:
2693 case elfcpp::R_ARM_SBREL31:
c121c671 2694 return false;
f4e5969c
DK
2695
2696 default:
2697 return true;
c121c671
DK
2698 }
2699 }
f96accdf
DK
2700
2701 private:
2702 // Do a TLS relocation.
2703 inline typename Arm_relocate_functions<big_endian>::Status
2704 relocate_tls(const Relocate_info<32, big_endian>*, Target_arm<big_endian>*,
2705 size_t, const elfcpp::Rel<32, big_endian>&, unsigned int,
2706 const Sized_symbol<32>*, const Symbol_value<32>*,
2707 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
2708 section_size_type);
2709
4a657b0d
DK
2710 };
2711
2712 // A class which returns the size required for a relocation type,
2713 // used while scanning relocs during a relocatable link.
2714 class Relocatable_size_for_reloc
2715 {
2716 public:
2717 unsigned int
2718 get_size_for_reloc(unsigned int, Relobj*);
2719 };
2720
f96accdf
DK
2721 // Adjust TLS relocation type based on the options and whether this
2722 // is a local symbol.
2723 static tls::Tls_optimization
2724 optimize_tls_reloc(bool is_final, int r_type);
2725
94cdfcff 2726 // Get the GOT section, creating it if necessary.
4a54abbb 2727 Arm_output_data_got<big_endian>*
94cdfcff
DK
2728 got_section(Symbol_table*, Layout*);
2729
2730 // Get the GOT PLT section.
2731 Output_data_space*
2732 got_plt_section() const
2733 {
2734 gold_assert(this->got_plt_ != NULL);
2735 return this->got_plt_;
2736 }
2737
2738 // Create a PLT entry for a global symbol.
2739 void
2740 make_plt_entry(Symbol_table*, Layout*, Symbol*);
2741
f96accdf
DK
2742 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2743 void
2744 define_tls_base_symbol(Symbol_table*, Layout*);
2745
2746 // Create a GOT entry for the TLS module index.
2747 unsigned int
2748 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
6fa2a40b 2749 Sized_relobj_file<32, big_endian>* object);
f96accdf 2750
94cdfcff
DK
2751 // Get the PLT section.
2752 const Output_data_plt_arm<big_endian>*
2753 plt_section() const
2754 {
2755 gold_assert(this->plt_ != NULL);
2756 return this->plt_;
2757 }
2758
2759 // Get the dynamic reloc section, creating it if necessary.
2760 Reloc_section*
2761 rel_dyn_section(Layout*);
2762
f96accdf
DK
2763 // Get the section to use for TLS_DESC relocations.
2764 Reloc_section*
2765 rel_tls_desc_section(Layout*) const;
2766
94cdfcff
DK
2767 // Return true if the symbol may need a COPY relocation.
2768 // References from an executable object to non-function symbols
2769 // defined in a dynamic object may need a COPY relocation.
2770 bool
2771 may_need_copy_reloc(Symbol* gsym)
2772 {
966d4097
DK
2773 return (gsym->type() != elfcpp::STT_ARM_TFUNC
2774 && gsym->may_need_copy_reloc());
94cdfcff
DK
2775 }
2776
2777 // Add a potential copy relocation.
2778 void
2779 copy_reloc(Symbol_table* symtab, Layout* layout,
6fa2a40b 2780 Sized_relobj_file<32, big_endian>* object,
2ea97941 2781 unsigned int shndx, Output_section* output_section,
94cdfcff
DK
2782 Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc)
2783 {
2784 this->copy_relocs_.copy_reloc(symtab, layout,
2785 symtab->get_sized_symbol<32>(sym),
2ea97941 2786 object, shndx, output_section, reloc,
94cdfcff
DK
2787 this->rel_dyn_section(layout));
2788 }
2789
d5b40221
DK
2790 // Whether two EABI versions are compatible.
2791 static bool
2792 are_eabi_versions_compatible(elfcpp::Elf_Word v1, elfcpp::Elf_Word v2);
2793
2794 // Merge processor-specific flags from input object and those in the ELF
2795 // header of the output.
2796 void
2797 merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word);
2798
a0351a69
DK
2799 // Get the secondary compatible architecture.
2800 static int
2801 get_secondary_compatible_arch(const Attributes_section_data*);
2802
2803 // Set the secondary compatible architecture.
2804 static void
2805 set_secondary_compatible_arch(Attributes_section_data*, int);
2806
2807 static int
2808 tag_cpu_arch_combine(const char*, int, int*, int, int);
2809
2810 // Helper to print AEABI enum tag value.
2811 static std::string
2812 aeabi_enum_name(unsigned int);
2813
2814 // Return string value for TAG_CPU_name.
2815 static std::string
2816 tag_cpu_name_value(unsigned int);
2817
2818 // Merge object attributes from input object and those in the output.
2819 void
2820 merge_object_attributes(const char*, const Attributes_section_data*);
2821
2822 // Helper to get an AEABI object attribute
2823 Object_attribute*
2824 get_aeabi_object_attribute(int tag) const
2825 {
2826 Attributes_section_data* pasd = this->attributes_section_data_;
2827 gold_assert(pasd != NULL);
2828 Object_attribute* attr =
2829 pasd->get_attribute(Object_attribute::OBJ_ATTR_PROC, tag);
2830 gold_assert(attr != NULL);
2831 return attr;
2832 }
2833
eb44217c
DK
2834 //
2835 // Methods to support stub-generations.
2836 //
d5b40221 2837
eb44217c
DK
2838 // Group input sections for stub generation.
2839 void
f625ae50 2840 group_sections(Layout*, section_size_type, bool, const Task*);
d5b40221 2841
eb44217c
DK
2842 // Scan a relocation for stub generation.
2843 void
2844 scan_reloc_for_stub(const Relocate_info<32, big_endian>*, unsigned int,
2845 const Sized_symbol<32>*, unsigned int,
2846 const Symbol_value<32>*,
2847 elfcpp::Elf_types<32>::Elf_Swxword, Arm_address);
d5b40221 2848
eb44217c
DK
2849 // Scan a relocation section for stub.
2850 template<int sh_type>
2851 void
2852 scan_reloc_section_for_stubs(
2853 const Relocate_info<32, big_endian>* relinfo,
2854 const unsigned char* prelocs,
2855 size_t reloc_count,
2856 Output_section* output_section,
2857 bool needs_special_offset_handling,
2858 const unsigned char* view,
2859 elfcpp::Elf_types<32>::Elf_Addr view_address,
2860 section_size_type);
d5b40221 2861
2b328d4e
DK
2862 // Fix .ARM.exidx section coverage.
2863 void
131687b4 2864 fix_exidx_coverage(Layout*, const Input_objects*,
f625ae50
DK
2865 Arm_output_section<big_endian>*, Symbol_table*,
2866 const Task*);
2b328d4e
DK
2867
2868 // Functors for STL set.
2869 struct output_section_address_less_than
2870 {
2871 bool
2872 operator()(const Output_section* s1, const Output_section* s2) const
2873 { return s1->address() < s2->address(); }
2874 };
2875
4a657b0d
DK
2876 // Information about this specific target which we pass to the
2877 // general Target structure.
2878 static const Target::Target_info arm_info;
94cdfcff
DK
2879
2880 // The types of GOT entries needed for this platform.
0e70b911
CC
2881 // These values are exposed to the ABI in an incremental link.
2882 // Do not renumber existing values without changing the version
2883 // number of the .gnu_incremental_inputs section.
94cdfcff
DK
2884 enum Got_type
2885 {
f96accdf
DK
2886 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
2887 GOT_TYPE_TLS_NOFFSET = 1, // GOT entry for negative TLS offset
2888 GOT_TYPE_TLS_OFFSET = 2, // GOT entry for positive TLS offset
2889 GOT_TYPE_TLS_PAIR = 3, // GOT entry for TLS module/offset pair
2890 GOT_TYPE_TLS_DESC = 4 // GOT entry for TLS_DESC pair
94cdfcff
DK
2891 };
2892
55da9579
DK
2893 typedef typename std::vector<Stub_table<big_endian>*> Stub_table_list;
2894
2895 // Map input section to Arm_input_section.
5ac169d4 2896 typedef Unordered_map<Section_id,
55da9579 2897 Arm_input_section<big_endian>*,
5ac169d4 2898 Section_id_hash>
55da9579
DK
2899 Arm_input_section_map;
2900
a120bc7f
DK
2901 // Map output addresses to relocs for Cortex-A8 erratum.
2902 typedef Unordered_map<Arm_address, const Cortex_a8_reloc*>
2903 Cortex_a8_relocs_info;
2904
94cdfcff 2905 // The GOT section.
4a54abbb 2906 Arm_output_data_got<big_endian>* got_;
94cdfcff
DK
2907 // The PLT section.
2908 Output_data_plt_arm<big_endian>* plt_;
2909 // The GOT PLT section.
2910 Output_data_space* got_plt_;
2911 // The dynamic reloc section.
2912 Reloc_section* rel_dyn_;
2913 // Relocs saved to avoid a COPY reloc.
2914 Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_;
2915 // Space for variables copied with a COPY reloc.
2916 Output_data_space* dynbss_;
f96accdf
DK
2917 // Offset of the GOT entry for the TLS module index.
2918 unsigned int got_mod_index_offset_;
2919 // True if the _TLS_MODULE_BASE_ symbol has been defined.
2920 bool tls_base_symbol_defined_;
55da9579
DK
2921 // Vector of Stub_tables created.
2922 Stub_table_list stub_tables_;
2923 // Stub factory.
2924 const Stub_factory &stub_factory_;
b569affa
DK
2925 // Whether we can use BLX.
2926 bool may_use_blx_;
2927 // Whether we force PIC branch veneers.
2928 bool should_force_pic_veneer_;
eb44217c
DK
2929 // Map for locating Arm_input_sections.
2930 Arm_input_section_map arm_input_section_map_;
a0351a69
DK
2931 // Attributes section data in output.
2932 Attributes_section_data* attributes_section_data_;
a120bc7f
DK
2933 // Whether we want to fix code for Cortex-A8 erratum.
2934 bool fix_cortex_a8_;
2935 // Map addresses to relocs for Cortex-A8 erratum.
2936 Cortex_a8_relocs_info cortex_a8_relocs_info_;
4a657b0d
DK
2937};
2938
2939template<bool big_endian>
2940const Target::Target_info Target_arm<big_endian>::arm_info =
2941{
2942 32, // size
2943 big_endian, // is_big_endian
2944 elfcpp::EM_ARM, // machine_code
2945 false, // has_make_symbol
2946 false, // has_resolve
2947 false, // has_code_fill
2948 true, // is_default_stack_executable
2949 '\0', // wrap_char
2950 "/usr/lib/libc.so.1", // dynamic_linker
2951 0x8000, // default_text_segment_address
2952 0x1000, // abi_pagesize (overridable by -z max-page-size)
8a5e3e08
ILT
2953 0x1000, // common_pagesize (overridable by -z common-page-size)
2954 elfcpp::SHN_UNDEF, // small_common_shndx
2955 elfcpp::SHN_UNDEF, // large_common_shndx
2956 0, // small_common_section_flags
05a352e6
DK
2957 0, // large_common_section_flags
2958 ".ARM.attributes", // attributes_section
2959 "aeabi" // attributes_vendor
4a657b0d
DK
2960};
2961
c121c671
DK
2962// Arm relocate functions class
2963//
2964
2965template<bool big_endian>
2966class Arm_relocate_functions : public Relocate_functions<32, big_endian>
2967{
2968 public:
2969 typedef enum
2970 {
2971 STATUS_OKAY, // No error during relocation.
9b547ce6 2972 STATUS_OVERFLOW, // Relocation overflow.
c121c671
DK
2973 STATUS_BAD_RELOC // Relocation cannot be applied.
2974 } Status;
2975
2976 private:
2977 typedef Relocate_functions<32, big_endian> Base;
2978 typedef Arm_relocate_functions<big_endian> This;
2979
fd3c5f0b
ILT
2980 // Encoding of imm16 argument for movt and movw ARM instructions
2981 // from ARM ARM:
2982 //
2983 // imm16 := imm4 | imm12
2984 //
2985 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
2986 // +-------+---------------+-------+-------+-----------------------+
2987 // | | |imm4 | |imm12 |
2988 // +-------+---------------+-------+-------+-----------------------+
2989
2990 // Extract the relocation addend from VAL based on the ARM
2991 // instruction encoding described above.
2992 static inline typename elfcpp::Swap<32, big_endian>::Valtype
2993 extract_arm_movw_movt_addend(
2994 typename elfcpp::Swap<32, big_endian>::Valtype val)
2995 {
2996 // According to the Elf ABI for ARM Architecture the immediate
2997 // field is sign-extended to form the addend.
2998 return utils::sign_extend<16>(((val >> 4) & 0xf000) | (val & 0xfff));
2999 }
3000
3001 // Insert X into VAL based on the ARM instruction encoding described
3002 // above.
3003 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3004 insert_val_arm_movw_movt(
3005 typename elfcpp::Swap<32, big_endian>::Valtype val,
3006 typename elfcpp::Swap<32, big_endian>::Valtype x)
3007 {
3008 val &= 0xfff0f000;
3009 val |= x & 0x0fff;
3010 val |= (x & 0xf000) << 4;
3011 return val;
3012 }
3013
3014 // Encoding of imm16 argument for movt and movw Thumb2 instructions
3015 // from ARM ARM:
3016 //
3017 // imm16 := imm4 | i | imm3 | imm8
3018 //
3019 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
3020 // +---------+-+-----------+-------++-+-----+-------+---------------+
3021 // | |i| |imm4 || |imm3 | |imm8 |
3022 // +---------+-+-----------+-------++-+-----+-------+---------------+
3023
3024 // Extract the relocation addend from VAL based on the Thumb2
3025 // instruction encoding described above.
3026 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3027 extract_thumb_movw_movt_addend(
3028 typename elfcpp::Swap<32, big_endian>::Valtype val)
3029 {
3030 // According to the Elf ABI for ARM Architecture the immediate
3031 // field is sign-extended to form the addend.
3032 return utils::sign_extend<16>(((val >> 4) & 0xf000)
3033 | ((val >> 15) & 0x0800)
3034 | ((val >> 4) & 0x0700)
3035 | (val & 0x00ff));
3036 }
3037
3038 // Insert X into VAL based on the Thumb2 instruction encoding
3039 // described above.
3040 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3041 insert_val_thumb_movw_movt(
3042 typename elfcpp::Swap<32, big_endian>::Valtype val,
3043 typename elfcpp::Swap<32, big_endian>::Valtype x)
3044 {
3045 val &= 0xfbf08f00;
3046 val |= (x & 0xf000) << 4;
3047 val |= (x & 0x0800) << 15;
3048 val |= (x & 0x0700) << 4;
3049 val |= (x & 0x00ff);
3050 return val;
3051 }
3052
b10d2873
ILT
3053 // Calculate the smallest constant Kn for the specified residual.
3054 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3055 static uint32_t
3056 calc_grp_kn(typename elfcpp::Swap<32, big_endian>::Valtype residual)
3057 {
3058 int32_t msb;
3059
3060 if (residual == 0)
3061 return 0;
3062 // Determine the most significant bit in the residual and
3063 // align the resulting value to a 2-bit boundary.
3064 for (msb = 30; (msb >= 0) && !(residual & (3 << msb)); msb -= 2)
3065 ;
3066 // The desired shift is now (msb - 6), or zero, whichever
3067 // is the greater.
3068 return (((msb - 6) < 0) ? 0 : (msb - 6));
3069 }
3070
3071 // Calculate the final residual for the specified group index.
3072 // If the passed group index is less than zero, the method will return
3073 // the value of the specified residual without any change.
3074 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3075 static typename elfcpp::Swap<32, big_endian>::Valtype
3076 calc_grp_residual(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3077 const int group)
3078 {
3079 for (int n = 0; n <= group; n++)
3080 {
3081 // Calculate which part of the value to mask.
3082 uint32_t shift = calc_grp_kn(residual);
3083 // Calculate the residual for the next time around.
3084 residual &= ~(residual & (0xff << shift));
3085 }
3086
3087 return residual;
3088 }
3089
3090 // Calculate the value of Gn for the specified group index.
3091 // We return it in the form of an encoded constant-and-rotation.
3092 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3093 static typename elfcpp::Swap<32, big_endian>::Valtype
3094 calc_grp_gn(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3095 const int group)
3096 {
3097 typename elfcpp::Swap<32, big_endian>::Valtype gn = 0;
3098 uint32_t shift = 0;
3099
3100 for (int n = 0; n <= group; n++)
3101 {
3102 // Calculate which part of the value to mask.
3103 shift = calc_grp_kn(residual);
3104 // Calculate Gn in 32-bit as well as encoded constant-and-rotation form.
3105 gn = residual & (0xff << shift);
3106 // Calculate the residual for the next time around.
3107 residual &= ~gn;
3108 }
3109 // Return Gn in the form of an encoded constant-and-rotation.
3110 return ((gn >> shift) | ((gn <= 0xff ? 0 : (32 - shift) / 2) << 8));
3111 }
3112
1521477a 3113 public:
d204b6e9
DK
3114 // Handle ARM long branches.
3115 static typename This::Status
3116 arm_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
ca09d69a 3117 unsigned char*, const Sized_symbol<32>*,
d204b6e9
DK
3118 const Arm_relobj<big_endian>*, unsigned int,
3119 const Symbol_value<32>*, Arm_address, Arm_address, bool);
c121c671 3120
51938283
DK
3121 // Handle THUMB long branches.
3122 static typename This::Status
3123 thumb_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
ca09d69a 3124 unsigned char*, const Sized_symbol<32>*,
51938283
DK
3125 const Arm_relobj<big_endian>*, unsigned int,
3126 const Symbol_value<32>*, Arm_address, Arm_address, bool);
3127
5e445df6 3128
089d69dc
DK
3129 // Return the branch offset of a 32-bit THUMB branch.
3130 static inline int32_t
3131 thumb32_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3132 {
3133 // We use the Thumb-2 encoding (backwards compatible with Thumb-1)
3134 // involving the J1 and J2 bits.
3135 uint32_t s = (upper_insn & (1U << 10)) >> 10;
3136 uint32_t upper = upper_insn & 0x3ffU;
3137 uint32_t lower = lower_insn & 0x7ffU;
3138 uint32_t j1 = (lower_insn & (1U << 13)) >> 13;
3139 uint32_t j2 = (lower_insn & (1U << 11)) >> 11;
3140 uint32_t i1 = j1 ^ s ? 0 : 1;
3141 uint32_t i2 = j2 ^ s ? 0 : 1;
3142
3143 return utils::sign_extend<25>((s << 24) | (i1 << 23) | (i2 << 22)
3144 | (upper << 12) | (lower << 1));
3145 }
3146
3147 // Insert OFFSET to a 32-bit THUMB branch and return the upper instruction.
3148 // UPPER_INSN is the original upper instruction of the branch. Caller is
3149 // responsible for overflow checking and BLX offset adjustment.
3150 static inline uint16_t
3151 thumb32_branch_upper(uint16_t upper_insn, int32_t offset)
3152 {
3153 uint32_t s = offset < 0 ? 1 : 0;
3154 uint32_t bits = static_cast<uint32_t>(offset);
3155 return (upper_insn & ~0x7ffU) | ((bits >> 12) & 0x3ffU) | (s << 10);
3156 }
3157
3158 // Insert OFFSET to a 32-bit THUMB branch and return the lower instruction.
3159 // LOWER_INSN is the original lower instruction of the branch. Caller is
3160 // responsible for overflow checking and BLX offset adjustment.
3161 static inline uint16_t
3162 thumb32_branch_lower(uint16_t lower_insn, int32_t offset)
3163 {
3164 uint32_t s = offset < 0 ? 1 : 0;
3165 uint32_t bits = static_cast<uint32_t>(offset);
3166 return ((lower_insn & ~0x2fffU)
3167 | ((((bits >> 23) & 1) ^ !s) << 13)
3168 | ((((bits >> 22) & 1) ^ !s) << 11)
3169 | ((bits >> 1) & 0x7ffU));
3170 }
3171
3172 // Return the branch offset of a 32-bit THUMB conditional branch.
3173 static inline int32_t
3174 thumb32_cond_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3175 {
3176 uint32_t s = (upper_insn & 0x0400U) >> 10;
3177 uint32_t j1 = (lower_insn & 0x2000U) >> 13;
3178 uint32_t j2 = (lower_insn & 0x0800U) >> 11;
3179 uint32_t lower = (lower_insn & 0x07ffU);
3180 uint32_t upper = (s << 8) | (j2 << 7) | (j1 << 6) | (upper_insn & 0x003fU);
3181
3182 return utils::sign_extend<21>((upper << 12) | (lower << 1));
3183 }
3184
3185 // Insert OFFSET to a 32-bit THUMB conditional branch and return the upper
3186 // instruction. UPPER_INSN is the original upper instruction of the branch.
3187 // Caller is responsible for overflow checking.
3188 static inline uint16_t
3189 thumb32_cond_branch_upper(uint16_t upper_insn, int32_t offset)
3190 {
3191 uint32_t s = offset < 0 ? 1 : 0;
3192 uint32_t bits = static_cast<uint32_t>(offset);
3193 return (upper_insn & 0xfbc0U) | (s << 10) | ((bits & 0x0003f000U) >> 12);
3194 }
3195
3196 // Insert OFFSET to a 32-bit THUMB conditional branch and return the lower
3197 // instruction. LOWER_INSN is the original lower instruction of the branch.
9b547ce6 3198 // The caller is responsible for overflow checking.
089d69dc
DK
3199 static inline uint16_t
3200 thumb32_cond_branch_lower(uint16_t lower_insn, int32_t offset)
3201 {
3202 uint32_t bits = static_cast<uint32_t>(offset);
3203 uint32_t j2 = (bits & 0x00080000U) >> 19;
3204 uint32_t j1 = (bits & 0x00040000U) >> 18;
3205 uint32_t lo = (bits & 0x00000ffeU) >> 1;
3206
3207 return (lower_insn & 0xd000U) | (j1 << 13) | (j2 << 11) | lo;
3208 }
3209
5e445df6
ILT
3210 // R_ARM_ABS8: S + A
3211 static inline typename This::Status
ca09d69a 3212 abs8(unsigned char* view,
6fa2a40b 3213 const Sized_relobj_file<32, big_endian>* object,
be8fcb75 3214 const Symbol_value<32>* psymval)
5e445df6
ILT
3215 {
3216 typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype;
3217 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3218 Valtype* wv = reinterpret_cast<Valtype*>(view);
3219 Valtype val = elfcpp::Swap<8, big_endian>::readval(wv);
3220 Reltype addend = utils::sign_extend<8>(val);
2daedcd6 3221 Reltype x = psymval->value(object, addend);
5e445df6
ILT
3222 val = utils::bit_select(val, x, 0xffU);
3223 elfcpp::Swap<8, big_endian>::writeval(wv, val);
a2c7281b
DK
3224
3225 // R_ARM_ABS8 permits signed or unsigned results.
3226 int signed_x = static_cast<int32_t>(x);
3227 return ((signed_x < -128 || signed_x > 255)
5e445df6
ILT
3228 ? This::STATUS_OVERFLOW
3229 : This::STATUS_OKAY);
3230 }
3231
be8fcb75
ILT
3232 // R_ARM_THM_ABS5: S + A
3233 static inline typename This::Status
ca09d69a 3234 thm_abs5(unsigned char* view,
6fa2a40b 3235 const Sized_relobj_file<32, big_endian>* object,
be8fcb75
ILT
3236 const Symbol_value<32>* psymval)
3237 {
3238 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3239 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3240 Valtype* wv = reinterpret_cast<Valtype*>(view);
3241 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3242 Reltype addend = (val & 0x7e0U) >> 6;
2daedcd6 3243 Reltype x = psymval->value(object, addend);
be8fcb75
ILT
3244 val = utils::bit_select(val, x << 6, 0x7e0U);
3245 elfcpp::Swap<16, big_endian>::writeval(wv, val);
a2c7281b
DK
3246
3247 // R_ARM_ABS16 permits signed or unsigned results.
3248 int signed_x = static_cast<int32_t>(x);
3249 return ((signed_x < -32768 || signed_x > 65535)
be8fcb75
ILT
3250 ? This::STATUS_OVERFLOW
3251 : This::STATUS_OKAY);
3252 }
3253
3254 // R_ARM_ABS12: S + A
3255 static inline typename This::Status
ca09d69a 3256 abs12(unsigned char* view,
6fa2a40b 3257 const Sized_relobj_file<32, big_endian>* object,
51938283 3258 const Symbol_value<32>* psymval)
be8fcb75
ILT
3259 {
3260 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3261 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3262 Valtype* wv = reinterpret_cast<Valtype*>(view);
3263 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3264 Reltype addend = val & 0x0fffU;
2daedcd6 3265 Reltype x = psymval->value(object, addend);
be8fcb75
ILT
3266 val = utils::bit_select(val, x, 0x0fffU);
3267 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3268 return (utils::has_overflow<12>(x)
3269 ? This::STATUS_OVERFLOW
3270 : This::STATUS_OKAY);
3271 }
3272
3273 // R_ARM_ABS16: S + A
3274 static inline typename This::Status
ca09d69a 3275 abs16(unsigned char* view,
6fa2a40b 3276 const Sized_relobj_file<32, big_endian>* object,
51938283 3277 const Symbol_value<32>* psymval)
be8fcb75
ILT
3278 {
3279 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3280 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3281 Valtype* wv = reinterpret_cast<Valtype*>(view);
3282 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3283 Reltype addend = utils::sign_extend<16>(val);
2daedcd6 3284 Reltype x = psymval->value(object, addend);
be8fcb75
ILT
3285 val = utils::bit_select(val, x, 0xffffU);
3286 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3287 return (utils::has_signed_unsigned_overflow<16>(x)
3288 ? This::STATUS_OVERFLOW
3289 : This::STATUS_OKAY);
3290 }
3291
c121c671
DK
3292 // R_ARM_ABS32: (S + A) | T
3293 static inline typename This::Status
ca09d69a 3294 abs32(unsigned char* view,
6fa2a40b 3295 const Sized_relobj_file<32, big_endian>* object,
c121c671 3296 const Symbol_value<32>* psymval,
2daedcd6 3297 Arm_address thumb_bit)
c121c671
DK
3298 {
3299 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3300 Valtype* wv = reinterpret_cast<Valtype*>(view);
3301 Valtype addend = elfcpp::Swap<32, big_endian>::readval(wv);
2daedcd6 3302 Valtype x = psymval->value(object, addend) | thumb_bit;
c121c671
DK
3303 elfcpp::Swap<32, big_endian>::writeval(wv, x);
3304 return This::STATUS_OKAY;
3305 }
3306
3307 // R_ARM_REL32: (S + A) | T - P
3308 static inline typename This::Status
ca09d69a 3309 rel32(unsigned char* view,
6fa2a40b 3310 const Sized_relobj_file<32, big_endian>* object,
c121c671 3311 const Symbol_value<32>* psymval,
ebabffbd 3312 Arm_address address,
2daedcd6 3313 Arm_address thumb_bit)
c121c671
DK
3314 {
3315 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3316 Valtype* wv = reinterpret_cast<Valtype*>(view);
3317 Valtype addend = elfcpp::Swap<32, big_endian>::readval(wv);
2daedcd6 3318 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
c121c671
DK
3319 elfcpp::Swap<32, big_endian>::writeval(wv, x);
3320 return This::STATUS_OKAY;
3321 }
3322
089d69dc
DK
3323 // R_ARM_THM_JUMP24: (S + A) | T - P
3324 static typename This::Status
ca09d69a 3325 thm_jump19(unsigned char* view, const Arm_relobj<big_endian>* object,
089d69dc
DK
3326 const Symbol_value<32>* psymval, Arm_address address,
3327 Arm_address thumb_bit);
3328
800d0f56
ILT
3329 // R_ARM_THM_JUMP6: S + A – P
3330 static inline typename This::Status
ca09d69a 3331 thm_jump6(unsigned char* view,
6fa2a40b 3332 const Sized_relobj_file<32, big_endian>* object,
800d0f56
ILT
3333 const Symbol_value<32>* psymval,
3334 Arm_address address)
3335 {
3336 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3337 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3338 Valtype* wv = reinterpret_cast<Valtype*>(view);
3339 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3340 // bit[9]:bit[7:3]:’0’ (mask: 0x02f8)
3341 Reltype addend = (((val & 0x0200) >> 3) | ((val & 0x00f8) >> 2));
3342 Reltype x = (psymval->value(object, addend) - address);
3343 val = (val & 0xfd07) | ((x & 0x0040) << 3) | ((val & 0x003e) << 2);
3344 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3345 // CZB does only forward jumps.
3346 return ((x > 0x007e)
3347 ? This::STATUS_OVERFLOW
3348 : This::STATUS_OKAY);
3349 }
3350
3351 // R_ARM_THM_JUMP8: S + A – P
3352 static inline typename This::Status
ca09d69a 3353 thm_jump8(unsigned char* view,
6fa2a40b 3354 const Sized_relobj_file<32, big_endian>* object,
800d0f56
ILT
3355 const Symbol_value<32>* psymval,
3356 Arm_address address)
3357 {
3358 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3359 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3360 Valtype* wv = reinterpret_cast<Valtype*>(view);
3361 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3362 Reltype addend = utils::sign_extend<8>((val & 0x00ff) << 1);
3363 Reltype x = (psymval->value(object, addend) - address);
3364 elfcpp::Swap<16, big_endian>::writeval(wv, (val & 0xff00) | ((x & 0x01fe) >> 1));
3365 return (utils::has_overflow<8>(x)
3366 ? This::STATUS_OVERFLOW
3367 : This::STATUS_OKAY);
3368 }
3369
3370 // R_ARM_THM_JUMP11: S + A – P
3371 static inline typename This::Status
ca09d69a 3372 thm_jump11(unsigned char* view,
6fa2a40b 3373 const Sized_relobj_file<32, big_endian>* object,
800d0f56
ILT
3374 const Symbol_value<32>* psymval,
3375 Arm_address address)
3376 {
3377 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3378 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3379 Valtype* wv = reinterpret_cast<Valtype*>(view);
3380 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3381 Reltype addend = utils::sign_extend<11>((val & 0x07ff) << 1);
3382 Reltype x = (psymval->value(object, addend) - address);
3383 elfcpp::Swap<16, big_endian>::writeval(wv, (val & 0xf800) | ((x & 0x0ffe) >> 1));
3384 return (utils::has_overflow<11>(x)
3385 ? This::STATUS_OVERFLOW
3386 : This::STATUS_OKAY);
3387 }
3388
c121c671
DK
3389 // R_ARM_BASE_PREL: B(S) + A - P
3390 static inline typename This::Status
3391 base_prel(unsigned char* view,
ebabffbd
DK
3392 Arm_address origin,
3393 Arm_address address)
c121c671
DK
3394 {
3395 Base::rel32(view, origin - address);
3396 return STATUS_OKAY;
3397 }
3398
be8fcb75
ILT
3399 // R_ARM_BASE_ABS: B(S) + A
3400 static inline typename This::Status
3401 base_abs(unsigned char* view,
f4e5969c 3402 Arm_address origin)
be8fcb75
ILT
3403 {
3404 Base::rel32(view, origin);
3405 return STATUS_OKAY;
3406 }
3407
c121c671
DK
3408 // R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG
3409 static inline typename This::Status
3410 got_brel(unsigned char* view,
3411 typename elfcpp::Swap<32, big_endian>::Valtype got_offset)
3412 {
3413 Base::rel32(view, got_offset);
3414 return This::STATUS_OKAY;
3415 }
3416
f4e5969c 3417 // R_ARM_GOT_PREL: GOT(S) + A - P
7f5309a5 3418 static inline typename This::Status
ca09d69a 3419 got_prel(unsigned char* view,
f4e5969c 3420 Arm_address got_entry,
ebabffbd 3421 Arm_address address)
7f5309a5 3422 {
f4e5969c 3423 Base::rel32(view, got_entry - address);
7f5309a5
ILT
3424 return This::STATUS_OKAY;
3425 }
3426
c121c671
DK
3427 // R_ARM_PREL: (S + A) | T - P
3428 static inline typename This::Status
ca09d69a 3429 prel31(unsigned char* view,
6fa2a40b 3430 const Sized_relobj_file<32, big_endian>* object,
c121c671 3431 const Symbol_value<32>* psymval,
ebabffbd 3432 Arm_address address,
2daedcd6 3433 Arm_address thumb_bit)
c121c671
DK
3434 {
3435 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3436 Valtype* wv = reinterpret_cast<Valtype*>(view);
3437 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3438 Valtype addend = utils::sign_extend<31>(val);
2daedcd6 3439 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
c121c671
DK
3440 val = utils::bit_select(val, x, 0x7fffffffU);
3441 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3442 return (utils::has_overflow<31>(x) ?
3443 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3444 }
fd3c5f0b 3445
5c57f1be 3446 // R_ARM_MOVW_ABS_NC: (S + A) | T (relative address base is )
c2a122b6 3447 // R_ARM_MOVW_PREL_NC: (S + A) | T - P
5c57f1be
DK
3448 // R_ARM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3449 // R_ARM_MOVW_BREL: ((S + A) | T) - B(S)
02961d7e 3450 static inline typename This::Status
5c57f1be 3451 movw(unsigned char* view,
6fa2a40b 3452 const Sized_relobj_file<32, big_endian>* object,
5c57f1be
DK
3453 const Symbol_value<32>* psymval,
3454 Arm_address relative_address_base,
3455 Arm_address thumb_bit,
3456 bool check_overflow)
02961d7e
ILT
3457 {
3458 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3459 Valtype* wv = reinterpret_cast<Valtype*>(view);
3460 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3461 Valtype addend = This::extract_arm_movw_movt_addend(val);
5c57f1be
DK
3462 Valtype x = ((psymval->value(object, addend) | thumb_bit)
3463 - relative_address_base);
02961d7e
ILT
3464 val = This::insert_val_arm_movw_movt(val, x);
3465 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5c57f1be
DK
3466 return ((check_overflow && utils::has_overflow<16>(x))
3467 ? This::STATUS_OVERFLOW
3468 : This::STATUS_OKAY);
02961d7e
ILT
3469 }
3470
5c57f1be 3471 // R_ARM_MOVT_ABS: S + A (relative address base is 0)
c2a122b6 3472 // R_ARM_MOVT_PREL: S + A - P
5c57f1be 3473 // R_ARM_MOVT_BREL: S + A - B(S)
c2a122b6 3474 static inline typename This::Status
5c57f1be 3475 movt(unsigned char* view,
6fa2a40b 3476 const Sized_relobj_file<32, big_endian>* object,
5c57f1be
DK
3477 const Symbol_value<32>* psymval,
3478 Arm_address relative_address_base)
c2a122b6
ILT
3479 {
3480 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3481 Valtype* wv = reinterpret_cast<Valtype*>(view);
3482 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3483 Valtype addend = This::extract_arm_movw_movt_addend(val);
5c57f1be 3484 Valtype x = (psymval->value(object, addend) - relative_address_base) >> 16;
c2a122b6
ILT
3485 val = This::insert_val_arm_movw_movt(val, x);
3486 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5c57f1be 3487 // FIXME: IHI0044D says that we should check for overflow.
c2a122b6
ILT
3488 return This::STATUS_OKAY;
3489 }
3490
5c57f1be 3491 // R_ARM_THM_MOVW_ABS_NC: S + A | T (relative_address_base is 0)
c2a122b6 3492 // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
5c57f1be
DK
3493 // R_ARM_THM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3494 // R_ARM_THM_MOVW_BREL: ((S + A) | T) - B(S)
02961d7e 3495 static inline typename This::Status
ca09d69a 3496 thm_movw(unsigned char* view,
6fa2a40b 3497 const Sized_relobj_file<32, big_endian>* object,
5c57f1be
DK
3498 const Symbol_value<32>* psymval,
3499 Arm_address relative_address_base,
3500 Arm_address thumb_bit,
3501 bool check_overflow)
02961d7e
ILT
3502 {
3503 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3504 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3505 Valtype* wv = reinterpret_cast<Valtype*>(view);
3506 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3507 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3508 Reltype addend = This::extract_thumb_movw_movt_addend(val);
5c57f1be
DK
3509 Reltype x =
3510 (psymval->value(object, addend) | thumb_bit) - relative_address_base;
02961d7e
ILT
3511 val = This::insert_val_thumb_movw_movt(val, x);
3512 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3513 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
5c57f1be
DK
3514 return ((check_overflow && utils::has_overflow<16>(x))
3515 ? This::STATUS_OVERFLOW
3516 : This::STATUS_OKAY);
02961d7e
ILT
3517 }
3518
5c57f1be 3519 // R_ARM_THM_MOVT_ABS: S + A (relative address base is 0)
c2a122b6 3520 // R_ARM_THM_MOVT_PREL: S + A - P
5c57f1be 3521 // R_ARM_THM_MOVT_BREL: S + A - B(S)
c2a122b6 3522 static inline typename This::Status
5c57f1be 3523 thm_movt(unsigned char* view,
6fa2a40b 3524 const Sized_relobj_file<32, big_endian>* object,
5c57f1be
DK
3525 const Symbol_value<32>* psymval,
3526 Arm_address relative_address_base)
c2a122b6
ILT
3527 {
3528 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3529 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3530 Valtype* wv = reinterpret_cast<Valtype*>(view);
3531 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3532 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3533 Reltype addend = This::extract_thumb_movw_movt_addend(val);
5c57f1be 3534 Reltype x = (psymval->value(object, addend) - relative_address_base) >> 16;
c2a122b6
ILT
3535 val = This::insert_val_thumb_movw_movt(val, x);
3536 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3537 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3538 return This::STATUS_OKAY;
3539 }
a2162063 3540
11b861d5
DK
3541 // R_ARM_THM_ALU_PREL_11_0: ((S + A) | T) - Pa (Thumb32)
3542 static inline typename This::Status
3543 thm_alu11(unsigned char* view,
6fa2a40b 3544 const Sized_relobj_file<32, big_endian>* object,
11b861d5
DK
3545 const Symbol_value<32>* psymval,
3546 Arm_address address,
3547 Arm_address thumb_bit)
3548 {
3549 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3550 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3551 Valtype* wv = reinterpret_cast<Valtype*>(view);
3552 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3553 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3554
3555 // f e d c b|a|9|8 7 6 5|4|3 2 1 0||f|e d c|b a 9 8|7 6 5 4 3 2 1 0
3556 // -----------------------------------------------------------------------
3557 // ADD{S} 1 1 1 1 0|i|0|1 0 0 0|S|1 1 0 1||0|imm3 |Rd |imm8
3558 // ADDW 1 1 1 1 0|i|1|0 0 0 0|0|1 1 0 1||0|imm3 |Rd |imm8
3559 // ADR[+] 1 1 1 1 0|i|1|0 0 0 0|0|1 1 1 1||0|imm3 |Rd |imm8
3560 // SUB{S} 1 1 1 1 0|i|0|1 1 0 1|S|1 1 0 1||0|imm3 |Rd |imm8
3561 // SUBW 1 1 1 1 0|i|1|0 1 0 1|0|1 1 0 1||0|imm3 |Rd |imm8
3562 // ADR[-] 1 1 1 1 0|i|1|0 1 0 1|0|1 1 1 1||0|imm3 |Rd |imm8
3563
3564 // Determine a sign for the addend.
3565 const int sign = ((insn & 0xf8ef0000) == 0xf0ad0000
3566 || (insn & 0xf8ef0000) == 0xf0af0000) ? -1 : 1;
3567 // Thumb2 addend encoding:
3568 // imm12 := i | imm3 | imm8
3569 int32_t addend = (insn & 0xff)
3570 | ((insn & 0x00007000) >> 4)
3571 | ((insn & 0x04000000) >> 15);
3572 // Apply a sign to the added.
3573 addend *= sign;
3574
3575 int32_t x = (psymval->value(object, addend) | thumb_bit)
3576 - (address & 0xfffffffc);
3577 Reltype val = abs(x);
3578 // Mask out the value and a distinct part of the ADD/SUB opcode
3579 // (bits 7:5 of opword).
3580 insn = (insn & 0xfb0f8f00)
3581 | (val & 0xff)
3582 | ((val & 0x700) << 4)
3583 | ((val & 0x800) << 15);
3584 // Set the opcode according to whether the value to go in the
3585 // place is negative.
3586 if (x < 0)
3587 insn |= 0x00a00000;
3588
3589 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3590 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3591 return ((val > 0xfff) ?
3592 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3593 }
3594
3595 // R_ARM_THM_PC8: S + A - Pa (Thumb)
3596 static inline typename This::Status
3597 thm_pc8(unsigned char* view,
6fa2a40b 3598 const Sized_relobj_file<32, big_endian>* object,
11b861d5
DK
3599 const Symbol_value<32>* psymval,
3600 Arm_address address)
3601 {
3602 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3603 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3604 Valtype* wv = reinterpret_cast<Valtype*>(view);
3605 Valtype insn = elfcpp::Swap<16, big_endian>::readval(wv);
3606 Reltype addend = ((insn & 0x00ff) << 2);
3607 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3608 Reltype val = abs(x);
3609 insn = (insn & 0xff00) | ((val & 0x03fc) >> 2);
3610
3611 elfcpp::Swap<16, big_endian>::writeval(wv, insn);
3612 return ((val > 0x03fc)
3613 ? This::STATUS_OVERFLOW
3614 : This::STATUS_OKAY);
3615 }
3616
3617 // R_ARM_THM_PC12: S + A - Pa (Thumb32)
3618 static inline typename This::Status
3619 thm_pc12(unsigned char* view,
6fa2a40b 3620 const Sized_relobj_file<32, big_endian>* object,
11b861d5
DK
3621 const Symbol_value<32>* psymval,
3622 Arm_address address)
3623 {
3624 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3625 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3626 Valtype* wv = reinterpret_cast<Valtype*>(view);
3627 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3628 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3629 // Determine a sign for the addend (positive if the U bit is 1).
3630 const int sign = (insn & 0x00800000) ? 1 : -1;
3631 int32_t addend = (insn & 0xfff);
3632 // Apply a sign to the added.
3633 addend *= sign;
3634
3635 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3636 Reltype val = abs(x);
3637 // Mask out and apply the value and the U bit.
3638 insn = (insn & 0xff7ff000) | (val & 0xfff);
3639 // Set the U bit according to whether the value to go in the
3640 // place is positive.
3641 if (x >= 0)
3642 insn |= 0x00800000;
3643
3644 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3645 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3646 return ((val > 0xfff) ?
3647 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3648 }
3649
a2162063
ILT
3650 // R_ARM_V4BX
3651 static inline typename This::Status
3652 v4bx(const Relocate_info<32, big_endian>* relinfo,
ca09d69a 3653 unsigned char* view,
a2162063
ILT
3654 const Arm_relobj<big_endian>* object,
3655 const Arm_address address,
3656 const bool is_interworking)
3657 {
3658
3659 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3660 Valtype* wv = reinterpret_cast<Valtype*>(view);
3661 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3662
3663 // Ensure that we have a BX instruction.
3664 gold_assert((val & 0x0ffffff0) == 0x012fff10);
3665 const uint32_t reg = (val & 0xf);
3666 if (is_interworking && reg != 0xf)
3667 {
3668 Stub_table<big_endian>* stub_table =
3669 object->stub_table(relinfo->data_shndx);
3670 gold_assert(stub_table != NULL);
3671
3672 Arm_v4bx_stub* stub = stub_table->find_arm_v4bx_stub(reg);
3673 gold_assert(stub != NULL);
3674
3675 int32_t veneer_address =
3676 stub_table->address() + stub->offset() - 8 - address;
3677 gold_assert((veneer_address <= ARM_MAX_FWD_BRANCH_OFFSET)
3678 && (veneer_address >= ARM_MAX_BWD_BRANCH_OFFSET));
3679 // Replace with a branch to veneer (B <addr>)
3680 val = (val & 0xf0000000) | 0x0a000000
3681 | ((veneer_address >> 2) & 0x00ffffff);
3682 }
3683 else
3684 {
3685 // Preserve Rm (lowest four bits) and the condition code
3686 // (highest four bits). Other bits encode MOV PC,Rm.
3687 val = (val & 0xf000000f) | 0x01a0f000;
3688 }
3689 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3690 return This::STATUS_OKAY;
3691 }
b10d2873
ILT
3692
3693 // R_ARM_ALU_PC_G0_NC: ((S + A) | T) - P
3694 // R_ARM_ALU_PC_G0: ((S + A) | T) - P
3695 // R_ARM_ALU_PC_G1_NC: ((S + A) | T) - P
3696 // R_ARM_ALU_PC_G1: ((S + A) | T) - P
3697 // R_ARM_ALU_PC_G2: ((S + A) | T) - P
3698 // R_ARM_ALU_SB_G0_NC: ((S + A) | T) - B(S)
3699 // R_ARM_ALU_SB_G0: ((S + A) | T) - B(S)
3700 // R_ARM_ALU_SB_G1_NC: ((S + A) | T) - B(S)
3701 // R_ARM_ALU_SB_G1: ((S + A) | T) - B(S)
3702 // R_ARM_ALU_SB_G2: ((S + A) | T) - B(S)
3703 static inline typename This::Status
3704 arm_grp_alu(unsigned char* view,
6fa2a40b 3705 const Sized_relobj_file<32, big_endian>* object,
b10d2873
ILT
3706 const Symbol_value<32>* psymval,
3707 const int group,
3708 Arm_address address,
3709 Arm_address thumb_bit,
3710 bool check_overflow)
3711 {
5c57f1be 3712 gold_assert(group >= 0 && group < 3);
b10d2873
ILT
3713 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3714 Valtype* wv = reinterpret_cast<Valtype*>(view);
3715 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3716
3717 // ALU group relocations are allowed only for the ADD/SUB instructions.
3718 // (0x00800000 - ADD, 0x00400000 - SUB)
3719 const Valtype opcode = insn & 0x01e00000;
3720 if (opcode != 0x00800000 && opcode != 0x00400000)
3721 return This::STATUS_BAD_RELOC;
3722
3723 // Determine a sign for the addend.
3724 const int sign = (opcode == 0x00800000) ? 1 : -1;
3725 // shifter = rotate_imm * 2
3726 const uint32_t shifter = (insn & 0xf00) >> 7;
3727 // Initial addend value.
3728 int32_t addend = insn & 0xff;
3729 // Rotate addend right by shifter.
3730 addend = (addend >> shifter) | (addend << (32 - shifter));
3731 // Apply a sign to the added.
3732 addend *= sign;
3733
3734 int32_t x = ((psymval->value(object, addend) | thumb_bit) - address);
3735 Valtype gn = Arm_relocate_functions::calc_grp_gn(abs(x), group);
3736 // Check for overflow if required
3737 if (check_overflow
3738 && (Arm_relocate_functions::calc_grp_residual(abs(x), group) != 0))
3739 return This::STATUS_OVERFLOW;
3740
3741 // Mask out the value and the ADD/SUB part of the opcode; take care
3742 // not to destroy the S bit.
3743 insn &= 0xff1ff000;
3744 // Set the opcode according to whether the value to go in the
3745 // place is negative.
3746 insn |= ((x < 0) ? 0x00400000 : 0x00800000);
3747 // Encode the offset (encoded Gn).
3748 insn |= gn;
3749
3750 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3751 return This::STATUS_OKAY;
3752 }
3753
3754 // R_ARM_LDR_PC_G0: S + A - P
3755 // R_ARM_LDR_PC_G1: S + A - P
3756 // R_ARM_LDR_PC_G2: S + A - P
3757 // R_ARM_LDR_SB_G0: S + A - B(S)
3758 // R_ARM_LDR_SB_G1: S + A - B(S)
3759 // R_ARM_LDR_SB_G2: S + A - B(S)
3760 static inline typename This::Status
3761 arm_grp_ldr(unsigned char* view,
6fa2a40b 3762 const Sized_relobj_file<32, big_endian>* object,
b10d2873
ILT
3763 const Symbol_value<32>* psymval,
3764 const int group,
3765 Arm_address address)
3766 {
5c57f1be 3767 gold_assert(group >= 0 && group < 3);
b10d2873
ILT
3768 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3769 Valtype* wv = reinterpret_cast<Valtype*>(view);
3770 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3771
3772 const int sign = (insn & 0x00800000) ? 1 : -1;
3773 int32_t addend = (insn & 0xfff) * sign;
3774 int32_t x = (psymval->value(object, addend) - address);
3775 // Calculate the relevant G(n-1) value to obtain this stage residual.
3776 Valtype residual =
3777 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3778 if (residual >= 0x1000)
3779 return This::STATUS_OVERFLOW;
3780
3781 // Mask out the value and U bit.
3782 insn &= 0xff7ff000;
3783 // Set the U bit for non-negative values.
3784 if (x >= 0)
3785 insn |= 0x00800000;
3786 insn |= residual;
3787
3788 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3789 return This::STATUS_OKAY;
3790 }
3791
3792 // R_ARM_LDRS_PC_G0: S + A - P
3793 // R_ARM_LDRS_PC_G1: S + A - P
3794 // R_ARM_LDRS_PC_G2: S + A - P
3795 // R_ARM_LDRS_SB_G0: S + A - B(S)
3796 // R_ARM_LDRS_SB_G1: S + A - B(S)
3797 // R_ARM_LDRS_SB_G2: S + A - B(S)
3798 static inline typename This::Status
3799 arm_grp_ldrs(unsigned char* view,
6fa2a40b 3800 const Sized_relobj_file<32, big_endian>* object,
b10d2873
ILT
3801 const Symbol_value<32>* psymval,
3802 const int group,
3803 Arm_address address)
3804 {
5c57f1be 3805 gold_assert(group >= 0 && group < 3);
b10d2873
ILT
3806 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3807 Valtype* wv = reinterpret_cast<Valtype*>(view);
3808 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3809
3810 const int sign = (insn & 0x00800000) ? 1 : -1;
3811 int32_t addend = (((insn & 0xf00) >> 4) + (insn & 0xf)) * sign;
3812 int32_t x = (psymval->value(object, addend) - address);
3813 // Calculate the relevant G(n-1) value to obtain this stage residual.
3814 Valtype residual =
3815 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3816 if (residual >= 0x100)
3817 return This::STATUS_OVERFLOW;
3818
3819 // Mask out the value and U bit.
3820 insn &= 0xff7ff0f0;
3821 // Set the U bit for non-negative values.
3822 if (x >= 0)
3823 insn |= 0x00800000;
3824 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
3825
3826 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3827 return This::STATUS_OKAY;
3828 }
3829
3830 // R_ARM_LDC_PC_G0: S + A - P
3831 // R_ARM_LDC_PC_G1: S + A - P
3832 // R_ARM_LDC_PC_G2: S + A - P
3833 // R_ARM_LDC_SB_G0: S + A - B(S)
3834 // R_ARM_LDC_SB_G1: S + A - B(S)
3835 // R_ARM_LDC_SB_G2: S + A - B(S)
3836 static inline typename This::Status
3837 arm_grp_ldc(unsigned char* view,
6fa2a40b 3838 const Sized_relobj_file<32, big_endian>* object,
b10d2873
ILT
3839 const Symbol_value<32>* psymval,
3840 const int group,
3841 Arm_address address)
3842 {
5c57f1be 3843 gold_assert(group >= 0 && group < 3);
b10d2873
ILT
3844 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3845 Valtype* wv = reinterpret_cast<Valtype*>(view);
3846 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3847
3848 const int sign = (insn & 0x00800000) ? 1 : -1;
3849 int32_t addend = ((insn & 0xff) << 2) * sign;
3850 int32_t x = (psymval->value(object, addend) - address);
3851 // Calculate the relevant G(n-1) value to obtain this stage residual.
3852 Valtype residual =
3853 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3854 if ((residual & 0x3) != 0 || residual >= 0x400)
3855 return This::STATUS_OVERFLOW;
3856
3857 // Mask out the value and U bit.
3858 insn &= 0xff7fff00;
3859 // Set the U bit for non-negative values.
3860 if (x >= 0)
3861 insn |= 0x00800000;
3862 insn |= (residual >> 2);
3863
3864 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3865 return This::STATUS_OKAY;
3866 }
c121c671
DK
3867};
3868
d204b6e9
DK
3869// Relocate ARM long branches. This handles relocation types
3870// R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25.
3871// If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3872// undefined and we do not use PLT in this relocation. In such a case,
3873// the branch is converted into an NOP.
3874
3875template<bool big_endian>
3876typename Arm_relocate_functions<big_endian>::Status
3877Arm_relocate_functions<big_endian>::arm_branch_common(
3878 unsigned int r_type,
3879 const Relocate_info<32, big_endian>* relinfo,
ca09d69a 3880 unsigned char* view,
d204b6e9
DK
3881 const Sized_symbol<32>* gsym,
3882 const Arm_relobj<big_endian>* object,
3883 unsigned int r_sym,
3884 const Symbol_value<32>* psymval,
3885 Arm_address address,
3886 Arm_address thumb_bit,
3887 bool is_weakly_undefined_without_plt)
3888{
3889 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3890 Valtype* wv = reinterpret_cast<Valtype*>(view);
3891 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3892
3893 bool insn_is_b = (((val >> 28) & 0xf) <= 0xe)
3894 && ((val & 0x0f000000UL) == 0x0a000000UL);
3895 bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL;
3896 bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe)
3897 && ((val & 0x0f000000UL) == 0x0b000000UL);
3898 bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL;
3899 bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL;
3900
3901 // Check that the instruction is valid.
3902 if (r_type == elfcpp::R_ARM_CALL)
3903 {
3904 if (!insn_is_uncond_bl && !insn_is_blx)
3905 return This::STATUS_BAD_RELOC;
3906 }
3907 else if (r_type == elfcpp::R_ARM_JUMP24)
3908 {
3909 if (!insn_is_b && !insn_is_cond_bl)
3910 return This::STATUS_BAD_RELOC;
3911 }
3912 else if (r_type == elfcpp::R_ARM_PLT32)
3913 {
3914 if (!insn_is_any_branch)
3915 return This::STATUS_BAD_RELOC;
3916 }
3917 else if (r_type == elfcpp::R_ARM_XPC25)
3918 {
3919 // FIXME: AAELF document IH0044C does not say much about it other
3920 // than it being obsolete.
3921 if (!insn_is_any_branch)
3922 return This::STATUS_BAD_RELOC;
3923 }
3924 else
3925 gold_unreachable();
3926
3927 // A branch to an undefined weak symbol is turned into a jump to
3928 // the next instruction unless a PLT entry will be created.
3929 // Do the same for local undefined symbols.
3930 // The jump to the next instruction is optimized as a NOP depending
3931 // on the architecture.
3932 const Target_arm<big_endian>* arm_target =
3933 Target_arm<big_endian>::default_target();
3934 if (is_weakly_undefined_without_plt)
3935 {
5c388529 3936 gold_assert(!parameters->options().relocatable());
d204b6e9
DK
3937 Valtype cond = val & 0xf0000000U;
3938 if (arm_target->may_use_arm_nop())
3939 val = cond | 0x0320f000;
3940 else
3941 val = cond | 0x01a00000; // Using pre-UAL nop: mov r0, r0.
3942 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3943 return This::STATUS_OKAY;
3944 }
3945
3946 Valtype addend = utils::sign_extend<26>(val << 2);
3947 Valtype branch_target = psymval->value(object, addend);
3948 int32_t branch_offset = branch_target - address;
3949
3950 // We need a stub if the branch offset is too large or if we need
3951 // to switch mode.
3952 bool may_use_blx = arm_target->may_use_blx();
3953 Reloc_stub* stub = NULL;
5c388529
DK
3954
3955 if (!parameters->options().relocatable()
3956 && (utils::has_overflow<26>(branch_offset)
3957 || ((thumb_bit != 0)
3958 && !(may_use_blx && r_type == elfcpp::R_ARM_CALL))))
d204b6e9 3959 {
2a2b6d42
DK
3960 Valtype unadjusted_branch_target = psymval->value(object, 0);
3961
d204b6e9 3962 Stub_type stub_type =
2a2b6d42
DK
3963 Reloc_stub::stub_type_for_reloc(r_type, address,
3964 unadjusted_branch_target,
d204b6e9
DK
3965 (thumb_bit != 0));
3966 if (stub_type != arm_stub_none)
3967 {
2ea97941 3968 Stub_table<big_endian>* stub_table =
d204b6e9 3969 object->stub_table(relinfo->data_shndx);
2ea97941 3970 gold_assert(stub_table != NULL);
d204b6e9
DK
3971
3972 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
2ea97941 3973 stub = stub_table->find_reloc_stub(stub_key);
d204b6e9
DK
3974 gold_assert(stub != NULL);
3975 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
2ea97941 3976 branch_target = stub_table->address() + stub->offset() + addend;
d204b6e9 3977 branch_offset = branch_target - address;
2a2b6d42 3978 gold_assert(!utils::has_overflow<26>(branch_offset));
d204b6e9
DK
3979 }
3980 }
3981
3982 // At this point, if we still need to switch mode, the instruction
3983 // must either be a BLX or a BL that can be converted to a BLX.
3984 if (thumb_bit != 0)
3985 {
3986 // Turn BL to BLX.
3987 gold_assert(may_use_blx && r_type == elfcpp::R_ARM_CALL);
3988 val = (val & 0xffffff) | 0xfa000000 | ((branch_offset & 2) << 23);
3989 }
3990
3991 val = utils::bit_select(val, (branch_offset >> 2), 0xffffffUL);
3992 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3993 return (utils::has_overflow<26>(branch_offset)
3994 ? This::STATUS_OVERFLOW : This::STATUS_OKAY);
3995}
3996
51938283
DK
3997// Relocate THUMB long branches. This handles relocation types
3998// R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22.
3999// If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
4000// undefined and we do not use PLT in this relocation. In such a case,
4001// the branch is converted into an NOP.
4002
4003template<bool big_endian>
4004typename Arm_relocate_functions<big_endian>::Status
4005Arm_relocate_functions<big_endian>::thumb_branch_common(
4006 unsigned int r_type,
4007 const Relocate_info<32, big_endian>* relinfo,
ca09d69a 4008 unsigned char* view,
51938283
DK
4009 const Sized_symbol<32>* gsym,
4010 const Arm_relobj<big_endian>* object,
4011 unsigned int r_sym,
4012 const Symbol_value<32>* psymval,
4013 Arm_address address,
4014 Arm_address thumb_bit,
4015 bool is_weakly_undefined_without_plt)
4016{
4017 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4018 Valtype* wv = reinterpret_cast<Valtype*>(view);
4019 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4020 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4021
4022 // FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference
4023 // into account.
4024 bool is_bl_insn = (lower_insn & 0x1000U) == 0x1000U;
4025 bool is_blx_insn = (lower_insn & 0x1000U) == 0x0000U;
4026
4027 // Check that the instruction is valid.
4028 if (r_type == elfcpp::R_ARM_THM_CALL)
4029 {
4030 if (!is_bl_insn && !is_blx_insn)
4031 return This::STATUS_BAD_RELOC;
4032 }
4033 else if (r_type == elfcpp::R_ARM_THM_JUMP24)
4034 {
4035 // This cannot be a BLX.
4036 if (!is_bl_insn)
4037 return This::STATUS_BAD_RELOC;
4038 }
4039 else if (r_type == elfcpp::R_ARM_THM_XPC22)
4040 {
4041 // Check for Thumb to Thumb call.
4042 if (!is_blx_insn)
4043 return This::STATUS_BAD_RELOC;
4044 if (thumb_bit != 0)
4045 {
4046 gold_warning(_("%s: Thumb BLX instruction targets "
4047 "thumb function '%s'."),
4048 object->name().c_str(),
4049 (gsym ? gsym->name() : "(local)"));
4050 // Convert BLX to BL.
4051 lower_insn |= 0x1000U;
4052 }
4053 }
4054 else
4055 gold_unreachable();
4056
4057 // A branch to an undefined weak symbol is turned into a jump to
4058 // the next instruction unless a PLT entry will be created.
4059 // The jump to the next instruction is optimized as a NOP.W for
4060 // Thumb-2 enabled architectures.
4061 const Target_arm<big_endian>* arm_target =
4062 Target_arm<big_endian>::default_target();
4063 if (is_weakly_undefined_without_plt)
4064 {
5c388529 4065 gold_assert(!parameters->options().relocatable());
51938283
DK
4066 if (arm_target->may_use_thumb2_nop())
4067 {
4068 elfcpp::Swap<16, big_endian>::writeval(wv, 0xf3af);
4069 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0x8000);
4070 }
4071 else
4072 {
4073 elfcpp::Swap<16, big_endian>::writeval(wv, 0xe000);
4074 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0xbf00);
4075 }
4076 return This::STATUS_OKAY;
4077 }
4078
089d69dc 4079 int32_t addend = This::thumb32_branch_offset(upper_insn, lower_insn);
51938283 4080 Arm_address branch_target = psymval->value(object, addend);
a2c7281b
DK
4081
4082 // For BLX, bit 1 of target address comes from bit 1 of base address.
4083 bool may_use_blx = arm_target->may_use_blx();
4084 if (thumb_bit == 0 && may_use_blx)
4085 branch_target = utils::bit_select(branch_target, address, 0x2);
4086
51938283
DK
4087 int32_t branch_offset = branch_target - address;
4088
4089 // We need a stub if the branch offset is too large or if we need
4090 // to switch mode.
51938283 4091 bool thumb2 = arm_target->using_thumb2();
5c388529
DK
4092 if (!parameters->options().relocatable()
4093 && ((!thumb2 && utils::has_overflow<23>(branch_offset))
4094 || (thumb2 && utils::has_overflow<25>(branch_offset))
4095 || ((thumb_bit == 0)
4096 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4097 || r_type == elfcpp::R_ARM_THM_JUMP24))))
51938283 4098 {
2a2b6d42
DK
4099 Arm_address unadjusted_branch_target = psymval->value(object, 0);
4100
51938283 4101 Stub_type stub_type =
2a2b6d42
DK
4102 Reloc_stub::stub_type_for_reloc(r_type, address,
4103 unadjusted_branch_target,
51938283 4104 (thumb_bit != 0));
2a2b6d42 4105
51938283
DK
4106 if (stub_type != arm_stub_none)
4107 {
2ea97941 4108 Stub_table<big_endian>* stub_table =
51938283 4109 object->stub_table(relinfo->data_shndx);
2ea97941 4110 gold_assert(stub_table != NULL);
51938283
DK
4111
4112 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
2ea97941 4113 Reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
51938283
DK
4114 gold_assert(stub != NULL);
4115 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
2ea97941 4116 branch_target = stub_table->address() + stub->offset() + addend;
a2c7281b
DK
4117 if (thumb_bit == 0 && may_use_blx)
4118 branch_target = utils::bit_select(branch_target, address, 0x2);
51938283
DK
4119 branch_offset = branch_target - address;
4120 }
4121 }
4122
4123 // At this point, if we still need to switch mode, the instruction
4124 // must either be a BLX or a BL that can be converted to a BLX.
4125 if (thumb_bit == 0)
4126 {
4127 gold_assert(may_use_blx
4128 && (r_type == elfcpp::R_ARM_THM_CALL
4129 || r_type == elfcpp::R_ARM_THM_XPC22));
4130 // Make sure this is a BLX.
4131 lower_insn &= ~0x1000U;
4132 }
4133 else
4134 {
4135 // Make sure this is a BL.
4136 lower_insn |= 0x1000U;
4137 }
4138
a2c7281b
DK
4139 // For a BLX instruction, make sure that the relocation is rounded up
4140 // to a word boundary. This follows the semantics of the instruction
4141 // which specifies that bit 1 of the target address will come from bit
4142 // 1 of the base address.
51938283 4143 if ((lower_insn & 0x5000U) == 0x4000U)
a2c7281b 4144 gold_assert((branch_offset & 3) == 0);
51938283
DK
4145
4146 // Put BRANCH_OFFSET back into the insn. Assumes two's complement.
4147 // We use the Thumb-2 encoding, which is safe even if dealing with
4148 // a Thumb-1 instruction by virtue of our overflow check above. */
089d69dc
DK
4149 upper_insn = This::thumb32_branch_upper(upper_insn, branch_offset);
4150 lower_insn = This::thumb32_branch_lower(lower_insn, branch_offset);
51938283
DK
4151
4152 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4153 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4154
a2c7281b
DK
4155 gold_assert(!utils::has_overflow<25>(branch_offset));
4156
51938283 4157 return ((thumb2
089d69dc
DK
4158 ? utils::has_overflow<25>(branch_offset)
4159 : utils::has_overflow<23>(branch_offset))
4160 ? This::STATUS_OVERFLOW
4161 : This::STATUS_OKAY);
4162}
4163
4164// Relocate THUMB-2 long conditional branches.
4165// If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
4166// undefined and we do not use PLT in this relocation. In such a case,
4167// the branch is converted into an NOP.
4168
4169template<bool big_endian>
4170typename Arm_relocate_functions<big_endian>::Status
4171Arm_relocate_functions<big_endian>::thm_jump19(
ca09d69a 4172 unsigned char* view,
089d69dc
DK
4173 const Arm_relobj<big_endian>* object,
4174 const Symbol_value<32>* psymval,
4175 Arm_address address,
4176 Arm_address thumb_bit)
4177{
4178 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4179 Valtype* wv = reinterpret_cast<Valtype*>(view);
4180 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4181 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4182 int32_t addend = This::thumb32_cond_branch_offset(upper_insn, lower_insn);
4183
4184 Arm_address branch_target = psymval->value(object, addend);
4185 int32_t branch_offset = branch_target - address;
4186
4187 // ??? Should handle interworking? GCC might someday try to
4188 // use this for tail calls.
4189 // FIXME: We do support thumb entry to PLT yet.
4190 if (thumb_bit == 0)
4191 {
4192 gold_error(_("conditional branch to PLT in THUMB-2 not supported yet."));
4193 return This::STATUS_BAD_RELOC;
4194 }
4195
4196 // Put RELOCATION back into the insn.
4197 upper_insn = This::thumb32_cond_branch_upper(upper_insn, branch_offset);
4198 lower_insn = This::thumb32_cond_branch_lower(lower_insn, branch_offset);
4199
4200 // Put the relocated value back in the object file:
4201 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4202 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4203
4204 return (utils::has_overflow<21>(branch_offset)
51938283
DK
4205 ? This::STATUS_OVERFLOW
4206 : This::STATUS_OKAY);
4207}
4208
94cdfcff
DK
4209// Get the GOT section, creating it if necessary.
4210
4211template<bool big_endian>
4a54abbb 4212Arm_output_data_got<big_endian>*
94cdfcff
DK
4213Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
4214{
4215 if (this->got_ == NULL)
4216 {
4217 gold_assert(symtab != NULL && layout != NULL);
4218
4a54abbb 4219 this->got_ = new Arm_output_data_got<big_endian>(symtab, layout);
94cdfcff 4220
82742395 4221 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
0c91cf04
DK
4222 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4223 this->got_, ORDER_DATA, false);
22f0da72 4224
94cdfcff
DK
4225 // The old GNU linker creates a .got.plt section. We just
4226 // create another set of data in the .got section. Note that we
4227 // always create a PLT if we create a GOT, although the PLT
4228 // might be empty.
4229 this->got_plt_ = new Output_data_space(4, "** GOT PLT");
82742395 4230 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
0c91cf04 4231 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
22f0da72 4232 this->got_plt_, ORDER_DATA, false);
94cdfcff
DK
4233
4234 // The first three entries are reserved.
4235 this->got_plt_->set_current_data_size(3 * 4);
4236
4237 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
4238 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
99fff23b 4239 Symbol_table::PREDEFINED,
94cdfcff
DK
4240 this->got_plt_,
4241 0, 0, elfcpp::STT_OBJECT,
4242 elfcpp::STB_LOCAL,
4243 elfcpp::STV_HIDDEN, 0,
4244 false, false);
4245 }
4246 return this->got_;
4247}
4248
4249// Get the dynamic reloc section, creating it if necessary.
4250
4251template<bool big_endian>
4252typename Target_arm<big_endian>::Reloc_section*
4253Target_arm<big_endian>::rel_dyn_section(Layout* layout)
4254{
4255 if (this->rel_dyn_ == NULL)
4256 {
4257 gold_assert(layout != NULL);
4258 this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
4259 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
22f0da72
ILT
4260 elfcpp::SHF_ALLOC, this->rel_dyn_,
4261 ORDER_DYNAMIC_RELOCS, false);
94cdfcff
DK
4262 }
4263 return this->rel_dyn_;
4264}
4265
b569affa
DK
4266// Insn_template methods.
4267
4268// Return byte size of an instruction template.
4269
4270size_t
4271Insn_template::size() const
4272{
4273 switch (this->type())
4274 {
4275 case THUMB16_TYPE:
2fb7225c 4276 case THUMB16_SPECIAL_TYPE:
b569affa
DK
4277 return 2;
4278 case ARM_TYPE:
4279 case THUMB32_TYPE:
4280 case DATA_TYPE:
4281 return 4;
4282 default:
4283 gold_unreachable();
4284 }
4285}
4286
4287// Return alignment of an instruction template.
4288
4289unsigned
4290Insn_template::alignment() const
4291{
4292 switch (this->type())
4293 {
4294 case THUMB16_TYPE:
2fb7225c 4295 case THUMB16_SPECIAL_TYPE:
b569affa
DK
4296 case THUMB32_TYPE:
4297 return 2;
4298 case ARM_TYPE:
4299 case DATA_TYPE:
4300 return 4;
4301 default:
4302 gold_unreachable();
4303 }
4304}
4305
4306// Stub_template methods.
4307
4308Stub_template::Stub_template(
2ea97941
ILT
4309 Stub_type type, const Insn_template* insns,
4310 size_t insn_count)
4311 : type_(type), insns_(insns), insn_count_(insn_count), alignment_(1),
b569affa
DK
4312 entry_in_thumb_mode_(false), relocs_()
4313{
2ea97941 4314 off_t offset = 0;
b569affa
DK
4315
4316 // Compute byte size and alignment of stub template.
2ea97941 4317 for (size_t i = 0; i < insn_count; i++)
b569affa 4318 {
2ea97941
ILT
4319 unsigned insn_alignment = insns[i].alignment();
4320 size_t insn_size = insns[i].size();
4321 gold_assert((offset & (insn_alignment - 1)) == 0);
b569affa 4322 this->alignment_ = std::max(this->alignment_, insn_alignment);
2ea97941 4323 switch (insns[i].type())
b569affa
DK
4324 {
4325 case Insn_template::THUMB16_TYPE:
089d69dc 4326 case Insn_template::THUMB16_SPECIAL_TYPE:
b569affa
DK
4327 if (i == 0)
4328 this->entry_in_thumb_mode_ = true;
4329 break;
4330
4331 case Insn_template::THUMB32_TYPE:
2ea97941
ILT
4332 if (insns[i].r_type() != elfcpp::R_ARM_NONE)
4333 this->relocs_.push_back(Reloc(i, offset));
b569affa
DK
4334 if (i == 0)
4335 this->entry_in_thumb_mode_ = true;
4336 break;
4337
4338 case Insn_template::ARM_TYPE:
4339 // Handle cases where the target is encoded within the
4340 // instruction.
2ea97941
ILT
4341 if (insns[i].r_type() == elfcpp::R_ARM_JUMP24)
4342 this->relocs_.push_back(Reloc(i, offset));
b569affa
DK
4343 break;
4344
4345 case Insn_template::DATA_TYPE:
4346 // Entry point cannot be data.
4347 gold_assert(i != 0);
2ea97941 4348 this->relocs_.push_back(Reloc(i, offset));
b569affa
DK
4349 break;
4350
4351 default:
4352 gold_unreachable();
4353 }
2ea97941 4354 offset += insn_size;
b569affa 4355 }
2ea97941 4356 this->size_ = offset;
b569affa
DK
4357}
4358
bb0d3eb0
DK
4359// Stub methods.
4360
7296d933 4361// Template to implement do_write for a specific target endianness.
bb0d3eb0
DK
4362
4363template<bool big_endian>
4364void inline
4365Stub::do_fixed_endian_write(unsigned char* view, section_size_type view_size)
4366{
4367 const Stub_template* stub_template = this->stub_template();
4368 const Insn_template* insns = stub_template->insns();
4369
4370 // FIXME: We do not handle BE8 encoding yet.
4371 unsigned char* pov = view;
4372 for (size_t i = 0; i < stub_template->insn_count(); i++)
4373 {
4374 switch (insns[i].type())
4375 {
4376 case Insn_template::THUMB16_TYPE:
4377 elfcpp::Swap<16, big_endian>::writeval(pov, insns[i].data() & 0xffff);
4378 break;
4379 case Insn_template::THUMB16_SPECIAL_TYPE:
4380 elfcpp::Swap<16, big_endian>::writeval(
4381 pov,
4382 this->thumb16_special(i));
4383 break;
4384 case Insn_template::THUMB32_TYPE:
4385 {
4386 uint32_t hi = (insns[i].data() >> 16) & 0xffff;
4387 uint32_t lo = insns[i].data() & 0xffff;
4388 elfcpp::Swap<16, big_endian>::writeval(pov, hi);
4389 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo);
4390 }
4391 break;
4392 case Insn_template::ARM_TYPE:
4393 case Insn_template::DATA_TYPE:
4394 elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data());
4395 break;
4396 default:
4397 gold_unreachable();
4398 }
4399 pov += insns[i].size();
4400 }
4401 gold_assert(static_cast<section_size_type>(pov - view) == view_size);
4402}
4403
b569affa
DK
4404// Reloc_stub::Key methods.
4405
4406// Dump a Key as a string for debugging.
4407
4408std::string
4409Reloc_stub::Key::name() const
4410{
4411 if (this->r_sym_ == invalid_index)
4412 {
4413 // Global symbol key name
4414 // <stub-type>:<symbol name>:<addend>.
4415 const std::string sym_name = this->u_.symbol->name();
4416 // We need to print two hex number and two colons. So just add 100 bytes
4417 // to the symbol name size.
4418 size_t len = sym_name.size() + 100;
4419 char* buffer = new char[len];
4420 int c = snprintf(buffer, len, "%d:%s:%x", this->stub_type_,
4421 sym_name.c_str(), this->addend_);
4422 gold_assert(c > 0 && c < static_cast<int>(len));
4423 delete[] buffer;
4424 return std::string(buffer);
4425 }
4426 else
4427 {
4428 // local symbol key name
4429 // <stub-type>:<object>:<r_sym>:<addend>.
4430 const size_t len = 200;
4431 char buffer[len];
4432 int c = snprintf(buffer, len, "%d:%p:%u:%x", this->stub_type_,
4433 this->u_.relobj, this->r_sym_, this->addend_);
4434 gold_assert(c > 0 && c < static_cast<int>(len));
4435 return std::string(buffer);
4436 }
4437}
4438
4439// Reloc_stub methods.
4440
4441// Determine the type of stub needed, if any, for a relocation of R_TYPE at
4442// LOCATION to DESTINATION.
4443// This code is based on the arm_type_of_stub function in
9b547ce6 4444// bfd/elf32-arm.c. We have changed the interface a little to keep the Stub
b569affa
DK
4445// class simple.
4446
4447Stub_type
4448Reloc_stub::stub_type_for_reloc(
4449 unsigned int r_type,
4450 Arm_address location,
4451 Arm_address destination,
4452 bool target_is_thumb)
4453{
4454 Stub_type stub_type = arm_stub_none;
4455
4456 // This is a bit ugly but we want to avoid using a templated class for
4457 // big and little endianities.
4458 bool may_use_blx;
4459 bool should_force_pic_veneer;
4460 bool thumb2;
4461 bool thumb_only;
4462 if (parameters->target().is_big_endian())
4463 {
43d12afe 4464 const Target_arm<true>* big_endian_target =
b569affa 4465 Target_arm<true>::default_target();
43d12afe
DK
4466 may_use_blx = big_endian_target->may_use_blx();
4467 should_force_pic_veneer = big_endian_target->should_force_pic_veneer();
4468 thumb2 = big_endian_target->using_thumb2();
4469 thumb_only = big_endian_target->using_thumb_only();
b569affa
DK
4470 }
4471 else
4472 {
43d12afe 4473 const Target_arm<false>* little_endian_target =
b569affa 4474 Target_arm<false>::default_target();
43d12afe
DK
4475 may_use_blx = little_endian_target->may_use_blx();
4476 should_force_pic_veneer = little_endian_target->should_force_pic_veneer();
4477 thumb2 = little_endian_target->using_thumb2();
4478 thumb_only = little_endian_target->using_thumb_only();
b569affa
DK
4479 }
4480
a2c7281b 4481 int64_t branch_offset;
b569affa
DK
4482 if (r_type == elfcpp::R_ARM_THM_CALL || r_type == elfcpp::R_ARM_THM_JUMP24)
4483 {
a2c7281b
DK
4484 // For THUMB BLX instruction, bit 1 of target comes from bit 1 of the
4485 // base address (instruction address + 4).
4486 if ((r_type == elfcpp::R_ARM_THM_CALL) && may_use_blx && !target_is_thumb)
4487 destination = utils::bit_select(destination, location, 0x2);
4488 branch_offset = static_cast<int64_t>(destination) - location;
4489
b569affa
DK
4490 // Handle cases where:
4491 // - this call goes too far (different Thumb/Thumb2 max
4492 // distance)
4493 // - it's a Thumb->Arm call and blx is not available, or it's a
4494 // Thumb->Arm branch (not bl). A stub is needed in this case.
4495 if ((!thumb2
4496 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4497 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
4498 || (thumb2
4499 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4500 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4501 || ((!target_is_thumb)
4502 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4503 || (r_type == elfcpp::R_ARM_THM_JUMP24))))
4504 {
4505 if (target_is_thumb)
4506 {
4507 // Thumb to thumb.
4508 if (!thumb_only)
4509 {
51938283
DK
4510 stub_type = (parameters->options().shared()
4511 || should_force_pic_veneer)
b569affa
DK
4512 // PIC stubs.
4513 ? ((may_use_blx
4514 && (r_type == elfcpp::R_ARM_THM_CALL))
4515 // V5T and above. Stub starts with ARM code, so
4516 // we must be able to switch mode before
4517 // reaching it, which is only possible for 'bl'
4518 // (ie R_ARM_THM_CALL relocation).
4519 ? arm_stub_long_branch_any_thumb_pic
4520 // On V4T, use Thumb code only.
4521 : arm_stub_long_branch_v4t_thumb_thumb_pic)
4522
4523 // non-PIC stubs.
4524 : ((may_use_blx
4525 && (r_type == elfcpp::R_ARM_THM_CALL))
4526 ? arm_stub_long_branch_any_any // V5T and above.
4527 : arm_stub_long_branch_v4t_thumb_thumb); // V4T.
4528 }
4529 else
4530 {
51938283
DK
4531 stub_type = (parameters->options().shared()
4532 || should_force_pic_veneer)
b569affa
DK
4533 ? arm_stub_long_branch_thumb_only_pic // PIC stub.
4534 : arm_stub_long_branch_thumb_only; // non-PIC stub.
4535 }
4536 }
4537 else
4538 {
4539 // Thumb to arm.
4540
4541 // FIXME: We should check that the input section is from an
4542 // object that has interwork enabled.
4543
4544 stub_type = (parameters->options().shared()
4545 || should_force_pic_veneer)
4546 // PIC stubs.
4547 ? ((may_use_blx
4548 && (r_type == elfcpp::R_ARM_THM_CALL))
4549 ? arm_stub_long_branch_any_arm_pic // V5T and above.
4550 : arm_stub_long_branch_v4t_thumb_arm_pic) // V4T.
4551
4552 // non-PIC stubs.
4553 : ((may_use_blx
4554 && (r_type == elfcpp::R_ARM_THM_CALL))
4555 ? arm_stub_long_branch_any_any // V5T and above.
4556 : arm_stub_long_branch_v4t_thumb_arm); // V4T.
4557
4558 // Handle v4t short branches.
4559 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4560 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4561 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4562 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4563 }
4564 }
4565 }
4566 else if (r_type == elfcpp::R_ARM_CALL
4567 || r_type == elfcpp::R_ARM_JUMP24
4568 || r_type == elfcpp::R_ARM_PLT32)
4569 {
a2c7281b 4570 branch_offset = static_cast<int64_t>(destination) - location;
b569affa
DK
4571 if (target_is_thumb)
4572 {
4573 // Arm to thumb.
4574
4575 // FIXME: We should check that the input section is from an
4576 // object that has interwork enabled.
4577
4578 // We have an extra 2-bytes reach because of
4579 // the mode change (bit 24 (H) of BLX encoding).
4580 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4581 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4582 || ((r_type == elfcpp::R_ARM_CALL) && !may_use_blx)
4583 || (r_type == elfcpp::R_ARM_JUMP24)
4584 || (r_type == elfcpp::R_ARM_PLT32))
4585 {
4586 stub_type = (parameters->options().shared()
4587 || should_force_pic_veneer)
4588 // PIC stubs.
4589 ? (may_use_blx
4590 ? arm_stub_long_branch_any_thumb_pic// V5T and above.
4591 : arm_stub_long_branch_v4t_arm_thumb_pic) // V4T stub.
4592
4593 // non-PIC stubs.
4594 : (may_use_blx
4595 ? arm_stub_long_branch_any_any // V5T and above.
4596 : arm_stub_long_branch_v4t_arm_thumb); // V4T.
4597 }
4598 }
4599 else
4600 {
4601 // Arm to arm.
4602 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4603 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4604 {
4605 stub_type = (parameters->options().shared()
4606 || should_force_pic_veneer)
4607 ? arm_stub_long_branch_any_arm_pic // PIC stubs.
4608 : arm_stub_long_branch_any_any; /// non-PIC.
4609 }
4610 }
4611 }
4612
4613 return stub_type;
4614}
4615
bb0d3eb0 4616// Cortex_a8_stub methods.
b569affa 4617
bb0d3eb0
DK
4618// Return the instruction for a THUMB16_SPECIAL_TYPE instruction template.
4619// I is the position of the instruction template in the stub template.
b569affa 4620
bb0d3eb0
DK
4621uint16_t
4622Cortex_a8_stub::do_thumb16_special(size_t i)
b569affa 4623{
bb0d3eb0
DK
4624 // The only use of this is to copy condition code from a conditional
4625 // branch being worked around to the corresponding conditional branch in
4626 // to the stub.
4627 gold_assert(this->stub_template()->type() == arm_stub_a8_veneer_b_cond
4628 && i == 0);
4629 uint16_t data = this->stub_template()->insns()[i].data();
4630 gold_assert((data & 0xff00U) == 0xd000U);
4631 data |= ((this->original_insn_ >> 22) & 0xf) << 8;
4632 return data;
b569affa
DK
4633}
4634
4635// Stub_factory methods.
4636
4637Stub_factory::Stub_factory()
4638{
4639 // The instruction template sequences are declared as static
4640 // objects and initialized first time the constructor runs.
4641
4642 // Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
4643 // to reach the stub if necessary.
4644 static const Insn_template elf32_arm_stub_long_branch_any_any[] =
4645 {
4646 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4647 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4648 // dcd R_ARM_ABS32(X)
4649 };
4650
4651 // V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
4652 // available.
4653 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb[] =
4654 {
4655 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4656 Insn_template::arm_insn(0xe12fff1c), // bx ip
4657 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4658 // dcd R_ARM_ABS32(X)
4659 };
4660
4661 // Thumb -> Thumb long branch stub. Used on M-profile architectures.
4662 static const Insn_template elf32_arm_stub_long_branch_thumb_only[] =
4663 {
4664 Insn_template::thumb16_insn(0xb401), // push {r0}
4665 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4666 Insn_template::thumb16_insn(0x4684), // mov ip, r0
4667 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4668 Insn_template::thumb16_insn(0x4760), // bx ip
4669 Insn_template::thumb16_insn(0xbf00), // nop
4670 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4671 // dcd R_ARM_ABS32(X)
4672 };
4673
4674 // V4T Thumb -> Thumb long branch stub. Using the stack is not
4675 // allowed.
4676 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
4677 {
4678 Insn_template::thumb16_insn(0x4778), // bx pc
4679 Insn_template::thumb16_insn(0x46c0), // nop
4680 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4681 Insn_template::arm_insn(0xe12fff1c), // bx ip
4682 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4683 // dcd R_ARM_ABS32(X)
4684 };
4685
4686 // V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
4687 // available.
4688 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm[] =
4689 {
4690 Insn_template::thumb16_insn(0x4778), // bx pc
4691 Insn_template::thumb16_insn(0x46c0), // nop
4692 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4693 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4694 // dcd R_ARM_ABS32(X)
4695 };
4696
4697 // V4T Thumb -> ARM short branch stub. Shorter variant of the above
4698 // one, when the destination is close enough.
4699 static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm[] =
4700 {
4701 Insn_template::thumb16_insn(0x4778), // bx pc
4702 Insn_template::thumb16_insn(0x46c0), // nop
4703 Insn_template::arm_rel_insn(0xea000000, -8), // b (X-8)
4704 };
4705
4706 // ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
4707 // blx to reach the stub if necessary.
4708 static const Insn_template elf32_arm_stub_long_branch_any_arm_pic[] =
4709 {
4710 Insn_template::arm_insn(0xe59fc000), // ldr r12, [pc]
4711 Insn_template::arm_insn(0xe08ff00c), // add pc, pc, ip
4712 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4713 // dcd R_ARM_REL32(X-4)
4714 };
4715
4716 // ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
4717 // blx to reach the stub if necessary. We can not add into pc;
4718 // it is not guaranteed to mode switch (different in ARMv6 and
4719 // ARMv7).
4720 static const Insn_template elf32_arm_stub_long_branch_any_thumb_pic[] =
4721 {
4722 Insn_template::arm_insn(0xe59fc004), // ldr r12, [pc, #4]
4723 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4724 Insn_template::arm_insn(0xe12fff1c), // bx ip
4725 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4726 // dcd R_ARM_REL32(X)
4727 };
4728
4729 // V4T ARM -> ARM long branch stub, PIC.
4730 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
4731 {
4732 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4733 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4734 Insn_template::arm_insn(0xe12fff1c), // bx ip
4735 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4736 // dcd R_ARM_REL32(X)
4737 };
4738
4739 // V4T Thumb -> ARM long branch stub, PIC.
4740 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
4741 {
4742 Insn_template::thumb16_insn(0x4778), // bx pc
4743 Insn_template::thumb16_insn(0x46c0), // nop
4744 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4745 Insn_template::arm_insn(0xe08cf00f), // add pc, ip, pc
4746 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4747 // dcd R_ARM_REL32(X)
4748 };
4749
4750 // Thumb -> Thumb long branch stub, PIC. Used on M-profile
4751 // architectures.
4752 static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic[] =
4753 {
4754 Insn_template::thumb16_insn(0xb401), // push {r0}
4755 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4756 Insn_template::thumb16_insn(0x46fc), // mov ip, pc
4757 Insn_template::thumb16_insn(0x4484), // add ip, r0
4758 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4759 Insn_template::thumb16_insn(0x4760), // bx ip
4760 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 4),
4761 // dcd R_ARM_REL32(X)
4762 };
4763
4764 // V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
4765 // allowed.
4766 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
4767 {
4768 Insn_template::thumb16_insn(0x4778), // bx pc
4769 Insn_template::thumb16_insn(0x46c0), // nop
4770 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4771 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4772 Insn_template::arm_insn(0xe12fff1c), // bx ip
4773 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4774 // dcd R_ARM_REL32(X)
4775 };
4776
4777 // Cortex-A8 erratum-workaround stubs.
4778
4779 // Stub used for conditional branches (which may be beyond +/-1MB away,
4780 // so we can't use a conditional branch to reach this stub).
4781
4782 // original code:
4783 //
4784 // b<cond> X
4785 // after:
4786 //
4787 static const Insn_template elf32_arm_stub_a8_veneer_b_cond[] =
4788 {
4789 Insn_template::thumb16_bcond_insn(0xd001), // b<cond>.n true
4790 Insn_template::thumb32_b_insn(0xf000b800, -4), // b.w after
4791 Insn_template::thumb32_b_insn(0xf000b800, -4) // true:
4792 // b.w X
4793 };
4794
4795 // Stub used for b.w and bl.w instructions.
4796
4797 static const Insn_template elf32_arm_stub_a8_veneer_b[] =
4798 {
4799 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4800 };
4801
4802 static const Insn_template elf32_arm_stub_a8_veneer_bl[] =
4803 {
4804 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4805 };
4806
4807 // Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
4808 // instruction (which switches to ARM mode) to point to this stub. Jump to
4809 // the real destination using an ARM-mode branch.
bb0d3eb0 4810 static const Insn_template elf32_arm_stub_a8_veneer_blx[] =
b569affa
DK
4811 {
4812 Insn_template::arm_rel_insn(0xea000000, -8) // b dest
4813 };
4814
a2162063
ILT
4815 // Stub used to provide an interworking for R_ARM_V4BX relocation
4816 // (bx r[n] instruction).
4817 static const Insn_template elf32_arm_stub_v4_veneer_bx[] =
4818 {
4819 Insn_template::arm_insn(0xe3100001), // tst r<n>, #1
4820 Insn_template::arm_insn(0x01a0f000), // moveq pc, r<n>
4821 Insn_template::arm_insn(0xe12fff10) // bx r<n>
4822 };
4823
b569affa
DK
4824 // Fill in the stub template look-up table. Stub templates are constructed
4825 // per instance of Stub_factory for fast look-up without locking
4826 // in a thread-enabled environment.
4827
4828 this->stub_templates_[arm_stub_none] =
4829 new Stub_template(arm_stub_none, NULL, 0);
4830
4831#define DEF_STUB(x) \
4832 do \
4833 { \
4834 size_t array_size \
4835 = sizeof(elf32_arm_stub_##x) / sizeof(elf32_arm_stub_##x[0]); \
4836 Stub_type type = arm_stub_##x; \
4837 this->stub_templates_[type] = \
4838 new Stub_template(type, elf32_arm_stub_##x, array_size); \
4839 } \
4840 while (0);
4841
4842 DEF_STUBS
4843#undef DEF_STUB
4844}
4845
56ee5e00
DK
4846// Stub_table methods.
4847
9b547ce6 4848// Remove all Cortex-A8 stub.
56ee5e00
DK
4849
4850template<bool big_endian>
4851void
2fb7225c
DK
4852Stub_table<big_endian>::remove_all_cortex_a8_stubs()
4853{
4854 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4855 p != this->cortex_a8_stubs_.end();
4856 ++p)
4857 delete p->second;
4858 this->cortex_a8_stubs_.clear();
4859}
4860
4861// Relocate one stub. This is a helper for Stub_table::relocate_stubs().
4862
4863template<bool big_endian>
4864void
4865Stub_table<big_endian>::relocate_stub(
4866 Stub* stub,
4867 const Relocate_info<32, big_endian>* relinfo,
4868 Target_arm<big_endian>* arm_target,
4869 Output_section* output_section,
4870 unsigned char* view,
4871 Arm_address address,
4872 section_size_type view_size)
56ee5e00 4873{
2ea97941 4874 const Stub_template* stub_template = stub->stub_template();
2fb7225c
DK
4875 if (stub_template->reloc_count() != 0)
4876 {
4877 // Adjust view to cover the stub only.
4878 section_size_type offset = stub->offset();
4879 section_size_type stub_size = stub_template->size();
4880 gold_assert(offset + stub_size <= view_size);
4881
4882 arm_target->relocate_stub(stub, relinfo, output_section, view + offset,
4883 address + offset, stub_size);
4884 }
56ee5e00
DK
4885}
4886
2fb7225c
DK
4887// Relocate all stubs in this stub table.
4888
56ee5e00
DK
4889template<bool big_endian>
4890void
4891Stub_table<big_endian>::relocate_stubs(
4892 const Relocate_info<32, big_endian>* relinfo,
4893 Target_arm<big_endian>* arm_target,
2ea97941 4894 Output_section* output_section,
56ee5e00 4895 unsigned char* view,
2ea97941 4896 Arm_address address,
56ee5e00
DK
4897 section_size_type view_size)
4898{
4899 // If we are passed a view bigger than the stub table's. we need to
4900 // adjust the view.
2ea97941 4901 gold_assert(address == this->address()
56ee5e00
DK
4902 && (view_size
4903 == static_cast<section_size_type>(this->data_size())));
4904
2fb7225c
DK
4905 // Relocate all relocation stubs.
4906 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4907 p != this->reloc_stubs_.end();
4908 ++p)
4909 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4910 address, view_size);
4911
4912 // Relocate all Cortex-A8 stubs.
4913 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4914 p != this->cortex_a8_stubs_.end();
4915 ++p)
4916 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4917 address, view_size);
a2162063
ILT
4918
4919 // Relocate all ARM V4BX stubs.
4920 for (Arm_v4bx_stub_list::iterator p = this->arm_v4bx_stubs_.begin();
4921 p != this->arm_v4bx_stubs_.end();
4922 ++p)
4923 {
4924 if (*p != NULL)
4925 this->relocate_stub(*p, relinfo, arm_target, output_section, view,
4926 address, view_size);
4927 }
2fb7225c
DK
4928}
4929
4930// Write out the stubs to file.
4931
4932template<bool big_endian>
4933void
4934Stub_table<big_endian>::do_write(Output_file* of)
4935{
4936 off_t offset = this->offset();
4937 const section_size_type oview_size =
4938 convert_to_section_size_type(this->data_size());
4939 unsigned char* const oview = of->get_output_view(offset, oview_size);
4940
4941 // Write relocation stubs.
56ee5e00
DK
4942 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4943 p != this->reloc_stubs_.end();
4944 ++p)
4945 {
4946 Reloc_stub* stub = p->second;
2fb7225c
DK
4947 Arm_address address = this->address() + stub->offset();
4948 gold_assert(address
4949 == align_address(address,
4950 stub->stub_template()->alignment()));
4951 stub->write(oview + stub->offset(), stub->stub_template()->size(),
4952 big_endian);
56ee5e00 4953 }
2fb7225c
DK
4954
4955 // Write Cortex-A8 stubs.
4956 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4957 p != this->cortex_a8_stubs_.end();
4958 ++p)
4959 {
4960 Cortex_a8_stub* stub = p->second;
4961 Arm_address address = this->address() + stub->offset();
4962 gold_assert(address
4963 == align_address(address,
4964 stub->stub_template()->alignment()));
4965 stub->write(oview + stub->offset(), stub->stub_template()->size(),
4966 big_endian);
4967 }
4968
a2162063
ILT
4969 // Write ARM V4BX relocation stubs.
4970 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4971 p != this->arm_v4bx_stubs_.end();
4972 ++p)
4973 {
4974 if (*p == NULL)
4975 continue;
4976
4977 Arm_address address = this->address() + (*p)->offset();
4978 gold_assert(address
4979 == align_address(address,
4980 (*p)->stub_template()->alignment()));
4981 (*p)->write(oview + (*p)->offset(), (*p)->stub_template()->size(),
4982 big_endian);
4983 }
4984
2fb7225c 4985 of->write_output_view(this->offset(), oview_size, oview);
56ee5e00
DK
4986}
4987
2fb7225c
DK
4988// Update the data size and address alignment of the stub table at the end
4989// of a relaxation pass. Return true if either the data size or the
4990// alignment changed in this relaxation pass.
4991
4992template<bool big_endian>
4993bool
4994Stub_table<big_endian>::update_data_size_and_addralign()
4995{
2fb7225c 4996 // Go over all stubs in table to compute data size and address alignment.
d099120c
DK
4997 off_t size = this->reloc_stubs_size_;
4998 unsigned addralign = this->reloc_stubs_addralign_;
2fb7225c
DK
4999
5000 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5001 p != this->cortex_a8_stubs_.end();
5002 ++p)
5003 {
5004 const Stub_template* stub_template = p->second->stub_template();
5005 addralign = std::max(addralign, stub_template->alignment());
5006 size = (align_address(size, stub_template->alignment())
5007 + stub_template->size());
5008 }
5009
a2162063
ILT
5010 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5011 p != this->arm_v4bx_stubs_.end();
5012 ++p)
5013 {
5014 if (*p == NULL)
5015 continue;
5016
5017 const Stub_template* stub_template = (*p)->stub_template();
5018 addralign = std::max(addralign, stub_template->alignment());
5019 size = (align_address(size, stub_template->alignment())
5020 + stub_template->size());
5021 }
5022
2fb7225c
DK
5023 // Check if either data size or alignment changed in this pass.
5024 // Update prev_data_size_ and prev_addralign_. These will be used
5025 // as the current data size and address alignment for the next pass.
5026 bool changed = size != this->prev_data_size_;
5027 this->prev_data_size_ = size;
5028
5029 if (addralign != this->prev_addralign_)
5030 changed = true;
5031 this->prev_addralign_ = addralign;
5032
5033 return changed;
5034}
5035
5036// Finalize the stubs. This sets the offsets of the stubs within the stub
5037// table. It also marks all input sections needing Cortex-A8 workaround.
56ee5e00
DK
5038
5039template<bool big_endian>
5040void
2fb7225c 5041Stub_table<big_endian>::finalize_stubs()
56ee5e00 5042{
d099120c 5043 off_t off = this->reloc_stubs_size_;
2fb7225c
DK
5044 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5045 p != this->cortex_a8_stubs_.end();
5046 ++p)
5047 {
5048 Cortex_a8_stub* stub = p->second;
5049 const Stub_template* stub_template = stub->stub_template();
5050 uint64_t stub_addralign = stub_template->alignment();
5051 off = align_address(off, stub_addralign);
5052 stub->set_offset(off);
5053 off += stub_template->size();
5054
5055 // Mark input section so that we can determine later if a code section
5056 // needs the Cortex-A8 workaround quickly.
5057 Arm_relobj<big_endian>* arm_relobj =
5058 Arm_relobj<big_endian>::as_arm_relobj(stub->relobj());
5059 arm_relobj->mark_section_for_cortex_a8_workaround(stub->shndx());
5060 }
5061
a2162063
ILT
5062 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5063 p != this->arm_v4bx_stubs_.end();
5064 ++p)
5065 {
5066 if (*p == NULL)
5067 continue;
5068
5069 const Stub_template* stub_template = (*p)->stub_template();
5070 uint64_t stub_addralign = stub_template->alignment();
5071 off = align_address(off, stub_addralign);
5072 (*p)->set_offset(off);
5073 off += stub_template->size();
5074 }
5075
2fb7225c 5076 gold_assert(off <= this->prev_data_size_);
56ee5e00
DK
5077}
5078
2fb7225c
DK
5079// Apply Cortex-A8 workaround to an address range between VIEW_ADDRESS
5080// and VIEW_ADDRESS + VIEW_SIZE - 1. VIEW points to the mapped address
5081// of the address range seen by the linker.
56ee5e00
DK
5082
5083template<bool big_endian>
5084void
2fb7225c
DK
5085Stub_table<big_endian>::apply_cortex_a8_workaround_to_address_range(
5086 Target_arm<big_endian>* arm_target,
5087 unsigned char* view,
5088 Arm_address view_address,
5089 section_size_type view_size)
56ee5e00 5090{
2fb7225c
DK
5091 // Cortex-A8 stubs are sorted by addresses of branches being fixed up.
5092 for (Cortex_a8_stub_list::const_iterator p =
5093 this->cortex_a8_stubs_.lower_bound(view_address);
5094 ((p != this->cortex_a8_stubs_.end())
5095 && (p->first < (view_address + view_size)));
5096 ++p)
56ee5e00 5097 {
2fb7225c
DK
5098 // We do not store the THUMB bit in the LSB of either the branch address
5099 // or the stub offset. There is no need to strip the LSB.
5100 Arm_address branch_address = p->first;
5101 const Cortex_a8_stub* stub = p->second;
5102 Arm_address stub_address = this->address() + stub->offset();
5103
5104 // Offset of the branch instruction relative to this view.
5105 section_size_type offset =
5106 convert_to_section_size_type(branch_address - view_address);
5107 gold_assert((offset + 4) <= view_size);
5108
5109 arm_target->apply_cortex_a8_workaround(stub, stub_address,
5110 view + offset, branch_address);
5111 }
56ee5e00
DK
5112}
5113
10ad9fe5
DK
5114// Arm_input_section methods.
5115
5116// Initialize an Arm_input_section.
5117
5118template<bool big_endian>
5119void
5120Arm_input_section<big_endian>::init()
5121{
2ea97941
ILT
5122 Relobj* relobj = this->relobj();
5123 unsigned int shndx = this->shndx();
10ad9fe5 5124
f625ae50
DK
5125 // We have to cache original size, alignment and contents to avoid locking
5126 // the original file.
6625d24e
DK
5127 this->original_addralign_ =
5128 convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
f625ae50
DK
5129
5130 // This is not efficient but we expect only a small number of relaxed
5131 // input sections for stubs.
5132 section_size_type section_size;
5133 const unsigned char* section_contents =
5134 relobj->section_contents(shndx, &section_size, false);
6625d24e
DK
5135 this->original_size_ =
5136 convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
10ad9fe5 5137
f625ae50
DK
5138 gold_assert(this->original_contents_ == NULL);
5139 this->original_contents_ = new unsigned char[section_size];
5140 memcpy(this->original_contents_, section_contents, section_size);
5141
10ad9fe5
DK
5142 // We want to make this look like the original input section after
5143 // output sections are finalized.
2ea97941
ILT
5144 Output_section* os = relobj->output_section(shndx);
5145 off_t offset = relobj->output_section_offset(shndx);
5146 gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
5147 this->set_address(os->address() + offset);
5148 this->set_file_offset(os->offset() + offset);
10ad9fe5
DK
5149
5150 this->set_current_data_size(this->original_size_);
5151 this->finalize_data_size();
5152}
5153
5154template<bool big_endian>
5155void
5156Arm_input_section<big_endian>::do_write(Output_file* of)
5157{
5158 // We have to write out the original section content.
f625ae50
DK
5159 gold_assert(this->original_contents_ != NULL);
5160 of->write(this->offset(), this->original_contents_,
5161 this->original_size_);
10ad9fe5
DK
5162
5163 // If this owns a stub table and it is not empty, write it.
5164 if (this->is_stub_table_owner() && !this->stub_table_->empty())
5165 this->stub_table_->write(of);
5166}
5167
5168// Finalize data size.
5169
5170template<bool big_endian>
5171void
5172Arm_input_section<big_endian>::set_final_data_size()
5173{
153e7da4
DK
5174 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5175
10ad9fe5
DK
5176 if (this->is_stub_table_owner())
5177 {
6625d24e 5178 this->stub_table_->finalize_data_size();
153e7da4 5179 off = align_address(off, this->stub_table_->addralign());
153e7da4 5180 off += this->stub_table_->data_size();
10ad9fe5 5181 }
153e7da4 5182 this->set_data_size(off);
10ad9fe5
DK
5183}
5184
5185// Reset address and file offset.
5186
5187template<bool big_endian>
5188void
5189Arm_input_section<big_endian>::do_reset_address_and_file_offset()
5190{
5191 // Size of the original input section contents.
5192 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5193
5194 // If this is a stub table owner, account for the stub table size.
5195 if (this->is_stub_table_owner())
5196 {
2ea97941 5197 Stub_table<big_endian>* stub_table = this->stub_table_;
10ad9fe5
DK
5198
5199 // Reset the stub table's address and file offset. The
5200 // current data size for child will be updated after that.
5201 stub_table_->reset_address_and_file_offset();
5202 off = align_address(off, stub_table_->addralign());
2ea97941 5203 off += stub_table->current_data_size();
10ad9fe5
DK
5204 }
5205
5206 this->set_current_data_size(off);
5207}
5208
af2cdeae
DK
5209// Arm_exidx_cantunwind methods.
5210
7296d933 5211// Write this to Output file OF for a fixed endianness.
af2cdeae
DK
5212
5213template<bool big_endian>
5214void
5215Arm_exidx_cantunwind::do_fixed_endian_write(Output_file* of)
5216{
5217 off_t offset = this->offset();
5218 const section_size_type oview_size = 8;
5219 unsigned char* const oview = of->get_output_view(offset, oview_size);
5220
5221 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5222 Valtype* wv = reinterpret_cast<Valtype*>(oview);
5223
5224 Output_section* os = this->relobj_->output_section(this->shndx_);
5225 gold_assert(os != NULL);
5226
5227 Arm_relobj<big_endian>* arm_relobj =
5228 Arm_relobj<big_endian>::as_arm_relobj(this->relobj_);
5229 Arm_address output_offset =
5230 arm_relobj->get_output_section_offset(this->shndx_);
5231 Arm_address section_start;
f625ae50
DK
5232 section_size_type section_size;
5233
5234 // Find out the end of the text section referred by this.
7296d933 5235 if (output_offset != Arm_relobj<big_endian>::invalid_address)
f625ae50
DK
5236 {
5237 section_start = os->address() + output_offset;
5238 const Arm_exidx_input_section* exidx_input_section =
5239 arm_relobj->exidx_input_section_by_link(this->shndx_);
5240 gold_assert(exidx_input_section != NULL);
5241 section_size =
5242 convert_to_section_size_type(exidx_input_section->text_size());
5243 }
af2cdeae
DK
5244 else
5245 {
5246 // Currently this only happens for a relaxed section.
5247 const Output_relaxed_input_section* poris =
5248 os->find_relaxed_input_section(this->relobj_, this->shndx_);
5249 gold_assert(poris != NULL);
5250 section_start = poris->address();
f625ae50 5251 section_size = convert_to_section_size_type(poris->data_size());
af2cdeae
DK
5252 }
5253
5254 // We always append this to the end of an EXIDX section.
f625ae50 5255 Arm_address output_address = section_start + section_size;
af2cdeae
DK
5256
5257 // Write out the entry. The first word either points to the beginning
5258 // or after the end of a text section. The second word is the special
5259 // EXIDX_CANTUNWIND value.
e7eca48c
DK
5260 uint32_t prel31_offset = output_address - this->address();
5261 if (utils::has_overflow<31>(offset))
5262 gold_error(_("PREL31 overflow in EXIDX_CANTUNWIND entry"));
5263 elfcpp::Swap<32, big_endian>::writeval(wv, prel31_offset & 0x7fffffffU);
af2cdeae
DK
5264 elfcpp::Swap<32, big_endian>::writeval(wv + 1, elfcpp::EXIDX_CANTUNWIND);
5265
5266 of->write_output_view(this->offset(), oview_size, oview);
5267}
5268
5269// Arm_exidx_merged_section methods.
5270
5271// Constructor for Arm_exidx_merged_section.
5272// EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
5273// SECTION_OFFSET_MAP points to a section offset map describing how
5274// parts of the input section are mapped to output. DELETED_BYTES is
5275// the number of bytes deleted from the EXIDX input section.
5276
5277Arm_exidx_merged_section::Arm_exidx_merged_section(
5278 const Arm_exidx_input_section& exidx_input_section,
5279 const Arm_exidx_section_offset_map& section_offset_map,
5280 uint32_t deleted_bytes)
5281 : Output_relaxed_input_section(exidx_input_section.relobj(),
5282 exidx_input_section.shndx(),
5283 exidx_input_section.addralign()),
5284 exidx_input_section_(exidx_input_section),
5285 section_offset_map_(section_offset_map)
5286{
f625ae50
DK
5287 // If we retain or discard the whole EXIDX input section, we would
5288 // not be here.
5289 gold_assert(deleted_bytes != 0
5290 && deleted_bytes != this->exidx_input_section_.size());
5291
af2cdeae 5292 // Fix size here so that we do not need to implement set_final_data_size.
f625ae50
DK
5293 uint32_t size = exidx_input_section.size() - deleted_bytes;
5294 this->set_data_size(size);
af2cdeae 5295 this->fix_data_size();
f625ae50
DK
5296
5297 // Allocate buffer for section contents and build contents.
5298 this->section_contents_ = new unsigned char[size];
5299}
5300
5301// Build the contents of a merged EXIDX output section.
5302
5303void
5304Arm_exidx_merged_section::build_contents(
5305 const unsigned char* original_contents,
5306 section_size_type original_size)
5307{
5308 // Go over spans of input offsets and write only those that are not
5309 // discarded.
5310 section_offset_type in_start = 0;
5311 section_offset_type out_start = 0;
5312 section_offset_type in_max =
5313 convert_types<section_offset_type>(original_size);
5314 section_offset_type out_max =
5315 convert_types<section_offset_type>(this->data_size());
5316 for (Arm_exidx_section_offset_map::const_iterator p =
5317 this->section_offset_map_.begin();
5318 p != this->section_offset_map_.end();
5319 ++p)
5320 {
5321 section_offset_type in_end = p->first;
5322 gold_assert(in_end >= in_start);
5323 section_offset_type out_end = p->second;
5324 size_t in_chunk_size = convert_types<size_t>(in_end - in_start + 1);
5325 if (out_end != -1)
5326 {
5327 size_t out_chunk_size =
5328 convert_types<size_t>(out_end - out_start + 1);
5329
5330 gold_assert(out_chunk_size == in_chunk_size
5331 && in_end < in_max && out_end < out_max);
5332
5333 memcpy(this->section_contents_ + out_start,
5334 original_contents + in_start,
5335 out_chunk_size);
5336 out_start += out_chunk_size;
5337 }
5338 in_start += in_chunk_size;
5339 }
af2cdeae
DK
5340}
5341
5342// Given an input OBJECT, an input section index SHNDX within that
5343// object, and an OFFSET relative to the start of that input
5344// section, return whether or not the corresponding offset within
5345// the output section is known. If this function returns true, it
5346// sets *POUTPUT to the output offset. The value -1 indicates that
5347// this input offset is being discarded.
5348
5349bool
5350Arm_exidx_merged_section::do_output_offset(
5351 const Relobj* relobj,
5352 unsigned int shndx,
5353 section_offset_type offset,
5354 section_offset_type* poutput) const
5355{
5356 // We only handle offsets for the original EXIDX input section.
5357 if (relobj != this->exidx_input_section_.relobj()
5358 || shndx != this->exidx_input_section_.shndx())
5359 return false;
5360
c7f3c371
DK
5361 section_offset_type section_size =
5362 convert_types<section_offset_type>(this->exidx_input_section_.size());
5363 if (offset < 0 || offset >= section_size)
af2cdeae
DK
5364 // Input offset is out of valid range.
5365 *poutput = -1;
5366 else
5367 {
5368 // We need to look up the section offset map to determine the output
5369 // offset. Find the reference point in map that is first offset
5370 // bigger than or equal to this offset.
5371 Arm_exidx_section_offset_map::const_iterator p =
5372 this->section_offset_map_.lower_bound(offset);
5373
5374 // The section offset maps are build such that this should not happen if
5375 // input offset is in the valid range.
5376 gold_assert(p != this->section_offset_map_.end());
5377
5378 // We need to check if this is dropped.
5379 section_offset_type ref = p->first;
5380 section_offset_type mapped_ref = p->second;
5381
5382 if (mapped_ref != Arm_exidx_input_section::invalid_offset)
5383 // Offset is present in output.
5384 *poutput = mapped_ref + (offset - ref);
5385 else
5386 // Offset is discarded owing to EXIDX entry merging.
5387 *poutput = -1;
5388 }
5389
5390 return true;
5391}
5392
5393// Write this to output file OF.
5394
5395void
5396Arm_exidx_merged_section::do_write(Output_file* of)
5397{
af2cdeae
DK
5398 off_t offset = this->offset();
5399 const section_size_type oview_size = this->data_size();
5400 unsigned char* const oview = of->get_output_view(offset, oview_size);
5401
5402 Output_section* os = this->relobj()->output_section(this->shndx());
5403 gold_assert(os != NULL);
5404
f625ae50 5405 memcpy(oview, this->section_contents_, oview_size);
af2cdeae
DK
5406 of->write_output_view(this->offset(), oview_size, oview);
5407}
5408
80d0d023
DK
5409// Arm_exidx_fixup methods.
5410
5411// Append an EXIDX_CANTUNWIND in the current output section if the last entry
5412// is not an EXIDX_CANTUNWIND entry already. The new EXIDX_CANTUNWIND entry
5413// points to the end of the last seen EXIDX section.
5414
5415void
5416Arm_exidx_fixup::add_exidx_cantunwind_as_needed()
5417{
5418 if (this->last_unwind_type_ != UT_EXIDX_CANTUNWIND
5419 && this->last_input_section_ != NULL)
5420 {
5421 Relobj* relobj = this->last_input_section_->relobj();
2b328d4e 5422 unsigned int text_shndx = this->last_input_section_->link();
80d0d023 5423 Arm_exidx_cantunwind* cantunwind =
2b328d4e 5424 new Arm_exidx_cantunwind(relobj, text_shndx);
80d0d023
DK
5425 this->exidx_output_section_->add_output_section_data(cantunwind);
5426 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5427 }
5428}
5429
5430// Process an EXIDX section entry in input. Return whether this entry
5431// can be deleted in the output. SECOND_WORD in the second word of the
5432// EXIDX entry.
5433
5434bool
5435Arm_exidx_fixup::process_exidx_entry(uint32_t second_word)
5436{
5437 bool delete_entry;
5438 if (second_word == elfcpp::EXIDX_CANTUNWIND)
5439 {
5440 // Merge if previous entry is also an EXIDX_CANTUNWIND.
5441 delete_entry = this->last_unwind_type_ == UT_EXIDX_CANTUNWIND;
5442 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5443 }
5444 else if ((second_word & 0x80000000) != 0)
5445 {
5446 // Inlined unwinding data. Merge if equal to previous.
85fdf906
AH
5447 delete_entry = (merge_exidx_entries_
5448 && this->last_unwind_type_ == UT_INLINED_ENTRY
80d0d023
DK
5449 && this->last_inlined_entry_ == second_word);
5450 this->last_unwind_type_ = UT_INLINED_ENTRY;
5451 this->last_inlined_entry_ = second_word;
5452 }
5453 else
5454 {
5455 // Normal table entry. In theory we could merge these too,
5456 // but duplicate entries are likely to be much less common.
5457 delete_entry = false;
5458 this->last_unwind_type_ = UT_NORMAL_ENTRY;
5459 }
5460 return delete_entry;
5461}
5462
5463// Update the current section offset map during EXIDX section fix-up.
5464// If there is no map, create one. INPUT_OFFSET is the offset of a
5465// reference point, DELETED_BYTES is the number of deleted by in the
5466// section so far. If DELETE_ENTRY is true, the reference point and
5467// all offsets after the previous reference point are discarded.
5468
5469void
5470Arm_exidx_fixup::update_offset_map(
5471 section_offset_type input_offset,
5472 section_size_type deleted_bytes,
5473 bool delete_entry)
5474{
5475 if (this->section_offset_map_ == NULL)
5476 this->section_offset_map_ = new Arm_exidx_section_offset_map();
4fcd97eb
DK
5477 section_offset_type output_offset;
5478 if (delete_entry)
5479 output_offset = Arm_exidx_input_section::invalid_offset;
5480 else
5481 output_offset = input_offset - deleted_bytes;
80d0d023
DK
5482 (*this->section_offset_map_)[input_offset] = output_offset;
5483}
5484
5485// Process EXIDX_INPUT_SECTION for EXIDX entry merging. Return the number of
f625ae50
DK
5486// bytes deleted. SECTION_CONTENTS points to the contents of the EXIDX
5487// section and SECTION_SIZE is the number of bytes pointed by SECTION_CONTENTS.
5488// If some entries are merged, also store a pointer to a newly created
5489// Arm_exidx_section_offset_map object in *PSECTION_OFFSET_MAP. The caller
5490// owns the map and is responsible for releasing it after use.
80d0d023
DK
5491
5492template<bool big_endian>
5493uint32_t
5494Arm_exidx_fixup::process_exidx_section(
5495 const Arm_exidx_input_section* exidx_input_section,
f625ae50
DK
5496 const unsigned char* section_contents,
5497 section_size_type section_size,
80d0d023
DK
5498 Arm_exidx_section_offset_map** psection_offset_map)
5499{
5500 Relobj* relobj = exidx_input_section->relobj();
5501 unsigned shndx = exidx_input_section->shndx();
80d0d023
DK
5502
5503 if ((section_size % 8) != 0)
5504 {
5505 // Something is wrong with this section. Better not touch it.
5506 gold_error(_("uneven .ARM.exidx section size in %s section %u"),
5507 relobj->name().c_str(), shndx);
5508 this->last_input_section_ = exidx_input_section;
5509 this->last_unwind_type_ = UT_NONE;
5510 return 0;
5511 }
5512
5513 uint32_t deleted_bytes = 0;
5514 bool prev_delete_entry = false;
5515 gold_assert(this->section_offset_map_ == NULL);
5516
5517 for (section_size_type i = 0; i < section_size; i += 8)
5518 {
5519 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5520 const Valtype* wv =
5521 reinterpret_cast<const Valtype*>(section_contents + i + 4);
5522 uint32_t second_word = elfcpp::Swap<32, big_endian>::readval(wv);
5523
5524 bool delete_entry = this->process_exidx_entry(second_word);
5525
5526 // Entry deletion causes changes in output offsets. We use a std::map
5527 // to record these. And entry (x, y) means input offset x
5528 // is mapped to output offset y. If y is invalid_offset, then x is
5529 // dropped in the output. Because of the way std::map::lower_bound
5530 // works, we record the last offset in a region w.r.t to keeping or
5531 // dropping. If there is no entry (x0, y0) for an input offset x0,
5532 // the output offset y0 of it is determined by the output offset y1 of
5533 // the smallest input offset x1 > x0 that there is an (x1, y1) entry
9b547ce6 5534 // in the map. If y1 is not -1, then y0 = y1 + x0 - x1. Otherwise, y1
80d0d023
DK
5535 // y0 is also -1.
5536 if (delete_entry != prev_delete_entry && i != 0)
5537 this->update_offset_map(i - 1, deleted_bytes, prev_delete_entry);
5538
5539 // Update total deleted bytes for this entry.
5540 if (delete_entry)
5541 deleted_bytes += 8;
5542
5543 prev_delete_entry = delete_entry;
5544 }
5545
5546 // If section offset map is not NULL, make an entry for the end of
5547 // section.
5548 if (this->section_offset_map_ != NULL)
5549 update_offset_map(section_size - 1, deleted_bytes, prev_delete_entry);
5550
5551 *psection_offset_map = this->section_offset_map_;
5552 this->section_offset_map_ = NULL;
5553 this->last_input_section_ = exidx_input_section;
5554
546c7457
DK
5555 // Set the first output text section so that we can link the EXIDX output
5556 // section to it. Ignore any EXIDX input section that is completely merged.
5557 if (this->first_output_text_section_ == NULL
5558 && deleted_bytes != section_size)
5559 {
5560 unsigned int link = exidx_input_section->link();
5561 Output_section* os = relobj->output_section(link);
5562 gold_assert(os != NULL);
5563 this->first_output_text_section_ = os;
5564 }
5565
80d0d023
DK
5566 return deleted_bytes;
5567}
5568
07f508a2
DK
5569// Arm_output_section methods.
5570
5571// Create a stub group for input sections from BEGIN to END. OWNER
5572// points to the input section to be the owner a new stub table.
5573
5574template<bool big_endian>
5575void
5576Arm_output_section<big_endian>::create_stub_group(
5577 Input_section_list::const_iterator begin,
5578 Input_section_list::const_iterator end,
5579 Input_section_list::const_iterator owner,
5580 Target_arm<big_endian>* target,
f625ae50
DK
5581 std::vector<Output_relaxed_input_section*>* new_relaxed_sections,
5582 const Task* task)
07f508a2 5583{
2b328d4e
DK
5584 // We use a different kind of relaxed section in an EXIDX section.
5585 // The static casting from Output_relaxed_input_section to
5586 // Arm_input_section is invalid in an EXIDX section. We are okay
5587 // because we should not be calling this for an EXIDX section.
5588 gold_assert(this->type() != elfcpp::SHT_ARM_EXIDX);
5589
07f508a2
DK
5590 // Currently we convert ordinary input sections into relaxed sections only
5591 // at this point but we may want to support creating relaxed input section
5592 // very early. So we check here to see if owner is already a relaxed
5593 // section.
5594
5595 Arm_input_section<big_endian>* arm_input_section;
5596 if (owner->is_relaxed_input_section())
5597 {
5598 arm_input_section =
5599 Arm_input_section<big_endian>::as_arm_input_section(
5600 owner->relaxed_input_section());
5601 }
5602 else
5603 {
5604 gold_assert(owner->is_input_section());
f625ae50
DK
5605 // Create a new relaxed input section. We need to lock the original
5606 // file.
5607 Task_lock_obj<Object> tl(task, owner->relobj());
07f508a2
DK
5608 arm_input_section =
5609 target->new_arm_input_section(owner->relobj(), owner->shndx());
5610 new_relaxed_sections->push_back(arm_input_section);
5611 }
5612
5613 // Create a stub table.
2ea97941 5614 Stub_table<big_endian>* stub_table =
07f508a2
DK
5615 target->new_stub_table(arm_input_section);
5616
2ea97941 5617 arm_input_section->set_stub_table(stub_table);
07f508a2
DK
5618
5619 Input_section_list::const_iterator p = begin;
5620 Input_section_list::const_iterator prev_p;
5621
5622 // Look for input sections or relaxed input sections in [begin ... end].
5623 do
5624 {
5625 if (p->is_input_section() || p->is_relaxed_input_section())
5626 {
5627 // The stub table information for input sections live
5628 // in their objects.
5629 Arm_relobj<big_endian>* arm_relobj =
5630 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
2ea97941 5631 arm_relobj->set_stub_table(p->shndx(), stub_table);
07f508a2
DK
5632 }
5633 prev_p = p++;
5634 }
5635 while (prev_p != end);
5636}
5637
5638// Group input sections for stub generation. GROUP_SIZE is roughly the limit
5639// of stub groups. We grow a stub group by adding input section until the
5640// size is just below GROUP_SIZE. The last input section will be converted
5641// into a stub table. If STUB_ALWAYS_AFTER_BRANCH is false, we also add
5642// input section after the stub table, effectively double the group size.
5643//
5644// This is similar to the group_sections() function in elf32-arm.c but is
5645// implemented differently.
5646
5647template<bool big_endian>
5648void
5649Arm_output_section<big_endian>::group_sections(
5650 section_size_type group_size,
5651 bool stubs_always_after_branch,
f625ae50
DK
5652 Target_arm<big_endian>* target,
5653 const Task* task)
07f508a2
DK
5654{
5655 // We only care about sections containing code.
5656 if ((this->flags() & elfcpp::SHF_EXECINSTR) == 0)
5657 return;
5658
5659 // States for grouping.
5660 typedef enum
5661 {
5662 // No group is being built.
5663 NO_GROUP,
5664 // A group is being built but the stub table is not found yet.
5665 // We keep group a stub group until the size is just under GROUP_SIZE.
5666 // The last input section in the group will be used as the stub table.
5667 FINDING_STUB_SECTION,
5668 // A group is being built and we have already found a stub table.
5669 // We enter this state to grow a stub group by adding input section
5670 // after the stub table. This effectively doubles the group size.
5671 HAS_STUB_SECTION
5672 } State;
5673
5674 // Any newly created relaxed sections are stored here.
5675 std::vector<Output_relaxed_input_section*> new_relaxed_sections;
5676
5677 State state = NO_GROUP;
5678 section_size_type off = 0;
5679 section_size_type group_begin_offset = 0;
5680 section_size_type group_end_offset = 0;
5681 section_size_type stub_table_end_offset = 0;
5682 Input_section_list::const_iterator group_begin =
5683 this->input_sections().end();
2ea97941 5684 Input_section_list::const_iterator stub_table =
07f508a2
DK
5685 this->input_sections().end();
5686 Input_section_list::const_iterator group_end = this->input_sections().end();
5687 for (Input_section_list::const_iterator p = this->input_sections().begin();
5688 p != this->input_sections().end();
5689 ++p)
5690 {
5691 section_size_type section_begin_offset =
5692 align_address(off, p->addralign());
5693 section_size_type section_end_offset =
5694 section_begin_offset + p->data_size();
5695
9b547ce6 5696 // Check to see if we should group the previously seen sections.
e9bbb538 5697 switch (state)
07f508a2
DK
5698 {
5699 case NO_GROUP:
5700 break;
5701
5702 case FINDING_STUB_SECTION:
5703 // Adding this section makes the group larger than GROUP_SIZE.
5704 if (section_end_offset - group_begin_offset >= group_size)
5705 {
5706 if (stubs_always_after_branch)
5707 {
5708 gold_assert(group_end != this->input_sections().end());
5709 this->create_stub_group(group_begin, group_end, group_end,
f625ae50
DK
5710 target, &new_relaxed_sections,
5711 task);
07f508a2
DK
5712 state = NO_GROUP;
5713 }
5714 else
5715 {
5716 // But wait, there's more! Input sections up to
5717 // stub_group_size bytes after the stub table can be
5718 // handled by it too.
5719 state = HAS_STUB_SECTION;
2ea97941 5720 stub_table = group_end;
07f508a2
DK
5721 stub_table_end_offset = group_end_offset;
5722 }
5723 }
5724 break;
5725
5726 case HAS_STUB_SECTION:
5727 // Adding this section makes the post stub-section group larger
5728 // than GROUP_SIZE.
5729 if (section_end_offset - stub_table_end_offset >= group_size)
5730 {
5731 gold_assert(group_end != this->input_sections().end());
2ea97941 5732 this->create_stub_group(group_begin, group_end, stub_table,
f625ae50 5733 target, &new_relaxed_sections, task);
07f508a2
DK
5734 state = NO_GROUP;
5735 }
5736 break;
5737
5738 default:
5739 gold_unreachable();
5740 }
5741
5742 // If we see an input section and currently there is no group, start
f625ae50
DK
5743 // a new one. Skip any empty sections. We look at the data size
5744 // instead of calling p->relobj()->section_size() to avoid locking.
07f508a2 5745 if ((p->is_input_section() || p->is_relaxed_input_section())
f625ae50 5746 && (p->data_size() != 0))
07f508a2
DK
5747 {
5748 if (state == NO_GROUP)
5749 {
5750 state = FINDING_STUB_SECTION;
5751 group_begin = p;
5752 group_begin_offset = section_begin_offset;
5753 }
5754
5755 // Keep track of the last input section seen.
5756 group_end = p;
5757 group_end_offset = section_end_offset;
5758 }
5759
5760 off = section_end_offset;
5761 }
5762
5763 // Create a stub group for any ungrouped sections.
5764 if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
5765 {
5766 gold_assert(group_end != this->input_sections().end());
5767 this->create_stub_group(group_begin, group_end,
5768 (state == FINDING_STUB_SECTION
5769 ? group_end
2ea97941 5770 : stub_table),
f625ae50 5771 target, &new_relaxed_sections, task);
07f508a2
DK
5772 }
5773
5774 // Convert input section into relaxed input section in a batch.
5775 if (!new_relaxed_sections.empty())
5776 this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
5777
5778 // Update the section offsets
5779 for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
5780 {
5781 Arm_relobj<big_endian>* arm_relobj =
5782 Arm_relobj<big_endian>::as_arm_relobj(
5783 new_relaxed_sections[i]->relobj());
2ea97941 5784 unsigned int shndx = new_relaxed_sections[i]->shndx();
07f508a2 5785 // Tell Arm_relobj that this input section is converted.
2ea97941 5786 arm_relobj->convert_input_section_to_relaxed_section(shndx);
07f508a2
DK
5787 }
5788}
5789
2b328d4e
DK
5790// Append non empty text sections in this to LIST in ascending
5791// order of their position in this.
5792
5793template<bool big_endian>
5794void
5795Arm_output_section<big_endian>::append_text_sections_to_list(
5796 Text_section_list* list)
5797{
2b328d4e
DK
5798 gold_assert((this->flags() & elfcpp::SHF_ALLOC) != 0);
5799
5800 for (Input_section_list::const_iterator p = this->input_sections().begin();
5801 p != this->input_sections().end();
5802 ++p)
5803 {
5804 // We only care about plain or relaxed input sections. We also
5805 // ignore any merged sections.
5806 if ((p->is_input_section() || p->is_relaxed_input_section())
5807 && p->data_size() != 0)
5808 list->push_back(Text_section_list::value_type(p->relobj(),
5809 p->shndx()));
5810 }
5811}
5812
5813template<bool big_endian>
5814void
5815Arm_output_section<big_endian>::fix_exidx_coverage(
4a54abbb 5816 Layout* layout,
2b328d4e 5817 const Text_section_list& sorted_text_sections,
85fdf906 5818 Symbol_table* symtab,
f625ae50
DK
5819 bool merge_exidx_entries,
5820 const Task* task)
2b328d4e
DK
5821{
5822 // We should only do this for the EXIDX output section.
5823 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
5824
5825 // We don't want the relaxation loop to undo these changes, so we discard
5826 // the current saved states and take another one after the fix-up.
5827 this->discard_states();
5828
5829 // Remove all input sections.
5830 uint64_t address = this->address();
6625d24e
DK
5831 typedef std::list<Output_section::Input_section> Input_section_list;
5832 Input_section_list input_sections;
2b328d4e
DK
5833 this->reset_address_and_file_offset();
5834 this->get_input_sections(address, std::string(""), &input_sections);
5835
5836 if (!this->input_sections().empty())
5837 gold_error(_("Found non-EXIDX input sections in EXIDX output section"));
5838
5839 // Go through all the known input sections and record them.
5840 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
6625d24e
DK
5841 typedef Unordered_map<Section_id, const Output_section::Input_section*,
5842 Section_id_hash> Text_to_exidx_map;
5843 Text_to_exidx_map text_to_exidx_map;
5844 for (Input_section_list::const_iterator p = input_sections.begin();
2b328d4e
DK
5845 p != input_sections.end();
5846 ++p)
5847 {
5848 // This should never happen. At this point, we should only see
5849 // plain EXIDX input sections.
5850 gold_assert(!p->is_relaxed_input_section());
6625d24e 5851 text_to_exidx_map[Section_id(p->relobj(), p->shndx())] = &(*p);
2b328d4e
DK
5852 }
5853
85fdf906 5854 Arm_exidx_fixup exidx_fixup(this, merge_exidx_entries);
2b328d4e
DK
5855
5856 // Go over the sorted text sections.
6625d24e 5857 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
2b328d4e
DK
5858 Section_id_set processed_input_sections;
5859 for (Text_section_list::const_iterator p = sorted_text_sections.begin();
5860 p != sorted_text_sections.end();
5861 ++p)
5862 {
5863 Relobj* relobj = p->first;
5864 unsigned int shndx = p->second;
5865
5866 Arm_relobj<big_endian>* arm_relobj =
5867 Arm_relobj<big_endian>::as_arm_relobj(relobj);
5868 const Arm_exidx_input_section* exidx_input_section =
5869 arm_relobj->exidx_input_section_by_link(shndx);
5870
131687b4
DK
5871 // If this text section has no EXIDX section or if the EXIDX section
5872 // has errors, force an EXIDX_CANTUNWIND entry pointing to the end
5873 // of the last seen EXIDX section.
5874 if (exidx_input_section == NULL || exidx_input_section->has_errors())
2b328d4e
DK
5875 {
5876 exidx_fixup.add_exidx_cantunwind_as_needed();
5877 continue;
5878 }
5879
5880 Relobj* exidx_relobj = exidx_input_section->relobj();
5881 unsigned int exidx_shndx = exidx_input_section->shndx();
5882 Section_id sid(exidx_relobj, exidx_shndx);
6625d24e
DK
5883 Text_to_exidx_map::const_iterator iter = text_to_exidx_map.find(sid);
5884 if (iter == text_to_exidx_map.end())
2b328d4e
DK
5885 {
5886 // This is odd. We have not seen this EXIDX input section before.
4a54abbb
DK
5887 // We cannot do fix-up. If we saw a SECTIONS clause in a script,
5888 // issue a warning instead. We assume the user knows what he
5889 // or she is doing. Otherwise, this is an error.
5890 if (layout->script_options()->saw_sections_clause())
5891 gold_warning(_("unwinding may not work because EXIDX input section"
5892 " %u of %s is not in EXIDX output section"),
5893 exidx_shndx, exidx_relobj->name().c_str());
5894 else
5895 gold_error(_("unwinding may not work because EXIDX input section"
5896 " %u of %s is not in EXIDX output section"),
5897 exidx_shndx, exidx_relobj->name().c_str());
5898
2b328d4e
DK
5899 exidx_fixup.add_exidx_cantunwind_as_needed();
5900 continue;
5901 }
5902
f625ae50
DK
5903 // We need to access the contents of the EXIDX section, lock the
5904 // object here.
5905 Task_lock_obj<Object> tl(task, exidx_relobj);
5906 section_size_type exidx_size;
5907 const unsigned char* exidx_contents =
5908 exidx_relobj->section_contents(exidx_shndx, &exidx_size, false);
5909
2b328d4e
DK
5910 // Fix up coverage and append input section to output data list.
5911 Arm_exidx_section_offset_map* section_offset_map = NULL;
5912 uint32_t deleted_bytes =
5913 exidx_fixup.process_exidx_section<big_endian>(exidx_input_section,
f625ae50
DK
5914 exidx_contents,
5915 exidx_size,
2b328d4e
DK
5916 &section_offset_map);
5917
5918 if (deleted_bytes == exidx_input_section->size())
5919 {
5920 // The whole EXIDX section got merged. Remove it from output.
5921 gold_assert(section_offset_map == NULL);
5922 exidx_relobj->set_output_section(exidx_shndx, NULL);
e7eca48c
DK
5923
5924 // All local symbols defined in this input section will be dropped.
5925 // We need to adjust output local symbol count.
5926 arm_relobj->set_output_local_symbol_count_needs_update();
2b328d4e
DK
5927 }
5928 else if (deleted_bytes > 0)
5929 {
5930 // Some entries are merged. We need to convert this EXIDX input
5931 // section into a relaxed section.
5932 gold_assert(section_offset_map != NULL);
f625ae50 5933
2b328d4e
DK
5934 Arm_exidx_merged_section* merged_section =
5935 new Arm_exidx_merged_section(*exidx_input_section,
5936 *section_offset_map, deleted_bytes);
f625ae50
DK
5937 merged_section->build_contents(exidx_contents, exidx_size);
5938
d06fb4d1
DK
5939 const std::string secname = exidx_relobj->section_name(exidx_shndx);
5940 this->add_relaxed_input_section(layout, merged_section, secname);
2b328d4e 5941 arm_relobj->convert_input_section_to_relaxed_section(exidx_shndx);
e7eca48c
DK
5942
5943 // All local symbols defined in discarded portions of this input
5944 // section will be dropped. We need to adjust output local symbol
5945 // count.
5946 arm_relobj->set_output_local_symbol_count_needs_update();
2b328d4e
DK
5947 }
5948 else
5949 {
5950 // Just add back the EXIDX input section.
5951 gold_assert(section_offset_map == NULL);
6625d24e
DK
5952 const Output_section::Input_section* pis = iter->second;
5953 gold_assert(pis->is_input_section());
5954 this->add_script_input_section(*pis);
2b328d4e
DK
5955 }
5956
5957 processed_input_sections.insert(Section_id(exidx_relobj, exidx_shndx));
5958 }
5959
5960 // Insert an EXIDX_CANTUNWIND entry at the end of output if necessary.
5961 exidx_fixup.add_exidx_cantunwind_as_needed();
5962
5963 // Remove any known EXIDX input sections that are not processed.
6625d24e 5964 for (Input_section_list::const_iterator p = input_sections.begin();
2b328d4e
DK
5965 p != input_sections.end();
5966 ++p)
5967 {
5968 if (processed_input_sections.find(Section_id(p->relobj(), p->shndx()))
5969 == processed_input_sections.end())
5970 {
131687b4
DK
5971 // We discard a known EXIDX section because its linked
5972 // text section has been folded by ICF. We also discard an
5973 // EXIDX section with error, the output does not matter in this
5974 // case. We do this to avoid triggering asserts.
2b328d4e
DK
5975 Arm_relobj<big_endian>* arm_relobj =
5976 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5977 const Arm_exidx_input_section* exidx_input_section =
5978 arm_relobj->exidx_input_section_by_shndx(p->shndx());
5979 gold_assert(exidx_input_section != NULL);
131687b4
DK
5980 if (!exidx_input_section->has_errors())
5981 {
5982 unsigned int text_shndx = exidx_input_section->link();
5983 gold_assert(symtab->is_section_folded(p->relobj(), text_shndx));
5984 }
2b328d4e 5985
04ceb17c
DK
5986 // Remove this from link. We also need to recount the
5987 // local symbols.
2b328d4e 5988 p->relobj()->set_output_section(p->shndx(), NULL);
04ceb17c 5989 arm_relobj->set_output_local_symbol_count_needs_update();
2b328d4e
DK
5990 }
5991 }
5992
546c7457
DK
5993 // Link exidx output section to the first seen output section and
5994 // set correct entry size.
5995 this->set_link_section(exidx_fixup.first_output_text_section());
5996 this->set_entsize(8);
5997
2b328d4e
DK
5998 // Make changes permanent.
5999 this->save_states();
6000 this->set_section_offsets_need_adjustment();
6001}
6002
131687b4
DK
6003// Link EXIDX output sections to text output sections.
6004
6005template<bool big_endian>
6006void
6007Arm_output_section<big_endian>::set_exidx_section_link()
6008{
6009 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
6010 if (!this->input_sections().empty())
6011 {
6012 Input_section_list::const_iterator p = this->input_sections().begin();
6013 Arm_relobj<big_endian>* arm_relobj =
6014 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
6015 unsigned exidx_shndx = p->shndx();
6016 const Arm_exidx_input_section* exidx_input_section =
6017 arm_relobj->exidx_input_section_by_shndx(exidx_shndx);
6018 gold_assert(exidx_input_section != NULL);
6019 unsigned int text_shndx = exidx_input_section->link();
6020 Output_section* os = arm_relobj->output_section(text_shndx);
6021 this->set_link_section(os);
6022 }
6023}
6024
8ffa3667
DK
6025// Arm_relobj methods.
6026
cf846138
DK
6027// Determine if an input section is scannable for stub processing. SHDR is
6028// the header of the section and SHNDX is the section index. OS is the output
6029// section for the input section and SYMTAB is the global symbol table used to
6030// look up ICF information.
6031
6032template<bool big_endian>
6033bool
6034Arm_relobj<big_endian>::section_is_scannable(
6035 const elfcpp::Shdr<32, big_endian>& shdr,
6036 unsigned int shndx,
6037 const Output_section* os,
ca09d69a 6038 const Symbol_table* symtab)
cf846138
DK
6039{
6040 // Skip any empty sections, unallocated sections or sections whose
6041 // type are not SHT_PROGBITS.
6042 if (shdr.get_sh_size() == 0
6043 || (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
6044 || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
6045 return false;
6046
6047 // Skip any discarded or ICF'ed sections.
6048 if (os == NULL || symtab->is_section_folded(this, shndx))
6049 return false;
6050
6051 // If this requires special offset handling, check to see if it is
6052 // a relaxed section. If this is not, then it is a merged section that
6053 // we cannot handle.
6054 if (this->is_output_section_offset_invalid(shndx))
6055 {
6056 const Output_relaxed_input_section* poris =
6057 os->find_relaxed_input_section(this, shndx);
6058 if (poris == NULL)
6059 return false;
6060 }
6061
6062 return true;
6063}
6064
44272192
DK
6065// Determine if we want to scan the SHNDX-th section for relocation stubs.
6066// This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6067
6068template<bool big_endian>
6069bool
6070Arm_relobj<big_endian>::section_needs_reloc_stub_scanning(
6071 const elfcpp::Shdr<32, big_endian>& shdr,
6072 const Relobj::Output_sections& out_sections,
ca09d69a 6073 const Symbol_table* symtab,
2b328d4e 6074 const unsigned char* pshdrs)
44272192
DK
6075{
6076 unsigned int sh_type = shdr.get_sh_type();
6077 if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
6078 return false;
6079
6080 // Ignore empty section.
6081 off_t sh_size = shdr.get_sh_size();
6082 if (sh_size == 0)
6083 return false;
6084
44272192
DK
6085 // Ignore reloc section with unexpected symbol table. The
6086 // error will be reported in the final link.
6087 if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
6088 return false;
6089
b521dfe4
DK
6090 unsigned int reloc_size;
6091 if (sh_type == elfcpp::SHT_REL)
6092 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6093 else
6094 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
44272192
DK
6095
6096 // Ignore reloc section with unexpected entsize or uneven size.
6097 // The error will be reported in the final link.
6098 if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
6099 return false;
6100
cf846138
DK
6101 // Ignore reloc section with bad info. This error will be
6102 // reported in the final link.
6103 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6104 if (index >= this->shnum())
6105 return false;
6106
6107 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6108 const elfcpp::Shdr<32, big_endian> text_shdr(pshdrs + index * shdr_size);
6109 return this->section_is_scannable(text_shdr, index,
6110 out_sections[index], symtab);
44272192
DK
6111}
6112
cb1be87e
DK
6113// Return the output address of either a plain input section or a relaxed
6114// input section. SHNDX is the section index. We define and use this
6115// instead of calling Output_section::output_address because that is slow
6116// for large output.
6117
6118template<bool big_endian>
6119Arm_address
6120Arm_relobj<big_endian>::simple_input_section_output_address(
6121 unsigned int shndx,
6122 Output_section* os)
6123{
6124 if (this->is_output_section_offset_invalid(shndx))
6125 {
6126 const Output_relaxed_input_section* poris =
6127 os->find_relaxed_input_section(this, shndx);
6128 // We do not handle merged sections here.
6129 gold_assert(poris != NULL);
6130 return poris->address();
6131 }
6132 else
6133 return os->address() + this->get_output_section_offset(shndx);
6134}
6135
44272192
DK
6136// Determine if we want to scan the SHNDX-th section for non-relocation stubs.
6137// This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6138
6139template<bool big_endian>
6140bool
6141Arm_relobj<big_endian>::section_needs_cortex_a8_stub_scanning(
6142 const elfcpp::Shdr<32, big_endian>& shdr,
6143 unsigned int shndx,
6144 Output_section* os,
6145 const Symbol_table* symtab)
6146{
cf846138 6147 if (!this->section_is_scannable(shdr, shndx, os, symtab))
44272192
DK
6148 return false;
6149
44272192
DK
6150 // If the section does not cross any 4K-boundaries, it does not need to
6151 // be scanned.
cb1be87e 6152 Arm_address address = this->simple_input_section_output_address(shndx, os);
44272192
DK
6153 if ((address & ~0xfffU) == ((address + shdr.get_sh_size() - 1) & ~0xfffU))
6154 return false;
6155
6156 return true;
6157}
6158
6159// Scan a section for Cortex-A8 workaround.
6160
6161template<bool big_endian>
6162void
6163Arm_relobj<big_endian>::scan_section_for_cortex_a8_erratum(
6164 const elfcpp::Shdr<32, big_endian>& shdr,
6165 unsigned int shndx,
6166 Output_section* os,
6167 Target_arm<big_endian>* arm_target)
6168{
c8761b9a
DK
6169 // Look for the first mapping symbol in this section. It should be
6170 // at (shndx, 0).
6171 Mapping_symbol_position section_start(shndx, 0);
6172 typename Mapping_symbols_info::const_iterator p =
6173 this->mapping_symbols_info_.lower_bound(section_start);
6174
6175 // There are no mapping symbols for this section. Treat it as a data-only
24af6f92
DK
6176 // section. Issue a warning if section is marked as containing
6177 // instructions.
c8761b9a 6178 if (p == this->mapping_symbols_info_.end() || p->first.first != shndx)
24af6f92
DK
6179 {
6180 if ((this->section_flags(shndx) & elfcpp::SHF_EXECINSTR) != 0)
6181 gold_warning(_("cannot scan executable section %u of %s for Cortex-A8 "
6182 "erratum because it has no mapping symbols."),
6183 shndx, this->name().c_str());
6184 return;
6185 }
c8761b9a 6186
cb1be87e
DK
6187 Arm_address output_address =
6188 this->simple_input_section_output_address(shndx, os);
44272192
DK
6189
6190 // Get the section contents.
6191 section_size_type input_view_size = 0;
6192 const unsigned char* input_view =
6193 this->section_contents(shndx, &input_view_size, false);
6194
6195 // We need to go through the mapping symbols to determine what to
6196 // scan. There are two reasons. First, we should look at THUMB code and
6197 // THUMB code only. Second, we only want to look at the 4K-page boundary
6198 // to speed up the scanning.
6199
44272192
DK
6200 while (p != this->mapping_symbols_info_.end()
6201 && p->first.first == shndx)
6202 {
6203 typename Mapping_symbols_info::const_iterator next =
6204 this->mapping_symbols_info_.upper_bound(p->first);
6205
6206 // Only scan part of a section with THUMB code.
6207 if (p->second == 't')
6208 {
6209 // Determine the end of this range.
6210 section_size_type span_start =
6211 convert_to_section_size_type(p->first.second);
6212 section_size_type span_end;
6213 if (next != this->mapping_symbols_info_.end()
6214 && next->first.first == shndx)
6215 span_end = convert_to_section_size_type(next->first.second);
6216 else
6217 span_end = convert_to_section_size_type(shdr.get_sh_size());
6218
6219 if (((span_start + output_address) & ~0xfffUL)
6220 != ((span_end + output_address - 1) & ~0xfffUL))
6221 {
6222 arm_target->scan_span_for_cortex_a8_erratum(this, shndx,
6223 span_start, span_end,
6224 input_view,
6225 output_address);
6226 }
6227 }
6228
6229 p = next;
6230 }
6231}
6232
8ffa3667
DK
6233// Scan relocations for stub generation.
6234
6235template<bool big_endian>
6236void
6237Arm_relobj<big_endian>::scan_sections_for_stubs(
6238 Target_arm<big_endian>* arm_target,
6239 const Symbol_table* symtab,
2ea97941 6240 const Layout* layout)
8ffa3667 6241{
2ea97941
ILT
6242 unsigned int shnum = this->shnum();
6243 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
8ffa3667
DK
6244
6245 // Read the section headers.
6246 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
2ea97941 6247 shnum * shdr_size,
8ffa3667
DK
6248 true, true);
6249
6250 // To speed up processing, we set up hash tables for fast lookup of
6251 // input offsets to output addresses.
6252 this->initialize_input_to_output_maps();
6253
6254 const Relobj::Output_sections& out_sections(this->output_sections());
6255
6256 Relocate_info<32, big_endian> relinfo;
8ffa3667 6257 relinfo.symtab = symtab;
2ea97941 6258 relinfo.layout = layout;
8ffa3667
DK
6259 relinfo.object = this;
6260
44272192 6261 // Do relocation stubs scanning.
2ea97941
ILT
6262 const unsigned char* p = pshdrs + shdr_size;
6263 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
8ffa3667 6264 {
44272192 6265 const elfcpp::Shdr<32, big_endian> shdr(p);
2b328d4e
DK
6266 if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
6267 pshdrs))
8ffa3667 6268 {
44272192
DK
6269 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6270 Arm_address output_offset = this->get_output_section_offset(index);
6271 Arm_address output_address;
7296d933 6272 if (output_offset != invalid_address)
44272192
DK
6273 output_address = out_sections[index]->address() + output_offset;
6274 else
6275 {
6276 // Currently this only happens for a relaxed section.
6277 const Output_relaxed_input_section* poris =
6278 out_sections[index]->find_relaxed_input_section(this, index);
6279 gold_assert(poris != NULL);
6280 output_address = poris->address();
6281 }
8ffa3667 6282
44272192
DK
6283 // Get the relocations.
6284 const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
6285 shdr.get_sh_size(),
6286 true, false);
6287
6288 // Get the section contents. This does work for the case in which
6289 // we modify the contents of an input section. We need to pass the
6290 // output view under such circumstances.
6291 section_size_type input_view_size = 0;
6292 const unsigned char* input_view =
6293 this->section_contents(index, &input_view_size, false);
6294
6295 relinfo.reloc_shndx = i;
6296 relinfo.data_shndx = index;
6297 unsigned int sh_type = shdr.get_sh_type();
b521dfe4
DK
6298 unsigned int reloc_size;
6299 if (sh_type == elfcpp::SHT_REL)
6300 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6301 else
6302 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
44272192
DK
6303
6304 Output_section* os = out_sections[index];
6305 arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
6306 shdr.get_sh_size() / reloc_size,
6307 os,
6308 output_offset == invalid_address,
6309 input_view, output_address,
6310 input_view_size);
8ffa3667 6311 }
44272192 6312 }
8ffa3667 6313
44272192
DK
6314 // Do Cortex-A8 erratum stubs scanning. This has to be done for a section
6315 // after its relocation section, if there is one, is processed for
6316 // relocation stubs. Merging this loop with the one above would have been
6317 // complicated since we would have had to make sure that relocation stub
6318 // scanning is done first.
6319 if (arm_target->fix_cortex_a8())
6320 {
6321 const unsigned char* p = pshdrs + shdr_size;
6322 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
8ffa3667 6323 {
44272192
DK
6324 const elfcpp::Shdr<32, big_endian> shdr(p);
6325 if (this->section_needs_cortex_a8_stub_scanning(shdr, i,
6326 out_sections[i],
6327 symtab))
6328 this->scan_section_for_cortex_a8_erratum(shdr, i, out_sections[i],
6329 arm_target);
8ffa3667 6330 }
8ffa3667
DK
6331 }
6332
6333 // After we've done the relocations, we release the hash tables,
6334 // since we no longer need them.
6335 this->free_input_to_output_maps();
6336}
6337
6338// Count the local symbols. The ARM backend needs to know if a symbol
6339// is a THUMB function or not. For global symbols, it is easy because
6340// the Symbol object keeps the ELF symbol type. For local symbol it is
6341// harder because we cannot access this information. So we override the
6342// do_count_local_symbol in parent and scan local symbols to mark
6343// THUMB functions. This is not the most efficient way but I do not want to
9b547ce6 6344// slow down other ports by calling a per symbol target hook inside
6fa2a40b 6345// Sized_relobj_file<size, big_endian>::do_count_local_symbols.
8ffa3667
DK
6346
6347template<bool big_endian>
6348void
6349Arm_relobj<big_endian>::do_count_local_symbols(
6350 Stringpool_template<char>* pool,
6351 Stringpool_template<char>* dynpool)
6352{
6353 // We need to fix-up the values of any local symbols whose type are
6354 // STT_ARM_TFUNC.
6355
6356 // Ask parent to count the local symbols.
6fa2a40b 6357 Sized_relobj_file<32, big_endian>::do_count_local_symbols(pool, dynpool);
8ffa3667
DK
6358 const unsigned int loccount = this->local_symbol_count();
6359 if (loccount == 0)
6360 return;
6361
9b547ce6 6362 // Initialize the thumb function bit-vector.
8ffa3667
DK
6363 std::vector<bool> empty_vector(loccount, false);
6364 this->local_symbol_is_thumb_function_.swap(empty_vector);
6365
6366 // Read the symbol table section header.
2ea97941 6367 const unsigned int symtab_shndx = this->symtab_shndx();
8ffa3667 6368 elfcpp::Shdr<32, big_endian>
2ea97941 6369 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
8ffa3667
DK
6370 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6371
6372 // Read the local symbols.
2ea97941 6373 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
8ffa3667 6374 gold_assert(loccount == symtabshdr.get_sh_info());
2ea97941 6375 off_t locsize = loccount * sym_size;
8ffa3667
DK
6376 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6377 locsize, true, true);
6378
20138696
DK
6379 // For mapping symbol processing, we need to read the symbol names.
6380 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
6381 if (strtab_shndx >= this->shnum())
6382 {
6383 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
6384 return;
6385 }
6386
6387 elfcpp::Shdr<32, big_endian>
6388 strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
6389 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
6390 {
6391 this->error(_("symbol table name section has wrong type: %u"),
6392 static_cast<unsigned int>(strtabshdr.get_sh_type()));
6393 return;
6394 }
6395 const char* pnames =
6396 reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
6397 strtabshdr.get_sh_size(),
6398 false, false));
6399
8ffa3667
DK
6400 // Loop over the local symbols and mark any local symbols pointing
6401 // to THUMB functions.
6402
6403 // Skip the first dummy symbol.
2ea97941 6404 psyms += sym_size;
6fa2a40b 6405 typename Sized_relobj_file<32, big_endian>::Local_values* plocal_values =
8ffa3667 6406 this->local_values();
2ea97941 6407 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
8ffa3667
DK
6408 {
6409 elfcpp::Sym<32, big_endian> sym(psyms);
6410 elfcpp::STT st_type = sym.get_st_type();
6411 Symbol_value<32>& lv((*plocal_values)[i]);
6412 Arm_address input_value = lv.input_value();
6413
20138696
DK
6414 // Check to see if this is a mapping symbol.
6415 const char* sym_name = pnames + sym.get_st_name();
6416 if (Target_arm<big_endian>::is_mapping_symbol_name(sym_name))
6417 {
24af6f92
DK
6418 bool is_ordinary;
6419 unsigned int input_shndx =
6420 this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
6421 gold_assert(is_ordinary);
20138696
DK
6422
6423 // Strip of LSB in case this is a THUMB symbol.
6424 Mapping_symbol_position msp(input_shndx, input_value & ~1U);
6425 this->mapping_symbols_info_[msp] = sym_name[1];
6426 }
6427
8ffa3667
DK
6428 if (st_type == elfcpp::STT_ARM_TFUNC
6429 || (st_type == elfcpp::STT_FUNC && ((input_value & 1) != 0)))
6430 {
6431 // This is a THUMB function. Mark this and canonicalize the
6432 // symbol value by setting LSB.
6433 this->local_symbol_is_thumb_function_[i] = true;
6434 if ((input_value & 1) == 0)
6435 lv.set_input_value(input_value | 1);
6436 }
6437 }
6438}
6439
6440// Relocate sections.
6441template<bool big_endian>
6442void
6443Arm_relobj<big_endian>::do_relocate_sections(
8ffa3667 6444 const Symbol_table* symtab,
2ea97941 6445 const Layout* layout,
8ffa3667 6446 const unsigned char* pshdrs,
aa98ff75 6447 Output_file* of,
6fa2a40b 6448 typename Sized_relobj_file<32, big_endian>::Views* pviews)
8ffa3667
DK
6449{
6450 // Call parent to relocate sections.
6fa2a40b
CC
6451 Sized_relobj_file<32, big_endian>::do_relocate_sections(symtab, layout,
6452 pshdrs, of, pviews);
8ffa3667
DK
6453
6454 // We do not generate stubs if doing a relocatable link.
6455 if (parameters->options().relocatable())
6456 return;
6457
6458 // Relocate stub tables.
2ea97941 6459 unsigned int shnum = this->shnum();
8ffa3667
DK
6460
6461 Target_arm<big_endian>* arm_target =
6462 Target_arm<big_endian>::default_target();
6463
6464 Relocate_info<32, big_endian> relinfo;
8ffa3667 6465 relinfo.symtab = symtab;
2ea97941 6466 relinfo.layout = layout;
8ffa3667
DK
6467 relinfo.object = this;
6468
2ea97941 6469 for (unsigned int i = 1; i < shnum; ++i)
8ffa3667
DK
6470 {
6471 Arm_input_section<big_endian>* arm_input_section =
6472 arm_target->find_arm_input_section(this, i);
6473
41263c05
DK
6474 if (arm_input_section != NULL
6475 && arm_input_section->is_stub_table_owner()
6476 && !arm_input_section->stub_table()->empty())
6477 {
6478 // We cannot discard a section if it owns a stub table.
6479 Output_section* os = this->output_section(i);
6480 gold_assert(os != NULL);
6481
6482 relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
6483 relinfo.reloc_shdr = NULL;
6484 relinfo.data_shndx = i;
6485 relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size;
6486
6487 gold_assert((*pviews)[i].view != NULL);
6488
6489 // We are passed the output section view. Adjust it to cover the
6490 // stub table only.
6491 Stub_table<big_endian>* stub_table = arm_input_section->stub_table();
6492 gold_assert((stub_table->address() >= (*pviews)[i].address)
6493 && ((stub_table->address() + stub_table->data_size())
6494 <= (*pviews)[i].address + (*pviews)[i].view_size));
6495
6496 off_t offset = stub_table->address() - (*pviews)[i].address;
6497 unsigned char* view = (*pviews)[i].view + offset;
6498 Arm_address address = stub_table->address();
6499 section_size_type view_size = stub_table->data_size();
8ffa3667 6500
41263c05
DK
6501 stub_table->relocate_stubs(&relinfo, arm_target, os, view, address,
6502 view_size);
6503 }
6504
6505 // Apply Cortex A8 workaround if applicable.
6506 if (this->section_has_cortex_a8_workaround(i))
6507 {
6508 unsigned char* view = (*pviews)[i].view;
6509 Arm_address view_address = (*pviews)[i].address;
6510 section_size_type view_size = (*pviews)[i].view_size;
6511 Stub_table<big_endian>* stub_table = this->stub_tables_[i];
6512
6513 // Adjust view to cover section.
6514 Output_section* os = this->output_section(i);
6515 gold_assert(os != NULL);
cb1be87e
DK
6516 Arm_address section_address =
6517 this->simple_input_section_output_address(i, os);
41263c05
DK
6518 uint64_t section_size = this->section_size(i);
6519
6520 gold_assert(section_address >= view_address
6521 && ((section_address + section_size)
6522 <= (view_address + view_size)));
6523
6524 unsigned char* section_view = view + (section_address - view_address);
6525
6526 // Apply the Cortex-A8 workaround to the output address range
6527 // corresponding to this input section.
6528 stub_table->apply_cortex_a8_workaround_to_address_range(
6529 arm_target,
6530 section_view,
6531 section_address,
6532 section_size);
6533 }
8ffa3667
DK
6534 }
6535}
6536
9b547ce6 6537// Find the linked text section of an EXIDX section by looking at the first
c8761b9a 6538// relocation. 4.4.1 of the EHABI specifications says that an EXIDX section
9b547ce6 6539// must be linked to its associated code section via the sh_link field of
c8761b9a
DK
6540// its section header. However, some tools are broken and the link is not
6541// always set. LD just drops such an EXIDX section silently, causing the
6542// associated code not unwindabled. Here we try a little bit harder to
6543// discover the linked code section.
6544//
6545// PSHDR points to the section header of a relocation section of an EXIDX
6546// section. If we can find a linked text section, return true and
6547// store the text section index in the location PSHNDX. Otherwise
6548// return false.
a0351a69
DK
6549
6550template<bool big_endian>
c8761b9a
DK
6551bool
6552Arm_relobj<big_endian>::find_linked_text_section(
6553 const unsigned char* pshdr,
6554 const unsigned char* psyms,
6555 unsigned int* pshndx)
a0351a69 6556{
c8761b9a
DK
6557 elfcpp::Shdr<32, big_endian> shdr(pshdr);
6558
6559 // If there is no relocation, we cannot find the linked text section.
6560 size_t reloc_size;
6561 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6562 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6563 else
6564 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6565 size_t reloc_count = shdr.get_sh_size() / reloc_size;
6566
6567 // Get the relocations.
6568 const unsigned char* prelocs =
6569 this->get_view(shdr.get_sh_offset(), shdr.get_sh_size(), true, false);
993d07c1 6570
c8761b9a
DK
6571 // Find the REL31 relocation for the first word of the first EXIDX entry.
6572 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
a0351a69 6573 {
c8761b9a
DK
6574 Arm_address r_offset;
6575 typename elfcpp::Elf_types<32>::Elf_WXword r_info;
6576 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6577 {
6578 typename elfcpp::Rel<32, big_endian> reloc(prelocs);
6579 r_info = reloc.get_r_info();
6580 r_offset = reloc.get_r_offset();
6581 }
6582 else
6583 {
6584 typename elfcpp::Rela<32, big_endian> reloc(prelocs);
6585 r_info = reloc.get_r_info();
6586 r_offset = reloc.get_r_offset();
6587 }
6588
6589 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
6590 if (r_type != elfcpp::R_ARM_PREL31 && r_type != elfcpp::R_ARM_SBREL31)
6591 continue;
6592
6593 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
6594 if (r_sym == 0
6595 || r_sym >= this->local_symbol_count()
6596 || r_offset != 0)
6597 continue;
6598
6599 // This is the relocation for the first word of the first EXIDX entry.
6600 // We expect to see a local section symbol.
6601 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6602 elfcpp::Sym<32, big_endian> sym(psyms + r_sym * sym_size);
6603 if (sym.get_st_type() == elfcpp::STT_SECTION)
6604 {
24af6f92
DK
6605 bool is_ordinary;
6606 *pshndx =
6607 this->adjust_sym_shndx(r_sym, sym.get_st_shndx(), &is_ordinary);
6608 gold_assert(is_ordinary);
c8761b9a
DK
6609 return true;
6610 }
6611 else
6612 return false;
993d07c1 6613 }
c8761b9a
DK
6614
6615 return false;
6616}
6617
6618// Make an EXIDX input section object for an EXIDX section whose index is
6619// SHNDX. SHDR is the section header of the EXIDX section and TEXT_SHNDX
6620// is the section index of the linked text section.
6621
6622template<bool big_endian>
6623void
6624Arm_relobj<big_endian>::make_exidx_input_section(
6625 unsigned int shndx,
6626 const elfcpp::Shdr<32, big_endian>& shdr,
131687b4
DK
6627 unsigned int text_shndx,
6628 const elfcpp::Shdr<32, big_endian>& text_shdr)
c8761b9a 6629{
993d07c1
DK
6630 // Create an Arm_exidx_input_section object for this EXIDX section.
6631 Arm_exidx_input_section* exidx_input_section =
6632 new Arm_exidx_input_section(this, shndx, text_shndx, shdr.get_sh_size(),
f625ae50
DK
6633 shdr.get_sh_addralign(),
6634 text_shdr.get_sh_size());
993d07c1 6635
993d07c1
DK
6636 gold_assert(this->exidx_section_map_[shndx] == NULL);
6637 this->exidx_section_map_[shndx] = exidx_input_section;
131687b4
DK
6638
6639 if (text_shndx == elfcpp::SHN_UNDEF || text_shndx >= this->shnum())
6640 {
6641 gold_error(_("EXIDX section %s(%u) links to invalid section %u in %s"),
6642 this->section_name(shndx).c_str(), shndx, text_shndx,
6643 this->name().c_str());
6644 exidx_input_section->set_has_errors();
6645 }
6646 else if (this->exidx_section_map_[text_shndx] != NULL)
6647 {
6648 unsigned other_exidx_shndx =
6649 this->exidx_section_map_[text_shndx]->shndx();
6650 gold_error(_("EXIDX sections %s(%u) and %s(%u) both link to text section"
6651 "%s(%u) in %s"),
6652 this->section_name(shndx).c_str(), shndx,
6653 this->section_name(other_exidx_shndx).c_str(),
6654 other_exidx_shndx, this->section_name(text_shndx).c_str(),
6655 text_shndx, this->name().c_str());
6656 exidx_input_section->set_has_errors();
6657 }
6658 else
6659 this->exidx_section_map_[text_shndx] = exidx_input_section;
6660
6661 // Check section flags of text section.
6662 if ((text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
6663 {
6664 gold_error(_("EXIDX section %s(%u) links to non-allocated section %s(%u) "
6665 " in %s"),
6666 this->section_name(shndx).c_str(), shndx,
6667 this->section_name(text_shndx).c_str(), text_shndx,
6668 this->name().c_str());
6669 exidx_input_section->set_has_errors();
6670 }
6671 else if ((text_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) == 0)
9b547ce6 6672 // I would like to make this an error but currently ld just ignores
131687b4
DK
6673 // this.
6674 gold_warning(_("EXIDX section %s(%u) links to non-executable section "
6675 "%s(%u) in %s"),
6676 this->section_name(shndx).c_str(), shndx,
6677 this->section_name(text_shndx).c_str(), text_shndx,
6678 this->name().c_str());
a0351a69
DK
6679}
6680
d5b40221
DK
6681// Read the symbol information.
6682
6683template<bool big_endian>
6684void
6685Arm_relobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6686{
6687 // Call parent class to read symbol information.
6fa2a40b 6688 Sized_relobj_file<32, big_endian>::do_read_symbols(sd);
d5b40221 6689
7296d933
DK
6690 // If this input file is a binary file, it has no processor
6691 // specific flags and attributes section.
6692 Input_file::Format format = this->input_file()->format();
6693 if (format != Input_file::FORMAT_ELF)
6694 {
6695 gold_assert(format == Input_file::FORMAT_BINARY);
6696 this->merge_flags_and_attributes_ = false;
6697 return;
6698 }
6699
d5b40221
DK
6700 // Read processor-specific flags in ELF file header.
6701 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6702 elfcpp::Elf_sizes<32>::ehdr_size,
6703 true, false);
6704 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6705 this->processor_specific_flags_ = ehdr.get_e_flags();
993d07c1
DK
6706
6707 // Go over the section headers and look for .ARM.attributes and .ARM.exidx
6708 // sections.
c8761b9a 6709 std::vector<unsigned int> deferred_exidx_sections;
993d07c1 6710 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
c8761b9a 6711 const unsigned char* pshdrs = sd->section_headers->data();
ca09d69a 6712 const unsigned char* ps = pshdrs + shdr_size;
7296d933 6713 bool must_merge_flags_and_attributes = false;
993d07c1
DK
6714 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6715 {
6716 elfcpp::Shdr<32, big_endian> shdr(ps);
7296d933
DK
6717
6718 // Sometimes an object has no contents except the section name string
6719 // table and an empty symbol table with the undefined symbol. We
6720 // don't want to merge processor-specific flags from such an object.
6721 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
6722 {
6723 // Symbol table is not empty.
6724 const elfcpp::Elf_types<32>::Elf_WXword sym_size =
6725 elfcpp::Elf_sizes<32>::sym_size;
6726 if (shdr.get_sh_size() > sym_size)
6727 must_merge_flags_and_attributes = true;
6728 }
6729 else if (shdr.get_sh_type() != elfcpp::SHT_STRTAB)
6730 // If this is neither an empty symbol table nor a string table,
6731 // be conservative.
6732 must_merge_flags_and_attributes = true;
6733
993d07c1
DK
6734 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6735 {
6736 gold_assert(this->attributes_section_data_ == NULL);
6737 section_offset_type section_offset = shdr.get_sh_offset();
6738 section_size_type section_size =
6739 convert_to_section_size_type(shdr.get_sh_size());
f625ae50
DK
6740 const unsigned char* view =
6741 this->get_view(section_offset, section_size, true, false);
993d07c1 6742 this->attributes_section_data_ =
f625ae50 6743 new Attributes_section_data(view, section_size);
993d07c1
DK
6744 }
6745 else if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
c8761b9a
DK
6746 {
6747 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
131687b4 6748 if (text_shndx == elfcpp::SHN_UNDEF)
c8761b9a
DK
6749 deferred_exidx_sections.push_back(i);
6750 else
131687b4
DK
6751 {
6752 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6753 + text_shndx * shdr_size);
6754 this->make_exidx_input_section(i, shdr, text_shndx, text_shdr);
6755 }
c9484ea5
DK
6756 // EHABI 4.4.1 requires that SHF_LINK_ORDER flag to be set.
6757 if ((shdr.get_sh_flags() & elfcpp::SHF_LINK_ORDER) == 0)
6758 gold_warning(_("SHF_LINK_ORDER not set in EXIDX section %s of %s"),
6759 this->section_name(i).c_str(), this->name().c_str());
c8761b9a
DK
6760 }
6761 }
6762
7296d933
DK
6763 // This is rare.
6764 if (!must_merge_flags_and_attributes)
6765 {
131687b4 6766 gold_assert(deferred_exidx_sections.empty());
7296d933
DK
6767 this->merge_flags_and_attributes_ = false;
6768 return;
6769 }
6770
c8761b9a
DK
6771 // Some tools are broken and they do not set the link of EXIDX sections.
6772 // We look at the first relocation to figure out the linked sections.
6773 if (!deferred_exidx_sections.empty())
6774 {
6775 // We need to go over the section headers again to find the mapping
6776 // from sections being relocated to their relocation sections. This is
6777 // a bit inefficient as we could do that in the loop above. However,
6778 // we do not expect any deferred EXIDX sections normally. So we do not
6779 // want to slow down the most common path.
6780 typedef Unordered_map<unsigned int, unsigned int> Reloc_map;
6781 Reloc_map reloc_map;
6782 ps = pshdrs + shdr_size;
6783 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6784 {
6785 elfcpp::Shdr<32, big_endian> shdr(ps);
6786 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
6787 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
6788 {
6789 unsigned int info_shndx = this->adjust_shndx(shdr.get_sh_info());
6790 if (info_shndx >= this->shnum())
6791 gold_error(_("relocation section %u has invalid info %u"),
6792 i, info_shndx);
6793 Reloc_map::value_type value(info_shndx, i);
6794 std::pair<Reloc_map::iterator, bool> result =
6795 reloc_map.insert(value);
6796 if (!result.second)
6797 gold_error(_("section %u has multiple relocation sections "
6798 "%u and %u"),
6799 info_shndx, i, reloc_map[info_shndx]);
6800 }
6801 }
6802
6803 // Read the symbol table section header.
6804 const unsigned int symtab_shndx = this->symtab_shndx();
6805 elfcpp::Shdr<32, big_endian>
6806 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6807 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6808
6809 // Read the local symbols.
6810 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6811 const unsigned int loccount = this->local_symbol_count();
6812 gold_assert(loccount == symtabshdr.get_sh_info());
6813 off_t locsize = loccount * sym_size;
6814 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6815 locsize, true, true);
6816
6817 // Process the deferred EXIDX sections.
f625ae50 6818 for (unsigned int i = 0; i < deferred_exidx_sections.size(); ++i)
c8761b9a
DK
6819 {
6820 unsigned int shndx = deferred_exidx_sections[i];
6821 elfcpp::Shdr<32, big_endian> shdr(pshdrs + shndx * shdr_size);
131687b4 6822 unsigned int text_shndx = elfcpp::SHN_UNDEF;
c8761b9a 6823 Reloc_map::const_iterator it = reloc_map.find(shndx);
131687b4
DK
6824 if (it != reloc_map.end())
6825 find_linked_text_section(pshdrs + it->second * shdr_size,
6826 psyms, &text_shndx);
6827 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6828 + text_shndx * shdr_size);
6829 this->make_exidx_input_section(shndx, shdr, text_shndx, text_shdr);
c8761b9a 6830 }
993d07c1 6831 }
d5b40221
DK
6832}
6833
99e5bff2
DK
6834// Process relocations for garbage collection. The ARM target uses .ARM.exidx
6835// sections for unwinding. These sections are referenced implicitly by
9b547ce6 6836// text sections linked in the section headers. If we ignore these implicit
99e5bff2
DK
6837// references, the .ARM.exidx sections and any .ARM.extab sections they use
6838// will be garbage-collected incorrectly. Hence we override the same function
6839// in the base class to handle these implicit references.
6840
6841template<bool big_endian>
6842void
6843Arm_relobj<big_endian>::do_gc_process_relocs(Symbol_table* symtab,
6844 Layout* layout,
6845 Read_relocs_data* rd)
6846{
6847 // First, call base class method to process relocations in this object.
6fa2a40b 6848 Sized_relobj_file<32, big_endian>::do_gc_process_relocs(symtab, layout, rd);
99e5bff2 6849
4a54abbb
DK
6850 // If --gc-sections is not specified, there is nothing more to do.
6851 // This happens when --icf is used but --gc-sections is not.
6852 if (!parameters->options().gc_sections())
6853 return;
6854
99e5bff2
DK
6855 unsigned int shnum = this->shnum();
6856 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6857 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6858 shnum * shdr_size,
6859 true, true);
6860
6861 // Scan section headers for sections of type SHT_ARM_EXIDX. Add references
6862 // to these from the linked text sections.
6863 const unsigned char* ps = pshdrs + shdr_size;
6864 for (unsigned int i = 1; i < shnum; ++i, ps += shdr_size)
6865 {
6866 elfcpp::Shdr<32, big_endian> shdr(ps);
6867 if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6868 {
6869 // Found an .ARM.exidx section, add it to the set of reachable
6870 // sections from its linked text section.
6871 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6872 symtab->gc()->add_reference(this, text_shndx, this, i);
6873 }
6874 }
6875}
6876
e7eca48c
DK
6877// Update output local symbol count. Owing to EXIDX entry merging, some local
6878// symbols will be removed in output. Adjust output local symbol count
6879// accordingly. We can only changed the static output local symbol count. It
6880// is too late to change the dynamic symbols.
6881
6882template<bool big_endian>
6883void
6884Arm_relobj<big_endian>::update_output_local_symbol_count()
6885{
6886 // Caller should check that this needs updating. We want caller checking
6887 // because output_local_symbol_count_needs_update() is most likely inlined.
6888 gold_assert(this->output_local_symbol_count_needs_update_);
6889
6890 gold_assert(this->symtab_shndx() != -1U);
6891 if (this->symtab_shndx() == 0)
6892 {
6893 // This object has no symbols. Weird but legal.
6894 return;
6895 }
6896
6897 // Read the symbol table section header.
6898 const unsigned int symtab_shndx = this->symtab_shndx();
6899 elfcpp::Shdr<32, big_endian>
6900 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6901 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6902
6903 // Read the local symbols.
6904 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6905 const unsigned int loccount = this->local_symbol_count();
6906 gold_assert(loccount == symtabshdr.get_sh_info());
6907 off_t locsize = loccount * sym_size;
6908 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6909 locsize, true, true);
6910
6911 // Loop over the local symbols.
6912
6fa2a40b 6913 typedef typename Sized_relobj_file<32, big_endian>::Output_sections
e7eca48c
DK
6914 Output_sections;
6915 const Output_sections& out_sections(this->output_sections());
6916 unsigned int shnum = this->shnum();
6917 unsigned int count = 0;
6918 // Skip the first, dummy, symbol.
6919 psyms += sym_size;
6920 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6921 {
6922 elfcpp::Sym<32, big_endian> sym(psyms);
6923
6924 Symbol_value<32>& lv((*this->local_values())[i]);
6925
6926 // This local symbol was already discarded by do_count_local_symbols.
9177756d 6927 if (lv.is_output_symtab_index_set() && !lv.has_output_symtab_entry())
e7eca48c
DK
6928 continue;
6929
6930 bool is_ordinary;
6931 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
6932 &is_ordinary);
6933
6934 if (shndx < shnum)
6935 {
6936 Output_section* os = out_sections[shndx];
6937
6938 // This local symbol no longer has an output section. Discard it.
6939 if (os == NULL)
6940 {
6941 lv.set_no_output_symtab_entry();
6942 continue;
6943 }
6944
6945 // Currently we only discard parts of EXIDX input sections.
6946 // We explicitly check for a merged EXIDX input section to avoid
6947 // calling Output_section_data::output_offset unless necessary.
6948 if ((this->get_output_section_offset(shndx) == invalid_address)
6949 && (this->exidx_input_section_by_shndx(shndx) != NULL))
6950 {
6951 section_offset_type output_offset =
6952 os->output_offset(this, shndx, lv.input_value());
6953 if (output_offset == -1)
6954 {
6955 // This symbol is defined in a part of an EXIDX input section
6956 // that is discarded due to entry merging.
6957 lv.set_no_output_symtab_entry();
6958 continue;
6959 }
6960 }
6961 }
6962
6963 ++count;
6964 }
6965
6966 this->set_output_local_symbol_count(count);
6967 this->output_local_symbol_count_needs_update_ = false;
6968}
6969
d5b40221
DK
6970// Arm_dynobj methods.
6971
6972// Read the symbol information.
6973
6974template<bool big_endian>
6975void
6976Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6977{
6978 // Call parent class to read symbol information.
6979 Sized_dynobj<32, big_endian>::do_read_symbols(sd);
6980
6981 // Read processor-specific flags in ELF file header.
6982 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6983 elfcpp::Elf_sizes<32>::ehdr_size,
6984 true, false);
6985 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6986 this->processor_specific_flags_ = ehdr.get_e_flags();
993d07c1
DK
6987
6988 // Read the attributes section if there is one.
6989 // We read from the end because gas seems to put it near the end of
6990 // the section headers.
6991 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
ca09d69a 6992 const unsigned char* ps =
993d07c1
DK
6993 sd->section_headers->data() + shdr_size * (this->shnum() - 1);
6994 for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size)
6995 {
6996 elfcpp::Shdr<32, big_endian> shdr(ps);
6997 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6998 {
6999 section_offset_type section_offset = shdr.get_sh_offset();
7000 section_size_type section_size =
7001 convert_to_section_size_type(shdr.get_sh_size());
f625ae50
DK
7002 const unsigned char* view =
7003 this->get_view(section_offset, section_size, true, false);
993d07c1 7004 this->attributes_section_data_ =
f625ae50 7005 new Attributes_section_data(view, section_size);
993d07c1
DK
7006 break;
7007 }
7008 }
d5b40221
DK
7009}
7010
e9bbb538
DK
7011// Stub_addend_reader methods.
7012
7013// Read the addend of a REL relocation of type R_TYPE at VIEW.
7014
7015template<bool big_endian>
7016elfcpp::Elf_types<32>::Elf_Swxword
7017Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()(
7018 unsigned int r_type,
7019 const unsigned char* view,
7020 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const
7021{
089d69dc
DK
7022 typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
7023
e9bbb538
DK
7024 switch (r_type)
7025 {
7026 case elfcpp::R_ARM_CALL:
7027 case elfcpp::R_ARM_JUMP24:
7028 case elfcpp::R_ARM_PLT32:
7029 {
7030 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7031 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7032 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
7033 return utils::sign_extend<26>(val << 2);
7034 }
7035
7036 case elfcpp::R_ARM_THM_CALL:
7037 case elfcpp::R_ARM_THM_JUMP24:
7038 case elfcpp::R_ARM_THM_XPC22:
7039 {
e9bbb538
DK
7040 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7041 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7042 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7043 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
089d69dc 7044 return RelocFuncs::thumb32_branch_offset(upper_insn, lower_insn);
e9bbb538
DK
7045 }
7046
7047 case elfcpp::R_ARM_THM_JUMP19:
7048 {
7049 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7050 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7051 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7052 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
089d69dc 7053 return RelocFuncs::thumb32_cond_branch_offset(upper_insn, lower_insn);
e9bbb538
DK
7054 }
7055
7056 default:
7057 gold_unreachable();
7058 }
7059}
7060
4a54abbb
DK
7061// Arm_output_data_got methods.
7062
7063// Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
7064// The first one is initialized to be 1, which is the module index for
7065// the main executable and the second one 0. A reloc of the type
7066// R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
7067// be applied by gold. GSYM is a global symbol.
7068//
7069template<bool big_endian>
7070void
7071Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7072 unsigned int got_type,
7073 Symbol* gsym)
7074{
7075 if (gsym->has_got_offset(got_type))
7076 return;
7077
7078 // We are doing a static link. Just mark it as belong to module 1,
7079 // the executable.
7080 unsigned int got_offset = this->add_constant(1);
7081 gsym->set_got_offset(got_type, got_offset);
7082 got_offset = this->add_constant(0);
7083 this->static_relocs_.push_back(Static_reloc(got_offset,
7084 elfcpp::R_ARM_TLS_DTPOFF32,
7085 gsym));
7086}
7087
7088// Same as the above but for a local symbol.
7089
7090template<bool big_endian>
7091void
7092Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7093 unsigned int got_type,
6fa2a40b 7094 Sized_relobj_file<32, big_endian>* object,
4a54abbb
DK
7095 unsigned int index)
7096{
7097 if (object->local_has_got_offset(index, got_type))
7098 return;
7099
7100 // We are doing a static link. Just mark it as belong to module 1,
7101 // the executable.
7102 unsigned int got_offset = this->add_constant(1);
7103 object->set_local_got_offset(index, got_type, got_offset);
7104 got_offset = this->add_constant(0);
7105 this->static_relocs_.push_back(Static_reloc(got_offset,
7106 elfcpp::R_ARM_TLS_DTPOFF32,
7107 object, index));
7108}
7109
7110template<bool big_endian>
7111void
7112Arm_output_data_got<big_endian>::do_write(Output_file* of)
7113{
7114 // Call parent to write out GOT.
7115 Output_data_got<32, big_endian>::do_write(of);
7116
7117 // We are done if there is no fix up.
7118 if (this->static_relocs_.empty())
7119 return;
7120
7121 gold_assert(parameters->doing_static_link());
7122
7123 const off_t offset = this->offset();
7124 const section_size_type oview_size =
7125 convert_to_section_size_type(this->data_size());
7126 unsigned char* const oview = of->get_output_view(offset, oview_size);
7127
7128 Output_segment* tls_segment = this->layout_->tls_segment();
7129 gold_assert(tls_segment != NULL);
7130
7131 // The thread pointer $tp points to the TCB, which is followed by the
7132 // TLS. So we need to adjust $tp relative addressing by this amount.
7133 Arm_address aligned_tcb_size =
7134 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
7135
7136 for (size_t i = 0; i < this->static_relocs_.size(); ++i)
7137 {
7138 Static_reloc& reloc(this->static_relocs_[i]);
7139
7140 Arm_address value;
7141 if (!reloc.symbol_is_global())
7142 {
6fa2a40b 7143 Sized_relobj_file<32, big_endian>* object = reloc.relobj();
4a54abbb
DK
7144 const Symbol_value<32>* psymval =
7145 reloc.relobj()->local_symbol(reloc.index());
7146
7147 // We are doing static linking. Issue an error and skip this
7148 // relocation if the symbol is undefined or in a discarded_section.
7149 bool is_ordinary;
7150 unsigned int shndx = psymval->input_shndx(&is_ordinary);
7151 if ((shndx == elfcpp::SHN_UNDEF)
7152 || (is_ordinary
7153 && shndx != elfcpp::SHN_UNDEF
7154 && !object->is_section_included(shndx)
7155 && !this->symbol_table_->is_section_folded(object, shndx)))
7156 {
7157 gold_error(_("undefined or discarded local symbol %u from "
7158 " object %s in GOT"),
7159 reloc.index(), reloc.relobj()->name().c_str());
7160 continue;
7161 }
7162
7163 value = psymval->value(object, 0);
7164 }
7165 else
7166 {
7167 const Symbol* gsym = reloc.symbol();
7168 gold_assert(gsym != NULL);
7169 if (gsym->is_forwarder())
7170 gsym = this->symbol_table_->resolve_forwards(gsym);
7171
7172 // We are doing static linking. Issue an error and skip this
7173 // relocation if the symbol is undefined or in a discarded_section
7174 // unless it is a weakly_undefined symbol.
7175 if ((gsym->is_defined_in_discarded_section()
7176 || gsym->is_undefined())
7177 && !gsym->is_weak_undefined())
7178 {
7179 gold_error(_("undefined or discarded symbol %s in GOT"),
7180 gsym->name());
7181 continue;
7182 }
7183
7184 if (!gsym->is_weak_undefined())
7185 {
7186 const Sized_symbol<32>* sym =
7187 static_cast<const Sized_symbol<32>*>(gsym);
7188 value = sym->value();
7189 }
7190 else
7191 value = 0;
7192 }
7193
7194 unsigned got_offset = reloc.got_offset();
7195 gold_assert(got_offset < oview_size);
7196
7197 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7198 Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
7199 Valtype x;
7200 switch (reloc.r_type())
7201 {
7202 case elfcpp::R_ARM_TLS_DTPOFF32:
7203 x = value;
7204 break;
7205 case elfcpp::R_ARM_TLS_TPOFF32:
7206 x = value + aligned_tcb_size;
7207 break;
7208 default:
7209 gold_unreachable();
7210 }
7211 elfcpp::Swap<32, big_endian>::writeval(wv, x);
7212 }
7213
7214 of->write_output_view(offset, oview_size, oview);
7215}
7216
94cdfcff
DK
7217// A class to handle the PLT data.
7218
7219template<bool big_endian>
7220class Output_data_plt_arm : public Output_section_data
7221{
7222 public:
7223 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
7224 Reloc_section;
7225
7226 Output_data_plt_arm(Layout*, Output_data_space*);
7227
7228 // Add an entry to the PLT.
7229 void
7230 add_entry(Symbol* gsym);
7231
7232 // Return the .rel.plt section data.
7233 const Reloc_section*
7234 rel_plt() const
7235 { return this->rel_; }
7236
0e70b911
CC
7237 // Return the number of PLT entries.
7238 unsigned int
7239 entry_count() const
7240 { return this->count_; }
7241
7242 // Return the offset of the first non-reserved PLT entry.
7243 static unsigned int
7244 first_plt_entry_offset()
7245 { return sizeof(first_plt_entry); }
7246
7247 // Return the size of a PLT entry.
7248 static unsigned int
7249 get_plt_entry_size()
7250 { return sizeof(plt_entry); }
7251
94cdfcff
DK
7252 protected:
7253 void
7254 do_adjust_output_section(Output_section* os);
7255
7256 // Write to a map file.
7257 void
7258 do_print_to_mapfile(Mapfile* mapfile) const
7259 { mapfile->print_output_data(this, _("** PLT")); }
7260
7261 private:
7262 // Template for the first PLT entry.
7263 static const uint32_t first_plt_entry[5];
7264
7265 // Template for subsequent PLT entries.
7266 static const uint32_t plt_entry[3];
7267
7268 // Set the final size.
7269 void
7270 set_final_data_size()
7271 {
7272 this->set_data_size(sizeof(first_plt_entry)
7273 + this->count_ * sizeof(plt_entry));
7274 }
7275
7276 // Write out the PLT data.
7277 void
7278 do_write(Output_file*);
7279
7280 // The reloc section.
7281 Reloc_section* rel_;
7282 // The .got.plt section.
7283 Output_data_space* got_plt_;
7284 // The number of PLT entries.
7285 unsigned int count_;
7286};
7287
7288// Create the PLT section. The ordinary .got section is an argument,
7289// since we need to refer to the start. We also create our own .got
7290// section just for PLT entries.
7291
7292template<bool big_endian>
2ea97941 7293Output_data_plt_arm<big_endian>::Output_data_plt_arm(Layout* layout,
94cdfcff
DK
7294 Output_data_space* got_plt)
7295 : Output_section_data(4), got_plt_(got_plt), count_(0)
7296{
7297 this->rel_ = new Reloc_section(false);
2ea97941 7298 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
22f0da72
ILT
7299 elfcpp::SHF_ALLOC, this->rel_,
7300 ORDER_DYNAMIC_PLT_RELOCS, false);
94cdfcff
DK
7301}
7302
7303template<bool big_endian>
7304void
7305Output_data_plt_arm<big_endian>::do_adjust_output_section(Output_section* os)
7306{
7307 os->set_entsize(0);
7308}
7309
7310// Add an entry to the PLT.
7311
7312template<bool big_endian>
7313void
7314Output_data_plt_arm<big_endian>::add_entry(Symbol* gsym)
7315{
7316 gold_assert(!gsym->has_plt_offset());
7317
7318 // Note that when setting the PLT offset we skip the initial
7319 // reserved PLT entry.
7320 gsym->set_plt_offset((this->count_) * sizeof(plt_entry)
7321 + sizeof(first_plt_entry));
7322
7323 ++this->count_;
7324
7325 section_offset_type got_offset = this->got_plt_->current_data_size();
7326
7327 // Every PLT entry needs a GOT entry which points back to the PLT
7328 // entry (this will be changed by the dynamic linker, normally
7329 // lazily when the function is called).
7330 this->got_plt_->set_current_data_size(got_offset + 4);
7331
7332 // Every PLT entry needs a reloc.
7333 gsym->set_needs_dynsym_entry();
7334 this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_,
7335 got_offset);
7336
7337 // Note that we don't need to save the symbol. The contents of the
7338 // PLT are independent of which symbols are used. The symbols only
7339 // appear in the relocations.
7340}
7341
7342// ARM PLTs.
7343// FIXME: This is not very flexible. Right now this has only been tested
7344// on armv5te. If we are to support additional architecture features like
7345// Thumb-2 or BE8, we need to make this more flexible like GNU ld.
7346
7347// The first entry in the PLT.
7348template<bool big_endian>
7349const uint32_t Output_data_plt_arm<big_endian>::first_plt_entry[5] =
7350{
7351 0xe52de004, // str lr, [sp, #-4]!
7352 0xe59fe004, // ldr lr, [pc, #4]
7353 0xe08fe00e, // add lr, pc, lr
7354 0xe5bef008, // ldr pc, [lr, #8]!
7355 0x00000000, // &GOT[0] - .
7356};
7357
7358// Subsequent entries in the PLT.
7359
7360template<bool big_endian>
7361const uint32_t Output_data_plt_arm<big_endian>::plt_entry[3] =
7362{
7363 0xe28fc600, // add ip, pc, #0xNN00000
7364 0xe28cca00, // add ip, ip, #0xNN000
7365 0xe5bcf000, // ldr pc, [ip, #0xNNN]!
7366};
7367
7368// Write out the PLT. This uses the hand-coded instructions above,
7369// and adjusts them as needed. This is all specified by the arm ELF
7370// Processor Supplement.
7371
7372template<bool big_endian>
7373void
7374Output_data_plt_arm<big_endian>::do_write(Output_file* of)
7375{
2ea97941 7376 const off_t offset = this->offset();
94cdfcff
DK
7377 const section_size_type oview_size =
7378 convert_to_section_size_type(this->data_size());
2ea97941 7379 unsigned char* const oview = of->get_output_view(offset, oview_size);
94cdfcff
DK
7380
7381 const off_t got_file_offset = this->got_plt_->offset();
7382 const section_size_type got_size =
7383 convert_to_section_size_type(this->got_plt_->data_size());
7384 unsigned char* const got_view = of->get_output_view(got_file_offset,
7385 got_size);
7386 unsigned char* pov = oview;
7387
ebabffbd
DK
7388 Arm_address plt_address = this->address();
7389 Arm_address got_address = this->got_plt_->address();
94cdfcff
DK
7390
7391 // Write first PLT entry. All but the last word are constants.
7392 const size_t num_first_plt_words = (sizeof(first_plt_entry)
7393 / sizeof(plt_entry[0]));
7394 for (size_t i = 0; i < num_first_plt_words - 1; i++)
7395 elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
7396 // Last word in first PLT entry is &GOT[0] - .
7397 elfcpp::Swap<32, big_endian>::writeval(pov + 16,
7398 got_address - (plt_address + 16));
7399 pov += sizeof(first_plt_entry);
7400
7401 unsigned char* got_pov = got_view;
7402
7403 memset(got_pov, 0, 12);
7404 got_pov += 12;
7405
7406 const int rel_size = elfcpp::Elf_sizes<32>::rel_size;
7407 unsigned int plt_offset = sizeof(first_plt_entry);
7408 unsigned int plt_rel_offset = 0;
7409 unsigned int got_offset = 12;
7410 const unsigned int count = this->count_;
7411 for (unsigned int i = 0;
7412 i < count;
7413 ++i,
7414 pov += sizeof(plt_entry),
7415 got_pov += 4,
7416 plt_offset += sizeof(plt_entry),
7417 plt_rel_offset += rel_size,
7418 got_offset += 4)
7419 {
7420 // Set and adjust the PLT entry itself.
2ea97941
ILT
7421 int32_t offset = ((got_address + got_offset)
7422 - (plt_address + plt_offset + 8));
94cdfcff 7423
2ea97941
ILT
7424 gold_assert(offset >= 0 && offset < 0x0fffffff);
7425 uint32_t plt_insn0 = plt_entry[0] | ((offset >> 20) & 0xff);
94cdfcff 7426 elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
2ea97941 7427 uint32_t plt_insn1 = plt_entry[1] | ((offset >> 12) & 0xff);
94cdfcff 7428 elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
2ea97941 7429 uint32_t plt_insn2 = plt_entry[2] | (offset & 0xfff);
94cdfcff
DK
7430 elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
7431
7432 // Set the entry in the GOT.
7433 elfcpp::Swap<32, big_endian>::writeval(got_pov, plt_address);
7434 }
7435
7436 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
7437 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
7438
2ea97941 7439 of->write_output_view(offset, oview_size, oview);
94cdfcff
DK
7440 of->write_output_view(got_file_offset, got_size, got_view);
7441}
7442
7443// Create a PLT entry for a global symbol.
7444
7445template<bool big_endian>
7446void
2ea97941 7447Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout,
94cdfcff
DK
7448 Symbol* gsym)
7449{
7450 if (gsym->has_plt_offset())
7451 return;
7452
7453 if (this->plt_ == NULL)
7454 {
7455 // Create the GOT sections first.
2ea97941 7456 this->got_section(symtab, layout);
94cdfcff 7457
2ea97941
ILT
7458 this->plt_ = new Output_data_plt_arm<big_endian>(layout, this->got_plt_);
7459 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
7460 (elfcpp::SHF_ALLOC
7461 | elfcpp::SHF_EXECINSTR),
22f0da72 7462 this->plt_, ORDER_PLT, false);
94cdfcff
DK
7463 }
7464 this->plt_->add_entry(gsym);
7465}
7466
0e70b911
CC
7467// Return the number of entries in the PLT.
7468
7469template<bool big_endian>
7470unsigned int
7471Target_arm<big_endian>::plt_entry_count() const
7472{
7473 if (this->plt_ == NULL)
7474 return 0;
7475 return this->plt_->entry_count();
7476}
7477
7478// Return the offset of the first non-reserved PLT entry.
7479
7480template<bool big_endian>
7481unsigned int
7482Target_arm<big_endian>::first_plt_entry_offset() const
7483{
7484 return Output_data_plt_arm<big_endian>::first_plt_entry_offset();
7485}
7486
7487// Return the size of each PLT entry.
7488
7489template<bool big_endian>
7490unsigned int
7491Target_arm<big_endian>::plt_entry_size() const
7492{
7493 return Output_data_plt_arm<big_endian>::get_plt_entry_size();
7494}
7495
f96accdf
DK
7496// Get the section to use for TLS_DESC relocations.
7497
7498template<bool big_endian>
7499typename Target_arm<big_endian>::Reloc_section*
7500Target_arm<big_endian>::rel_tls_desc_section(Layout* layout) const
7501{
7502 return this->plt_section()->rel_tls_desc(layout);
7503}
7504
7505// Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
7506
7507template<bool big_endian>
7508void
7509Target_arm<big_endian>::define_tls_base_symbol(
7510 Symbol_table* symtab,
7511 Layout* layout)
7512{
7513 if (this->tls_base_symbol_defined_)
7514 return;
7515
7516 Output_segment* tls_segment = layout->tls_segment();
7517 if (tls_segment != NULL)
7518 {
7519 bool is_exec = parameters->options().output_is_executable();
7520 symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
7521 Symbol_table::PREDEFINED,
7522 tls_segment, 0, 0,
7523 elfcpp::STT_TLS,
7524 elfcpp::STB_LOCAL,
7525 elfcpp::STV_HIDDEN, 0,
7526 (is_exec
7527 ? Symbol::SEGMENT_END
7528 : Symbol::SEGMENT_START),
7529 true);
7530 }
7531 this->tls_base_symbol_defined_ = true;
7532}
7533
7534// Create a GOT entry for the TLS module index.
7535
7536template<bool big_endian>
7537unsigned int
7538Target_arm<big_endian>::got_mod_index_entry(
7539 Symbol_table* symtab,
7540 Layout* layout,
6fa2a40b 7541 Sized_relobj_file<32, big_endian>* object)
f96accdf
DK
7542{
7543 if (this->got_mod_index_offset_ == -1U)
7544 {
7545 gold_assert(symtab != NULL && layout != NULL && object != NULL);
4a54abbb
DK
7546 Arm_output_data_got<big_endian>* got = this->got_section(symtab, layout);
7547 unsigned int got_offset;
7548 if (!parameters->doing_static_link())
7549 {
7550 got_offset = got->add_constant(0);
7551 Reloc_section* rel_dyn = this->rel_dyn_section(layout);
7552 rel_dyn->add_local(object, 0, elfcpp::R_ARM_TLS_DTPMOD32, got,
7553 got_offset);
7554 }
7555 else
7556 {
7557 // We are doing a static link. Just mark it as belong to module 1,
7558 // the executable.
7559 got_offset = got->add_constant(1);
7560 }
7561
f96accdf
DK
7562 got->add_constant(0);
7563 this->got_mod_index_offset_ = got_offset;
7564 }
7565 return this->got_mod_index_offset_;
7566}
7567
7568// Optimize the TLS relocation type based on what we know about the
7569// symbol. IS_FINAL is true if the final address of this symbol is
7570// known at link time.
7571
7572template<bool big_endian>
7573tls::Tls_optimization
7574Target_arm<big_endian>::optimize_tls_reloc(bool, int)
7575{
7576 // FIXME: Currently we do not do any TLS optimization.
7577 return tls::TLSOPT_NONE;
7578}
7579
95a2c8d6
RS
7580// Get the Reference_flags for a particular relocation.
7581
7582template<bool big_endian>
7583int
7584Target_arm<big_endian>::Scan::get_reference_flags(unsigned int r_type)
7585{
7586 switch (r_type)
7587 {
7588 case elfcpp::R_ARM_NONE:
7589 case elfcpp::R_ARM_V4BX:
7590 case elfcpp::R_ARM_GNU_VTENTRY:
7591 case elfcpp::R_ARM_GNU_VTINHERIT:
7592 // No symbol reference.
7593 return 0;
7594
7595 case elfcpp::R_ARM_ABS32:
7596 case elfcpp::R_ARM_ABS16:
7597 case elfcpp::R_ARM_ABS12:
7598 case elfcpp::R_ARM_THM_ABS5:
7599 case elfcpp::R_ARM_ABS8:
7600 case elfcpp::R_ARM_BASE_ABS:
7601 case elfcpp::R_ARM_MOVW_ABS_NC:
7602 case elfcpp::R_ARM_MOVT_ABS:
7603 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7604 case elfcpp::R_ARM_THM_MOVT_ABS:
7605 case elfcpp::R_ARM_ABS32_NOI:
7606 return Symbol::ABSOLUTE_REF;
7607
7608 case elfcpp::R_ARM_REL32:
7609 case elfcpp::R_ARM_LDR_PC_G0:
7610 case elfcpp::R_ARM_SBREL32:
7611 case elfcpp::R_ARM_THM_PC8:
7612 case elfcpp::R_ARM_BASE_PREL:
7613 case elfcpp::R_ARM_MOVW_PREL_NC:
7614 case elfcpp::R_ARM_MOVT_PREL:
7615 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7616 case elfcpp::R_ARM_THM_MOVT_PREL:
7617 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7618 case elfcpp::R_ARM_THM_PC12:
7619 case elfcpp::R_ARM_REL32_NOI:
7620 case elfcpp::R_ARM_ALU_PC_G0_NC:
7621 case elfcpp::R_ARM_ALU_PC_G0:
7622 case elfcpp::R_ARM_ALU_PC_G1_NC:
7623 case elfcpp::R_ARM_ALU_PC_G1:
7624 case elfcpp::R_ARM_ALU_PC_G2:
7625 case elfcpp::R_ARM_LDR_PC_G1:
7626 case elfcpp::R_ARM_LDR_PC_G2:
7627 case elfcpp::R_ARM_LDRS_PC_G0:
7628 case elfcpp::R_ARM_LDRS_PC_G1:
7629 case elfcpp::R_ARM_LDRS_PC_G2:
7630 case elfcpp::R_ARM_LDC_PC_G0:
7631 case elfcpp::R_ARM_LDC_PC_G1:
7632 case elfcpp::R_ARM_LDC_PC_G2:
7633 case elfcpp::R_ARM_ALU_SB_G0_NC:
7634 case elfcpp::R_ARM_ALU_SB_G0:
7635 case elfcpp::R_ARM_ALU_SB_G1_NC:
7636 case elfcpp::R_ARM_ALU_SB_G1:
7637 case elfcpp::R_ARM_ALU_SB_G2:
7638 case elfcpp::R_ARM_LDR_SB_G0:
7639 case elfcpp::R_ARM_LDR_SB_G1:
7640 case elfcpp::R_ARM_LDR_SB_G2:
7641 case elfcpp::R_ARM_LDRS_SB_G0:
7642 case elfcpp::R_ARM_LDRS_SB_G1:
7643 case elfcpp::R_ARM_LDRS_SB_G2:
7644 case elfcpp::R_ARM_LDC_SB_G0:
7645 case elfcpp::R_ARM_LDC_SB_G1:
7646 case elfcpp::R_ARM_LDC_SB_G2:
7647 case elfcpp::R_ARM_MOVW_BREL_NC:
7648 case elfcpp::R_ARM_MOVT_BREL:
7649 case elfcpp::R_ARM_MOVW_BREL:
7650 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7651 case elfcpp::R_ARM_THM_MOVT_BREL:
7652 case elfcpp::R_ARM_THM_MOVW_BREL:
7653 case elfcpp::R_ARM_GOTOFF32:
7654 case elfcpp::R_ARM_GOTOFF12:
95a2c8d6
RS
7655 case elfcpp::R_ARM_SBREL31:
7656 return Symbol::RELATIVE_REF;
7657
7658 case elfcpp::R_ARM_PLT32:
7659 case elfcpp::R_ARM_CALL:
7660 case elfcpp::R_ARM_JUMP24:
7661 case elfcpp::R_ARM_THM_CALL:
7662 case elfcpp::R_ARM_THM_JUMP24:
7663 case elfcpp::R_ARM_THM_JUMP19:
7664 case elfcpp::R_ARM_THM_JUMP6:
7665 case elfcpp::R_ARM_THM_JUMP11:
7666 case elfcpp::R_ARM_THM_JUMP8:
017257f8
DK
7667 // R_ARM_PREL31 is not used to relocate call/jump instructions but
7668 // in unwind tables. It may point to functions via PLTs.
7669 // So we treat it like call/jump relocations above.
7670 case elfcpp::R_ARM_PREL31:
95a2c8d6
RS
7671 return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
7672
7673 case elfcpp::R_ARM_GOT_BREL:
7674 case elfcpp::R_ARM_GOT_ABS:
7675 case elfcpp::R_ARM_GOT_PREL:
7676 // Absolute in GOT.
7677 return Symbol::ABSOLUTE_REF;
7678
7679 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7680 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
7681 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
7682 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
7683 case elfcpp::R_ARM_TLS_LE32: // Local-exec
7684 return Symbol::TLS_REF;
7685
7686 case elfcpp::R_ARM_TARGET1:
7687 case elfcpp::R_ARM_TARGET2:
7688 case elfcpp::R_ARM_COPY:
7689 case elfcpp::R_ARM_GLOB_DAT:
7690 case elfcpp::R_ARM_JUMP_SLOT:
7691 case elfcpp::R_ARM_RELATIVE:
7692 case elfcpp::R_ARM_PC24:
7693 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
7694 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
7695 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
7696 default:
7697 // Not expected. We will give an error later.
7698 return 0;
7699 }
7700}
7701
4a657b0d
DK
7702// Report an unsupported relocation against a local symbol.
7703
7704template<bool big_endian>
7705void
7706Target_arm<big_endian>::Scan::unsupported_reloc_local(
6fa2a40b 7707 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
7708 unsigned int r_type)
7709{
7710 gold_error(_("%s: unsupported reloc %u against local symbol"),
7711 object->name().c_str(), r_type);
7712}
7713
bec53400
DK
7714// We are about to emit a dynamic relocation of type R_TYPE. If the
7715// dynamic linker does not support it, issue an error. The GNU linker
7716// only issues a non-PIC error for an allocated read-only section.
7717// Here we know the section is allocated, but we don't know that it is
7718// read-only. But we check for all the relocation types which the
7719// glibc dynamic linker supports, so it seems appropriate to issue an
7720// error even if the section is not read-only.
7721
7722template<bool big_endian>
7723void
7724Target_arm<big_endian>::Scan::check_non_pic(Relobj* object,
7725 unsigned int r_type)
7726{
7727 switch (r_type)
7728 {
7729 // These are the relocation types supported by glibc for ARM.
7730 case elfcpp::R_ARM_RELATIVE:
7731 case elfcpp::R_ARM_COPY:
7732 case elfcpp::R_ARM_GLOB_DAT:
7733 case elfcpp::R_ARM_JUMP_SLOT:
7734 case elfcpp::R_ARM_ABS32:
be8fcb75 7735 case elfcpp::R_ARM_ABS32_NOI:
bec53400
DK
7736 case elfcpp::R_ARM_PC24:
7737 // FIXME: The following 3 types are not supported by Android's dynamic
7738 // linker.
7739 case elfcpp::R_ARM_TLS_DTPMOD32:
7740 case elfcpp::R_ARM_TLS_DTPOFF32:
7741 case elfcpp::R_ARM_TLS_TPOFF32:
7742 return;
7743
7744 default:
c8761b9a
DK
7745 {
7746 // This prevents us from issuing more than one error per reloc
7747 // section. But we can still wind up issuing more than one
7748 // error per object file.
7749 if (this->issued_non_pic_error_)
7750 return;
7751 const Arm_reloc_property* reloc_property =
7752 arm_reloc_property_table->get_reloc_property(r_type);
7753 gold_assert(reloc_property != NULL);
7754 object->error(_("requires unsupported dynamic reloc %s; "
7755 "recompile with -fPIC"),
7756 reloc_property->name().c_str());
7757 this->issued_non_pic_error_ = true;
bec53400 7758 return;
c8761b9a 7759 }
bec53400
DK
7760
7761 case elfcpp::R_ARM_NONE:
7762 gold_unreachable();
7763 }
7764}
7765
4a657b0d 7766// Scan a relocation for a local symbol.
bec53400
DK
7767// FIXME: This only handles a subset of relocation types used by Android
7768// on ARM v5te devices.
4a657b0d
DK
7769
7770template<bool big_endian>
7771inline void
ad0f2072 7772Target_arm<big_endian>::Scan::local(Symbol_table* symtab,
2ea97941 7773 Layout* layout,
bec53400 7774 Target_arm* target,
6fa2a40b 7775 Sized_relobj_file<32, big_endian>* object,
bec53400
DK
7776 unsigned int data_shndx,
7777 Output_section* output_section,
7778 const elfcpp::Rel<32, big_endian>& reloc,
4a657b0d 7779 unsigned int r_type,
e4782e83 7780 const elfcpp::Sym<32, big_endian>& lsym)
4a657b0d 7781{
a6d1ef57 7782 r_type = get_real_reloc_type(r_type);
4a657b0d
DK
7783 switch (r_type)
7784 {
7785 case elfcpp::R_ARM_NONE:
e4782e83
DK
7786 case elfcpp::R_ARM_V4BX:
7787 case elfcpp::R_ARM_GNU_VTENTRY:
7788 case elfcpp::R_ARM_GNU_VTINHERIT:
4a657b0d
DK
7789 break;
7790
bec53400 7791 case elfcpp::R_ARM_ABS32:
be8fcb75 7792 case elfcpp::R_ARM_ABS32_NOI:
bec53400
DK
7793 // If building a shared library (or a position-independent
7794 // executable), we need to create a dynamic relocation for
7795 // this location. The relocation applied at link time will
7796 // apply the link-time value, so we flag the location with
7797 // an R_ARM_RELATIVE relocation so the dynamic loader can
7798 // relocate it easily.
7799 if (parameters->options().output_is_position_independent())
7800 {
2ea97941 7801 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
bec53400
DK
7802 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7803 // If we are to add more other reloc types than R_ARM_ABS32,
7804 // we need to add check_non_pic(object, r_type) here.
7805 rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE,
7806 output_section, data_shndx,
7807 reloc.get_r_offset());
7808 }
7809 break;
7810
e4782e83
DK
7811 case elfcpp::R_ARM_ABS16:
7812 case elfcpp::R_ARM_ABS12:
be8fcb75
ILT
7813 case elfcpp::R_ARM_THM_ABS5:
7814 case elfcpp::R_ARM_ABS8:
be8fcb75 7815 case elfcpp::R_ARM_BASE_ABS:
fd3c5f0b
ILT
7816 case elfcpp::R_ARM_MOVW_ABS_NC:
7817 case elfcpp::R_ARM_MOVT_ABS:
7818 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7819 case elfcpp::R_ARM_THM_MOVT_ABS:
e4782e83
DK
7820 // If building a shared library (or a position-independent
7821 // executable), we need to create a dynamic relocation for
7822 // this location. Because the addend needs to remain in the
7823 // data section, we need to be careful not to apply this
7824 // relocation statically.
7825 if (parameters->options().output_is_position_independent())
7826 {
7827 check_non_pic(object, r_type);
7828 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7829 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7830 if (lsym.get_st_type() != elfcpp::STT_SECTION)
7831 rel_dyn->add_local(object, r_sym, r_type, output_section,
7832 data_shndx, reloc.get_r_offset());
7833 else
7834 {
7835 gold_assert(lsym.get_st_value() == 0);
7836 unsigned int shndx = lsym.get_st_shndx();
7837 bool is_ordinary;
7838 shndx = object->adjust_sym_shndx(r_sym, shndx,
7839 &is_ordinary);
7840 if (!is_ordinary)
7841 object->error(_("section symbol %u has bad shndx %u"),
7842 r_sym, shndx);
7843 else
7844 rel_dyn->add_local_section(object, shndx,
7845 r_type, output_section,
7846 data_shndx, reloc.get_r_offset());
7847 }
7848 }
7849 break;
7850
e4782e83
DK
7851 case elfcpp::R_ARM_REL32:
7852 case elfcpp::R_ARM_LDR_PC_G0:
7853 case elfcpp::R_ARM_SBREL32:
7854 case elfcpp::R_ARM_THM_CALL:
7855 case elfcpp::R_ARM_THM_PC8:
7856 case elfcpp::R_ARM_BASE_PREL:
7857 case elfcpp::R_ARM_PLT32:
7858 case elfcpp::R_ARM_CALL:
7859 case elfcpp::R_ARM_JUMP24:
7860 case elfcpp::R_ARM_THM_JUMP24:
e4782e83
DK
7861 case elfcpp::R_ARM_SBREL31:
7862 case elfcpp::R_ARM_PREL31:
c2a122b6
ILT
7863 case elfcpp::R_ARM_MOVW_PREL_NC:
7864 case elfcpp::R_ARM_MOVT_PREL:
7865 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7866 case elfcpp::R_ARM_THM_MOVT_PREL:
e4782e83 7867 case elfcpp::R_ARM_THM_JUMP19:
800d0f56 7868 case elfcpp::R_ARM_THM_JUMP6:
11b861d5 7869 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
e4782e83
DK
7870 case elfcpp::R_ARM_THM_PC12:
7871 case elfcpp::R_ARM_REL32_NOI:
b10d2873
ILT
7872 case elfcpp::R_ARM_ALU_PC_G0_NC:
7873 case elfcpp::R_ARM_ALU_PC_G0:
7874 case elfcpp::R_ARM_ALU_PC_G1_NC:
7875 case elfcpp::R_ARM_ALU_PC_G1:
7876 case elfcpp::R_ARM_ALU_PC_G2:
e4782e83
DK
7877 case elfcpp::R_ARM_LDR_PC_G1:
7878 case elfcpp::R_ARM_LDR_PC_G2:
7879 case elfcpp::R_ARM_LDRS_PC_G0:
7880 case elfcpp::R_ARM_LDRS_PC_G1:
7881 case elfcpp::R_ARM_LDRS_PC_G2:
7882 case elfcpp::R_ARM_LDC_PC_G0:
7883 case elfcpp::R_ARM_LDC_PC_G1:
7884 case elfcpp::R_ARM_LDC_PC_G2:
b10d2873
ILT
7885 case elfcpp::R_ARM_ALU_SB_G0_NC:
7886 case elfcpp::R_ARM_ALU_SB_G0:
7887 case elfcpp::R_ARM_ALU_SB_G1_NC:
7888 case elfcpp::R_ARM_ALU_SB_G1:
7889 case elfcpp::R_ARM_ALU_SB_G2:
b10d2873
ILT
7890 case elfcpp::R_ARM_LDR_SB_G0:
7891 case elfcpp::R_ARM_LDR_SB_G1:
7892 case elfcpp::R_ARM_LDR_SB_G2:
b10d2873
ILT
7893 case elfcpp::R_ARM_LDRS_SB_G0:
7894 case elfcpp::R_ARM_LDRS_SB_G1:
7895 case elfcpp::R_ARM_LDRS_SB_G2:
b10d2873
ILT
7896 case elfcpp::R_ARM_LDC_SB_G0:
7897 case elfcpp::R_ARM_LDC_SB_G1:
7898 case elfcpp::R_ARM_LDC_SB_G2:
e4782e83
DK
7899 case elfcpp::R_ARM_MOVW_BREL_NC:
7900 case elfcpp::R_ARM_MOVT_BREL:
7901 case elfcpp::R_ARM_MOVW_BREL:
7902 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7903 case elfcpp::R_ARM_THM_MOVT_BREL:
7904 case elfcpp::R_ARM_THM_MOVW_BREL:
7905 case elfcpp::R_ARM_THM_JUMP11:
7906 case elfcpp::R_ARM_THM_JUMP8:
7907 // We don't need to do anything for a relative addressing relocation
7908 // against a local symbol if it does not reference the GOT.
bec53400
DK
7909 break;
7910
7911 case elfcpp::R_ARM_GOTOFF32:
e4782e83 7912 case elfcpp::R_ARM_GOTOFF12:
bec53400 7913 // We need a GOT section:
2ea97941 7914 target->got_section(symtab, layout);
bec53400
DK
7915 break;
7916
bec53400 7917 case elfcpp::R_ARM_GOT_BREL:
7f5309a5 7918 case elfcpp::R_ARM_GOT_PREL:
bec53400
DK
7919 {
7920 // The symbol requires a GOT entry.
4a54abbb 7921 Arm_output_data_got<big_endian>* got =
2ea97941 7922 target->got_section(symtab, layout);
bec53400
DK
7923 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7924 if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
7925 {
7926 // If we are generating a shared object, we need to add a
7927 // dynamic RELATIVE relocation for this symbol's GOT entry.
7928 if (parameters->options().output_is_position_independent())
7929 {
2ea97941
ILT
7930 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7931 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
bec53400 7932 rel_dyn->add_local_relative(
2ea97941
ILT
7933 object, r_sym, elfcpp::R_ARM_RELATIVE, got,
7934 object->local_got_offset(r_sym, GOT_TYPE_STANDARD));
bec53400
DK
7935 }
7936 }
7937 }
7938 break;
7939
7940 case elfcpp::R_ARM_TARGET1:
e4782e83 7941 case elfcpp::R_ARM_TARGET2:
bec53400
DK
7942 // This should have been mapped to another type already.
7943 // Fall through.
7944 case elfcpp::R_ARM_COPY:
7945 case elfcpp::R_ARM_GLOB_DAT:
7946 case elfcpp::R_ARM_JUMP_SLOT:
7947 case elfcpp::R_ARM_RELATIVE:
7948 // These are relocations which should only be seen by the
7949 // dynamic linker, and should never be seen here.
7950 gold_error(_("%s: unexpected reloc %u in object file"),
7951 object->name().c_str(), r_type);
7952 break;
7953
f96accdf
DK
7954
7955 // These are initial TLS relocs, which are expected when
7956 // linking.
7957 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7958 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
7959 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
7960 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
7961 case elfcpp::R_ARM_TLS_LE32: // Local-exec
7962 {
7963 bool output_is_shared = parameters->options().shared();
7964 const tls::Tls_optimization optimized_type
7965 = Target_arm<big_endian>::optimize_tls_reloc(!output_is_shared,
7966 r_type);
7967 switch (r_type)
7968 {
7969 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7970 if (optimized_type == tls::TLSOPT_NONE)
7971 {
7972 // Create a pair of GOT entries for the module index and
7973 // dtv-relative offset.
4a54abbb 7974 Arm_output_data_got<big_endian>* got
f96accdf
DK
7975 = target->got_section(symtab, layout);
7976 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7977 unsigned int shndx = lsym.get_st_shndx();
7978 bool is_ordinary;
7979 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
7980 if (!is_ordinary)
4a54abbb
DK
7981 {
7982 object->error(_("local symbol %u has bad shndx %u"),
7983 r_sym, shndx);
7984 break;
7985 }
7986
7987 if (!parameters->doing_static_link())
f96accdf
DK
7988 got->add_local_pair_with_rel(object, r_sym, shndx,
7989 GOT_TYPE_TLS_PAIR,
7990 target->rel_dyn_section(layout),
7991 elfcpp::R_ARM_TLS_DTPMOD32, 0);
4a54abbb
DK
7992 else
7993 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR,
7994 object, r_sym);
f96accdf
DK
7995 }
7996 else
7997 // FIXME: TLS optimization not supported yet.
7998 gold_unreachable();
7999 break;
8000
8001 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8002 if (optimized_type == tls::TLSOPT_NONE)
8003 {
8004 // Create a GOT entry for the module index.
8005 target->got_mod_index_entry(symtab, layout, object);
8006 }
8007 else
8008 // FIXME: TLS optimization not supported yet.
8009 gold_unreachable();
8010 break;
8011
8012 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8013 break;
8014
8015 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8016 layout->set_has_static_tls();
8017 if (optimized_type == tls::TLSOPT_NONE)
8018 {
4a54abbb
DK
8019 // Create a GOT entry for the tp-relative offset.
8020 Arm_output_data_got<big_endian>* got
8021 = target->got_section(symtab, layout);
8022 unsigned int r_sym =
8023 elfcpp::elf_r_sym<32>(reloc.get_r_info());
8024 if (!parameters->doing_static_link())
8025 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
8026 target->rel_dyn_section(layout),
8027 elfcpp::R_ARM_TLS_TPOFF32);
8028 else if (!object->local_has_got_offset(r_sym,
8029 GOT_TYPE_TLS_OFFSET))
8030 {
8031 got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
8032 unsigned int got_offset =
8033 object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
8034 got->add_static_reloc(got_offset,
8035 elfcpp::R_ARM_TLS_TPOFF32, object,
8036 r_sym);
8037 }
f96accdf
DK
8038 }
8039 else
8040 // FIXME: TLS optimization not supported yet.
8041 gold_unreachable();
8042 break;
8043
8044 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8045 layout->set_has_static_tls();
8046 if (output_is_shared)
8047 {
8048 // We need to create a dynamic relocation.
8049 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
8050 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8051 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8052 rel_dyn->add_local(object, r_sym, elfcpp::R_ARM_TLS_TPOFF32,
8053 output_section, data_shndx,
8054 reloc.get_r_offset());
8055 }
8056 break;
8057
8058 default:
8059 gold_unreachable();
8060 }
8061 }
8062 break;
8063
3cef7179
ILT
8064 case elfcpp::R_ARM_PC24:
8065 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8066 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8067 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
4a657b0d
DK
8068 default:
8069 unsupported_reloc_local(object, r_type);
8070 break;
8071 }
8072}
8073
8074// Report an unsupported relocation against a global symbol.
8075
8076template<bool big_endian>
8077void
8078Target_arm<big_endian>::Scan::unsupported_reloc_global(
6fa2a40b 8079 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
8080 unsigned int r_type,
8081 Symbol* gsym)
8082{
8083 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
8084 object->name().c_str(), r_type, gsym->demangled_name().c_str());
8085}
8086
8a75a161
DK
8087template<bool big_endian>
8088inline bool
8089Target_arm<big_endian>::Scan::possible_function_pointer_reloc(
8090 unsigned int r_type)
8091{
8092 switch (r_type)
8093 {
8094 case elfcpp::R_ARM_PC24:
8095 case elfcpp::R_ARM_THM_CALL:
8096 case elfcpp::R_ARM_PLT32:
8097 case elfcpp::R_ARM_CALL:
8098 case elfcpp::R_ARM_JUMP24:
8099 case elfcpp::R_ARM_THM_JUMP24:
8100 case elfcpp::R_ARM_SBREL31:
8101 case elfcpp::R_ARM_PREL31:
8102 case elfcpp::R_ARM_THM_JUMP19:
8103 case elfcpp::R_ARM_THM_JUMP6:
8104 case elfcpp::R_ARM_THM_JUMP11:
8105 case elfcpp::R_ARM_THM_JUMP8:
8106 // All the relocations above are branches except SBREL31 and PREL31.
8107 return false;
8108
8109 default:
8110 // Be conservative and assume this is a function pointer.
8111 return true;
8112 }
8113}
8114
8115template<bool big_endian>
8116inline bool
8117Target_arm<big_endian>::Scan::local_reloc_may_be_function_pointer(
8118 Symbol_table*,
8119 Layout*,
8120 Target_arm<big_endian>* target,
6fa2a40b 8121 Sized_relobj_file<32, big_endian>*,
8a75a161
DK
8122 unsigned int,
8123 Output_section*,
8124 const elfcpp::Rel<32, big_endian>&,
8125 unsigned int r_type,
8126 const elfcpp::Sym<32, big_endian>&)
8127{
8128 r_type = target->get_real_reloc_type(r_type);
8129 return possible_function_pointer_reloc(r_type);
8130}
8131
8132template<bool big_endian>
8133inline bool
8134Target_arm<big_endian>::Scan::global_reloc_may_be_function_pointer(
8135 Symbol_table*,
8136 Layout*,
8137 Target_arm<big_endian>* target,
6fa2a40b 8138 Sized_relobj_file<32, big_endian>*,
8a75a161
DK
8139 unsigned int,
8140 Output_section*,
8141 const elfcpp::Rel<32, big_endian>&,
8142 unsigned int r_type,
8143 Symbol* gsym)
8144{
8145 // GOT is not a function.
8146 if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8147 return false;
8148
8149 r_type = target->get_real_reloc_type(r_type);
8150 return possible_function_pointer_reloc(r_type);
8151}
8152
4a657b0d
DK
8153// Scan a relocation for a global symbol.
8154
8155template<bool big_endian>
8156inline void
ad0f2072 8157Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
2ea97941 8158 Layout* layout,
bec53400 8159 Target_arm* target,
6fa2a40b 8160 Sized_relobj_file<32, big_endian>* object,
bec53400
DK
8161 unsigned int data_shndx,
8162 Output_section* output_section,
8163 const elfcpp::Rel<32, big_endian>& reloc,
4a657b0d
DK
8164 unsigned int r_type,
8165 Symbol* gsym)
8166{
c8761b9a
DK
8167 // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
8168 // section. We check here to avoid creating a dynamic reloc against
8169 // _GLOBAL_OFFSET_TABLE_.
8170 if (!target->has_got_section()
8171 && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8172 target->got_section(symtab, layout);
8173
a6d1ef57 8174 r_type = get_real_reloc_type(r_type);
4a657b0d
DK
8175 switch (r_type)
8176 {
8177 case elfcpp::R_ARM_NONE:
e4782e83
DK
8178 case elfcpp::R_ARM_V4BX:
8179 case elfcpp::R_ARM_GNU_VTENTRY:
8180 case elfcpp::R_ARM_GNU_VTINHERIT:
4a657b0d
DK
8181 break;
8182
bec53400 8183 case elfcpp::R_ARM_ABS32:
e4782e83
DK
8184 case elfcpp::R_ARM_ABS16:
8185 case elfcpp::R_ARM_ABS12:
8186 case elfcpp::R_ARM_THM_ABS5:
8187 case elfcpp::R_ARM_ABS8:
8188 case elfcpp::R_ARM_BASE_ABS:
8189 case elfcpp::R_ARM_MOVW_ABS_NC:
8190 case elfcpp::R_ARM_MOVT_ABS:
8191 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8192 case elfcpp::R_ARM_THM_MOVT_ABS:
be8fcb75 8193 case elfcpp::R_ARM_ABS32_NOI:
e4782e83 8194 // Absolute addressing relocations.
bec53400 8195 {
e4782e83
DK
8196 // Make a PLT entry if necessary.
8197 if (this->symbol_needs_plt_entry(gsym))
8198 {
8199 target->make_plt_entry(symtab, layout, gsym);
8200 // Since this is not a PC-relative relocation, we may be
8201 // taking the address of a function. In that case we need to
8202 // set the entry in the dynamic symbol table to the address of
8203 // the PLT entry.
8204 if (gsym->is_from_dynobj() && !parameters->options().shared())
8205 gsym->set_needs_dynsym_value();
8206 }
8207 // Make a dynamic relocation if necessary.
95a2c8d6 8208 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
e4782e83
DK
8209 {
8210 if (gsym->may_need_copy_reloc())
8211 {
8212 target->copy_reloc(symtab, layout, object,
8213 data_shndx, output_section, gsym, reloc);
8214 }
8215 else if ((r_type == elfcpp::R_ARM_ABS32
8216 || r_type == elfcpp::R_ARM_ABS32_NOI)
8217 && gsym->can_use_relative_reloc(false))
8218 {
8219 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8220 rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
8221 output_section, object,
8222 data_shndx, reloc.get_r_offset());
8223 }
8224 else
8225 {
8226 check_non_pic(object, r_type);
8227 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8228 rel_dyn->add_global(gsym, r_type, output_section, object,
8229 data_shndx, reloc.get_r_offset());
8230 }
8231 }
bec53400
DK
8232 }
8233 break;
8234
e4782e83
DK
8235 case elfcpp::R_ARM_GOTOFF32:
8236 case elfcpp::R_ARM_GOTOFF12:
8237 // We need a GOT section.
8238 target->got_section(symtab, layout);
8239 break;
8240
8241 case elfcpp::R_ARM_REL32:
8242 case elfcpp::R_ARM_LDR_PC_G0:
8243 case elfcpp::R_ARM_SBREL32:
8244 case elfcpp::R_ARM_THM_PC8:
8245 case elfcpp::R_ARM_BASE_PREL:
c2a122b6
ILT
8246 case elfcpp::R_ARM_MOVW_PREL_NC:
8247 case elfcpp::R_ARM_MOVT_PREL:
8248 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8249 case elfcpp::R_ARM_THM_MOVT_PREL:
11b861d5 8250 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
e4782e83
DK
8251 case elfcpp::R_ARM_THM_PC12:
8252 case elfcpp::R_ARM_REL32_NOI:
b10d2873
ILT
8253 case elfcpp::R_ARM_ALU_PC_G0_NC:
8254 case elfcpp::R_ARM_ALU_PC_G0:
8255 case elfcpp::R_ARM_ALU_PC_G1_NC:
8256 case elfcpp::R_ARM_ALU_PC_G1:
8257 case elfcpp::R_ARM_ALU_PC_G2:
e4782e83
DK
8258 case elfcpp::R_ARM_LDR_PC_G1:
8259 case elfcpp::R_ARM_LDR_PC_G2:
8260 case elfcpp::R_ARM_LDRS_PC_G0:
8261 case elfcpp::R_ARM_LDRS_PC_G1:
8262 case elfcpp::R_ARM_LDRS_PC_G2:
8263 case elfcpp::R_ARM_LDC_PC_G0:
8264 case elfcpp::R_ARM_LDC_PC_G1:
8265 case elfcpp::R_ARM_LDC_PC_G2:
b10d2873
ILT
8266 case elfcpp::R_ARM_ALU_SB_G0_NC:
8267 case elfcpp::R_ARM_ALU_SB_G0:
8268 case elfcpp::R_ARM_ALU_SB_G1_NC:
8269 case elfcpp::R_ARM_ALU_SB_G1:
8270 case elfcpp::R_ARM_ALU_SB_G2:
b10d2873
ILT
8271 case elfcpp::R_ARM_LDR_SB_G0:
8272 case elfcpp::R_ARM_LDR_SB_G1:
8273 case elfcpp::R_ARM_LDR_SB_G2:
b10d2873
ILT
8274 case elfcpp::R_ARM_LDRS_SB_G0:
8275 case elfcpp::R_ARM_LDRS_SB_G1:
8276 case elfcpp::R_ARM_LDRS_SB_G2:
b10d2873
ILT
8277 case elfcpp::R_ARM_LDC_SB_G0:
8278 case elfcpp::R_ARM_LDC_SB_G1:
8279 case elfcpp::R_ARM_LDC_SB_G2:
e4782e83
DK
8280 case elfcpp::R_ARM_MOVW_BREL_NC:
8281 case elfcpp::R_ARM_MOVT_BREL:
8282 case elfcpp::R_ARM_MOVW_BREL:
8283 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8284 case elfcpp::R_ARM_THM_MOVT_BREL:
8285 case elfcpp::R_ARM_THM_MOVW_BREL:
8286 // Relative addressing relocations.
bec53400
DK
8287 {
8288 // Make a dynamic relocation if necessary.
95a2c8d6 8289 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
bec53400
DK
8290 {
8291 if (target->may_need_copy_reloc(gsym))
8292 {
2ea97941 8293 target->copy_reloc(symtab, layout, object,
bec53400
DK
8294 data_shndx, output_section, gsym, reloc);
8295 }
8296 else
8297 {
8298 check_non_pic(object, r_type);
2ea97941 8299 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
bec53400
DK
8300 rel_dyn->add_global(gsym, r_type, output_section, object,
8301 data_shndx, reloc.get_r_offset());
8302 }
8303 }
8304 }
8305 break;
8306
f4e5969c 8307 case elfcpp::R_ARM_THM_CALL:
bec53400 8308 case elfcpp::R_ARM_PLT32:
e4782e83
DK
8309 case elfcpp::R_ARM_CALL:
8310 case elfcpp::R_ARM_JUMP24:
8311 case elfcpp::R_ARM_THM_JUMP24:
8312 case elfcpp::R_ARM_SBREL31:
c9a2c125 8313 case elfcpp::R_ARM_PREL31:
e4782e83
DK
8314 case elfcpp::R_ARM_THM_JUMP19:
8315 case elfcpp::R_ARM_THM_JUMP6:
8316 case elfcpp::R_ARM_THM_JUMP11:
8317 case elfcpp::R_ARM_THM_JUMP8:
8318 // All the relocation above are branches except for the PREL31 ones.
8319 // A PREL31 relocation can point to a personality function in a shared
8320 // library. In that case we want to use a PLT because we want to
9b547ce6 8321 // call the personality routine and the dynamic linkers we care about
e4782e83
DK
8322 // do not support dynamic PREL31 relocations. An REL31 relocation may
8323 // point to a function whose unwinding behaviour is being described but
8324 // we will not mistakenly generate a PLT for that because we should use
8325 // a local section symbol.
8326
bec53400
DK
8327 // If the symbol is fully resolved, this is just a relative
8328 // local reloc. Otherwise we need a PLT entry.
8329 if (gsym->final_value_is_known())
8330 break;
8331 // If building a shared library, we can also skip the PLT entry
8332 // if the symbol is defined in the output file and is protected
8333 // or hidden.
8334 if (gsym->is_defined()
8335 && !gsym->is_from_dynobj()
8336 && !gsym->is_preemptible())
8337 break;
2ea97941 8338 target->make_plt_entry(symtab, layout, gsym);
bec53400
DK
8339 break;
8340
bec53400 8341 case elfcpp::R_ARM_GOT_BREL:
e4782e83 8342 case elfcpp::R_ARM_GOT_ABS:
7f5309a5 8343 case elfcpp::R_ARM_GOT_PREL:
bec53400
DK
8344 {
8345 // The symbol requires a GOT entry.
4a54abbb 8346 Arm_output_data_got<big_endian>* got =
2ea97941 8347 target->got_section(symtab, layout);
bec53400
DK
8348 if (gsym->final_value_is_known())
8349 got->add_global(gsym, GOT_TYPE_STANDARD);
8350 else
8351 {
8352 // If this symbol is not fully resolved, we need to add a
8353 // GOT entry with a dynamic relocation.
2ea97941 8354 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
bec53400
DK
8355 if (gsym->is_from_dynobj()
8356 || gsym->is_undefined()
8357 || gsym->is_preemptible())
8358 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
8359 rel_dyn, elfcpp::R_ARM_GLOB_DAT);
8360 else
8361 {
8362 if (got->add_global(gsym, GOT_TYPE_STANDARD))
8363 rel_dyn->add_global_relative(
8364 gsym, elfcpp::R_ARM_RELATIVE, got,
8365 gsym->got_offset(GOT_TYPE_STANDARD));
8366 }
8367 }
8368 }
8369 break;
8370
8371 case elfcpp::R_ARM_TARGET1:
e4782e83
DK
8372 case elfcpp::R_ARM_TARGET2:
8373 // These should have been mapped to other types already.
bec53400
DK
8374 // Fall through.
8375 case elfcpp::R_ARM_COPY:
8376 case elfcpp::R_ARM_GLOB_DAT:
8377 case elfcpp::R_ARM_JUMP_SLOT:
8378 case elfcpp::R_ARM_RELATIVE:
8379 // These are relocations which should only be seen by the
8380 // dynamic linker, and should never be seen here.
8381 gold_error(_("%s: unexpected reloc %u in object file"),
8382 object->name().c_str(), r_type);
8383 break;
8384
f96accdf
DK
8385 // These are initial tls relocs, which are expected when
8386 // linking.
8387 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8388 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8389 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8390 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8391 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8392 {
8393 const bool is_final = gsym->final_value_is_known();
8394 const tls::Tls_optimization optimized_type
8395 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
8396 switch (r_type)
8397 {
8398 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8399 if (optimized_type == tls::TLSOPT_NONE)
8400 {
8401 // Create a pair of GOT entries for the module index and
8402 // dtv-relative offset.
4a54abbb 8403 Arm_output_data_got<big_endian>* got
f96accdf 8404 = target->got_section(symtab, layout);
4a54abbb
DK
8405 if (!parameters->doing_static_link())
8406 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
8407 target->rel_dyn_section(layout),
8408 elfcpp::R_ARM_TLS_DTPMOD32,
8409 elfcpp::R_ARM_TLS_DTPOFF32);
8410 else
8411 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR, gsym);
f96accdf
DK
8412 }
8413 else
8414 // FIXME: TLS optimization not supported yet.
8415 gold_unreachable();
8416 break;
8417
8418 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8419 if (optimized_type == tls::TLSOPT_NONE)
8420 {
8421 // Create a GOT entry for the module index.
8422 target->got_mod_index_entry(symtab, layout, object);
8423 }
8424 else
8425 // FIXME: TLS optimization not supported yet.
8426 gold_unreachable();
8427 break;
8428
8429 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8430 break;
8431
8432 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8433 layout->set_has_static_tls();
8434 if (optimized_type == tls::TLSOPT_NONE)
8435 {
4a54abbb
DK
8436 // Create a GOT entry for the tp-relative offset.
8437 Arm_output_data_got<big_endian>* got
8438 = target->got_section(symtab, layout);
8439 if (!parameters->doing_static_link())
8440 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
8441 target->rel_dyn_section(layout),
8442 elfcpp::R_ARM_TLS_TPOFF32);
8443 else if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
8444 {
8445 got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
8446 unsigned int got_offset =
8447 gsym->got_offset(GOT_TYPE_TLS_OFFSET);
8448 got->add_static_reloc(got_offset,
8449 elfcpp::R_ARM_TLS_TPOFF32, gsym);
8450 }
f96accdf
DK
8451 }
8452 else
8453 // FIXME: TLS optimization not supported yet.
8454 gold_unreachable();
8455 break;
8456
8457 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8458 layout->set_has_static_tls();
8459 if (parameters->options().shared())
8460 {
8461 // We need to create a dynamic relocation.
8462 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8463 rel_dyn->add_global(gsym, elfcpp::R_ARM_TLS_TPOFF32,
8464 output_section, object,
8465 data_shndx, reloc.get_r_offset());
8466 }
8467 break;
8468
8469 default:
8470 gold_unreachable();
8471 }
8472 }
8473 break;
8474
3cef7179
ILT
8475 case elfcpp::R_ARM_PC24:
8476 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8477 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8478 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
4a657b0d
DK
8479 default:
8480 unsupported_reloc_global(object, r_type, gsym);
8481 break;
8482 }
8483}
8484
8485// Process relocations for gc.
8486
8487template<bool big_endian>
8488void
6fa2a40b
CC
8489Target_arm<big_endian>::gc_process_relocs(
8490 Symbol_table* symtab,
8491 Layout* layout,
8492 Sized_relobj_file<32, big_endian>* object,
8493 unsigned int data_shndx,
8494 unsigned int,
8495 const unsigned char* prelocs,
8496 size_t reloc_count,
8497 Output_section* output_section,
8498 bool needs_special_offset_handling,
8499 size_t local_symbol_count,
8500 const unsigned char* plocal_symbols)
4a657b0d
DK
8501{
8502 typedef Target_arm<big_endian> Arm;
2ea97941 8503 typedef typename Target_arm<big_endian>::Scan Scan;
4a657b0d 8504
41cbeecc 8505 gold::gc_process_relocs<32, big_endian, Arm, elfcpp::SHT_REL, Scan,
3ff2ccb0 8506 typename Target_arm::Relocatable_size_for_reloc>(
4a657b0d 8507 symtab,
2ea97941 8508 layout,
4a657b0d
DK
8509 this,
8510 object,
8511 data_shndx,
8512 prelocs,
8513 reloc_count,
8514 output_section,
8515 needs_special_offset_handling,
8516 local_symbol_count,
8517 plocal_symbols);
8518}
8519
8520// Scan relocations for a section.
8521
8522template<bool big_endian>
8523void
ad0f2072 8524Target_arm<big_endian>::scan_relocs(Symbol_table* symtab,
2ea97941 8525 Layout* layout,
6fa2a40b 8526 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
8527 unsigned int data_shndx,
8528 unsigned int sh_type,
8529 const unsigned char* prelocs,
8530 size_t reloc_count,
8531 Output_section* output_section,
8532 bool needs_special_offset_handling,
8533 size_t local_symbol_count,
8534 const unsigned char* plocal_symbols)
8535{
2ea97941 8536 typedef typename Target_arm<big_endian>::Scan Scan;
4a657b0d
DK
8537 if (sh_type == elfcpp::SHT_RELA)
8538 {
8539 gold_error(_("%s: unsupported RELA reloc section"),
8540 object->name().c_str());
8541 return;
8542 }
8543
2ea97941 8544 gold::scan_relocs<32, big_endian, Target_arm, elfcpp::SHT_REL, Scan>(
4a657b0d 8545 symtab,
2ea97941 8546 layout,
4a657b0d
DK
8547 this,
8548 object,
8549 data_shndx,
8550 prelocs,
8551 reloc_count,
8552 output_section,
8553 needs_special_offset_handling,
8554 local_symbol_count,
8555 plocal_symbols);
8556}
8557
8558// Finalize the sections.
8559
8560template<bool big_endian>
8561void
d5b40221 8562Target_arm<big_endian>::do_finalize_sections(
2ea97941 8563 Layout* layout,
f59f41f3
DK
8564 const Input_objects* input_objects,
8565 Symbol_table* symtab)
4a657b0d 8566{
3e235302 8567 bool merged_any_attributes = false;
d5b40221
DK
8568 // Merge processor-specific flags.
8569 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
8570 p != input_objects->relobj_end();
8571 ++p)
8572 {
8573 Arm_relobj<big_endian>* arm_relobj =
8574 Arm_relobj<big_endian>::as_arm_relobj(*p);
7296d933
DK
8575 if (arm_relobj->merge_flags_and_attributes())
8576 {
8577 this->merge_processor_specific_flags(
8578 arm_relobj->name(),
8579 arm_relobj->processor_specific_flags());
8580 this->merge_object_attributes(arm_relobj->name().c_str(),
8581 arm_relobj->attributes_section_data());
3e235302 8582 merged_any_attributes = true;
7296d933 8583 }
d5b40221
DK
8584 }
8585
8586 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
8587 p != input_objects->dynobj_end();
8588 ++p)
8589 {
8590 Arm_dynobj<big_endian>* arm_dynobj =
8591 Arm_dynobj<big_endian>::as_arm_dynobj(*p);
8592 this->merge_processor_specific_flags(
8593 arm_dynobj->name(),
8594 arm_dynobj->processor_specific_flags());
a0351a69
DK
8595 this->merge_object_attributes(arm_dynobj->name().c_str(),
8596 arm_dynobj->attributes_section_data());
3e235302 8597 merged_any_attributes = true;
d5b40221
DK
8598 }
8599
da59ad79
DK
8600 // Create an empty uninitialized attribute section if we still don't have it
8601 // at this moment. This happens if there is no attributes sections in all
8602 // inputs.
8603 if (this->attributes_section_data_ == NULL)
8604 this->attributes_section_data_ = new Attributes_section_data(NULL, 0);
8605
a0351a69 8606 // Check BLX use.
41263c05 8607 const Object_attribute* cpu_arch_attr =
a0351a69 8608 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
41263c05 8609 if (cpu_arch_attr->int_value() > elfcpp::TAG_CPU_ARCH_V4)
a0351a69
DK
8610 this->set_may_use_blx(true);
8611
41263c05
DK
8612 // Check if we need to use Cortex-A8 workaround.
8613 if (parameters->options().user_set_fix_cortex_a8())
8614 this->fix_cortex_a8_ = parameters->options().fix_cortex_a8();
8615 else
8616 {
8617 // If neither --fix-cortex-a8 nor --no-fix-cortex-a8 is used, turn on
8618 // Cortex-A8 erratum workaround for ARMv7-A or ARMv7 with unknown
8619 // profile.
8620 const Object_attribute* cpu_arch_profile_attr =
8621 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
8622 this->fix_cortex_a8_ =
8623 (cpu_arch_attr->int_value() == elfcpp::TAG_CPU_ARCH_V7
8624 && (cpu_arch_profile_attr->int_value() == 'A'
8625 || cpu_arch_profile_attr->int_value() == 0));
8626 }
8627
a2162063
ILT
8628 // Check if we can use V4BX interworking.
8629 // The V4BX interworking stub contains BX instruction,
8630 // which is not specified for some profiles.
9b2fd367
DK
8631 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
8632 && !this->may_use_blx())
a2162063
ILT
8633 gold_error(_("unable to provide V4BX reloc interworking fix up; "
8634 "the target profile does not support BX instruction"));
8635
94cdfcff 8636 // Fill in some more dynamic tags.
ea715a34
ILT
8637 const Reloc_section* rel_plt = (this->plt_ == NULL
8638 ? NULL
8639 : this->plt_->rel_plt());
8640 layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
612a8d3d 8641 this->rel_dyn_, true, false);
94cdfcff
DK
8642
8643 // Emit any relocs we saved in an attempt to avoid generating COPY
8644 // relocs.
8645 if (this->copy_relocs_.any_saved_relocs())
2ea97941 8646 this->copy_relocs_.emit(this->rel_dyn_section(layout));
11af873f 8647
f59f41f3 8648 // Handle the .ARM.exidx section.
2ea97941 8649 Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
11af873f 8650
731ca54a
RÁE
8651 if (!parameters->options().relocatable())
8652 {
8653 if (exidx_section != NULL
8654 && exidx_section->type() == elfcpp::SHT_ARM_EXIDX)
8655 {
9b547ce6 8656 // Create __exidx_start and __exidx_end symbols.
731ca54a
RÁE
8657 symtab->define_in_output_data("__exidx_start", NULL,
8658 Symbol_table::PREDEFINED,
8659 exidx_section, 0, 0, elfcpp::STT_OBJECT,
8660 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN,
8661 0, false, true);
8662 symtab->define_in_output_data("__exidx_end", NULL,
8663 Symbol_table::PREDEFINED,
8664 exidx_section, 0, 0, elfcpp::STT_OBJECT,
8665 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN,
8666 0, true, true);
8667
8668 // For the ARM target, we need to add a PT_ARM_EXIDX segment for
8669 // the .ARM.exidx section.
8670 if (!layout->script_options()->saw_phdrs_clause())
8671 {
8672 gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0,
8673 0)
8674 == NULL);
8675 Output_segment* exidx_segment =
8676 layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R);
8677 exidx_segment->add_output_section_to_nonload(exidx_section,
8678 elfcpp::PF_R);
8679 }
8680 }
8681 else
8682 {
8683 symtab->define_as_constant("__exidx_start", NULL,
8684 Symbol_table::PREDEFINED,
8685 0, 0, elfcpp::STT_OBJECT,
8686 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
8687 true, false);
8688 symtab->define_as_constant("__exidx_end", NULL,
8689 Symbol_table::PREDEFINED,
8690 0, 0, elfcpp::STT_OBJECT,
8691 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
8692 true, false);
8693 }
11af873f 8694 }
a0351a69 8695
3e235302
DK
8696 // Create an .ARM.attributes section if we have merged any attributes
8697 // from inputs.
8698 if (merged_any_attributes)
7296d933
DK
8699 {
8700 Output_attributes_section_data* attributes_section =
8701 new Output_attributes_section_data(*this->attributes_section_data_);
8702 layout->add_output_section_data(".ARM.attributes",
8703 elfcpp::SHT_ARM_ATTRIBUTES, 0,
22f0da72 8704 attributes_section, ORDER_INVALID,
7296d933
DK
8705 false);
8706 }
131687b4
DK
8707
8708 // Fix up links in section EXIDX headers.
8709 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
8710 p != layout->section_list().end();
8711 ++p)
8712 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
8713 {
8714 Arm_output_section<big_endian>* os =
8715 Arm_output_section<big_endian>::as_arm_output_section(*p);
8716 os->set_exidx_section_link();
8717 }
4a657b0d
DK
8718}
8719
bec53400
DK
8720// Return whether a direct absolute static relocation needs to be applied.
8721// In cases where Scan::local() or Scan::global() has created
8722// a dynamic relocation other than R_ARM_RELATIVE, the addend
8723// of the relocation is carried in the data, and we must not
8724// apply the static relocation.
8725
8726template<bool big_endian>
8727inline bool
8728Target_arm<big_endian>::Relocate::should_apply_static_reloc(
8729 const Sized_symbol<32>* gsym,
95a2c8d6 8730 unsigned int r_type,
bec53400
DK
8731 bool is_32bit,
8732 Output_section* output_section)
8733{
8734 // If the output section is not allocated, then we didn't call
8735 // scan_relocs, we didn't create a dynamic reloc, and we must apply
8736 // the reloc here.
8737 if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
8738 return true;
8739
95a2c8d6
RS
8740 int ref_flags = Scan::get_reference_flags(r_type);
8741
bec53400
DK
8742 // For local symbols, we will have created a non-RELATIVE dynamic
8743 // relocation only if (a) the output is position independent,
8744 // (b) the relocation is absolute (not pc- or segment-relative), and
8745 // (c) the relocation is not 32 bits wide.
8746 if (gsym == NULL)
8747 return !(parameters->options().output_is_position_independent()
8748 && (ref_flags & Symbol::ABSOLUTE_REF)
8749 && !is_32bit);
8750
8751 // For global symbols, we use the same helper routines used in the
8752 // scan pass. If we did not create a dynamic relocation, or if we
8753 // created a RELATIVE dynamic relocation, we should apply the static
8754 // relocation.
8755 bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
8756 bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
8757 && gsym->can_use_relative_reloc(ref_flags
8758 & Symbol::FUNCTION_CALL);
8759 return !has_dyn || is_rel;
8760}
8761
4a657b0d
DK
8762// Perform a relocation.
8763
8764template<bool big_endian>
8765inline bool
8766Target_arm<big_endian>::Relocate::relocate(
c121c671
DK
8767 const Relocate_info<32, big_endian>* relinfo,
8768 Target_arm* target,
ca09d69a 8769 Output_section* output_section,
c121c671
DK
8770 size_t relnum,
8771 const elfcpp::Rel<32, big_endian>& rel,
4a657b0d 8772 unsigned int r_type,
c121c671
DK
8773 const Sized_symbol<32>* gsym,
8774 const Symbol_value<32>* psymval,
8775 unsigned char* view,
ebabffbd 8776 Arm_address address,
f96accdf 8777 section_size_type view_size)
4a657b0d 8778{
c121c671
DK
8779 typedef Arm_relocate_functions<big_endian> Arm_relocate_functions;
8780
a6d1ef57 8781 r_type = get_real_reloc_type(r_type);
5c57f1be
DK
8782 const Arm_reloc_property* reloc_property =
8783 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
8784 if (reloc_property == NULL)
8785 {
8786 std::string reloc_name =
8787 arm_reloc_property_table->reloc_name_in_error_message(r_type);
8788 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
8789 _("cannot relocate %s in object file"),
8790 reloc_name.c_str());
8791 return true;
8792 }
c121c671 8793
2daedcd6
DK
8794 const Arm_relobj<big_endian>* object =
8795 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
c121c671 8796
2daedcd6
DK
8797 // If the final branch target of a relocation is THUMB instruction, this
8798 // is 1. Otherwise it is 0.
8799 Arm_address thumb_bit = 0;
c121c671 8800 Symbol_value<32> symval;
d204b6e9 8801 bool is_weakly_undefined_without_plt = false;
bca7fb63
DK
8802 bool have_got_offset = false;
8803 unsigned int got_offset = 0;
8804
8805 // If the relocation uses the GOT entry of a symbol instead of the symbol
8806 // itself, we don't care about whether the symbol is defined or what kind
8807 // of symbol it is.
8808 if (reloc_property->uses_got_entry())
8809 {
8810 // Get the GOT offset.
8811 // The GOT pointer points to the end of the GOT section.
8812 // We need to subtract the size of the GOT section to get
8813 // the actual offset to use in the relocation.
8814 // TODO: We should move GOT offset computing code in TLS relocations
8815 // to here.
8816 switch (r_type)
8817 {
8818 case elfcpp::R_ARM_GOT_BREL:
8819 case elfcpp::R_ARM_GOT_PREL:
8820 if (gsym != NULL)
8821 {
8822 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
8823 got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
8824 - target->got_size());
8825 }
8826 else
8827 {
8828 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8829 gold_assert(object->local_has_got_offset(r_sym,
8830 GOT_TYPE_STANDARD));
8831 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
8832 - target->got_size());
8833 }
8834 have_got_offset = true;
8835 break;
8836
8837 default:
8838 break;
8839 }
8840 }
8841 else if (relnum != Target_arm<big_endian>::fake_relnum_for_stubs)
c121c671 8842 {
2daedcd6
DK
8843 if (gsym != NULL)
8844 {
8845 // This is a global symbol. Determine if we use PLT and if the
8846 // final target is THUMB.
95a2c8d6 8847 if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
2daedcd6
DK
8848 {
8849 // This uses a PLT, change the symbol value.
8850 symval.set_output_value(target->plt_section()->address()
8851 + gsym->plt_offset());
8852 psymval = &symval;
8853 }
d204b6e9
DK
8854 else if (gsym->is_weak_undefined())
8855 {
8856 // This is a weakly undefined symbol and we do not use PLT
8857 // for this relocation. A branch targeting this symbol will
8858 // be converted into an NOP.
8859 is_weakly_undefined_without_plt = true;
8860 }
b2286c10
DK
8861 else if (gsym->is_undefined() && reloc_property->uses_symbol())
8862 {
8863 // This relocation uses the symbol value but the symbol is
8864 // undefined. Exit early and have the caller reporting an
8865 // error.
8866 return true;
8867 }
2daedcd6
DK
8868 else
8869 {
8870 // Set thumb bit if symbol:
8871 // -Has type STT_ARM_TFUNC or
8872 // -Has type STT_FUNC, is defined and with LSB in value set.
8873 thumb_bit =
8874 (((gsym->type() == elfcpp::STT_ARM_TFUNC)
8875 || (gsym->type() == elfcpp::STT_FUNC
8876 && !gsym->is_undefined()
8877 && ((psymval->value(object, 0) & 1) != 0)))
8878 ? 1
8879 : 0);
8880 }
8881 }
8882 else
8883 {
8884 // This is a local symbol. Determine if the final target is THUMB.
8885 // We saved this information when all the local symbols were read.
8886 elfcpp::Elf_types<32>::Elf_WXword r_info = rel.get_r_info();
8887 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
8888 thumb_bit = object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
8889 }
8890 }
8891 else
8892 {
8893 // This is a fake relocation synthesized for a stub. It does not have
8894 // a real symbol. We just look at the LSB of the symbol value to
8895 // determine if the target is THUMB or not.
8896 thumb_bit = ((psymval->value(object, 0) & 1) != 0);
c121c671
DK
8897 }
8898
2daedcd6
DK
8899 // Strip LSB if this points to a THUMB target.
8900 if (thumb_bit != 0
5c57f1be 8901 && reloc_property->uses_thumb_bit()
2daedcd6
DK
8902 && ((psymval->value(object, 0) & 1) != 0))
8903 {
8904 Arm_address stripped_value =
8905 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
8906 symval.set_output_value(stripped_value);
8907 psymval = &symval;
8908 }
8909
d204b6e9
DK
8910 // To look up relocation stubs, we need to pass the symbol table index of
8911 // a local symbol.
8912 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8913
b10d2873
ILT
8914 // Get the addressing origin of the output segment defining the
8915 // symbol gsym if needed (AAELF 4.6.1.2 Relocation types).
8916 Arm_address sym_origin = 0;
5c57f1be 8917 if (reloc_property->uses_symbol_base())
b10d2873
ILT
8918 {
8919 if (r_type == elfcpp::R_ARM_BASE_ABS && gsym == NULL)
8920 // R_ARM_BASE_ABS with the NULL symbol will give the
8921 // absolute address of the GOT origin (GOT_ORG) (see ARM IHI
8922 // 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
8923 sym_origin = target->got_plt_section()->address();
8924 else if (gsym == NULL)
8925 sym_origin = 0;
8926 else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
8927 sym_origin = gsym->output_segment()->vaddr();
8928 else if (gsym->source() == Symbol::IN_OUTPUT_DATA)
8929 sym_origin = gsym->output_data()->address();
8930
8931 // TODO: Assumes the segment base to be zero for the global symbols
8932 // till the proper support for the segment-base-relative addressing
8933 // will be implemented. This is consistent with GNU ld.
8934 }
8935
5c57f1be
DK
8936 // For relative addressing relocation, find out the relative address base.
8937 Arm_address relative_address_base = 0;
8938 switch(reloc_property->relative_address_base())
8939 {
8940 case Arm_reloc_property::RAB_NONE:
f96accdf
DK
8941 // Relocations with relative address bases RAB_TLS and RAB_tp are
8942 // handled by relocate_tls. So we do not need to do anything here.
8943 case Arm_reloc_property::RAB_TLS:
8944 case Arm_reloc_property::RAB_tp:
5c57f1be
DK
8945 break;
8946 case Arm_reloc_property::RAB_B_S:
8947 relative_address_base = sym_origin;
8948 break;
8949 case Arm_reloc_property::RAB_GOT_ORG:
8950 relative_address_base = target->got_plt_section()->address();
8951 break;
8952 case Arm_reloc_property::RAB_P:
8953 relative_address_base = address;
8954 break;
8955 case Arm_reloc_property::RAB_Pa:
8956 relative_address_base = address & 0xfffffffcU;
8957 break;
8958 default:
8959 gold_unreachable();
8960 }
8961
c121c671
DK
8962 typename Arm_relocate_functions::Status reloc_status =
8963 Arm_relocate_functions::STATUS_OKAY;
5c57f1be 8964 bool check_overflow = reloc_property->checks_overflow();
4a657b0d
DK
8965 switch (r_type)
8966 {
8967 case elfcpp::R_ARM_NONE:
8968 break;
8969
5e445df6 8970 case elfcpp::R_ARM_ABS8:
95a2c8d6 8971 if (should_apply_static_reloc(gsym, r_type, false, output_section))
be8fcb75
ILT
8972 reloc_status = Arm_relocate_functions::abs8(view, object, psymval);
8973 break;
8974
8975 case elfcpp::R_ARM_ABS12:
95a2c8d6 8976 if (should_apply_static_reloc(gsym, r_type, false, output_section))
be8fcb75
ILT
8977 reloc_status = Arm_relocate_functions::abs12(view, object, psymval);
8978 break;
8979
8980 case elfcpp::R_ARM_ABS16:
95a2c8d6 8981 if (should_apply_static_reloc(gsym, r_type, false, output_section))
be8fcb75 8982 reloc_status = Arm_relocate_functions::abs16(view, object, psymval);
5e445df6
ILT
8983 break;
8984
c121c671 8985 case elfcpp::R_ARM_ABS32:
95a2c8d6 8986 if (should_apply_static_reloc(gsym, r_type, true, output_section))
c121c671 8987 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
2daedcd6 8988 thumb_bit);
c121c671
DK
8989 break;
8990
be8fcb75 8991 case elfcpp::R_ARM_ABS32_NOI:
95a2c8d6 8992 if (should_apply_static_reloc(gsym, r_type, true, output_section))
be8fcb75
ILT
8993 // No thumb bit for this relocation: (S + A)
8994 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
f4e5969c 8995 0);
be8fcb75
ILT
8996 break;
8997
fd3c5f0b 8998 case elfcpp::R_ARM_MOVW_ABS_NC:
95a2c8d6 8999 if (should_apply_static_reloc(gsym, r_type, false, output_section))
5c57f1be
DK
9000 reloc_status = Arm_relocate_functions::movw(view, object, psymval,
9001 0, thumb_bit,
9002 check_overflow);
fd3c5f0b
ILT
9003 break;
9004
9005 case elfcpp::R_ARM_MOVT_ABS:
95a2c8d6 9006 if (should_apply_static_reloc(gsym, r_type, false, output_section))
5c57f1be 9007 reloc_status = Arm_relocate_functions::movt(view, object, psymval, 0);
fd3c5f0b
ILT
9008 break;
9009
9010 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
95a2c8d6 9011 if (should_apply_static_reloc(gsym, r_type, false, output_section))
5c57f1be
DK
9012 reloc_status = Arm_relocate_functions::thm_movw(view, object, psymval,
9013 0, thumb_bit, false);
fd3c5f0b
ILT
9014 break;
9015
9016 case elfcpp::R_ARM_THM_MOVT_ABS:
95a2c8d6 9017 if (should_apply_static_reloc(gsym, r_type, false, output_section))
5c57f1be
DK
9018 reloc_status = Arm_relocate_functions::thm_movt(view, object,
9019 psymval, 0);
fd3c5f0b
ILT
9020 break;
9021
c2a122b6 9022 case elfcpp::R_ARM_MOVW_PREL_NC:
02961d7e 9023 case elfcpp::R_ARM_MOVW_BREL_NC:
02961d7e 9024 case elfcpp::R_ARM_MOVW_BREL:
5c57f1be
DK
9025 reloc_status =
9026 Arm_relocate_functions::movw(view, object, psymval,
9027 relative_address_base, thumb_bit,
9028 check_overflow);
c2a122b6
ILT
9029 break;
9030
9031 case elfcpp::R_ARM_MOVT_PREL:
02961d7e 9032 case elfcpp::R_ARM_MOVT_BREL:
5c57f1be
DK
9033 reloc_status =
9034 Arm_relocate_functions::movt(view, object, psymval,
9035 relative_address_base);
c2a122b6
ILT
9036 break;
9037
9038 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
02961d7e 9039 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
02961d7e 9040 case elfcpp::R_ARM_THM_MOVW_BREL:
5c57f1be
DK
9041 reloc_status =
9042 Arm_relocate_functions::thm_movw(view, object, psymval,
9043 relative_address_base,
9044 thumb_bit, check_overflow);
c2a122b6
ILT
9045 break;
9046
9047 case elfcpp::R_ARM_THM_MOVT_PREL:
02961d7e 9048 case elfcpp::R_ARM_THM_MOVT_BREL:
5c57f1be
DK
9049 reloc_status =
9050 Arm_relocate_functions::thm_movt(view, object, psymval,
9051 relative_address_base);
02961d7e 9052 break;
5c57f1be 9053
c121c671
DK
9054 case elfcpp::R_ARM_REL32:
9055 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
2daedcd6 9056 address, thumb_bit);
c121c671
DK
9057 break;
9058
be8fcb75 9059 case elfcpp::R_ARM_THM_ABS5:
95a2c8d6 9060 if (should_apply_static_reloc(gsym, r_type, false, output_section))
be8fcb75
ILT
9061 reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval);
9062 break;
9063
1521477a 9064 // Thumb long branches.
c121c671 9065 case elfcpp::R_ARM_THM_CALL:
51938283 9066 case elfcpp::R_ARM_THM_XPC22:
1521477a 9067 case elfcpp::R_ARM_THM_JUMP24:
51938283 9068 reloc_status =
1521477a
DK
9069 Arm_relocate_functions::thumb_branch_common(
9070 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9071 thumb_bit, is_weakly_undefined_without_plt);
51938283
DK
9072 break;
9073
c121c671
DK
9074 case elfcpp::R_ARM_GOTOFF32:
9075 {
ebabffbd 9076 Arm_address got_origin;
c121c671
DK
9077 got_origin = target->got_plt_section()->address();
9078 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
2daedcd6 9079 got_origin, thumb_bit);
c121c671
DK
9080 }
9081 break;
9082
9083 case elfcpp::R_ARM_BASE_PREL:
b10d2873
ILT
9084 gold_assert(gsym != NULL);
9085 reloc_status =
9086 Arm_relocate_functions::base_prel(view, sym_origin, address);
c121c671
DK
9087 break;
9088
be8fcb75 9089 case elfcpp::R_ARM_BASE_ABS:
95a2c8d6 9090 if (should_apply_static_reloc(gsym, r_type, false, output_section))
b10d2873 9091 reloc_status = Arm_relocate_functions::base_abs(view, sym_origin);
be8fcb75
ILT
9092 break;
9093
c121c671
DK
9094 case elfcpp::R_ARM_GOT_BREL:
9095 gold_assert(have_got_offset);
9096 reloc_status = Arm_relocate_functions::got_brel(view, got_offset);
9097 break;
9098
7f5309a5
ILT
9099 case elfcpp::R_ARM_GOT_PREL:
9100 gold_assert(have_got_offset);
9101 // Get the address origin for GOT PLT, which is allocated right
9102 // after the GOT section, to calculate an absolute address of
9103 // the symbol GOT entry (got_origin + got_offset).
ebabffbd 9104 Arm_address got_origin;
7f5309a5
ILT
9105 got_origin = target->got_plt_section()->address();
9106 reloc_status = Arm_relocate_functions::got_prel(view,
9107 got_origin + got_offset,
9108 address);
9109 break;
9110
c121c671 9111 case elfcpp::R_ARM_PLT32:
1521477a
DK
9112 case elfcpp::R_ARM_CALL:
9113 case elfcpp::R_ARM_JUMP24:
9114 case elfcpp::R_ARM_XPC25:
c121c671
DK
9115 gold_assert(gsym == NULL
9116 || gsym->has_plt_offset()
9117 || gsym->final_value_is_known()
9118 || (gsym->is_defined()
9119 && !gsym->is_from_dynobj()
9120 && !gsym->is_preemptible()));
d204b6e9 9121 reloc_status =
1521477a
DK
9122 Arm_relocate_functions::arm_branch_common(
9123 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9124 thumb_bit, is_weakly_undefined_without_plt);
51938283
DK
9125 break;
9126
41263c05
DK
9127 case elfcpp::R_ARM_THM_JUMP19:
9128 reloc_status =
9129 Arm_relocate_functions::thm_jump19(view, object, psymval, address,
9130 thumb_bit);
9131 break;
9132
800d0f56
ILT
9133 case elfcpp::R_ARM_THM_JUMP6:
9134 reloc_status =
9135 Arm_relocate_functions::thm_jump6(view, object, psymval, address);
9136 break;
9137
9138 case elfcpp::R_ARM_THM_JUMP8:
9139 reloc_status =
9140 Arm_relocate_functions::thm_jump8(view, object, psymval, address);
9141 break;
9142
9143 case elfcpp::R_ARM_THM_JUMP11:
9144 reloc_status =
9145 Arm_relocate_functions::thm_jump11(view, object, psymval, address);
9146 break;
9147
c121c671
DK
9148 case elfcpp::R_ARM_PREL31:
9149 reloc_status = Arm_relocate_functions::prel31(view, object, psymval,
2daedcd6 9150 address, thumb_bit);
c121c671
DK
9151 break;
9152
a2162063 9153 case elfcpp::R_ARM_V4BX:
9b2fd367
DK
9154 if (target->fix_v4bx() > General_options::FIX_V4BX_NONE)
9155 {
9156 const bool is_v4bx_interworking =
9157 (target->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING);
9158 reloc_status =
9159 Arm_relocate_functions::v4bx(relinfo, view, object, address,
9160 is_v4bx_interworking);
9161 }
a2162063
ILT
9162 break;
9163
11b861d5
DK
9164 case elfcpp::R_ARM_THM_PC8:
9165 reloc_status =
9166 Arm_relocate_functions::thm_pc8(view, object, psymval, address);
9167 break;
9168
9169 case elfcpp::R_ARM_THM_PC12:
9170 reloc_status =
9171 Arm_relocate_functions::thm_pc12(view, object, psymval, address);
9172 break;
9173
9174 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9175 reloc_status =
9176 Arm_relocate_functions::thm_alu11(view, object, psymval, address,
9177 thumb_bit);
9178 break;
9179
b10d2873 9180 case elfcpp::R_ARM_ALU_PC_G0_NC:
b10d2873 9181 case elfcpp::R_ARM_ALU_PC_G0:
b10d2873 9182 case elfcpp::R_ARM_ALU_PC_G1_NC:
b10d2873 9183 case elfcpp::R_ARM_ALU_PC_G1:
b10d2873 9184 case elfcpp::R_ARM_ALU_PC_G2:
b10d2873 9185 case elfcpp::R_ARM_ALU_SB_G0_NC:
b10d2873 9186 case elfcpp::R_ARM_ALU_SB_G0:
b10d2873 9187 case elfcpp::R_ARM_ALU_SB_G1_NC:
b10d2873 9188 case elfcpp::R_ARM_ALU_SB_G1:
b10d2873
ILT
9189 case elfcpp::R_ARM_ALU_SB_G2:
9190 reloc_status =
5c57f1be
DK
9191 Arm_relocate_functions::arm_grp_alu(view, object, psymval,
9192 reloc_property->group_index(),
9193 relative_address_base,
9194 thumb_bit, check_overflow);
b10d2873
ILT
9195 break;
9196
9197 case elfcpp::R_ARM_LDR_PC_G0:
b10d2873 9198 case elfcpp::R_ARM_LDR_PC_G1:
b10d2873 9199 case elfcpp::R_ARM_LDR_PC_G2:
b10d2873 9200 case elfcpp::R_ARM_LDR_SB_G0:
b10d2873 9201 case elfcpp::R_ARM_LDR_SB_G1:
b10d2873
ILT
9202 case elfcpp::R_ARM_LDR_SB_G2:
9203 reloc_status =
5c57f1be
DK
9204 Arm_relocate_functions::arm_grp_ldr(view, object, psymval,
9205 reloc_property->group_index(),
9206 relative_address_base);
b10d2873
ILT
9207 break;
9208
9209 case elfcpp::R_ARM_LDRS_PC_G0:
b10d2873 9210 case elfcpp::R_ARM_LDRS_PC_G1:
b10d2873 9211 case elfcpp::R_ARM_LDRS_PC_G2:
b10d2873 9212 case elfcpp::R_ARM_LDRS_SB_G0:
b10d2873 9213 case elfcpp::R_ARM_LDRS_SB_G1:
b10d2873
ILT
9214 case elfcpp::R_ARM_LDRS_SB_G2:
9215 reloc_status =
5c57f1be
DK
9216 Arm_relocate_functions::arm_grp_ldrs(view, object, psymval,
9217 reloc_property->group_index(),
9218 relative_address_base);
b10d2873
ILT
9219 break;
9220
9221 case elfcpp::R_ARM_LDC_PC_G0:
b10d2873 9222 case elfcpp::R_ARM_LDC_PC_G1:
b10d2873 9223 case elfcpp::R_ARM_LDC_PC_G2:
b10d2873 9224 case elfcpp::R_ARM_LDC_SB_G0:
b10d2873 9225 case elfcpp::R_ARM_LDC_SB_G1:
b10d2873
ILT
9226 case elfcpp::R_ARM_LDC_SB_G2:
9227 reloc_status =
5c57f1be
DK
9228 Arm_relocate_functions::arm_grp_ldc(view, object, psymval,
9229 reloc_property->group_index(),
9230 relative_address_base);
c121c671
DK
9231 break;
9232
f96accdf
DK
9233 // These are initial tls relocs, which are expected when
9234 // linking.
9235 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
9236 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9237 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
9238 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9239 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9240 reloc_status =
9241 this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
9242 view, address, view_size);
9243 break;
9244
3cef7179
ILT
9245 // The known and unknown unsupported and/or deprecated relocations.
9246 case elfcpp::R_ARM_PC24:
9247 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
9248 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
9249 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
c121c671 9250 default:
3cef7179
ILT
9251 // Just silently leave the method. We should get an appropriate error
9252 // message in the scan methods.
9253 break;
c121c671
DK
9254 }
9255
9256 // Report any errors.
9257 switch (reloc_status)
9258 {
9259 case Arm_relocate_functions::STATUS_OKAY:
9260 break;
9261 case Arm_relocate_functions::STATUS_OVERFLOW:
9262 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
a2c7281b
DK
9263 _("relocation overflow in %s"),
9264 reloc_property->name().c_str());
c121c671
DK
9265 break;
9266 case Arm_relocate_functions::STATUS_BAD_RELOC:
9267 gold_error_at_location(
9268 relinfo,
9269 relnum,
9270 rel.get_r_offset(),
a2c7281b
DK
9271 _("unexpected opcode while processing relocation %s"),
9272 reloc_property->name().c_str());
c121c671 9273 break;
4a657b0d
DK
9274 default:
9275 gold_unreachable();
9276 }
9277
9278 return true;
9279}
9280
f96accdf
DK
9281// Perform a TLS relocation.
9282
9283template<bool big_endian>
9284inline typename Arm_relocate_functions<big_endian>::Status
9285Target_arm<big_endian>::Relocate::relocate_tls(
9286 const Relocate_info<32, big_endian>* relinfo,
9287 Target_arm<big_endian>* target,
9288 size_t relnum,
9289 const elfcpp::Rel<32, big_endian>& rel,
9290 unsigned int r_type,
9291 const Sized_symbol<32>* gsym,
9292 const Symbol_value<32>* psymval,
9293 unsigned char* view,
4a54abbb 9294 elfcpp::Elf_types<32>::Elf_Addr address,
f96accdf
DK
9295 section_size_type /*view_size*/ )
9296{
9297 typedef Arm_relocate_functions<big_endian> ArmRelocFuncs;
4a54abbb 9298 typedef Relocate_functions<32, big_endian> RelocFuncs;
f96accdf
DK
9299 Output_segment* tls_segment = relinfo->layout->tls_segment();
9300
6fa2a40b 9301 const Sized_relobj_file<32, big_endian>* object = relinfo->object;
f96accdf
DK
9302
9303 elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
9304
9305 const bool is_final = (gsym == NULL
9306 ? !parameters->options().shared()
9307 : gsym->final_value_is_known());
9308 const tls::Tls_optimization optimized_type
9309 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
9310 switch (r_type)
9311 {
9312 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
9313 {
9314 unsigned int got_type = GOT_TYPE_TLS_PAIR;
9315 unsigned int got_offset;
9316 if (gsym != NULL)
9317 {
9318 gold_assert(gsym->has_got_offset(got_type));
9319 got_offset = gsym->got_offset(got_type) - target->got_size();
9320 }
9321 else
9322 {
9323 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9324 gold_assert(object->local_has_got_offset(r_sym, got_type));
9325 got_offset = (object->local_got_offset(r_sym, got_type)
9326 - target->got_size());
9327 }
9328 if (optimized_type == tls::TLSOPT_NONE)
9329 {
4a54abbb
DK
9330 Arm_address got_entry =
9331 target->got_plt_section()->address() + got_offset;
9332
9333 // Relocate the field with the PC relative offset of the pair of
9334 // GOT entries.
9335 RelocFuncs::pcrel32(view, got_entry, address);
f96accdf
DK
9336 return ArmRelocFuncs::STATUS_OKAY;
9337 }
9338 }
9339 break;
9340
9341 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9342 if (optimized_type == tls::TLSOPT_NONE)
9343 {
9344 // Relocate the field with the offset of the GOT entry for
9345 // the module index.
9346 unsigned int got_offset;
9347 got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
9348 - target->got_size());
4a54abbb
DK
9349 Arm_address got_entry =
9350 target->got_plt_section()->address() + got_offset;
9351
9352 // Relocate the field with the PC relative offset of the pair of
9353 // GOT entries.
9354 RelocFuncs::pcrel32(view, got_entry, address);
f96accdf
DK
9355 return ArmRelocFuncs::STATUS_OKAY;
9356 }
9357 break;
9358
9359 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
4a54abbb 9360 RelocFuncs::rel32(view, value);
f96accdf
DK
9361 return ArmRelocFuncs::STATUS_OKAY;
9362
9363 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9364 if (optimized_type == tls::TLSOPT_NONE)
9365 {
9366 // Relocate the field with the offset of the GOT entry for
9367 // the tp-relative offset of the symbol.
9368 unsigned int got_type = GOT_TYPE_TLS_OFFSET;
9369 unsigned int got_offset;
9370 if (gsym != NULL)
9371 {
9372 gold_assert(gsym->has_got_offset(got_type));
9373 got_offset = gsym->got_offset(got_type);
9374 }
9375 else
9376 {
9377 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9378 gold_assert(object->local_has_got_offset(r_sym, got_type));
9379 got_offset = object->local_got_offset(r_sym, got_type);
9380 }
4a54abbb 9381
f96accdf
DK
9382 // All GOT offsets are relative to the end of the GOT.
9383 got_offset -= target->got_size();
4a54abbb
DK
9384
9385 Arm_address got_entry =
9386 target->got_plt_section()->address() + got_offset;
9387
9388 // Relocate the field with the PC relative offset of the GOT entry.
9389 RelocFuncs::pcrel32(view, got_entry, address);
f96accdf
DK
9390 return ArmRelocFuncs::STATUS_OKAY;
9391 }
9392 break;
9393
9394 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9395 // If we're creating a shared library, a dynamic relocation will
9396 // have been created for this location, so do not apply it now.
9397 if (!parameters->options().shared())
9398 {
9399 gold_assert(tls_segment != NULL);
4a54abbb
DK
9400
9401 // $tp points to the TCB, which is followed by the TLS, so we
9402 // need to add TCB size to the offset.
9403 Arm_address aligned_tcb_size =
9404 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
9405 RelocFuncs::rel32(view, value + aligned_tcb_size);
9406
f96accdf
DK
9407 }
9408 return ArmRelocFuncs::STATUS_OKAY;
9409
9410 default:
9411 gold_unreachable();
9412 }
9413
9414 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9415 _("unsupported reloc %u"),
9416 r_type);
9417 return ArmRelocFuncs::STATUS_BAD_RELOC;
9418}
9419
4a657b0d
DK
9420// Relocate section data.
9421
9422template<bool big_endian>
9423void
9424Target_arm<big_endian>::relocate_section(
9425 const Relocate_info<32, big_endian>* relinfo,
9426 unsigned int sh_type,
9427 const unsigned char* prelocs,
9428 size_t reloc_count,
9429 Output_section* output_section,
9430 bool needs_special_offset_handling,
9431 unsigned char* view,
ebabffbd 9432 Arm_address address,
364c7fa5
ILT
9433 section_size_type view_size,
9434 const Reloc_symbol_changes* reloc_symbol_changes)
4a657b0d
DK
9435{
9436 typedef typename Target_arm<big_endian>::Relocate Arm_relocate;
9437 gold_assert(sh_type == elfcpp::SHT_REL);
9438
218c5831
DK
9439 // See if we are relocating a relaxed input section. If so, the view
9440 // covers the whole output section and we need to adjust accordingly.
9441 if (needs_special_offset_handling)
43d12afe 9442 {
218c5831
DK
9443 const Output_relaxed_input_section* poris =
9444 output_section->find_relaxed_input_section(relinfo->object,
9445 relinfo->data_shndx);
9446 if (poris != NULL)
9447 {
9448 Arm_address section_address = poris->address();
9449 section_size_type section_size = poris->data_size();
9450
9451 gold_assert((section_address >= address)
9452 && ((section_address + section_size)
9453 <= (address + view_size)));
9454
9455 off_t offset = section_address - address;
9456 view += offset;
9457 address += offset;
9458 view_size = section_size;
9459 }
43d12afe
DK
9460 }
9461
4a657b0d
DK
9462 gold::relocate_section<32, big_endian, Target_arm, elfcpp::SHT_REL,
9463 Arm_relocate>(
9464 relinfo,
9465 this,
9466 prelocs,
9467 reloc_count,
9468 output_section,
9469 needs_special_offset_handling,
9470 view,
9471 address,
364c7fa5
ILT
9472 view_size,
9473 reloc_symbol_changes);
4a657b0d
DK
9474}
9475
9476// Return the size of a relocation while scanning during a relocatable
9477// link.
9478
9479template<bool big_endian>
9480unsigned int
9481Target_arm<big_endian>::Relocatable_size_for_reloc::get_size_for_reloc(
9482 unsigned int r_type,
9483 Relobj* object)
9484{
a6d1ef57 9485 r_type = get_real_reloc_type(r_type);
5c57f1be
DK
9486 const Arm_reloc_property* arp =
9487 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9488 if (arp != NULL)
9489 return arp->size();
9490 else
4a657b0d 9491 {
5c57f1be
DK
9492 std::string reloc_name =
9493 arm_reloc_property_table->reloc_name_in_error_message(r_type);
9494 gold_error(_("%s: unexpected %s in object file"),
9495 object->name().c_str(), reloc_name.c_str());
4a657b0d
DK
9496 return 0;
9497 }
9498}
9499
9500// Scan the relocs during a relocatable link.
9501
9502template<bool big_endian>
9503void
9504Target_arm<big_endian>::scan_relocatable_relocs(
4a657b0d 9505 Symbol_table* symtab,
2ea97941 9506 Layout* layout,
6fa2a40b 9507 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
9508 unsigned int data_shndx,
9509 unsigned int sh_type,
9510 const unsigned char* prelocs,
9511 size_t reloc_count,
9512 Output_section* output_section,
9513 bool needs_special_offset_handling,
9514 size_t local_symbol_count,
9515 const unsigned char* plocal_symbols,
9516 Relocatable_relocs* rr)
9517{
9518 gold_assert(sh_type == elfcpp::SHT_REL);
9519
5c388529 9520 typedef Arm_scan_relocatable_relocs<big_endian, elfcpp::SHT_REL,
4a657b0d
DK
9521 Relocatable_size_for_reloc> Scan_relocatable_relocs;
9522
9523 gold::scan_relocatable_relocs<32, big_endian, elfcpp::SHT_REL,
9524 Scan_relocatable_relocs>(
4a657b0d 9525 symtab,
2ea97941 9526 layout,
4a657b0d
DK
9527 object,
9528 data_shndx,
9529 prelocs,
9530 reloc_count,
9531 output_section,
9532 needs_special_offset_handling,
9533 local_symbol_count,
9534 plocal_symbols,
9535 rr);
9536}
9537
9538// Relocate a section during a relocatable link.
9539
9540template<bool big_endian>
9541void
9542Target_arm<big_endian>::relocate_for_relocatable(
9543 const Relocate_info<32, big_endian>* relinfo,
9544 unsigned int sh_type,
9545 const unsigned char* prelocs,
9546 size_t reloc_count,
9547 Output_section* output_section,
9548 off_t offset_in_output_section,
9549 const Relocatable_relocs* rr,
9550 unsigned char* view,
ebabffbd 9551 Arm_address view_address,
4a657b0d
DK
9552 section_size_type view_size,
9553 unsigned char* reloc_view,
9554 section_size_type reloc_view_size)
9555{
9556 gold_assert(sh_type == elfcpp::SHT_REL);
9557
9558 gold::relocate_for_relocatable<32, big_endian, elfcpp::SHT_REL>(
9559 relinfo,
9560 prelocs,
9561 reloc_count,
9562 output_section,
9563 offset_in_output_section,
9564 rr,
9565 view,
9566 view_address,
9567 view_size,
9568 reloc_view,
9569 reloc_view_size);
9570}
9571
5c388529
DK
9572// Perform target-specific processing in a relocatable link. This is
9573// only used if we use the relocation strategy RELOC_SPECIAL.
9574
9575template<bool big_endian>
9576void
9577Target_arm<big_endian>::relocate_special_relocatable(
9578 const Relocate_info<32, big_endian>* relinfo,
9579 unsigned int sh_type,
9580 const unsigned char* preloc_in,
9581 size_t relnum,
9582 Output_section* output_section,
9583 off_t offset_in_output_section,
9584 unsigned char* view,
9585 elfcpp::Elf_types<32>::Elf_Addr view_address,
9586 section_size_type,
9587 unsigned char* preloc_out)
9588{
9589 // We can only handle REL type relocation sections.
9590 gold_assert(sh_type == elfcpp::SHT_REL);
9591
9592 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc Reltype;
9593 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc_write
9594 Reltype_write;
9595 const Arm_address invalid_address = static_cast<Arm_address>(0) - 1;
9596
9597 const Arm_relobj<big_endian>* object =
9598 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
9599 const unsigned int local_count = object->local_symbol_count();
9600
9601 Reltype reloc(preloc_in);
9602 Reltype_write reloc_write(preloc_out);
9603
9604 elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
9605 const unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
9606 const unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
9607
9608 const Arm_reloc_property* arp =
9609 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9610 gold_assert(arp != NULL);
9611
9612 // Get the new symbol index.
9613 // We only use RELOC_SPECIAL strategy in local relocations.
9614 gold_assert(r_sym < local_count);
9615
9616 // We are adjusting a section symbol. We need to find
9617 // the symbol table index of the section symbol for
9618 // the output section corresponding to input section
9619 // in which this symbol is defined.
9620 bool is_ordinary;
9621 unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
9622 gold_assert(is_ordinary);
9623 Output_section* os = object->output_section(shndx);
9624 gold_assert(os != NULL);
9625 gold_assert(os->needs_symtab_index());
9626 unsigned int new_symndx = os->symtab_index();
9627
9628 // Get the new offset--the location in the output section where
9629 // this relocation should be applied.
9630
9631 Arm_address offset = reloc.get_r_offset();
9632 Arm_address new_offset;
9633 if (offset_in_output_section != invalid_address)
9634 new_offset = offset + offset_in_output_section;
9635 else
9636 {
9637 section_offset_type sot_offset =
9638 convert_types<section_offset_type, Arm_address>(offset);
9639 section_offset_type new_sot_offset =
9640 output_section->output_offset(object, relinfo->data_shndx,
9641 sot_offset);
9642 gold_assert(new_sot_offset != -1);
9643 new_offset = new_sot_offset;
9644 }
9645
9646 // In an object file, r_offset is an offset within the section.
9647 // In an executable or dynamic object, generated by
9648 // --emit-relocs, r_offset is an absolute address.
9649 if (!parameters->options().relocatable())
9650 {
9651 new_offset += view_address;
9652 if (offset_in_output_section != invalid_address)
9653 new_offset -= offset_in_output_section;
9654 }
9655
9656 reloc_write.put_r_offset(new_offset);
9657 reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
9658
9659 // Handle the reloc addend.
9660 // The relocation uses a section symbol in the input file.
9661 // We are adjusting it to use a section symbol in the output
9662 // file. The input section symbol refers to some address in
9663 // the input section. We need the relocation in the output
9664 // file to refer to that same address. This adjustment to
9665 // the addend is the same calculation we use for a simple
9666 // absolute relocation for the input section symbol.
9667
9668 const Symbol_value<32>* psymval = object->local_symbol(r_sym);
9669
9670 // Handle THUMB bit.
9671 Symbol_value<32> symval;
9672 Arm_address thumb_bit =
9673 object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
9674 if (thumb_bit != 0
9675 && arp->uses_thumb_bit()
9676 && ((psymval->value(object, 0) & 1) != 0))
9677 {
9678 Arm_address stripped_value =
9679 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
9680 symval.set_output_value(stripped_value);
9681 psymval = &symval;
9682 }
9683
9684 unsigned char* paddend = view + offset;
9685 typename Arm_relocate_functions<big_endian>::Status reloc_status =
9686 Arm_relocate_functions<big_endian>::STATUS_OKAY;
9687 switch (r_type)
9688 {
9689 case elfcpp::R_ARM_ABS8:
9690 reloc_status = Arm_relocate_functions<big_endian>::abs8(paddend, object,
9691 psymval);
9692 break;
9693
9694 case elfcpp::R_ARM_ABS12:
9695 reloc_status = Arm_relocate_functions<big_endian>::abs12(paddend, object,
9696 psymval);
9697 break;
9698
9699 case elfcpp::R_ARM_ABS16:
9700 reloc_status = Arm_relocate_functions<big_endian>::abs16(paddend, object,
9701 psymval);
9702 break;
9703
9704 case elfcpp::R_ARM_THM_ABS5:
9705 reloc_status = Arm_relocate_functions<big_endian>::thm_abs5(paddend,
9706 object,
9707 psymval);
9708 break;
9709
9710 case elfcpp::R_ARM_MOVW_ABS_NC:
9711 case elfcpp::R_ARM_MOVW_PREL_NC:
9712 case elfcpp::R_ARM_MOVW_BREL_NC:
9713 case elfcpp::R_ARM_MOVW_BREL:
9714 reloc_status = Arm_relocate_functions<big_endian>::movw(
9715 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9716 break;
9717
9718 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
9719 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
9720 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
9721 case elfcpp::R_ARM_THM_MOVW_BREL:
9722 reloc_status = Arm_relocate_functions<big_endian>::thm_movw(
9723 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9724 break;
9725
9726 case elfcpp::R_ARM_THM_CALL:
9727 case elfcpp::R_ARM_THM_XPC22:
9728 case elfcpp::R_ARM_THM_JUMP24:
9729 reloc_status =
9730 Arm_relocate_functions<big_endian>::thumb_branch_common(
9731 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9732 false);
9733 break;
9734
9735 case elfcpp::R_ARM_PLT32:
9736 case elfcpp::R_ARM_CALL:
9737 case elfcpp::R_ARM_JUMP24:
9738 case elfcpp::R_ARM_XPC25:
9739 reloc_status =
9740 Arm_relocate_functions<big_endian>::arm_branch_common(
9741 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9742 false);
9743 break;
9744
9745 case elfcpp::R_ARM_THM_JUMP19:
9746 reloc_status =
9747 Arm_relocate_functions<big_endian>::thm_jump19(paddend, object,
9748 psymval, 0, thumb_bit);
9749 break;
9750
9751 case elfcpp::R_ARM_THM_JUMP6:
9752 reloc_status =
9753 Arm_relocate_functions<big_endian>::thm_jump6(paddend, object, psymval,
9754 0);
9755 break;
9756
9757 case elfcpp::R_ARM_THM_JUMP8:
9758 reloc_status =
9759 Arm_relocate_functions<big_endian>::thm_jump8(paddend, object, psymval,
9760 0);
9761 break;
9762
9763 case elfcpp::R_ARM_THM_JUMP11:
9764 reloc_status =
9765 Arm_relocate_functions<big_endian>::thm_jump11(paddend, object, psymval,
9766 0);
9767 break;
9768
9769 case elfcpp::R_ARM_PREL31:
9770 reloc_status =
9771 Arm_relocate_functions<big_endian>::prel31(paddend, object, psymval, 0,
9772 thumb_bit);
9773 break;
9774
9775 case elfcpp::R_ARM_THM_PC8:
9776 reloc_status =
9777 Arm_relocate_functions<big_endian>::thm_pc8(paddend, object, psymval,
9778 0);
9779 break;
9780
9781 case elfcpp::R_ARM_THM_PC12:
9782 reloc_status =
9783 Arm_relocate_functions<big_endian>::thm_pc12(paddend, object, psymval,
9784 0);
9785 break;
9786
9787 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9788 reloc_status =
9789 Arm_relocate_functions<big_endian>::thm_alu11(paddend, object, psymval,
9790 0, thumb_bit);
9791 break;
9792
9793 // These relocation truncate relocation results so we cannot handle them
9794 // in a relocatable link.
9795 case elfcpp::R_ARM_MOVT_ABS:
9796 case elfcpp::R_ARM_THM_MOVT_ABS:
9797 case elfcpp::R_ARM_MOVT_PREL:
9798 case elfcpp::R_ARM_MOVT_BREL:
9799 case elfcpp::R_ARM_THM_MOVT_PREL:
9800 case elfcpp::R_ARM_THM_MOVT_BREL:
9801 case elfcpp::R_ARM_ALU_PC_G0_NC:
9802 case elfcpp::R_ARM_ALU_PC_G0:
9803 case elfcpp::R_ARM_ALU_PC_G1_NC:
9804 case elfcpp::R_ARM_ALU_PC_G1:
9805 case elfcpp::R_ARM_ALU_PC_G2:
9806 case elfcpp::R_ARM_ALU_SB_G0_NC:
9807 case elfcpp::R_ARM_ALU_SB_G0:
9808 case elfcpp::R_ARM_ALU_SB_G1_NC:
9809 case elfcpp::R_ARM_ALU_SB_G1:
9810 case elfcpp::R_ARM_ALU_SB_G2:
9811 case elfcpp::R_ARM_LDR_PC_G0:
9812 case elfcpp::R_ARM_LDR_PC_G1:
9813 case elfcpp::R_ARM_LDR_PC_G2:
9814 case elfcpp::R_ARM_LDR_SB_G0:
9815 case elfcpp::R_ARM_LDR_SB_G1:
9816 case elfcpp::R_ARM_LDR_SB_G2:
9817 case elfcpp::R_ARM_LDRS_PC_G0:
9818 case elfcpp::R_ARM_LDRS_PC_G1:
9819 case elfcpp::R_ARM_LDRS_PC_G2:
9820 case elfcpp::R_ARM_LDRS_SB_G0:
9821 case elfcpp::R_ARM_LDRS_SB_G1:
9822 case elfcpp::R_ARM_LDRS_SB_G2:
9823 case elfcpp::R_ARM_LDC_PC_G0:
9824 case elfcpp::R_ARM_LDC_PC_G1:
9825 case elfcpp::R_ARM_LDC_PC_G2:
9826 case elfcpp::R_ARM_LDC_SB_G0:
9827 case elfcpp::R_ARM_LDC_SB_G1:
9828 case elfcpp::R_ARM_LDC_SB_G2:
9829 gold_error(_("cannot handle %s in a relocatable link"),
9830 arp->name().c_str());
9831 break;
9832
9833 default:
9834 gold_unreachable();
9835 }
9836
9837 // Report any errors.
9838 switch (reloc_status)
9839 {
9840 case Arm_relocate_functions<big_endian>::STATUS_OKAY:
9841 break;
9842 case Arm_relocate_functions<big_endian>::STATUS_OVERFLOW:
9843 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9844 _("relocation overflow in %s"),
9845 arp->name().c_str());
9846 break;
9847 case Arm_relocate_functions<big_endian>::STATUS_BAD_RELOC:
9848 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9849 _("unexpected opcode while processing relocation %s"),
9850 arp->name().c_str());
9851 break;
9852 default:
9853 gold_unreachable();
9854 }
9855}
9856
94cdfcff
DK
9857// Return the value to use for a dynamic symbol which requires special
9858// treatment. This is how we support equality comparisons of function
9859// pointers across shared library boundaries, as described in the
9860// processor specific ABI supplement.
9861
4a657b0d
DK
9862template<bool big_endian>
9863uint64_t
94cdfcff 9864Target_arm<big_endian>::do_dynsym_value(const Symbol* gsym) const
4a657b0d 9865{
94cdfcff
DK
9866 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
9867 return this->plt_section()->address() + gsym->plt_offset();
4a657b0d
DK
9868}
9869
9870// Map platform-specific relocs to real relocs
9871//
9872template<bool big_endian>
9873unsigned int
ca09d69a 9874Target_arm<big_endian>::get_real_reloc_type(unsigned int r_type)
4a657b0d
DK
9875{
9876 switch (r_type)
9877 {
9878 case elfcpp::R_ARM_TARGET1:
a6d1ef57
DK
9879 // This is either R_ARM_ABS32 or R_ARM_REL32;
9880 return elfcpp::R_ARM_ABS32;
4a657b0d
DK
9881
9882 case elfcpp::R_ARM_TARGET2:
9b547ce6 9883 // This can be any reloc type but usually is R_ARM_GOT_PREL
a6d1ef57 9884 return elfcpp::R_ARM_GOT_PREL;
4a657b0d
DK
9885
9886 default:
9887 return r_type;
9888 }
9889}
9890
d5b40221
DK
9891// Whether if two EABI versions V1 and V2 are compatible.
9892
9893template<bool big_endian>
9894bool
9895Target_arm<big_endian>::are_eabi_versions_compatible(
9896 elfcpp::Elf_Word v1,
9897 elfcpp::Elf_Word v2)
9898{
9899 // v4 and v5 are the same spec before and after it was released,
9900 // so allow mixing them.
106e8a6c
DK
9901 if ((v1 == elfcpp::EF_ARM_EABI_UNKNOWN || v2 == elfcpp::EF_ARM_EABI_UNKNOWN)
9902 || (v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5)
d5b40221
DK
9903 || (v1 == elfcpp::EF_ARM_EABI_VER5 && v2 == elfcpp::EF_ARM_EABI_VER4))
9904 return true;
9905
9906 return v1 == v2;
9907}
9908
9909// Combine FLAGS from an input object called NAME and the processor-specific
9910// flags in the ELF header of the output. Much of this is adapted from the
9911// processor-specific flags merging code in elf32_arm_merge_private_bfd_data
9912// in bfd/elf32-arm.c.
9913
9914template<bool big_endian>
9915void
9916Target_arm<big_endian>::merge_processor_specific_flags(
9917 const std::string& name,
9918 elfcpp::Elf_Word flags)
9919{
9920 if (this->are_processor_specific_flags_set())
9921 {
9922 elfcpp::Elf_Word out_flags = this->processor_specific_flags();
9923
9924 // Nothing to merge if flags equal to those in output.
9925 if (flags == out_flags)
9926 return;
9927
9928 // Complain about various flag mismatches.
9929 elfcpp::Elf_Word version1 = elfcpp::arm_eabi_version(flags);
9930 elfcpp::Elf_Word version2 = elfcpp::arm_eabi_version(out_flags);
7296d933
DK
9931 if (!this->are_eabi_versions_compatible(version1, version2)
9932 && parameters->options().warn_mismatch())
d5b40221
DK
9933 gold_error(_("Source object %s has EABI version %d but output has "
9934 "EABI version %d."),
9935 name.c_str(),
9936 (flags & elfcpp::EF_ARM_EABIMASK) >> 24,
9937 (out_flags & elfcpp::EF_ARM_EABIMASK) >> 24);
9938 }
9939 else
9940 {
9941 // If the input is the default architecture and had the default
9942 // flags then do not bother setting the flags for the output
9943 // architecture, instead allow future merges to do this. If no
9944 // future merges ever set these flags then they will retain their
9945 // uninitialised values, which surprise surprise, correspond
9946 // to the default values.
9947 if (flags == 0)
9948 return;
9949
9950 // This is the first time, just copy the flags.
9951 // We only copy the EABI version for now.
9952 this->set_processor_specific_flags(flags & elfcpp::EF_ARM_EABIMASK);
9953 }
9954}
9955
9956// Adjust ELF file header.
9957template<bool big_endian>
9958void
9959Target_arm<big_endian>::do_adjust_elf_header(
9960 unsigned char* view,
9961 int len) const
9962{
9963 gold_assert(len == elfcpp::Elf_sizes<32>::ehdr_size);
9964
9965 elfcpp::Ehdr<32, big_endian> ehdr(view);
9966 unsigned char e_ident[elfcpp::EI_NIDENT];
9967 memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
9968
9969 if (elfcpp::arm_eabi_version(this->processor_specific_flags())
9970 == elfcpp::EF_ARM_EABI_UNKNOWN)
9971 e_ident[elfcpp::EI_OSABI] = elfcpp::ELFOSABI_ARM;
9972 else
9973 e_ident[elfcpp::EI_OSABI] = 0;
9974 e_ident[elfcpp::EI_ABIVERSION] = 0;
9975
9976 // FIXME: Do EF_ARM_BE8 adjustment.
9977
9978 elfcpp::Ehdr_write<32, big_endian> oehdr(view);
9979 oehdr.put_e_ident(e_ident);
9980}
9981
9982// do_make_elf_object to override the same function in the base class.
6fa2a40b
CC
9983// We need to use a target-specific sub-class of
9984// Sized_relobj_file<32, big_endian> to store ARM specific information.
9985// Hence we need to have our own ELF object creation.
d5b40221
DK
9986
9987template<bool big_endian>
9988Object*
9989Target_arm<big_endian>::do_make_elf_object(
9990 const std::string& name,
9991 Input_file* input_file,
2ea97941 9992 off_t offset, const elfcpp::Ehdr<32, big_endian>& ehdr)
d5b40221
DK
9993{
9994 int et = ehdr.get_e_type();
9995 if (et == elfcpp::ET_REL)
9996 {
9997 Arm_relobj<big_endian>* obj =
2ea97941 9998 new Arm_relobj<big_endian>(name, input_file, offset, ehdr);
d5b40221
DK
9999 obj->setup();
10000 return obj;
10001 }
10002 else if (et == elfcpp::ET_DYN)
10003 {
10004 Sized_dynobj<32, big_endian>* obj =
2ea97941 10005 new Arm_dynobj<big_endian>(name, input_file, offset, ehdr);
d5b40221
DK
10006 obj->setup();
10007 return obj;
10008 }
10009 else
10010 {
10011 gold_error(_("%s: unsupported ELF file type %d"),
10012 name.c_str(), et);
10013 return NULL;
10014 }
10015}
10016
a0351a69
DK
10017// Read the architecture from the Tag_also_compatible_with attribute, if any.
10018// Returns -1 if no architecture could be read.
10019// This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c.
10020
10021template<bool big_endian>
10022int
10023Target_arm<big_endian>::get_secondary_compatible_arch(
10024 const Attributes_section_data* pasd)
10025{
ca09d69a 10026 const Object_attribute* known_attributes =
a0351a69
DK
10027 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10028
10029 // Note: the tag and its argument below are uleb128 values, though
10030 // currently-defined values fit in one byte for each.
10031 const std::string& sv =
10032 known_attributes[elfcpp::Tag_also_compatible_with].string_value();
10033 if (sv.size() == 2
10034 && sv.data()[0] == elfcpp::Tag_CPU_arch
10035 && (sv.data()[1] & 128) != 128)
10036 return sv.data()[1];
10037
10038 // This tag is "safely ignorable", so don't complain if it looks funny.
10039 return -1;
10040}
10041
10042// Set, or unset, the architecture of the Tag_also_compatible_with attribute.
10043// The tag is removed if ARCH is -1.
10044// This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c.
10045
10046template<bool big_endian>
10047void
10048Target_arm<big_endian>::set_secondary_compatible_arch(
10049 Attributes_section_data* pasd,
10050 int arch)
10051{
ca09d69a 10052 Object_attribute* known_attributes =
a0351a69
DK
10053 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10054
10055 if (arch == -1)
10056 {
10057 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value("");
10058 return;
10059 }
10060
10061 // Note: the tag and its argument below are uleb128 values, though
10062 // currently-defined values fit in one byte for each.
10063 char sv[3];
10064 sv[0] = elfcpp::Tag_CPU_arch;
10065 gold_assert(arch != 0);
10066 sv[1] = arch;
10067 sv[2] = '\0';
10068
10069 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(sv);
10070}
10071
10072// Combine two values for Tag_CPU_arch, taking secondary compatibility tags
10073// into account.
10074// This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c.
10075
10076template<bool big_endian>
10077int
10078Target_arm<big_endian>::tag_cpu_arch_combine(
10079 const char* name,
10080 int oldtag,
10081 int* secondary_compat_out,
10082 int newtag,
10083 int secondary_compat)
10084{
10085#define T(X) elfcpp::TAG_CPU_ARCH_##X
10086 static const int v6t2[] =
10087 {
10088 T(V6T2), // PRE_V4.
10089 T(V6T2), // V4.
10090 T(V6T2), // V4T.
10091 T(V6T2), // V5T.
10092 T(V6T2), // V5TE.
10093 T(V6T2), // V5TEJ.
10094 T(V6T2), // V6.
10095 T(V7), // V6KZ.
10096 T(V6T2) // V6T2.
10097 };
10098 static const int v6k[] =
10099 {
10100 T(V6K), // PRE_V4.
10101 T(V6K), // V4.
10102 T(V6K), // V4T.
10103 T(V6K), // V5T.
10104 T(V6K), // V5TE.
10105 T(V6K), // V5TEJ.
10106 T(V6K), // V6.
10107 T(V6KZ), // V6KZ.
10108 T(V7), // V6T2.
10109 T(V6K) // V6K.
10110 };
10111 static const int v7[] =
10112 {
10113 T(V7), // PRE_V4.
10114 T(V7), // V4.
10115 T(V7), // V4T.
10116 T(V7), // V5T.
10117 T(V7), // V5TE.
10118 T(V7), // V5TEJ.
10119 T(V7), // V6.
10120 T(V7), // V6KZ.
10121 T(V7), // V6T2.
10122 T(V7), // V6K.
10123 T(V7) // V7.
10124 };
10125 static const int v6_m[] =
10126 {
10127 -1, // PRE_V4.
10128 -1, // V4.
10129 T(V6K), // V4T.
10130 T(V6K), // V5T.
10131 T(V6K), // V5TE.
10132 T(V6K), // V5TEJ.
10133 T(V6K), // V6.
10134 T(V6KZ), // V6KZ.
10135 T(V7), // V6T2.
10136 T(V6K), // V6K.
10137 T(V7), // V7.
10138 T(V6_M) // V6_M.
10139 };
10140 static const int v6s_m[] =
10141 {
10142 -1, // PRE_V4.
10143 -1, // V4.
10144 T(V6K), // V4T.
10145 T(V6K), // V5T.
10146 T(V6K), // V5TE.
10147 T(V6K), // V5TEJ.
10148 T(V6K), // V6.
10149 T(V6KZ), // V6KZ.
10150 T(V7), // V6T2.
10151 T(V6K), // V6K.
10152 T(V7), // V7.
10153 T(V6S_M), // V6_M.
10154 T(V6S_M) // V6S_M.
10155 };
10156 static const int v7e_m[] =
10157 {
10158 -1, // PRE_V4.
10159 -1, // V4.
10160 T(V7E_M), // V4T.
10161 T(V7E_M), // V5T.
10162 T(V7E_M), // V5TE.
10163 T(V7E_M), // V5TEJ.
10164 T(V7E_M), // V6.
10165 T(V7E_M), // V6KZ.
10166 T(V7E_M), // V6T2.
10167 T(V7E_M), // V6K.
10168 T(V7E_M), // V7.
10169 T(V7E_M), // V6_M.
10170 T(V7E_M), // V6S_M.
10171 T(V7E_M) // V7E_M.
10172 };
10173 static const int v4t_plus_v6_m[] =
10174 {
10175 -1, // PRE_V4.
10176 -1, // V4.
10177 T(V4T), // V4T.
10178 T(V5T), // V5T.
10179 T(V5TE), // V5TE.
10180 T(V5TEJ), // V5TEJ.
10181 T(V6), // V6.
10182 T(V6KZ), // V6KZ.
10183 T(V6T2), // V6T2.
10184 T(V6K), // V6K.
10185 T(V7), // V7.
10186 T(V6_M), // V6_M.
10187 T(V6S_M), // V6S_M.
10188 T(V7E_M), // V7E_M.
10189 T(V4T_PLUS_V6_M) // V4T plus V6_M.
10190 };
ca09d69a 10191 static const int* comb[] =
a0351a69
DK
10192 {
10193 v6t2,
10194 v6k,
10195 v7,
10196 v6_m,
10197 v6s_m,
10198 v7e_m,
10199 // Pseudo-architecture.
10200 v4t_plus_v6_m
10201 };
10202
10203 // Check we've not got a higher architecture than we know about.
10204
f62a3ca7 10205 if (oldtag > elfcpp::MAX_TAG_CPU_ARCH || newtag > elfcpp::MAX_TAG_CPU_ARCH)
a0351a69
DK
10206 {
10207 gold_error(_("%s: unknown CPU architecture"), name);
10208 return -1;
10209 }
10210
10211 // Override old tag if we have a Tag_also_compatible_with on the output.
10212
10213 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
10214 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
10215 oldtag = T(V4T_PLUS_V6_M);
10216
10217 // And override the new tag if we have a Tag_also_compatible_with on the
10218 // input.
10219
10220 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
10221 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
10222 newtag = T(V4T_PLUS_V6_M);
10223
10224 // Architectures before V6KZ add features monotonically.
10225 int tagh = std::max(oldtag, newtag);
10226 if (tagh <= elfcpp::TAG_CPU_ARCH_V6KZ)
10227 return tagh;
10228
10229 int tagl = std::min(oldtag, newtag);
10230 int result = comb[tagh - T(V6T2)][tagl];
10231
10232 // Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
10233 // as the canonical version.
10234 if (result == T(V4T_PLUS_V6_M))
10235 {
10236 result = T(V4T);
10237 *secondary_compat_out = T(V6_M);
10238 }
10239 else
10240 *secondary_compat_out = -1;
10241
10242 if (result == -1)
10243 {
10244 gold_error(_("%s: conflicting CPU architectures %d/%d"),
10245 name, oldtag, newtag);
10246 return -1;
10247 }
10248
10249 return result;
10250#undef T
10251}
10252
10253// Helper to print AEABI enum tag value.
10254
10255template<bool big_endian>
10256std::string
10257Target_arm<big_endian>::aeabi_enum_name(unsigned int value)
10258{
ca09d69a 10259 static const char* aeabi_enum_names[] =
a0351a69
DK
10260 { "", "variable-size", "32-bit", "" };
10261 const size_t aeabi_enum_names_size =
10262 sizeof(aeabi_enum_names) / sizeof(aeabi_enum_names[0]);
10263
10264 if (value < aeabi_enum_names_size)
10265 return std::string(aeabi_enum_names[value]);
10266 else
10267 {
10268 char buffer[100];
10269 sprintf(buffer, "<unknown value %u>", value);
10270 return std::string(buffer);
10271 }
10272}
10273
10274// Return the string value to store in TAG_CPU_name.
10275
10276template<bool big_endian>
10277std::string
10278Target_arm<big_endian>::tag_cpu_name_value(unsigned int value)
10279{
ca09d69a 10280 static const char* name_table[] = {
a0351a69
DK
10281 // These aren't real CPU names, but we can't guess
10282 // that from the architecture version alone.
10283 "Pre v4",
10284 "ARM v4",
10285 "ARM v4T",
10286 "ARM v5T",
10287 "ARM v5TE",
10288 "ARM v5TEJ",
10289 "ARM v6",
10290 "ARM v6KZ",
10291 "ARM v6T2",
10292 "ARM v6K",
10293 "ARM v7",
10294 "ARM v6-M",
10295 "ARM v6S-M",
10296 "ARM v7E-M"
10297 };
10298 const size_t name_table_size = sizeof(name_table) / sizeof(name_table[0]);
10299
10300 if (value < name_table_size)
10301 return std::string(name_table[value]);
10302 else
10303 {
10304 char buffer[100];
10305 sprintf(buffer, "<unknown CPU value %u>", value);
10306 return std::string(buffer);
10307 }
10308}
10309
10310// Merge object attributes from input file called NAME with those of the
10311// output. The input object attributes are in the object pointed by PASD.
10312
10313template<bool big_endian>
10314void
10315Target_arm<big_endian>::merge_object_attributes(
10316 const char* name,
10317 const Attributes_section_data* pasd)
10318{
10319 // Return if there is no attributes section data.
10320 if (pasd == NULL)
10321 return;
10322
10323 // If output has no object attributes, just copy.
da59ad79 10324 const int vendor = Object_attribute::OBJ_ATTR_PROC;
a0351a69
DK
10325 if (this->attributes_section_data_ == NULL)
10326 {
10327 this->attributes_section_data_ = new Attributes_section_data(*pasd);
da59ad79
DK
10328 Object_attribute* out_attr =
10329 this->attributes_section_data_->known_attributes(vendor);
10330
10331 // We do not output objects with Tag_MPextension_use_legacy - we move
10332 // the attribute's value to Tag_MPextension_use. */
10333 if (out_attr[elfcpp::Tag_MPextension_use_legacy].int_value() != 0)
10334 {
10335 if (out_attr[elfcpp::Tag_MPextension_use].int_value() != 0
10336 && out_attr[elfcpp::Tag_MPextension_use_legacy].int_value()
10337 != out_attr[elfcpp::Tag_MPextension_use].int_value())
10338 {
10339 gold_error(_("%s has both the current and legacy "
10340 "Tag_MPextension_use attributes"),
10341 name);
10342 }
10343
10344 out_attr[elfcpp::Tag_MPextension_use] =
10345 out_attr[elfcpp::Tag_MPextension_use_legacy];
10346 out_attr[elfcpp::Tag_MPextension_use_legacy].set_type(0);
10347 out_attr[elfcpp::Tag_MPextension_use_legacy].set_int_value(0);
10348 }
10349
a0351a69
DK
10350 return;
10351 }
10352
a0351a69
DK
10353 const Object_attribute* in_attr = pasd->known_attributes(vendor);
10354 Object_attribute* out_attr =
10355 this->attributes_section_data_->known_attributes(vendor);
10356
10357 // This needs to happen before Tag_ABI_FP_number_model is merged. */
10358 if (in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
10359 != out_attr[elfcpp::Tag_ABI_VFP_args].int_value())
10360 {
10361 // Ignore mismatches if the object doesn't use floating point. */
10362 if (out_attr[elfcpp::Tag_ABI_FP_number_model].int_value() == 0)
10363 out_attr[elfcpp::Tag_ABI_VFP_args].set_int_value(
10364 in_attr[elfcpp::Tag_ABI_VFP_args].int_value());
7296d933
DK
10365 else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value() != 0
10366 && parameters->options().warn_mismatch())
a0351a69
DK
10367 gold_error(_("%s uses VFP register arguments, output does not"),
10368 name);
10369 }
10370
10371 for (int i = 4; i < Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES; ++i)
10372 {
10373 // Merge this attribute with existing attributes.
10374 switch (i)
10375 {
10376 case elfcpp::Tag_CPU_raw_name:
10377 case elfcpp::Tag_CPU_name:
10378 // These are merged after Tag_CPU_arch.
10379 break;
10380
10381 case elfcpp::Tag_ABI_optimization_goals:
10382 case elfcpp::Tag_ABI_FP_optimization_goals:
10383 // Use the first value seen.
10384 break;
10385
10386 case elfcpp::Tag_CPU_arch:
10387 {
10388 unsigned int saved_out_attr = out_attr->int_value();
10389 // Merge Tag_CPU_arch and Tag_also_compatible_with.
10390 int secondary_compat =
10391 this->get_secondary_compatible_arch(pasd);
10392 int secondary_compat_out =
10393 this->get_secondary_compatible_arch(
10394 this->attributes_section_data_);
10395 out_attr[i].set_int_value(
10396 tag_cpu_arch_combine(name, out_attr[i].int_value(),
10397 &secondary_compat_out,
10398 in_attr[i].int_value(),
10399 secondary_compat));
10400 this->set_secondary_compatible_arch(this->attributes_section_data_,
10401 secondary_compat_out);
10402
10403 // Merge Tag_CPU_name and Tag_CPU_raw_name.
10404 if (out_attr[i].int_value() == saved_out_attr)
10405 ; // Leave the names alone.
10406 else if (out_attr[i].int_value() == in_attr[i].int_value())
10407 {
10408 // The output architecture has been changed to match the
10409 // input architecture. Use the input names.
10410 out_attr[elfcpp::Tag_CPU_name].set_string_value(
10411 in_attr[elfcpp::Tag_CPU_name].string_value());
10412 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value(
10413 in_attr[elfcpp::Tag_CPU_raw_name].string_value());
10414 }
10415 else
10416 {
10417 out_attr[elfcpp::Tag_CPU_name].set_string_value("");
10418 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value("");
10419 }
10420
10421 // If we still don't have a value for Tag_CPU_name,
10422 // make one up now. Tag_CPU_raw_name remains blank.
10423 if (out_attr[elfcpp::Tag_CPU_name].string_value() == "")
10424 {
10425 const std::string cpu_name =
10426 this->tag_cpu_name_value(out_attr[i].int_value());
10427 // FIXME: If we see an unknown CPU, this will be set
10428 // to "<unknown CPU n>", where n is the attribute value.
10429 // This is different from BFD, which leaves the name alone.
10430 out_attr[elfcpp::Tag_CPU_name].set_string_value(cpu_name);
10431 }
10432 }
10433 break;
10434
10435 case elfcpp::Tag_ARM_ISA_use:
10436 case elfcpp::Tag_THUMB_ISA_use:
10437 case elfcpp::Tag_WMMX_arch:
10438 case elfcpp::Tag_Advanced_SIMD_arch:
10439 // ??? Do Advanced_SIMD (NEON) and WMMX conflict?
10440 case elfcpp::Tag_ABI_FP_rounding:
10441 case elfcpp::Tag_ABI_FP_exceptions:
10442 case elfcpp::Tag_ABI_FP_user_exceptions:
10443 case elfcpp::Tag_ABI_FP_number_model:
10444 case elfcpp::Tag_VFP_HP_extension:
10445 case elfcpp::Tag_CPU_unaligned_access:
10446 case elfcpp::Tag_T2EE_use:
10447 case elfcpp::Tag_Virtualization_use:
10448 case elfcpp::Tag_MPextension_use:
10449 // Use the largest value specified.
10450 if (in_attr[i].int_value() > out_attr[i].int_value())
10451 out_attr[i].set_int_value(in_attr[i].int_value());
10452 break;
10453
10454 case elfcpp::Tag_ABI_align8_preserved:
10455 case elfcpp::Tag_ABI_PCS_RO_data:
10456 // Use the smallest value specified.
10457 if (in_attr[i].int_value() < out_attr[i].int_value())
10458 out_attr[i].set_int_value(in_attr[i].int_value());
10459 break;
10460
10461 case elfcpp::Tag_ABI_align8_needed:
10462 if ((in_attr[i].int_value() > 0 || out_attr[i].int_value() > 0)
10463 && (in_attr[elfcpp::Tag_ABI_align8_preserved].int_value() == 0
10464 || (out_attr[elfcpp::Tag_ABI_align8_preserved].int_value()
10465 == 0)))
10466 {
9b547ce6 10467 // This error message should be enabled once all non-conforming
a0351a69
DK
10468 // binaries in the toolchain have had the attributes set
10469 // properly.
10470 // gold_error(_("output 8-byte data alignment conflicts with %s"),
10471 // name);
10472 }
10473 // Fall through.
10474 case elfcpp::Tag_ABI_FP_denormal:
10475 case elfcpp::Tag_ABI_PCS_GOT_use:
10476 {
10477 // These tags have 0 = don't care, 1 = strong requirement,
10478 // 2 = weak requirement.
10479 static const int order_021[3] = {0, 2, 1};
10480
10481 // Use the "greatest" from the sequence 0, 2, 1, or the largest
10482 // value if greater than 2 (for future-proofing).
10483 if ((in_attr[i].int_value() > 2
10484 && in_attr[i].int_value() > out_attr[i].int_value())
10485 || (in_attr[i].int_value() <= 2
10486 && out_attr[i].int_value() <= 2
10487 && (order_021[in_attr[i].int_value()]
10488 > order_021[out_attr[i].int_value()])))
10489 out_attr[i].set_int_value(in_attr[i].int_value());
10490 }
10491 break;
10492
10493 case elfcpp::Tag_CPU_arch_profile:
10494 if (out_attr[i].int_value() != in_attr[i].int_value())
10495 {
10496 // 0 will merge with anything.
10497 // 'A' and 'S' merge to 'A'.
10498 // 'R' and 'S' merge to 'R'.
10499 // 'M' and 'A|R|S' is an error.
10500 if (out_attr[i].int_value() == 0
10501 || (out_attr[i].int_value() == 'S'
10502 && (in_attr[i].int_value() == 'A'
10503 || in_attr[i].int_value() == 'R')))
10504 out_attr[i].set_int_value(in_attr[i].int_value());
10505 else if (in_attr[i].int_value() == 0
10506 || (in_attr[i].int_value() == 'S'
10507 && (out_attr[i].int_value() == 'A'
10508 || out_attr[i].int_value() == 'R')))
10509 ; // Do nothing.
7296d933 10510 else if (parameters->options().warn_mismatch())
a0351a69
DK
10511 {
10512 gold_error
10513 (_("conflicting architecture profiles %c/%c"),
10514 in_attr[i].int_value() ? in_attr[i].int_value() : '0',
10515 out_attr[i].int_value() ? out_attr[i].int_value() : '0');
10516 }
10517 }
10518 break;
10519 case elfcpp::Tag_VFP_arch:
10520 {
10521 static const struct
10522 {
10523 int ver;
10524 int regs;
10525 } vfp_versions[7] =
10526 {
10527 {0, 0},
10528 {1, 16},
10529 {2, 16},
10530 {3, 32},
10531 {3, 16},
10532 {4, 32},
10533 {4, 16}
10534 };
10535
10536 // Values greater than 6 aren't defined, so just pick the
10537 // biggest.
10538 if (in_attr[i].int_value() > 6
10539 && in_attr[i].int_value() > out_attr[i].int_value())
10540 {
10541 *out_attr = *in_attr;
10542 break;
10543 }
10544 // The output uses the superset of input features
10545 // (ISA version) and registers.
10546 int ver = std::max(vfp_versions[in_attr[i].int_value()].ver,
10547 vfp_versions[out_attr[i].int_value()].ver);
10548 int regs = std::max(vfp_versions[in_attr[i].int_value()].regs,
10549 vfp_versions[out_attr[i].int_value()].regs);
10550 // This assumes all possible supersets are also a valid
10551 // options.
10552 int newval;
10553 for (newval = 6; newval > 0; newval--)
10554 {
10555 if (regs == vfp_versions[newval].regs
10556 && ver == vfp_versions[newval].ver)
10557 break;
10558 }
10559 out_attr[i].set_int_value(newval);
10560 }
10561 break;
10562 case elfcpp::Tag_PCS_config:
10563 if (out_attr[i].int_value() == 0)
10564 out_attr[i].set_int_value(in_attr[i].int_value());
7296d933
DK
10565 else if (in_attr[i].int_value() != 0
10566 && out_attr[i].int_value() != 0
10567 && parameters->options().warn_mismatch())
a0351a69
DK
10568 {
10569 // It's sometimes ok to mix different configs, so this is only
10570 // a warning.
10571 gold_warning(_("%s: conflicting platform configuration"), name);
10572 }
10573 break;
10574 case elfcpp::Tag_ABI_PCS_R9_use:
10575 if (in_attr[i].int_value() != out_attr[i].int_value()
10576 && out_attr[i].int_value() != elfcpp::AEABI_R9_unused
7296d933
DK
10577 && in_attr[i].int_value() != elfcpp::AEABI_R9_unused
10578 && parameters->options().warn_mismatch())
a0351a69
DK
10579 {
10580 gold_error(_("%s: conflicting use of R9"), name);
10581 }
10582 if (out_attr[i].int_value() == elfcpp::AEABI_R9_unused)
10583 out_attr[i].set_int_value(in_attr[i].int_value());
10584 break;
10585 case elfcpp::Tag_ABI_PCS_RW_data:
10586 if (in_attr[i].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel
10587 && (in_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
10588 != elfcpp::AEABI_R9_SB)
10589 && (out_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
7296d933
DK
10590 != elfcpp::AEABI_R9_unused)
10591 && parameters->options().warn_mismatch())
a0351a69
DK
10592 {
10593 gold_error(_("%s: SB relative addressing conflicts with use "
10594 "of R9"),
7296d933 10595 name);
a0351a69
DK
10596 }
10597 // Use the smallest value specified.
10598 if (in_attr[i].int_value() < out_attr[i].int_value())
10599 out_attr[i].set_int_value(in_attr[i].int_value());
10600 break;
10601 case elfcpp::Tag_ABI_PCS_wchar_t:
a0351a69
DK
10602 if (out_attr[i].int_value()
10603 && in_attr[i].int_value()
7296d933 10604 && out_attr[i].int_value() != in_attr[i].int_value()
ce0d1972
DK
10605 && parameters->options().warn_mismatch()
10606 && parameters->options().wchar_size_warning())
a0351a69
DK
10607 {
10608 gold_warning(_("%s uses %u-byte wchar_t yet the output is to "
10609 "use %u-byte wchar_t; use of wchar_t values "
10610 "across objects may fail"),
10611 name, in_attr[i].int_value(),
10612 out_attr[i].int_value());
10613 }
10614 else if (in_attr[i].int_value() && !out_attr[i].int_value())
10615 out_attr[i].set_int_value(in_attr[i].int_value());
10616 break;
10617 case elfcpp::Tag_ABI_enum_size:
10618 if (in_attr[i].int_value() != elfcpp::AEABI_enum_unused)
10619 {
10620 if (out_attr[i].int_value() == elfcpp::AEABI_enum_unused
10621 || out_attr[i].int_value() == elfcpp::AEABI_enum_forced_wide)
10622 {
10623 // The existing object is compatible with anything.
10624 // Use whatever requirements the new object has.
10625 out_attr[i].set_int_value(in_attr[i].int_value());
10626 }
a0351a69 10627 else if (in_attr[i].int_value() != elfcpp::AEABI_enum_forced_wide
7296d933 10628 && out_attr[i].int_value() != in_attr[i].int_value()
ce0d1972
DK
10629 && parameters->options().warn_mismatch()
10630 && parameters->options().enum_size_warning())
a0351a69
DK
10631 {
10632 unsigned int in_value = in_attr[i].int_value();
10633 unsigned int out_value = out_attr[i].int_value();
10634 gold_warning(_("%s uses %s enums yet the output is to use "
10635 "%s enums; use of enum values across objects "
10636 "may fail"),
10637 name,
10638 this->aeabi_enum_name(in_value).c_str(),
10639 this->aeabi_enum_name(out_value).c_str());
10640 }
10641 }
10642 break;
10643 case elfcpp::Tag_ABI_VFP_args:
9b547ce6 10644 // Already done.
a0351a69
DK
10645 break;
10646 case elfcpp::Tag_ABI_WMMX_args:
7296d933
DK
10647 if (in_attr[i].int_value() != out_attr[i].int_value()
10648 && parameters->options().warn_mismatch())
a0351a69
DK
10649 {
10650 gold_error(_("%s uses iWMMXt register arguments, output does "
10651 "not"),
10652 name);
10653 }
10654 break;
10655 case Object_attribute::Tag_compatibility:
10656 // Merged in target-independent code.
10657 break;
10658 case elfcpp::Tag_ABI_HardFP_use:
10659 // 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP).
10660 if ((in_attr[i].int_value() == 1 && out_attr[i].int_value() == 2)
10661 || (in_attr[i].int_value() == 2 && out_attr[i].int_value() == 1))
10662 out_attr[i].set_int_value(3);
10663 else if (in_attr[i].int_value() > out_attr[i].int_value())
10664 out_attr[i].set_int_value(in_attr[i].int_value());
10665 break;
10666 case elfcpp::Tag_ABI_FP_16bit_format:
10667 if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
10668 {
7296d933
DK
10669 if (in_attr[i].int_value() != out_attr[i].int_value()
10670 && parameters->options().warn_mismatch())
a0351a69
DK
10671 gold_error(_("fp16 format mismatch between %s and output"),
10672 name);
10673 }
10674 if (in_attr[i].int_value() != 0)
10675 out_attr[i].set_int_value(in_attr[i].int_value());
10676 break;
10677
da59ad79
DK
10678 case elfcpp::Tag_DIV_use:
10679 // This tag is set to zero if we can use UDIV and SDIV in Thumb
10680 // mode on a v7-M or v7-R CPU; to one if we can not use UDIV or
10681 // SDIV at all; and to two if we can use UDIV or SDIV on a v7-A
10682 // CPU. We will merge as follows: If the input attribute's value
10683 // is one then the output attribute's value remains unchanged. If
10684 // the input attribute's value is zero or two then if the output
10685 // attribute's value is one the output value is set to the input
10686 // value, otherwise the output value must be the same as the
10687 // inputs. */
10688 if (in_attr[i].int_value() != 1 && out_attr[i].int_value() != 1)
10689 {
10690 if (in_attr[i].int_value() != out_attr[i].int_value())
10691 {
10692 gold_error(_("DIV usage mismatch between %s and output"),
10693 name);
10694 }
10695 }
10696
10697 if (in_attr[i].int_value() != 1)
10698 out_attr[i].set_int_value(in_attr[i].int_value());
10699
10700 break;
10701
10702 case elfcpp::Tag_MPextension_use_legacy:
10703 // We don't output objects with Tag_MPextension_use_legacy - we
10704 // move the value to Tag_MPextension_use.
10705 if (in_attr[i].int_value() != 0
10706 && in_attr[elfcpp::Tag_MPextension_use].int_value() != 0)
10707 {
10708 if (in_attr[elfcpp::Tag_MPextension_use].int_value()
10709 != in_attr[i].int_value())
10710 {
10711 gold_error(_("%s has has both the current and legacy "
10712 "Tag_MPextension_use attributes"),
10713 name);
10714 }
10715 }
10716
10717 if (in_attr[i].int_value()
10718 > out_attr[elfcpp::Tag_MPextension_use].int_value())
10719 out_attr[elfcpp::Tag_MPextension_use] = in_attr[i];
10720
10721 break;
10722
a0351a69
DK
10723 case elfcpp::Tag_nodefaults:
10724 // This tag is set if it exists, but the value is unused (and is
10725 // typically zero). We don't actually need to do anything here -
10726 // the merge happens automatically when the type flags are merged
10727 // below.
10728 break;
10729 case elfcpp::Tag_also_compatible_with:
10730 // Already done in Tag_CPU_arch.
10731 break;
10732 case elfcpp::Tag_conformance:
10733 // Keep the attribute if it matches. Throw it away otherwise.
10734 // No attribute means no claim to conform.
10735 if (in_attr[i].string_value() != out_attr[i].string_value())
10736 out_attr[i].set_string_value("");
10737 break;
10738
10739 default:
10740 {
10741 const char* err_object = NULL;
10742
10743 // The "known_obj_attributes" table does contain some undefined
10744 // attributes. Ensure that there are unused.
10745 if (out_attr[i].int_value() != 0
10746 || out_attr[i].string_value() != "")
10747 err_object = "output";
10748 else if (in_attr[i].int_value() != 0
10749 || in_attr[i].string_value() != "")
10750 err_object = name;
10751
7296d933
DK
10752 if (err_object != NULL
10753 && parameters->options().warn_mismatch())
a0351a69
DK
10754 {
10755 // Attribute numbers >=64 (mod 128) can be safely ignored.
10756 if ((i & 127) < 64)
10757 gold_error(_("%s: unknown mandatory EABI object attribute "
10758 "%d"),
10759 err_object, i);
10760 else
10761 gold_warning(_("%s: unknown EABI object attribute %d"),
10762 err_object, i);
10763 }
10764
10765 // Only pass on attributes that match in both inputs.
10766 if (!in_attr[i].matches(out_attr[i]))
10767 {
10768 out_attr[i].set_int_value(0);
10769 out_attr[i].set_string_value("");
10770 }
10771 }
10772 }
10773
10774 // If out_attr was copied from in_attr then it won't have a type yet.
10775 if (in_attr[i].type() && !out_attr[i].type())
10776 out_attr[i].set_type(in_attr[i].type());
10777 }
10778
10779 // Merge Tag_compatibility attributes and any common GNU ones.
10780 this->attributes_section_data_->merge(name, pasd);
10781
10782 // Check for any attributes not known on ARM.
10783 typedef Vendor_object_attributes::Other_attributes Other_attributes;
10784 const Other_attributes* in_other_attributes = pasd->other_attributes(vendor);
10785 Other_attributes::const_iterator in_iter = in_other_attributes->begin();
10786 Other_attributes* out_other_attributes =
10787 this->attributes_section_data_->other_attributes(vendor);
10788 Other_attributes::iterator out_iter = out_other_attributes->begin();
10789
10790 while (in_iter != in_other_attributes->end()
10791 || out_iter != out_other_attributes->end())
10792 {
10793 const char* err_object = NULL;
10794 int err_tag = 0;
10795
10796 // The tags for each list are in numerical order.
10797 // If the tags are equal, then merge.
10798 if (out_iter != out_other_attributes->end()
10799 && (in_iter == in_other_attributes->end()
10800 || in_iter->first > out_iter->first))
10801 {
10802 // This attribute only exists in output. We can't merge, and we
10803 // don't know what the tag means, so delete it.
10804 err_object = "output";
10805 err_tag = out_iter->first;
10806 int saved_tag = out_iter->first;
10807 delete out_iter->second;
10808 out_other_attributes->erase(out_iter);
10809 out_iter = out_other_attributes->upper_bound(saved_tag);
10810 }
10811 else if (in_iter != in_other_attributes->end()
10812 && (out_iter != out_other_attributes->end()
10813 || in_iter->first < out_iter->first))
10814 {
10815 // This attribute only exists in input. We can't merge, and we
10816 // don't know what the tag means, so ignore it.
10817 err_object = name;
10818 err_tag = in_iter->first;
10819 ++in_iter;
10820 }
10821 else // The tags are equal.
10822 {
10823 // As present, all attributes in the list are unknown, and
10824 // therefore can't be merged meaningfully.
10825 err_object = "output";
10826 err_tag = out_iter->first;
10827
10828 // Only pass on attributes that match in both inputs.
10829 if (!in_iter->second->matches(*(out_iter->second)))
10830 {
10831 // No match. Delete the attribute.
10832 int saved_tag = out_iter->first;
10833 delete out_iter->second;
10834 out_other_attributes->erase(out_iter);
10835 out_iter = out_other_attributes->upper_bound(saved_tag);
10836 }
10837 else
10838 {
10839 // Matched. Keep the attribute and move to the next.
10840 ++out_iter;
10841 ++in_iter;
10842 }
10843 }
10844
7296d933 10845 if (err_object && parameters->options().warn_mismatch())
a0351a69
DK
10846 {
10847 // Attribute numbers >=64 (mod 128) can be safely ignored. */
10848 if ((err_tag & 127) < 64)
10849 {
10850 gold_error(_("%s: unknown mandatory EABI object attribute %d"),
10851 err_object, err_tag);
10852 }
10853 else
10854 {
10855 gold_warning(_("%s: unknown EABI object attribute %d"),
10856 err_object, err_tag);
10857 }
10858 }
10859 }
10860}
10861
55da9579
DK
10862// Stub-generation methods for Target_arm.
10863
10864// Make a new Arm_input_section object.
10865
10866template<bool big_endian>
10867Arm_input_section<big_endian>*
10868Target_arm<big_endian>::new_arm_input_section(
2ea97941
ILT
10869 Relobj* relobj,
10870 unsigned int shndx)
55da9579 10871{
5ac169d4 10872 Section_id sid(relobj, shndx);
55da9579
DK
10873
10874 Arm_input_section<big_endian>* arm_input_section =
2ea97941 10875 new Arm_input_section<big_endian>(relobj, shndx);
55da9579
DK
10876 arm_input_section->init();
10877
10878 // Register new Arm_input_section in map for look-up.
10879 std::pair<typename Arm_input_section_map::iterator, bool> ins =
5ac169d4 10880 this->arm_input_section_map_.insert(std::make_pair(sid, arm_input_section));
55da9579
DK
10881
10882 // Make sure that it we have not created another Arm_input_section
10883 // for this input section already.
10884 gold_assert(ins.second);
10885
10886 return arm_input_section;
10887}
10888
10889// Find the Arm_input_section object corresponding to the SHNDX-th input
10890// section of RELOBJ.
10891
10892template<bool big_endian>
10893Arm_input_section<big_endian>*
10894Target_arm<big_endian>::find_arm_input_section(
2ea97941
ILT
10895 Relobj* relobj,
10896 unsigned int shndx) const
55da9579 10897{
5ac169d4 10898 Section_id sid(relobj, shndx);
55da9579 10899 typename Arm_input_section_map::const_iterator p =
5ac169d4 10900 this->arm_input_section_map_.find(sid);
55da9579
DK
10901 return (p != this->arm_input_section_map_.end()) ? p->second : NULL;
10902}
10903
10904// Make a new stub table.
10905
10906template<bool big_endian>
10907Stub_table<big_endian>*
10908Target_arm<big_endian>::new_stub_table(Arm_input_section<big_endian>* owner)
10909{
2ea97941 10910 Stub_table<big_endian>* stub_table =
55da9579 10911 new Stub_table<big_endian>(owner);
2ea97941 10912 this->stub_tables_.push_back(stub_table);
55da9579 10913
2ea97941
ILT
10914 stub_table->set_address(owner->address() + owner->data_size());
10915 stub_table->set_file_offset(owner->offset() + owner->data_size());
10916 stub_table->finalize_data_size();
55da9579 10917
2ea97941 10918 return stub_table;
55da9579
DK
10919}
10920
eb44217c
DK
10921// Scan a relocation for stub generation.
10922
10923template<bool big_endian>
10924void
10925Target_arm<big_endian>::scan_reloc_for_stub(
10926 const Relocate_info<32, big_endian>* relinfo,
10927 unsigned int r_type,
10928 const Sized_symbol<32>* gsym,
10929 unsigned int r_sym,
10930 const Symbol_value<32>* psymval,
10931 elfcpp::Elf_types<32>::Elf_Swxword addend,
10932 Arm_address address)
10933{
2ea97941 10934 typedef typename Target_arm<big_endian>::Relocate Relocate;
eb44217c
DK
10935
10936 const Arm_relobj<big_endian>* arm_relobj =
10937 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
10938
10939 bool target_is_thumb;
10940 Symbol_value<32> symval;
10941 if (gsym != NULL)
10942 {
10943 // This is a global symbol. Determine if we use PLT and if the
10944 // final target is THUMB.
95a2c8d6 10945 if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
eb44217c
DK
10946 {
10947 // This uses a PLT, change the symbol value.
10948 symval.set_output_value(this->plt_section()->address()
10949 + gsym->plt_offset());
10950 psymval = &symval;
10951 target_is_thumb = false;
10952 }
10953 else if (gsym->is_undefined())
10954 // There is no need to generate a stub symbol is undefined.
10955 return;
10956 else
10957 {
10958 target_is_thumb =
10959 ((gsym->type() == elfcpp::STT_ARM_TFUNC)
10960 || (gsym->type() == elfcpp::STT_FUNC
10961 && !gsym->is_undefined()
10962 && ((psymval->value(arm_relobj, 0) & 1) != 0)));
10963 }
10964 }
10965 else
10966 {
10967 // This is a local symbol. Determine if the final target is THUMB.
10968 target_is_thumb = arm_relobj->local_symbol_is_thumb_function(r_sym);
10969 }
10970
10971 // Strip LSB if this points to a THUMB target.
5c57f1be
DK
10972 const Arm_reloc_property* reloc_property =
10973 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
10974 gold_assert(reloc_property != NULL);
eb44217c 10975 if (target_is_thumb
5c57f1be 10976 && reloc_property->uses_thumb_bit()
eb44217c
DK
10977 && ((psymval->value(arm_relobj, 0) & 1) != 0))
10978 {
10979 Arm_address stripped_value =
10980 psymval->value(arm_relobj, 0) & ~static_cast<Arm_address>(1);
10981 symval.set_output_value(stripped_value);
10982 psymval = &symval;
10983 }
10984
10985 // Get the symbol value.
10986 Symbol_value<32>::Value value = psymval->value(arm_relobj, 0);
10987
10988 // Owing to pipelining, the PC relative branches below actually skip
10989 // two instructions when the branch offset is 0.
10990 Arm_address destination;
10991 switch (r_type)
10992 {
10993 case elfcpp::R_ARM_CALL:
10994 case elfcpp::R_ARM_JUMP24:
10995 case elfcpp::R_ARM_PLT32:
10996 // ARM branches.
10997 destination = value + addend + 8;
10998 break;
10999 case elfcpp::R_ARM_THM_CALL:
11000 case elfcpp::R_ARM_THM_XPC22:
11001 case elfcpp::R_ARM_THM_JUMP24:
11002 case elfcpp::R_ARM_THM_JUMP19:
11003 // THUMB branches.
11004 destination = value + addend + 4;
11005 break;
11006 default:
11007 gold_unreachable();
11008 }
11009
a120bc7f 11010 Reloc_stub* stub = NULL;
eb44217c
DK
11011 Stub_type stub_type =
11012 Reloc_stub::stub_type_for_reloc(r_type, address, destination,
11013 target_is_thumb);
a120bc7f
DK
11014 if (stub_type != arm_stub_none)
11015 {
11016 // Try looking up an existing stub from a stub table.
11017 Stub_table<big_endian>* stub_table =
11018 arm_relobj->stub_table(relinfo->data_shndx);
11019 gold_assert(stub_table != NULL);
eb44217c 11020
a120bc7f
DK
11021 // Locate stub by destination.
11022 Reloc_stub::Key stub_key(stub_type, gsym, arm_relobj, r_sym, addend);
eb44217c 11023
a120bc7f
DK
11024 // Create a stub if there is not one already
11025 stub = stub_table->find_reloc_stub(stub_key);
11026 if (stub == NULL)
11027 {
11028 // create a new stub and add it to stub table.
11029 stub = this->stub_factory().make_reloc_stub(stub_type);
11030 stub_table->add_reloc_stub(stub, stub_key);
11031 }
11032
11033 // Record the destination address.
11034 stub->set_destination_address(destination
11035 | (target_is_thumb ? 1 : 0));
eb44217c
DK
11036 }
11037
a120bc7f
DK
11038 // For Cortex-A8, we need to record a relocation at 4K page boundary.
11039 if (this->fix_cortex_a8_
11040 && (r_type == elfcpp::R_ARM_THM_JUMP24
11041 || r_type == elfcpp::R_ARM_THM_JUMP19
11042 || r_type == elfcpp::R_ARM_THM_CALL
11043 || r_type == elfcpp::R_ARM_THM_XPC22)
11044 && (address & 0xfffU) == 0xffeU)
11045 {
11046 // Found a candidate. Note we haven't checked the destination is
11047 // within 4K here: if we do so (and don't create a record) we can't
11048 // tell that a branch should have been relocated when scanning later.
11049 this->cortex_a8_relocs_info_[address] =
11050 new Cortex_a8_reloc(stub, r_type,
11051 destination | (target_is_thumb ? 1 : 0));
11052 }
eb44217c
DK
11053}
11054
11055// This function scans a relocation sections for stub generation.
11056// The template parameter Relocate must be a class type which provides
11057// a single function, relocate(), which implements the machine
11058// specific part of a relocation.
11059
11060// BIG_ENDIAN is the endianness of the data. SH_TYPE is the section type:
11061// SHT_REL or SHT_RELA.
11062
11063// PRELOCS points to the relocation data. RELOC_COUNT is the number
11064// of relocs. OUTPUT_SECTION is the output section.
11065// NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
11066// mapped to output offsets.
11067
11068// VIEW is the section data, VIEW_ADDRESS is its memory address, and
11069// VIEW_SIZE is the size. These refer to the input section, unless
11070// NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
11071// the output section.
11072
11073template<bool big_endian>
11074template<int sh_type>
11075void inline
11076Target_arm<big_endian>::scan_reloc_section_for_stubs(
11077 const Relocate_info<32, big_endian>* relinfo,
11078 const unsigned char* prelocs,
11079 size_t reloc_count,
11080 Output_section* output_section,
11081 bool needs_special_offset_handling,
11082 const unsigned char* view,
11083 elfcpp::Elf_types<32>::Elf_Addr view_address,
11084 section_size_type)
11085{
11086 typedef typename Reloc_types<sh_type, 32, big_endian>::Reloc Reltype;
11087 const int reloc_size =
11088 Reloc_types<sh_type, 32, big_endian>::reloc_size;
11089
11090 Arm_relobj<big_endian>* arm_object =
11091 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
11092 unsigned int local_count = arm_object->local_symbol_count();
11093
11094 Comdat_behavior comdat_behavior = CB_UNDETERMINED;
11095
11096 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
11097 {
11098 Reltype reloc(prelocs);
11099
11100 typename elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
11101 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
11102 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
11103
11104 r_type = this->get_real_reloc_type(r_type);
11105
11106 // Only a few relocation types need stubs.
11107 if ((r_type != elfcpp::R_ARM_CALL)
11108 && (r_type != elfcpp::R_ARM_JUMP24)
11109 && (r_type != elfcpp::R_ARM_PLT32)
11110 && (r_type != elfcpp::R_ARM_THM_CALL)
11111 && (r_type != elfcpp::R_ARM_THM_XPC22)
11112 && (r_type != elfcpp::R_ARM_THM_JUMP24)
a2162063
ILT
11113 && (r_type != elfcpp::R_ARM_THM_JUMP19)
11114 && (r_type != elfcpp::R_ARM_V4BX))
eb44217c
DK
11115 continue;
11116
2ea97941 11117 section_offset_type offset =
eb44217c
DK
11118 convert_to_section_size_type(reloc.get_r_offset());
11119
11120 if (needs_special_offset_handling)
11121 {
2ea97941
ILT
11122 offset = output_section->output_offset(relinfo->object,
11123 relinfo->data_shndx,
11124 offset);
11125 if (offset == -1)
eb44217c
DK
11126 continue;
11127 }
11128
2fd9ae7a 11129 // Create a v4bx stub if --fix-v4bx-interworking is used.
a2162063
ILT
11130 if (r_type == elfcpp::R_ARM_V4BX)
11131 {
2fd9ae7a
DK
11132 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING)
11133 {
11134 // Get the BX instruction.
11135 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
11136 const Valtype* wv =
11137 reinterpret_cast<const Valtype*>(view + offset);
11138 elfcpp::Elf_types<32>::Elf_Swxword insn =
11139 elfcpp::Swap<32, big_endian>::readval(wv);
11140 const uint32_t reg = (insn & 0xf);
11141
11142 if (reg < 0xf)
11143 {
11144 // Try looking up an existing stub from a stub table.
11145 Stub_table<big_endian>* stub_table =
11146 arm_object->stub_table(relinfo->data_shndx);
11147 gold_assert(stub_table != NULL);
11148
11149 if (stub_table->find_arm_v4bx_stub(reg) == NULL)
11150 {
11151 // create a new stub and add it to stub table.
11152 Arm_v4bx_stub* stub =
11153 this->stub_factory().make_arm_v4bx_stub(reg);
11154 gold_assert(stub != NULL);
11155 stub_table->add_arm_v4bx_stub(stub);
11156 }
11157 }
11158 }
a2162063
ILT
11159 continue;
11160 }
11161
eb44217c
DK
11162 // Get the addend.
11163 Stub_addend_reader<sh_type, big_endian> stub_addend_reader;
11164 elfcpp::Elf_types<32>::Elf_Swxword addend =
2ea97941 11165 stub_addend_reader(r_type, view + offset, reloc);
eb44217c
DK
11166
11167 const Sized_symbol<32>* sym;
11168
11169 Symbol_value<32> symval;
11170 const Symbol_value<32> *psymval;
aa98ff75
DK
11171 bool is_defined_in_discarded_section;
11172 unsigned int shndx;
eb44217c
DK
11173 if (r_sym < local_count)
11174 {
11175 sym = NULL;
11176 psymval = arm_object->local_symbol(r_sym);
11177
11178 // If the local symbol belongs to a section we are discarding,
11179 // and that section is a debug section, try to find the
11180 // corresponding kept section and map this symbol to its
11181 // counterpart in the kept section. The symbol must not
11182 // correspond to a section we are folding.
11183 bool is_ordinary;
aa98ff75
DK
11184 shndx = psymval->input_shndx(&is_ordinary);
11185 is_defined_in_discarded_section =
11186 (is_ordinary
11187 && shndx != elfcpp::SHN_UNDEF
11188 && !arm_object->is_section_included(shndx)
11189 && !relinfo->symtab->is_section_folded(arm_object, shndx));
11190
11191 // We need to compute the would-be final value of this local
11192 // symbol.
11193 if (!is_defined_in_discarded_section)
eb44217c 11194 {
6fa2a40b 11195 typedef Sized_relobj_file<32, big_endian> ObjType;
aa98ff75
DK
11196 typename ObjType::Compute_final_local_value_status status =
11197 arm_object->compute_final_local_value(r_sym, psymval, &symval,
11198 relinfo->symtab);
11199 if (status == ObjType::CFLV_OK)
11200 {
11201 // Currently we cannot handle a branch to a target in
11202 // a merged section. If this is the case, issue an error
11203 // and also free the merge symbol value.
11204 if (!symval.has_output_value())
11205 {
11206 const std::string& section_name =
11207 arm_object->section_name(shndx);
11208 arm_object->error(_("cannot handle branch to local %u "
11209 "in a merged section %s"),
11210 r_sym, section_name.c_str());
11211 }
11212 psymval = &symval;
11213 }
eb44217c 11214 else
aa98ff75
DK
11215 {
11216 // We cannot determine the final value.
11217 continue;
11218 }
eb44217c
DK
11219 }
11220 }
11221 else
11222 {
aa98ff75
DK
11223 const Symbol* gsym;
11224 gsym = arm_object->global_symbol(r_sym);
eb44217c
DK
11225 gold_assert(gsym != NULL);
11226 if (gsym->is_forwarder())
11227 gsym = relinfo->symtab->resolve_forwards(gsym);
11228
11229 sym = static_cast<const Sized_symbol<32>*>(gsym);
aa98ff75 11230 if (sym->has_symtab_index() && sym->symtab_index() != -1U)
eb44217c
DK
11231 symval.set_output_symtab_index(sym->symtab_index());
11232 else
11233 symval.set_no_output_symtab_entry();
11234
11235 // We need to compute the would-be final value of this global
11236 // symbol.
11237 const Symbol_table* symtab = relinfo->symtab;
11238 const Sized_symbol<32>* sized_symbol =
11239 symtab->get_sized_symbol<32>(gsym);
11240 Symbol_table::Compute_final_value_status status;
11241 Arm_address value =
11242 symtab->compute_final_value<32>(sized_symbol, &status);
11243
11244 // Skip this if the symbol has not output section.
11245 if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
11246 continue;
eb44217c 11247 symval.set_output_value(value);
aa98ff75
DK
11248
11249 if (gsym->type() == elfcpp::STT_TLS)
11250 symval.set_is_tls_symbol();
11251 else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
11252 symval.set_is_ifunc_symbol();
eb44217c 11253 psymval = &symval;
aa98ff75
DK
11254
11255 is_defined_in_discarded_section =
11256 (gsym->is_defined_in_discarded_section()
11257 && gsym->is_undefined());
11258 shndx = 0;
11259 }
11260
11261 Symbol_value<32> symval2;
11262 if (is_defined_in_discarded_section)
11263 {
11264 if (comdat_behavior == CB_UNDETERMINED)
11265 {
11266 std::string name = arm_object->section_name(relinfo->data_shndx);
11267 comdat_behavior = get_comdat_behavior(name.c_str());
11268 }
11269 if (comdat_behavior == CB_PRETEND)
11270 {
11271 // FIXME: This case does not work for global symbols.
11272 // We have no place to store the original section index.
11273 // Fortunately this does not matter for comdat sections,
11274 // only for sections explicitly discarded by a linker
11275 // script.
11276 bool found;
11277 typename elfcpp::Elf_types<32>::Elf_Addr value =
11278 arm_object->map_to_kept_section(shndx, &found);
11279 if (found)
11280 symval2.set_output_value(value + psymval->input_value());
11281 else
11282 symval2.set_output_value(0);
11283 }
11284 else
11285 {
11286 if (comdat_behavior == CB_WARNING)
11287 gold_warning_at_location(relinfo, i, offset,
11288 _("relocation refers to discarded "
11289 "section"));
11290 symval2.set_output_value(0);
11291 }
11292 symval2.set_no_output_symtab_entry();
11293 psymval = &symval2;
eb44217c
DK
11294 }
11295
11296 // If symbol is a section symbol, we don't know the actual type of
11297 // destination. Give up.
11298 if (psymval->is_section_symbol())
11299 continue;
11300
11301 this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
2ea97941 11302 addend, view_address + offset);
eb44217c
DK
11303 }
11304}
11305
11306// Scan an input section for stub generation.
11307
11308template<bool big_endian>
11309void
11310Target_arm<big_endian>::scan_section_for_stubs(
11311 const Relocate_info<32, big_endian>* relinfo,
11312 unsigned int sh_type,
11313 const unsigned char* prelocs,
11314 size_t reloc_count,
11315 Output_section* output_section,
11316 bool needs_special_offset_handling,
11317 const unsigned char* view,
11318 Arm_address view_address,
11319 section_size_type view_size)
11320{
11321 if (sh_type == elfcpp::SHT_REL)
11322 this->scan_reloc_section_for_stubs<elfcpp::SHT_REL>(
11323 relinfo,
11324 prelocs,
11325 reloc_count,
11326 output_section,
11327 needs_special_offset_handling,
11328 view,
11329 view_address,
11330 view_size);
11331 else if (sh_type == elfcpp::SHT_RELA)
11332 // We do not support RELA type relocations yet. This is provided for
11333 // completeness.
11334 this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
11335 relinfo,
11336 prelocs,
11337 reloc_count,
11338 output_section,
11339 needs_special_offset_handling,
11340 view,
11341 view_address,
11342 view_size);
11343 else
11344 gold_unreachable();
11345}
11346
11347// Group input sections for stub generation.
11348//
9b547ce6 11349// We group input sections in an output section so that the total size,
eb44217c
DK
11350// including any padding space due to alignment is smaller than GROUP_SIZE
11351// unless the only input section in group is bigger than GROUP_SIZE already.
11352// Then an ARM stub table is created to follow the last input section
11353// in group. For each group an ARM stub table is created an is placed
9b547ce6 11354// after the last group. If STUB_ALWAYS_AFTER_BRANCH is false, we further
eb44217c
DK
11355// extend the group after the stub table.
11356
11357template<bool big_endian>
11358void
11359Target_arm<big_endian>::group_sections(
2ea97941 11360 Layout* layout,
eb44217c 11361 section_size_type group_size,
f625ae50
DK
11362 bool stubs_always_after_branch,
11363 const Task* task)
eb44217c
DK
11364{
11365 // Group input sections and insert stub table
11366 Layout::Section_list section_list;
2ea97941 11367 layout->get_allocated_sections(&section_list);
eb44217c
DK
11368 for (Layout::Section_list::const_iterator p = section_list.begin();
11369 p != section_list.end();
11370 ++p)
11371 {
11372 Arm_output_section<big_endian>* output_section =
11373 Arm_output_section<big_endian>::as_arm_output_section(*p);
11374 output_section->group_sections(group_size, stubs_always_after_branch,
f625ae50 11375 this, task);
eb44217c
DK
11376 }
11377}
11378
11379// Relaxation hook. This is where we do stub generation.
11380
11381template<bool big_endian>
11382bool
11383Target_arm<big_endian>::do_relax(
11384 int pass,
11385 const Input_objects* input_objects,
11386 Symbol_table* symtab,
f625ae50
DK
11387 Layout* layout,
11388 const Task* task)
eb44217c
DK
11389{
11390 // No need to generate stubs if this is a relocatable link.
11391 gold_assert(!parameters->options().relocatable());
11392
11393 // If this is the first pass, we need to group input sections into
11394 // stub groups.
2b328d4e 11395 bool done_exidx_fixup = false;
6625d24e 11396 typedef typename Stub_table_list::iterator Stub_table_iterator;
eb44217c
DK
11397 if (pass == 1)
11398 {
11399 // Determine the stub group size. The group size is the absolute
11400 // value of the parameter --stub-group-size. If --stub-group-size
9b547ce6 11401 // is passed a negative value, we restrict stubs to be always after
eb44217c
DK
11402 // the stubbed branches.
11403 int32_t stub_group_size_param =
11404 parameters->options().stub_group_size();
11405 bool stubs_always_after_branch = stub_group_size_param < 0;
11406 section_size_type stub_group_size = abs(stub_group_size_param);
11407
11408 if (stub_group_size == 1)
11409 {
11410 // Default value.
11411 // Thumb branch range is +-4MB has to be used as the default
11412 // maximum size (a given section can contain both ARM and Thumb
a2c7281b
DK
11413 // code, so the worst case has to be taken into account). If we are
11414 // fixing cortex-a8 errata, the branch range has to be even smaller,
11415 // since wide conditional branch has a range of +-1MB only.
eb44217c 11416 //
25bbe950 11417 // This value is 48K less than that, which allows for 4096
eb44217c
DK
11418 // 12-byte stubs. If we exceed that, then we will fail to link.
11419 // The user will have to relink with an explicit group size
11420 // option.
25bbe950
DK
11421 stub_group_size = 4145152;
11422 }
11423
11424 // The Cortex-A8 erratum fix depends on stubs not being in the same 4K
11425 // page as the first half of a 32-bit branch straddling two 4K pages.
11426 // This is a crude way of enforcing that. In addition, long conditional
11427 // branches of THUMB-2 have a range of +-1M. If we are fixing cortex-A8
11428 // erratum, limit the group size to (1M - 12k) to avoid unreachable
11429 // cortex-A8 stubs from long conditional branches.
11430 if (this->fix_cortex_a8_)
11431 {
11432 stubs_always_after_branch = true;
11433 const section_size_type cortex_a8_group_size = 1024 * (1024 - 12);
11434 stub_group_size = std::max(stub_group_size, cortex_a8_group_size);
eb44217c
DK
11435 }
11436
f625ae50 11437 group_sections(layout, stub_group_size, stubs_always_after_branch, task);
2b328d4e
DK
11438
11439 // Also fix .ARM.exidx section coverage.
131687b4
DK
11440 Arm_output_section<big_endian>* exidx_output_section = NULL;
11441 for (Layout::Section_list::const_iterator p =
11442 layout->section_list().begin();
11443 p != layout->section_list().end();
11444 ++p)
11445 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
11446 {
11447 if (exidx_output_section == NULL)
11448 exidx_output_section =
11449 Arm_output_section<big_endian>::as_arm_output_section(*p);
11450 else
11451 // We cannot handle this now.
11452 gold_error(_("multiple SHT_ARM_EXIDX sections %s and %s in a "
11453 "non-relocatable link"),
11454 exidx_output_section->name(),
11455 (*p)->name());
11456 }
11457
11458 if (exidx_output_section != NULL)
2b328d4e 11459 {
131687b4 11460 this->fix_exidx_coverage(layout, input_objects, exidx_output_section,
f625ae50 11461 symtab, task);
2b328d4e
DK
11462 done_exidx_fixup = true;
11463 }
eb44217c 11464 }
6625d24e
DK
11465 else
11466 {
11467 // If this is not the first pass, addresses and file offsets have
11468 // been reset at this point, set them here.
11469 for (Stub_table_iterator sp = this->stub_tables_.begin();
11470 sp != this->stub_tables_.end();
11471 ++sp)
11472 {
11473 Arm_input_section<big_endian>* owner = (*sp)->owner();
11474 off_t off = align_address(owner->original_size(),
11475 (*sp)->addralign());
11476 (*sp)->set_address_and_file_offset(owner->address() + off,
11477 owner->offset() + off);
11478 }
11479 }
eb44217c 11480
44272192
DK
11481 // The Cortex-A8 stubs are sensitive to layout of code sections. At the
11482 // beginning of each relaxation pass, just blow away all the stubs.
11483 // Alternatively, we could selectively remove only the stubs and reloc
11484 // information for code sections that have moved since the last pass.
11485 // That would require more book-keeping.
a120bc7f
DK
11486 if (this->fix_cortex_a8_)
11487 {
11488 // Clear all Cortex-A8 reloc information.
11489 for (typename Cortex_a8_relocs_info::const_iterator p =
11490 this->cortex_a8_relocs_info_.begin();
11491 p != this->cortex_a8_relocs_info_.end();
11492 ++p)
11493 delete p->second;
11494 this->cortex_a8_relocs_info_.clear();
44272192
DK
11495
11496 // Remove all Cortex-A8 stubs.
11497 for (Stub_table_iterator sp = this->stub_tables_.begin();
11498 sp != this->stub_tables_.end();
11499 ++sp)
11500 (*sp)->remove_all_cortex_a8_stubs();
a120bc7f
DK
11501 }
11502
44272192 11503 // Scan relocs for relocation stubs
eb44217c
DK
11504 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
11505 op != input_objects->relobj_end();
11506 ++op)
11507 {
11508 Arm_relobj<big_endian>* arm_relobj =
11509 Arm_relobj<big_endian>::as_arm_relobj(*op);
f625ae50
DK
11510 // Lock the object so we can read from it. This is only called
11511 // single-threaded from Layout::finalize, so it is OK to lock.
11512 Task_lock_obj<Object> tl(task, arm_relobj);
2ea97941 11513 arm_relobj->scan_sections_for_stubs(this, symtab, layout);
eb44217c
DK
11514 }
11515
2fb7225c
DK
11516 // Check all stub tables to see if any of them have their data sizes
11517 // or addresses alignments changed. These are the only things that
11518 // matter.
eb44217c 11519 bool any_stub_table_changed = false;
8923b24c 11520 Unordered_set<const Output_section*> sections_needing_adjustment;
eb44217c
DK
11521 for (Stub_table_iterator sp = this->stub_tables_.begin();
11522 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
11523 ++sp)
11524 {
2fb7225c 11525 if ((*sp)->update_data_size_and_addralign())
8923b24c
DK
11526 {
11527 // Update data size of stub table owner.
11528 Arm_input_section<big_endian>* owner = (*sp)->owner();
11529 uint64_t address = owner->address();
11530 off_t offset = owner->offset();
11531 owner->reset_address_and_file_offset();
11532 owner->set_address_and_file_offset(address, offset);
11533
11534 sections_needing_adjustment.insert(owner->output_section());
11535 any_stub_table_changed = true;
11536 }
11537 }
11538
11539 // Output_section_data::output_section() returns a const pointer but we
11540 // need to update output sections, so we record all output sections needing
11541 // update above and scan the sections here to find out what sections need
11542 // to be updated.
f625ae50 11543 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
8923b24c
DK
11544 p != layout->section_list().end();
11545 ++p)
11546 {
11547 if (sections_needing_adjustment.find(*p)
11548 != sections_needing_adjustment.end())
11549 (*p)->set_section_offsets_need_adjustment();
eb44217c
DK
11550 }
11551
2b328d4e
DK
11552 // Stop relaxation if no EXIDX fix-up and no stub table change.
11553 bool continue_relaxation = done_exidx_fixup || any_stub_table_changed;
11554
2fb7225c 11555 // Finalize the stubs in the last relaxation pass.
2b328d4e 11556 if (!continue_relaxation)
e7eca48c
DK
11557 {
11558 for (Stub_table_iterator sp = this->stub_tables_.begin();
11559 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
11560 ++sp)
11561 (*sp)->finalize_stubs();
11562
11563 // Update output local symbol counts of objects if necessary.
11564 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
11565 op != input_objects->relobj_end();
11566 ++op)
11567 {
11568 Arm_relobj<big_endian>* arm_relobj =
11569 Arm_relobj<big_endian>::as_arm_relobj(*op);
11570
11571 // Update output local symbol counts. We need to discard local
11572 // symbols defined in parts of input sections that are discarded by
11573 // relaxation.
11574 if (arm_relobj->output_local_symbol_count_needs_update())
f625ae50
DK
11575 {
11576 // We need to lock the object's file to update it.
11577 Task_lock_obj<Object> tl(task, arm_relobj);
11578 arm_relobj->update_output_local_symbol_count();
11579 }
e7eca48c
DK
11580 }
11581 }
2fb7225c 11582
2b328d4e 11583 return continue_relaxation;
eb44217c
DK
11584}
11585
43d12afe
DK
11586// Relocate a stub.
11587
11588template<bool big_endian>
11589void
11590Target_arm<big_endian>::relocate_stub(
2fb7225c 11591 Stub* stub,
43d12afe
DK
11592 const Relocate_info<32, big_endian>* relinfo,
11593 Output_section* output_section,
11594 unsigned char* view,
11595 Arm_address address,
11596 section_size_type view_size)
11597{
11598 Relocate relocate;
2ea97941
ILT
11599 const Stub_template* stub_template = stub->stub_template();
11600 for (size_t i = 0; i < stub_template->reloc_count(); i++)
43d12afe 11601 {
2ea97941
ILT
11602 size_t reloc_insn_index = stub_template->reloc_insn_index(i);
11603 const Insn_template* insn = &stub_template->insns()[reloc_insn_index];
43d12afe
DK
11604
11605 unsigned int r_type = insn->r_type();
2ea97941 11606 section_size_type reloc_offset = stub_template->reloc_offset(i);
43d12afe
DK
11607 section_size_type reloc_size = insn->size();
11608 gold_assert(reloc_offset + reloc_size <= view_size);
11609
11610 // This is the address of the stub destination.
41263c05 11611 Arm_address target = stub->reloc_target(i) + insn->reloc_addend();
43d12afe
DK
11612 Symbol_value<32> symval;
11613 symval.set_output_value(target);
11614
11615 // Synthesize a fake reloc just in case. We don't have a symbol so
11616 // we use 0.
11617 unsigned char reloc_buffer[elfcpp::Elf_sizes<32>::rel_size];
11618 memset(reloc_buffer, 0, sizeof(reloc_buffer));
11619 elfcpp::Rel_write<32, big_endian> reloc_write(reloc_buffer);
11620 reloc_write.put_r_offset(reloc_offset);
11621 reloc_write.put_r_info(elfcpp::elf_r_info<32>(0, r_type));
11622 elfcpp::Rel<32, big_endian> rel(reloc_buffer);
11623
11624 relocate.relocate(relinfo, this, output_section,
11625 this->fake_relnum_for_stubs, rel, r_type,
11626 NULL, &symval, view + reloc_offset,
11627 address + reloc_offset, reloc_size);
11628 }
11629}
11630
a0351a69
DK
11631// Determine whether an object attribute tag takes an integer, a
11632// string or both.
11633
11634template<bool big_endian>
11635int
11636Target_arm<big_endian>::do_attribute_arg_type(int tag) const
11637{
11638 if (tag == Object_attribute::Tag_compatibility)
11639 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11640 | Object_attribute::ATTR_TYPE_FLAG_STR_VAL);
11641 else if (tag == elfcpp::Tag_nodefaults)
11642 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11643 | Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT);
11644 else if (tag == elfcpp::Tag_CPU_raw_name || tag == elfcpp::Tag_CPU_name)
11645 return Object_attribute::ATTR_TYPE_FLAG_STR_VAL;
11646 else if (tag < 32)
11647 return Object_attribute::ATTR_TYPE_FLAG_INT_VAL;
11648 else
11649 return ((tag & 1) != 0
11650 ? Object_attribute::ATTR_TYPE_FLAG_STR_VAL
11651 : Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
11652}
11653
11654// Reorder attributes.
11655//
11656// The ABI defines that Tag_conformance should be emitted first, and that
11657// Tag_nodefaults should be second (if either is defined). This sets those
11658// two positions, and bumps up the position of all the remaining tags to
11659// compensate.
11660
11661template<bool big_endian>
11662int
11663Target_arm<big_endian>::do_attributes_order(int num) const
11664{
11665 // Reorder the known object attributes in output. We want to move
11666 // Tag_conformance to position 4 and Tag_conformance to position 5
9b547ce6 11667 // and shift everything between 4 .. Tag_conformance - 1 to make room.
a0351a69
DK
11668 if (num == 4)
11669 return elfcpp::Tag_conformance;
11670 if (num == 5)
11671 return elfcpp::Tag_nodefaults;
11672 if ((num - 2) < elfcpp::Tag_nodefaults)
11673 return num - 2;
11674 if ((num - 1) < elfcpp::Tag_conformance)
11675 return num - 1;
11676 return num;
11677}
4a657b0d 11678
44272192
DK
11679// Scan a span of THUMB code for Cortex-A8 erratum.
11680
11681template<bool big_endian>
11682void
11683Target_arm<big_endian>::scan_span_for_cortex_a8_erratum(
11684 Arm_relobj<big_endian>* arm_relobj,
11685 unsigned int shndx,
11686 section_size_type span_start,
11687 section_size_type span_end,
11688 const unsigned char* view,
11689 Arm_address address)
11690{
11691 // Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
11692 //
11693 // The opcode is BLX.W, BL.W, B.W, Bcc.W
11694 // The branch target is in the same 4KB region as the
11695 // first half of the branch.
11696 // The instruction before the branch is a 32-bit
11697 // length non-branch instruction.
11698 section_size_type i = span_start;
11699 bool last_was_32bit = false;
11700 bool last_was_branch = false;
11701 while (i < span_end)
11702 {
11703 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11704 const Valtype* wv = reinterpret_cast<const Valtype*>(view + i);
11705 uint32_t insn = elfcpp::Swap<16, big_endian>::readval(wv);
11706 bool is_blx = false, is_b = false;
11707 bool is_bl = false, is_bcc = false;
11708
11709 bool insn_32bit = (insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000;
11710 if (insn_32bit)
11711 {
11712 // Load the rest of the insn (in manual-friendly order).
11713 insn = (insn << 16) | elfcpp::Swap<16, big_endian>::readval(wv + 1);
11714
11715 // Encoding T4: B<c>.W.
11716 is_b = (insn & 0xf800d000U) == 0xf0009000U;
11717 // Encoding T1: BL<c>.W.
11718 is_bl = (insn & 0xf800d000U) == 0xf000d000U;
11719 // Encoding T2: BLX<c>.W.
11720 is_blx = (insn & 0xf800d000U) == 0xf000c000U;
11721 // Encoding T3: B<c>.W (not permitted in IT block).
11722 is_bcc = ((insn & 0xf800d000U) == 0xf0008000U
11723 && (insn & 0x07f00000U) != 0x03800000U);
11724 }
11725
11726 bool is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
11727
11728 // If this instruction is a 32-bit THUMB branch that crosses a 4K
11729 // page boundary and it follows 32-bit non-branch instruction,
11730 // we need to work around.
11731 if (is_32bit_branch
11732 && ((address + i) & 0xfffU) == 0xffeU
11733 && last_was_32bit
11734 && !last_was_branch)
11735 {
11736 // Check to see if there is a relocation stub for this branch.
11737 bool force_target_arm = false;
11738 bool force_target_thumb = false;
11739 const Cortex_a8_reloc* cortex_a8_reloc = NULL;
11740 Cortex_a8_relocs_info::const_iterator p =
11741 this->cortex_a8_relocs_info_.find(address + i);
11742
11743 if (p != this->cortex_a8_relocs_info_.end())
11744 {
11745 cortex_a8_reloc = p->second;
11746 bool target_is_thumb = (cortex_a8_reloc->destination() & 1) != 0;
11747
11748 if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11749 && !target_is_thumb)
11750 force_target_arm = true;
11751 else if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11752 && target_is_thumb)
11753 force_target_thumb = true;
11754 }
11755
11756 off_t offset;
11757 Stub_type stub_type = arm_stub_none;
11758
11759 // Check if we have an offending branch instruction.
11760 uint16_t upper_insn = (insn >> 16) & 0xffffU;
11761 uint16_t lower_insn = insn & 0xffffU;
11762 typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
11763
11764 if (cortex_a8_reloc != NULL
11765 && cortex_a8_reloc->reloc_stub() != NULL)
11766 // We've already made a stub for this instruction, e.g.
11767 // it's a long branch or a Thumb->ARM stub. Assume that
11768 // stub will suffice to work around the A8 erratum (see
11769 // setting of always_after_branch above).
11770 ;
11771 else if (is_bcc)
11772 {
11773 offset = RelocFuncs::thumb32_cond_branch_offset(upper_insn,
11774 lower_insn);
11775 stub_type = arm_stub_a8_veneer_b_cond;
11776 }
11777 else if (is_b || is_bl || is_blx)
11778 {
11779 offset = RelocFuncs::thumb32_branch_offset(upper_insn,
11780 lower_insn);
11781 if (is_blx)
11782 offset &= ~3;
11783
11784 stub_type = (is_blx
11785 ? arm_stub_a8_veneer_blx
11786 : (is_bl
11787 ? arm_stub_a8_veneer_bl
11788 : arm_stub_a8_veneer_b));
11789 }
11790
11791 if (stub_type != arm_stub_none)
11792 {
11793 Arm_address pc_for_insn = address + i + 4;
11794
11795 // The original instruction is a BL, but the target is
11796 // an ARM instruction. If we were not making a stub,
11797 // the BL would have been converted to a BLX. Use the
11798 // BLX stub instead in that case.
11799 if (this->may_use_blx() && force_target_arm
11800 && stub_type == arm_stub_a8_veneer_bl)
11801 {
11802 stub_type = arm_stub_a8_veneer_blx;
11803 is_blx = true;
11804 is_bl = false;
11805 }
11806 // Conversely, if the original instruction was
11807 // BLX but the target is Thumb mode, use the BL stub.
11808 else if (force_target_thumb
11809 && stub_type == arm_stub_a8_veneer_blx)
11810 {
11811 stub_type = arm_stub_a8_veneer_bl;
11812 is_blx = false;
11813 is_bl = true;
11814 }
11815
11816 if (is_blx)
11817 pc_for_insn &= ~3;
11818
11819 // If we found a relocation, use the proper destination,
11820 // not the offset in the (unrelocated) instruction.
11821 // Note this is always done if we switched the stub type above.
11822 if (cortex_a8_reloc != NULL)
11823 offset = (off_t) (cortex_a8_reloc->destination() - pc_for_insn);
11824
11825 Arm_address target = (pc_for_insn + offset) | (is_blx ? 0 : 1);
11826
11827 // Add a new stub if destination address in in the same page.
11828 if (((address + i) & ~0xfffU) == (target & ~0xfffU))
11829 {
11830 Cortex_a8_stub* stub =
11831 this->stub_factory_.make_cortex_a8_stub(stub_type,
11832 arm_relobj, shndx,
11833 address + i,
11834 target, insn);
11835 Stub_table<big_endian>* stub_table =
11836 arm_relobj->stub_table(shndx);
11837 gold_assert(stub_table != NULL);
11838 stub_table->add_cortex_a8_stub(address + i, stub);
11839 }
11840 }
11841 }
11842
11843 i += insn_32bit ? 4 : 2;
11844 last_was_32bit = insn_32bit;
11845 last_was_branch = is_32bit_branch;
11846 }
11847}
11848
41263c05
DK
11849// Apply the Cortex-A8 workaround.
11850
11851template<bool big_endian>
11852void
11853Target_arm<big_endian>::apply_cortex_a8_workaround(
11854 const Cortex_a8_stub* stub,
11855 Arm_address stub_address,
11856 unsigned char* insn_view,
11857 Arm_address insn_address)
11858{
11859 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11860 Valtype* wv = reinterpret_cast<Valtype*>(insn_view);
11861 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
11862 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
11863 off_t branch_offset = stub_address - (insn_address + 4);
11864
11865 typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
11866 switch (stub->stub_template()->type())
11867 {
11868 case arm_stub_a8_veneer_b_cond:
9b547ce6 11869 // For a conditional branch, we re-write it to be an unconditional
0439c796
DK
11870 // branch to the stub. We use the THUMB-2 encoding here.
11871 upper_insn = 0xf000U;
11872 lower_insn = 0xb800U;
11873 // Fall through
41263c05
DK
11874 case arm_stub_a8_veneer_b:
11875 case arm_stub_a8_veneer_bl:
11876 case arm_stub_a8_veneer_blx:
11877 if ((lower_insn & 0x5000U) == 0x4000U)
11878 // For a BLX instruction, make sure that the relocation is
11879 // rounded up to a word boundary. This follows the semantics of
11880 // the instruction which specifies that bit 1 of the target
11881 // address will come from bit 1 of the base address.
11882 branch_offset = (branch_offset + 2) & ~3;
11883
11884 // Put BRANCH_OFFSET back into the insn.
11885 gold_assert(!utils::has_overflow<25>(branch_offset));
11886 upper_insn = RelocFuncs::thumb32_branch_upper(upper_insn, branch_offset);
11887 lower_insn = RelocFuncs::thumb32_branch_lower(lower_insn, branch_offset);
11888 break;
11889
11890 default:
11891 gold_unreachable();
11892 }
11893
11894 // Put the relocated value back in the object file:
11895 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
11896 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
11897}
11898
4a657b0d
DK
11899template<bool big_endian>
11900class Target_selector_arm : public Target_selector
11901{
11902 public:
11903 Target_selector_arm()
11904 : Target_selector(elfcpp::EM_ARM, 32, big_endian,
11905 (big_endian ? "elf32-bigarm" : "elf32-littlearm"))
11906 { }
11907
11908 Target*
11909 do_instantiate_target()
11910 { return new Target_arm<big_endian>(); }
11911};
11912
2b328d4e
DK
11913// Fix .ARM.exidx section coverage.
11914
11915template<bool big_endian>
11916void
11917Target_arm<big_endian>::fix_exidx_coverage(
11918 Layout* layout,
131687b4 11919 const Input_objects* input_objects,
2b328d4e 11920 Arm_output_section<big_endian>* exidx_section,
f625ae50
DK
11921 Symbol_table* symtab,
11922 const Task* task)
2b328d4e
DK
11923{
11924 // We need to look at all the input sections in output in ascending
11925 // order of of output address. We do that by building a sorted list
11926 // of output sections by addresses. Then we looks at the output sections
11927 // in order. The input sections in an output section are already sorted
11928 // by addresses within the output section.
11929
11930 typedef std::set<Output_section*, output_section_address_less_than>
11931 Sorted_output_section_list;
11932 Sorted_output_section_list sorted_output_sections;
131687b4
DK
11933
11934 // Find out all the output sections of input sections pointed by
11935 // EXIDX input sections.
11936 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
11937 p != input_objects->relobj_end();
2b328d4e
DK
11938 ++p)
11939 {
131687b4
DK
11940 Arm_relobj<big_endian>* arm_relobj =
11941 Arm_relobj<big_endian>::as_arm_relobj(*p);
11942 std::vector<unsigned int> shndx_list;
11943 arm_relobj->get_exidx_shndx_list(&shndx_list);
11944 for (size_t i = 0; i < shndx_list.size(); ++i)
11945 {
11946 const Arm_exidx_input_section* exidx_input_section =
11947 arm_relobj->exidx_input_section_by_shndx(shndx_list[i]);
11948 gold_assert(exidx_input_section != NULL);
11949 if (!exidx_input_section->has_errors())
11950 {
11951 unsigned int text_shndx = exidx_input_section->link();
ca09d69a 11952 Output_section* os = arm_relobj->output_section(text_shndx);
131687b4
DK
11953 if (os != NULL && (os->flags() & elfcpp::SHF_ALLOC) != 0)
11954 sorted_output_sections.insert(os);
11955 }
11956 }
2b328d4e
DK
11957 }
11958
11959 // Go over the output sections in ascending order of output addresses.
11960 typedef typename Arm_output_section<big_endian>::Text_section_list
11961 Text_section_list;
11962 Text_section_list sorted_text_sections;
f625ae50 11963 for (typename Sorted_output_section_list::iterator p =
2b328d4e
DK
11964 sorted_output_sections.begin();
11965 p != sorted_output_sections.end();
11966 ++p)
11967 {
11968 Arm_output_section<big_endian>* arm_output_section =
11969 Arm_output_section<big_endian>::as_arm_output_section(*p);
11970 arm_output_section->append_text_sections_to_list(&sorted_text_sections);
11971 }
11972
85fdf906 11973 exidx_section->fix_exidx_coverage(layout, sorted_text_sections, symtab,
f625ae50 11974 merge_exidx_entries(), task);
2b328d4e
DK
11975}
11976
4a657b0d
DK
11977Target_selector_arm<false> target_selector_arm;
11978Target_selector_arm<true> target_selector_armbe;
11979
11980} // End anonymous namespace.