]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gold/gdb-index.cc
daily update
[thirdparty/binutils-gdb.git] / gold / gdb-index.cc
CommitLineData
c1027032
CC
1// gdb-index.cc -- generate .gdb_index section for fast debug lookup
2
3// Copyright 2012 Free Software Foundation, Inc.
4// Written by Cary Coutant <ccoutant@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
23#include "gold.h"
24
25#include "gdb-index.h"
26#include "dwarf_reader.h"
27#include "dwarf.h"
28#include "object.h"
29#include "output.h"
30#include "demangle.h"
31
32namespace gold
33{
34
35const int gdb_index_version = 5;
36
37// Sizes of various records in the .gdb_index section.
38const int gdb_index_offset_size = 4;
39const int gdb_index_hdr_size = 6 * gdb_index_offset_size;
40const int gdb_index_cu_size = 16;
41const int gdb_index_tu_size = 24;
42const int gdb_index_addr_size = 16 + gdb_index_offset_size;
43const int gdb_index_sym_size = 2 * gdb_index_offset_size;
44
45// This class manages the hashed symbol table for the .gdb_index section.
46// It is essentially equivalent to the hashtab implementation in libiberty,
47// but is copied into gdb sources and here for compatibility because its
48// data structure is exposed on disk.
49
50template <typename T>
51class Gdb_hashtab
52{
53 public:
54 Gdb_hashtab()
55 : size_(0), capacity_(0), hashtab_(NULL)
56 { }
57
58 ~Gdb_hashtab()
59 {
60 for (size_t i = 0; i < this->capacity_; ++i)
61 if (this->hashtab_[i] != NULL)
62 delete this->hashtab_[i];
63 delete[] this->hashtab_;
64 }
65
66 // Add a symbol.
67 T*
68 add(T* symbol)
69 {
70 // Resize the hash table if necessary.
71 if (4 * this->size_ / 3 >= this->capacity_)
72 this->expand();
73
74 T** slot = this->find_slot(symbol);
75 if (*slot == NULL)
76 {
77 ++this->size_;
78 *slot = symbol;
79 }
80
81 return *slot;
82 }
83
84 // Return the current size.
85 size_t
86 size() const
87 { return this->size_; }
88
89 // Return the current capacity.
90 size_t
91 capacity() const
92 { return this->capacity_; }
93
94 // Return the contents of slot N.
95 T*
96 operator[](size_t n)
97 { return this->hashtab_[n]; }
98
99 private:
100 // Find a symbol in the hash table, or return an empty slot if
101 // the symbol is not in the table.
102 T**
103 find_slot(T* symbol)
104 {
105 unsigned int index = symbol->hash() & (this->capacity_ - 1);
106 unsigned int step = ((symbol->hash() * 17) & (this->capacity_ - 1)) | 1;
107
108 for (;;)
109 {
110 if (this->hashtab_[index] == NULL
111 || this->hashtab_[index]->equal(symbol))
112 return &this->hashtab_[index];
113 index = (index + step) & (this->capacity_ - 1);
114 }
115 }
116
117 // Expand the hash table.
118 void
119 expand()
120 {
121 if (this->capacity_ == 0)
122 {
123 // Allocate the hash table for the first time.
124 this->capacity_ = Gdb_hashtab::initial_size;
125 this->hashtab_ = new T*[this->capacity_];
126 memset(this->hashtab_, 0, this->capacity_ * sizeof(T*));
127 }
128 else
129 {
130 // Expand and rehash.
131 unsigned int old_cap = this->capacity_;
132 T** old_hashtab = this->hashtab_;
133 this->capacity_ *= 2;
134 this->hashtab_ = new T*[this->capacity_];
135 memset(this->hashtab_, 0, this->capacity_ * sizeof(T*));
136 for (size_t i = 0; i < old_cap; ++i)
137 {
138 if (old_hashtab[i] != NULL)
139 {
140 T** slot = this->find_slot(old_hashtab[i]);
141 *slot = old_hashtab[i];
142 }
143 }
144 delete[] old_hashtab;
145 }
146 }
147
148 // Initial size of the hash table; must be a power of 2.
149 static const int initial_size = 1024;
150 size_t size_;
151 size_t capacity_;
152 T** hashtab_;
153};
154
155// The hash function for strings in the mapped index. This is copied
156// directly from gdb/dwarf2read.c.
157
158static unsigned int
159mapped_index_string_hash(const unsigned char* str)
160{
161 unsigned int r = 0;
162 unsigned char c;
163
164 while ((c = *str++) != 0)
165 {
166 if (gdb_index_version >= 5)
167 c = tolower (c);
168 r = r * 67 + c - 113;
169 }
170
171 return r;
172}
173
174// A specialization of Dwarf_info_reader, for building the .gdb_index.
175
176class Gdb_index_info_reader : public Dwarf_info_reader
177{
178 public:
179 Gdb_index_info_reader(bool is_type_unit,
180 Relobj* object,
181 const unsigned char* symbols,
182 off_t symbols_size,
183 unsigned int shndx,
184 unsigned int reloc_shndx,
185 unsigned int reloc_type,
186 Gdb_index* gdb_index)
187 : Dwarf_info_reader(is_type_unit, object, symbols, symbols_size, shndx,
188 reloc_shndx, reloc_type),
189 gdb_index_(gdb_index), cu_index_(0), cu_language_(0)
190 { }
191
192 ~Gdb_index_info_reader()
193 { this->clear_declarations(); }
194
195 // Print usage statistics.
196 static void
197 print_stats();
198
199 protected:
200 // Visit a compilation unit.
201 virtual void
202 visit_compilation_unit(off_t cu_offset, off_t cu_length, Dwarf_die*);
203
204 // Visit a type unit.
205 virtual void
d5834edb
CC
206 visit_type_unit(off_t tu_offset, off_t tu_length, off_t type_offset,
207 uint64_t signature, Dwarf_die*);
c1027032
CC
208
209 private:
210 // A map for recording DIEs we've seen that may be referred to be
211 // later DIEs (via DW_AT_specification or DW_AT_abstract_origin).
212 // The map is indexed by a DIE offset within the compile unit.
213 // PARENT_OFFSET_ is the offset of the DIE that represents the
214 // outer context, and NAME_ is a pointer to a component of the
215 // fully-qualified name.
216 // Normally, the names we point to are in a string table, so we don't
217 // have to manage them, but when we have a fully-qualified name
218 // computed, we put it in the table, and set PARENT_OFFSET_ to -1
219 // indicate a string that we are managing.
220 struct Declaration_pair
221 {
222 Declaration_pair(off_t parent_offset, const char* name)
223 : parent_offset_(parent_offset), name_(name)
224 { }
225
226 off_t parent_offset_;
227 const char* name_;
228 };
229 typedef Unordered_map<off_t, Declaration_pair> Declaration_map;
230
231 // Visit a top-level DIE.
232 void
233 visit_top_die(Dwarf_die* die);
234
235 // Visit the children of a DIE.
236 void
237 visit_children(Dwarf_die* die, Dwarf_die* context);
238
239 // Visit a DIE.
240 void
241 visit_die(Dwarf_die* die, Dwarf_die* context);
242
243 // Visit the children of a DIE.
244 void
245 visit_children_for_decls(Dwarf_die* die);
246
247 // Visit a DIE.
248 void
249 visit_die_for_decls(Dwarf_die* die, Dwarf_die* context);
250
251 // Guess a fully-qualified name for a class type, based on member function
252 // linkage names.
253 std::string
254 guess_full_class_name(Dwarf_die* die);
255
256 // Add a declaration DIE to the table of declarations.
257 void
258 add_declaration(Dwarf_die* die, Dwarf_die* context);
259
260 // Add a declaration whose fully-qualified name is already known.
261 void
262 add_declaration_with_full_name(Dwarf_die* die, const char* full_name);
263
264 // Return the context for a DIE whose parent is at DIE_OFFSET.
265 std::string
266 get_context(off_t die_offset);
267
268 // Construct a fully-qualified name for DIE.
269 std::string
270 get_qualified_name(Dwarf_die* die, Dwarf_die* context);
271
272 // Record the address ranges for a compilation unit.
273 void
274 record_cu_ranges(Dwarf_die* die);
275
276 // Read the .debug_pubnames and .debug_pubtypes tables.
277 bool
278 read_pubnames_and_pubtypes(Dwarf_die* die);
279
280 // Clear the declarations map.
281 void
282 clear_declarations();
283
284 // The Gdb_index section.
285 Gdb_index* gdb_index_;
286 // The current CU index (negative for a TU).
287 int cu_index_;
288 // The language of the current CU or TU.
289 unsigned int cu_language_;
290 // Map from DIE offset to (parent offset, name) pair,
291 // for DW_AT_specification.
292 Declaration_map declarations_;
293
294 // Statistics.
295 // Total number of DWARF compilation units processed.
296 static unsigned int dwarf_cu_count;
297 // Number of DWARF compilation units with pubnames/pubtypes.
298 static unsigned int dwarf_cu_nopubnames_count;
299 // Total number of DWARF type units processed.
300 static unsigned int dwarf_tu_count;
301 // Number of DWARF type units with pubnames/pubtypes.
302 static unsigned int dwarf_tu_nopubnames_count;
303};
304
305// Total number of DWARF compilation units processed.
306unsigned int Gdb_index_info_reader::dwarf_cu_count = 0;
307// Number of DWARF compilation units without pubnames/pubtypes.
308unsigned int Gdb_index_info_reader::dwarf_cu_nopubnames_count = 0;
309// Total number of DWARF type units processed.
310unsigned int Gdb_index_info_reader::dwarf_tu_count = 0;
311// Number of DWARF type units without pubnames/pubtypes.
312unsigned int Gdb_index_info_reader::dwarf_tu_nopubnames_count = 0;
313
314// Process a compilation unit and parse its child DIE.
315
316void
317Gdb_index_info_reader::visit_compilation_unit(off_t cu_offset, off_t cu_length,
318 Dwarf_die* root_die)
319{
320 ++Gdb_index_info_reader::dwarf_cu_count;
321 this->cu_index_ = this->gdb_index_->add_comp_unit(cu_offset, cu_length);
322 this->visit_top_die(root_die);
323}
324
325// Process a type unit and parse its child DIE.
326
327void
d5834edb
CC
328Gdb_index_info_reader::visit_type_unit(off_t tu_offset, off_t,
329 off_t type_offset, uint64_t signature,
330 Dwarf_die* root_die)
c1027032
CC
331{
332 ++Gdb_index_info_reader::dwarf_tu_count;
333 // Use a negative index to flag this as a TU instead of a CU.
334 this->cu_index_ = -1 - this->gdb_index_->add_type_unit(tu_offset, type_offset,
335 signature);
336 this->visit_top_die(root_die);
337}
338
339// Process a top-level DIE.
340// For compile_unit DIEs, record the address ranges. For all
341// interesting tags, add qualified names to the symbol table
342// and process interesting children. We may need to process
343// certain children just for saving declarations that might be
344// referenced by later DIEs with a DW_AT_specification attribute.
345
346void
347Gdb_index_info_reader::visit_top_die(Dwarf_die* die)
348{
349 this->clear_declarations();
350
351 switch (die->tag())
352 {
353 case elfcpp::DW_TAG_compile_unit:
354 case elfcpp::DW_TAG_type_unit:
355 this->cu_language_ = die->int_attribute(elfcpp::DW_AT_language);
356 // Check for languages that require specialized knowledge to
357 // construct fully-qualified names, that we don't yet support.
358 if (this->cu_language_ == elfcpp::DW_LANG_Ada83
359 || this->cu_language_ == elfcpp::DW_LANG_Fortran77
360 || this->cu_language_ == elfcpp::DW_LANG_Fortran90
361 || this->cu_language_ == elfcpp::DW_LANG_Java
362 || this->cu_language_ == elfcpp::DW_LANG_Ada95
363 || this->cu_language_ == elfcpp::DW_LANG_Fortran95)
364 {
365 gold_warning(_("%s: --gdb-index currently supports "
366 "only C and C++ languages"),
367 this->object()->name().c_str());
368 return;
369 }
370 if (die->tag() == elfcpp::DW_TAG_compile_unit)
371 this->record_cu_ranges(die);
372 // If there is a pubnames and/or pubtypes section for this
373 // compilation unit, use those; otherwise, parse the DWARF
374 // info to extract the names.
375 if (!this->read_pubnames_and_pubtypes(die))
376 {
377 if (die->tag() == elfcpp::DW_TAG_compile_unit)
378 ++Gdb_index_info_reader::dwarf_cu_nopubnames_count;
379 else
380 ++Gdb_index_info_reader::dwarf_tu_nopubnames_count;
381 this->visit_children(die, NULL);
382 }
383 break;
384 default:
385 // The top level DIE should be one of the above.
386 gold_warning(_("%s: top level DIE is not DW_TAG_compile_unit "
387 "or DW_TAG_type_unit"),
388 this->object()->name().c_str());
389 return;
390 }
391
392}
393
394// Visit the children of PARENT, looking for symbols to add to the index.
395// CONTEXT points to the DIE to use for constructing the qualified name --
396// NULL if PARENT is the top-level DIE; otherwise it is the same as PARENT.
397
398void
399Gdb_index_info_reader::visit_children(Dwarf_die* parent, Dwarf_die* context)
400{
401 off_t next_offset = 0;
402 for (off_t die_offset = parent->child_offset();
403 die_offset != 0;
404 die_offset = next_offset)
405 {
406 Dwarf_die die(this, die_offset, parent);
407 if (die.tag() == 0)
408 break;
409 this->visit_die(&die, context);
410 next_offset = die.sibling_offset();
411 }
412}
413
414// Visit a child DIE, looking for symbols to add to the index.
415// CONTEXT is the parent DIE, used for constructing the qualified name;
416// it is NULL if the parent DIE is the top-level DIE.
417
418void
419Gdb_index_info_reader::visit_die(Dwarf_die* die, Dwarf_die* context)
420{
421 switch (die->tag())
422 {
423 case elfcpp::DW_TAG_subprogram:
424 case elfcpp::DW_TAG_constant:
425 case elfcpp::DW_TAG_variable:
426 case elfcpp::DW_TAG_enumerator:
427 case elfcpp::DW_TAG_base_type:
428 if (die->is_declaration())
429 this->add_declaration(die, context);
430 else
431 {
432 // If the DIE is not a declaration, add it to the index.
433 std::string full_name = this->get_qualified_name(die, context);
434 if (!full_name.empty())
435 this->gdb_index_->add_symbol(this->cu_index_, full_name.c_str());
436 }
437 break;
438 case elfcpp::DW_TAG_typedef:
439 case elfcpp::DW_TAG_union_type:
440 case elfcpp::DW_TAG_class_type:
441 case elfcpp::DW_TAG_interface_type:
442 case elfcpp::DW_TAG_structure_type:
443 case elfcpp::DW_TAG_enumeration_type:
444 case elfcpp::DW_TAG_subrange_type:
445 case elfcpp::DW_TAG_namespace:
446 {
447 std::string full_name;
448
449 // For classes at the top level, we need to look for a
450 // member function with a linkage name in order to get
451 // the properly-canonicalized name.
452 if (context == NULL
453 && (die->tag() == elfcpp::DW_TAG_class_type
454 || die->tag() == elfcpp::DW_TAG_structure_type
455 || die->tag() == elfcpp::DW_TAG_union_type))
456 full_name.assign(this->guess_full_class_name(die));
457
458 // Because we will visit the children, we need to add this DIE
459 // to the declarations table.
460 if (full_name.empty())
461 this->add_declaration(die, context);
462 else
463 this->add_declaration_with_full_name(die, full_name.c_str());
464
465 // If the DIE is not a declaration, add it to the index.
466 // Gdb stores a namespace in the index even when it is
467 // a declaration.
468 if (die->tag() == elfcpp::DW_TAG_namespace
469 || !die->is_declaration())
470 {
471 if (full_name.empty())
472 full_name = this->get_qualified_name(die, context);
473 if (!full_name.empty())
474 this->gdb_index_->add_symbol(this->cu_index_,
475 full_name.c_str());
476 }
477
478 // We're interested in the children only for namespaces and
479 // enumeration types. For enumeration types, we do not include
480 // the enumeration tag as part of the full name. For other tags,
481 // visit the children only to collect declarations.
482 if (die->tag() == elfcpp::DW_TAG_namespace
483 || die->tag() == elfcpp::DW_TAG_enumeration_type)
484 this->visit_children(die, die);
485 else
486 this->visit_children_for_decls(die);
487 }
488 break;
489 default:
490 break;
491 }
492}
493
494// Visit the children of PARENT, looking only for declarations that
495// may be referenced by later specification DIEs.
496
497void
498Gdb_index_info_reader::visit_children_for_decls(Dwarf_die* parent)
499{
500 off_t next_offset = 0;
501 for (off_t die_offset = parent->child_offset();
502 die_offset != 0;
503 die_offset = next_offset)
504 {
505 Dwarf_die die(this, die_offset, parent);
506 if (die.tag() == 0)
507 break;
508 this->visit_die_for_decls(&die, parent);
509 next_offset = die.sibling_offset();
510 }
511}
512
513// Visit a child DIE, looking only for declarations that
514// may be referenced by later specification DIEs.
515
516void
517Gdb_index_info_reader::visit_die_for_decls(Dwarf_die* die, Dwarf_die* context)
518{
519 switch (die->tag())
520 {
521 case elfcpp::DW_TAG_subprogram:
522 case elfcpp::DW_TAG_constant:
523 case elfcpp::DW_TAG_variable:
524 case elfcpp::DW_TAG_enumerator:
525 case elfcpp::DW_TAG_base_type:
526 {
527 if (die->is_declaration())
528 this->add_declaration(die, context);
529 }
530 break;
531 case elfcpp::DW_TAG_typedef:
532 case elfcpp::DW_TAG_union_type:
533 case elfcpp::DW_TAG_class_type:
534 case elfcpp::DW_TAG_interface_type:
535 case elfcpp::DW_TAG_structure_type:
536 case elfcpp::DW_TAG_enumeration_type:
537 case elfcpp::DW_TAG_subrange_type:
538 case elfcpp::DW_TAG_namespace:
539 {
540 if (die->is_declaration())
541 this->add_declaration(die, context);
542 this->visit_children_for_decls(die);
543 }
544 break;
545 default:
546 break;
547 }
548}
549
550// Extract the class name from the linkage name of a member function.
551// This code is adapted from ../gdb/cp-support.c.
552
553#define d_left(dc) (dc)->u.s_binary.left
554#define d_right(dc) (dc)->u.s_binary.right
555
556static char*
557class_name_from_linkage_name(const char* linkage_name)
558{
559 void* storage;
560 struct demangle_component* tree =
561 cplus_demangle_v3_components(linkage_name, DMGL_NO_OPTS, &storage);
562 if (tree == NULL)
563 return NULL;
564
565 int done = 0;
566
567 // First strip off any qualifiers, if we have a function or
568 // method.
569 while (!done)
570 switch (tree->type)
571 {
572 case DEMANGLE_COMPONENT_CONST:
573 case DEMANGLE_COMPONENT_RESTRICT:
574 case DEMANGLE_COMPONENT_VOLATILE:
575 case DEMANGLE_COMPONENT_CONST_THIS:
576 case DEMANGLE_COMPONENT_RESTRICT_THIS:
577 case DEMANGLE_COMPONENT_VOLATILE_THIS:
578 case DEMANGLE_COMPONENT_VENDOR_TYPE_QUAL:
579 tree = d_left(tree);
580 break;
581 default:
582 done = 1;
583 break;
584 }
585
586 // If what we have now is a function, discard the argument list.
587 if (tree->type == DEMANGLE_COMPONENT_TYPED_NAME)
588 tree = d_left(tree);
589
590 // If what we have now is a template, strip off the template
591 // arguments. The left subtree may be a qualified name.
592 if (tree->type == DEMANGLE_COMPONENT_TEMPLATE)
593 tree = d_left(tree);
594
595 // What we have now should be a name, possibly qualified.
596 // Additional qualifiers could live in the left subtree or the right
597 // subtree. Find the last piece.
598 done = 0;
599 struct demangle_component* prev_comp = NULL;
600 struct demangle_component* cur_comp = tree;
601 while (!done)
602 switch (cur_comp->type)
603 {
604 case DEMANGLE_COMPONENT_QUAL_NAME:
605 case DEMANGLE_COMPONENT_LOCAL_NAME:
606 prev_comp = cur_comp;
607 cur_comp = d_right(cur_comp);
608 break;
609 case DEMANGLE_COMPONENT_TEMPLATE:
610 case DEMANGLE_COMPONENT_NAME:
611 case DEMANGLE_COMPONENT_CTOR:
612 case DEMANGLE_COMPONENT_DTOR:
613 case DEMANGLE_COMPONENT_OPERATOR:
614 case DEMANGLE_COMPONENT_EXTENDED_OPERATOR:
615 done = 1;
616 break;
617 default:
618 done = 1;
619 cur_comp = NULL;
620 break;
621 }
622
623 char* ret = NULL;
624 if (cur_comp != NULL && prev_comp != NULL)
625 {
626 // We want to discard the rightmost child of PREV_COMP.
627 *prev_comp = *d_left(prev_comp);
628 size_t allocated_size;
629 ret = cplus_demangle_print(DMGL_NO_OPTS, tree, 30, &allocated_size);
630 }
631
632 free(storage);
633 return ret;
634}
635
636// Guess a fully-qualified name for a class type, based on member function
637// linkage names. This is needed for class/struct/union types at the
638// top level, because GCC does not always properly embed them within
639// the namespace. As in gdb, we look for a member function with a linkage
640// name and extract the qualified name from the demangled name.
641
642std::string
643Gdb_index_info_reader::guess_full_class_name(Dwarf_die* die)
644{
645 std::string full_name;
646 off_t next_offset = 0;
647
648 // This routine scans ahead in the DIE structure, possibly advancing
649 // the relocation tracker beyond the current DIE. We need to checkpoint
650 // the tracker and reset it when we're done.
651 uint64_t checkpoint = this->get_reloc_checkpoint();
652
653 for (off_t child_offset = die->child_offset();
654 child_offset != 0;
655 child_offset = next_offset)
656 {
657 Dwarf_die child(this, child_offset, die);
658 if (child.tag() == 0)
659 break;
660 if (child.tag() == elfcpp::DW_TAG_subprogram)
661 {
662 const char* linkage_name = child.linkage_name();
663 if (linkage_name != NULL)
664 {
665 char* guess = class_name_from_linkage_name(linkage_name);
666 if (guess != NULL)
667 {
668 full_name.assign(guess);
669 free(guess);
670 break;
671 }
672 }
673 }
674 next_offset = child.sibling_offset();
675 }
676
677 this->reset_relocs(checkpoint);
678 return full_name;
679}
680
681// Add a declaration DIE to the table of declarations.
682
683void
684Gdb_index_info_reader::add_declaration(Dwarf_die* die, Dwarf_die* context)
685{
686 const char* name = die->name();
687
688 off_t parent_offset = context != NULL ? context->offset() : 0;
689
690 // If this DIE has a DW_AT_specification or DW_AT_abstract_origin
691 // attribute, use the parent and name from the earlier declaration.
692 off_t spec = die->specification();
693 if (spec == 0)
694 spec = die->abstract_origin();
695 if (spec > 0)
696 {
697 Declaration_map::iterator it = this->declarations_.find(spec);
698 if (it != this->declarations_.end())
699 {
700 parent_offset = it->second.parent_offset_;
701 name = it->second.name_;
702 }
703 }
704
705 if (name == NULL)
706 {
707 if (die->tag() == elfcpp::DW_TAG_namespace)
708 name = "(anonymous namespace)";
709 else if (die->tag() == elfcpp::DW_TAG_union_type)
710 name = "(anonymous union)";
711 else
712 name = "(unknown)";
713 }
714
715 Declaration_pair decl(parent_offset, name);
716 this->declarations_.insert(std::make_pair(die->offset(), decl));
717}
718
719// Add a declaration whose fully-qualified name is already known.
720// In the case where we had to get the canonical name by demangling
721// a linkage name, this ensures we use that name instead of the one
722// provided in DW_AT_name.
723
724void
725Gdb_index_info_reader::add_declaration_with_full_name(
726 Dwarf_die* die,
727 const char* full_name)
728{
729 // We need to copy the name.
730 int len = strlen(full_name);
731 char* copy = new char[len + 1];
732 memcpy(copy, full_name, len + 1);
733
734 // Flag that we now manage the memory this points to.
735 Declaration_pair decl(-1, copy);
736 this->declarations_.insert(std::make_pair(die->offset(), decl));
737}
738
739// Return the context for a DIE whose parent is at DIE_OFFSET.
740
741std::string
742Gdb_index_info_reader::get_context(off_t die_offset)
743{
744 std::string context;
745 Declaration_map::iterator it = this->declarations_.find(die_offset);
746 if (it != this->declarations_.end())
747 {
748 off_t parent_offset = it->second.parent_offset_;
749 if (parent_offset > 0)
750 {
751 context = get_context(parent_offset);
752 context.append("::");
753 }
754 if (it->second.name_ != NULL)
755 context.append(it->second.name_);
756 }
757 return context;
758}
759
760// Construct the fully-qualified name for DIE.
761
762std::string
763Gdb_index_info_reader::get_qualified_name(Dwarf_die* die, Dwarf_die* context)
764{
765 std::string full_name;
766 const char* name = die->name();
767
768 off_t parent_offset = context != NULL ? context->offset() : 0;
769
770 // If this DIE has a DW_AT_specification or DW_AT_abstract_origin
771 // attribute, use the parent and name from the earlier declaration.
772 off_t spec = die->specification();
773 if (spec == 0)
774 spec = die->abstract_origin();
775 if (spec > 0)
776 {
777 Declaration_map::iterator it = this->declarations_.find(spec);
778 if (it != this->declarations_.end())
779 {
780 parent_offset = it->second.parent_offset_;
781 name = it->second.name_;
782 }
783 }
784
785 if (name == NULL && die->tag() == elfcpp::DW_TAG_namespace)
786 name = "(anonymous namespace)";
787 else if (name == NULL)
788 return full_name;
789
790 // If this is an enumerator constant, skip the immediate parent,
791 // which is the enumeration tag.
792 if (die->tag() == elfcpp::DW_TAG_enumerator)
793 {
794 Declaration_map::iterator it = this->declarations_.find(parent_offset);
795 if (it != this->declarations_.end())
796 parent_offset = it->second.parent_offset_;
797 }
798
799 if (parent_offset > 0)
800 {
801 full_name.assign(this->get_context(parent_offset));
802 full_name.append("::");
803 }
804 full_name.append(name);
805
806 return full_name;
807}
808
809// Record the address ranges for a compilation unit.
810
811void
812Gdb_index_info_reader::record_cu_ranges(Dwarf_die* die)
813{
814 unsigned int shndx;
815 unsigned int shndx2;
816
817 off_t ranges_offset = die->ref_attribute(elfcpp::DW_AT_ranges, &shndx);
818 if (ranges_offset != -1)
819 {
820 Dwarf_range_list* ranges = this->read_range_list(shndx, ranges_offset);
821 if (ranges != NULL)
822 this->gdb_index_->add_address_range_list(this->object(),
823 this->cu_index_, ranges);
824 return;
825 }
826
57923f48
MW
827 off_t low_pc = die->address_attribute(elfcpp::DW_AT_low_pc, &shndx);
828 off_t high_pc = die->address_attribute(elfcpp::DW_AT_high_pc, &shndx2);
829 if (high_pc == -1)
830 {
831 high_pc = die->uint_attribute(elfcpp::DW_AT_high_pc);
832 high_pc += low_pc;
833 shndx2 = shndx;
834 }
835 if ((low_pc != 0 || high_pc != 0) && low_pc != -1)
c1027032
CC
836 {
837 if (shndx != shndx2)
838 {
839 gold_warning(_("%s: DWARF info may be corrupt; low_pc and high_pc "
840 "are in different sections"),
841 this->object()->name().c_str());
842 return;
843 }
844 if (shndx == 0 || this->object()->is_section_included(shndx))
845 {
846 Dwarf_range_list* ranges = new Dwarf_range_list();
847 ranges->add(shndx, low_pc, high_pc);
848 this->gdb_index_->add_address_range_list(this->object(),
849 this->cu_index_, ranges);
850 }
851 }
852}
853
854// Read the .debug_pubnames and .debug_pubtypes tables for the CU or TU.
855// Returns TRUE if either a pubnames or pubtypes section was found.
856
857bool
858Gdb_index_info_reader::read_pubnames_and_pubtypes(Dwarf_die* die)
859{
860 bool ret = false;
861
862 // If we find a DW_AT_GNU_pubnames attribute, read the pubnames table.
863 unsigned int pubnames_shndx;
864 off_t pubnames_offset = die->ref_attribute(elfcpp::DW_AT_GNU_pubnames,
865 &pubnames_shndx);
866 if (pubnames_offset != -1)
867 {
c891b3f9
SA
868 if (this->gdb_index_->pubnames_read(this->object(), pubnames_shndx,
869 pubnames_offset))
c1027032
CC
870 ret = true;
871 else
872 {
ed5d6712 873 Dwarf_pubnames_table pubnames(this, false);
c1027032
CC
874 if (!pubnames.read_section(this->object(), pubnames_shndx))
875 return false;
876 if (!pubnames.read_header(pubnames_offset))
877 return false;
878 while (true)
879 {
880 const char* name = pubnames.next_name();
881 if (name == NULL)
882 break;
883 this->gdb_index_->add_symbol(this->cu_index_, name);
884 }
885 ret = true;
886 }
887 }
888
889 // If we find a DW_AT_GNU_pubtypes attribute, read the pubtypes table.
890 unsigned int pubtypes_shndx;
891 off_t pubtypes_offset = die->ref_attribute(elfcpp::DW_AT_GNU_pubtypes,
892 &pubtypes_shndx);
893 if (pubtypes_offset != -1)
894 {
c891b3f9
SA
895 if (this->gdb_index_->pubtypes_read(this->object(),
896 pubtypes_shndx, pubtypes_offset))
c1027032
CC
897 ret = true;
898 else
899 {
ed5d6712 900 Dwarf_pubnames_table pubtypes(this, true);
c1027032
CC
901 if (!pubtypes.read_section(this->object(), pubtypes_shndx))
902 return false;
903 if (!pubtypes.read_header(pubtypes_offset))
904 return false;
905 while (true)
906 {
907 const char* name = pubtypes.next_name();
908 if (name == NULL)
909 break;
910 this->gdb_index_->add_symbol(this->cu_index_, name);
911 }
912 ret = true;
913 }
914 }
915
916 return ret;
917}
918
919// Clear the declarations map.
920void
921Gdb_index_info_reader::clear_declarations()
922{
923 // Free strings in memory we manage.
924 for (Declaration_map::iterator it = this->declarations_.begin();
925 it != this->declarations_.end();
926 ++it)
927 {
928 if (it->second.parent_offset_ == -1)
929 delete[] it->second.name_;
930 }
931
932 this->declarations_.clear();
933}
934
935// Print usage statistics.
936void
937Gdb_index_info_reader::print_stats()
938{
939 fprintf(stderr, _("%s: DWARF CUs: %u\n"),
940 program_name, Gdb_index_info_reader::dwarf_cu_count);
941 fprintf(stderr, _("%s: DWARF CUs without pubnames/pubtypes: %u\n"),
942 program_name, Gdb_index_info_reader::dwarf_cu_nopubnames_count);
943 fprintf(stderr, _("%s: DWARF TUs: %u\n"),
944 program_name, Gdb_index_info_reader::dwarf_tu_count);
945 fprintf(stderr, _("%s: DWARF TUs without pubnames/pubtypes: %u\n"),
946 program_name, Gdb_index_info_reader::dwarf_tu_nopubnames_count);
947}
948
949// Class Gdb_index.
950
951// Construct the .gdb_index section.
952
953Gdb_index::Gdb_index(Output_section* gdb_index_section)
954 : Output_section_data(4),
955 gdb_index_section_(gdb_index_section),
956 comp_units_(),
957 type_units_(),
958 ranges_(),
959 cu_vector_list_(),
960 cu_vector_offsets_(NULL),
961 stringpool_(),
962 tu_offset_(0),
963 addr_offset_(0),
964 symtab_offset_(0),
965 cu_pool_offset_(0),
966 stringpool_offset_(0),
c891b3f9 967 pubnames_object_(NULL),
c1027032
CC
968 pubnames_shndx_(0),
969 pubnames_offset_(0),
c891b3f9 970 pubtypes_object_(NULL),
c1027032
CC
971 pubtypes_shndx_(0),
972 pubtypes_offset_(0)
973{
974 this->gdb_symtab_ = new Gdb_hashtab<Gdb_symbol>();
975}
976
977Gdb_index::~Gdb_index()
978{
979 // Free the memory used by the symbol table.
980 delete this->gdb_symtab_;
981 // Free the memory used by the CU vectors.
982 for (unsigned int i = 0; i < this->cu_vector_list_.size(); ++i)
983 delete this->cu_vector_list_[i];
984}
985
986// Scan a .debug_info or .debug_types input section.
987
988void
989Gdb_index::scan_debug_info(bool is_type_unit,
990 Relobj* object,
991 const unsigned char* symbols,
992 off_t symbols_size,
993 unsigned int shndx,
994 unsigned int reloc_shndx,
995 unsigned int reloc_type)
996{
997 Gdb_index_info_reader dwinfo(is_type_unit, object,
998 symbols, symbols_size,
999 shndx, reloc_shndx,
1000 reloc_type, this);
1001 dwinfo.parse();
1002}
1003
1004// Add a symbol.
1005
1006void
1007Gdb_index::add_symbol(int cu_index, const char* sym_name)
1008{
1009 unsigned int hash = mapped_index_string_hash(
1010 reinterpret_cast<const unsigned char*>(sym_name));
1011 Gdb_symbol* sym = new Gdb_symbol();
1012 this->stringpool_.add(sym_name, true, &sym->name_key);
1013 sym->hashval = hash;
1014 sym->cu_vector_index = 0;
1015
1016 Gdb_symbol* found = this->gdb_symtab_->add(sym);
1017 if (found == sym)
1018 {
1019 // New symbol -- allocate a new CU index vector.
1020 found->cu_vector_index = this->cu_vector_list_.size();
1021 this->cu_vector_list_.push_back(new Cu_vector());
1022 }
1023 else
1024 {
1025 // Found an existing symbol -- append to the existing
1026 // CU index vector.
1027 delete sym;
1028 }
1029
1030 // Add the CU index to the vector list for this symbol,
1031 // if it's not already on the list. We only need to
1032 // check the last added entry.
1033 Cu_vector* cu_vec = this->cu_vector_list_[found->cu_vector_index];
1034 if (cu_vec->size() == 0 || cu_vec->back() != cu_index)
1035 cu_vec->push_back(cu_index);
1036}
1037
1038// Return TRUE if we have already processed the pubnames set at
1039// OFFSET in section SHNDX
1040
1041bool
c891b3f9 1042Gdb_index::pubnames_read(const Relobj* object, unsigned int shndx, off_t offset)
c1027032 1043{
c891b3f9
SA
1044 bool ret = (this->pubnames_object_ == object
1045 && this->pubnames_shndx_ == shndx
c1027032 1046 && this->pubnames_offset_ == offset);
c891b3f9 1047 this->pubnames_object_ = object;
c1027032
CC
1048 this->pubnames_shndx_ = shndx;
1049 this->pubnames_offset_ = offset;
1050 return ret;
1051}
1052
1053// Return TRUE if we have already processed the pubtypes set at
1054// OFFSET in section SHNDX
1055
1056bool
c891b3f9 1057Gdb_index::pubtypes_read(const Relobj* object, unsigned int shndx, off_t offset)
c1027032 1058{
c891b3f9
SA
1059 bool ret = (this->pubtypes_object_ == object
1060 && this->pubtypes_shndx_ == shndx
c1027032 1061 && this->pubtypes_offset_ == offset);
c891b3f9 1062 this->pubtypes_object_ = object;
c1027032
CC
1063 this->pubtypes_shndx_ = shndx;
1064 this->pubtypes_offset_ = offset;
1065 return ret;
1066}
1067
1068// Set the size of the .gdb_index section.
1069
1070void
1071Gdb_index::set_final_data_size()
1072{
1073 // Finalize the string pool.
1074 this->stringpool_.set_string_offsets();
1075
1076 // Compute the total size of the CU vectors.
1077 // For each CU vector, include one entry for the count at the
1078 // beginning of the vector.
1079 unsigned int cu_vector_count = this->cu_vector_list_.size();
1080 unsigned int cu_vector_size = 0;
1081 this->cu_vector_offsets_ = new off_t[cu_vector_count];
1082 for (unsigned int i = 0; i < cu_vector_count; ++i)
1083 {
1084 Cu_vector* cu_vec = this->cu_vector_list_[i];
1085 cu_vector_offsets_[i] = cu_vector_size;
1086 cu_vector_size += gdb_index_offset_size * (cu_vec->size() + 1);
1087 }
1088
1089 // Assign relative offsets to each portion of the index,
1090 // and find the total size of the section.
1091 section_size_type data_size = gdb_index_hdr_size;
1092 data_size += this->comp_units_.size() * gdb_index_cu_size;
1093 this->tu_offset_ = data_size;
1094 data_size += this->type_units_.size() * gdb_index_tu_size;
1095 this->addr_offset_ = data_size;
1096 for (unsigned int i = 0; i < this->ranges_.size(); ++i)
1097 data_size += this->ranges_[i].ranges->size() * gdb_index_addr_size;
1098 this->symtab_offset_ = data_size;
1099 data_size += this->gdb_symtab_->capacity() * gdb_index_sym_size;
1100 this->cu_pool_offset_ = data_size;
1101 data_size += cu_vector_size;
1102 this->stringpool_offset_ = data_size;
1103 data_size += this->stringpool_.get_strtab_size();
1104
1105 this->set_data_size(data_size);
1106}
1107
1108// Write the data to the file.
1109
1110void
1111Gdb_index::do_write(Output_file* of)
1112{
1113 const off_t off = this->offset();
1114 const off_t oview_size = this->data_size();
1115 unsigned char* const oview = of->get_output_view(off, oview_size);
1116 unsigned char* pov = oview;
1117
1118 // Write the file header.
1119 // (1) Version number.
1120 elfcpp::Swap<32, false>::writeval(pov, gdb_index_version);
1121 pov += 4;
1122 // (2) Offset of the CU list.
1123 elfcpp::Swap<32, false>::writeval(pov, gdb_index_hdr_size);
1124 pov += 4;
1125 // (3) Offset of the types CU list.
1126 elfcpp::Swap<32, false>::writeval(pov, this->tu_offset_);
1127 pov += 4;
1128 // (4) Offset of the address area.
1129 elfcpp::Swap<32, false>::writeval(pov, this->addr_offset_);
1130 pov += 4;
1131 // (5) Offset of the symbol table.
1132 elfcpp::Swap<32, false>::writeval(pov, this->symtab_offset_);
1133 pov += 4;
1134 // (6) Offset of the constant pool.
1135 elfcpp::Swap<32, false>::writeval(pov, this->cu_pool_offset_);
1136 pov += 4;
1137
1138 gold_assert(pov - oview == gdb_index_hdr_size);
1139
1140 // Write the CU list.
1141 unsigned int comp_units_count = this->comp_units_.size();
1142 for (unsigned int i = 0; i < comp_units_count; ++i)
1143 {
1144 const Comp_unit& cu = this->comp_units_[i];
1145 elfcpp::Swap<64, false>::writeval(pov, cu.cu_offset);
1146 elfcpp::Swap<64, false>::writeval(pov + 8, cu.cu_length);
1147 pov += 16;
1148 }
1149
1150 gold_assert(pov - oview == this->tu_offset_);
1151
1152 // Write the types CU list.
1153 for (unsigned int i = 0; i < this->type_units_.size(); ++i)
1154 {
1155 const Type_unit& tu = this->type_units_[i];
1156 elfcpp::Swap<64, false>::writeval(pov, tu.tu_offset);
1157 elfcpp::Swap<64, false>::writeval(pov + 8, tu.type_offset);
1158 elfcpp::Swap<64, false>::writeval(pov + 16, tu.type_signature);
1159 pov += 24;
1160 }
1161
1162 gold_assert(pov - oview == this->addr_offset_);
1163
1164 // Write the address area.
1165 for (unsigned int i = 0; i < this->ranges_.size(); ++i)
1166 {
1167 int cu_index = this->ranges_[i].cu_index;
1168 // Translate negative indexes, which refer to a TU, to a
1169 // logical index into a concatenated CU/TU list.
1170 if (cu_index < 0)
1171 cu_index = comp_units_count + (-1 - cu_index);
1172 Relobj* object = this->ranges_[i].object;
1173 const Dwarf_range_list& ranges = *this->ranges_[i].ranges;
1174 for (unsigned int j = 0; j < ranges.size(); ++j)
1175 {
1176 const Dwarf_range_list::Range& range = ranges[j];
1177 uint64_t base = 0;
1178 if (range.shndx > 0)
1179 {
1180 const Output_section* os = object->output_section(range.shndx);
1181 base = (os->address()
1182 + object->output_section_offset(range.shndx));
1183 }
1d509098
CC
1184 elfcpp::Swap_aligned32<64, false>::writeval(pov, base + range.start);
1185 elfcpp::Swap_aligned32<64, false>::writeval(pov + 8,
1186 base + range.end);
c1027032
CC
1187 elfcpp::Swap<32, false>::writeval(pov + 16, cu_index);
1188 pov += 20;
1189 }
1190 }
1191
1192 gold_assert(pov - oview == this->symtab_offset_);
1193
1194 // Write the symbol table.
1195 for (unsigned int i = 0; i < this->gdb_symtab_->capacity(); ++i)
1196 {
1197 const Gdb_symbol* sym = (*this->gdb_symtab_)[i];
1198 section_offset_type name_offset = 0;
1199 unsigned int cu_vector_offset = 0;
1200 if (sym != NULL)
1201 {
1202 name_offset = (this->stringpool_.get_offset_from_key(sym->name_key)
1203 + this->stringpool_offset_ - this->cu_pool_offset_);
1204 cu_vector_offset = this->cu_vector_offsets_[sym->cu_vector_index];
1205 }
1206 elfcpp::Swap<32, false>::writeval(pov, name_offset);
1207 elfcpp::Swap<32, false>::writeval(pov + 4, cu_vector_offset);
1208 pov += 8;
1209 }
1210
1211 gold_assert(pov - oview == this->cu_pool_offset_);
1212
1213 // Write the CU vectors into the constant pool.
1214 for (unsigned int i = 0; i < this->cu_vector_list_.size(); ++i)
1215 {
1216 Cu_vector* cu_vec = this->cu_vector_list_[i];
1217 elfcpp::Swap<32, false>::writeval(pov, cu_vec->size());
1218 pov += 4;
1219 for (unsigned int j = 0; j < cu_vec->size(); ++j)
1220 {
1221 int cu_index = (*cu_vec)[j];
1222 if (cu_index < 0)
1223 cu_index = comp_units_count + (-1 - cu_index);
1224 elfcpp::Swap<32, false>::writeval(pov, cu_index);
1225 pov += 4;
1226 }
1227 }
1228
1229 gold_assert(pov - oview == this->stringpool_offset_);
1230
1231 // Write the strings into the constant pool.
1232 this->stringpool_.write_to_buffer(pov, oview_size - this->stringpool_offset_);
1233
1234 of->write_output_view(off, oview_size, oview);
1235}
1236
1237// Print usage statistics.
1238void
1239Gdb_index::print_stats()
1240{
1241 if (parameters->options().gdb_index())
1242 Gdb_index_info_reader::print_stats();
1243}
1244
1245} // End namespace gold.