]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gold/mips.cc
Move encoded as 'or' in binutils.
[thirdparty/binutils-gdb.git] / gold / mips.cc
CommitLineData
9810d34d
SS
1// mips.cc -- mips target support for gold.
2
b90efa5b 3// Copyright (C) 2011-2015 Free Software Foundation, Inc.
9810d34d
SS
4// Written by Sasa Stankovic <sasa.stankovic@imgtec.com>
5// and Aleksandar Simeonov <aleksandar.simeonov@rt-rk.com>.
6// This file contains borrowed and adapted code from bfd/elfxx-mips.c.
7
8// This file is part of gold.
9
10// This program is free software; you can redistribute it and/or modify
11// it under the terms of the GNU General Public License as published by
12// the Free Software Foundation; either version 3 of the License, or
13// (at your option) any later version.
14
15// This program is distributed in the hope that it will be useful,
16// but WITHOUT ANY WARRANTY; without even the implied warranty of
17// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18// GNU General Public License for more details.
19
20// You should have received a copy of the GNU General Public License
21// along with this program; if not, write to the Free Software
22// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
23// MA 02110-1301, USA.
24
25#include "gold.h"
26
27#include <algorithm>
28#include <set>
29#include <sstream>
30#include "demangle.h"
31
32#include "elfcpp.h"
33#include "parameters.h"
34#include "reloc.h"
35#include "mips.h"
36#include "object.h"
37#include "symtab.h"
38#include "layout.h"
39#include "output.h"
40#include "copy-relocs.h"
41#include "target.h"
42#include "target-reloc.h"
43#include "target-select.h"
44#include "tls.h"
45#include "errors.h"
46#include "gc.h"
62661c93 47#include "nacl.h"
9810d34d
SS
48
49namespace
50{
51using namespace gold;
52
53template<int size, bool big_endian>
54class Mips_output_data_plt;
55
56template<int size, bool big_endian>
57class Mips_output_data_got;
58
59template<int size, bool big_endian>
60class Target_mips;
61
62template<int size, bool big_endian>
63class Mips_output_section_reginfo;
64
65template<int size, bool big_endian>
66class Mips_output_data_la25_stub;
67
68template<int size, bool big_endian>
69class Mips_output_data_mips_stubs;
70
71template<int size>
72class Mips_symbol;
73
74template<int size, bool big_endian>
75class Mips_got_info;
76
77template<int size, bool big_endian>
78class Mips_relobj;
79
80class Mips16_stub_section_base;
81
82template<int size, bool big_endian>
83class Mips16_stub_section;
84
85// The ABI says that every symbol used by dynamic relocations must have
86// a global GOT entry. Among other things, this provides the dynamic
87// linker with a free, directly-indexed cache. The GOT can therefore
88// contain symbols that are not referenced by GOT relocations themselves
89// (in other words, it may have symbols that are not referenced by things
90// like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
91
92// GOT relocations are less likely to overflow if we put the associated
93// GOT entries towards the beginning. We therefore divide the global
94// GOT entries into two areas: "normal" and "reloc-only". Entries in
95// the first area can be used for both dynamic relocations and GP-relative
96// accesses, while those in the "reloc-only" area are for dynamic
97// relocations only.
98
99// These GGA_* ("Global GOT Area") values are organised so that lower
100// values are more general than higher values. Also, non-GGA_NONE
101// values are ordered by the position of the area in the GOT.
102
103enum Global_got_area
104{
105 GGA_NORMAL = 0,
106 GGA_RELOC_ONLY = 1,
107 GGA_NONE = 2
108};
109
110// The types of GOT entries needed for this platform.
111// These values are exposed to the ABI in an incremental link.
112// Do not renumber existing values without changing the version
113// number of the .gnu_incremental_inputs section.
114enum Got_type
115{
116 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
117 GOT_TYPE_TLS_OFFSET = 1, // GOT entry for TLS offset
118 GOT_TYPE_TLS_PAIR = 2, // GOT entry for TLS module/offset pair
119
120 // GOT entries for multi-GOT. We support up to 1024 GOTs in multi-GOT links.
121 GOT_TYPE_STANDARD_MULTIGOT = 3,
122 GOT_TYPE_TLS_OFFSET_MULTIGOT = GOT_TYPE_STANDARD_MULTIGOT + 1024,
123 GOT_TYPE_TLS_PAIR_MULTIGOT = GOT_TYPE_TLS_OFFSET_MULTIGOT + 1024
124};
125
126// TLS type of GOT entry.
127enum Got_tls_type
128{
129 GOT_TLS_NONE = 0,
130 GOT_TLS_GD = 1,
131 GOT_TLS_LDM = 2,
132 GOT_TLS_IE = 4
133};
134
135// Return TRUE if a relocation of type R_TYPE from OBJECT might
136// require an la25 stub. See also local_pic_function, which determines
137// whether the destination function ever requires a stub.
138template<int size, bool big_endian>
139static inline bool
140relocation_needs_la25_stub(Mips_relobj<size, big_endian>* object,
141 unsigned int r_type, bool target_is_16_bit_code)
142{
143 // We specifically ignore branches and jumps from EF_PIC objects,
144 // where the onus is on the compiler or programmer to perform any
145 // necessary initialization of $25. Sometimes such initialization
146 // is unnecessary; for example, -mno-shared functions do not use
147 // the incoming value of $25, and may therefore be called directly.
148 if (object->is_pic())
149 return false;
150
151 switch (r_type)
152 {
153 case elfcpp::R_MIPS_26:
154 case elfcpp::R_MIPS_PC16:
155 case elfcpp::R_MICROMIPS_26_S1:
156 case elfcpp::R_MICROMIPS_PC7_S1:
157 case elfcpp::R_MICROMIPS_PC10_S1:
158 case elfcpp::R_MICROMIPS_PC16_S1:
159 case elfcpp::R_MICROMIPS_PC23_S2:
160 return true;
161
162 case elfcpp::R_MIPS16_26:
163 return !target_is_16_bit_code;
164
165 default:
166 return false;
167 }
168}
169
170// Return true if SYM is a locally-defined PIC function, in the sense
171// that it or its fn_stub might need $25 to be valid on entry.
172// Note that MIPS16 functions set up $gp using PC-relative instructions,
173// so they themselves never need $25 to be valid. Only non-MIPS16
174// entry points are of interest here.
175template<int size, bool big_endian>
176static inline bool
177local_pic_function(Mips_symbol<size>* sym)
178{
179 bool def_regular = (sym->source() == Symbol::FROM_OBJECT
180 && !sym->object()->is_dynamic()
181 && !sym->is_undefined());
182
183 if (sym->is_defined() && def_regular)
184 {
185 Mips_relobj<size, big_endian>* object =
186 static_cast<Mips_relobj<size, big_endian>*>(sym->object());
187
188 if ((object->is_pic() || sym->is_pic())
189 && (!sym->is_mips16()
190 || (sym->has_mips16_fn_stub() && sym->need_fn_stub())))
191 return true;
192 }
193 return false;
194}
195
196static inline bool
197hi16_reloc(int r_type)
198{
199 return (r_type == elfcpp::R_MIPS_HI16
200 || r_type == elfcpp::R_MIPS16_HI16
201 || r_type == elfcpp::R_MICROMIPS_HI16);
202}
203
204static inline bool
205lo16_reloc(int r_type)
206{
207 return (r_type == elfcpp::R_MIPS_LO16
208 || r_type == elfcpp::R_MIPS16_LO16
209 || r_type == elfcpp::R_MICROMIPS_LO16);
210}
211
212static inline bool
213got16_reloc(unsigned int r_type)
214{
215 return (r_type == elfcpp::R_MIPS_GOT16
216 || r_type == elfcpp::R_MIPS16_GOT16
217 || r_type == elfcpp::R_MICROMIPS_GOT16);
218}
219
220static inline bool
221call_lo16_reloc(unsigned int r_type)
222{
223 return (r_type == elfcpp::R_MIPS_CALL_LO16
224 || r_type == elfcpp::R_MICROMIPS_CALL_LO16);
225}
226
227static inline bool
228got_lo16_reloc(unsigned int r_type)
229{
230 return (r_type == elfcpp::R_MIPS_GOT_LO16
231 || r_type == elfcpp::R_MICROMIPS_GOT_LO16);
232}
233
234static inline bool
235got_disp_reloc(unsigned int r_type)
236{
237 return (r_type == elfcpp::R_MIPS_GOT_DISP
238 || r_type == elfcpp::R_MICROMIPS_GOT_DISP);
239}
240
241static inline bool
242got_page_reloc(unsigned int r_type)
243{
244 return (r_type == elfcpp::R_MIPS_GOT_PAGE
245 || r_type == elfcpp::R_MICROMIPS_GOT_PAGE);
246}
247
248static inline bool
249tls_gd_reloc(unsigned int r_type)
250{
251 return (r_type == elfcpp::R_MIPS_TLS_GD
252 || r_type == elfcpp::R_MIPS16_TLS_GD
253 || r_type == elfcpp::R_MICROMIPS_TLS_GD);
254}
255
256static inline bool
257tls_gottprel_reloc(unsigned int r_type)
258{
259 return (r_type == elfcpp::R_MIPS_TLS_GOTTPREL
260 || r_type == elfcpp::R_MIPS16_TLS_GOTTPREL
261 || r_type == elfcpp::R_MICROMIPS_TLS_GOTTPREL);
262}
263
264static inline bool
265tls_ldm_reloc(unsigned int r_type)
266{
267 return (r_type == elfcpp::R_MIPS_TLS_LDM
268 || r_type == elfcpp::R_MIPS16_TLS_LDM
269 || r_type == elfcpp::R_MICROMIPS_TLS_LDM);
270}
271
272static inline bool
273mips16_call_reloc(unsigned int r_type)
274{
275 return (r_type == elfcpp::R_MIPS16_26
276 || r_type == elfcpp::R_MIPS16_CALL16);
277}
278
279static inline bool
280jal_reloc(unsigned int r_type)
281{
282 return (r_type == elfcpp::R_MIPS_26
283 || r_type == elfcpp::R_MIPS16_26
284 || r_type == elfcpp::R_MICROMIPS_26_S1);
285}
286
287static inline bool
288micromips_branch_reloc(unsigned int r_type)
289{
290 return (r_type == elfcpp::R_MICROMIPS_26_S1
291 || r_type == elfcpp::R_MICROMIPS_PC16_S1
292 || r_type == elfcpp::R_MICROMIPS_PC10_S1
293 || r_type == elfcpp::R_MICROMIPS_PC7_S1);
294}
295
296// Check if R_TYPE is a MIPS16 reloc.
297static inline bool
298mips16_reloc(unsigned int r_type)
299{
300 switch (r_type)
301 {
302 case elfcpp::R_MIPS16_26:
303 case elfcpp::R_MIPS16_GPREL:
304 case elfcpp::R_MIPS16_GOT16:
305 case elfcpp::R_MIPS16_CALL16:
306 case elfcpp::R_MIPS16_HI16:
307 case elfcpp::R_MIPS16_LO16:
308 case elfcpp::R_MIPS16_TLS_GD:
309 case elfcpp::R_MIPS16_TLS_LDM:
310 case elfcpp::R_MIPS16_TLS_DTPREL_HI16:
311 case elfcpp::R_MIPS16_TLS_DTPREL_LO16:
312 case elfcpp::R_MIPS16_TLS_GOTTPREL:
313 case elfcpp::R_MIPS16_TLS_TPREL_HI16:
314 case elfcpp::R_MIPS16_TLS_TPREL_LO16:
315 return true;
316
317 default:
318 return false;
319 }
320}
321
322// Check if R_TYPE is a microMIPS reloc.
323static inline bool
324micromips_reloc(unsigned int r_type)
325{
326 switch (r_type)
327 {
328 case elfcpp::R_MICROMIPS_26_S1:
329 case elfcpp::R_MICROMIPS_HI16:
330 case elfcpp::R_MICROMIPS_LO16:
331 case elfcpp::R_MICROMIPS_GPREL16:
332 case elfcpp::R_MICROMIPS_LITERAL:
333 case elfcpp::R_MICROMIPS_GOT16:
334 case elfcpp::R_MICROMIPS_PC7_S1:
335 case elfcpp::R_MICROMIPS_PC10_S1:
336 case elfcpp::R_MICROMIPS_PC16_S1:
337 case elfcpp::R_MICROMIPS_CALL16:
338 case elfcpp::R_MICROMIPS_GOT_DISP:
339 case elfcpp::R_MICROMIPS_GOT_PAGE:
340 case elfcpp::R_MICROMIPS_GOT_OFST:
341 case elfcpp::R_MICROMIPS_GOT_HI16:
342 case elfcpp::R_MICROMIPS_GOT_LO16:
343 case elfcpp::R_MICROMIPS_SUB:
344 case elfcpp::R_MICROMIPS_HIGHER:
345 case elfcpp::R_MICROMIPS_HIGHEST:
346 case elfcpp::R_MICROMIPS_CALL_HI16:
347 case elfcpp::R_MICROMIPS_CALL_LO16:
348 case elfcpp::R_MICROMIPS_SCN_DISP:
349 case elfcpp::R_MICROMIPS_JALR:
350 case elfcpp::R_MICROMIPS_HI0_LO16:
351 case elfcpp::R_MICROMIPS_TLS_GD:
352 case elfcpp::R_MICROMIPS_TLS_LDM:
353 case elfcpp::R_MICROMIPS_TLS_DTPREL_HI16:
354 case elfcpp::R_MICROMIPS_TLS_DTPREL_LO16:
355 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
356 case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
357 case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
358 case elfcpp::R_MICROMIPS_GPREL7_S2:
359 case elfcpp::R_MICROMIPS_PC23_S2:
360 return true;
361
362 default:
363 return false;
364 }
365}
366
367static inline bool
368is_matching_lo16_reloc(unsigned int high_reloc, unsigned int lo16_reloc)
369{
370 switch (high_reloc)
371 {
372 case elfcpp::R_MIPS_HI16:
373 case elfcpp::R_MIPS_GOT16:
374 return lo16_reloc == elfcpp::R_MIPS_LO16;
375 case elfcpp::R_MIPS16_HI16:
376 case elfcpp::R_MIPS16_GOT16:
377 return lo16_reloc == elfcpp::R_MIPS16_LO16;
378 case elfcpp::R_MICROMIPS_HI16:
379 case elfcpp::R_MICROMIPS_GOT16:
380 return lo16_reloc == elfcpp::R_MICROMIPS_LO16;
381 default:
382 return false;
383 }
384}
385
386// This class is used to hold information about one GOT entry.
387// There are three types of entry:
388//
389// (1) a SYMBOL + OFFSET address, where SYMBOL is local to an input object
390// (object != NULL, symndx >= 0, tls_type != GOT_TLS_LDM)
391// (2) a SYMBOL address, where SYMBOL is not local to an input object
392// (object != NULL, symndx == -1)
393// (3) a TLS LDM slot
394// (object != NULL, symndx == 0, tls_type == GOT_TLS_LDM)
395
396template<int size, bool big_endian>
397class Mips_got_entry
398{
399 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
400
401 public:
402 Mips_got_entry(Mips_relobj<size, big_endian>* object, unsigned int symndx,
403 Mips_address addend, unsigned char tls_type,
404 unsigned int shndx)
405 : object_(object), symndx_(symndx), tls_type_(tls_type), shndx_(shndx)
406 { this->d.addend = addend; }
407
408 Mips_got_entry(Mips_relobj<size, big_endian>* object, Mips_symbol<size>* sym,
409 unsigned char tls_type)
410 : object_(object), symndx_(-1U), tls_type_(tls_type), shndx_(-1U)
411 { this->d.sym = sym; }
412
413 // Return whether this entry is for a local symbol.
414 bool
415 is_for_local_symbol() const
416 { return this->symndx_ != -1U; }
417
418 // Return whether this entry is for a global symbol.
419 bool
420 is_for_global_symbol() const
421 { return this->symndx_ == -1U; }
422
423 // Return the hash of this entry.
424 size_t
425 hash() const
426 {
427 if (this->tls_type_ == GOT_TLS_LDM)
428 return this->symndx_ + (1 << 18);
429 if (this->symndx_ != -1U)
430 {
431 uintptr_t object_id = reinterpret_cast<uintptr_t>(this->object());
432 return this->symndx_ + object_id + this->d.addend;
433 }
434 else
435 {
436 uintptr_t sym_id = reinterpret_cast<uintptr_t>(this->d.sym);
437 return this->symndx_ + sym_id;
438 }
439 }
440
441 // Return whether this entry is equal to OTHER.
442 bool
443 equals(Mips_got_entry<size, big_endian>* other) const
444 {
445 if (this->symndx_ != other->symndx_
446 || this->tls_type_ != other->tls_type_)
447 return false;
448 if (this->tls_type_ == GOT_TLS_LDM)
449 return true;
450 if (this->symndx_ != -1U)
451 return (this->object() == other->object()
452 && this->d.addend == other->d.addend);
453 else
454 return this->d.sym == other->d.sym;
455 }
456
457 // Return input object that needs this GOT entry.
458 Mips_relobj<size, big_endian>*
459 object() const
460 {
461 gold_assert(this->object_ != NULL);
462 return this->object_;
463 }
464
465 // Return local symbol index for local GOT entries.
466 unsigned int
467 symndx() const
468 {
469 gold_assert(this->symndx_ != -1U);
470 return this->symndx_;
471 }
472
473 // Return the relocation addend for local GOT entries.
474 Mips_address
475 addend() const
476 {
477 gold_assert(this->symndx_ != -1U);
478 return this->d.addend;
479 }
480
481 // Return global symbol for global GOT entries.
482 Mips_symbol<size>*
483 sym() const
484 {
485 gold_assert(this->symndx_ == -1U);
486 return this->d.sym;
487 }
488
489 // Return whether this is a TLS GOT entry.
490 bool
491 is_tls_entry() const
492 { return this->tls_type_ != GOT_TLS_NONE; }
493
494 // Return TLS type of this GOT entry.
495 unsigned char
496 tls_type() const
497 { return this->tls_type_; }
498
499 // Return section index of the local symbol for local GOT entries.
500 unsigned int
501 shndx() const
502 { return this->shndx_; }
503
504 private:
505 // The input object that needs the GOT entry.
506 Mips_relobj<size, big_endian>* object_;
507 // The index of the symbol if we have a local symbol; -1 otherwise.
508 unsigned int symndx_;
509
510 union
511 {
512 // If symndx != -1, the addend of the relocation that should be added to the
513 // symbol value.
514 Mips_address addend;
515 // If symndx == -1, the global symbol corresponding to this GOT entry. The
516 // symbol's entry is in the local area if mips_sym->global_got_area is
517 // GGA_NONE, otherwise it is in the global area.
518 Mips_symbol<size>* sym;
519 } d;
520
521 // The TLS type of this GOT entry. An LDM GOT entry will be a local
522 // symbol entry with r_symndx == 0.
523 unsigned char tls_type_;
524
525 // For local GOT entries, section index of the local symbol.
526 unsigned int shndx_;
527};
528
529// Hash for Mips_got_entry.
530
531template<int size, bool big_endian>
532class Mips_got_entry_hash
533{
534 public:
535 size_t
536 operator()(Mips_got_entry<size, big_endian>* entry) const
537 { return entry->hash(); }
538};
539
540// Equality for Mips_got_entry.
541
542template<int size, bool big_endian>
543class Mips_got_entry_eq
544{
545 public:
546 bool
547 operator()(Mips_got_entry<size, big_endian>* e1,
548 Mips_got_entry<size, big_endian>* e2) const
549 { return e1->equals(e2); }
550};
551
552// Got_page_range. This class describes a range of addends: [MIN_ADDEND,
553// MAX_ADDEND]. The instances form a non-overlapping list that is sorted by
554// increasing MIN_ADDEND.
555
556struct Got_page_range
557{
558 Got_page_range()
559 : next(NULL), min_addend(0), max_addend(0)
560 { }
561
562 Got_page_range* next;
563 int min_addend;
564 int max_addend;
565
566 // Return the maximum number of GOT page entries required.
567 int
568 get_max_pages()
569 { return (this->max_addend - this->min_addend + 0x1ffff) >> 16; }
570};
571
572// Got_page_entry. This class describes the range of addends that are applied
573// to page relocations against a given symbol.
574
575struct Got_page_entry
576{
577 Got_page_entry()
578 : object(NULL), symndx(-1U), ranges(NULL), num_pages(0)
579 { }
580
581 Got_page_entry(Object* object_, unsigned int symndx_)
582 : object(object_), symndx(symndx_), ranges(NULL), num_pages(0)
583 { }
584
585 // The input object that needs the GOT page entry.
586 Object* object;
587 // The index of the symbol, as stored in the relocation r_info.
588 unsigned int symndx;
589 // The ranges for this page entry.
590 Got_page_range* ranges;
591 // The maximum number of page entries needed for RANGES.
592 unsigned int num_pages;
593};
594
595// Hash for Got_page_entry.
596
597struct Got_page_entry_hash
598{
599 size_t
600 operator()(Got_page_entry* entry) const
601 { return reinterpret_cast<uintptr_t>(entry->object) + entry->symndx; }
602};
603
604// Equality for Got_page_entry.
605
606struct Got_page_entry_eq
607{
608 bool
609 operator()(Got_page_entry* entry1, Got_page_entry* entry2) const
610 {
611 return entry1->object == entry2->object && entry1->symndx == entry2->symndx;
612 }
613};
614
615// This class is used to hold .got information when linking.
616
617template<int size, bool big_endian>
618class Mips_got_info
619{
620 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
621 typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
622 Reloc_section;
623 typedef Unordered_map<unsigned int, unsigned int> Got_page_offsets;
624
625 // Unordered set of GOT entries.
626 typedef Unordered_set<Mips_got_entry<size, big_endian>*,
627 Mips_got_entry_hash<size, big_endian>,
628 Mips_got_entry_eq<size, big_endian> > Got_entry_set;
629
630 // Unordered set of GOT page entries.
631 typedef Unordered_set<Got_page_entry*,
632 Got_page_entry_hash, Got_page_entry_eq> Got_page_entry_set;
633
634 public:
635 Mips_got_info()
636 : local_gotno_(0), page_gotno_(0), global_gotno_(0), reloc_only_gotno_(0),
637 tls_gotno_(0), tls_ldm_offset_(-1U), global_got_symbols_(),
638 got_entries_(), got_page_entries_(), got_page_offset_start_(0),
639 got_page_offset_next_(0), got_page_offsets_(), next_(NULL), index_(-1U),
640 offset_(0)
641 { }
642
643 // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
644 // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
645 void
646 record_local_got_symbol(Mips_relobj<size, big_endian>* object,
647 unsigned int symndx, Mips_address addend,
648 unsigned int r_type, unsigned int shndx);
649
650 // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
651 // in OBJECT. FOR_CALL is true if the caller is only interested in
652 // using the GOT entry for calls. DYN_RELOC is true if R_TYPE is a dynamic
653 // relocation.
654 void
655 record_global_got_symbol(Mips_symbol<size>* mips_sym,
656 Mips_relobj<size, big_endian>* object,
657 unsigned int r_type, bool dyn_reloc, bool for_call);
658
659 // Add ENTRY to master GOT and to OBJECT's GOT.
660 void
661 record_got_entry(Mips_got_entry<size, big_endian>* entry,
662 Mips_relobj<size, big_endian>* object);
663
664 // Record that OBJECT has a page relocation against symbol SYMNDX and
665 // that ADDEND is the addend for that relocation.
666 void
667 record_got_page_entry(Mips_relobj<size, big_endian>* object,
668 unsigned int symndx, int addend);
669
670 // Create all entries that should be in the local part of the GOT.
671 void
672 add_local_entries(Target_mips<size, big_endian>* target, Layout* layout);
673
674 // Create GOT page entries.
675 void
676 add_page_entries(Target_mips<size, big_endian>* target, Layout* layout);
677
678 // Create global GOT entries, both GGA_NORMAL and GGA_RELOC_ONLY.
679 void
680 add_global_entries(Target_mips<size, big_endian>* target, Layout* layout,
681 unsigned int non_reloc_only_global_gotno);
682
683 // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
684 void
685 add_reloc_only_entries(Mips_output_data_got<size, big_endian>* got);
686
687 // Create TLS GOT entries.
688 void
689 add_tls_entries(Target_mips<size, big_endian>* target, Layout* layout);
690
691 // Decide whether the symbol needs an entry in the global part of the primary
692 // GOT, setting global_got_area accordingly. Count the number of global
693 // symbols that are in the primary GOT only because they have dynamic
694 // relocations R_MIPS_REL32 against them (reloc_only_gotno).
695 void
696 count_got_symbols(Symbol_table* symtab);
697
698 // Return the offset of GOT page entry for VALUE.
699 unsigned int
700 get_got_page_offset(Mips_address value,
701 Mips_output_data_got<size, big_endian>* got);
702
703 // Count the number of GOT entries required.
704 void
705 count_got_entries();
706
707 // Count the number of GOT entries required by ENTRY. Accumulate the result.
708 void
709 count_got_entry(Mips_got_entry<size, big_endian>* entry);
710
711 // Add FROM's GOT entries.
712 void
713 add_got_entries(Mips_got_info<size, big_endian>* from);
714
715 // Add FROM's GOT page entries.
716 void
717 add_got_page_entries(Mips_got_info<size, big_endian>* from);
718
719 // Return GOT size.
720 unsigned int
721 got_size() const
722 { return ((2 + this->local_gotno_ + this->page_gotno_ + this->global_gotno_
723 + this->tls_gotno_) * size/8);
724 }
725
726 // Return the number of local GOT entries.
727 unsigned int
728 local_gotno() const
729 { return this->local_gotno_; }
730
731 // Return the maximum number of page GOT entries needed.
732 unsigned int
733 page_gotno() const
734 { return this->page_gotno_; }
735
736 // Return the number of global GOT entries.
737 unsigned int
738 global_gotno() const
739 { return this->global_gotno_; }
740
741 // Set the number of global GOT entries.
742 void
743 set_global_gotno(unsigned int global_gotno)
744 { this->global_gotno_ = global_gotno; }
745
746 // Return the number of GGA_RELOC_ONLY global GOT entries.
747 unsigned int
748 reloc_only_gotno() const
749 { return this->reloc_only_gotno_; }
750
751 // Return the number of TLS GOT entries.
752 unsigned int
753 tls_gotno() const
754 { return this->tls_gotno_; }
755
756 // Return the GOT type for this GOT. Used for multi-GOT links only.
757 unsigned int
758 multigot_got_type(unsigned int got_type) const
759 {
760 switch (got_type)
761 {
762 case GOT_TYPE_STANDARD:
763 return GOT_TYPE_STANDARD_MULTIGOT + this->index_;
764 case GOT_TYPE_TLS_OFFSET:
765 return GOT_TYPE_TLS_OFFSET_MULTIGOT + this->index_;
766 case GOT_TYPE_TLS_PAIR:
767 return GOT_TYPE_TLS_PAIR_MULTIGOT + this->index_;
768 default:
769 gold_unreachable();
770 }
771 }
772
773 // Remove lazy-binding stubs for global symbols in this GOT.
774 void
775 remove_lazy_stubs(Target_mips<size, big_endian>* target);
776
777 // Return offset of this GOT from the start of .got section.
778 unsigned int
779 offset() const
780 { return this->offset_; }
781
782 // Set offset of this GOT from the start of .got section.
783 void
784 set_offset(unsigned int offset)
785 { this->offset_ = offset; }
786
787 // Set index of this GOT in multi-GOT links.
788 void
789 set_index(unsigned int index)
790 { this->index_ = index; }
791
792 // Return next GOT in multi-GOT links.
793 Mips_got_info<size, big_endian>*
794 next() const
795 { return this->next_; }
796
797 // Set next GOT in multi-GOT links.
798 void
799 set_next(Mips_got_info<size, big_endian>* next)
800 { this->next_ = next; }
801
802 // Return the offset of TLS LDM entry for this GOT.
803 unsigned int
804 tls_ldm_offset() const
805 { return this->tls_ldm_offset_; }
806
807 // Set the offset of TLS LDM entry for this GOT.
808 void
809 set_tls_ldm_offset(unsigned int tls_ldm_offset)
810 { this->tls_ldm_offset_ = tls_ldm_offset; }
811
812 Unordered_set<Mips_symbol<size>*>&
813 global_got_symbols()
814 { return this->global_got_symbols_; }
815
816 // Return the GOT_TLS_* type required by relocation type R_TYPE.
817 static int
818 mips_elf_reloc_tls_type(unsigned int r_type)
819 {
820 if (tls_gd_reloc(r_type))
821 return GOT_TLS_GD;
822
823 if (tls_ldm_reloc(r_type))
824 return GOT_TLS_LDM;
825
826 if (tls_gottprel_reloc(r_type))
827 return GOT_TLS_IE;
828
829 return GOT_TLS_NONE;
830 }
831
832 // Return the number of GOT slots needed for GOT TLS type TYPE.
833 static int
834 mips_tls_got_entries(unsigned int type)
835 {
836 switch (type)
837 {
838 case GOT_TLS_GD:
839 case GOT_TLS_LDM:
840 return 2;
841
842 case GOT_TLS_IE:
843 return 1;
844
845 case GOT_TLS_NONE:
846 return 0;
847
848 default:
849 gold_unreachable();
850 }
851 }
852
853 private:
854 // The number of local GOT entries.
855 unsigned int local_gotno_;
856 // The maximum number of page GOT entries needed.
857 unsigned int page_gotno_;
858 // The number of global GOT entries.
859 unsigned int global_gotno_;
860 // The number of global GOT entries that are in the GGA_RELOC_ONLY area.
861 unsigned int reloc_only_gotno_;
862 // The number of TLS GOT entries.
863 unsigned int tls_gotno_;
864 // The offset of TLS LDM entry for this GOT.
865 unsigned int tls_ldm_offset_;
866 // All symbols that have global GOT entry.
867 Unordered_set<Mips_symbol<size>*> global_got_symbols_;
868 // A hash table holding GOT entries.
869 Got_entry_set got_entries_;
870 // A hash table of GOT page entries.
871 Got_page_entry_set got_page_entries_;
872 // The offset of first GOT page entry for this GOT.
873 unsigned int got_page_offset_start_;
874 // The offset of next available GOT page entry for this GOT.
875 unsigned int got_page_offset_next_;
876 // A hash table that maps GOT page entry value to the GOT offset where
877 // the entry is located.
878 Got_page_offsets got_page_offsets_;
879 // In multi-GOT links, a pointer to the next GOT.
880 Mips_got_info<size, big_endian>* next_;
881 // Index of this GOT in multi-GOT links.
882 unsigned int index_;
883 // The offset of this GOT in multi-GOT links.
884 unsigned int offset_;
885};
886
887// This is a helper class used during relocation scan. It records GOT16 addend.
888
889template<int size, bool big_endian>
890struct got16_addend
891{
892 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
893
894 got16_addend(const Sized_relobj_file<size, big_endian>* _object,
895 unsigned int _shndx, unsigned int _r_type, unsigned int _r_sym,
896 Mips_address _addend)
897 : object(_object), shndx(_shndx), r_type(_r_type), r_sym(_r_sym),
898 addend(_addend)
899 { }
900
901 const Sized_relobj_file<size, big_endian>* object;
902 unsigned int shndx;
903 unsigned int r_type;
904 unsigned int r_sym;
905 Mips_address addend;
906};
907
908// Mips_symbol class. Holds additional symbol information needed for Mips.
909
910template<int size>
911class Mips_symbol : public Sized_symbol<size>
912{
913 public:
914 Mips_symbol()
915 : need_fn_stub_(false), has_nonpic_branches_(false), la25_stub_offset_(-1U),
916 has_static_relocs_(false), no_lazy_stub_(false), lazy_stub_offset_(0),
917 pointer_equality_needed_(false), global_got_area_(GGA_NONE),
918 global_gotoffset_(-1U), got_only_for_calls_(true), has_lazy_stub_(false),
919 needs_mips_plt_(false), needs_comp_plt_(false), mips_plt_offset_(-1U),
920 comp_plt_offset_(-1U), mips16_fn_stub_(NULL), mips16_call_stub_(NULL),
921 mips16_call_fp_stub_(NULL), applied_secondary_got_fixup_(false)
922 { }
923
924 // Return whether this is a MIPS16 symbol.
925 bool
926 is_mips16() const
927 {
928 // (st_other & STO_MIPS16) == STO_MIPS16
929 return ((this->nonvis() & (elfcpp::STO_MIPS16 >> 2))
930 == elfcpp::STO_MIPS16 >> 2);
931 }
932
933 // Return whether this is a microMIPS symbol.
934 bool
935 is_micromips() const
936 {
937 // (st_other & STO_MIPS_ISA) == STO_MICROMIPS
938 return ((this->nonvis() & (elfcpp::STO_MIPS_ISA >> 2))
939 == elfcpp::STO_MICROMIPS >> 2);
940 }
941
942 // Return whether the symbol needs MIPS16 fn_stub.
943 bool
944 need_fn_stub() const
945 { return this->need_fn_stub_; }
946
947 // Set that the symbol needs MIPS16 fn_stub.
948 void
949 set_need_fn_stub()
950 { this->need_fn_stub_ = true; }
951
952 // Return whether this symbol is referenced by branch relocations from
953 // any non-PIC input file.
954 bool
955 has_nonpic_branches() const
956 { return this->has_nonpic_branches_; }
957
958 // Set that this symbol is referenced by branch relocations from
959 // any non-PIC input file.
960 void
961 set_has_nonpic_branches()
962 { this->has_nonpic_branches_ = true; }
963
964 // Return the offset of the la25 stub for this symbol from the start of the
965 // la25 stub section.
966 unsigned int
967 la25_stub_offset() const
968 { return this->la25_stub_offset_; }
969
970 // Set the offset of the la25 stub for this symbol from the start of the
971 // la25 stub section.
972 void
973 set_la25_stub_offset(unsigned int offset)
974 { this->la25_stub_offset_ = offset; }
975
976 // Return whether the symbol has la25 stub. This is true if this symbol is
977 // for a PIC function, and there are non-PIC branches and jumps to it.
978 bool
979 has_la25_stub() const
980 { return this->la25_stub_offset_ != -1U; }
981
982 // Return whether there is a relocation against this symbol that must be
983 // resolved by the static linker (that is, the relocation cannot possibly
984 // be made dynamic).
985 bool
986 has_static_relocs() const
987 { return this->has_static_relocs_; }
988
989 // Set that there is a relocation against this symbol that must be resolved
990 // by the static linker (that is, the relocation cannot possibly be made
991 // dynamic).
992 void
993 set_has_static_relocs()
994 { this->has_static_relocs_ = true; }
995
996 // Return whether we must not create a lazy-binding stub for this symbol.
997 bool
998 no_lazy_stub() const
999 { return this->no_lazy_stub_; }
1000
1001 // Set that we must not create a lazy-binding stub for this symbol.
1002 void
1003 set_no_lazy_stub()
1004 { this->no_lazy_stub_ = true; }
1005
1006 // Return the offset of the lazy-binding stub for this symbol from the start
1007 // of .MIPS.stubs section.
1008 unsigned int
1009 lazy_stub_offset() const
1010 { return this->lazy_stub_offset_; }
1011
1012 // Set the offset of the lazy-binding stub for this symbol from the start
1013 // of .MIPS.stubs section.
1014 void
1015 set_lazy_stub_offset(unsigned int offset)
1016 { this->lazy_stub_offset_ = offset; }
1017
1018 // Return whether there are any relocations for this symbol where
1019 // pointer equality matters.
1020 bool
1021 pointer_equality_needed() const
1022 { return this->pointer_equality_needed_; }
1023
1024 // Set that there are relocations for this symbol where pointer equality
1025 // matters.
1026 void
1027 set_pointer_equality_needed()
1028 { this->pointer_equality_needed_ = true; }
1029
1030 // Return global GOT area where this symbol in located.
1031 Global_got_area
1032 global_got_area() const
1033 { return this->global_got_area_; }
1034
1035 // Set global GOT area where this symbol in located.
1036 void
1037 set_global_got_area(Global_got_area global_got_area)
1038 { this->global_got_area_ = global_got_area; }
1039
1040 // Return the global GOT offset for this symbol. For multi-GOT links, this
1041 // returns the offset from the start of .got section to the first GOT entry
1042 // for the symbol. Note that in multi-GOT links the symbol can have entry
1043 // in more than one GOT.
1044 unsigned int
1045 global_gotoffset() const
1046 { return this->global_gotoffset_; }
1047
1048 // Set the global GOT offset for this symbol. Note that in multi-GOT links
1049 // the symbol can have entry in more than one GOT. This method will set
1050 // the offset only if it is less than current offset.
1051 void
1052 set_global_gotoffset(unsigned int offset)
1053 {
1054 if (this->global_gotoffset_ == -1U || offset < this->global_gotoffset_)
1055 this->global_gotoffset_ = offset;
1056 }
1057
1058 // Return whether all GOT relocations for this symbol are for calls.
1059 bool
1060 got_only_for_calls() const
1061 { return this->got_only_for_calls_; }
1062
1063 // Set that there is a GOT relocation for this symbol that is not for call.
1064 void
1065 set_got_not_only_for_calls()
1066 { this->got_only_for_calls_ = false; }
1067
1068 // Return whether this is a PIC symbol.
1069 bool
1070 is_pic() const
1071 {
1072 // (st_other & STO_MIPS_FLAGS) == STO_MIPS_PIC
1073 return ((this->nonvis() & (elfcpp::STO_MIPS_FLAGS >> 2))
1074 == (elfcpp::STO_MIPS_PIC >> 2));
1075 }
1076
1077 // Set the flag in st_other field that marks this symbol as PIC.
1078 void
1079 set_pic()
1080 {
1081 if (this->is_mips16())
1082 // (st_other & ~(STO_MIPS16 | STO_MIPS_FLAGS)) | STO_MIPS_PIC
1083 this->set_nonvis((this->nonvis()
1084 & ~((elfcpp::STO_MIPS16 >> 2)
1085 | (elfcpp::STO_MIPS_FLAGS >> 2)))
1086 | (elfcpp::STO_MIPS_PIC >> 2));
1087 else
1088 // (other & ~STO_MIPS_FLAGS) | STO_MIPS_PIC
1089 this->set_nonvis((this->nonvis() & ~(elfcpp::STO_MIPS_FLAGS >> 2))
1090 | (elfcpp::STO_MIPS_PIC >> 2));
1091 }
1092
1093 // Set the flag in st_other field that marks this symbol as PLT.
1094 void
1095 set_mips_plt()
1096 {
1097 if (this->is_mips16())
1098 // (st_other & (STO_MIPS16 | ~STO_MIPS_FLAGS)) | STO_MIPS_PLT
1099 this->set_nonvis((this->nonvis()
1100 & ((elfcpp::STO_MIPS16 >> 2)
1101 | ~(elfcpp::STO_MIPS_FLAGS >> 2)))
1102 | (elfcpp::STO_MIPS_PLT >> 2));
1103
1104 else
1105 // (st_other & ~STO_MIPS_FLAGS) | STO_MIPS_PLT
1106 this->set_nonvis((this->nonvis() & ~(elfcpp::STO_MIPS_FLAGS >> 2))
1107 | (elfcpp::STO_MIPS_PLT >> 2));
1108 }
1109
1110 // Downcast a base pointer to a Mips_symbol pointer.
1111 static Mips_symbol<size>*
1112 as_mips_sym(Symbol* sym)
1113 { return static_cast<Mips_symbol<size>*>(sym); }
1114
1115 // Downcast a base pointer to a Mips_symbol pointer.
1116 static const Mips_symbol<size>*
1117 as_mips_sym(const Symbol* sym)
1118 { return static_cast<const Mips_symbol<size>*>(sym); }
1119
1120 // Return whether the symbol has lazy-binding stub.
1121 bool
1122 has_lazy_stub() const
1123 { return this->has_lazy_stub_; }
1124
1125 // Set whether the symbol has lazy-binding stub.
1126 void
1127 set_has_lazy_stub(bool has_lazy_stub)
1128 { this->has_lazy_stub_ = has_lazy_stub; }
1129
1130 // Return whether the symbol needs a standard PLT entry.
1131 bool
1132 needs_mips_plt() const
1133 { return this->needs_mips_plt_; }
1134
1135 // Set whether the symbol needs a standard PLT entry.
1136 void
1137 set_needs_mips_plt(bool needs_mips_plt)
1138 { this->needs_mips_plt_ = needs_mips_plt; }
1139
1140 // Return whether the symbol needs a compressed (MIPS16 or microMIPS) PLT
1141 // entry.
1142 bool
1143 needs_comp_plt() const
1144 { return this->needs_comp_plt_; }
1145
1146 // Set whether the symbol needs a compressed (MIPS16 or microMIPS) PLT entry.
1147 void
1148 set_needs_comp_plt(bool needs_comp_plt)
1149 { this->needs_comp_plt_ = needs_comp_plt; }
1150
1151 // Return standard PLT entry offset, or -1 if none.
1152 unsigned int
1153 mips_plt_offset() const
1154 { return this->mips_plt_offset_; }
1155
1156 // Set standard PLT entry offset.
1157 void
1158 set_mips_plt_offset(unsigned int mips_plt_offset)
1159 { this->mips_plt_offset_ = mips_plt_offset; }
1160
1161 // Return whether the symbol has standard PLT entry.
1162 bool
1163 has_mips_plt_offset() const
1164 { return this->mips_plt_offset_ != -1U; }
1165
1166 // Return compressed (MIPS16 or microMIPS) PLT entry offset, or -1 if none.
1167 unsigned int
1168 comp_plt_offset() const
1169 { return this->comp_plt_offset_; }
1170
1171 // Set compressed (MIPS16 or microMIPS) PLT entry offset.
1172 void
1173 set_comp_plt_offset(unsigned int comp_plt_offset)
1174 { this->comp_plt_offset_ = comp_plt_offset; }
1175
1176 // Return whether the symbol has compressed (MIPS16 or microMIPS) PLT entry.
1177 bool
1178 has_comp_plt_offset() const
1179 { return this->comp_plt_offset_ != -1U; }
1180
1181 // Return MIPS16 fn stub for a symbol.
1182 template<bool big_endian>
1183 Mips16_stub_section<size, big_endian>*
1184 get_mips16_fn_stub() const
1185 {
1186 return static_cast<Mips16_stub_section<size, big_endian>*>(mips16_fn_stub_);
1187 }
1188
1189 // Set MIPS16 fn stub for a symbol.
1190 void
1191 set_mips16_fn_stub(Mips16_stub_section_base* stub)
1192 { this->mips16_fn_stub_ = stub; }
1193
1194 // Return whether symbol has MIPS16 fn stub.
1195 bool
1196 has_mips16_fn_stub() const
1197 { return this->mips16_fn_stub_ != NULL; }
1198
1199 // Return MIPS16 call stub for a symbol.
1200 template<bool big_endian>
1201 Mips16_stub_section<size, big_endian>*
1202 get_mips16_call_stub() const
1203 {
1204 return static_cast<Mips16_stub_section<size, big_endian>*>(
1205 mips16_call_stub_);
1206 }
1207
1208 // Set MIPS16 call stub for a symbol.
1209 void
1210 set_mips16_call_stub(Mips16_stub_section_base* stub)
1211 { this->mips16_call_stub_ = stub; }
1212
1213 // Return whether symbol has MIPS16 call stub.
1214 bool
1215 has_mips16_call_stub() const
1216 { return this->mips16_call_stub_ != NULL; }
1217
1218 // Return MIPS16 call_fp stub for a symbol.
1219 template<bool big_endian>
1220 Mips16_stub_section<size, big_endian>*
1221 get_mips16_call_fp_stub() const
1222 {
1223 return static_cast<Mips16_stub_section<size, big_endian>*>(
1224 mips16_call_fp_stub_);
1225 }
1226
1227 // Set MIPS16 call_fp stub for a symbol.
1228 void
1229 set_mips16_call_fp_stub(Mips16_stub_section_base* stub)
1230 { this->mips16_call_fp_stub_ = stub; }
1231
1232 // Return whether symbol has MIPS16 call_fp stub.
1233 bool
1234 has_mips16_call_fp_stub() const
1235 { return this->mips16_call_fp_stub_ != NULL; }
1236
1237 bool
1238 get_applied_secondary_got_fixup() const
1239 { return applied_secondary_got_fixup_; }
1240
1241 void
1242 set_applied_secondary_got_fixup()
1243 { this->applied_secondary_got_fixup_ = true; }
1244
1245 private:
1246 // Whether the symbol needs MIPS16 fn_stub. This is true if this symbol
1247 // appears in any relocs other than a 16 bit call.
1248 bool need_fn_stub_;
1249
1250 // True if this symbol is referenced by branch relocations from
1251 // any non-PIC input file. This is used to determine whether an
1252 // la25 stub is required.
1253 bool has_nonpic_branches_;
1254
1255 // The offset of the la25 stub for this symbol from the start of the
1256 // la25 stub section.
1257 unsigned int la25_stub_offset_;
1258
1259 // True if there is a relocation against this symbol that must be
1260 // resolved by the static linker (that is, the relocation cannot
1261 // possibly be made dynamic).
1262 bool has_static_relocs_;
1263
1264 // Whether we must not create a lazy-binding stub for this symbol.
1265 // This is true if the symbol has relocations related to taking the
1266 // function's address.
1267 bool no_lazy_stub_;
1268
1269 // The offset of the lazy-binding stub for this symbol from the start of
1270 // .MIPS.stubs section.
1271 unsigned int lazy_stub_offset_;
1272
1273 // True if there are any relocations for this symbol where pointer equality
1274 // matters.
1275 bool pointer_equality_needed_;
1276
1277 // Global GOT area where this symbol in located, or GGA_NONE if symbol is not
1278 // in the global part of the GOT.
1279 Global_got_area global_got_area_;
1280
1281 // The global GOT offset for this symbol. For multi-GOT links, this is offset
1282 // from the start of .got section to the first GOT entry for the symbol.
1283 // Note that in multi-GOT links the symbol can have entry in more than one GOT.
1284 unsigned int global_gotoffset_;
1285
1286 // Whether all GOT relocations for this symbol are for calls.
1287 bool got_only_for_calls_;
1288 // Whether the symbol has lazy-binding stub.
1289 bool has_lazy_stub_;
1290 // Whether the symbol needs a standard PLT entry.
1291 bool needs_mips_plt_;
1292 // Whether the symbol needs a compressed (MIPS16 or microMIPS) PLT entry.
1293 bool needs_comp_plt_;
1294 // Standard PLT entry offset, or -1 if none.
1295 unsigned int mips_plt_offset_;
1296 // Compressed (MIPS16 or microMIPS) PLT entry offset, or -1 if none.
1297 unsigned int comp_plt_offset_;
1298 // MIPS16 fn stub for a symbol.
1299 Mips16_stub_section_base* mips16_fn_stub_;
1300 // MIPS16 call stub for a symbol.
1301 Mips16_stub_section_base* mips16_call_stub_;
1302 // MIPS16 call_fp stub for a symbol.
1303 Mips16_stub_section_base* mips16_call_fp_stub_;
1304
1305 bool applied_secondary_got_fixup_;
1306};
1307
1308// Mips16_stub_section class.
1309
1310// The mips16 compiler uses a couple of special sections to handle
1311// floating point arguments.
1312
1313// Section names that look like .mips16.fn.FNNAME contain stubs that
1314// copy floating point arguments from the fp regs to the gp regs and
1315// then jump to FNNAME. If any 32 bit function calls FNNAME, the
1316// call should be redirected to the stub instead. If no 32 bit
1317// function calls FNNAME, the stub should be discarded. We need to
1318// consider any reference to the function, not just a call, because
1319// if the address of the function is taken we will need the stub,
1320// since the address might be passed to a 32 bit function.
1321
1322// Section names that look like .mips16.call.FNNAME contain stubs
1323// that copy floating point arguments from the gp regs to the fp
1324// regs and then jump to FNNAME. If FNNAME is a 32 bit function,
1325// then any 16 bit function that calls FNNAME should be redirected
1326// to the stub instead. If FNNAME is not a 32 bit function, the
1327// stub should be discarded.
1328
1329// .mips16.call.fp.FNNAME sections are similar, but contain stubs
1330// which call FNNAME and then copy the return value from the fp regs
1331// to the gp regs. These stubs store the return address in $18 while
1332// calling FNNAME; any function which might call one of these stubs
1333// must arrange to save $18 around the call. (This case is not
1334// needed for 32 bit functions that call 16 bit functions, because
1335// 16 bit functions always return floating point values in both
1336// $f0/$f1 and $2/$3.)
1337
1338// Note that in all cases FNNAME might be defined statically.
1339// Therefore, FNNAME is not used literally. Instead, the relocation
1340// information will indicate which symbol the section is for.
1341
1342// We record any stubs that we find in the symbol table.
1343
1344// TODO(sasa): All mips16 stub sections should be emitted in the .text section.
1345
1346class Mips16_stub_section_base { };
1347
1348template<int size, bool big_endian>
1349class Mips16_stub_section : public Mips16_stub_section_base
1350{
1351 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1352
1353 public:
1354 Mips16_stub_section(Mips_relobj<size, big_endian>* object, unsigned int shndx)
1355 : object_(object), shndx_(shndx), r_sym_(0), gsym_(NULL),
1356 found_r_mips_none_(false)
1357 {
1358 gold_assert(object->is_mips16_fn_stub_section(shndx)
1359 || object->is_mips16_call_stub_section(shndx)
1360 || object->is_mips16_call_fp_stub_section(shndx));
1361 }
1362
1363 // Return the object of this stub section.
1364 Mips_relobj<size, big_endian>*
1365 object() const
1366 { return this->object_; }
1367
1368 // Return the size of a section.
1369 uint64_t
1370 section_size() const
1371 { return this->object_->section_size(this->shndx_); }
1372
1373 // Return section index of this stub section.
1374 unsigned int
1375 shndx() const
1376 { return this->shndx_; }
1377
1378 // Return symbol index, if stub is for a local function.
1379 unsigned int
1380 r_sym() const
1381 { return this->r_sym_; }
1382
1383 // Return symbol, if stub is for a global function.
1384 Mips_symbol<size>*
1385 gsym() const
1386 { return this->gsym_; }
1387
1388 // Return whether stub is for a local function.
1389 bool
1390 is_for_local_function() const
1391 { return this->gsym_ == NULL; }
1392
1393 // This method is called when a new relocation R_TYPE for local symbol R_SYM
1394 // is found in the stub section. Try to find stub target.
1395 void
1396 new_local_reloc_found(unsigned int r_type, unsigned int r_sym)
1397 {
1398 // To find target symbol for this stub, trust the first R_MIPS_NONE
1399 // relocation, if any. Otherwise trust the first relocation, whatever
1400 // its kind.
1401 if (this->found_r_mips_none_)
1402 return;
1403 if (r_type == elfcpp::R_MIPS_NONE)
1404 {
1405 this->r_sym_ = r_sym;
1406 this->gsym_ = NULL;
1407 this->found_r_mips_none_ = true;
1408 }
1409 else if (!is_target_found())
1410 this->r_sym_ = r_sym;
1411 }
1412
1413 // This method is called when a new relocation R_TYPE for global symbol GSYM
1414 // is found in the stub section. Try to find stub target.
1415 void
1416 new_global_reloc_found(unsigned int r_type, Mips_symbol<size>* gsym)
1417 {
1418 // To find target symbol for this stub, trust the first R_MIPS_NONE
1419 // relocation, if any. Otherwise trust the first relocation, whatever
1420 // its kind.
1421 if (this->found_r_mips_none_)
1422 return;
1423 if (r_type == elfcpp::R_MIPS_NONE)
1424 {
1425 this->gsym_ = gsym;
1426 this->r_sym_ = 0;
1427 this->found_r_mips_none_ = true;
1428 }
1429 else if (!is_target_found())
1430 this->gsym_ = gsym;
1431 }
1432
1433 // Return whether we found the stub target.
1434 bool
1435 is_target_found() const
1436 { return this->r_sym_ != 0 || this->gsym_ != NULL; }
1437
1438 // Return whether this is a fn stub.
1439 bool
1440 is_fn_stub() const
1441 { return this->object_->is_mips16_fn_stub_section(this->shndx_); }
1442
1443 // Return whether this is a call stub.
1444 bool
1445 is_call_stub() const
1446 { return this->object_->is_mips16_call_stub_section(this->shndx_); }
1447
1448 // Return whether this is a call_fp stub.
1449 bool
1450 is_call_fp_stub() const
1451 { return this->object_->is_mips16_call_fp_stub_section(this->shndx_); }
1452
1453 // Return the output address.
1454 Mips_address
1455 output_address() const
1456 {
1457 return (this->object_->output_section(this->shndx_)->address()
1458 + this->object_->output_section_offset(this->shndx_));
1459 }
1460
1461 private:
1462 // The object of this stub section.
1463 Mips_relobj<size, big_endian>* object_;
1464 // The section index of this stub section.
1465 unsigned int shndx_;
1466 // The symbol index, if stub is for a local function.
1467 unsigned int r_sym_;
1468 // The symbol, if stub is for a global function.
1469 Mips_symbol<size>* gsym_;
1470 // True if we found R_MIPS_NONE relocation in this stub.
1471 bool found_r_mips_none_;
1472};
1473
1474// Mips_relobj class.
1475
1476template<int size, bool big_endian>
1477class Mips_relobj : public Sized_relobj_file<size, big_endian>
1478{
1479 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1480 typedef std::map<unsigned int, Mips16_stub_section<size, big_endian>*>
1481 Mips16_stubs_int_map;
1482 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
1483
1484 public:
1485 Mips_relobj(const std::string& name, Input_file* input_file, off_t offset,
1486 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
1487 : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
1488 processor_specific_flags_(0), local_symbol_is_mips16_(),
1489 local_symbol_is_micromips_(), mips16_stub_sections_(),
1490 local_non_16bit_calls_(), local_16bit_calls_(), local_mips16_fn_stubs_(),
1491 local_mips16_call_stubs_(), gp_(0), got_info_(NULL),
1492 section_is_mips16_fn_stub_(), section_is_mips16_call_stub_(),
1493 section_is_mips16_call_fp_stub_(), pdr_shndx_(-1U), gprmask_(0),
1494 cprmask1_(0), cprmask2_(0), cprmask3_(0), cprmask4_(0)
1495 {
1496 this->is_pic_ = (ehdr.get_e_flags() & elfcpp::EF_MIPS_PIC) != 0;
1497 this->is_n32_ = elfcpp::abi_n32(ehdr.get_e_flags());
1498 this->is_n64_ = elfcpp::abi_64(ehdr.get_e_ident()[elfcpp::EI_CLASS]);
1499 }
1500
1501 ~Mips_relobj()
1502 { }
1503
1504 // Downcast a base pointer to a Mips_relobj pointer. This is
1505 // not type-safe but we only use Mips_relobj not the base class.
1506 static Mips_relobj<size, big_endian>*
1507 as_mips_relobj(Relobj* relobj)
1508 { return static_cast<Mips_relobj<size, big_endian>*>(relobj); }
1509
1510 // Downcast a base pointer to a Mips_relobj pointer. This is
1511 // not type-safe but we only use Mips_relobj not the base class.
1512 static const Mips_relobj<size, big_endian>*
1513 as_mips_relobj(const Relobj* relobj)
1514 { return static_cast<const Mips_relobj<size, big_endian>*>(relobj); }
1515
1516 // Processor-specific flags in ELF file header. This is valid only after
1517 // reading symbols.
1518 elfcpp::Elf_Word
1519 processor_specific_flags() const
1520 { return this->processor_specific_flags_; }
1521
1522 // Whether a local symbol is MIPS16 symbol. R_SYM is the symbol table
1523 // index. This is only valid after do_count_local_symbol is called.
1524 bool
1525 local_symbol_is_mips16(unsigned int r_sym) const
1526 {
1527 gold_assert(r_sym < this->local_symbol_is_mips16_.size());
1528 return this->local_symbol_is_mips16_[r_sym];
1529 }
1530
1531 // Whether a local symbol is microMIPS symbol. R_SYM is the symbol table
1532 // index. This is only valid after do_count_local_symbol is called.
1533 bool
1534 local_symbol_is_micromips(unsigned int r_sym) const
1535 {
1536 gold_assert(r_sym < this->local_symbol_is_micromips_.size());
1537 return this->local_symbol_is_micromips_[r_sym];
1538 }
1539
1540 // Get or create MIPS16 stub section.
1541 Mips16_stub_section<size, big_endian>*
1542 get_mips16_stub_section(unsigned int shndx)
1543 {
1544 typename Mips16_stubs_int_map::const_iterator it =
1545 this->mips16_stub_sections_.find(shndx);
1546 if (it != this->mips16_stub_sections_.end())
1547 return (*it).second;
1548
1549 Mips16_stub_section<size, big_endian>* stub_section =
1550 new Mips16_stub_section<size, big_endian>(this, shndx);
1551 this->mips16_stub_sections_.insert(
1552 std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1553 stub_section->shndx(), stub_section));
1554 return stub_section;
1555 }
1556
1557 // Return MIPS16 fn stub section for local symbol R_SYM, or NULL if this
1558 // object doesn't have fn stub for R_SYM.
1559 Mips16_stub_section<size, big_endian>*
1560 get_local_mips16_fn_stub(unsigned int r_sym) const
1561 {
1562 typename Mips16_stubs_int_map::const_iterator it =
1563 this->local_mips16_fn_stubs_.find(r_sym);
1564 if (it != this->local_mips16_fn_stubs_.end())
1565 return (*it).second;
1566 return NULL;
1567 }
1568
1569 // Record that this object has MIPS16 fn stub for local symbol. This method
1570 // is only called if we decided not to discard the stub.
1571 void
1572 add_local_mips16_fn_stub(Mips16_stub_section<size, big_endian>* stub)
1573 {
1574 gold_assert(stub->is_for_local_function());
1575 unsigned int r_sym = stub->r_sym();
1576 this->local_mips16_fn_stubs_.insert(
1577 std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1578 r_sym, stub));
1579 }
1580
1581 // Return MIPS16 call stub section for local symbol R_SYM, or NULL if this
1582 // object doesn't have call stub for R_SYM.
1583 Mips16_stub_section<size, big_endian>*
1584 get_local_mips16_call_stub(unsigned int r_sym) const
1585 {
1586 typename Mips16_stubs_int_map::const_iterator it =
1587 this->local_mips16_call_stubs_.find(r_sym);
1588 if (it != this->local_mips16_call_stubs_.end())
1589 return (*it).second;
1590 return NULL;
1591 }
1592
1593 // Record that this object has MIPS16 call stub for local symbol. This method
1594 // is only called if we decided not to discard the stub.
1595 void
1596 add_local_mips16_call_stub(Mips16_stub_section<size, big_endian>* stub)
1597 {
1598 gold_assert(stub->is_for_local_function());
1599 unsigned int r_sym = stub->r_sym();
1600 this->local_mips16_call_stubs_.insert(
1601 std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1602 r_sym, stub));
1603 }
1604
1605 // Record that we found "non 16-bit" call relocation against local symbol
1606 // SYMNDX. This reloc would need to refer to a MIPS16 fn stub, if there
1607 // is one.
1608 void
1609 add_local_non_16bit_call(unsigned int symndx)
1610 { this->local_non_16bit_calls_.insert(symndx); }
1611
1612 // Return true if there is any "non 16-bit" call relocation against local
1613 // symbol SYMNDX in this object.
1614 bool
1615 has_local_non_16bit_call_relocs(unsigned int symndx)
1616 {
1617 return (this->local_non_16bit_calls_.find(symndx)
1618 != this->local_non_16bit_calls_.end());
1619 }
1620
1621 // Record that we found 16-bit call relocation R_MIPS16_26 against local
1622 // symbol SYMNDX. Local MIPS16 call or call_fp stubs will only be needed
1623 // if there is some R_MIPS16_26 relocation that refers to the stub symbol.
1624 void
1625 add_local_16bit_call(unsigned int symndx)
1626 { this->local_16bit_calls_.insert(symndx); }
1627
1628 // Return true if there is any 16-bit call relocation R_MIPS16_26 against local
1629 // symbol SYMNDX in this object.
1630 bool
1631 has_local_16bit_call_relocs(unsigned int symndx)
1632 {
1633 return (this->local_16bit_calls_.find(symndx)
1634 != this->local_16bit_calls_.end());
1635 }
1636
1637 // Get gp value that was used to create this object.
1638 Mips_address
1639 gp_value() const
1640 { return this->gp_; }
1641
1642 // Return whether the object is a PIC object.
1643 bool
1644 is_pic() const
1645 { return this->is_pic_; }
1646
1647 // Return whether the object uses N32 ABI.
1648 bool
1649 is_n32() const
1650 { return this->is_n32_; }
1651
1652 // Return whether the object uses N64 ABI.
1653 bool
1654 is_n64() const
1655 { return this->is_n64_; }
1656
1657 // Return whether the object uses NewABI conventions.
1658 bool
1659 is_newabi() const
1660 { return this->is_n32_ || this->is_n64_; }
1661
1662 // Return Mips_got_info for this object.
1663 Mips_got_info<size, big_endian>*
1664 get_got_info() const
1665 { return this->got_info_; }
1666
1667 // Return Mips_got_info for this object. Create new info if it doesn't exist.
1668 Mips_got_info<size, big_endian>*
1669 get_or_create_got_info()
1670 {
1671 if (!this->got_info_)
1672 this->got_info_ = new Mips_got_info<size, big_endian>();
1673 return this->got_info_;
1674 }
1675
1676 // Set Mips_got_info for this object.
1677 void
1678 set_got_info(Mips_got_info<size, big_endian>* got_info)
1679 { this->got_info_ = got_info; }
1680
1681 // Whether a section SHDNX is a MIPS16 stub section. This is only valid
1682 // after do_read_symbols is called.
1683 bool
1684 is_mips16_stub_section(unsigned int shndx)
1685 {
1686 return (is_mips16_fn_stub_section(shndx)
1687 || is_mips16_call_stub_section(shndx)
1688 || is_mips16_call_fp_stub_section(shndx));
1689 }
1690
1691 // Return TRUE if relocations in section SHNDX can refer directly to a
1692 // MIPS16 function rather than to a hard-float stub. This is only valid
1693 // after do_read_symbols is called.
1694 bool
1695 section_allows_mips16_refs(unsigned int shndx)
1696 {
1697 return (this->is_mips16_stub_section(shndx) || shndx == this->pdr_shndx_);
1698 }
1699
1700 // Whether a section SHDNX is a MIPS16 fn stub section. This is only valid
1701 // after do_read_symbols is called.
1702 bool
1703 is_mips16_fn_stub_section(unsigned int shndx)
1704 {
1705 gold_assert(shndx < this->section_is_mips16_fn_stub_.size());
1706 return this->section_is_mips16_fn_stub_[shndx];
1707 }
1708
1709 // Whether a section SHDNX is a MIPS16 call stub section. This is only valid
1710 // after do_read_symbols is called.
1711 bool
1712 is_mips16_call_stub_section(unsigned int shndx)
1713 {
1714 gold_assert(shndx < this->section_is_mips16_call_stub_.size());
1715 return this->section_is_mips16_call_stub_[shndx];
1716 }
1717
1718 // Whether a section SHDNX is a MIPS16 call_fp stub section. This is only
1719 // valid after do_read_symbols is called.
1720 bool
1721 is_mips16_call_fp_stub_section(unsigned int shndx)
1722 {
1723 gold_assert(shndx < this->section_is_mips16_call_fp_stub_.size());
1724 return this->section_is_mips16_call_fp_stub_[shndx];
1725 }
1726
1727 // Discard MIPS16 stub secions that are not needed.
1728 void
1729 discard_mips16_stub_sections(Symbol_table* symtab);
1730
1731 // Return gprmask from the .reginfo section of this object.
1732 Valtype
1733 gprmask() const
1734 { return this->gprmask_; }
1735
1736 // Return cprmask1 from the .reginfo section of this object.
1737 Valtype
1738 cprmask1() const
1739 { return this->cprmask1_; }
1740
1741 // Return cprmask2 from the .reginfo section of this object.
1742 Valtype
1743 cprmask2() const
1744 { return this->cprmask2_; }
1745
1746 // Return cprmask3 from the .reginfo section of this object.
1747 Valtype
1748 cprmask3() const
1749 { return this->cprmask3_; }
1750
1751 // Return cprmask4 from the .reginfo section of this object.
1752 Valtype
1753 cprmask4() const
1754 { return this->cprmask4_; }
1755
1756 protected:
1757 // Count the local symbols.
1758 void
1759 do_count_local_symbols(Stringpool_template<char>*,
1760 Stringpool_template<char>*);
1761
1762 // Read the symbol information.
1763 void
1764 do_read_symbols(Read_symbols_data* sd);
1765
1766 private:
1767 // processor-specific flags in ELF file header.
1768 elfcpp::Elf_Word processor_specific_flags_;
1769
1770 // Bit vector to tell if a local symbol is a MIPS16 symbol or not.
1771 // This is only valid after do_count_local_symbol is called.
1772 std::vector<bool> local_symbol_is_mips16_;
1773
1774 // Bit vector to tell if a local symbol is a microMIPS symbol or not.
1775 // This is only valid after do_count_local_symbol is called.
1776 std::vector<bool> local_symbol_is_micromips_;
1777
1778 // Map from section index to the MIPS16 stub for that section. This contains
1779 // all stubs found in this object.
1780 Mips16_stubs_int_map mips16_stub_sections_;
1781
1782 // Local symbols that have "non 16-bit" call relocation. This relocation
1783 // would need to refer to a MIPS16 fn stub, if there is one.
1784 std::set<unsigned int> local_non_16bit_calls_;
1785
1786 // Local symbols that have 16-bit call relocation R_MIPS16_26. Local MIPS16
1787 // call or call_fp stubs will only be needed if there is some R_MIPS16_26
1788 // relocation that refers to the stub symbol.
1789 std::set<unsigned int> local_16bit_calls_;
1790
1791 // Map from local symbol index to the MIPS16 fn stub for that symbol.
1792 // This contains only the stubs that we decided not to discard.
1793 Mips16_stubs_int_map local_mips16_fn_stubs_;
1794
1795 // Map from local symbol index to the MIPS16 call stub for that symbol.
1796 // This contains only the stubs that we decided not to discard.
1797 Mips16_stubs_int_map local_mips16_call_stubs_;
1798
1799 // gp value that was used to create this object.
1800 Mips_address gp_;
1801 // Whether the object is a PIC object.
1802 bool is_pic_ : 1;
1803 // Whether the object uses N32 ABI.
1804 bool is_n32_ : 1;
1805 // Whether the object uses N64 ABI.
1806 bool is_n64_ : 1;
1807 // The Mips_got_info for this object.
1808 Mips_got_info<size, big_endian>* got_info_;
1809
1810 // Bit vector to tell if a section is a MIPS16 fn stub section or not.
1811 // This is only valid after do_read_symbols is called.
1812 std::vector<bool> section_is_mips16_fn_stub_;
1813
1814 // Bit vector to tell if a section is a MIPS16 call stub section or not.
1815 // This is only valid after do_read_symbols is called.
1816 std::vector<bool> section_is_mips16_call_stub_;
1817
1818 // Bit vector to tell if a section is a MIPS16 call_fp stub section or not.
1819 // This is only valid after do_read_symbols is called.
1820 std::vector<bool> section_is_mips16_call_fp_stub_;
1821
1822 // .pdr section index.
1823 unsigned int pdr_shndx_;
1824
1825 // gprmask from the .reginfo section of this object.
1826 Valtype gprmask_;
1827 // cprmask1 from the .reginfo section of this object.
1828 Valtype cprmask1_;
1829 // cprmask2 from the .reginfo section of this object.
1830 Valtype cprmask2_;
1831 // cprmask3 from the .reginfo section of this object.
1832 Valtype cprmask3_;
1833 // cprmask4 from the .reginfo section of this object.
1834 Valtype cprmask4_;
1835};
1836
1837// Mips_output_data_got class.
1838
1839template<int size, bool big_endian>
1840class Mips_output_data_got : public Output_data_got<size, big_endian>
1841{
1842 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1843 typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
1844 Reloc_section;
1845 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
1846
1847 public:
1848 Mips_output_data_got(Target_mips<size, big_endian>* target,
1849 Symbol_table* symtab, Layout* layout)
1850 : Output_data_got<size, big_endian>(), target_(target),
1851 symbol_table_(symtab), layout_(layout), static_relocs_(), got_view_(NULL),
1852 first_global_got_dynsym_index_(-1U), primary_got_(NULL),
1853 secondary_got_relocs_()
1854 {
1855 this->master_got_info_ = new Mips_got_info<size, big_endian>();
1856 this->set_addralign(16);
1857 }
1858
1859 // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
1860 // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
1861 void
1862 record_local_got_symbol(Mips_relobj<size, big_endian>* object,
1863 unsigned int symndx, Mips_address addend,
1864 unsigned int r_type, unsigned int shndx)
1865 {
1866 this->master_got_info_->record_local_got_symbol(object, symndx, addend,
1867 r_type, shndx);
1868 }
1869
1870 // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
1871 // in OBJECT. FOR_CALL is true if the caller is only interested in
1872 // using the GOT entry for calls. DYN_RELOC is true if R_TYPE is a dynamic
1873 // relocation.
1874 void
1875 record_global_got_symbol(Mips_symbol<size>* mips_sym,
1876 Mips_relobj<size, big_endian>* object,
1877 unsigned int r_type, bool dyn_reloc, bool for_call)
1878 {
1879 this->master_got_info_->record_global_got_symbol(mips_sym, object, r_type,
1880 dyn_reloc, for_call);
1881 }
1882
1883 // Record that OBJECT has a page relocation against symbol SYMNDX and
1884 // that ADDEND is the addend for that relocation.
1885 void
1886 record_got_page_entry(Mips_relobj<size, big_endian>* object,
1887 unsigned int symndx, int addend)
1888 { this->master_got_info_->record_got_page_entry(object, symndx, addend); }
1889
1890 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
1891 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
1892 // applied in a static link.
1893 void
1894 add_static_reloc(unsigned int got_offset, unsigned int r_type,
1895 Mips_symbol<size>* gsym)
1896 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
1897
1898 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
1899 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
1900 // relocation that needs to be applied in a static link.
1901 void
1902 add_static_reloc(unsigned int got_offset, unsigned int r_type,
1903 Sized_relobj_file<size, big_endian>* relobj,
1904 unsigned int index)
1905 {
1906 this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
1907 index));
1908 }
1909
1910 // Record that global symbol GSYM has R_TYPE dynamic relocation in the
1911 // secondary GOT at OFFSET.
1912 void
1913 add_secondary_got_reloc(unsigned int got_offset, unsigned int r_type,
1914 Mips_symbol<size>* gsym)
1915 {
1916 this->secondary_got_relocs_.push_back(Static_reloc(got_offset,
1917 r_type, gsym));
1918 }
1919
1920 // Update GOT entry at OFFSET with VALUE.
1921 void
1922 update_got_entry(unsigned int offset, Mips_address value)
1923 {
1924 elfcpp::Swap<size, big_endian>::writeval(this->got_view_ + offset, value);
1925 }
1926
1927 // Return the number of entries in local part of the GOT. This includes
1928 // local entries, page entries and 2 reserved entries.
1929 unsigned int
1930 get_local_gotno() const
1931 {
1932 if (!this->multi_got())
1933 {
1934 return (2 + this->master_got_info_->local_gotno()
1935 + this->master_got_info_->page_gotno());
1936 }
1937 else
1938 return 2 + this->primary_got_->local_gotno() + this->primary_got_->page_gotno();
1939 }
1940
1941 // Return dynamic symbol table index of the first symbol with global GOT
1942 // entry.
1943 unsigned int
1944 first_global_got_dynsym_index() const
1945 { return this->first_global_got_dynsym_index_; }
1946
1947 // Set dynamic symbol table index of the first symbol with global GOT entry.
1948 void
1949 set_first_global_got_dynsym_index(unsigned int index)
1950 { this->first_global_got_dynsym_index_ = index; }
1951
1952 // Lay out the GOT. Add local, global and TLS entries. If GOT is
1953 // larger than 64K, create multi-GOT.
1954 void
1955 lay_out_got(Layout* layout, Symbol_table* symtab,
1956 const Input_objects* input_objects);
1957
1958 // Create multi-GOT. For every GOT, add local, global and TLS entries.
1959 void
1960 lay_out_multi_got(Layout* layout, const Input_objects* input_objects);
1961
1962 // Attempt to merge GOTs of different input objects.
1963 void
1964 merge_gots(const Input_objects* input_objects);
1965
1966 // Consider merging FROM, which is OBJECT's GOT, into TO. Return false if
1967 // this would lead to overflow, true if they were merged successfully.
1968 bool
1969 merge_got_with(Mips_got_info<size, big_endian>* from,
1970 Mips_relobj<size, big_endian>* object,
1971 Mips_got_info<size, big_endian>* to);
1972
1973 // Return the offset of GOT page entry for VALUE. For multi-GOT links,
1974 // use OBJECT's GOT.
1975 unsigned int
1976 get_got_page_offset(Mips_address value,
1977 const Mips_relobj<size, big_endian>* object)
1978 {
1979 Mips_got_info<size, big_endian>* g = (!this->multi_got()
1980 ? this->master_got_info_
1981 : object->get_got_info());
1982 gold_assert(g != NULL);
1983 return g->get_got_page_offset(value, this);
1984 }
1985
1986 // Return the GOT offset of type GOT_TYPE of the global symbol
1987 // GSYM. For multi-GOT links, use OBJECT's GOT.
1988 unsigned int got_offset(const Symbol* gsym, unsigned int got_type,
1989 Mips_relobj<size, big_endian>* object) const
1990 {
1991 if (!this->multi_got())
1992 return gsym->got_offset(got_type);
1993 else
1994 {
1995 Mips_got_info<size, big_endian>* g = object->get_got_info();
1996 gold_assert(g != NULL);
1997 return gsym->got_offset(g->multigot_got_type(got_type));
1998 }
1999 }
2000
2001 // Return the GOT offset of type GOT_TYPE of the local symbol
2002 // SYMNDX.
2003 unsigned int
2004 got_offset(unsigned int symndx, unsigned int got_type,
2005 Sized_relobj_file<size, big_endian>* object) const
2006 { return object->local_got_offset(symndx, got_type); }
2007
2008 // Return the offset of TLS LDM entry. For multi-GOT links, use OBJECT's GOT.
2009 unsigned int
2010 tls_ldm_offset(Mips_relobj<size, big_endian>* object) const
2011 {
2012 Mips_got_info<size, big_endian>* g = (!this->multi_got()
2013 ? this->master_got_info_
2014 : object->get_got_info());
2015 gold_assert(g != NULL);
2016 return g->tls_ldm_offset();
2017 }
2018
2019 // Set the offset of TLS LDM entry. For multi-GOT links, use OBJECT's GOT.
2020 void
2021 set_tls_ldm_offset(unsigned int tls_ldm_offset,
2022 Mips_relobj<size, big_endian>* object)
2023 {
2024 Mips_got_info<size, big_endian>* g = (!this->multi_got()
2025 ? this->master_got_info_
2026 : object->get_got_info());
2027 gold_assert(g != NULL);
2028 g->set_tls_ldm_offset(tls_ldm_offset);
2029 }
2030
2031 // Return true for multi-GOT links.
2032 bool
2033 multi_got() const
2034 { return this->primary_got_ != NULL; }
2035
2036 // Return the offset of OBJECT's GOT from the start of .got section.
2037 unsigned int
2038 get_got_offset(const Mips_relobj<size, big_endian>* object)
2039 {
2040 if (!this->multi_got())
2041 return 0;
2042 else
2043 {
2044 Mips_got_info<size, big_endian>* g = object->get_got_info();
2045 return g != NULL ? g->offset() : 0;
2046 }
2047 }
2048
2049 // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
2050 void
2051 add_reloc_only_entries()
2052 { this->master_got_info_->add_reloc_only_entries(this); }
2053
2054 // Return offset of the primary GOT's entry for global symbol.
2055 unsigned int
2056 get_primary_got_offset(const Mips_symbol<size>* sym) const
2057 {
2058 gold_assert(sym->global_got_area() != GGA_NONE);
2059 return (this->get_local_gotno() + sym->dynsym_index()
2060 - this->first_global_got_dynsym_index()) * size/8;
2061 }
2062
2063 // For the entry at offset GOT_OFFSET, return its offset from the gp.
2064 // Input argument GOT_OFFSET is always global offset from the start of
2065 // .got section, for both single and multi-GOT links.
2066 // For single GOT links, this returns GOT_OFFSET - 0x7FF0. For multi-GOT
2067 // links, the return value is object_got_offset - 0x7FF0, where
2068 // object_got_offset is offset in the OBJECT's GOT.
2069 int
2070 gp_offset(unsigned int got_offset,
2071 const Mips_relobj<size, big_endian>* object) const
2072 {
2073 return (this->address() + got_offset
2074 - this->target_->adjusted_gp_value(object));
2075 }
2076
2077 protected:
2078 // Write out the GOT table.
2079 void
2080 do_write(Output_file*);
2081
2082 private:
2083
2084 // This class represent dynamic relocations that need to be applied by
2085 // gold because we are using TLS relocations in a static link.
2086 class Static_reloc
2087 {
2088 public:
2089 Static_reloc(unsigned int got_offset, unsigned int r_type,
2090 Mips_symbol<size>* gsym)
2091 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
2092 { this->u_.global.symbol = gsym; }
2093
2094 Static_reloc(unsigned int got_offset, unsigned int r_type,
2095 Sized_relobj_file<size, big_endian>* relobj, unsigned int index)
2096 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
2097 {
2098 this->u_.local.relobj = relobj;
2099 this->u_.local.index = index;
2100 }
2101
2102 // Return the GOT offset.
2103 unsigned int
2104 got_offset() const
2105 { return this->got_offset_; }
2106
2107 // Relocation type.
2108 unsigned int
2109 r_type() const
2110 { return this->r_type_; }
2111
2112 // Whether the symbol is global or not.
2113 bool
2114 symbol_is_global() const
2115 { return this->symbol_is_global_; }
2116
2117 // For a relocation against a global symbol, the global symbol.
2118 Mips_symbol<size>*
2119 symbol() const
2120 {
2121 gold_assert(this->symbol_is_global_);
2122 return this->u_.global.symbol;
2123 }
2124
2125 // For a relocation against a local symbol, the defining object.
2126 Sized_relobj_file<size, big_endian>*
2127 relobj() const
2128 {
2129 gold_assert(!this->symbol_is_global_);
2130 return this->u_.local.relobj;
2131 }
2132
2133 // For a relocation against a local symbol, the local symbol index.
2134 unsigned int
2135 index() const
2136 {
2137 gold_assert(!this->symbol_is_global_);
2138 return this->u_.local.index;
2139 }
2140
2141 private:
2142 // GOT offset of the entry to which this relocation is applied.
2143 unsigned int got_offset_;
2144 // Type of relocation.
2145 unsigned int r_type_;
2146 // Whether this relocation is against a global symbol.
2147 bool symbol_is_global_;
2148 // A global or local symbol.
2149 union
2150 {
2151 struct
2152 {
2153 // For a global symbol, the symbol itself.
2154 Mips_symbol<size>* symbol;
2155 } global;
2156 struct
2157 {
2158 // For a local symbol, the object defining object.
2159 Sized_relobj_file<size, big_endian>* relobj;
2160 // For a local symbol, the symbol index.
2161 unsigned int index;
2162 } local;
2163 } u_;
2164 };
2165
2166 // The target.
2167 Target_mips<size, big_endian>* target_;
2168 // The symbol table.
2169 Symbol_table* symbol_table_;
2170 // The layout.
2171 Layout* layout_;
2172 // Static relocs to be applied to the GOT.
2173 std::vector<Static_reloc> static_relocs_;
2174 // .got section view.
2175 unsigned char* got_view_;
2176 // The dynamic symbol table index of the first symbol with global GOT entry.
2177 unsigned int first_global_got_dynsym_index_;
2178 // The master GOT information.
2179 Mips_got_info<size, big_endian>* master_got_info_;
2180 // The primary GOT information.
2181 Mips_got_info<size, big_endian>* primary_got_;
2182 // Secondary GOT fixups.
2183 std::vector<Static_reloc> secondary_got_relocs_;
2184};
2185
2186// A class to handle LA25 stubs - non-PIC interface to a PIC function. There are
2187// two ways of creating these interfaces. The first is to add:
2188//
2189// lui $25,%hi(func)
2190// j func
2191// addiu $25,$25,%lo(func)
2192//
2193// to a separate trampoline section. The second is to add:
2194//
2195// lui $25,%hi(func)
2196// addiu $25,$25,%lo(func)
2197//
2198// immediately before a PIC function "func", but only if a function is at the
2199// beginning of the section, and the section is not too heavily aligned (i.e we
2200// would need to add no more than 2 nops before the stub.)
2201//
2202// We only create stubs of the first type.
2203
2204template<int size, bool big_endian>
2205class Mips_output_data_la25_stub : public Output_section_data
2206{
2207 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2208
2209 public:
2210 Mips_output_data_la25_stub()
2211 : Output_section_data(size == 32 ? 4 : 8), symbols_()
2212 { }
2213
2214 // Create LA25 stub for a symbol.
2215 void
2216 create_la25_stub(Symbol_table* symtab, Target_mips<size, big_endian>* target,
2217 Mips_symbol<size>* gsym);
2218
2219 // Return output address of a stub.
2220 Mips_address
2221 stub_address(const Mips_symbol<size>* sym) const
2222 {
2223 gold_assert(sym->has_la25_stub());
2224 return this->address() + sym->la25_stub_offset();
2225 }
2226
2227 protected:
2228 void
2229 do_adjust_output_section(Output_section* os)
2230 { os->set_entsize(0); }
2231
2232 private:
2233 // Template for standard LA25 stub.
2234 static const uint32_t la25_stub_entry[];
2235 // Template for microMIPS LA25 stub.
2236 static const uint32_t la25_stub_micromips_entry[];
2237
2238 // Set the final size.
2239 void
2240 set_final_data_size()
2241 { this->set_data_size(this->symbols_.size() * 16); }
2242
2243 // Create a symbol for SYM stub's value and size, to help make the
2244 // disassembly easier to read.
2245 void
2246 create_stub_symbol(Mips_symbol<size>* sym, Symbol_table* symtab,
2247 Target_mips<size, big_endian>* target, uint64_t symsize);
2248
2249 // Write out the LA25 stub section.
2250 void
2251 do_write(Output_file*);
2252
2253 // Symbols that have LA25 stubs.
2254 Unordered_set<Mips_symbol<size>*> symbols_;
2255};
2256
2257// A class to handle the PLT data.
2258
2259template<int size, bool big_endian>
2260class Mips_output_data_plt : public Output_section_data
2261{
2262 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2263 typedef Output_data_reloc<elfcpp::SHT_REL, true,
2264 size, big_endian> Reloc_section;
2265
2266 public:
2267 // Create the PLT section. The ordinary .got section is an argument,
2268 // since we need to refer to the start.
2269 Mips_output_data_plt(Layout* layout, Output_data_space* got_plt,
2270 Target_mips<size, big_endian>* target)
2271 : Output_section_data(size == 32 ? 4 : 8), got_plt_(got_plt), symbols_(),
2272 plt_mips_offset_(0), plt_comp_offset_(0), plt_header_size_(0),
2273 target_(target)
2274 {
2275 this->rel_ = new Reloc_section(false);
2276 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
2277 elfcpp::SHF_ALLOC, this->rel_,
2278 ORDER_DYNAMIC_PLT_RELOCS, false);
2279 }
2280
2281 // Add an entry to the PLT for a symbol referenced by r_type relocation.
2282 void
2283 add_entry(Mips_symbol<size>* gsym, unsigned int r_type);
2284
2285 // Return the .rel.plt section data.
2286 const Reloc_section*
2287 rel_plt() const
2288 { return this->rel_; }
2289
2290 // Return the number of PLT entries.
2291 unsigned int
2292 entry_count() const
2293 { return this->symbols_.size(); }
2294
2295 // Return the offset of the first non-reserved PLT entry.
2296 unsigned int
2297 first_plt_entry_offset() const
2298 { return sizeof(plt0_entry_o32); }
2299
2300 // Return the size of a PLT entry.
2301 unsigned int
2302 plt_entry_size() const
2303 { return sizeof(plt_entry); }
2304
2305 // Set final PLT offsets. For each symbol, determine whether standard or
2306 // compressed (MIPS16 or microMIPS) PLT entry is used.
2307 void
2308 set_plt_offsets();
2309
2310 // Return the offset of the first standard PLT entry.
2311 unsigned int
2312 first_mips_plt_offset() const
2313 { return this->plt_header_size_; }
2314
2315 // Return the offset of the first compressed PLT entry.
2316 unsigned int
2317 first_comp_plt_offset() const
2318 { return this->plt_header_size_ + this->plt_mips_offset_; }
2319
2320 // Return whether there are any standard PLT entries.
2321 bool
2322 has_standard_entries() const
2323 { return this->plt_mips_offset_ > 0; }
2324
2325 // Return the output address of standard PLT entry.
2326 Mips_address
2327 mips_entry_address(const Mips_symbol<size>* sym) const
2328 {
2329 gold_assert (sym->has_mips_plt_offset());
2330 return (this->address() + this->first_mips_plt_offset()
2331 + sym->mips_plt_offset());
2332 }
2333
2334 // Return the output address of compressed (MIPS16 or microMIPS) PLT entry.
2335 Mips_address
2336 comp_entry_address(const Mips_symbol<size>* sym) const
2337 {
2338 gold_assert (sym->has_comp_plt_offset());
2339 return (this->address() + this->first_comp_plt_offset()
2340 + sym->comp_plt_offset());
2341 }
2342
2343 protected:
2344 void
2345 do_adjust_output_section(Output_section* os)
2346 { os->set_entsize(0); }
2347
2348 // Write to a map file.
2349 void
2350 do_print_to_mapfile(Mapfile* mapfile) const
2351 { mapfile->print_output_data(this, _(".plt")); }
2352
2353 private:
2354 // Template for the first PLT entry.
2355 static const uint32_t plt0_entry_o32[];
2356 static const uint32_t plt0_entry_n32[];
2357 static const uint32_t plt0_entry_n64[];
2358 static const uint32_t plt0_entry_micromips_o32[];
2359 static const uint32_t plt0_entry_micromips32_o32[];
2360
2361 // Template for subsequent PLT entries.
2362 static const uint32_t plt_entry[];
2363 static const uint32_t plt_entry_mips16_o32[];
2364 static const uint32_t plt_entry_micromips_o32[];
2365 static const uint32_t plt_entry_micromips32_o32[];
2366
2367 // Set the final size.
2368 void
2369 set_final_data_size()
2370 {
2371 this->set_data_size(this->plt_header_size_ + this->plt_mips_offset_
2372 + this->plt_comp_offset_);
2373 }
2374
2375 // Write out the PLT data.
2376 void
2377 do_write(Output_file*);
2378
2379 // Return whether the plt header contains microMIPS code. For the sake of
2380 // cache alignment always use a standard header whenever any standard entries
2381 // are present even if microMIPS entries are present as well. This also lets
2382 // the microMIPS header rely on the value of $v0 only set by microMIPS
2383 // entries, for a small size reduction.
2384 bool
2385 is_plt_header_compressed() const
2386 {
2387 gold_assert(this->plt_mips_offset_ + this->plt_comp_offset_ != 0);
2388 return this->target_->is_output_micromips() && this->plt_mips_offset_ == 0;
2389 }
2390
2391 // Return the size of the PLT header.
2392 unsigned int
2393 get_plt_header_size() const
2394 {
2395 if (this->target_->is_output_n64())
2396 return 4 * sizeof(plt0_entry_n64) / sizeof(plt0_entry_n64[0]);
2397 else if (this->target_->is_output_n32())
2398 return 4 * sizeof(plt0_entry_n32) / sizeof(plt0_entry_n32[0]);
2399 else if (!this->is_plt_header_compressed())
2400 return 4 * sizeof(plt0_entry_o32) / sizeof(plt0_entry_o32[0]);
2401 else if (this->target_->use_32bit_micromips_instructions())
2402 return (2 * sizeof(plt0_entry_micromips32_o32)
2403 / sizeof(plt0_entry_micromips32_o32[0]));
2404 else
2405 return (2 * sizeof(plt0_entry_micromips_o32)
2406 / sizeof(plt0_entry_micromips_o32[0]));
2407 }
2408
2409 // Return the PLT header entry.
2410 const uint32_t*
2411 get_plt_header_entry() const
2412 {
2413 if (this->target_->is_output_n64())
2414 return plt0_entry_n64;
2415 else if (this->target_->is_output_n32())
2416 return plt0_entry_n32;
2417 else if (!this->is_plt_header_compressed())
2418 return plt0_entry_o32;
2419 else if (this->target_->use_32bit_micromips_instructions())
2420 return plt0_entry_micromips32_o32;
2421 else
2422 return plt0_entry_micromips_o32;
2423 }
2424
2425 // Return the size of the standard PLT entry.
2426 unsigned int
2427 standard_plt_entry_size() const
2428 { return 4 * sizeof(plt_entry) / sizeof(plt_entry[0]); }
2429
2430 // Return the size of the compressed PLT entry.
2431 unsigned int
2432 compressed_plt_entry_size() const
2433 {
2434 gold_assert(!this->target_->is_output_newabi());
2435
2436 if (!this->target_->is_output_micromips())
2437 return (2 * sizeof(plt_entry_mips16_o32)
2438 / sizeof(plt_entry_mips16_o32[0]));
2439 else if (this->target_->use_32bit_micromips_instructions())
2440 return (2 * sizeof(plt_entry_micromips32_o32)
2441 / sizeof(plt_entry_micromips32_o32[0]));
2442 else
2443 return (2 * sizeof(plt_entry_micromips_o32)
2444 / sizeof(plt_entry_micromips_o32[0]));
2445 }
2446
2447 // The reloc section.
2448 Reloc_section* rel_;
2449 // The .got.plt section.
2450 Output_data_space* got_plt_;
2451 // Symbols that have PLT entry.
2452 std::vector<Mips_symbol<size>*> symbols_;
2453 // The offset of the next standard PLT entry to create.
2454 unsigned int plt_mips_offset_;
2455 // The offset of the next compressed PLT entry to create.
2456 unsigned int plt_comp_offset_;
2457 // The size of the PLT header in bytes.
2458 unsigned int plt_header_size_;
2459 // The target.
2460 Target_mips<size, big_endian>* target_;
2461};
2462
2463// A class to handle the .MIPS.stubs data.
2464
2465template<int size, bool big_endian>
2466class Mips_output_data_mips_stubs : public Output_section_data
2467{
2468 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2469
2470 public:
2471 Mips_output_data_mips_stubs(Target_mips<size, big_endian>* target)
2472 : Output_section_data(size == 32 ? 4 : 8), symbols_(), dynsym_count_(-1U),
2473 stub_offsets_are_set_(false), target_(target)
2474 { }
2475
2476 // Create entry for a symbol.
2477 void
2478 make_entry(Mips_symbol<size>*);
2479
2480 // Remove entry for a symbol.
2481 void
2482 remove_entry(Mips_symbol<size>* gsym);
2483
2484 // Set stub offsets for symbols. This method expects that the number of
2485 // entries in dynamic symbol table is set.
2486 void
2487 set_lazy_stub_offsets();
2488
2489 void
2490 set_needs_dynsym_value();
2491
2492 // Set the number of entries in dynamic symbol table.
2493 void
2494 set_dynsym_count(unsigned int dynsym_count)
2495 { this->dynsym_count_ = dynsym_count; }
2496
2497 // Return maximum size of the stub, ie. the stub size if the dynamic symbol
2498 // count is greater than 0x10000. If the dynamic symbol count is less than
2499 // 0x10000, the stub will be 4 bytes smaller.
2500 // There's no disadvantage from using microMIPS code here, so for the sake of
2501 // pure-microMIPS binaries we prefer it whenever there's any microMIPS code in
2502 // output produced at all. This has a benefit of stubs being shorter by
2503 // 4 bytes each too, unless in the insn32 mode.
2504 unsigned int
2505 stub_max_size() const
2506 {
2507 if (!this->target_->is_output_micromips()
2508 || this->target_->use_32bit_micromips_instructions())
2509 return 20;
2510 else
2511 return 16;
2512 }
2513
2514 // Return the size of the stub. This method expects that the final dynsym
2515 // count is set.
2516 unsigned int
2517 stub_size() const
2518 {
2519 gold_assert(this->dynsym_count_ != -1U);
2520 if (this->dynsym_count_ > 0x10000)
2521 return this->stub_max_size();
2522 else
2523 return this->stub_max_size() - 4;
2524 }
2525
2526 // Return output address of a stub.
2527 Mips_address
2528 stub_address(const Mips_symbol<size>* sym) const
2529 {
2530 gold_assert(sym->has_lazy_stub());
2531 return this->address() + sym->lazy_stub_offset();
2532 }
2533
2534 protected:
2535 void
2536 do_adjust_output_section(Output_section* os)
2537 { os->set_entsize(0); }
2538
2539 // Write to a map file.
2540 void
2541 do_print_to_mapfile(Mapfile* mapfile) const
2542 { mapfile->print_output_data(this, _(".MIPS.stubs")); }
2543
2544 private:
2545 static const uint32_t lazy_stub_normal_1[];
2546 static const uint32_t lazy_stub_normal_1_n64[];
2547 static const uint32_t lazy_stub_normal_2[];
2548 static const uint32_t lazy_stub_normal_2_n64[];
2549 static const uint32_t lazy_stub_big[];
2550 static const uint32_t lazy_stub_big_n64[];
2551
2552 static const uint32_t lazy_stub_micromips_normal_1[];
2553 static const uint32_t lazy_stub_micromips_normal_1_n64[];
2554 static const uint32_t lazy_stub_micromips_normal_2[];
2555 static const uint32_t lazy_stub_micromips_normal_2_n64[];
2556 static const uint32_t lazy_stub_micromips_big[];
2557 static const uint32_t lazy_stub_micromips_big_n64[];
2558
2559 static const uint32_t lazy_stub_micromips32_normal_1[];
2560 static const uint32_t lazy_stub_micromips32_normal_1_n64[];
2561 static const uint32_t lazy_stub_micromips32_normal_2[];
2562 static const uint32_t lazy_stub_micromips32_normal_2_n64[];
2563 static const uint32_t lazy_stub_micromips32_big[];
2564 static const uint32_t lazy_stub_micromips32_big_n64[];
2565
2566 // Set the final size.
2567 void
2568 set_final_data_size()
2569 { this->set_data_size(this->symbols_.size() * this->stub_max_size()); }
2570
2571 // Write out the .MIPS.stubs data.
2572 void
2573 do_write(Output_file*);
2574
2575 // .MIPS.stubs symbols
2576 Unordered_set<Mips_symbol<size>*> symbols_;
2577 // Number of entries in dynamic symbol table.
2578 unsigned int dynsym_count_;
2579 // Whether the stub offsets are set.
2580 bool stub_offsets_are_set_;
2581 // The target.
2582 Target_mips<size, big_endian>* target_;
2583};
2584
2585// This class handles Mips .reginfo output section.
2586
2587template<int size, bool big_endian>
2588class Mips_output_section_reginfo : public Output_section
2589{
2590 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
2591
2592 public:
2593 Mips_output_section_reginfo(const char* name, elfcpp::Elf_Word type,
2594 elfcpp::Elf_Xword flags,
2595 Target_mips<size, big_endian>* target)
2596 : Output_section(name, type, flags), target_(target), gprmask_(0),
2597 cprmask1_(0), cprmask2_(0), cprmask3_(0), cprmask4_(0)
2598 { }
2599
2600 // Downcast a base pointer to a Mips_output_section_reginfo pointer.
2601 static Mips_output_section_reginfo<size, big_endian>*
2602 as_mips_output_section_reginfo(Output_section* os)
2603 { return static_cast<Mips_output_section_reginfo<size, big_endian>*>(os); }
2604
2605 // Set masks of the output .reginfo section.
2606 void
2607 set_masks(Valtype gprmask, Valtype cprmask1, Valtype cprmask2,
2608 Valtype cprmask3, Valtype cprmask4)
2609 {
2610 this->gprmask_ = gprmask;
2611 this->cprmask1_ = cprmask1;
2612 this->cprmask2_ = cprmask2;
2613 this->cprmask3_ = cprmask3;
2614 this->cprmask4_ = cprmask4;
2615 }
2616
2617 protected:
2618 // Set the final data size.
2619 void
2620 set_final_data_size()
2621 { this->set_data_size(24); }
2622
2623 // Write out reginfo section.
2624 void
2625 do_write(Output_file* of);
2626
2627 private:
2628 Target_mips<size, big_endian>* target_;
2629
2630 // gprmask of the output .reginfo section.
2631 Valtype gprmask_;
2632 // cprmask1 of the output .reginfo section.
2633 Valtype cprmask1_;
2634 // cprmask2 of the output .reginfo section.
2635 Valtype cprmask2_;
2636 // cprmask3 of the output .reginfo section.
2637 Valtype cprmask3_;
2638 // cprmask4 of the output .reginfo section.
2639 Valtype cprmask4_;
2640};
2641
2642// The MIPS target has relocation types which default handling of relocatable
2643// relocation cannot process. So we have to extend the default code.
2644
2645template<bool big_endian, int sh_type, typename Classify_reloc>
2646class Mips_scan_relocatable_relocs :
2647 public Default_scan_relocatable_relocs<sh_type, Classify_reloc>
2648{
2649 public:
2650 // Return the strategy to use for a local symbol which is a section
2651 // symbol, given the relocation type.
2652 inline Relocatable_relocs::Reloc_strategy
2653 local_section_strategy(unsigned int r_type, Relobj* object)
2654 {
2655 if (sh_type == elfcpp::SHT_RELA)
2656 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
2657 else
2658 {
2659 switch (r_type)
2660 {
2661 case elfcpp::R_MIPS_26:
2662 return Relocatable_relocs::RELOC_SPECIAL;
2663
2664 default:
2665 return Default_scan_relocatable_relocs<sh_type, Classify_reloc>::
2666 local_section_strategy(r_type, object);
2667 }
2668 }
2669 }
2670};
2671
2672// Mips_copy_relocs class. The only difference from the base class is the
2673// method emit_mips, which should be called instead of Copy_reloc_entry::emit.
2674// Mips cannot convert all relocation types to dynamic relocs. If a reloc
2675// cannot be made dynamic, a COPY reloc is emitted.
2676
2677template<int sh_type, int size, bool big_endian>
2678class Mips_copy_relocs : public Copy_relocs<sh_type, size, big_endian>
2679{
2680 public:
2681 Mips_copy_relocs()
2682 : Copy_relocs<sh_type, size, big_endian>(elfcpp::R_MIPS_COPY)
2683 { }
2684
2685 // Emit any saved relocations which turn out to be needed. This is
2686 // called after all the relocs have been scanned.
2687 void
2688 emit_mips(Output_data_reloc<sh_type, true, size, big_endian>*,
2689 Symbol_table*, Layout*, Target_mips<size, big_endian>*);
2690
2691 private:
2692 typedef typename Copy_relocs<sh_type, size, big_endian>::Copy_reloc_entry
2693 Copy_reloc_entry;
2694
2695 // Emit this reloc if appropriate. This is called after we have
2696 // scanned all the relocations, so we know whether we emitted a
2697 // COPY relocation for SYM_.
2698 void
2699 emit_entry(Copy_reloc_entry& entry,
2700 Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
2701 Symbol_table* symtab, Layout* layout,
2702 Target_mips<size, big_endian>* target);
2703};
2704
2705
2706// Return true if the symbol SYM should be considered to resolve local
2707// to the current module, and false otherwise. The logic is taken from
2708// GNU ld's method _bfd_elf_symbol_refs_local_p.
2709static bool
2710symbol_refs_local(const Symbol* sym, bool has_dynsym_entry,
2711 bool local_protected)
2712{
2713 // If it's a local sym, of course we resolve locally.
2714 if (sym == NULL)
2715 return true;
2716
2717 // STV_HIDDEN or STV_INTERNAL ones must be local.
2718 if (sym->visibility() == elfcpp::STV_HIDDEN
2719 || sym->visibility() == elfcpp::STV_INTERNAL)
2720 return true;
2721
2722 // If we don't have a definition in a regular file, then we can't
2723 // resolve locally. The sym is either undefined or dynamic.
2724 if (sym->source() != Symbol::FROM_OBJECT || sym->object()->is_dynamic()
2725 || sym->is_undefined())
2726 return false;
2727
2728 // Forced local symbols resolve locally.
2729 if (sym->is_forced_local())
2730 return true;
2731
2732 // As do non-dynamic symbols.
2733 if (!has_dynsym_entry)
2734 return true;
2735
2736 // At this point, we know the symbol is defined and dynamic. In an
2737 // executable it must resolve locally, likewise when building symbolic
2738 // shared libraries.
2739 if (parameters->options().output_is_executable()
2740 || parameters->options().Bsymbolic())
2741 return true;
2742
2743 // Now deal with defined dynamic symbols in shared libraries. Ones
2744 // with default visibility might not resolve locally.
2745 if (sym->visibility() == elfcpp::STV_DEFAULT)
2746 return false;
2747
2748 // STV_PROTECTED non-function symbols are local.
2749 if (sym->type() != elfcpp::STT_FUNC)
2750 return true;
2751
2752 // Function pointer equality tests may require that STV_PROTECTED
2753 // symbols be treated as dynamic symbols. If the address of a
2754 // function not defined in an executable is set to that function's
2755 // plt entry in the executable, then the address of the function in
2756 // a shared library must also be the plt entry in the executable.
2757 return local_protected;
2758}
2759
2760// Return TRUE if references to this symbol always reference the symbol in this
2761// object.
2762static bool
2763symbol_references_local(const Symbol* sym, bool has_dynsym_entry)
2764{
2765 return symbol_refs_local(sym, has_dynsym_entry, false);
2766}
2767
2768// Return TRUE if calls to this symbol always call the version in this object.
2769static bool
2770symbol_calls_local(const Symbol* sym, bool has_dynsym_entry)
2771{
2772 return symbol_refs_local(sym, has_dynsym_entry, true);
2773}
2774
2775// Compare GOT offsets of two symbols.
2776
2777template<int size, bool big_endian>
2778static bool
2779got_offset_compare(Symbol* sym1, Symbol* sym2)
2780{
2781 Mips_symbol<size>* mips_sym1 = Mips_symbol<size>::as_mips_sym(sym1);
2782 Mips_symbol<size>* mips_sym2 = Mips_symbol<size>::as_mips_sym(sym2);
2783 unsigned int area1 = mips_sym1->global_got_area();
2784 unsigned int area2 = mips_sym2->global_got_area();
2785 gold_assert(area1 != GGA_NONE && area1 != GGA_NONE);
2786
2787 // GGA_NORMAL entries always come before GGA_RELOC_ONLY.
2788 if (area1 != area2)
2789 return area1 < area2;
2790
2791 return mips_sym1->global_gotoffset() < mips_sym2->global_gotoffset();
2792}
2793
2794// This method divides dynamic symbols into symbols that have GOT entry, and
2795// symbols that don't have GOT entry. It also sorts symbols with the GOT entry.
2796// Mips ABI requires that symbols with the GOT entry must be at the end of
2797// dynamic symbol table, and the order in dynamic symbol table must match the
2798// order in GOT.
2799
2800template<int size, bool big_endian>
2801static void
2802reorder_dyn_symbols(std::vector<Symbol*>* dyn_symbols,
2803 std::vector<Symbol*>* non_got_symbols,
2804 std::vector<Symbol*>* got_symbols)
2805{
2806 for (std::vector<Symbol*>::iterator p = dyn_symbols->begin();
2807 p != dyn_symbols->end();
2808 ++p)
2809 {
2810 Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(*p);
2811 if (mips_sym->global_got_area() == GGA_NORMAL
2812 || mips_sym->global_got_area() == GGA_RELOC_ONLY)
2813 got_symbols->push_back(mips_sym);
2814 else
2815 non_got_symbols->push_back(mips_sym);
2816 }
2817
2818 std::sort(got_symbols->begin(), got_symbols->end(),
2819 got_offset_compare<size, big_endian>);
2820}
2821
2822// Functor class for processing the global symbol table.
2823
2824template<int size, bool big_endian>
2825class Symbol_visitor_check_symbols
2826{
2827 public:
2828 Symbol_visitor_check_symbols(Target_mips<size, big_endian>* target,
2829 Layout* layout, Symbol_table* symtab)
2830 : target_(target), layout_(layout), symtab_(symtab)
2831 { }
2832
2833 void
2834 operator()(Sized_symbol<size>* sym)
2835 {
2836 Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(sym);
2837 if (local_pic_function<size, big_endian>(mips_sym))
2838 {
2839 // SYM is a function that might need $25 to be valid on entry.
2840 // If we're creating a non-PIC relocatable object, mark SYM as
2841 // being PIC. If we're creating a non-relocatable object with
2842 // non-PIC branches and jumps to SYM, make sure that SYM has an la25
2843 // stub.
2844 if (parameters->options().relocatable())
2845 {
2846 if (!parameters->options().output_is_position_independent())
2847 mips_sym->set_pic();
2848 }
2849 else if (mips_sym->has_nonpic_branches())
2850 {
2851 this->target_->la25_stub_section(layout_)
2852 ->create_la25_stub(this->symtab_, this->target_, mips_sym);
2853 }
2854 }
2855 }
2856
2857 private:
2858 Target_mips<size, big_endian>* target_;
2859 Layout* layout_;
2860 Symbol_table* symtab_;
2861};
2862
2863template<int size, bool big_endian>
2864class Target_mips : public Sized_target<size, big_endian>
2865{
2866 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2867 typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
2868 Reloc_section;
2869 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
2870 Reloca_section;
2871 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;
2872 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
2873
2874 public:
2875 Target_mips(const Target::Target_info* info = &mips_info)
2876 : Sized_target<size, big_endian>(info), got_(NULL), gp_(NULL), plt_(NULL),
2877 got_plt_(NULL), rel_dyn_(NULL), copy_relocs_(),
2878 dyn_relocs_(), la25_stub_(NULL), mips_mach_extensions_(),
2879 mips_stubs_(NULL), ei_class_(0), mach_(0), layout_(NULL),
2880 got16_addends_(), entry_symbol_is_compressed_(false), insn32_(false)
2881 {
2882 this->add_machine_extensions();
2883 }
2884
2885 // The offset of $gp from the beginning of the .got section.
2886 static const unsigned int MIPS_GP_OFFSET = 0x7ff0;
2887
2888 // The maximum size of the GOT for it to be addressable using 16-bit
2889 // offsets from $gp.
2890 static const unsigned int MIPS_GOT_MAX_SIZE = MIPS_GP_OFFSET + 0x7fff;
2891
2892 // Make a new symbol table entry for the Mips target.
2893 Sized_symbol<size>*
2894 make_symbol() const
2895 { return new Mips_symbol<size>(); }
2896
2897 // Process the relocations to determine unreferenced sections for
2898 // garbage collection.
2899 void
2900 gc_process_relocs(Symbol_table* symtab,
2901 Layout* layout,
2902 Sized_relobj_file<size, big_endian>* object,
2903 unsigned int data_shndx,
2904 unsigned int sh_type,
2905 const unsigned char* prelocs,
2906 size_t reloc_count,
2907 Output_section* output_section,
2908 bool needs_special_offset_handling,
2909 size_t local_symbol_count,
2910 const unsigned char* plocal_symbols);
2911
2912 // Scan the relocations to look for symbol adjustments.
2913 void
2914 scan_relocs(Symbol_table* symtab,
2915 Layout* layout,
2916 Sized_relobj_file<size, big_endian>* object,
2917 unsigned int data_shndx,
2918 unsigned int sh_type,
2919 const unsigned char* prelocs,
2920 size_t reloc_count,
2921 Output_section* output_section,
2922 bool needs_special_offset_handling,
2923 size_t local_symbol_count,
2924 const unsigned char* plocal_symbols);
2925
2926 // Finalize the sections.
2927 void
2928 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
2929
2930 // Relocate a section.
2931 void
2932 relocate_section(const Relocate_info<size, big_endian>*,
2933 unsigned int sh_type,
2934 const unsigned char* prelocs,
2935 size_t reloc_count,
2936 Output_section* output_section,
2937 bool needs_special_offset_handling,
2938 unsigned char* view,
2939 Mips_address view_address,
2940 section_size_type view_size,
2941 const Reloc_symbol_changes*);
2942
2943 // Scan the relocs during a relocatable link.
2944 void
2945 scan_relocatable_relocs(Symbol_table* symtab,
2946 Layout* layout,
2947 Sized_relobj_file<size, big_endian>* object,
2948 unsigned int data_shndx,
2949 unsigned int sh_type,
2950 const unsigned char* prelocs,
2951 size_t reloc_count,
2952 Output_section* output_section,
2953 bool needs_special_offset_handling,
2954 size_t local_symbol_count,
2955 const unsigned char* plocal_symbols,
2956 Relocatable_relocs*);
2957
2958 // Emit relocations for a section.
2959 void
2960 relocate_relocs(const Relocate_info<size, big_endian>*,
2961 unsigned int sh_type,
2962 const unsigned char* prelocs,
2963 size_t reloc_count,
2964 Output_section* output_section,
2965 typename elfcpp::Elf_types<size>::Elf_Off
2966 offset_in_output_section,
2967 const Relocatable_relocs*,
2968 unsigned char* view,
2969 Mips_address view_address,
2970 section_size_type view_size,
2971 unsigned char* reloc_view,
2972 section_size_type reloc_view_size);
2973
2974 // Perform target-specific processing in a relocatable link. This is
2975 // only used if we use the relocation strategy RELOC_SPECIAL.
2976 void
2977 relocate_special_relocatable(const Relocate_info<size, big_endian>* relinfo,
2978 unsigned int sh_type,
2979 const unsigned char* preloc_in,
2980 size_t relnum,
2981 Output_section* output_section,
2982 typename elfcpp::Elf_types<size>::Elf_Off
2983 offset_in_output_section,
2984 unsigned char* view,
2985 Mips_address view_address,
2986 section_size_type view_size,
2987 unsigned char* preloc_out);
2988
2989 // Return whether SYM is defined by the ABI.
2990 bool
2991 do_is_defined_by_abi(const Symbol* sym) const
2992 {
2993 return ((strcmp(sym->name(), "__gnu_local_gp") == 0)
2994 || (strcmp(sym->name(), "_gp_disp") == 0)
2995 || (strcmp(sym->name(), "___tls_get_addr") == 0));
2996 }
2997
2998 // Return the number of entries in the GOT.
2999 unsigned int
3000 got_entry_count() const
3001 {
3002 if (!this->has_got_section())
3003 return 0;
3004 return this->got_size() / (size/8);
3005 }
3006
3007 // Return the number of entries in the PLT.
3008 unsigned int
3009 plt_entry_count() const
3010 {
3011 if (this->plt_ == NULL)
3012 return 0;
3013 return this->plt_->entry_count();
3014 }
3015
3016 // Return the offset of the first non-reserved PLT entry.
3017 unsigned int
3018 first_plt_entry_offset() const
3019 { return this->plt_->first_plt_entry_offset(); }
3020
3021 // Return the size of each PLT entry.
3022 unsigned int
3023 plt_entry_size() const
3024 { return this->plt_->plt_entry_size(); }
3025
3026 // Get the GOT section, creating it if necessary.
3027 Mips_output_data_got<size, big_endian>*
3028 got_section(Symbol_table*, Layout*);
3029
3030 // Get the GOT section.
3031 Mips_output_data_got<size, big_endian>*
3032 got_section() const
3033 {
3034 gold_assert(this->got_ != NULL);
3035 return this->got_;
3036 }
3037
3038 // Get the .MIPS.stubs section, creating it if necessary.
3039 Mips_output_data_mips_stubs<size, big_endian>*
3040 mips_stubs_section(Layout* layout);
3041
3042 // Get the .MIPS.stubs section.
3043 Mips_output_data_mips_stubs<size, big_endian>*
3044 mips_stubs_section() const
3045 {
3046 gold_assert(this->mips_stubs_ != NULL);
3047 return this->mips_stubs_;
3048 }
3049
3050 // Get the LA25 stub section, creating it if necessary.
3051 Mips_output_data_la25_stub<size, big_endian>*
3052 la25_stub_section(Layout*);
3053
3054 // Get the LA25 stub section.
3055 Mips_output_data_la25_stub<size, big_endian>*
3056 la25_stub_section()
3057 {
3058 gold_assert(this->la25_stub_ != NULL);
3059 return this->la25_stub_;
3060 }
3061
3062 // Get gp value. It has the value of .got + 0x7FF0.
3063 Mips_address
3064 gp_value() const
3065 {
3066 if (this->gp_ != NULL)
3067 return this->gp_->value();
3068 return 0;
3069 }
3070
3071 // Get gp value. It has the value of .got + 0x7FF0. Adjust it for
3072 // multi-GOT links so that OBJECT's GOT + 0x7FF0 is returned.
3073 Mips_address
3074 adjusted_gp_value(const Mips_relobj<size, big_endian>* object)
3075 {
3076 if (this->gp_ == NULL)
3077 return 0;
3078
3079 bool multi_got = false;
3080 if (this->has_got_section())
3081 multi_got = this->got_section()->multi_got();
3082 if (!multi_got)
3083 return this->gp_->value();
3084 else
3085 return this->gp_->value() + this->got_section()->get_got_offset(object);
3086 }
3087
3088 // Get the dynamic reloc section, creating it if necessary.
3089 Reloc_section*
3090 rel_dyn_section(Layout*);
3091
3092 bool
3093 do_has_custom_set_dynsym_indexes() const
3094 { return true; }
3095
3096 // Don't emit input .reginfo sections to output .reginfo.
3097 bool
3098 do_should_include_section(elfcpp::Elf_Word sh_type) const
3099 { return sh_type != elfcpp::SHT_MIPS_REGINFO; }
3100
3101 // Set the dynamic symbol indexes. INDEX is the index of the first
3102 // global dynamic symbol. Pointers to the symbols are stored into the
3103 // vector SYMS. The names are added to DYNPOOL. This returns an
3104 // updated dynamic symbol index.
3105 unsigned int
3106 do_set_dynsym_indexes(std::vector<Symbol*>* dyn_symbols, unsigned int index,
3107 std::vector<Symbol*>* syms, Stringpool* dynpool,
3108 Versions* versions, Symbol_table* symtab) const;
3109
3110 // Remove .MIPS.stubs entry for a symbol.
3111 void
3112 remove_lazy_stub_entry(Mips_symbol<size>* sym)
3113 {
3114 if (this->mips_stubs_ != NULL)
3115 this->mips_stubs_->remove_entry(sym);
3116 }
3117
3118 // The value to write into got[1] for SVR4 targets, to identify it is
3119 // a GNU object. The dynamic linker can then use got[1] to store the
3120 // module pointer.
3121 uint64_t
3122 mips_elf_gnu_got1_mask()
3123 {
3124 if (this->is_output_n64())
3125 return (uint64_t)1 << 63;
3126 else
3127 return 1 << 31;
3128 }
3129
3130 // Whether the output has microMIPS code. This is valid only after
3131 // merge_processor_specific_flags() is called.
3132 bool
3133 is_output_micromips() const
3134 {
3135 gold_assert(this->are_processor_specific_flags_set());
3136 return elfcpp::is_micromips(this->processor_specific_flags());
3137 }
3138
3139 // Whether the output uses N32 ABI. This is valid only after
3140 // merge_processor_specific_flags() is called.
3141 bool
3142 is_output_n32() const
3143 {
3144 gold_assert(this->are_processor_specific_flags_set());
3145 return elfcpp::abi_n32(this->processor_specific_flags());
3146 }
3147
3148 // Whether the output uses N64 ABI. This is valid only after
3149 // merge_processor_specific_flags() is called.
3150 bool
3151 is_output_n64() const
3152 {
3153 gold_assert(this->are_processor_specific_flags_set());
3154 return elfcpp::abi_64(this->ei_class_);
3155 }
3156
3157 // Whether the output uses NEWABI. This is valid only after
3158 // merge_processor_specific_flags() is called.
3159 bool
3160 is_output_newabi() const
3161 { return this->is_output_n32() || this->is_output_n64(); }
3162
3163 // Whether we can only use 32-bit microMIPS instructions.
3164 bool
3165 use_32bit_micromips_instructions() const
3166 { return this->insn32_; }
3167
3168 protected:
3169 // Return the value to use for a dynamic symbol which requires special
3170 // treatment. This is how we support equality comparisons of function
3171 // pointers across shared library boundaries, as described in the
3172 // processor specific ABI supplement.
3173 uint64_t
3174 do_dynsym_value(const Symbol* gsym) const;
3175
3176 // Make an ELF object.
3177 Object*
3178 do_make_elf_object(const std::string&, Input_file*, off_t,
3179 const elfcpp::Ehdr<size, big_endian>& ehdr);
3180
3181 Object*
3182 do_make_elf_object(const std::string&, Input_file*, off_t,
3183 const elfcpp::Ehdr<size, !big_endian>&)
3184 { gold_unreachable(); }
3185
3186 // Make an output section.
3187 Output_section*
3188 do_make_output_section(const char* name, elfcpp::Elf_Word type,
3189 elfcpp::Elf_Xword flags)
3190 {
3191 if (type == elfcpp::SHT_MIPS_REGINFO)
3192 return new Mips_output_section_reginfo<size, big_endian>(name, type,
3193 flags, this);
3194 else
3195 return new Output_section(name, type, flags);
3196 }
3197
3198 // Adjust ELF file header.
3199 void
3200 do_adjust_elf_header(unsigned char* view, int len);
3201
3202 // Get the custom dynamic tag value.
3203 unsigned int
3204 do_dynamic_tag_custom_value(elfcpp::DT) const;
3205
3206 // Adjust the value written to the dynamic symbol table.
3207 virtual void
3208 do_adjust_dyn_symbol(const Symbol* sym, unsigned char* view) const
3209 {
3210 elfcpp::Sym<size, big_endian> isym(view);
3211 elfcpp::Sym_write<size, big_endian> osym(view);
3212 const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(sym);
3213
3214 // Keep dynamic compressed symbols odd. This allows the dynamic linker
3215 // to treat compressed symbols like any other.
3216 Mips_address value = isym.get_st_value();
3217 if (mips_sym->is_mips16() && value != 0)
3218 {
3219 if (!mips_sym->has_mips16_fn_stub())
3220 value |= 1;
3221 else
3222 {
3223 // If we have a MIPS16 function with a stub, the dynamic symbol
3224 // must refer to the stub, since only the stub uses the standard
3225 // calling conventions. Stub contains MIPS32 code, so don't add +1
3226 // in this case.
3227
3228 // There is a code which does this in the method
3229 // Target_mips::do_dynsym_value, but that code will only be
3230 // executed if the symbol is from dynobj.
3231 // TODO(sasa): GNU ld also changes the value in non-dynamic symbol
3232 // table.
3233
3234 Mips16_stub_section<size, big_endian>* fn_stub =
3235 mips_sym->template get_mips16_fn_stub<big_endian>();
3236 value = fn_stub->output_address();
3237 osym.put_st_size(fn_stub->section_size());
3238 }
3239
3240 osym.put_st_value(value);
3241 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(),
3242 mips_sym->nonvis() - (elfcpp::STO_MIPS16 >> 2)));
3243 }
3244 else if ((mips_sym->is_micromips()
3245 // Stubs are always microMIPS if there is any microMIPS code in
3246 // the output.
3247 || (this->is_output_micromips() && mips_sym->has_lazy_stub()))
3248 && value != 0)
3249 {
3250 osym.put_st_value(value | 1);
3251 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(),
3252 mips_sym->nonvis() - (elfcpp::STO_MICROMIPS >> 2)));
3253 }
3254 }
3255
3256 private:
3257 // The class which scans relocations.
3258 class Scan
3259 {
3260 public:
3261 Scan()
3262 { }
3263
3264 static inline int
3265 get_reference_flags(unsigned int r_type);
3266
3267 inline void
3268 local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3269 Sized_relobj_file<size, big_endian>* object,
3270 unsigned int data_shndx,
3271 Output_section* output_section,
3272 const elfcpp::Rel<size, big_endian>& reloc, unsigned int r_type,
3273 const elfcpp::Sym<size, big_endian>& lsym,
3274 bool is_discarded);
3275
3276 inline void
3277 local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3278 Sized_relobj_file<size, big_endian>* object,
3279 unsigned int data_shndx,
3280 Output_section* output_section,
3281 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
3282 const elfcpp::Sym<size, big_endian>& lsym,
3283 bool is_discarded);
3284
3285 inline void
3286 local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3287 Sized_relobj_file<size, big_endian>* object,
3288 unsigned int data_shndx,
3289 Output_section* output_section,
3290 const elfcpp::Rela<size, big_endian>* rela,
3291 const elfcpp::Rel<size, big_endian>* rel,
3292 unsigned int rel_type,
3293 unsigned int r_type,
3294 const elfcpp::Sym<size, big_endian>& lsym,
3295 bool is_discarded);
3296
3297 inline void
3298 global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3299 Sized_relobj_file<size, big_endian>* object,
3300 unsigned int data_shndx,
3301 Output_section* output_section,
3302 const elfcpp::Rel<size, big_endian>& reloc, unsigned int r_type,
3303 Symbol* gsym);
3304
3305 inline void
3306 global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3307 Sized_relobj_file<size, big_endian>* object,
3308 unsigned int data_shndx,
3309 Output_section* output_section,
3310 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
3311 Symbol* gsym);
3312
3313 inline void
3314 global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3315 Sized_relobj_file<size, big_endian>* object,
3316 unsigned int data_shndx,
3317 Output_section* output_section,
3318 const elfcpp::Rela<size, big_endian>* rela,
3319 const elfcpp::Rel<size, big_endian>* rel,
3320 unsigned int rel_type,
3321 unsigned int r_type,
3322 Symbol* gsym);
3323
3324 inline bool
3325 local_reloc_may_be_function_pointer(Symbol_table* , Layout*,
3326 Target_mips*,
3327 Sized_relobj_file<size, big_endian>*,
3328 unsigned int,
3329 Output_section*,
3330 const elfcpp::Rel<size, big_endian>&,
3331 unsigned int,
3332 const elfcpp::Sym<size, big_endian>&)
3333 { return false; }
3334
3335 inline bool
3336 global_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3337 Target_mips*,
3338 Sized_relobj_file<size, big_endian>*,
3339 unsigned int,
3340 Output_section*,
3341 const elfcpp::Rel<size, big_endian>&,
3342 unsigned int, Symbol*)
3343 { return false; }
3344
3345 inline bool
3346 local_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3347 Target_mips*,
3348 Sized_relobj_file<size, big_endian>*,
3349 unsigned int,
3350 Output_section*,
3351 const elfcpp::Rela<size, big_endian>&,
3352 unsigned int,
3353 const elfcpp::Sym<size, big_endian>&)
3354 { return false; }
3355
3356 inline bool
3357 global_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3358 Target_mips*,
3359 Sized_relobj_file<size, big_endian>*,
3360 unsigned int,
3361 Output_section*,
3362 const elfcpp::Rela<size, big_endian>&,
3363 unsigned int, Symbol*)
3364 { return false; }
3365 private:
3366 static void
3367 unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
3368 unsigned int r_type);
3369
3370 static void
3371 unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
3372 unsigned int r_type, Symbol*);
3373 };
3374
3375 // The class which implements relocation.
3376 class Relocate
3377 {
3378 public:
3379 Relocate()
3380 { }
3381
3382 ~Relocate()
3383 { }
3384
3385 // Return whether the R_MIPS_32 relocation needs to be applied.
3386 inline bool
3387 should_apply_r_mips_32_reloc(const Mips_symbol<size>* gsym,
3388 unsigned int r_type,
3389 Output_section* output_section,
3390 Target_mips* target);
3391
3392 // Do a relocation. Return false if the caller should not issue
3393 // any warnings about this relocation.
3394 inline bool
3395 relocate(const Relocate_info<size, big_endian>*, Target_mips*,
3396 Output_section*, size_t relnum,
3397 const elfcpp::Rela<size, big_endian>*,
3398 const elfcpp::Rel<size, big_endian>*,
3399 unsigned int,
3400 unsigned int, const Sized_symbol<size>*,
3401 const Symbol_value<size>*,
3402 unsigned char*,
3403 Mips_address,
3404 section_size_type);
3405
3406 inline bool
3407 relocate(const Relocate_info<size, big_endian>*, Target_mips*,
3408 Output_section*, size_t relnum,
3409 const elfcpp::Rel<size, big_endian>&,
3410 unsigned int, const Sized_symbol<size>*,
3411 const Symbol_value<size>*,
3412 unsigned char*,
3413 Mips_address,
3414 section_size_type);
3415
3416 inline bool
3417 relocate(const Relocate_info<size, big_endian>*, Target_mips*,
3418 Output_section*, size_t relnum,
3419 const elfcpp::Rela<size, big_endian>&,
3420 unsigned int, const Sized_symbol<size>*,
3421 const Symbol_value<size>*,
3422 unsigned char*,
3423 Mips_address,
3424 section_size_type);
3425 };
3426
3427 // A class which returns the size required for a relocation type,
3428 // used while scanning relocs during a relocatable link.
3429 class Relocatable_size_for_reloc
3430 {
3431 public:
3432 unsigned int
3433 get_size_for_reloc(unsigned int, Relobj*);
3434 };
3435
3436 // This POD class holds the dynamic relocations that should be emitted instead
3437 // of R_MIPS_32, R_MIPS_REL32 and R_MIPS_64 relocations. We will emit these
3438 // relocations if it turns out that the symbol does not have static
3439 // relocations.
3440 class Dyn_reloc
3441 {
3442 public:
3443 Dyn_reloc(Mips_symbol<size>* sym, unsigned int r_type,
3444 Mips_relobj<size, big_endian>* relobj, unsigned int shndx,
3445 Output_section* output_section, Mips_address r_offset)
3446 : sym_(sym), r_type_(r_type), relobj_(relobj),
3447 shndx_(shndx), output_section_(output_section),
3448 r_offset_(r_offset)
3449 { }
3450
3451 // Emit this reloc if appropriate. This is called after we have
3452 // scanned all the relocations, so we know whether the symbol has
3453 // static relocations.
3454 void
3455 emit(Reloc_section* rel_dyn, Mips_output_data_got<size, big_endian>* got,
3456 Symbol_table* symtab)
3457 {
3458 if (!this->sym_->has_static_relocs())
3459 {
3460 got->record_global_got_symbol(this->sym_, this->relobj_,
3461 this->r_type_, true, false);
3462 if (!symbol_references_local(this->sym_,
3463 this->sym_->should_add_dynsym_entry(symtab)))
3464 rel_dyn->add_global(this->sym_, this->r_type_,
3465 this->output_section_, this->relobj_,
3466 this->shndx_, this->r_offset_);
3467 else
3468 rel_dyn->add_symbolless_global_addend(this->sym_, this->r_type_,
3469 this->output_section_, this->relobj_,
3470 this->shndx_, this->r_offset_);
3471 }
3472 }
3473
3474 private:
3475 Mips_symbol<size>* sym_;
3476 unsigned int r_type_;
3477 Mips_relobj<size, big_endian>* relobj_;
3478 unsigned int shndx_;
3479 Output_section* output_section_;
3480 Mips_address r_offset_;
3481 };
3482
3483 // Adjust TLS relocation type based on the options and whether this
3484 // is a local symbol.
3485 static tls::Tls_optimization
3486 optimize_tls_reloc(bool is_final, int r_type);
3487
3488 // Return whether there is a GOT section.
3489 bool
3490 has_got_section() const
3491 { return this->got_ != NULL; }
3492
3493 // Check whether the given ELF header flags describe a 32-bit binary.
3494 bool
3495 mips_32bit_flags(elfcpp::Elf_Word);
3496
3497 enum Mips_mach {
3498 mach_mips3000 = 3000,
3499 mach_mips3900 = 3900,
3500 mach_mips4000 = 4000,
3501 mach_mips4010 = 4010,
3502 mach_mips4100 = 4100,
3503 mach_mips4111 = 4111,
3504 mach_mips4120 = 4120,
3505 mach_mips4300 = 4300,
3506 mach_mips4400 = 4400,
3507 mach_mips4600 = 4600,
3508 mach_mips4650 = 4650,
3509 mach_mips5000 = 5000,
3510 mach_mips5400 = 5400,
3511 mach_mips5500 = 5500,
3512 mach_mips6000 = 6000,
3513 mach_mips7000 = 7000,
3514 mach_mips8000 = 8000,
3515 mach_mips9000 = 9000,
3516 mach_mips10000 = 10000,
3517 mach_mips12000 = 12000,
3518 mach_mips14000 = 14000,
3519 mach_mips16000 = 16000,
3520 mach_mips16 = 16,
3521 mach_mips5 = 5,
3522 mach_mips_loongson_2e = 3001,
3523 mach_mips_loongson_2f = 3002,
3524 mach_mips_loongson_3a = 3003,
3525 mach_mips_sb1 = 12310201, // octal 'SB', 01
3526 mach_mips_octeon = 6501,
3527 mach_mips_octeonp = 6601,
3528 mach_mips_octeon2 = 6502,
3529 mach_mips_xlr = 887682, // decimal 'XLR'
3530 mach_mipsisa32 = 32,
3531 mach_mipsisa32r2 = 33,
3532 mach_mipsisa64 = 64,
3533 mach_mipsisa64r2 = 65,
3534 mach_mips_micromips = 96
3535 };
3536
3537 // Return the MACH for a MIPS e_flags value.
3538 unsigned int
3539 elf_mips_mach(elfcpp::Elf_Word);
3540
3541 // Check whether machine EXTENSION is an extension of machine BASE.
3542 bool
3543 mips_mach_extends(unsigned int, unsigned int);
3544
3545 // Merge processor specific flags.
3546 void
3547 merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word,
3548 unsigned char, bool);
3549
3550 // True if we are linking for CPUs that are faster if JAL is converted to BAL.
3551 static inline bool
3552 jal_to_bal()
3553 { return false; }
3554
3555 // True if we are linking for CPUs that are faster if JALR is converted to
3556 // BAL. This should be safe for all architectures. We enable this predicate
3557 // for all CPUs.
3558 static inline bool
3559 jalr_to_bal()
3560 { return true; }
3561
3562 // True if we are linking for CPUs that are faster if JR is converted to B.
3563 // This should be safe for all architectures. We enable this predicate for
3564 // all CPUs.
3565 static inline bool
3566 jr_to_b()
3567 { return true; }
3568
3569 // Return the size of the GOT section.
3570 section_size_type
3571 got_size() const
3572 {
3573 gold_assert(this->got_ != NULL);
3574 return this->got_->data_size();
3575 }
3576
3577 // Create a PLT entry for a global symbol referenced by r_type relocation.
3578 void
3579 make_plt_entry(Symbol_table*, Layout*, Mips_symbol<size>*,
3580 unsigned int r_type);
3581
3582 // Get the PLT section.
3583 Mips_output_data_plt<size, big_endian>*
3584 plt_section() const
3585 {
3586 gold_assert(this->plt_ != NULL);
3587 return this->plt_;
3588 }
3589
3590 // Get the GOT PLT section.
3591 const Mips_output_data_plt<size, big_endian>*
3592 got_plt_section() const
3593 {
3594 gold_assert(this->got_plt_ != NULL);
3595 return this->got_plt_;
3596 }
3597
3598 // Copy a relocation against a global symbol.
3599 void
3600 copy_reloc(Symbol_table* symtab, Layout* layout,
3601 Sized_relobj_file<size, big_endian>* object,
3602 unsigned int shndx, Output_section* output_section,
3603 Symbol* sym, const elfcpp::Rel<size, big_endian>& reloc)
3604 {
3605 this->copy_relocs_.copy_reloc(symtab, layout,
3606 symtab->get_sized_symbol<size>(sym),
3607 object, shndx, output_section,
3608 reloc, this->rel_dyn_section(layout));
3609 }
3610
3611 void
3612 dynamic_reloc(Mips_symbol<size>* sym, unsigned int r_type,
3613 Mips_relobj<size, big_endian>* relobj,
3614 unsigned int shndx, Output_section* output_section,
3615 Mips_address r_offset)
3616 {
3617 this->dyn_relocs_.push_back(Dyn_reloc(sym, r_type, relobj, shndx,
3618 output_section, r_offset));
3619 }
3620
3621 // Calculate value of _gp symbol.
3622 void
3623 set_gp(Layout*, Symbol_table*);
3624
3625 const char*
3626 elf_mips_abi_name(elfcpp::Elf_Word e_flags, unsigned char ei_class);
3627 const char*
3628 elf_mips_mach_name(elfcpp::Elf_Word e_flags);
3629
3630 // Adds entries that describe how machines relate to one another. The entries
3631 // are ordered topologically with MIPS I extensions listed last. First
3632 // element is extension, second element is base.
3633 void
3634 add_machine_extensions()
3635 {
3636 // MIPS64r2 extensions.
3637 this->add_extension(mach_mips_octeon2, mach_mips_octeonp);
3638 this->add_extension(mach_mips_octeonp, mach_mips_octeon);
3639 this->add_extension(mach_mips_octeon, mach_mipsisa64r2);
3640
3641 // MIPS64 extensions.
3642 this->add_extension(mach_mipsisa64r2, mach_mipsisa64);
3643 this->add_extension(mach_mips_sb1, mach_mipsisa64);
3644 this->add_extension(mach_mips_xlr, mach_mipsisa64);
3645 this->add_extension(mach_mips_loongson_3a, mach_mipsisa64);
3646
3647 // MIPS V extensions.
3648 this->add_extension(mach_mipsisa64, mach_mips5);
3649
3650 // R10000 extensions.
3651 this->add_extension(mach_mips12000, mach_mips10000);
3652 this->add_extension(mach_mips14000, mach_mips10000);
3653 this->add_extension(mach_mips16000, mach_mips10000);
3654
3655 // R5000 extensions. Note: the vr5500 ISA is an extension of the core
3656 // vr5400 ISA, but doesn't include the multimedia stuff. It seems
3657 // better to allow vr5400 and vr5500 code to be merged anyway, since
3658 // many libraries will just use the core ISA. Perhaps we could add
3659 // some sort of ASE flag if this ever proves a problem.
3660 this->add_extension(mach_mips5500, mach_mips5400);
3661 this->add_extension(mach_mips5400, mach_mips5000);
3662
3663 // MIPS IV extensions.
3664 this->add_extension(mach_mips5, mach_mips8000);
3665 this->add_extension(mach_mips10000, mach_mips8000);
3666 this->add_extension(mach_mips5000, mach_mips8000);
3667 this->add_extension(mach_mips7000, mach_mips8000);
3668 this->add_extension(mach_mips9000, mach_mips8000);
3669
3670 // VR4100 extensions.
3671 this->add_extension(mach_mips4120, mach_mips4100);
3672 this->add_extension(mach_mips4111, mach_mips4100);
3673
3674 // MIPS III extensions.
3675 this->add_extension(mach_mips_loongson_2e, mach_mips4000);
3676 this->add_extension(mach_mips_loongson_2f, mach_mips4000);
3677 this->add_extension(mach_mips8000, mach_mips4000);
3678 this->add_extension(mach_mips4650, mach_mips4000);
3679 this->add_extension(mach_mips4600, mach_mips4000);
3680 this->add_extension(mach_mips4400, mach_mips4000);
3681 this->add_extension(mach_mips4300, mach_mips4000);
3682 this->add_extension(mach_mips4100, mach_mips4000);
3683 this->add_extension(mach_mips4010, mach_mips4000);
3684
3685 // MIPS32 extensions.
3686 this->add_extension(mach_mipsisa32r2, mach_mipsisa32);
3687
3688 // MIPS II extensions.
3689 this->add_extension(mach_mips4000, mach_mips6000);
3690 this->add_extension(mach_mipsisa32, mach_mips6000);
3691
3692 // MIPS I extensions.
3693 this->add_extension(mach_mips6000, mach_mips3000);
3694 this->add_extension(mach_mips3900, mach_mips3000);
3695 }
3696
3697 // Add value to MIPS extenstions.
3698 void
3699 add_extension(unsigned int base, unsigned int extension)
3700 {
3701 std::pair<unsigned int, unsigned int> ext(base, extension);
3702 this->mips_mach_extensions_.push_back(ext);
3703 }
3704
3705 // Return the number of entries in the .dynsym section.
3706 unsigned int get_dt_mips_symtabno() const
3707 {
3708 return ((unsigned int)(this->layout_->dynsym_section()->data_size()
3709 / elfcpp::Elf_sizes<size>::sym_size));
3710 // TODO(sasa): Entry size is MIPS_ELF_SYM_SIZE.
3711 }
3712
3713 // Information about this specific target which we pass to the
3714 // general Target structure.
62661c93 3715 static const Target::Target_info mips_info;
9810d34d
SS
3716 // The GOT section.
3717 Mips_output_data_got<size, big_endian>* got_;
3718 // gp symbol. It has the value of .got + 0x7FF0.
3719 Sized_symbol<size>* gp_;
3720 // The PLT section.
3721 Mips_output_data_plt<size, big_endian>* plt_;
3722 // The GOT PLT section.
3723 Output_data_space* got_plt_;
3724 // The dynamic reloc section.
3725 Reloc_section* rel_dyn_;
3726 // Relocs saved to avoid a COPY reloc.
3727 Mips_copy_relocs<elfcpp::SHT_REL, size, big_endian> copy_relocs_;
3728
3729 // A list of dyn relocs to be saved.
3730 std::vector<Dyn_reloc> dyn_relocs_;
3731
3732 // The LA25 stub section.
3733 Mips_output_data_la25_stub<size, big_endian>* la25_stub_;
3734 // Architecture extensions.
3735 std::vector<std::pair<unsigned int, unsigned int> > mips_mach_extensions_;
3736 // .MIPS.stubs
3737 Mips_output_data_mips_stubs<size, big_endian>* mips_stubs_;
3738
3739 unsigned char ei_class_;
3740 unsigned int mach_;
3741 Layout* layout_;
3742
3743 typename std::list<got16_addend<size, big_endian> > got16_addends_;
3744
3745 // Whether the entry symbol is mips16 or micromips.
3746 bool entry_symbol_is_compressed_;
3747
3748 // Whether we can use only 32-bit microMIPS instructions.
3749 // TODO(sasa): This should be a linker option.
3750 bool insn32_;
3751};
3752
3753
3754// Helper structure for R_MIPS*_HI16/LO16 and R_MIPS*_GOT16/LO16 relocations.
3755// It records high part of the relocation pair.
3756
3757template<int size, bool big_endian>
3758struct reloc_high
3759{
3760 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
3761
3762 reloc_high(unsigned char* _view, const Mips_relobj<size, big_endian>* _object,
3763 const Symbol_value<size>* _psymval, Mips_address _addend,
3d0064a9 3764 unsigned int _r_type, unsigned int _r_sym, bool _extract_addend,
9810d34d
SS
3765 Mips_address _address = 0, bool _gp_disp = false)
3766 : view(_view), object(_object), psymval(_psymval), addend(_addend),
3d0064a9
CC
3767 r_type(_r_type), r_sym(_r_sym), extract_addend(_extract_addend),
3768 address(_address), gp_disp(_gp_disp)
9810d34d
SS
3769 { }
3770
3771 unsigned char* view;
3772 const Mips_relobj<size, big_endian>* object;
3773 const Symbol_value<size>* psymval;
3774 Mips_address addend;
3775 unsigned int r_type;
3d0064a9 3776 unsigned int r_sym;
9810d34d
SS
3777 bool extract_addend;
3778 Mips_address address;
3779 bool gp_disp;
3780};
3781
3782template<int size, bool big_endian>
3783class Mips_relocate_functions : public Relocate_functions<size, big_endian>
3784{
3785 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
3786 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype16;
3787 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;
3788
3789 public:
3790 typedef enum
3791 {
3792 STATUS_OKAY, // No error during relocation.
3793 STATUS_OVERFLOW, // Relocation overflow.
3794 STATUS_BAD_RELOC // Relocation cannot be applied.
3795 } Status;
3796
3797 private:
3798 typedef Relocate_functions<size, big_endian> Base;
3799 typedef Mips_relocate_functions<size, big_endian> This;
3800
3801 static typename std::list<reloc_high<size, big_endian> > hi16_relocs;
3802 static typename std::list<reloc_high<size, big_endian> > got16_relocs;
3803
3804 // R_MIPS16_26 is used for the mips16 jal and jalx instructions.
3805 // Most mips16 instructions are 16 bits, but these instructions
3806 // are 32 bits.
3807 //
3808 // The format of these instructions is:
3809 //
3810 // +--------------+--------------------------------+
3811 // | JALX | X| Imm 20:16 | Imm 25:21 |
3812 // +--------------+--------------------------------+
3813 // | Immediate 15:0 |
3814 // +-----------------------------------------------+
3815 //
3816 // JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
3817 // Note that the immediate value in the first word is swapped.
3818 //
3819 // When producing a relocatable object file, R_MIPS16_26 is
3820 // handled mostly like R_MIPS_26. In particular, the addend is
3821 // stored as a straight 26-bit value in a 32-bit instruction.
3822 // (gas makes life simpler for itself by never adjusting a
3823 // R_MIPS16_26 reloc to be against a section, so the addend is
3824 // always zero). However, the 32 bit instruction is stored as 2
3825 // 16-bit values, rather than a single 32-bit value. In a
3826 // big-endian file, the result is the same; in a little-endian
3827 // file, the two 16-bit halves of the 32 bit value are swapped.
3828 // This is so that a disassembler can recognize the jal
3829 // instruction.
3830 //
3831 // When doing a final link, R_MIPS16_26 is treated as a 32 bit
3832 // instruction stored as two 16-bit values. The addend A is the
3833 // contents of the targ26 field. The calculation is the same as
3834 // R_MIPS_26. When storing the calculated value, reorder the
3835 // immediate value as shown above, and don't forget to store the
3836 // value as two 16-bit values.
3837 //
3838 // To put it in MIPS ABI terms, the relocation field is T-targ26-16,
3839 // defined as
3840 //
3841 // big-endian:
3842 // +--------+----------------------+
3843 // | | |
3844 // | | targ26-16 |
3845 // |31 26|25 0|
3846 // +--------+----------------------+
3847 //
3848 // little-endian:
3849 // +----------+------+-------------+
3850 // | | | |
3851 // | sub1 | | sub2 |
3852 // |0 9|10 15|16 31|
3853 // +----------+--------------------+
3854 // where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
3855 // ((sub1 << 16) | sub2)).
3856 //
3857 // When producing a relocatable object file, the calculation is
3858 // (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3859 // When producing a fully linked file, the calculation is
3860 // let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3861 // ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
3862 //
3863 // The table below lists the other MIPS16 instruction relocations.
3864 // Each one is calculated in the same way as the non-MIPS16 relocation
3865 // given on the right, but using the extended MIPS16 layout of 16-bit
3866 // immediate fields:
3867 //
3868 // R_MIPS16_GPREL R_MIPS_GPREL16
3869 // R_MIPS16_GOT16 R_MIPS_GOT16
3870 // R_MIPS16_CALL16 R_MIPS_CALL16
3871 // R_MIPS16_HI16 R_MIPS_HI16
3872 // R_MIPS16_LO16 R_MIPS_LO16
3873 //
3874 // A typical instruction will have a format like this:
3875 //
3876 // +--------------+--------------------------------+
3877 // | EXTEND | Imm 10:5 | Imm 15:11 |
3878 // +--------------+--------------------------------+
3879 // | Major | rx | ry | Imm 4:0 |
3880 // +--------------+--------------------------------+
3881 //
3882 // EXTEND is the five bit value 11110. Major is the instruction
3883 // opcode.
3884 //
3885 // All we need to do here is shuffle the bits appropriately.
3886 // As above, the two 16-bit halves must be swapped on a
3887 // little-endian system.
3888
3889 // Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
3890 // on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
3891 // and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions.
3892
3893 static inline bool
3894 should_shuffle_micromips_reloc(unsigned int r_type)
3895 {
3896 return (micromips_reloc(r_type)
3897 && r_type != elfcpp::R_MICROMIPS_PC7_S1
3898 && r_type != elfcpp::R_MICROMIPS_PC10_S1);
3899 }
3900
3901 static void
3902 mips_reloc_unshuffle(unsigned char* view, unsigned int r_type,
3903 bool jal_shuffle)
3904 {
3905 if (!mips16_reloc(r_type)
3906 && !should_shuffle_micromips_reloc(r_type))
3907 return;
3908
3909 // Pick up the first and second halfwords of the instruction.
3910 Valtype16 first = elfcpp::Swap<16, big_endian>::readval(view);
3911 Valtype16 second = elfcpp::Swap<16, big_endian>::readval(view + 2);
3912 Valtype32 val;
3913
3914 if (micromips_reloc(r_type)
3915 || (r_type == elfcpp::R_MIPS16_26 && !jal_shuffle))
3916 val = first << 16 | second;
3917 else if (r_type != elfcpp::R_MIPS16_26)
3918 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
3919 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
3920 else
3921 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
3922 | ((first & 0x1f) << 21) | second);
3923
3924 elfcpp::Swap<32, big_endian>::writeval(view, val);
3925 }
3926
3927 static void
3928 mips_reloc_shuffle(unsigned char* view, unsigned int r_type, bool jal_shuffle)
3929 {
3930 if (!mips16_reloc(r_type)
3931 && !should_shuffle_micromips_reloc(r_type))
3932 return;
3933
3934 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
3935 Valtype16 first, second;
3936
3937 if (micromips_reloc(r_type)
3938 || (r_type == elfcpp::R_MIPS16_26 && !jal_shuffle))
3939 {
3940 second = val & 0xffff;
3941 first = val >> 16;
3942 }
3943 else if (r_type != elfcpp::R_MIPS16_26)
3944 {
3945 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
3946 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
3947 }
3948 else
3949 {
3950 second = val & 0xffff;
3951 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
3952 | ((val >> 21) & 0x1f);
3953 }
3954
3955 elfcpp::Swap<16, big_endian>::writeval(view + 2, second);
3956 elfcpp::Swap<16, big_endian>::writeval(view, first);
3957 }
3958
3959 public:
3960 // R_MIPS_16: S + sign-extend(A)
3961 static inline typename This::Status
3962 rel16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
3963 const Symbol_value<size>* psymval, Mips_address addend_a,
3964 bool extract_addend, unsigned int r_type)
3965 {
3966 mips_reloc_unshuffle(view, r_type, false);
3967 Valtype16* wv = reinterpret_cast<Valtype16*>(view);
3968 Valtype16 val = elfcpp::Swap<16, big_endian>::readval(wv);
3969
3970 Valtype32 addend = (extract_addend ? Bits<16>::sign_extend32(val)
3971 : Bits<16>::sign_extend32(addend_a));
3972
3973 Valtype32 x = psymval->value(object, addend);
3974 val = Bits<16>::bit_select32(val, x, 0xffffU);
3975 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3976 mips_reloc_shuffle(view, r_type, false);
3977 return (Bits<16>::has_overflow32(x)
3978 ? This::STATUS_OVERFLOW
3979 : This::STATUS_OKAY);
3980 }
3981
3982 // R_MIPS_32: S + A
3983 static inline typename This::Status
3984 rel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
3985 const Symbol_value<size>* psymval, Mips_address addend_a,
3986 bool extract_addend, unsigned int r_type)
3987 {
3988 mips_reloc_unshuffle(view, r_type, false);
3989 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
3990 Valtype32 addend = (extract_addend
3991 ? elfcpp::Swap<32, big_endian>::readval(wv)
3992 : Bits<32>::sign_extend32(addend_a));
3993 Valtype32 x = psymval->value(object, addend);
3994 elfcpp::Swap<32, big_endian>::writeval(wv, x);
3995 mips_reloc_shuffle(view, r_type, false);
3996 return This::STATUS_OKAY;
3997 }
3998
3999 // R_MIPS_JALR, R_MICROMIPS_JALR
4000 static inline typename This::Status
4001 reljalr(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4002 const Symbol_value<size>* psymval, Mips_address address,
4003 Mips_address addend_a, bool extract_addend, bool cross_mode_jump,
4004 unsigned int r_type, bool jalr_to_bal, bool jr_to_b)
4005 {
4006 mips_reloc_unshuffle(view, r_type, false);
4007 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4008 Valtype32 addend = extract_addend ? 0 : addend_a;
4009 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4010
4011 // Try converting J(AL)R to B(AL), if the target is in range.
4012 if (!parameters->options().relocatable()
4013 && r_type == elfcpp::R_MIPS_JALR
4014 && !cross_mode_jump
4015 && ((jalr_to_bal && val == 0x0320f809) // jalr t9
4016 || (jr_to_b && val == 0x03200008))) // jr t9
4017 {
4018 int offset = psymval->value(object, addend) - (address + 4);
4019 if (!Bits<18>::has_overflow32(offset))
4020 {
4021 if (val == 0x03200008) // jr t9
4022 val = 0x10000000 | (((Valtype32)offset >> 2) & 0xffff); // b addr
4023 else
4024 val = 0x04110000 | (((Valtype32)offset >> 2) & 0xffff); //bal addr
4025 }
4026 }
4027
4028 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4029 mips_reloc_shuffle(view, r_type, false);
4030 return This::STATUS_OKAY;
4031 }
4032
4033 // R_MIPS_PC32: S + A - P
4034 static inline typename This::Status
4035 relpc32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4036 const Symbol_value<size>* psymval, Mips_address address,
4037 Mips_address addend_a, bool extract_addend, unsigned int r_type)
4038 {
4039 mips_reloc_unshuffle(view, r_type, false);
4040 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4041 Valtype32 addend = (extract_addend
4042 ? elfcpp::Swap<32, big_endian>::readval(wv)
4043 : Bits<32>::sign_extend32(addend_a));
4044 Valtype32 x = psymval->value(object, addend) - address;
4045 elfcpp::Swap<32, big_endian>::writeval(wv, x);
4046 mips_reloc_shuffle(view, r_type, false);
4047 return This::STATUS_OKAY;
4048 }
4049
4050 // R_MIPS_26, R_MIPS16_26, R_MICROMIPS_26_S1
4051 static inline typename This::Status
4052 rel26(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4053 const Symbol_value<size>* psymval, Mips_address address,
4054 bool local, Mips_address addend_a, bool extract_addend,
4055 const Symbol* gsym, bool cross_mode_jump, unsigned int r_type,
4056 bool jal_to_bal)
4057 {
4058 mips_reloc_unshuffle(view, r_type, false);
4059 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4060 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4061
4062 Valtype32 addend;
4063 if (extract_addend)
4064 {
4065 if (r_type == elfcpp::R_MICROMIPS_26_S1)
4066 addend = (val & 0x03ffffff) << 1;
4067 else
4068 addend = (val & 0x03ffffff) << 2;
4069 }
4070 else
4071 addend = addend_a;
4072
4073 // Make sure the target of JALX is word-aligned. Bit 0 must be
4074 // the correct ISA mode selector and bit 1 must be 0.
4075 if (cross_mode_jump
4076 && (psymval->value(object, 0) & 3) != (r_type == elfcpp::R_MIPS_26))
4077 {
4078 gold_warning(_("JALX to a non-word-aligned address"));
4079 mips_reloc_shuffle(view, r_type, !parameters->options().relocatable());
4080 return This::STATUS_BAD_RELOC;
4081 }
4082
4083 // Shift is 2, unusually, for microMIPS JALX.
4084 unsigned int shift =
4085 (!cross_mode_jump && r_type == elfcpp::R_MICROMIPS_26_S1) ? 1 : 2;
4086
4087 Valtype32 x;
4088 if (local)
4089 x = addend | ((address + 4) & (0xfc000000 << shift));
4090 else
4091 {
4092 if (shift == 1)
4093 x = Bits<27>::sign_extend32(addend);
4094 else
4095 x = Bits<28>::sign_extend32(addend);
4096 }
4097 x = psymval->value(object, x) >> shift;
4098
4099 if (!local && !gsym->is_weak_undefined())
4100 {
4101 if ((x >> 26) != ((address + 4) >> (26 + shift)))
4102 {
4103 gold_error(_("relocation truncated to fit: %u against '%s'"),
4104 r_type, gsym->name());
4105 return This::STATUS_OVERFLOW;
4106 }
4107 }
4108
4109 val = Bits<32>::bit_select32(val, x, 0x03ffffff);
4110
4111 // If required, turn JAL into JALX.
4112 if (cross_mode_jump)
4113 {
4114 bool ok;
4115 Valtype32 opcode = val >> 26;
4116 Valtype32 jalx_opcode;
4117
4118 // Check to see if the opcode is already JAL or JALX.
4119 if (r_type == elfcpp::R_MIPS16_26)
4120 {
4121 ok = (opcode == 0x6) || (opcode == 0x7);
4122 jalx_opcode = 0x7;
4123 }
4124 else if (r_type == elfcpp::R_MICROMIPS_26_S1)
4125 {
4126 ok = (opcode == 0x3d) || (opcode == 0x3c);
4127 jalx_opcode = 0x3c;
4128 }
4129 else
4130 {
4131 ok = (opcode == 0x3) || (opcode == 0x1d);
4132 jalx_opcode = 0x1d;
4133 }
4134
4135 // If the opcode is not JAL or JALX, there's a problem. We cannot
4136 // convert J or JALS to JALX.
4137 if (!ok)
4138 {
4139 gold_error(_("Unsupported jump between ISA modes; consider "
4140 "recompiling with interlinking enabled."));
4141 return This::STATUS_BAD_RELOC;
4142 }
4143
4144 // Make this the JALX opcode.
4145 val = (val & ~(0x3f << 26)) | (jalx_opcode << 26);
4146 }
4147
4148 // Try converting JAL to BAL, if the target is in range.
4149 if (!parameters->options().relocatable()
4150 && !cross_mode_jump
4151 && ((jal_to_bal
4152 && r_type == elfcpp::R_MIPS_26
4153 && (val >> 26) == 0x3))) // jal addr
4154 {
4155 Valtype32 dest = (x << 2) | (((address + 4) >> 28) << 28);
4156 int offset = dest - (address + 4);
4157 if (!Bits<18>::has_overflow32(offset))
4158 {
4159 if (val == 0x03200008) // jr t9
4160 val = 0x10000000 | (((Valtype32)offset >> 2) & 0xffff); // b addr
4161 else
4162 val = 0x04110000 | (((Valtype32)offset >> 2) & 0xffff); //bal addr
4163 }
4164 }
4165
4166 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4167 mips_reloc_shuffle(view, r_type, !parameters->options().relocatable());
4168 return This::STATUS_OKAY;
4169 }
4170
4171 // R_MIPS_PC16
4172 static inline typename This::Status
4173 relpc16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4174 const Symbol_value<size>* psymval, Mips_address address,
4175 Mips_address addend_a, bool extract_addend, unsigned int r_type)
4176 {
4177 mips_reloc_unshuffle(view, r_type, false);
4178 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4179 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4180
4181 Valtype32 addend = extract_addend ? (val & 0xffff) << 2 : addend_a;
4182 addend = Bits<18>::sign_extend32(addend);
4183
4184 Valtype32 x = psymval->value(object, addend) - address;
4185 val = Bits<16>::bit_select32(val, x >> 2, 0xffff);
4186 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4187 mips_reloc_shuffle(view, r_type, false);
4188 return (Bits<18>::has_overflow32(x)
4189 ? This::STATUS_OVERFLOW
4190 : This::STATUS_OKAY);
4191 }
4192
4193 // R_MICROMIPS_PC7_S1
4194 static inline typename This::Status
4195 relmicromips_pc7_s1(unsigned char* view,
4196 const Mips_relobj<size, big_endian>* object,
4197 const Symbol_value<size>* psymval, Mips_address address,
4198 Mips_address addend_a, bool extract_addend,
4199 unsigned int r_type)
4200 {
4201 mips_reloc_unshuffle(view, r_type, false);
4202 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4203 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4204
4205 Valtype32 addend = extract_addend ? (val & 0x7f) << 1 : addend_a;
4206 addend = Bits<8>::sign_extend32(addend);
4207
4208 Valtype32 x = psymval->value(object, addend) - address;
4209 val = Bits<16>::bit_select32(val, x >> 1, 0x7f);
4210 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4211 mips_reloc_shuffle(view, r_type, false);
4212 return (Bits<8>::has_overflow32(x)
4213 ? This::STATUS_OVERFLOW
4214 : This::STATUS_OKAY);
4215 }
4216
4217 // R_MICROMIPS_PC10_S1
4218 static inline typename This::Status
4219 relmicromips_pc10_s1(unsigned char* view,
4220 const Mips_relobj<size, big_endian>* object,
4221 const Symbol_value<size>* psymval, Mips_address address,
4222 Mips_address addend_a, bool extract_addend,
4223 unsigned int r_type)
4224 {
4225 mips_reloc_unshuffle(view, r_type, false);
4226 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4227 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4228
4229 Valtype32 addend = extract_addend ? (val & 0x3ff) << 1 : addend_a;
4230 addend = Bits<11>::sign_extend32(addend);
4231
4232 Valtype32 x = psymval->value(object, addend) - address;
4233 val = Bits<16>::bit_select32(val, x >> 1, 0x3ff);
4234 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4235 mips_reloc_shuffle(view, r_type, false);
4236 return (Bits<11>::has_overflow32(x)
4237 ? This::STATUS_OVERFLOW
4238 : This::STATUS_OKAY);
4239 }
4240
4241 // R_MICROMIPS_PC16_S1
4242 static inline typename This::Status
4243 relmicromips_pc16_s1(unsigned char* view,
4244 const Mips_relobj<size, big_endian>* object,
4245 const Symbol_value<size>* psymval, Mips_address address,
4246 Mips_address addend_a, bool extract_addend,
4247 unsigned int r_type)
4248 {
4249 mips_reloc_unshuffle(view, r_type, false);
4250 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4251 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4252
4253 Valtype32 addend = extract_addend ? (val & 0xffff) << 1 : addend_a;
4254 addend = Bits<17>::sign_extend32(addend);
4255
4256 Valtype32 x = psymval->value(object, addend) - address;
4257 val = Bits<16>::bit_select32(val, x >> 1, 0xffff);
4258 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4259 mips_reloc_shuffle(view, r_type, false);
4260 return (Bits<17>::has_overflow32(x)
4261 ? This::STATUS_OVERFLOW
4262 : This::STATUS_OKAY);
4263 }
4264
4265 // R_MIPS_HI16, R_MIPS16_HI16, R_MICROMIPS_HI16,
4266 static inline typename This::Status
4267 relhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4268 const Symbol_value<size>* psymval, Mips_address addend,
4269 Mips_address address, bool gp_disp, unsigned int r_type,
3d0064a9 4270 unsigned int r_sym, bool extract_addend)
9810d34d
SS
4271 {
4272 // Record the relocation. It will be resolved when we find lo16 part.
4273 hi16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
3d0064a9
CC
4274 addend, r_type, r_sym, extract_addend, address,
4275 gp_disp));
9810d34d
SS
4276 return This::STATUS_OKAY;
4277 }
4278
4279 // R_MIPS_HI16, R_MIPS16_HI16, R_MICROMIPS_HI16,
4280 static inline typename This::Status
4281 do_relhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4282 const Symbol_value<size>* psymval, Mips_address addend_hi,
4283 Mips_address address, bool is_gp_disp, unsigned int r_type,
4284 bool extract_addend, Valtype32 addend_lo,
4285 Target_mips<size, big_endian>* target)
4286 {
4287 mips_reloc_unshuffle(view, r_type, false);
4288 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4289 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4290
4291 Valtype32 addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
4292 : addend_hi);
4293
4294 Valtype32 value;
4295 if (!is_gp_disp)
4296 value = psymval->value(object, addend);
4297 else
4298 {
4299 // For MIPS16 ABI code we generate this sequence
4300 // 0: li $v0,%hi(_gp_disp)
4301 // 4: addiupc $v1,%lo(_gp_disp)
4302 // 8: sll $v0,16
4303 // 12: addu $v0,$v1
4304 // 14: move $gp,$v0
4305 // So the offsets of hi and lo relocs are the same, but the
4306 // base $pc is that used by the ADDIUPC instruction at $t9 + 4.
4307 // ADDIUPC clears the low two bits of the instruction address,
4308 // so the base is ($t9 + 4) & ~3.
4309 Valtype32 gp_disp;
4310 if (r_type == elfcpp::R_MIPS16_HI16)
4311 gp_disp = (target->adjusted_gp_value(object)
4312 - ((address + 4) & ~0x3));
4313 // The microMIPS .cpload sequence uses the same assembly
4314 // instructions as the traditional psABI version, but the
4315 // incoming $t9 has the low bit set.
4316 else if (r_type == elfcpp::R_MICROMIPS_HI16)
4317 gp_disp = target->adjusted_gp_value(object) - address - 1;
4318 else
4319 gp_disp = target->adjusted_gp_value(object) - address;
4320 value = gp_disp + addend;
4321 }
4322 Valtype32 x = ((value + 0x8000) >> 16) & 0xffff;
4323 val = Bits<32>::bit_select32(val, x, 0xffff);
4324 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4325 mips_reloc_shuffle(view, r_type, false);
4326 return (is_gp_disp && Bits<16>::has_overflow32(x)
4327 ? This::STATUS_OVERFLOW
4328 : This::STATUS_OKAY);
4329 }
4330
4331 // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
4332 static inline typename This::Status
4333 relgot16_local(unsigned char* view,
4334 const Mips_relobj<size, big_endian>* object,
4335 const Symbol_value<size>* psymval, Mips_address addend_a,
3d0064a9 4336 bool extract_addend, unsigned int r_type, unsigned int r_sym)
9810d34d
SS
4337 {
4338 // Record the relocation. It will be resolved when we find lo16 part.
4339 got16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
3d0064a9 4340 addend_a, r_type, r_sym, extract_addend));
9810d34d
SS
4341 return This::STATUS_OKAY;
4342 }
4343
4344 // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
4345 static inline typename This::Status
4346 do_relgot16_local(unsigned char* view,
4347 const Mips_relobj<size, big_endian>* object,
4348 const Symbol_value<size>* psymval, Mips_address addend_hi,
4349 unsigned int r_type, bool extract_addend,
4350 Valtype32 addend_lo, Target_mips<size, big_endian>* target)
4351 {
4352 mips_reloc_unshuffle(view, r_type, false);
4353 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4354 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4355
4356 Valtype32 addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
4357 : addend_hi);
4358
4359 // Find GOT page entry.
4360 Mips_address value = ((psymval->value(object, addend) + 0x8000) >> 16)
4361 & 0xffff;
4362 value <<= 16;
4363 unsigned int got_offset =
4364 target->got_section()->get_got_page_offset(value, object);
4365
4366 // Resolve the relocation.
4367 Valtype32 x = target->got_section()->gp_offset(got_offset, object);
4368 val = Bits<32>::bit_select32(val, x, 0xffff);
4369 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4370 mips_reloc_shuffle(view, r_type, false);
4371 return (Bits<16>::has_overflow32(x)
4372 ? This::STATUS_OVERFLOW
4373 : This::STATUS_OKAY);
4374 }
4375
4376 // R_MIPS_LO16, R_MIPS16_LO16, R_MICROMIPS_LO16, R_MICROMIPS_HI0_LO16
4377 static inline typename This::Status
4378 rello16(Target_mips<size, big_endian>* target, unsigned char* view,
4379 const Mips_relobj<size, big_endian>* object,
4380 const Symbol_value<size>* psymval, Mips_address addend_a,
4381 bool extract_addend, Mips_address address, bool is_gp_disp,
3d0064a9 4382 unsigned int r_type, unsigned int r_sym)
9810d34d
SS
4383 {
4384 mips_reloc_unshuffle(view, r_type, false);
4385 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4386 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4387
4388 Valtype32 addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
4389 : addend_a);
4390
4391 // Resolve pending R_MIPS_HI16 relocations.
4392 typename std::list<reloc_high<size, big_endian> >::iterator it =
4393 hi16_relocs.begin();
4394 while (it != hi16_relocs.end())
4395 {
4396 reloc_high<size, big_endian> hi16 = *it;
3d0064a9
CC
4397 if (hi16.r_sym == r_sym
4398 && is_matching_lo16_reloc(hi16.r_type, r_type))
9810d34d
SS
4399 {
4400 if (do_relhi16(hi16.view, hi16.object, hi16.psymval, hi16.addend,
4401 hi16.address, hi16.gp_disp, hi16.r_type,
4402 hi16.extract_addend, addend, target)
4403 == This::STATUS_OVERFLOW)
4404 return This::STATUS_OVERFLOW;
4405 it = hi16_relocs.erase(it);
4406 }
4407 else
4408 ++it;
4409 }
4410
4411 // Resolve pending local R_MIPS_GOT16 relocations.
4412 typename std::list<reloc_high<size, big_endian> >::iterator it2 =
4413 got16_relocs.begin();
4414 while (it2 != got16_relocs.end())
4415 {
4416 reloc_high<size, big_endian> got16 = *it2;
3d0064a9
CC
4417 if (got16.r_sym == r_sym
4418 && is_matching_lo16_reloc(got16.r_type, r_type))
9810d34d
SS
4419 {
4420 if (do_relgot16_local(got16.view, got16.object, got16.psymval,
4421 got16.addend, got16.r_type,
4422 got16.extract_addend, addend,
4423 target) == This::STATUS_OVERFLOW)
4424 return This::STATUS_OVERFLOW;
4425 it2 = got16_relocs.erase(it2);
4426 }
4427 else
4428 ++it2;
4429 }
4430
4431 // Resolve R_MIPS_LO16 relocation.
4432 Valtype32 x;
4433 if (!is_gp_disp)
4434 x = psymval->value(object, addend);
4435 else
4436 {
4437 // See the comment for R_MIPS16_HI16 above for the reason
4438 // for this conditional.
4439 Valtype32 gp_disp;
4440 if (r_type == elfcpp::R_MIPS16_LO16)
4441 gp_disp = target->adjusted_gp_value(object) - (address & ~0x3);
4442 else if (r_type == elfcpp::R_MICROMIPS_LO16
4443 || r_type == elfcpp::R_MICROMIPS_HI0_LO16)
4444 gp_disp = target->adjusted_gp_value(object) - address + 3;
4445 else
4446 gp_disp = target->adjusted_gp_value(object) - address + 4;
4447 // The MIPS ABI requires checking the R_MIPS_LO16 relocation
4448 // for overflow. Relocations against _gp_disp are normally
4449 // generated from the .cpload pseudo-op. It generates code
4450 // that normally looks like this:
4451
4452 // lui $gp,%hi(_gp_disp)
4453 // addiu $gp,$gp,%lo(_gp_disp)
4454 // addu $gp,$gp,$t9
4455
4456 // Here $t9 holds the address of the function being called,
4457 // as required by the MIPS ELF ABI. The R_MIPS_LO16
4458 // relocation can easily overflow in this situation, but the
4459 // R_MIPS_HI16 relocation will handle the overflow.
4460 // Therefore, we consider this a bug in the MIPS ABI, and do
4461 // not check for overflow here.
4462 x = gp_disp + addend;
4463 }
4464 val = Bits<32>::bit_select32(val, x, 0xffff);
4465 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4466 mips_reloc_shuffle(view, r_type, false);
4467 return This::STATUS_OKAY;
4468 }
4469
4470 // R_MIPS_CALL16, R_MIPS16_CALL16, R_MICROMIPS_CALL16
4471 // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
4472 // R_MIPS_TLS_GD, R_MIPS16_TLS_GD, R_MICROMIPS_TLS_GD
4473 // R_MIPS_TLS_GOTTPREL, R_MIPS16_TLS_GOTTPREL, R_MICROMIPS_TLS_GOTTPREL
4474 // R_MIPS_TLS_LDM, R_MIPS16_TLS_LDM, R_MICROMIPS_TLS_LDM
4475 // R_MIPS_GOT_DISP, R_MICROMIPS_GOT_DISP
4476 static inline typename This::Status
4477 relgot(unsigned char* view, int gp_offset, unsigned int r_type)
4478 {
4479 mips_reloc_unshuffle(view, r_type, false);
4480 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4481 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4482 Valtype32 x = gp_offset;
4483 val = Bits<32>::bit_select32(val, x, 0xffff);
4484 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4485 mips_reloc_shuffle(view, r_type, false);
4486 return (Bits<16>::has_overflow32(x)
4487 ? This::STATUS_OVERFLOW
4488 : This::STATUS_OKAY);
4489 }
4490
4491 // R_MIPS_GOT_PAGE, R_MICROMIPS_GOT_PAGE
4492 static inline typename This::Status
4493 relgotpage(Target_mips<size, big_endian>* target, unsigned char* view,
4494 const Mips_relobj<size, big_endian>* object,
4495 const Symbol_value<size>* psymval, Mips_address addend_a,
4496 bool extract_addend, unsigned int r_type)
4497 {
4498 mips_reloc_unshuffle(view, r_type, false);
4499 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4500 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
4501 Valtype32 addend = extract_addend ? val & 0xffff : addend_a;
4502
4503 // Find a GOT page entry that points to within 32KB of symbol + addend.
4504 Mips_address value = (psymval->value(object, addend) + 0x8000) & ~0xffff;
4505 unsigned int got_offset =
4506 target->got_section()->get_got_page_offset(value, object);
4507
4508 Valtype32 x = target->got_section()->gp_offset(got_offset, object);
4509 val = Bits<32>::bit_select32(val, x, 0xffff);
4510 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4511 mips_reloc_shuffle(view, r_type, false);
4512 return (Bits<16>::has_overflow32(x)
4513 ? This::STATUS_OVERFLOW
4514 : This::STATUS_OKAY);
4515 }
4516
4517 // R_MIPS_GOT_OFST, R_MICROMIPS_GOT_OFST
4518 static inline typename This::Status
4519 relgotofst(Target_mips<size, big_endian>* target, unsigned char* view,
4520 const Mips_relobj<size, big_endian>* object,
4521 const Symbol_value<size>* psymval, Mips_address addend_a,
4522 bool extract_addend, bool local, unsigned int r_type)
4523 {
4524 mips_reloc_unshuffle(view, r_type, false);
4525 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4526 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
4527 Valtype32 addend = extract_addend ? val & 0xffff : addend_a;
4528
4529 // For a local symbol, find a GOT page entry that points to within 32KB of
4530 // symbol + addend. Relocation value is the offset of the GOT page entry's
4531 // value from symbol + addend.
4532 // For a global symbol, relocation value is addend.
4533 Valtype32 x;
4534 if (local)
4535 {
4536 // Find GOT page entry.
4537 Mips_address value = ((psymval->value(object, addend) + 0x8000)
4538 & ~0xffff);
4539 target->got_section()->get_got_page_offset(value, object);
4540
4541 x = psymval->value(object, addend) - value;
4542 }
4543 else
4544 x = addend;
4545 val = Bits<32>::bit_select32(val, x, 0xffff);
4546 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4547 mips_reloc_shuffle(view, r_type, false);
4548 return (Bits<16>::has_overflow32(x)
4549 ? This::STATUS_OVERFLOW
4550 : This::STATUS_OKAY);
4551 }
4552
4553 // R_MIPS_GOT_HI16, R_MIPS_CALL_HI16,
4554 // R_MICROMIPS_GOT_HI16, R_MICROMIPS_CALL_HI16
4555 static inline typename This::Status
4556 relgot_hi16(unsigned char* view, int gp_offset, unsigned int r_type)
4557 {
4558 mips_reloc_unshuffle(view, r_type, false);
4559 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4560 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4561 Valtype32 x = gp_offset;
4562 x = ((x + 0x8000) >> 16) & 0xffff;
4563 val = Bits<32>::bit_select32(val, x, 0xffff);
4564 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4565 mips_reloc_shuffle(view, r_type, false);
4566 return This::STATUS_OKAY;
4567 }
4568
4569 // R_MIPS_GOT_LO16, R_MIPS_CALL_LO16,
4570 // R_MICROMIPS_GOT_LO16, R_MICROMIPS_CALL_LO16
4571 static inline typename This::Status
4572 relgot_lo16(unsigned char* view, int gp_offset, unsigned int r_type)
4573 {
4574 mips_reloc_unshuffle(view, r_type, false);
4575 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4576 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4577 Valtype32 x = gp_offset;
4578 val = Bits<32>::bit_select32(val, x, 0xffff);
4579 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4580 mips_reloc_shuffle(view, r_type, false);
4581 return This::STATUS_OKAY;
4582 }
4583
4584 // R_MIPS_GPREL16, R_MIPS16_GPREL, R_MIPS_LITERAL, R_MICROMIPS_LITERAL
4585 // R_MICROMIPS_GPREL7_S2, R_MICROMIPS_GPREL16
4586 static inline typename This::Status
4587 relgprel(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4588 const Symbol_value<size>* psymval, Mips_address gp,
4589 Mips_address addend_a, bool extract_addend, bool local,
4590 unsigned int r_type)
4591 {
4592 mips_reloc_unshuffle(view, r_type, false);
4593 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4594 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4595
4596 Valtype32 addend;
4597 if (extract_addend)
4598 {
4599 if (r_type == elfcpp::R_MICROMIPS_GPREL7_S2)
4600 addend = (val & 0x7f) << 2;
4601 else
4602 addend = val & 0xffff;
4603 // Only sign-extend the addend if it was extracted from the
4604 // instruction. If the addend was separate, leave it alone,
4605 // otherwise we may lose significant bits.
4606 addend = Bits<16>::sign_extend32(addend);
4607 }
4608 else
4609 addend = addend_a;
4610
4611 Valtype32 x = psymval->value(object, addend) - gp;
4612
4613 // If the symbol was local, any earlier relocatable links will
4614 // have adjusted its addend with the gp offset, so compensate
4615 // for that now. Don't do it for symbols forced local in this
4616 // link, though, since they won't have had the gp offset applied
4617 // to them before.
4618 if (local)
4619 x += object->gp_value();
4620
4621 if (r_type == elfcpp::R_MICROMIPS_GPREL7_S2)
4622 val = Bits<32>::bit_select32(val, x, 0x7f);
4623 else
4624 val = Bits<32>::bit_select32(val, x, 0xffff);
4625 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4626 mips_reloc_shuffle(view, r_type, false);
4627 if (Bits<16>::has_overflow32(x))
4628 {
4629 gold_error(_("small-data section exceeds 64KB; lower small-data size "
4630 "limit (see option -G)"));
4631 return This::STATUS_OVERFLOW;
4632 }
4633 return This::STATUS_OKAY;
4634 }
4635
4636 // R_MIPS_GPREL32
4637 static inline typename This::Status
4638 relgprel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4639 const Symbol_value<size>* psymval, Mips_address gp,
4640 Mips_address addend_a, bool extract_addend, unsigned int r_type)
4641 {
4642 mips_reloc_unshuffle(view, r_type, false);
4643 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4644 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4645 Valtype32 addend = extract_addend ? val : addend_a;
4646
4647 // R_MIPS_GPREL32 relocations are defined for local symbols only.
4648 Valtype32 x = psymval->value(object, addend) + object->gp_value() - gp;
4649 elfcpp::Swap<32, big_endian>::writeval(wv, x);
4650 mips_reloc_shuffle(view, r_type, false);
4651 return This::STATUS_OKAY;
4652 }
4653
4654 // R_MIPS_TLS_TPREL_HI16, R_MIPS16_TLS_TPREL_HI16, R_MICROMIPS_TLS_TPREL_HI16
4655 // R_MIPS_TLS_DTPREL_HI16, R_MIPS16_TLS_DTPREL_HI16,
4656 // R_MICROMIPS_TLS_DTPREL_HI16
4657 static inline typename This::Status
4658 tlsrelhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4659 const Symbol_value<size>* psymval, Valtype32 tp_offset,
4660 Mips_address addend_a, bool extract_addend, unsigned int r_type)
4661 {
4662 mips_reloc_unshuffle(view, r_type, false);
4663 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4664 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4665 Valtype32 addend = extract_addend ? val & 0xffff : addend_a;
4666
4667 // tls symbol values are relative to tls_segment()->vaddr()
4668 Valtype32 x = ((psymval->value(object, addend) - tp_offset) + 0x8000) >> 16;
4669 val = Bits<32>::bit_select32(val, x, 0xffff);
4670 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4671 mips_reloc_shuffle(view, r_type, false);
4672 return This::STATUS_OKAY;
4673 }
4674
4675 // R_MIPS_TLS_TPREL_LO16, R_MIPS16_TLS_TPREL_LO16, R_MICROMIPS_TLS_TPREL_LO16,
4676 // R_MIPS_TLS_DTPREL_LO16, R_MIPS16_TLS_DTPREL_LO16,
4677 // R_MICROMIPS_TLS_DTPREL_LO16,
4678 static inline typename This::Status
4679 tlsrello16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4680 const Symbol_value<size>* psymval, Valtype32 tp_offset,
4681 Mips_address addend_a, bool extract_addend, unsigned int r_type)
4682 {
4683 mips_reloc_unshuffle(view, r_type, false);
4684 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4685 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4686 Valtype32 addend = extract_addend ? val & 0xffff : addend_a;
4687
4688 // tls symbol values are relative to tls_segment()->vaddr()
4689 Valtype32 x = psymval->value(object, addend) - tp_offset;
4690 val = Bits<32>::bit_select32(val, x, 0xffff);
4691 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4692 mips_reloc_shuffle(view, r_type, false);
4693 return This::STATUS_OKAY;
4694 }
4695
4696 // R_MIPS_TLS_TPREL32, R_MIPS_TLS_TPREL64,
4697 // R_MIPS_TLS_DTPREL32, R_MIPS_TLS_DTPREL64
4698 static inline typename This::Status
4699 tlsrel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4700 const Symbol_value<size>* psymval, Valtype32 tp_offset,
4701 Mips_address addend_a, bool extract_addend, unsigned int r_type)
4702 {
4703 mips_reloc_unshuffle(view, r_type, false);
4704 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4705 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4706 Valtype32 addend = extract_addend ? val : addend_a;
4707
4708 // tls symbol values are relative to tls_segment()->vaddr()
4709 Valtype32 x = psymval->value(object, addend) - tp_offset;
4710 elfcpp::Swap<32, big_endian>::writeval(wv, x);
4711 mips_reloc_shuffle(view, r_type, false);
4712 return This::STATUS_OKAY;
4713 }
4714
4715 // R_MIPS_SUB, R_MICROMIPS_SUB
4716 static inline typename This::Status
4717 relsub(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4718 const Symbol_value<size>* psymval, Mips_address addend_a,
4719 bool extract_addend, unsigned int r_type)
4720 {
4721 mips_reloc_unshuffle(view, r_type, false);
4722 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4723 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4724 Valtype32 addend = extract_addend ? val : addend_a;
4725
4726 Valtype32 x = psymval->value(object, -addend);
4727 elfcpp::Swap<32, big_endian>::writeval(wv, x);
4728 mips_reloc_shuffle(view, r_type, false);
4729 return This::STATUS_OKAY;
4730 }
4731};
4732
4733template<int size, bool big_endian>
4734typename std::list<reloc_high<size, big_endian> >
4735 Mips_relocate_functions<size, big_endian>::hi16_relocs;
4736
4737template<int size, bool big_endian>
4738typename std::list<reloc_high<size, big_endian> >
4739 Mips_relocate_functions<size, big_endian>::got16_relocs;
4740
4741// Mips_got_info methods.
4742
4743// Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
4744// SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
4745
4746template<int size, bool big_endian>
4747void
4748Mips_got_info<size, big_endian>::record_local_got_symbol(
4749 Mips_relobj<size, big_endian>* object, unsigned int symndx,
4750 Mips_address addend, unsigned int r_type, unsigned int shndx)
4751{
4752 Mips_got_entry<size, big_endian>* entry =
4753 new Mips_got_entry<size, big_endian>(object, symndx, addend,
4754 mips_elf_reloc_tls_type(r_type),
4755 shndx);
4756 this->record_got_entry(entry, object);
4757}
4758
4759// Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
4760// in OBJECT. FOR_CALL is true if the caller is only interested in
4761// using the GOT entry for calls. DYN_RELOC is true if R_TYPE is a dynamic
4762// relocation.
4763
4764template<int size, bool big_endian>
4765void
4766Mips_got_info<size, big_endian>::record_global_got_symbol(
4767 Mips_symbol<size>* mips_sym, Mips_relobj<size, big_endian>* object,
4768 unsigned int r_type, bool dyn_reloc, bool for_call)
4769{
4770 if (!for_call)
4771 mips_sym->set_got_not_only_for_calls();
4772
4773 // A global symbol in the GOT must also be in the dynamic symbol table.
4774 if (!mips_sym->needs_dynsym_entry())
4775 {
4776 switch (mips_sym->visibility())
4777 {
4778 case elfcpp::STV_INTERNAL:
4779 case elfcpp::STV_HIDDEN:
4780 mips_sym->set_is_forced_local();
4781 break;
4782 default:
4783 mips_sym->set_needs_dynsym_entry();
4784 break;
4785 }
4786 }
4787
4788 unsigned char tls_type = mips_elf_reloc_tls_type(r_type);
4789 if (tls_type == GOT_TLS_NONE)
4790 this->global_got_symbols_.insert(mips_sym);
4791
4792 if (dyn_reloc)
4793 {
4794 if (mips_sym->global_got_area() == GGA_NONE)
4795 mips_sym->set_global_got_area(GGA_RELOC_ONLY);
4796 return;
4797 }
4798
4799 Mips_got_entry<size, big_endian>* entry =
4800 new Mips_got_entry<size, big_endian>(object, mips_sym, tls_type);
4801
4802 this->record_got_entry(entry, object);
4803}
4804
4805// Add ENTRY to master GOT and to OBJECT's GOT.
4806
4807template<int size, bool big_endian>
4808void
4809Mips_got_info<size, big_endian>::record_got_entry(
4810 Mips_got_entry<size, big_endian>* entry,
4811 Mips_relobj<size, big_endian>* object)
4812{
4813 if (this->got_entries_.find(entry) == this->got_entries_.end())
4814 this->got_entries_.insert(entry);
4815
4816 // Create the GOT entry for the OBJECT's GOT.
4817 Mips_got_info<size, big_endian>* g = object->get_or_create_got_info();
4818 Mips_got_entry<size, big_endian>* entry2 =
4819 new Mips_got_entry<size, big_endian>(*entry);
4820
4821 if (g->got_entries_.find(entry2) == g->got_entries_.end())
4822 g->got_entries_.insert(entry2);
4823}
4824
4825// Record that OBJECT has a page relocation against symbol SYMNDX and
4826// that ADDEND is the addend for that relocation.
4827// This function creates an upper bound on the number of GOT slots
4828// required; no attempt is made to combine references to non-overridable
4829// global symbols across multiple input files.
4830
4831template<int size, bool big_endian>
4832void
4833Mips_got_info<size, big_endian>::record_got_page_entry(
4834 Mips_relobj<size, big_endian>* object, unsigned int symndx, int addend)
4835{
4836 struct Got_page_range **range_ptr, *range;
4837 int old_pages, new_pages;
4838
4839 // Find the Got_page_entry for this symbol.
4840 Got_page_entry* entry = new Got_page_entry(object, symndx);
4841 typename Got_page_entry_set::iterator it =
4842 this->got_page_entries_.find(entry);
4843 if (it != this->got_page_entries_.end())
4844 entry = *it;
4845 else
4846 this->got_page_entries_.insert(entry);
4847
4848 // Add the same entry to the OBJECT's GOT.
4849 Got_page_entry* entry2 = NULL;
4850 Mips_got_info<size, big_endian>* g2 = object->get_or_create_got_info();
4851 if (g2->got_page_entries_.find(entry) == g2->got_page_entries_.end())
4852 {
4853 entry2 = new Got_page_entry(*entry);
4854 g2->got_page_entries_.insert(entry2);
4855 }
4856
4857 // Skip over ranges whose maximum extent cannot share a page entry
4858 // with ADDEND.
4859 range_ptr = &entry->ranges;
4860 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4861 range_ptr = &(*range_ptr)->next;
4862
4863 // If we scanned to the end of the list, or found a range whose
4864 // minimum extent cannot share a page entry with ADDEND, create
4865 // a new singleton range.
4866 range = *range_ptr;
4867 if (!range || addend < range->min_addend - 0xffff)
4868 {
4869 range = new Got_page_range();
4870 range->next = *range_ptr;
4871 range->min_addend = addend;
4872 range->max_addend = addend;
4873
4874 *range_ptr = range;
4875 ++entry->num_pages;
4876 if (entry2 != NULL)
4877 ++entry2->num_pages;
4878 ++this->page_gotno_;
4879 ++g2->page_gotno_;
4880 return;
4881 }
4882
4883 // Remember how many pages the old range contributed.
4884 old_pages = range->get_max_pages();
4885
4886 // Update the ranges.
4887 if (addend < range->min_addend)
4888 range->min_addend = addend;
4889 else if (addend > range->max_addend)
4890 {
4891 if (range->next && addend >= range->next->min_addend - 0xffff)
4892 {
4893 old_pages += range->next->get_max_pages();
4894 range->max_addend = range->next->max_addend;
4895 range->next = range->next->next;
4896 }
4897 else
4898 range->max_addend = addend;
4899 }
4900
4901 // Record any change in the total estimate.
4902 new_pages = range->get_max_pages();
4903 if (old_pages != new_pages)
4904 {
4905 entry->num_pages += new_pages - old_pages;
4906 if (entry2 != NULL)
4907 entry2->num_pages += new_pages - old_pages;
4908 this->page_gotno_ += new_pages - old_pages;
4909 g2->page_gotno_ += new_pages - old_pages;
4910 }
4911}
4912
4913// Create all entries that should be in the local part of the GOT.
4914
4915template<int size, bool big_endian>
4916void
4917Mips_got_info<size, big_endian>::add_local_entries(
4918 Target_mips<size, big_endian>* target, Layout* layout)
4919{
4920 Mips_output_data_got<size, big_endian>* got = target->got_section();
4921 // First two GOT entries are reserved. The first entry will be filled at
4922 // runtime. The second entry will be used by some runtime loaders.
4923 got->add_constant(0);
4924 got->add_constant(target->mips_elf_gnu_got1_mask());
4925
4926 for (typename Got_entry_set::iterator
4927 p = this->got_entries_.begin();
4928 p != this->got_entries_.end();
4929 ++p)
4930 {
4931 Mips_got_entry<size, big_endian>* entry = *p;
4932 if (entry->is_for_local_symbol() && !entry->is_tls_entry())
4933 {
4934 got->add_local(entry->object(), entry->symndx(),
4935 GOT_TYPE_STANDARD);
4936 unsigned int got_offset = entry->object()->local_got_offset(
4937 entry->symndx(), GOT_TYPE_STANDARD);
4938 if (got->multi_got() && this->index_ > 0
4939 && parameters->options().output_is_position_independent())
4940 target->rel_dyn_section(layout)->add_local(entry->object(),
4941 entry->symndx(), elfcpp::R_MIPS_REL32, got, got_offset);
4942 }
4943 }
4944
4945 this->add_page_entries(target, layout);
4946
4947 // Add global entries that should be in the local area.
4948 for (typename Got_entry_set::iterator
4949 p = this->got_entries_.begin();
4950 p != this->got_entries_.end();
4951 ++p)
4952 {
4953 Mips_got_entry<size, big_endian>* entry = *p;
4954 if (!entry->is_for_global_symbol())
4955 continue;
4956
4957 Mips_symbol<size>* mips_sym = entry->sym();
4958 if (mips_sym->global_got_area() == GGA_NONE && !entry->is_tls_entry())
4959 {
4960 unsigned int got_type;
4961 if (!got->multi_got())
4962 got_type = GOT_TYPE_STANDARD;
4963 else
4964 got_type = GOT_TYPE_STANDARD_MULTIGOT + this->index_;
4965 if (got->add_global(mips_sym, got_type))
4966 {
4967 mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
4968 if (got->multi_got() && this->index_ > 0
4969 && parameters->options().output_is_position_independent())
4970 target->rel_dyn_section(layout)->add_symbolless_global_addend(
4971 mips_sym, elfcpp::R_MIPS_REL32, got,
4972 mips_sym->got_offset(got_type));
4973 }
4974 }
4975 }
4976}
4977
4978// Create GOT page entries.
4979
4980template<int size, bool big_endian>
4981void
4982Mips_got_info<size, big_endian>::add_page_entries(
4983 Target_mips<size, big_endian>* target, Layout* layout)
4984{
4985 if (this->page_gotno_ == 0)
4986 return;
4987
4988 Mips_output_data_got<size, big_endian>* got = target->got_section();
4989 this->got_page_offset_start_ = got->add_constant(0);
4990 if (got->multi_got() && this->index_ > 0
4991 && parameters->options().output_is_position_independent())
4992 target->rel_dyn_section(layout)->add_absolute(elfcpp::R_MIPS_REL32, got,
4993 this->got_page_offset_start_);
4994 int num_entries = this->page_gotno_;
4995 unsigned int prev_offset = this->got_page_offset_start_;
4996 while (--num_entries > 0)
4997 {
4998 unsigned int next_offset = got->add_constant(0);
4999 if (got->multi_got() && this->index_ > 0
5000 && parameters->options().output_is_position_independent())
5001 target->rel_dyn_section(layout)->add_absolute(elfcpp::R_MIPS_REL32, got,
5002 next_offset);
5003 gold_assert(next_offset == prev_offset + size/8);
5004 prev_offset = next_offset;
5005 }
5006 this->got_page_offset_next_ = this->got_page_offset_start_;
5007}
5008
5009// Create global GOT entries, both GGA_NORMAL and GGA_RELOC_ONLY.
5010
5011template<int size, bool big_endian>
5012void
5013Mips_got_info<size, big_endian>::add_global_entries(
5014 Target_mips<size, big_endian>* target, Layout* layout,
5015 unsigned int non_reloc_only_global_gotno)
5016{
5017 Mips_output_data_got<size, big_endian>* got = target->got_section();
5018 // Add GGA_NORMAL entries.
5019 unsigned int count = 0;
5020 for (typename Got_entry_set::iterator
5021 p = this->got_entries_.begin();
5022 p != this->got_entries_.end();
5023 ++p)
5024 {
5025 Mips_got_entry<size, big_endian>* entry = *p;
5026 if (!entry->is_for_global_symbol())
5027 continue;
5028
5029 Mips_symbol<size>* mips_sym = entry->sym();
5030 if (mips_sym->global_got_area() != GGA_NORMAL)
5031 continue;
5032
5033 unsigned int got_type;
5034 if (!got->multi_got())
5035 got_type = GOT_TYPE_STANDARD;
5036 else
5037 // In multi-GOT links, global symbol can be in both primary and
5038 // secondary GOT(s). By creating custom GOT type
5039 // (GOT_TYPE_STANDARD_MULTIGOT + got_index) we ensure that symbol
5040 // is added to secondary GOT(s).
5041 got_type = GOT_TYPE_STANDARD_MULTIGOT + this->index_;
5042 if (!got->add_global(mips_sym, got_type))
5043 continue;
5044
5045 mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
5046 if (got->multi_got() && this->index_ == 0)
5047 count++;
5048 if (got->multi_got() && this->index_ > 0)
5049 {
5050 if (parameters->options().output_is_position_independent()
5051 || (!parameters->doing_static_link()
5052 && mips_sym->is_from_dynobj() && !mips_sym->is_undefined()))
5053 {
5054 target->rel_dyn_section(layout)->add_global(
5055 mips_sym, elfcpp::R_MIPS_REL32, got,
5056 mips_sym->got_offset(got_type));
5057 got->add_secondary_got_reloc(mips_sym->got_offset(got_type),
5058 elfcpp::R_MIPS_REL32, mips_sym);
5059 }
5060 }
5061 }
5062
5063 if (!got->multi_got() || this->index_ == 0)
5064 {
5065 if (got->multi_got())
5066 {
5067 // We need to allocate space in the primary GOT for GGA_NORMAL entries
5068 // of secondary GOTs, to ensure that GOT offsets of GGA_RELOC_ONLY
5069 // entries correspond to dynamic symbol indexes.
5070 while (count < non_reloc_only_global_gotno)
5071 {
5072 got->add_constant(0);
5073 ++count;
5074 }
5075 }
5076
5077 // Add GGA_RELOC_ONLY entries.
5078 got->add_reloc_only_entries();
5079 }
5080}
5081
5082// Create global GOT entries that should be in the GGA_RELOC_ONLY area.
5083
5084template<int size, bool big_endian>
5085void
5086Mips_got_info<size, big_endian>::add_reloc_only_entries(
5087 Mips_output_data_got<size, big_endian>* got)
5088{
5089 for (typename Unordered_set<Mips_symbol<size>*>::iterator
5090 p = this->global_got_symbols_.begin();
5091 p != this->global_got_symbols_.end();
5092 ++p)
5093 {
5094 Mips_symbol<size>* mips_sym = *p;
5095 if (mips_sym->global_got_area() == GGA_RELOC_ONLY)
5096 {
5097 unsigned int got_type;
5098 if (!got->multi_got())
5099 got_type = GOT_TYPE_STANDARD;
5100 else
5101 got_type = GOT_TYPE_STANDARD_MULTIGOT;
5102 if (got->add_global(mips_sym, got_type))
5103 mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
5104 }
5105 }
5106}
5107
5108// Create TLS GOT entries.
5109
5110template<int size, bool big_endian>
5111void
5112Mips_got_info<size, big_endian>::add_tls_entries(
5113 Target_mips<size, big_endian>* target, Layout* layout)
5114{
5115 Mips_output_data_got<size, big_endian>* got = target->got_section();
5116 // Add local tls entries.
5117 for (typename Got_entry_set::iterator
5118 p = this->got_entries_.begin();
5119 p != this->got_entries_.end();
5120 ++p)
5121 {
5122 Mips_got_entry<size, big_endian>* entry = *p;
5123 if (!entry->is_tls_entry() || !entry->is_for_local_symbol())
5124 continue;
5125
5126 if (entry->tls_type() == GOT_TLS_GD)
5127 {
5128 unsigned int got_type = GOT_TYPE_TLS_PAIR;
5129 unsigned int r_type1 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
5130 : elfcpp::R_MIPS_TLS_DTPMOD64);
5131 unsigned int r_type2 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPREL32
5132 : elfcpp::R_MIPS_TLS_DTPREL64);
5133
5134 if (!parameters->doing_static_link())
5135 {
5136 got->add_local_pair_with_rel(entry->object(), entry->symndx(),
5137 entry->shndx(), got_type,
5138 target->rel_dyn_section(layout),
5139 r_type1);
5140 unsigned int got_offset =
5141 entry->object()->local_got_offset(entry->symndx(), got_type);
5142 got->add_static_reloc(got_offset + size/8, r_type2,
5143 entry->object(), entry->symndx());
5144 }
5145 else
5146 {
5147 // We are doing a static link. Mark it as belong to module 1,
5148 // the executable.
5149 unsigned int got_offset = got->add_constant(1);
5150 entry->object()->set_local_got_offset(entry->symndx(), got_type,
5151 got_offset);
5152 got->add_constant(0);
5153 got->add_static_reloc(got_offset + size/8, r_type2,
5154 entry->object(), entry->symndx());
5155 }
5156 }
5157 else if (entry->tls_type() == GOT_TLS_IE)
5158 {
5159 unsigned int got_type = GOT_TYPE_TLS_OFFSET;
5160 unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_TPREL32
5161 : elfcpp::R_MIPS_TLS_TPREL64);
5162 if (!parameters->doing_static_link())
5163 got->add_local_with_rel(entry->object(), entry->symndx(), got_type,
5164 target->rel_dyn_section(layout), r_type);
5165 else
5166 {
5167 got->add_local(entry->object(), entry->symndx(), got_type);
5168 unsigned int got_offset =
5169 entry->object()->local_got_offset(entry->symndx(), got_type);
5170 got->add_static_reloc(got_offset, r_type, entry->object(),
5171 entry->symndx());
5172 }
5173 }
5174 else if (entry->tls_type() == GOT_TLS_LDM)
5175 {
5176 unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
5177 : elfcpp::R_MIPS_TLS_DTPMOD64);
5178 unsigned int got_offset;
5179 if (!parameters->doing_static_link())
5180 {
5181 got_offset = got->add_constant(0);
5182 target->rel_dyn_section(layout)->add_local(
5183 entry->object(), 0, r_type, got, got_offset);
5184 }
5185 else
5186 // We are doing a static link. Just mark it as belong to module 1,
5187 // the executable.
5188 got_offset = got->add_constant(1);
5189
5190 got->add_constant(0);
5191 got->set_tls_ldm_offset(got_offset, entry->object());
5192 }
5193 else
5194 gold_unreachable();
5195 }
5196
5197 // Add global tls entries.
5198 for (typename Got_entry_set::iterator
5199 p = this->got_entries_.begin();
5200 p != this->got_entries_.end();
5201 ++p)
5202 {
5203 Mips_got_entry<size, big_endian>* entry = *p;
5204 if (!entry->is_tls_entry() || !entry->is_for_global_symbol())
5205 continue;
5206
5207 Mips_symbol<size>* mips_sym = entry->sym();
5208 if (entry->tls_type() == GOT_TLS_GD)
5209 {
5210 unsigned int got_type;
5211 if (!got->multi_got())
5212 got_type = GOT_TYPE_TLS_PAIR;
5213 else
5214 got_type = GOT_TYPE_TLS_PAIR_MULTIGOT + this->index_;
5215 unsigned int r_type1 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
5216 : elfcpp::R_MIPS_TLS_DTPMOD64);
5217 unsigned int r_type2 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPREL32
5218 : elfcpp::R_MIPS_TLS_DTPREL64);
5219 if (!parameters->doing_static_link())
5220 got->add_global_pair_with_rel(mips_sym, got_type,
5221 target->rel_dyn_section(layout), r_type1, r_type2);
5222 else
5223 {
5224 // Add a GOT pair for for R_MIPS_TLS_GD. The creates a pair of
5225 // GOT entries. The first one is initialized to be 1, which is the
5226 // module index for the main executable and the second one 0. A
5227 // reloc of the type R_MIPS_TLS_DTPREL32/64 will be created for
5228 // the second GOT entry and will be applied by gold.
5229 unsigned int got_offset = got->add_constant(1);
5230 mips_sym->set_got_offset(got_type, got_offset);
5231 got->add_constant(0);
5232 got->add_static_reloc(got_offset + size/8, r_type2, mips_sym);
5233 }
5234 }
5235 else if (entry->tls_type() == GOT_TLS_IE)
5236 {
5237 unsigned int got_type;
5238 if (!got->multi_got())
5239 got_type = GOT_TYPE_TLS_OFFSET;
5240 else
5241 got_type = GOT_TYPE_TLS_OFFSET_MULTIGOT + this->index_;
5242 unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_TPREL32
5243 : elfcpp::R_MIPS_TLS_TPREL64);
5244 if (!parameters->doing_static_link())
5245 got->add_global_with_rel(mips_sym, got_type,
5246 target->rel_dyn_section(layout), r_type);
5247 else
5248 {
5249 got->add_global(mips_sym, got_type);
5250 unsigned int got_offset = mips_sym->got_offset(got_type);
5251 got->add_static_reloc(got_offset, r_type, mips_sym);
5252 }
5253 }
5254 else
5255 gold_unreachable();
5256 }
5257}
5258
5259// Decide whether the symbol needs an entry in the global part of the primary
5260// GOT, setting global_got_area accordingly. Count the number of global
5261// symbols that are in the primary GOT only because they have dynamic
5262// relocations R_MIPS_REL32 against them (reloc_only_gotno).
5263
5264template<int size, bool big_endian>
5265void
5266Mips_got_info<size, big_endian>::count_got_symbols(Symbol_table* symtab)
5267{
5268 for (typename Unordered_set<Mips_symbol<size>*>::iterator
5269 p = this->global_got_symbols_.begin();
5270 p != this->global_got_symbols_.end();
5271 ++p)
5272 {
5273 Mips_symbol<size>* sym = *p;
5274 // Make a final decision about whether the symbol belongs in the
5275 // local or global GOT. Symbols that bind locally can (and in the
5276 // case of forced-local symbols, must) live in the local GOT.
5277 // Those that are aren't in the dynamic symbol table must also
5278 // live in the local GOT.
5279
5280 if (!sym->should_add_dynsym_entry(symtab)
5281 || (sym->got_only_for_calls()
5282 ? symbol_calls_local(sym, sym->should_add_dynsym_entry(symtab))
5283 : symbol_references_local(sym,
5284 sym->should_add_dynsym_entry(symtab))))
5285 // The symbol belongs in the local GOT. We no longer need this
5286 // entry if it was only used for relocations; those relocations
5287 // will be against the null or section symbol instead.
5288 sym->set_global_got_area(GGA_NONE);
5289 else if (sym->global_got_area() == GGA_RELOC_ONLY)
5290 {
5291 ++this->reloc_only_gotno_;
5292 ++this->global_gotno_ ;
5293 }
5294 }
5295}
5296
5297// Return the offset of GOT page entry for VALUE. Initialize the entry with
5298// VALUE if it is not initialized.
5299
5300template<int size, bool big_endian>
5301unsigned int
5302Mips_got_info<size, big_endian>::get_got_page_offset(Mips_address value,
5303 Mips_output_data_got<size, big_endian>* got)
5304{
5305 typename Got_page_offsets::iterator it = this->got_page_offsets_.find(value);
5306 if (it != this->got_page_offsets_.end())
5307 return it->second;
5308
5309 gold_assert(this->got_page_offset_next_ < this->got_page_offset_start_
5310 + (size/8) * this->page_gotno_);
5311
5312 unsigned int got_offset = this->got_page_offset_next_;
5313 this->got_page_offsets_[value] = got_offset;
5314 this->got_page_offset_next_ += size/8;
5315 got->update_got_entry(got_offset, value);
5316 return got_offset;
5317}
5318
5319// Remove lazy-binding stubs for global symbols in this GOT.
5320
5321template<int size, bool big_endian>
5322void
5323Mips_got_info<size, big_endian>::remove_lazy_stubs(
5324 Target_mips<size, big_endian>* target)
5325{
5326 for (typename Got_entry_set::iterator
5327 p = this->got_entries_.begin();
5328 p != this->got_entries_.end();
5329 ++p)
5330 {
5331 Mips_got_entry<size, big_endian>* entry = *p;
5332 if (entry->is_for_global_symbol())
5333 target->remove_lazy_stub_entry(entry->sym());
5334 }
5335}
5336
5337// Count the number of GOT entries required.
5338
5339template<int size, bool big_endian>
5340void
5341Mips_got_info<size, big_endian>::count_got_entries()
5342{
5343 for (typename Got_entry_set::iterator
5344 p = this->got_entries_.begin();
5345 p != this->got_entries_.end();
5346 ++p)
5347 {
5348 this->count_got_entry(*p);
5349 }
5350}
5351
5352// Count the number of GOT entries required by ENTRY. Accumulate the result.
5353
5354template<int size, bool big_endian>
5355void
5356Mips_got_info<size, big_endian>::count_got_entry(
5357 Mips_got_entry<size, big_endian>* entry)
5358{
5359 if (entry->is_tls_entry())
5360 this->tls_gotno_ += mips_tls_got_entries(entry->tls_type());
5361 else if (entry->is_for_local_symbol()
5362 || entry->sym()->global_got_area() == GGA_NONE)
5363 ++this->local_gotno_;
5364 else
5365 ++this->global_gotno_;
5366}
5367
5368// Add FROM's GOT entries.
5369
5370template<int size, bool big_endian>
5371void
5372Mips_got_info<size, big_endian>::add_got_entries(
5373 Mips_got_info<size, big_endian>* from)
5374{
5375 for (typename Got_entry_set::iterator
5376 p = from->got_entries_.begin();
5377 p != from->got_entries_.end();
5378 ++p)
5379 {
5380 Mips_got_entry<size, big_endian>* entry = *p;
5381 if (this->got_entries_.find(entry) == this->got_entries_.end())
5382 {
5383 Mips_got_entry<size, big_endian>* entry2 =
5384 new Mips_got_entry<size, big_endian>(*entry);
5385 this->got_entries_.insert(entry2);
5386 this->count_got_entry(entry);
5387 }
5388 }
5389}
5390
5391// Add FROM's GOT page entries.
5392
5393template<int size, bool big_endian>
5394void
5395Mips_got_info<size, big_endian>::add_got_page_entries(
5396 Mips_got_info<size, big_endian>* from)
5397{
5398 for (typename Got_page_entry_set::iterator
5399 p = from->got_page_entries_.begin();
5400 p != from->got_page_entries_.end();
5401 ++p)
5402 {
5403 Got_page_entry* entry = *p;
5404 if (this->got_page_entries_.find(entry) == this->got_page_entries_.end())
5405 {
5406 Got_page_entry* entry2 = new Got_page_entry(*entry);
5407 this->got_page_entries_.insert(entry2);
5408 this->page_gotno_ += entry->num_pages;
5409 }
5410 }
5411}
5412
5413// Mips_output_data_got methods.
5414
5415// Lay out the GOT. Add local, global and TLS entries. If GOT is
5416// larger than 64K, create multi-GOT.
5417
5418template<int size, bool big_endian>
5419void
5420Mips_output_data_got<size, big_endian>::lay_out_got(Layout* layout,
5421 Symbol_table* symtab, const Input_objects* input_objects)
5422{
5423 // Decide which symbols need to go in the global part of the GOT and
5424 // count the number of reloc-only GOT symbols.
5425 this->master_got_info_->count_got_symbols(symtab);
5426
5427 // Count the number of GOT entries.
5428 this->master_got_info_->count_got_entries();
5429
5430 unsigned int got_size = this->master_got_info_->got_size();
5431 if (got_size > Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE)
5432 this->lay_out_multi_got(layout, input_objects);
5433 else
5434 {
5435 // Record that all objects use single GOT.
5436 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
5437 p != input_objects->relobj_end();
5438 ++p)
5439 {
5440 Mips_relobj<size, big_endian>* object =
5441 Mips_relobj<size, big_endian>::as_mips_relobj(*p);
5442 if (object->get_got_info() != NULL)
5443 object->set_got_info(this->master_got_info_);
5444 }
5445
5446 this->master_got_info_->add_local_entries(this->target_, layout);
5447 this->master_got_info_->add_global_entries(this->target_, layout,
5448 /*not used*/-1U);
5449 this->master_got_info_->add_tls_entries(this->target_, layout);
5450 }
5451}
5452
5453// Create multi-GOT. For every GOT, add local, global and TLS entries.
5454
5455template<int size, bool big_endian>
5456void
5457Mips_output_data_got<size, big_endian>::lay_out_multi_got(Layout* layout,
5458 const Input_objects* input_objects)
5459{
5460 // Try to merge the GOTs of input objects together, as long as they
5461 // don't seem to exceed the maximum GOT size, choosing one of them
5462 // to be the primary GOT.
5463 this->merge_gots(input_objects);
5464
5465 // Every symbol that is referenced in a dynamic relocation must be
5466 // present in the primary GOT.
5467 this->primary_got_->set_global_gotno(this->master_got_info_->global_gotno());
5468
5469 // Add GOT entries.
5470 unsigned int i = 0;
5471 unsigned int offset = 0;
5472 Mips_got_info<size, big_endian>* g = this->primary_got_;
5473 do
5474 {
5475 g->set_index(i);
5476 g->set_offset(offset);
5477
5478 g->add_local_entries(this->target_, layout);
5479 if (i == 0)
5480 g->add_global_entries(this->target_, layout,
5481 (this->master_got_info_->global_gotno()
5482 - this->master_got_info_->reloc_only_gotno()));
5483 else
5484 g->add_global_entries(this->target_, layout, /*not used*/-1U);
5485 g->add_tls_entries(this->target_, layout);
5486
5487 // Forbid global symbols in every non-primary GOT from having
5488 // lazy-binding stubs.
5489 if (i > 0)
5490 g->remove_lazy_stubs(this->target_);
5491
5492 ++i;
5493 offset += g->got_size();
5494 g = g->next();
5495 }
5496 while (g);
5497}
5498
5499// Attempt to merge GOTs of different input objects. Try to use as much as
5500// possible of the primary GOT, since it doesn't require explicit dynamic
5501// relocations, but don't use objects that would reference global symbols
5502// out of the addressable range. Failing the primary GOT, attempt to merge
5503// with the current GOT, or finish the current GOT and then make make the new
5504// GOT current.
5505
5506template<int size, bool big_endian>
5507void
5508Mips_output_data_got<size, big_endian>::merge_gots(
5509 const Input_objects* input_objects)
5510{
5511 gold_assert(this->primary_got_ == NULL);
5512 Mips_got_info<size, big_endian>* current = NULL;
5513
5514 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
5515 p != input_objects->relobj_end();
5516 ++p)
5517 {
5518 Mips_relobj<size, big_endian>* object =
5519 Mips_relobj<size, big_endian>::as_mips_relobj(*p);
5520
5521 Mips_got_info<size, big_endian>* g = object->get_got_info();
5522 if (g == NULL)
5523 continue;
5524
5525 g->count_got_entries();
5526
5527 // Work out the number of page, local and TLS entries.
5528 unsigned int estimate = this->master_got_info_->page_gotno();
5529 if (estimate > g->page_gotno())
5530 estimate = g->page_gotno();
5531 estimate += g->local_gotno() + g->tls_gotno();
5532
5533 // We place TLS GOT entries after both locals and globals. The globals
5534 // for the primary GOT may overflow the normal GOT size limit, so be
5535 // sure not to merge a GOT which requires TLS with the primary GOT in that
5536 // case. This doesn't affect non-primary GOTs.
5537 estimate += (g->tls_gotno() > 0 ? this->master_got_info_->global_gotno()
5538 : g->global_gotno());
5539
5540 unsigned int max_count =
5541 Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE / (size/8) - 2;
5542 if (estimate <= max_count)
5543 {
5544 // If we don't have a primary GOT, use it as
5545 // a starting point for the primary GOT.
5546 if (!this->primary_got_)
5547 {
5548 this->primary_got_ = g;
5549 continue;
5550 }
5551
5552 // Try merging with the primary GOT.
5553 if (this->merge_got_with(g, object, this->primary_got_))
5554 continue;
5555 }
5556
5557 // If we can merge with the last-created GOT, do it.
5558 if (current && this->merge_got_with(g, object, current))
5559 continue;
5560
5561 // Well, we couldn't merge, so create a new GOT. Don't check if it
5562 // fits; if it turns out that it doesn't, we'll get relocation
5563 // overflows anyway.
5564 g->set_next(current);
5565 current = g;
5566 }
5567
5568 // If we do not find any suitable primary GOT, create an empty one.
5569 if (this->primary_got_ == NULL)
5570 this->primary_got_ = new Mips_got_info<size, big_endian>();
5571
5572 // Link primary GOT with secondary GOTs.
5573 this->primary_got_->set_next(current);
5574}
5575
5576// Consider merging FROM, which is OBJECT's GOT, into TO. Return false if
5577// this would lead to overflow, true if they were merged successfully.
5578
5579template<int size, bool big_endian>
5580bool
5581Mips_output_data_got<size, big_endian>::merge_got_with(
5582 Mips_got_info<size, big_endian>* from,
5583 Mips_relobj<size, big_endian>* object,
5584 Mips_got_info<size, big_endian>* to)
5585{
5586 // Work out how many page entries we would need for the combined GOT.
5587 unsigned int estimate = this->master_got_info_->page_gotno();
5588 if (estimate >= from->page_gotno() + to->page_gotno())
5589 estimate = from->page_gotno() + to->page_gotno();
5590
5591 // Conservatively estimate how many local and TLS entries would be needed.
5592 estimate += from->local_gotno() + to->local_gotno();
5593 estimate += from->tls_gotno() + to->tls_gotno();
5594
5595 // If we're merging with the primary got, any TLS relocations will
5596 // come after the full set of global entries. Otherwise estimate those
5597 // conservatively as well.
5598 if (to == this->primary_got_ && (from->tls_gotno() + to->tls_gotno()) > 0)
5599 estimate += this->master_got_info_->global_gotno();
5600 else
5601 estimate += from->global_gotno() + to->global_gotno();
5602
5603 // Bail out if the combined GOT might be too big.
5604 unsigned int max_count =
5605 Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE / (size/8) - 2;
5606 if (estimate > max_count)
5607 return false;
5608
5609 // Transfer the object's GOT information from FROM to TO.
5610 to->add_got_entries(from);
5611 to->add_got_page_entries(from);
5612
5613 // Record that OBJECT should use output GOT TO.
5614 object->set_got_info(to);
5615
5616 return true;
5617}
5618
5619// Write out the GOT.
5620
5621template<int size, bool big_endian>
5622void
5623Mips_output_data_got<size, big_endian>::do_write(Output_file* of)
5624{
5625 // Call parent to write out GOT.
5626 Output_data_got<size, big_endian>::do_write(of);
5627
5628 const off_t offset = this->offset();
5629 const section_size_type oview_size =
5630 convert_to_section_size_type(this->data_size());
5631 unsigned char* const oview = of->get_output_view(offset, oview_size);
5632
5633 // Needed for fixing values of .got section.
5634 this->got_view_ = oview;
5635
5636 // Write lazy stub addresses.
5637 for (typename Unordered_set<Mips_symbol<size>*>::iterator
5638 p = this->master_got_info_->global_got_symbols().begin();
5639 p != this->master_got_info_->global_got_symbols().end();
5640 ++p)
5641 {
5642 Mips_symbol<size>* mips_sym = *p;
5643 if (mips_sym->has_lazy_stub())
5644 {
5645 Valtype* wv = reinterpret_cast<Valtype*>(
5646 oview + this->get_primary_got_offset(mips_sym));
5647 Valtype value =
5648 this->target_->mips_stubs_section()->stub_address(mips_sym);
5649 elfcpp::Swap<size, big_endian>::writeval(wv, value);
5650 }
5651 }
5652
5653 // Add +1 to GGA_NONE nonzero MIPS16 and microMIPS entries.
5654 for (typename Unordered_set<Mips_symbol<size>*>::iterator
5655 p = this->master_got_info_->global_got_symbols().begin();
5656 p != this->master_got_info_->global_got_symbols().end();
5657 ++p)
5658 {
5659 Mips_symbol<size>* mips_sym = *p;
5660 if (!this->multi_got()
5661 && (mips_sym->is_mips16() || mips_sym->is_micromips())
5662 && mips_sym->global_got_area() == GGA_NONE
5663 && mips_sym->has_got_offset(GOT_TYPE_STANDARD))
5664 {
5665 Valtype* wv = reinterpret_cast<Valtype*>(
5666 oview + mips_sym->got_offset(GOT_TYPE_STANDARD));
5667 Valtype value = elfcpp::Swap<size, big_endian>::readval(wv);
5668 if (value != 0)
5669 {
5670 value |= 1;
5671 elfcpp::Swap<size, big_endian>::writeval(wv, value);
5672 }
5673 }
5674 }
5675
5676 if (!this->secondary_got_relocs_.empty())
5677 {
5678 // Fixup for the secondary GOT R_MIPS_REL32 relocs. For global
5679 // secondary GOT entries with non-zero initial value copy the value
5680 // to the corresponding primary GOT entry, and set the secondary GOT
5681 // entry to zero.
5682 // TODO(sasa): This is workaround. It needs to be investigated further.
5683
5684 for (size_t i = 0; i < this->secondary_got_relocs_.size(); ++i)
5685 {
5686 Static_reloc& reloc(this->secondary_got_relocs_[i]);
5687 if (reloc.symbol_is_global())
5688 {
5689 Mips_symbol<size>* gsym = reloc.symbol();
5690 gold_assert(gsym != NULL);
5691
5692 unsigned got_offset = reloc.got_offset();
5693 gold_assert(got_offset < oview_size);
5694
5695 // Find primary GOT entry.
5696 Valtype* wv_prim = reinterpret_cast<Valtype*>(
5697 oview + this->get_primary_got_offset(gsym));
5698
5699 // Find secondary GOT entry.
5700 Valtype* wv_sec = reinterpret_cast<Valtype*>(oview + got_offset);
5701
5702 Valtype value = elfcpp::Swap<size, big_endian>::readval(wv_sec);
5703 if (value != 0)
5704 {
5705 elfcpp::Swap<size, big_endian>::writeval(wv_prim, value);
5706 elfcpp::Swap<size, big_endian>::writeval(wv_sec, 0);
5707 gsym->set_applied_secondary_got_fixup();
5708 }
5709 }
5710 }
5711
5712 of->write_output_view(offset, oview_size, oview);
5713 }
5714
5715 // We are done if there is no fix up.
5716 if (this->static_relocs_.empty())
5717 return;
5718
5719 Output_segment* tls_segment = this->layout_->tls_segment();
5720 gold_assert(tls_segment != NULL);
5721
5722 for (size_t i = 0; i < this->static_relocs_.size(); ++i)
5723 {
5724 Static_reloc& reloc(this->static_relocs_[i]);
5725
5726 Mips_address value;
5727 if (!reloc.symbol_is_global())
5728 {
5729 Sized_relobj_file<size, big_endian>* object = reloc.relobj();
5730 const Symbol_value<size>* psymval =
5731 object->local_symbol(reloc.index());
5732
5733 // We are doing static linking. Issue an error and skip this
5734 // relocation if the symbol is undefined or in a discarded_section.
5735 bool is_ordinary;
5736 unsigned int shndx = psymval->input_shndx(&is_ordinary);
5737 if ((shndx == elfcpp::SHN_UNDEF)
5738 || (is_ordinary
5739 && shndx != elfcpp::SHN_UNDEF
5740 && !object->is_section_included(shndx)
5741 && !this->symbol_table_->is_section_folded(object, shndx)))
5742 {
5743 gold_error(_("undefined or discarded local symbol %u from "
5744 " object %s in GOT"),
5745 reloc.index(), reloc.relobj()->name().c_str());
5746 continue;
5747 }
5748
5749 value = psymval->value(object, 0);
5750 }
5751 else
5752 {
5753 const Mips_symbol<size>* gsym = reloc.symbol();
5754 gold_assert(gsym != NULL);
5755
5756 // We are doing static linking. Issue an error and skip this
5757 // relocation if the symbol is undefined or in a discarded_section
5758 // unless it is a weakly_undefined symbol.
5759 if ((gsym->is_defined_in_discarded_section() || gsym->is_undefined())
5760 && !gsym->is_weak_undefined())
5761 {
5762 gold_error(_("undefined or discarded symbol %s in GOT"),
5763 gsym->name());
5764 continue;
5765 }
5766
5767 if (!gsym->is_weak_undefined())
5768 value = gsym->value();
5769 else
5770 value = 0;
5771 }
5772
5773 unsigned got_offset = reloc.got_offset();
5774 gold_assert(got_offset < oview_size);
5775
5776 Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
5777 Valtype x;
5778
5779 switch (reloc.r_type())
5780 {
5781 case elfcpp::R_MIPS_TLS_DTPMOD32:
5782 case elfcpp::R_MIPS_TLS_DTPMOD64:
5783 x = value;
5784 break;
5785 case elfcpp::R_MIPS_TLS_DTPREL32:
5786 case elfcpp::R_MIPS_TLS_DTPREL64:
5787 x = value - elfcpp::DTP_OFFSET;
5788 break;
5789 case elfcpp::R_MIPS_TLS_TPREL32:
5790 case elfcpp::R_MIPS_TLS_TPREL64:
5791 x = value - elfcpp::TP_OFFSET;
5792 break;
5793 default:
5794 gold_unreachable();
5795 break;
5796 }
5797
5798 elfcpp::Swap<size, big_endian>::writeval(wv, x);
5799 }
5800
5801 of->write_output_view(offset, oview_size, oview);
5802}
5803
5804// Mips_relobj methods.
5805
5806// Count the local symbols. The Mips backend needs to know if a symbol
5807// is a MIPS16 or microMIPS function or not. For global symbols, it is easy
5808// because the Symbol object keeps the ELF symbol type and st_other field.
5809// For local symbol it is harder because we cannot access this information.
5810// So we override the do_count_local_symbol in parent and scan local symbols to
5811// mark MIPS16 and microMIPS functions. This is not the most efficient way but
5812// I do not want to slow down other ports by calling a per symbol target hook
5813// inside Sized_relobj_file<size, big_endian>::do_count_local_symbols.
5814
5815template<int size, bool big_endian>
5816void
5817Mips_relobj<size, big_endian>::do_count_local_symbols(
5818 Stringpool_template<char>* pool,
5819 Stringpool_template<char>* dynpool)
5820{
5821 // Ask parent to count the local symbols.
5822 Sized_relobj_file<size, big_endian>::do_count_local_symbols(pool, dynpool);
5823 const unsigned int loccount = this->local_symbol_count();
5824 if (loccount == 0)
5825 return;
5826
5827 // Initialize the mips16 and micromips function bit-vector.
5828 this->local_symbol_is_mips16_.resize(loccount, false);
5829 this->local_symbol_is_micromips_.resize(loccount, false);
5830
5831 // Read the symbol table section header.
5832 const unsigned int symtab_shndx = this->symtab_shndx();
5833 elfcpp::Shdr<size, big_endian>
5834 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
5835 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
5836
5837 // Read the local symbols.
5838 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
5839 gold_assert(loccount == symtabshdr.get_sh_info());
5840 off_t locsize = loccount * sym_size;
5841 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
5842 locsize, true, true);
5843
5844 // Loop over the local symbols and mark any MIPS16 or microMIPS local symbols.
5845
5846 // Skip the first dummy symbol.
5847 psyms += sym_size;
5848 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
5849 {
5850 elfcpp::Sym<size, big_endian> sym(psyms);
5851 unsigned char st_other = sym.get_st_other();
5852 this->local_symbol_is_mips16_[i] = elfcpp::elf_st_is_mips16(st_other);
5853 this->local_symbol_is_micromips_[i] =
5854 elfcpp::elf_st_is_micromips(st_other);
5855 }
5856}
5857
5858// Read the symbol information.
5859
5860template<int size, bool big_endian>
5861void
5862Mips_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
5863{
5864 // Call parent class to read symbol information.
f35c4853 5865 this->base_read_symbols(sd);
9810d34d
SS
5866
5867 // Read processor-specific flags in ELF file header.
5868 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
5869 elfcpp::Elf_sizes<size>::ehdr_size,
5870 true, false);
5871 elfcpp::Ehdr<size, big_endian> ehdr(pehdr);
5872 this->processor_specific_flags_ = ehdr.get_e_flags();
5873
5874 // Get the section names.
5875 const unsigned char* pnamesu = sd->section_names->data();
5876 const char* pnames = reinterpret_cast<const char*>(pnamesu);
5877
5878 // Initialize the mips16 stub section bit-vectors.
5879 this->section_is_mips16_fn_stub_.resize(this->shnum(), false);
5880 this->section_is_mips16_call_stub_.resize(this->shnum(), false);
5881 this->section_is_mips16_call_fp_stub_.resize(this->shnum(), false);
5882
5883 const size_t shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
5884 const unsigned char* pshdrs = sd->section_headers->data();
5885 const unsigned char* ps = pshdrs + shdr_size;
5886 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
5887 {
5888 elfcpp::Shdr<size, big_endian> shdr(ps);
5889
5890 if (shdr.get_sh_type() == elfcpp::SHT_MIPS_REGINFO)
5891 {
5892 // Read the gp value that was used to create this object. We need the
5893 // gp value while processing relocs. The .reginfo section is not used
5894 // in the 64-bit MIPS ELF ABI.
5895 section_offset_type section_offset = shdr.get_sh_offset();
5896 section_size_type section_size =
5897 convert_to_section_size_type(shdr.get_sh_size());
5898 const unsigned char* view =
5899 this->get_view(section_offset, section_size, true, false);
5900
5901 this->gp_ = elfcpp::Swap<size, big_endian>::readval(view + 20);
5902
5903 // Read the rest of .reginfo.
5904 this->gprmask_ = elfcpp::Swap<size, big_endian>::readval(view);
5905 this->cprmask1_ = elfcpp::Swap<size, big_endian>::readval(view + 4);
5906 this->cprmask2_ = elfcpp::Swap<size, big_endian>::readval(view + 8);
5907 this->cprmask3_ = elfcpp::Swap<size, big_endian>::readval(view + 12);
5908 this->cprmask4_ = elfcpp::Swap<size, big_endian>::readval(view + 16);
5909 }
5910
5911 const char* name = pnames + shdr.get_sh_name();
5912 this->section_is_mips16_fn_stub_[i] = is_prefix_of(".mips16.fn", name);
5913 this->section_is_mips16_call_stub_[i] =
5914 is_prefix_of(".mips16.call.", name);
5915 this->section_is_mips16_call_fp_stub_[i] =
5916 is_prefix_of(".mips16.call.fp.", name);
5917
5918 if (strcmp(name, ".pdr") == 0)
5919 {
5920 gold_assert(this->pdr_shndx_ == -1U);
5921 this->pdr_shndx_ = i;
5922 }
5923 }
5924}
5925
5926// Discard MIPS16 stub secions that are not needed.
5927
5928template<int size, bool big_endian>
5929void
5930Mips_relobj<size, big_endian>::discard_mips16_stub_sections(Symbol_table* symtab)
5931{
5932 for (typename Mips16_stubs_int_map::const_iterator
5933 it = this->mips16_stub_sections_.begin();
5934 it != this->mips16_stub_sections_.end(); ++it)
5935 {
5936 Mips16_stub_section<size, big_endian>* stub_section = it->second;
5937 if (!stub_section->is_target_found())
5938 {
5939 gold_error(_("no relocation found in mips16 stub section '%s'"),
5940 stub_section->object()
5941 ->section_name(stub_section->shndx()).c_str());
5942 }
5943
5944 bool discard = false;
5945 if (stub_section->is_for_local_function())
5946 {
5947 if (stub_section->is_fn_stub())
5948 {
5949 // This stub is for a local symbol. This stub will only
5950 // be needed if there is some relocation in this object,
5951 // other than a 16 bit function call, which refers to this
5952 // symbol.
5953 if (!this->has_local_non_16bit_call_relocs(stub_section->r_sym()))
5954 discard = true;
5955 else
5956 this->add_local_mips16_fn_stub(stub_section);
5957 }
5958 else
5959 {
5960 // This stub is for a local symbol. This stub will only
5961 // be needed if there is some relocation (R_MIPS16_26) in
5962 // this object that refers to this symbol.
5963 gold_assert(stub_section->is_call_stub()
5964 || stub_section->is_call_fp_stub());
5965 if (!this->has_local_16bit_call_relocs(stub_section->r_sym()))
5966 discard = true;
5967 else
5968 this->add_local_mips16_call_stub(stub_section);
5969 }
5970 }
5971 else
5972 {
5973 Mips_symbol<size>* gsym = stub_section->gsym();
5974 if (stub_section->is_fn_stub())
5975 {
5976 if (gsym->has_mips16_fn_stub())
5977 // We already have a stub for this function.
5978 discard = true;
5979 else
5980 {
5981 gsym->set_mips16_fn_stub(stub_section);
5982 if (gsym->should_add_dynsym_entry(symtab))
5983 {
5984 // If we have a MIPS16 function with a stub, the
5985 // dynamic symbol must refer to the stub, since only
5986 // the stub uses the standard calling conventions.
5987 gsym->set_need_fn_stub();
5988 if (gsym->is_from_dynobj())
5989 gsym->set_needs_dynsym_value();
5990 }
5991 }
5992 if (!gsym->need_fn_stub())
5993 discard = true;
5994 }
5995 else if (stub_section->is_call_stub())
5996 {
5997 if (gsym->is_mips16())
5998 // We don't need the call_stub; this is a 16 bit
5999 // function, so calls from other 16 bit functions are
6000 // OK.
6001 discard = true;
6002 else if (gsym->has_mips16_call_stub())
6003 // We already have a stub for this function.
6004 discard = true;
6005 else
6006 gsym->set_mips16_call_stub(stub_section);
6007 }
6008 else
6009 {
6010 gold_assert(stub_section->is_call_fp_stub());
6011 if (gsym->is_mips16())
6012 // We don't need the call_stub; this is a 16 bit
6013 // function, so calls from other 16 bit functions are
6014 // OK.
6015 discard = true;
6016 else if (gsym->has_mips16_call_fp_stub())
6017 // We already have a stub for this function.
6018 discard = true;
6019 else
6020 gsym->set_mips16_call_fp_stub(stub_section);
6021 }
6022 }
6023 if (discard)
6024 this->set_output_section(stub_section->shndx(), NULL);
6025 }
6026}
6027
6028// Mips_output_data_la25_stub methods.
6029
6030// Template for standard LA25 stub.
6031template<int size, bool big_endian>
6032const uint32_t
6033Mips_output_data_la25_stub<size, big_endian>::la25_stub_entry[] =
6034{
6035 0x3c190000, // lui $25,%hi(func)
6036 0x08000000, // j func
6037 0x27390000, // add $25,$25,%lo(func)
6038 0x00000000 // nop
6039};
6040
6041// Template for microMIPS LA25 stub.
6042template<int size, bool big_endian>
6043const uint32_t
6044Mips_output_data_la25_stub<size, big_endian>::la25_stub_micromips_entry[] =
6045{
6046 0x41b9, 0x0000, // lui t9,%hi(func)
6047 0xd400, 0x0000, // j func
6048 0x3339, 0x0000, // addiu t9,t9,%lo(func)
6049 0x0000, 0x0000 // nop
6050};
6051
6052// Create la25 stub for a symbol.
6053
6054template<int size, bool big_endian>
6055void
6056Mips_output_data_la25_stub<size, big_endian>::create_la25_stub(
6057 Symbol_table* symtab, Target_mips<size, big_endian>* target,
6058 Mips_symbol<size>* gsym)
6059{
6060 if (!gsym->has_la25_stub())
6061 {
6062 gsym->set_la25_stub_offset(this->symbols_.size() * 16);
6063 this->symbols_.insert(gsym);
6064 this->create_stub_symbol(gsym, symtab, target, 16);
6065 }
6066}
6067
6068// Create a symbol for SYM stub's value and size, to help make the disassembly
6069// easier to read.
6070
6071template<int size, bool big_endian>
6072void
6073Mips_output_data_la25_stub<size, big_endian>::create_stub_symbol(
6074 Mips_symbol<size>* sym, Symbol_table* symtab,
6075 Target_mips<size, big_endian>* target, uint64_t symsize)
6076{
6077 std::string name(".pic.");
6078 name += sym->name();
6079
6080 unsigned int offset = sym->la25_stub_offset();
6081 if (sym->is_micromips())
6082 offset |= 1;
6083
6084 // Make it a local function.
6085 Symbol* new_sym = symtab->define_in_output_data(name.c_str(), NULL,
6086 Symbol_table::PREDEFINED,
6087 target->la25_stub_section(),
6088 offset, symsize, elfcpp::STT_FUNC,
6089 elfcpp::STB_LOCAL,
6090 elfcpp::STV_DEFAULT, 0,
6091 false, false);
6092 new_sym->set_is_forced_local();
6093}
6094
6095// Write out la25 stubs. This uses the hand-coded instructions above,
6096// and adjusts them as needed.
6097
6098template<int size, bool big_endian>
6099void
6100Mips_output_data_la25_stub<size, big_endian>::do_write(Output_file* of)
6101{
6102 const off_t offset = this->offset();
6103 const section_size_type oview_size =
6104 convert_to_section_size_type(this->data_size());
6105 unsigned char* const oview = of->get_output_view(offset, oview_size);
6106
6107 for (typename Unordered_set<Mips_symbol<size>*>::iterator
6108 p = this->symbols_.begin();
6109 p != this->symbols_.end();
6110 ++p)
6111 {
6112 Mips_symbol<size>* sym = *p;
6113 unsigned char* pov = oview + sym->la25_stub_offset();
6114
6115 Mips_address target = sym->value();
6116 if (!sym->is_micromips())
6117 {
6118 elfcpp::Swap<32, big_endian>::writeval(pov,
6119 la25_stub_entry[0] | (((target + 0x8000) >> 16) & 0xffff));
6120 elfcpp::Swap<32, big_endian>::writeval(pov + 4,
6121 la25_stub_entry[1] | ((target >> 2) & 0x3ffffff));
6122 elfcpp::Swap<32, big_endian>::writeval(pov + 8,
6123 la25_stub_entry[2] | (target & 0xffff));
6124 elfcpp::Swap<32, big_endian>::writeval(pov + 12, la25_stub_entry[3]);
6125 }
6126 else
6127 {
6128 target |= 1;
6129 // First stub instruction. Paste high 16-bits of the target.
6130 elfcpp::Swap<16, big_endian>::writeval(pov,
6131 la25_stub_micromips_entry[0]);
6132 elfcpp::Swap<16, big_endian>::writeval(pov + 2,
6133 ((target + 0x8000) >> 16) & 0xffff);
6134 // Second stub instruction. Paste low 26-bits of the target, shifted
6135 // right by 1.
6136 elfcpp::Swap<16, big_endian>::writeval(pov + 4,
6137 la25_stub_micromips_entry[2] | ((target >> 17) & 0x3ff));
6138 elfcpp::Swap<16, big_endian>::writeval(pov + 6,
6139 la25_stub_micromips_entry[3] | ((target >> 1) & 0xffff));
6140 // Third stub instruction. Paste low 16-bits of the target.
6141 elfcpp::Swap<16, big_endian>::writeval(pov + 8,
6142 la25_stub_micromips_entry[4]);
6143 elfcpp::Swap<16, big_endian>::writeval(pov + 10, target & 0xffff);
6144 // Fourth stub instruction.
6145 elfcpp::Swap<16, big_endian>::writeval(pov + 12,
6146 la25_stub_micromips_entry[6]);
6147 elfcpp::Swap<16, big_endian>::writeval(pov + 14,
6148 la25_stub_micromips_entry[7]);
6149 }
6150 }
6151
6152 of->write_output_view(offset, oview_size, oview);
6153}
6154
6155// Mips_output_data_plt methods.
6156
6157// The format of the first PLT entry in an O32 executable.
6158template<int size, bool big_endian>
6159const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_o32[] =
6160{
6161 0x3c1c0000, // lui $28, %hi(&GOTPLT[0])
6162 0x8f990000, // lw $25, %lo(&GOTPLT[0])($28)
6163 0x279c0000, // addiu $28, $28, %lo(&GOTPLT[0])
6164 0x031cc023, // subu $24, $24, $28
40fc1451 6165 0x03e07825, // or $15, $31, zero
9810d34d
SS
6166 0x0018c082, // srl $24, $24, 2
6167 0x0320f809, // jalr $25
6168 0x2718fffe // subu $24, $24, 2
6169};
6170
6171// The format of the first PLT entry in an N32 executable. Different
6172// because gp ($28) is not available; we use t2 ($14) instead.
6173template<int size, bool big_endian>
6174const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_n32[] =
6175{
6176 0x3c0e0000, // lui $14, %hi(&GOTPLT[0])
6177 0x8dd90000, // lw $25, %lo(&GOTPLT[0])($14)
6178 0x25ce0000, // addiu $14, $14, %lo(&GOTPLT[0])
6179 0x030ec023, // subu $24, $24, $14
40fc1451 6180 0x03e07825, // or $15, $31, zero
9810d34d
SS
6181 0x0018c082, // srl $24, $24, 2
6182 0x0320f809, // jalr $25
6183 0x2718fffe // subu $24, $24, 2
6184};
6185
6186// The format of the first PLT entry in an N64 executable. Different
6187// from N32 because of the increased size of GOT entries.
6188template<int size, bool big_endian>
6189const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_n64[] =
6190{
6191 0x3c0e0000, // lui $14, %hi(&GOTPLT[0])
6192 0xddd90000, // ld $25, %lo(&GOTPLT[0])($14)
6193 0x25ce0000, // addiu $14, $14, %lo(&GOTPLT[0])
6194 0x030ec023, // subu $24, $24, $14
40fc1451 6195 0x03e07825, // or $15, $31, zero
9810d34d
SS
6196 0x0018c0c2, // srl $24, $24, 3
6197 0x0320f809, // jalr $25
6198 0x2718fffe // subu $24, $24, 2
6199};
6200
6201// The format of the microMIPS first PLT entry in an O32 executable.
6202// We rely on v0 ($2) rather than t8 ($24) to contain the address
6203// of the GOTPLT entry handled, so this stub may only be used when
6204// all the subsequent PLT entries are microMIPS code too.
6205//
6206// The trailing NOP is for alignment and correct disassembly only.
6207template<int size, bool big_endian>
6208const uint32_t Mips_output_data_plt<size, big_endian>::
6209plt0_entry_micromips_o32[] =
6210{
6211 0x7980, 0x0000, // addiupc $3, (&GOTPLT[0]) - .
6212 0xff23, 0x0000, // lw $25, 0($3)
6213 0x0535, // subu $2, $2, $3
6214 0x2525, // srl $2, $2, 2
6215 0x3302, 0xfffe, // subu $24, $2, 2
6216 0x0dff, // move $15, $31
6217 0x45f9, // jalrs $25
6218 0x0f83, // move $28, $3
6219 0x0c00 // nop
6220};
6221
6222// The format of the microMIPS first PLT entry in an O32 executable
6223// in the insn32 mode.
6224template<int size, bool big_endian>
6225const uint32_t Mips_output_data_plt<size, big_endian>::
6226plt0_entry_micromips32_o32[] =
6227{
6228 0x41bc, 0x0000, // lui $28, %hi(&GOTPLT[0])
6229 0xff3c, 0x0000, // lw $25, %lo(&GOTPLT[0])($28)
6230 0x339c, 0x0000, // addiu $28, $28, %lo(&GOTPLT[0])
6231 0x0398, 0xc1d0, // subu $24, $24, $28
40fc1451 6232 0x001f, 0x7a90, // or $15, $31, zero
9810d34d
SS
6233 0x0318, 0x1040, // srl $24, $24, 2
6234 0x03f9, 0x0f3c, // jalr $25
6235 0x3318, 0xfffe // subu $24, $24, 2
6236};
6237
6238// The format of subsequent standard entries in the PLT.
6239template<int size, bool big_endian>
6240const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry[] =
6241{
6242 0x3c0f0000, // lui $15, %hi(.got.plt entry)
6243 0x8df90000, // l[wd] $25, %lo(.got.plt entry)($15)
6244 0x03200008, // jr $25
6245 0x25f80000 // addiu $24, $15, %lo(.got.plt entry)
6246};
6247
6248// The format of subsequent MIPS16 o32 PLT entries. We use v1 ($3) as a
6249// temporary because t8 ($24) and t9 ($25) are not directly addressable.
6250// Note that this differs from the GNU ld which uses both v0 ($2) and v1 ($3).
6251// We cannot use v0 because MIPS16 call stubs from the CS toolchain expect
6252// target function address in register v0.
6253template<int size, bool big_endian>
6254const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry_mips16_o32[] =
6255{
6256 0xb303, // lw $3, 12($pc)
6257 0x651b, // move $24, $3
6258 0x9b60, // lw $3, 0($3)
6259 0xeb00, // jr $3
6260 0x653b, // move $25, $3
6261 0x6500, // nop
6262 0x0000, 0x0000 // .word (.got.plt entry)
6263};
6264
6265// The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
6266// as a temporary because t8 ($24) is not addressable with ADDIUPC.
6267template<int size, bool big_endian>
6268const uint32_t Mips_output_data_plt<size, big_endian>::
6269plt_entry_micromips_o32[] =
6270{
6271 0x7900, 0x0000, // addiupc $2, (.got.plt entry) - .
6272 0xff22, 0x0000, // lw $25, 0($2)
6273 0x4599, // jr $25
6274 0x0f02 // move $24, $2
6275};
6276
6277// The format of subsequent microMIPS o32 PLT entries in the insn32 mode.
6278template<int size, bool big_endian>
6279const uint32_t Mips_output_data_plt<size, big_endian>::
6280plt_entry_micromips32_o32[] =
6281{
6282 0x41af, 0x0000, // lui $15, %hi(.got.plt entry)
6283 0xff2f, 0x0000, // lw $25, %lo(.got.plt entry)($15)
6284 0x0019, 0x0f3c, // jr $25
6285 0x330f, 0x0000 // addiu $24, $15, %lo(.got.plt entry)
6286};
6287
6288// Add an entry to the PLT for a symbol referenced by r_type relocation.
6289
6290template<int size, bool big_endian>
6291void
6292Mips_output_data_plt<size, big_endian>::add_entry(Mips_symbol<size>* gsym,
6293 unsigned int r_type)
6294{
6295 gold_assert(!gsym->has_plt_offset());
6296
6297 // Final PLT offset for a symbol will be set in method set_plt_offsets().
6298 gsym->set_plt_offset(this->entry_count() * sizeof(plt_entry)
6299 + sizeof(plt0_entry_o32));
6300 this->symbols_.push_back(gsym);
6301
6302 // Record whether the relocation requires a standard MIPS
6303 // or a compressed code entry.
6304 if (jal_reloc(r_type))
6305 {
6306 if (r_type == elfcpp::R_MIPS_26)
6307 gsym->set_needs_mips_plt(true);
6308 else
6309 gsym->set_needs_comp_plt(true);
6310 }
6311
6312 section_offset_type got_offset = this->got_plt_->current_data_size();
6313
6314 // Every PLT entry needs a GOT entry which points back to the PLT
6315 // entry (this will be changed by the dynamic linker, normally
6316 // lazily when the function is called).
6317 this->got_plt_->set_current_data_size(got_offset + size/8);
6318
6319 gsym->set_needs_dynsym_entry();
6320 this->rel_->add_global(gsym, elfcpp::R_MIPS_JUMP_SLOT, this->got_plt_,
6321 got_offset);
6322}
6323
6324// Set final PLT offsets. For each symbol, determine whether standard or
6325// compressed (MIPS16 or microMIPS) PLT entry is used.
6326
6327template<int size, bool big_endian>
6328void
6329Mips_output_data_plt<size, big_endian>::set_plt_offsets()
6330{
6331 // The sizes of individual PLT entries.
6332 unsigned int plt_mips_entry_size = this->standard_plt_entry_size();
6333 unsigned int plt_comp_entry_size = (!this->target_->is_output_newabi()
6334 ? this->compressed_plt_entry_size() : 0);
6335
6336 for (typename std::vector<Mips_symbol<size>*>::const_iterator
6337 p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
6338 {
6339 Mips_symbol<size>* mips_sym = *p;
6340
6341 // There are no defined MIPS16 or microMIPS PLT entries for n32 or n64,
6342 // so always use a standard entry there.
6343 //
6344 // If the symbol has a MIPS16 call stub and gets a PLT entry, then
6345 // all MIPS16 calls will go via that stub, and there is no benefit
6346 // to having a MIPS16 entry. And in the case of call_stub a
6347 // standard entry actually has to be used as the stub ends with a J
6348 // instruction.
6349 if (this->target_->is_output_newabi()
6350 || mips_sym->has_mips16_call_stub()
6351 || mips_sym->has_mips16_call_fp_stub())
6352 {
6353 mips_sym->set_needs_mips_plt(true);
6354 mips_sym->set_needs_comp_plt(false);
6355 }
6356
6357 // Otherwise, if there are no direct calls to the function, we
6358 // have a free choice of whether to use standard or compressed
6359 // entries. Prefer microMIPS entries if the object is known to
6360 // contain microMIPS code, so that it becomes possible to create
6361 // pure microMIPS binaries. Prefer standard entries otherwise,
6362 // because MIPS16 ones are no smaller and are usually slower.
6363 if (!mips_sym->needs_mips_plt() && !mips_sym->needs_comp_plt())
6364 {
6365 if (this->target_->is_output_micromips())
6366 mips_sym->set_needs_comp_plt(true);
6367 else
6368 mips_sym->set_needs_mips_plt(true);
6369 }
6370
6371 if (mips_sym->needs_mips_plt())
6372 {
6373 mips_sym->set_mips_plt_offset(this->plt_mips_offset_);
6374 this->plt_mips_offset_ += plt_mips_entry_size;
6375 }
6376 if (mips_sym->needs_comp_plt())
6377 {
6378 mips_sym->set_comp_plt_offset(this->plt_comp_offset_);
6379 this->plt_comp_offset_ += plt_comp_entry_size;
6380 }
6381 }
6382
6383 // Figure out the size of the PLT header if we know that we are using it.
6384 if (this->plt_mips_offset_ + this->plt_comp_offset_ != 0)
6385 this->plt_header_size_ = this->get_plt_header_size();
6386}
6387
6388// Write out the PLT. This uses the hand-coded instructions above,
6389// and adjusts them as needed.
6390
6391template<int size, bool big_endian>
6392void
6393Mips_output_data_plt<size, big_endian>::do_write(Output_file* of)
6394{
6395 const off_t offset = this->offset();
6396 const section_size_type oview_size =
6397 convert_to_section_size_type(this->data_size());
6398 unsigned char* const oview = of->get_output_view(offset, oview_size);
6399
6400 const off_t gotplt_file_offset = this->got_plt_->offset();
6401 const section_size_type gotplt_size =
6402 convert_to_section_size_type(this->got_plt_->data_size());
6403 unsigned char* const gotplt_view = of->get_output_view(gotplt_file_offset,
6404 gotplt_size);
6405 unsigned char* pov = oview;
6406
6407 Mips_address plt_address = this->address();
6408
6409 // Calculate the address of .got.plt.
6410 Mips_address gotplt_addr = this->got_plt_->address();
6411 Mips_address gotplt_addr_high = ((gotplt_addr + 0x8000) >> 16) & 0xffff;
6412 Mips_address gotplt_addr_low = gotplt_addr & 0xffff;
6413
6414 // The PLT sequence is not safe for N64 if .got.plt's address can
6415 // not be loaded in two instructions.
6416 gold_assert((gotplt_addr & ~(Mips_address) 0x7fffffff) == 0
6417 || ~(gotplt_addr | 0x7fffffff) == 0);
6418
6419 // Write the PLT header.
6420 const uint32_t* plt0_entry = this->get_plt_header_entry();
6421 if (plt0_entry == plt0_entry_micromips_o32)
6422 {
6423 // Write microMIPS PLT header.
6424 gold_assert(gotplt_addr % 4 == 0);
6425
6426 Mips_address gotpc_offset = gotplt_addr - ((plt_address | 3) ^ 3);
6427
6428 // ADDIUPC has a span of +/-16MB, check we're in range.
6429 if (gotpc_offset + 0x1000000 >= 0x2000000)
6430 {
6431 gold_error(_(".got.plt offset of %ld from .plt beyond the range of "
6432 "ADDIUPC"), (long)gotpc_offset);
6433 return;
6434 }
6435
6436 elfcpp::Swap<16, big_endian>::writeval(pov,
6437 plt0_entry[0] | ((gotpc_offset >> 18) & 0x7f));
6438 elfcpp::Swap<16, big_endian>::writeval(pov + 2,
6439 (gotpc_offset >> 2) & 0xffff);
6440 pov += 4;
6441 for (unsigned int i = 2;
6442 i < (sizeof(plt0_entry_micromips_o32)
6443 / sizeof(plt0_entry_micromips_o32[0]));
6444 i++)
6445 {
6446 elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[i]);
6447 pov += 2;
6448 }
6449 }
6450 else if (plt0_entry == plt0_entry_micromips32_o32)
6451 {
6452 // Write microMIPS PLT header in insn32 mode.
6453 elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[0]);
6454 elfcpp::Swap<16, big_endian>::writeval(pov + 2, gotplt_addr_high);
6455 elfcpp::Swap<16, big_endian>::writeval(pov + 4, plt0_entry[2]);
6456 elfcpp::Swap<16, big_endian>::writeval(pov + 6, gotplt_addr_low);
6457 elfcpp::Swap<16, big_endian>::writeval(pov + 8, plt0_entry[4]);
6458 elfcpp::Swap<16, big_endian>::writeval(pov + 10, gotplt_addr_low);
6459 pov += 12;
6460 for (unsigned int i = 6;
6461 i < (sizeof(plt0_entry_micromips32_o32)
6462 / sizeof(plt0_entry_micromips32_o32[0]));
6463 i++)
6464 {
6465 elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[i]);
6466 pov += 2;
6467 }
6468 }
6469 else
6470 {
6471 // Write standard PLT header.
6472 elfcpp::Swap<32, big_endian>::writeval(pov,
6473 plt0_entry[0] | gotplt_addr_high);
6474 elfcpp::Swap<32, big_endian>::writeval(pov + 4,
6475 plt0_entry[1] | gotplt_addr_low);
6476 elfcpp::Swap<32, big_endian>::writeval(pov + 8,
6477 plt0_entry[2] | gotplt_addr_low);
6478 pov += 12;
6479 for (int i = 3; i < 8; i++)
6480 {
6481 elfcpp::Swap<32, big_endian>::writeval(pov, plt0_entry[i]);
6482 pov += 4;
6483 }
6484 }
6485
6486
6487 unsigned char* gotplt_pov = gotplt_view;
6488 unsigned int got_entry_size = size/8; // TODO(sasa): MIPS_ELF_GOT_SIZE
6489
6490 // The first two entries in .got.plt are reserved.
6491 elfcpp::Swap<size, big_endian>::writeval(gotplt_pov, 0);
6492 elfcpp::Swap<size, big_endian>::writeval(gotplt_pov + got_entry_size, 0);
6493
6494 unsigned int gotplt_offset = 2 * got_entry_size;
6495 gotplt_pov += 2 * got_entry_size;
6496
6497 // Calculate the address of the PLT header.
6498 Mips_address header_address = (plt_address
6499 + (this->is_plt_header_compressed() ? 1 : 0));
6500
6501 // Initialize compressed PLT area view.
6502 unsigned char* pov2 = pov + this->plt_mips_offset_;
6503
6504 // Write the PLT entries.
6505 for (typename std::vector<Mips_symbol<size>*>::const_iterator
6506 p = this->symbols_.begin();
6507 p != this->symbols_.end();
6508 ++p, gotplt_pov += got_entry_size, gotplt_offset += got_entry_size)
6509 {
6510 Mips_symbol<size>* mips_sym = *p;
6511
6512 // Calculate the address of the .got.plt entry.
6513 uint32_t gotplt_entry_addr = (gotplt_addr + gotplt_offset);
6514 uint32_t gotplt_entry_addr_hi = (((gotplt_entry_addr + 0x8000) >> 16)
6515 & 0xffff);
6516 uint32_t gotplt_entry_addr_lo = gotplt_entry_addr & 0xffff;
6517
6518 // Initially point the .got.plt entry at the PLT header.
6519 if (this->target_->is_output_n64())
6520 elfcpp::Swap<64, big_endian>::writeval(gotplt_pov, header_address);
6521 else
6522 elfcpp::Swap<32, big_endian>::writeval(gotplt_pov, header_address);
6523
6524 // Now handle the PLT itself. First the standard entry.
6525 if (mips_sym->has_mips_plt_offset())
6526 {
6527 // Pick the load opcode (LW or LD).
6528 uint64_t load = this->target_->is_output_n64() ? 0xdc000000
6529 : 0x8c000000;
6530
6531 // Fill in the PLT entry itself.
6532 elfcpp::Swap<32, big_endian>::writeval(pov,
6533 plt_entry[0] | gotplt_entry_addr_hi);
6534 elfcpp::Swap<32, big_endian>::writeval(pov + 4,
6535 plt_entry[1] | gotplt_entry_addr_lo | load);
6536 elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_entry[2]);
6537 elfcpp::Swap<32, big_endian>::writeval(pov + 12,
6538 plt_entry[3] | gotplt_entry_addr_lo);
6539 pov += 16;
6540 }
6541
6542 // Now the compressed entry. They come after any standard ones.
6543 if (mips_sym->has_comp_plt_offset())
6544 {
6545 if (!this->target_->is_output_micromips())
6546 {
6547 // Write MIPS16 PLT entry.
6548 const uint32_t* plt_entry = plt_entry_mips16_o32;
6549
6550 elfcpp::Swap<16, big_endian>::writeval(pov2, plt_entry[0]);
6551 elfcpp::Swap<16, big_endian>::writeval(pov2 + 2, plt_entry[1]);
6552 elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
6553 elfcpp::Swap<16, big_endian>::writeval(pov2 + 6, plt_entry[3]);
6554 elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
6555 elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
6556 elfcpp::Swap<32, big_endian>::writeval(pov2 + 12,
6557 gotplt_entry_addr);
6558 pov2 += 16;
6559 }
6560 else if (this->target_->use_32bit_micromips_instructions())
6561 {
6562 // Write microMIPS PLT entry in insn32 mode.
6563 const uint32_t* plt_entry = plt_entry_micromips32_o32;
6564
6565 elfcpp::Swap<16, big_endian>::writeval(pov2, plt_entry[0]);
6566 elfcpp::Swap<16, big_endian>::writeval(pov2 + 2,
6567 gotplt_entry_addr_hi);
6568 elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
6569 elfcpp::Swap<16, big_endian>::writeval(pov2 + 6,
6570 gotplt_entry_addr_lo);
6571 elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
6572 elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
6573 elfcpp::Swap<16, big_endian>::writeval(pov2 + 12, plt_entry[6]);
6574 elfcpp::Swap<16, big_endian>::writeval(pov2 + 14,
6575 gotplt_entry_addr_lo);
6576 pov2 += 16;
6577 }
6578 else
6579 {
6580 // Write microMIPS PLT entry.
6581 const uint32_t* plt_entry = plt_entry_micromips_o32;
6582
6583 gold_assert(gotplt_entry_addr % 4 == 0);
6584
6585 Mips_address loc_address = plt_address + pov2 - oview;
6586 int gotpc_offset = gotplt_entry_addr - ((loc_address | 3) ^ 3);
6587
6588 // ADDIUPC has a span of +/-16MB, check we're in range.
6589 if (gotpc_offset + 0x1000000 >= 0x2000000)
6590 {
6591 gold_error(_(".got.plt offset of %ld from .plt beyond the "
6592 "range of ADDIUPC"), (long)gotpc_offset);
6593 return;
6594 }
6595
6596 elfcpp::Swap<16, big_endian>::writeval(pov2,
6597 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f));
6598 elfcpp::Swap<16, big_endian>::writeval(
6599 pov2 + 2, (gotpc_offset >> 2) & 0xffff);
6600 elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
6601 elfcpp::Swap<16, big_endian>::writeval(pov2 + 6, plt_entry[3]);
6602 elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
6603 elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
6604 pov2 += 12;
6605 }
6606 }
6607 }
6608
6609 // Check the number of bytes written for standard entries.
6610 gold_assert(static_cast<section_size_type>(
6611 pov - oview - this->plt_header_size_) == this->plt_mips_offset_);
6612 // Check the number of bytes written for compressed entries.
6613 gold_assert((static_cast<section_size_type>(pov2 - pov)
6614 == this->plt_comp_offset_));
6615 // Check the total number of bytes written.
6616 gold_assert(static_cast<section_size_type>(pov2 - oview) == oview_size);
6617
6618 gold_assert(static_cast<section_size_type>(gotplt_pov - gotplt_view)
6619 == gotplt_size);
6620
6621 of->write_output_view(offset, oview_size, oview);
6622 of->write_output_view(gotplt_file_offset, gotplt_size, gotplt_view);
6623}
6624
6625// Mips_output_data_mips_stubs methods.
6626
6627// The format of the lazy binding stub when dynamic symbol count is less than
6628// 64K, dynamic symbol index is less than 32K, and ABI is not N64.
6629template<int size, bool big_endian>
6630const uint32_t
6631Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_1[4] =
6632{
6633 0x8f998010, // lw t9,0x8010(gp)
40fc1451 6634 0x03e07825, // or t7,ra,zero
9810d34d
SS
6635 0x0320f809, // jalr t9,ra
6636 0x24180000 // addiu t8,zero,DYN_INDEX sign extended
6637};
6638
6639// The format of the lazy binding stub when dynamic symbol count is less than
6640// 64K, dynamic symbol index is less than 32K, and ABI is N64.
6641template<int size, bool big_endian>
6642const uint32_t
6643Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_1_n64[4] =
6644{
6645 0xdf998010, // ld t9,0x8010(gp)
40fc1451 6646 0x03e07825, // or t7,ra,zero
9810d34d
SS
6647 0x0320f809, // jalr t9,ra
6648 0x64180000 // daddiu t8,zero,DYN_INDEX sign extended
6649};
6650
6651// The format of the lazy binding stub when dynamic symbol count is less than
6652// 64K, dynamic symbol index is between 32K and 64K, and ABI is not N64.
6653template<int size, bool big_endian>
6654const uint32_t
6655Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_2[4] =
6656{
6657 0x8f998010, // lw t9,0x8010(gp)
40fc1451 6658 0x03e07825, // or t7,ra,zero
9810d34d
SS
6659 0x0320f809, // jalr t9,ra
6660 0x34180000 // ori t8,zero,DYN_INDEX unsigned
6661};
6662
6663// The format of the lazy binding stub when dynamic symbol count is less than
6664// 64K, dynamic symbol index is between 32K and 64K, and ABI is N64.
6665template<int size, bool big_endian>
6666const uint32_t
6667Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_2_n64[4] =
6668{
6669 0xdf998010, // ld t9,0x8010(gp)
40fc1451 6670 0x03e07825, // or t7,ra,zero
9810d34d
SS
6671 0x0320f809, // jalr t9,ra
6672 0x34180000 // ori t8,zero,DYN_INDEX unsigned
6673};
6674
6675// The format of the lazy binding stub when dynamic symbol count is greater than
6676// 64K, and ABI is not N64.
6677template<int size, bool big_endian>
6678const uint32_t Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_big[5] =
6679{
6680 0x8f998010, // lw t9,0x8010(gp)
40fc1451 6681 0x03e07825, // or t7,ra,zero
9810d34d
SS
6682 0x3c180000, // lui t8,DYN_INDEX
6683 0x0320f809, // jalr t9,ra
6684 0x37180000 // ori t8,t8,DYN_INDEX
6685};
6686
6687// The format of the lazy binding stub when dynamic symbol count is greater than
6688// 64K, and ABI is N64.
6689template<int size, bool big_endian>
6690const uint32_t
6691Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_big_n64[5] =
6692{
6693 0xdf998010, // ld t9,0x8010(gp)
40fc1451 6694 0x03e07825, // or t7,ra,zero
9810d34d
SS
6695 0x3c180000, // lui t8,DYN_INDEX
6696 0x0320f809, // jalr t9,ra
6697 0x37180000 // ori t8,t8,DYN_INDEX
6698};
6699
6700// microMIPS stubs.
6701
6702// The format of the microMIPS lazy binding stub when dynamic symbol count is
6703// less than 64K, dynamic symbol index is less than 32K, and ABI is not N64.
6704template<int size, bool big_endian>
6705const uint32_t
6706Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_normal_1[] =
6707{
6708 0xff3c, 0x8010, // lw t9,0x8010(gp)
6709 0x0dff, // move t7,ra
6710 0x45d9, // jalr t9
6711 0x3300, 0x0000 // addiu t8,zero,DYN_INDEX sign extended
6712};
6713
6714// The format of the microMIPS lazy binding stub when dynamic symbol count is
6715// less than 64K, dynamic symbol index is less than 32K, and ABI is N64.
6716template<int size, bool big_endian>
6717const uint32_t
6718Mips_output_data_mips_stubs<size, big_endian>::
6719lazy_stub_micromips_normal_1_n64[] =
6720{
6721 0xdf3c, 0x8010, // ld t9,0x8010(gp)
6722 0x0dff, // move t7,ra
6723 0x45d9, // jalr t9
6724 0x5f00, 0x0000 // daddiu t8,zero,DYN_INDEX sign extended
6725};
6726
6727// The format of the microMIPS lazy binding stub when dynamic symbol
6728// count is less than 64K, dynamic symbol index is between 32K and 64K,
6729// and ABI is not N64.
6730template<int size, bool big_endian>
6731const uint32_t
6732Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_normal_2[] =
6733{
6734 0xff3c, 0x8010, // lw t9,0x8010(gp)
6735 0x0dff, // move t7,ra
6736 0x45d9, // jalr t9
6737 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
6738};
6739
6740// The format of the microMIPS lazy binding stub when dynamic symbol
6741// count is less than 64K, dynamic symbol index is between 32K and 64K,
6742// and ABI is N64.
6743template<int size, bool big_endian>
6744const uint32_t
6745Mips_output_data_mips_stubs<size, big_endian>::
6746lazy_stub_micromips_normal_2_n64[] =
6747{
6748 0xdf3c, 0x8010, // ld t9,0x8010(gp)
6749 0x0dff, // move t7,ra
6750 0x45d9, // jalr t9
6751 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
6752};
6753
6754// The format of the microMIPS lazy binding stub when dynamic symbol count is
6755// greater than 64K, and ABI is not N64.
6756template<int size, bool big_endian>
6757const uint32_t
6758Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_big[] =
6759{
6760 0xff3c, 0x8010, // lw t9,0x8010(gp)
6761 0x0dff, // move t7,ra
6762 0x41b8, 0x0000, // lui t8,DYN_INDEX
6763 0x45d9, // jalr t9
6764 0x5318, 0x0000 // ori t8,t8,DYN_INDEX
6765};
6766
6767// The format of the microMIPS lazy binding stub when dynamic symbol count is
6768// greater than 64K, and ABI is N64.
6769template<int size, bool big_endian>
6770const uint32_t
6771Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_big_n64[] =
6772{
6773 0xdf3c, 0x8010, // ld t9,0x8010(gp)
6774 0x0dff, // move t7,ra
6775 0x41b8, 0x0000, // lui t8,DYN_INDEX
6776 0x45d9, // jalr t9
6777 0x5318, 0x0000 // ori t8,t8,DYN_INDEX
6778};
6779
6780// 32-bit microMIPS stubs.
6781
6782// The format of the microMIPS lazy binding stub when dynamic symbol count is
6783// less than 64K, dynamic symbol index is less than 32K, ABI is not N64, and we
6784// can use only 32-bit instructions.
6785template<int size, bool big_endian>
6786const uint32_t
6787Mips_output_data_mips_stubs<size, big_endian>::
6788lazy_stub_micromips32_normal_1[] =
6789{
6790 0xff3c, 0x8010, // lw t9,0x8010(gp)
40fc1451 6791 0x001f, 0x7a90, // or t7,ra,zero
9810d34d
SS
6792 0x03f9, 0x0f3c, // jalr ra,t9
6793 0x3300, 0x0000 // addiu t8,zero,DYN_INDEX sign extended
6794};
6795
6796// The format of the microMIPS lazy binding stub when dynamic symbol count is
6797// less than 64K, dynamic symbol index is less than 32K, ABI is N64, and we can
6798// use only 32-bit instructions.
6799template<int size, bool big_endian>
6800const uint32_t
6801Mips_output_data_mips_stubs<size, big_endian>::
6802lazy_stub_micromips32_normal_1_n64[] =
6803{
6804 0xdf3c, 0x8010, // ld t9,0x8010(gp)
40fc1451 6805 0x001f, 0x7a90, // or t7,ra,zero
9810d34d
SS
6806 0x03f9, 0x0f3c, // jalr ra,t9
6807 0x5f00, 0x0000 // daddiu t8,zero,DYN_INDEX sign extended
6808};
6809
6810// The format of the microMIPS lazy binding stub when dynamic symbol
6811// count is less than 64K, dynamic symbol index is between 32K and 64K,
6812// ABI is not N64, and we can use only 32-bit instructions.
6813template<int size, bool big_endian>
6814const uint32_t
6815Mips_output_data_mips_stubs<size, big_endian>::
6816lazy_stub_micromips32_normal_2[] =
6817{
6818 0xff3c, 0x8010, // lw t9,0x8010(gp)
40fc1451 6819 0x001f, 0x7a90, // or t7,ra,zero
9810d34d
SS
6820 0x03f9, 0x0f3c, // jalr ra,t9
6821 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
6822};
6823
6824// The format of the microMIPS lazy binding stub when dynamic symbol
6825// count is less than 64K, dynamic symbol index is between 32K and 64K,
6826// ABI is N64, and we can use only 32-bit instructions.
6827template<int size, bool big_endian>
6828const uint32_t
6829Mips_output_data_mips_stubs<size, big_endian>::
6830lazy_stub_micromips32_normal_2_n64[] =
6831{
6832 0xdf3c, 0x8010, // ld t9,0x8010(gp)
40fc1451 6833 0x001f, 0x7a90, // or t7,ra,zero
9810d34d
SS
6834 0x03f9, 0x0f3c, // jalr ra,t9
6835 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
6836};
6837
6838// The format of the microMIPS lazy binding stub when dynamic symbol count is
6839// greater than 64K, ABI is not N64, and we can use only 32-bit instructions.
6840template<int size, bool big_endian>
6841const uint32_t
6842Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips32_big[] =
6843{
6844 0xff3c, 0x8010, // lw t9,0x8010(gp)
40fc1451 6845 0x001f, 0x7a90, // or t7,ra,zero
9810d34d
SS
6846 0x41b8, 0x0000, // lui t8,DYN_INDEX
6847 0x03f9, 0x0f3c, // jalr ra,t9
6848 0x5318, 0x0000 // ori t8,t8,DYN_INDEX
6849};
6850
6851// The format of the microMIPS lazy binding stub when dynamic symbol count is
6852// greater than 64K, ABI is N64, and we can use only 32-bit instructions.
6853template<int size, bool big_endian>
6854const uint32_t
6855Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips32_big_n64[] =
6856{
6857 0xdf3c, 0x8010, // ld t9,0x8010(gp)
40fc1451 6858 0x001f, 0x7a90, // or t7,ra,zero
9810d34d
SS
6859 0x41b8, 0x0000, // lui t8,DYN_INDEX
6860 0x03f9, 0x0f3c, // jalr ra,t9
6861 0x5318, 0x0000 // ori t8,t8,DYN_INDEX
6862};
6863
6864// Create entry for a symbol.
6865
6866template<int size, bool big_endian>
6867void
6868Mips_output_data_mips_stubs<size, big_endian>::make_entry(
6869 Mips_symbol<size>* gsym)
6870{
6871 if (!gsym->has_lazy_stub() && !gsym->has_plt_offset())
6872 {
6873 this->symbols_.insert(gsym);
6874 gsym->set_has_lazy_stub(true);
6875 }
6876}
6877
6878// Remove entry for a symbol.
6879
6880template<int size, bool big_endian>
6881void
6882Mips_output_data_mips_stubs<size, big_endian>::remove_entry(
6883 Mips_symbol<size>* gsym)
6884{
6885 if (gsym->has_lazy_stub())
6886 {
6887 this->symbols_.erase(gsym);
6888 gsym->set_has_lazy_stub(false);
6889 }
6890}
6891
6892// Set stub offsets for symbols. This method expects that the number of
6893// entries in dynamic symbol table is set.
6894
6895template<int size, bool big_endian>
6896void
6897Mips_output_data_mips_stubs<size, big_endian>::set_lazy_stub_offsets()
6898{
6899 gold_assert(this->dynsym_count_ != -1U);
6900
6901 if (this->stub_offsets_are_set_)
6902 return;
6903
6904 unsigned int stub_size = this->stub_size();
6905 unsigned int offset = 0;
6906 for (typename Unordered_set<Mips_symbol<size>*>::const_iterator
6907 p = this->symbols_.begin();
6908 p != this->symbols_.end();
6909 ++p, offset += stub_size)
6910 {
6911 Mips_symbol<size>* mips_sym = *p;
6912 mips_sym->set_lazy_stub_offset(offset);
6913 }
6914 this->stub_offsets_are_set_ = true;
6915}
6916
6917template<int size, bool big_endian>
6918void
6919Mips_output_data_mips_stubs<size, big_endian>::set_needs_dynsym_value()
6920{
6921 for (typename Unordered_set<Mips_symbol<size>*>::const_iterator
6922 p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
6923 {
6924 Mips_symbol<size>* sym = *p;
6925 if (sym->is_from_dynobj())
6926 sym->set_needs_dynsym_value();
6927 }
6928}
6929
6930// Write out the .MIPS.stubs. This uses the hand-coded instructions and
6931// adjusts them as needed.
6932
6933template<int size, bool big_endian>
6934void
6935Mips_output_data_mips_stubs<size, big_endian>::do_write(Output_file* of)
6936{
6937 const off_t offset = this->offset();
6938 const section_size_type oview_size =
6939 convert_to_section_size_type(this->data_size());
6940 unsigned char* const oview = of->get_output_view(offset, oview_size);
6941
6942 bool big_stub = this->dynsym_count_ > 0x10000;
6943
6944 unsigned char* pov = oview;
6945 for (typename Unordered_set<Mips_symbol<size>*>::const_iterator
6946 p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
6947 {
6948 Mips_symbol<size>* sym = *p;
6949 const uint32_t* lazy_stub;
6950 bool n64 = this->target_->is_output_n64();
6951
6952 if (!this->target_->is_output_micromips())
6953 {
6954 // Write standard (non-microMIPS) stub.
6955 if (!big_stub)
6956 {
6957 if (sym->dynsym_index() & ~0x7fff)
6958 // Dynsym index is between 32K and 64K.
6959 lazy_stub = n64 ? lazy_stub_normal_2_n64 : lazy_stub_normal_2;
6960 else
6961 // Dynsym index is less than 32K.
6962 lazy_stub = n64 ? lazy_stub_normal_1_n64 : lazy_stub_normal_1;
6963 }
6964 else
6965 lazy_stub = n64 ? lazy_stub_big_n64 : lazy_stub_big;
6966
6967 unsigned int i = 0;
6968 elfcpp::Swap<32, big_endian>::writeval(pov, lazy_stub[i]);
6969 elfcpp::Swap<32, big_endian>::writeval(pov + 4, lazy_stub[i + 1]);
6970 pov += 8;
6971
6972 i += 2;
6973 if (big_stub)
6974 {
6975 // LUI instruction of the big stub. Paste high 16 bits of the
6976 // dynsym index.
6977 elfcpp::Swap<32, big_endian>::writeval(pov,
6978 lazy_stub[i] | ((sym->dynsym_index() >> 16) & 0x7fff));
6979 pov += 4;
6980 i += 1;
6981 }
6982 elfcpp::Swap<32, big_endian>::writeval(pov, lazy_stub[i]);
6983 // Last stub instruction. Paste low 16 bits of the dynsym index.
6984 elfcpp::Swap<32, big_endian>::writeval(pov + 4,
6985 lazy_stub[i + 1] | (sym->dynsym_index() & 0xffff));
6986 pov += 8;
6987 }
6988 else if (this->target_->use_32bit_micromips_instructions())
6989 {
6990 // Write microMIPS stub in insn32 mode.
6991 if (!big_stub)
6992 {
6993 if (sym->dynsym_index() & ~0x7fff)
6994 // Dynsym index is between 32K and 64K.
6995 lazy_stub = n64 ? lazy_stub_micromips32_normal_2_n64
6996 : lazy_stub_micromips32_normal_2;
6997 else
6998 // Dynsym index is less than 32K.
6999 lazy_stub = n64 ? lazy_stub_micromips32_normal_1_n64
7000 : lazy_stub_micromips32_normal_1;
7001 }
7002 else
7003 lazy_stub = n64 ? lazy_stub_micromips32_big_n64
7004 : lazy_stub_micromips32_big;
7005
7006 unsigned int i = 0;
7007 // First stub instruction. We emit 32-bit microMIPS instructions by
7008 // emitting two 16-bit parts because on microMIPS the 16-bit part of
7009 // the instruction where the opcode is must always come first, for
7010 // both little and big endian.
7011 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
7012 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
7013 // Second stub instruction.
7014 elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
7015 elfcpp::Swap<16, big_endian>::writeval(pov + 6, lazy_stub[i + 3]);
7016 pov += 8;
7017 i += 4;
7018 if (big_stub)
7019 {
7020 // LUI instruction of the big stub. Paste high 16 bits of the
7021 // dynsym index.
7022 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
7023 elfcpp::Swap<16, big_endian>::writeval(pov + 2,
7024 (sym->dynsym_index() >> 16) & 0x7fff);
7025 pov += 4;
7026 i += 2;
7027 }
7028 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
7029 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
7030 // Last stub instruction. Paste low 16 bits of the dynsym index.
7031 elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
7032 elfcpp::Swap<16, big_endian>::writeval(pov + 6,
7033 sym->dynsym_index() & 0xffff);
7034 pov += 8;
7035 }
7036 else
7037 {
7038 // Write microMIPS stub.
7039 if (!big_stub)
7040 {
7041 if (sym->dynsym_index() & ~0x7fff)
7042 // Dynsym index is between 32K and 64K.
7043 lazy_stub = n64 ? lazy_stub_micromips_normal_2_n64
7044 : lazy_stub_micromips_normal_2;
7045 else
7046 // Dynsym index is less than 32K.
7047 lazy_stub = n64 ? lazy_stub_micromips_normal_1_n64
7048 : lazy_stub_micromips_normal_1;
7049 }
7050 else
7051 lazy_stub = n64 ? lazy_stub_micromips_big_n64
7052 : lazy_stub_micromips_big;
7053
7054 unsigned int i = 0;
7055 // First stub instruction. We emit 32-bit microMIPS instructions by
7056 // emitting two 16-bit parts because on microMIPS the 16-bit part of
7057 // the instruction where the opcode is must always come first, for
7058 // both little and big endian.
7059 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
7060 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
7061 // Second stub instruction.
7062 elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
7063 pov += 6;
7064 i += 3;
7065 if (big_stub)
7066 {
7067 // LUI instruction of the big stub. Paste high 16 bits of the
7068 // dynsym index.
7069 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
7070 elfcpp::Swap<16, big_endian>::writeval(pov + 2,
7071 (sym->dynsym_index() >> 16) & 0x7fff);
7072 pov += 4;
7073 i += 2;
7074 }
7075 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
7076 // Last stub instruction. Paste low 16 bits of the dynsym index.
7077 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
7078 elfcpp::Swap<16, big_endian>::writeval(pov + 4,
7079 sym->dynsym_index() & 0xffff);
7080 pov += 6;
7081 }
7082 }
7083
7084 // We always allocate 20 bytes for every stub, because final dynsym count is
7085 // not known in method do_finalize_sections. There are 4 unused bytes per
7086 // stub if final dynsym count is less than 0x10000.
7087 unsigned int used = pov - oview;
7088 unsigned int unused = big_stub ? 0 : this->symbols_.size() * 4;
7089 gold_assert(static_cast<section_size_type>(used + unused) == oview_size);
7090
7091 // Fill the unused space with zeroes.
7092 // TODO(sasa): Can we strip unused bytes during the relaxation?
7093 if (unused > 0)
7094 memset(pov, 0, unused);
7095
7096 of->write_output_view(offset, oview_size, oview);
7097}
7098
7099// Mips_output_section_reginfo methods.
7100
7101template<int size, bool big_endian>
7102void
7103Mips_output_section_reginfo<size, big_endian>::do_write(Output_file* of)
7104{
7105 off_t offset = this->offset();
7106 off_t data_size = this->data_size();
7107
7108 unsigned char* view = of->get_output_view(offset, data_size);
7109 elfcpp::Swap<size, big_endian>::writeval(view, this->gprmask_);
7110 elfcpp::Swap<size, big_endian>::writeval(view + 4, this->cprmask1_);
7111 elfcpp::Swap<size, big_endian>::writeval(view + 8, this->cprmask2_);
7112 elfcpp::Swap<size, big_endian>::writeval(view + 12, this->cprmask3_);
7113 elfcpp::Swap<size, big_endian>::writeval(view + 16, this->cprmask4_);
7114 // Write the gp value.
7115 elfcpp::Swap<size, big_endian>::writeval(view + 20,
7116 this->target_->gp_value());
7117
7118 of->write_output_view(offset, data_size, view);
7119}
7120
7121// Mips_copy_relocs methods.
7122
7123// Emit any saved relocs.
7124
7125template<int sh_type, int size, bool big_endian>
7126void
7127Mips_copy_relocs<sh_type, size, big_endian>::emit_mips(
7128 Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
7129 Symbol_table* symtab, Layout* layout, Target_mips<size, big_endian>* target)
7130{
7131 for (typename Copy_relocs<sh_type, size, big_endian>::
7132 Copy_reloc_entries::iterator p = this->entries_.begin();
7133 p != this->entries_.end();
7134 ++p)
7135 emit_entry(*p, reloc_section, symtab, layout, target);
7136
7137 // We no longer need the saved information.
7138 this->entries_.clear();
7139}
7140
7141// Emit the reloc if appropriate.
7142
7143template<int sh_type, int size, bool big_endian>
7144void
7145Mips_copy_relocs<sh_type, size, big_endian>::emit_entry(
7146 Copy_reloc_entry& entry,
7147 Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
7148 Symbol_table* symtab, Layout* layout, Target_mips<size, big_endian>* target)
7149{
7150 // If the symbol is no longer defined in a dynamic object, then we
7151 // emitted a COPY relocation, and we do not want to emit this
7152 // dynamic relocation.
7153 if (!entry.sym_->is_from_dynobj())
7154 return;
7155
7156 bool can_make_dynamic = (entry.reloc_type_ == elfcpp::R_MIPS_32
7157 || entry.reloc_type_ == elfcpp::R_MIPS_REL32
7158 || entry.reloc_type_ == elfcpp::R_MIPS_64);
7159
7160 Mips_symbol<size>* sym = Mips_symbol<size>::as_mips_sym(entry.sym_);
7161 if (can_make_dynamic && !sym->has_static_relocs())
7162 {
7163 Mips_relobj<size, big_endian>* object =
7164 Mips_relobj<size, big_endian>::as_mips_relobj(entry.relobj_);
7165 target->got_section(symtab, layout)->record_global_got_symbol(
7166 sym, object, entry.reloc_type_, true, false);
7167 if (!symbol_references_local(sym, sym->should_add_dynsym_entry(symtab)))
7168 target->rel_dyn_section(layout)->add_global(sym, elfcpp::R_MIPS_REL32,
7169 entry.output_section_, entry.relobj_, entry.shndx_, entry.address_);
7170 else
7171 target->rel_dyn_section(layout)->add_symbolless_global_addend(
7172 sym, elfcpp::R_MIPS_REL32, entry.output_section_, entry.relobj_,
7173 entry.shndx_, entry.address_);
7174 }
7175 else
7176 this->make_copy_reloc(symtab, layout,
7177 static_cast<Sized_symbol<size>*>(entry.sym_),
7178 reloc_section);
7179}
7180
7181// Target_mips methods.
7182
7183// Return the value to use for a dynamic symbol which requires special
7184// treatment. This is how we support equality comparisons of function
7185// pointers across shared library boundaries, as described in the
7186// processor specific ABI supplement.
7187
7188template<int size, bool big_endian>
7189uint64_t
7190Target_mips<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
7191{
7192 uint64_t value = 0;
7193 const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
7194
7195 if (!mips_sym->has_lazy_stub())
7196 {
7197 if (mips_sym->has_plt_offset())
7198 {
7199 // We distinguish between PLT entries and lazy-binding stubs by
7200 // giving the former an st_other value of STO_MIPS_PLT. Set the
7201 // value to the stub address if there are any relocations in the
7202 // binary where pointer equality matters.
7203 if (mips_sym->pointer_equality_needed())
7204 {
7205 // Prefer a standard MIPS PLT entry.
7206 if (mips_sym->has_mips_plt_offset())
7207 value = this->plt_section()->mips_entry_address(mips_sym);
7208 else
7209 value = this->plt_section()->comp_entry_address(mips_sym) + 1;
7210 }
7211 else
7212 value = 0;
7213 }
7214 }
7215 else
7216 {
7217 // First, set stub offsets for symbols. This method expects that the
7218 // number of entries in dynamic symbol table is set.
7219 this->mips_stubs_section()->set_lazy_stub_offsets();
7220
7221 // The run-time linker uses the st_value field of the symbol
7222 // to reset the global offset table entry for this external
7223 // to its stub address when unlinking a shared object.
7224 value = this->mips_stubs_section()->stub_address(mips_sym);
7225 }
7226
7227 if (mips_sym->has_mips16_fn_stub())
7228 {
7229 // If we have a MIPS16 function with a stub, the dynamic symbol must
7230 // refer to the stub, since only the stub uses the standard calling
7231 // conventions.
7232 value = mips_sym->template
7233 get_mips16_fn_stub<big_endian>()->output_address();
7234 }
7235
7236 return value;
7237}
7238
7239// Get the dynamic reloc section, creating it if necessary. It's always
7240// .rel.dyn, even for MIPS64.
7241
7242template<int size, bool big_endian>
7243typename Target_mips<size, big_endian>::Reloc_section*
7244Target_mips<size, big_endian>::rel_dyn_section(Layout* layout)
7245{
7246 if (this->rel_dyn_ == NULL)
7247 {
7248 gold_assert(layout != NULL);
7249 this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
7250 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
7251 elfcpp::SHF_ALLOC, this->rel_dyn_,
7252 ORDER_DYNAMIC_RELOCS, false);
7253
7254 // First entry in .rel.dyn has to be null.
7255 // This is hack - we define dummy output data and set its address to 0,
7256 // and define absolute R_MIPS_NONE relocation with offset 0 against it.
7257 // This ensures that the entry is null.
7258 Output_data* od = new Output_data_zero_fill(0, 0);
7259 od->set_address(0);
7260 this->rel_dyn_->add_absolute(elfcpp::R_MIPS_NONE, od, 0);
7261 }
7262 return this->rel_dyn_;
7263}
7264
7265// Get the GOT section, creating it if necessary.
7266
7267template<int size, bool big_endian>
7268Mips_output_data_got<size, big_endian>*
7269Target_mips<size, big_endian>::got_section(Symbol_table* symtab,
7270 Layout* layout)
7271{
7272 if (this->got_ == NULL)
7273 {
7274 gold_assert(symtab != NULL && layout != NULL);
7275
7276 this->got_ = new Mips_output_data_got<size, big_endian>(this, symtab,
7277 layout);
7278 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
7279 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE |
7280 elfcpp::SHF_MIPS_GPREL),
7281 this->got_, ORDER_DATA, false);
7282
7283 // Define _GLOBAL_OFFSET_TABLE_ at the start of the .got section.
7284 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
7285 Symbol_table::PREDEFINED,
7286 this->got_,
7287 0, 0, elfcpp::STT_OBJECT,
7288 elfcpp::STB_GLOBAL,
7289 elfcpp::STV_DEFAULT, 0,
7290 false, false);
7291 }
7292
7293 return this->got_;
7294}
7295
7296// Calculate value of _gp symbol.
7297
7298template<int size, bool big_endian>
7299void
7300Target_mips<size, big_endian>::set_gp(Layout* layout, Symbol_table* symtab)
7301{
7302 if (this->gp_ != NULL)
7303 return;
7304
7305 Output_data* section = layout->find_output_section(".got");
7306 if (section == NULL)
7307 {
7308 // If there is no .got section, gp should be based on .sdata.
7309 // TODO(sasa): This is probably not needed. This was needed for older
7310 // MIPS architectures which accessed both GOT and .sdata section using
7311 // gp-relative addressing. Modern Mips Linux ELF architectures don't
7312 // access .sdata using gp-relative addressing.
7313 for (Layout::Section_list::const_iterator
7314 p = layout->section_list().begin();
7315 p != layout->section_list().end();
7316 ++p)
7317 {
7318 if (strcmp((*p)->name(), ".sdata") == 0)
7319 {
7320 section = *p;
7321 break;
7322 }
7323 }
7324 }
7325
7326 Sized_symbol<size>* gp =
7327 static_cast<Sized_symbol<size>*>(symtab->lookup("_gp"));
7328 if (gp != NULL)
7329 {
7330 if (gp->source() != Symbol::IS_CONSTANT && section != NULL)
7331 gp->init_output_data(gp->name(), NULL, section, MIPS_GP_OFFSET, 0,
7332 elfcpp::STT_OBJECT,
7333 elfcpp::STB_GLOBAL,
7334 elfcpp::STV_DEFAULT, 0,
7335 false, false);
7336 this->gp_ = gp;
7337 }
7338 else if (section != NULL)
7339 {
7340 gp = static_cast<Sized_symbol<size>*>(symtab->define_in_output_data(
7341 "_gp", NULL, Symbol_table::PREDEFINED,
7342 section, MIPS_GP_OFFSET, 0,
7343 elfcpp::STT_OBJECT,
7344 elfcpp::STB_GLOBAL,
7345 elfcpp::STV_DEFAULT,
7346 0, false, false));
7347 this->gp_ = gp;
7348 }
7349}
7350
7351// Set the dynamic symbol indexes. INDEX is the index of the first
7352// global dynamic symbol. Pointers to the symbols are stored into the
7353// vector SYMS. The names are added to DYNPOOL. This returns an
7354// updated dynamic symbol index.
7355
7356template<int size, bool big_endian>
7357unsigned int
7358Target_mips<size, big_endian>::do_set_dynsym_indexes(
7359 std::vector<Symbol*>* dyn_symbols, unsigned int index,
7360 std::vector<Symbol*>* syms, Stringpool* dynpool,
7361 Versions* versions, Symbol_table* symtab) const
7362{
7363 std::vector<Symbol*> non_got_symbols;
7364 std::vector<Symbol*> got_symbols;
7365
7366 reorder_dyn_symbols<size, big_endian>(dyn_symbols, &non_got_symbols,
7367 &got_symbols);
7368
7369 for (std::vector<Symbol*>::iterator p = non_got_symbols.begin();
7370 p != non_got_symbols.end();
7371 ++p)
7372 {
7373 Symbol* sym = *p;
7374
7375 // Note that SYM may already have a dynamic symbol index, since
7376 // some symbols appear more than once in the symbol table, with
7377 // and without a version.
7378
7379 if (!sym->has_dynsym_index())
7380 {
7381 sym->set_dynsym_index(index);
7382 ++index;
7383 syms->push_back(sym);
7384 dynpool->add(sym->name(), false, NULL);
7385
7386 // Record any version information.
7387 if (sym->version() != NULL)
7388 versions->record_version(symtab, dynpool, sym);
7389
7390 // If the symbol is defined in a dynamic object and is
7391 // referenced in a regular object, then mark the dynamic
7392 // object as needed. This is used to implement --as-needed.
7393 if (sym->is_from_dynobj() && sym->in_reg())
7394 sym->object()->set_is_needed();
7395 }
7396 }
7397
7398 for (std::vector<Symbol*>::iterator p = got_symbols.begin();
7399 p != got_symbols.end();
7400 ++p)
7401 {
7402 Symbol* sym = *p;
7403 if (!sym->has_dynsym_index())
7404 {
7405 // Record any version information.
7406 if (sym->version() != NULL)
7407 versions->record_version(symtab, dynpool, sym);
7408 }
7409 }
7410
7411 index = versions->finalize(symtab, index, syms);
7412
7413 int got_sym_count = 0;
7414 for (std::vector<Symbol*>::iterator p = got_symbols.begin();
7415 p != got_symbols.end();
7416 ++p)
7417 {
7418 Symbol* sym = *p;
7419
7420 if (!sym->has_dynsym_index())
7421 {
7422 ++got_sym_count;
7423 sym->set_dynsym_index(index);
7424 ++index;
7425 syms->push_back(sym);
7426 dynpool->add(sym->name(), false, NULL);
7427
7428 // If the symbol is defined in a dynamic object and is
7429 // referenced in a regular object, then mark the dynamic
7430 // object as needed. This is used to implement --as-needed.
7431 if (sym->is_from_dynobj() && sym->in_reg())
7432 sym->object()->set_is_needed();
7433 }
7434 }
7435
7436 // Set index of the first symbol that has .got entry.
7437 this->got_->set_first_global_got_dynsym_index(
7438 got_sym_count > 0 ? index - got_sym_count : -1U);
7439
7440 if (this->mips_stubs_ != NULL)
7441 this->mips_stubs_->set_dynsym_count(index);
7442
7443 return index;
7444}
7445
7446// Create a PLT entry for a global symbol referenced by r_type relocation.
7447
7448template<int size, bool big_endian>
7449void
7450Target_mips<size, big_endian>::make_plt_entry(Symbol_table* symtab,
7451 Layout* layout,
7452 Mips_symbol<size>* gsym,
7453 unsigned int r_type)
7454{
7455 if (gsym->has_lazy_stub() || gsym->has_plt_offset())
7456 return;
7457
7458 if (this->plt_ == NULL)
7459 {
7460 // Create the GOT section first.
7461 this->got_section(symtab, layout);
7462
7463 this->got_plt_ = new Output_data_space(4, "** GOT PLT");
7464 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
7465 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
7466 this->got_plt_, ORDER_DATA, false);
7467
7468 // The first two entries are reserved.
7469 this->got_plt_->set_current_data_size(2 * size/8);
7470
7471 this->plt_ = new Mips_output_data_plt<size, big_endian>(layout,
7472 this->got_plt_,
7473 this);
7474 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
7475 (elfcpp::SHF_ALLOC
7476 | elfcpp::SHF_EXECINSTR),
7477 this->plt_, ORDER_PLT, false);
7478 }
7479
7480 this->plt_->add_entry(gsym, r_type);
7481}
7482
7483
7484// Get the .MIPS.stubs section, creating it if necessary.
7485
7486template<int size, bool big_endian>
7487Mips_output_data_mips_stubs<size, big_endian>*
7488Target_mips<size, big_endian>::mips_stubs_section(Layout* layout)
7489{
7490 if (this->mips_stubs_ == NULL)
7491 {
7492 this->mips_stubs_ =
7493 new Mips_output_data_mips_stubs<size, big_endian>(this);
7494 layout->add_output_section_data(".MIPS.stubs", elfcpp::SHT_PROGBITS,
7495 (elfcpp::SHF_ALLOC
7496 | elfcpp::SHF_EXECINSTR),
7497 this->mips_stubs_, ORDER_PLT, false);
7498 }
7499 return this->mips_stubs_;
7500}
7501
7502// Get the LA25 stub section, creating it if necessary.
7503
7504template<int size, bool big_endian>
7505Mips_output_data_la25_stub<size, big_endian>*
7506Target_mips<size, big_endian>::la25_stub_section(Layout* layout)
7507{
7508 if (this->la25_stub_ == NULL)
7509 {
7510 this->la25_stub_ = new Mips_output_data_la25_stub<size, big_endian>();
7511 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
7512 (elfcpp::SHF_ALLOC
7513 | elfcpp::SHF_EXECINSTR),
7514 this->la25_stub_, ORDER_TEXT, false);
7515 }
7516 return this->la25_stub_;
7517}
7518
7519// Process the relocations to determine unreferenced sections for
7520// garbage collection.
7521
7522template<int size, bool big_endian>
7523void
7524Target_mips<size, big_endian>::gc_process_relocs(
7525 Symbol_table* symtab,
7526 Layout* layout,
7527 Sized_relobj_file<size, big_endian>* object,
7528 unsigned int data_shndx,
7529 unsigned int,
7530 const unsigned char* prelocs,
7531 size_t reloc_count,
7532 Output_section* output_section,
7533 bool needs_special_offset_handling,
7534 size_t local_symbol_count,
7535 const unsigned char* plocal_symbols)
7536{
7537 typedef Target_mips<size, big_endian> Mips;
7538 typedef typename Target_mips<size, big_endian>::Scan Scan;
7539
7540 gold::gc_process_relocs<size, big_endian, Mips, elfcpp::SHT_REL, Scan,
7541 typename Target_mips::Relocatable_size_for_reloc>(
7542 symtab,
7543 layout,
7544 this,
7545 object,
7546 data_shndx,
7547 prelocs,
7548 reloc_count,
7549 output_section,
7550 needs_special_offset_handling,
7551 local_symbol_count,
7552 plocal_symbols);
7553}
7554
7555// Scan relocations for a section.
7556
7557template<int size, bool big_endian>
7558void
7559Target_mips<size, big_endian>::scan_relocs(
7560 Symbol_table* symtab,
7561 Layout* layout,
7562 Sized_relobj_file<size, big_endian>* object,
7563 unsigned int data_shndx,
7564 unsigned int sh_type,
7565 const unsigned char* prelocs,
7566 size_t reloc_count,
7567 Output_section* output_section,
7568 bool needs_special_offset_handling,
7569 size_t local_symbol_count,
7570 const unsigned char* plocal_symbols)
7571{
7572 typedef Target_mips<size, big_endian> Mips;
7573 typedef typename Target_mips<size, big_endian>::Scan Scan;
7574
7575 if (sh_type == elfcpp::SHT_REL)
7576 gold::scan_relocs<size, big_endian, Mips, elfcpp::SHT_REL, Scan>(
7577 symtab,
7578 layout,
7579 this,
7580 object,
7581 data_shndx,
7582 prelocs,
7583 reloc_count,
7584 output_section,
7585 needs_special_offset_handling,
7586 local_symbol_count,
7587 plocal_symbols);
7588 else if (sh_type == elfcpp::SHT_RELA)
7589 gold::scan_relocs<size, big_endian, Mips, elfcpp::SHT_RELA, Scan>(
7590 symtab,
7591 layout,
7592 this,
7593 object,
7594 data_shndx,
7595 prelocs,
7596 reloc_count,
7597 output_section,
7598 needs_special_offset_handling,
7599 local_symbol_count,
7600 plocal_symbols);
7601}
7602
7603template<int size, bool big_endian>
7604bool
7605Target_mips<size, big_endian>::mips_32bit_flags(elfcpp::Elf_Word flags)
7606{
7607 return ((flags & elfcpp::EF_MIPS_32BITMODE) != 0
7608 || (flags & elfcpp::EF_MIPS_ABI) == elfcpp::E_MIPS_ABI_O32
7609 || (flags & elfcpp::EF_MIPS_ABI) == elfcpp::E_MIPS_ABI_EABI32
7610 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_1
7611 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_2
7612 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_32
7613 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_32R2);
7614}
7615
7616// Return the MACH for a MIPS e_flags value.
7617template<int size, bool big_endian>
7618unsigned int
7619Target_mips<size, big_endian>::elf_mips_mach(elfcpp::Elf_Word flags)
7620{
7621 switch (flags & elfcpp::EF_MIPS_MACH)
7622 {
7623 case elfcpp::E_MIPS_MACH_3900:
7624 return mach_mips3900;
7625
7626 case elfcpp::E_MIPS_MACH_4010:
7627 return mach_mips4010;
7628
7629 case elfcpp::E_MIPS_MACH_4100:
7630 return mach_mips4100;
7631
7632 case elfcpp::E_MIPS_MACH_4111:
7633 return mach_mips4111;
7634
7635 case elfcpp::E_MIPS_MACH_4120:
7636 return mach_mips4120;
7637
7638 case elfcpp::E_MIPS_MACH_4650:
7639 return mach_mips4650;
7640
7641 case elfcpp::E_MIPS_MACH_5400:
7642 return mach_mips5400;
7643
7644 case elfcpp::E_MIPS_MACH_5500:
7645 return mach_mips5500;
7646
7647 case elfcpp::E_MIPS_MACH_9000:
7648 return mach_mips9000;
7649
7650 case elfcpp::E_MIPS_MACH_SB1:
7651 return mach_mips_sb1;
7652
7653 case elfcpp::E_MIPS_MACH_LS2E:
7654 return mach_mips_loongson_2e;
7655
7656 case elfcpp::E_MIPS_MACH_LS2F:
7657 return mach_mips_loongson_2f;
7658
7659 case elfcpp::E_MIPS_MACH_LS3A:
7660 return mach_mips_loongson_3a;
7661
7662 case elfcpp::E_MIPS_MACH_OCTEON2:
7663 return mach_mips_octeon2;
7664
7665 case elfcpp::E_MIPS_MACH_OCTEON:
7666 return mach_mips_octeon;
7667
7668 case elfcpp::E_MIPS_MACH_XLR:
7669 return mach_mips_xlr;
7670
7671 default:
7672 switch (flags & elfcpp::EF_MIPS_ARCH)
7673 {
7674 default:
7675 case elfcpp::E_MIPS_ARCH_1:
7676 return mach_mips3000;
7677
7678 case elfcpp::E_MIPS_ARCH_2:
7679 return mach_mips6000;
7680
7681 case elfcpp::E_MIPS_ARCH_3:
7682 return mach_mips4000;
7683
7684 case elfcpp::E_MIPS_ARCH_4:
7685 return mach_mips8000;
7686
7687 case elfcpp::E_MIPS_ARCH_5:
7688 return mach_mips5;
7689
7690 case elfcpp::E_MIPS_ARCH_32:
7691 return mach_mipsisa32;
7692
7693 case elfcpp::E_MIPS_ARCH_64:
7694 return mach_mipsisa64;
7695
7696 case elfcpp::E_MIPS_ARCH_32R2:
7697 return mach_mipsisa32r2;
7698
7699 case elfcpp::E_MIPS_ARCH_64R2:
7700 return mach_mipsisa64r2;
7701 }
7702 }
7703
7704 return 0;
7705}
7706
7707// Check whether machine EXTENSION is an extension of machine BASE.
7708template<int size, bool big_endian>
7709bool
7710Target_mips<size, big_endian>::mips_mach_extends(unsigned int base,
7711 unsigned int extension)
7712{
7713 if (extension == base)
7714 return true;
7715
7716 if ((base == mach_mipsisa32)
7717 && this->mips_mach_extends(mach_mipsisa64, extension))
7718 return true;
7719
7720 if ((base == mach_mipsisa32r2)
7721 && this->mips_mach_extends(mach_mipsisa64r2, extension))
7722 return true;
7723
7724 for (unsigned int i = 0; i < this->mips_mach_extensions_.size(); ++i)
7725 if (extension == this->mips_mach_extensions_[i].first)
7726 {
7727 extension = this->mips_mach_extensions_[i].second;
7728 if (extension == base)
7729 return true;
7730 }
7731
7732 return false;
7733}
7734
7735template<int size, bool big_endian>
7736void
7737Target_mips<size, big_endian>::merge_processor_specific_flags(
7738 const std::string& name, elfcpp::Elf_Word in_flags,
7739 unsigned char in_ei_class, bool dyn_obj)
7740{
7741 // If flags are not set yet, just copy them.
7742 if (!this->are_processor_specific_flags_set())
7743 {
7744 this->set_processor_specific_flags(in_flags);
7745 this->ei_class_ = in_ei_class;
7746 this->mach_ = this->elf_mips_mach(in_flags);
7747 return;
7748 }
7749
7750 elfcpp::Elf_Word new_flags = in_flags;
7751 elfcpp::Elf_Word old_flags = this->processor_specific_flags();
7752 elfcpp::Elf_Word merged_flags = this->processor_specific_flags();
7753 merged_flags |= new_flags & elfcpp::EF_MIPS_NOREORDER;
7754
7755 // Check flag compatibility.
7756 new_flags &= ~elfcpp::EF_MIPS_NOREORDER;
7757 old_flags &= ~elfcpp::EF_MIPS_NOREORDER;
7758
7759 // Some IRIX 6 BSD-compatibility objects have this bit set. It
7760 // doesn't seem to matter.
7761 new_flags &= ~elfcpp::EF_MIPS_XGOT;
7762 old_flags &= ~elfcpp::EF_MIPS_XGOT;
7763
7764 // MIPSpro generates ucode info in n64 objects. Again, we should
7765 // just be able to ignore this.
7766 new_flags &= ~elfcpp::EF_MIPS_UCODE;
7767 old_flags &= ~elfcpp::EF_MIPS_UCODE;
7768
7769 // DSOs should only be linked with CPIC code.
7770 if (dyn_obj)
7771 new_flags |= elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC;
7772
7773 if (new_flags == old_flags)
7774 {
7775 this->set_processor_specific_flags(merged_flags);
7776 return;
7777 }
7778
7779 if (((new_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC)) != 0)
7780 != ((old_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC)) != 0))
7781 gold_warning(_("%s: linking abicalls files with non-abicalls files"),
7782 name.c_str());
7783
7784 if (new_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC))
7785 merged_flags |= elfcpp::EF_MIPS_CPIC;
7786 if (!(new_flags & elfcpp::EF_MIPS_PIC))
7787 merged_flags &= ~elfcpp::EF_MIPS_PIC;
7788
7789 new_flags &= ~(elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC);
7790 old_flags &= ~(elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC);
7791
7792 // Compare the ISAs.
7793 if (mips_32bit_flags(old_flags) != mips_32bit_flags(new_flags))
7794 gold_error(_("%s: linking 32-bit code with 64-bit code"), name.c_str());
7795 else if (!this->mips_mach_extends(this->elf_mips_mach(in_flags), this->mach_))
7796 {
7797 // Output ISA isn't the same as, or an extension of, input ISA.
7798 if (this->mips_mach_extends(this->mach_, this->elf_mips_mach(in_flags)))
7799 {
7800 // Copy the architecture info from input object to output. Also copy
7801 // the 32-bit flag (if set) so that we continue to recognise
7802 // output as a 32-bit binary.
7803 this->mach_ = this->elf_mips_mach(in_flags);
7804 merged_flags &= ~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH);
7805 merged_flags |= (new_flags & (elfcpp::EF_MIPS_ARCH
7806 | elfcpp::EF_MIPS_MACH | elfcpp::EF_MIPS_32BITMODE));
7807
7808 // Copy across the ABI flags if output doesn't use them
7809 // and if that was what caused us to treat input object as 32-bit.
7810 if ((old_flags & elfcpp::EF_MIPS_ABI) == 0
7811 && this->mips_32bit_flags(new_flags)
7812 && !this->mips_32bit_flags(new_flags & ~elfcpp::EF_MIPS_ABI))
7813 merged_flags |= new_flags & elfcpp::EF_MIPS_ABI;
7814 }
7815 else
7816 // The ISAs aren't compatible.
7817 gold_error(_("%s: linking %s module with previous %s modules"),
7818 name.c_str(), this->elf_mips_mach_name(in_flags),
7819 this->elf_mips_mach_name(merged_flags));
7820 }
7821
7822 new_flags &= (~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH
7823 | elfcpp::EF_MIPS_32BITMODE));
7824 old_flags &= (~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH
7825 | elfcpp::EF_MIPS_32BITMODE));
7826
7827 // Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it does set
7828 // EI_CLASS differently from any 32-bit ABI.
7829 if ((new_flags & elfcpp::EF_MIPS_ABI) != (old_flags & elfcpp::EF_MIPS_ABI)
7830 || (in_ei_class != this->ei_class_))
7831 {
7832 // Only error if both are set (to different values).
7833 if (((new_flags & elfcpp::EF_MIPS_ABI)
7834 && (old_flags & elfcpp::EF_MIPS_ABI))
7835 || (in_ei_class != this->ei_class_))
7836 gold_error(_("%s: ABI mismatch: linking %s module with "
7837 "previous %s modules"), name.c_str(),
7838 this->elf_mips_abi_name(in_flags, in_ei_class),
7839 this->elf_mips_abi_name(merged_flags, this->ei_class_));
7840
7841 new_flags &= ~elfcpp::EF_MIPS_ABI;
7842 old_flags &= ~elfcpp::EF_MIPS_ABI;
7843 }
7844
7845 // Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
7846 // and allow arbitrary mixing of the remaining ASEs (retain the union).
7847 if ((new_flags & elfcpp::EF_MIPS_ARCH_ASE)
7848 != (old_flags & elfcpp::EF_MIPS_ARCH_ASE))
7849 {
7850 int old_micro = old_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS;
7851 int new_micro = new_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS;
7852 int old_m16 = old_flags & elfcpp::EF_MIPS_ARCH_ASE_M16;
7853 int new_m16 = new_flags & elfcpp::EF_MIPS_ARCH_ASE_M16;
7854 int micro_mis = old_m16 && new_micro;
7855 int m16_mis = old_micro && new_m16;
7856
7857 if (m16_mis || micro_mis)
7858 gold_error(_("%s: ASE mismatch: linking %s module with "
7859 "previous %s modules"), name.c_str(),
7860 m16_mis ? "MIPS16" : "microMIPS",
7861 m16_mis ? "microMIPS" : "MIPS16");
7862
7863 merged_flags |= new_flags & elfcpp::EF_MIPS_ARCH_ASE;
7864
7865 new_flags &= ~ elfcpp::EF_MIPS_ARCH_ASE;
7866 old_flags &= ~ elfcpp::EF_MIPS_ARCH_ASE;
7867 }
7868
7869 // Warn about any other mismatches.
7870 if (new_flags != old_flags)
7871 gold_error(_("%s: uses different e_flags (0x%x) fields than previous "
7872 "modules (0x%x)"), name.c_str(), new_flags, old_flags);
7873
7874 this->set_processor_specific_flags(merged_flags);
7875}
7876
7877// Adjust ELF file header.
7878
7879template<int size, bool big_endian>
7880void
7881Target_mips<size, big_endian>::do_adjust_elf_header(
7882 unsigned char* view,
7883 int len)
7884{
7885 gold_assert(len == elfcpp::Elf_sizes<size>::ehdr_size);
7886
7887 elfcpp::Ehdr<size, big_endian> ehdr(view);
7888 unsigned char e_ident[elfcpp::EI_NIDENT];
7889 memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
7890
7891 e_ident[elfcpp::EI_CLASS] = this->ei_class_;
7892
7893 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
7894 oehdr.put_e_ident(e_ident);
7895 if (this->entry_symbol_is_compressed_)
7896 oehdr.put_e_entry(ehdr.get_e_entry() + 1);
7897}
7898
7899// do_make_elf_object to override the same function in the base class.
7900// We need to use a target-specific sub-class of
7901// Sized_relobj_file<size, big_endian> to store Mips specific information.
7902// Hence we need to have our own ELF object creation.
7903
7904template<int size, bool big_endian>
7905Object*
7906Target_mips<size, big_endian>::do_make_elf_object(
7907 const std::string& name,
7908 Input_file* input_file,
7909 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
7910{
7911 int et = ehdr.get_e_type();
7912 // ET_EXEC files are valid input for --just-symbols/-R,
7913 // and we treat them as relocatable objects.
7914 if (et == elfcpp::ET_REL
7915 || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
7916 {
7917 Mips_relobj<size, big_endian>* obj =
7918 new Mips_relobj<size, big_endian>(name, input_file, offset, ehdr);
7919 obj->setup();
7920 return obj;
7921 }
7922 else if (et == elfcpp::ET_DYN)
7923 {
7924 // TODO(sasa): Should we create Mips_dynobj?
7925 return Target::do_make_elf_object(name, input_file, offset, ehdr);
7926 }
7927 else
7928 {
7929 gold_error(_("%s: unsupported ELF file type %d"),
7930 name.c_str(), et);
7931 return NULL;
7932 }
7933}
7934
7935// Finalize the sections.
7936
7937template <int size, bool big_endian>
7938void
7939Target_mips<size, big_endian>::do_finalize_sections(Layout* layout,
7940 const Input_objects* input_objects,
7941 Symbol_table* symtab)
7942{
7943 // Add +1 to MIPS16 and microMIPS init_ and _fini symbols so that DT_INIT and
7944 // DT_FINI have correct values.
7945 Mips_symbol<size>* init = static_cast<Mips_symbol<size>*>(
7946 symtab->lookup(parameters->options().init()));
7947 if (init != NULL && (init->is_mips16() || init->is_micromips()))
7948 init->set_value(init->value() | 1);
7949 Mips_symbol<size>* fini = static_cast<Mips_symbol<size>*>(
7950 symtab->lookup(parameters->options().fini()));
7951 if (fini != NULL && (fini->is_mips16() || fini->is_micromips()))
7952 fini->set_value(fini->value() | 1);
7953
7954 // Check whether the entry symbol is mips16 or micromips. This is needed to
7955 // adjust entry address in ELF header.
7956 Mips_symbol<size>* entry =
7957 static_cast<Mips_symbol<size>*>(symtab->lookup(this->entry_symbol_name()));
7958 this->entry_symbol_is_compressed_ = (entry != NULL && (entry->is_mips16()
7959 || entry->is_micromips()));
7960
7961 if (!parameters->doing_static_link()
7962 && (strcmp(parameters->options().hash_style(), "gnu") == 0
7963 || strcmp(parameters->options().hash_style(), "both") == 0))
7964 {
7965 // .gnu.hash and the MIPS ABI require .dynsym to be sorted in different
7966 // ways. .gnu.hash needs symbols to be grouped by hash code whereas the
7967 // MIPS ABI requires a mapping between the GOT and the symbol table.
7968 gold_error(".gnu.hash is incompatible with the MIPS ABI");
7969 }
7970
7971 // Check whether the final section that was scanned has HI16 or GOT16
7972 // relocations without the corresponding LO16 part.
7973 if (this->got16_addends_.size() > 0)
7974 gold_error("Can't find matching LO16 reloc");
7975
7976 // Set _gp value.
7977 this->set_gp(layout, symtab);
7978
7979 // Check for any mips16 stub sections that we can discard.
7980 if (!parameters->options().relocatable())
7981 {
7982 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
7983 p != input_objects->relobj_end();
7984 ++p)
7985 {
7986 Mips_relobj<size, big_endian>* object =
7987 Mips_relobj<size, big_endian>::as_mips_relobj(*p);
7988 object->discard_mips16_stub_sections(symtab);
7989 }
7990 }
7991
7992 // Merge processor-specific flags.
7993 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
7994 p != input_objects->relobj_end();
7995 ++p)
7996 {
7997 Mips_relobj<size, big_endian>* relobj =
7998 Mips_relobj<size, big_endian>::as_mips_relobj(*p);
7999
8000 Input_file::Format format = relobj->input_file()->format();
8001 if (format == Input_file::FORMAT_ELF)
8002 {
8003 // Read processor-specific flags in ELF file header.
8004 const unsigned char* pehdr = relobj->get_view(
8005 elfcpp::file_header_offset,
8006 elfcpp::Elf_sizes<size>::ehdr_size,
8007 true, false);
8008
8009 elfcpp::Ehdr<size, big_endian> ehdr(pehdr);
8010 elfcpp::Elf_Word in_flags = ehdr.get_e_flags();
8011 unsigned char ei_class = ehdr.get_e_ident()[elfcpp::EI_CLASS];
8012
8013 this->merge_processor_specific_flags(relobj->name(), in_flags,
8014 ei_class, false);
8015 }
8016 }
8017
8018 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
8019 p != input_objects->dynobj_end();
8020 ++p)
8021 {
8022 Sized_dynobj<size, big_endian>* dynobj =
8023 static_cast<Sized_dynobj<size, big_endian>*>(*p);
8024
8025 // Read processor-specific flags.
8026 const unsigned char* pehdr = dynobj->get_view(elfcpp::file_header_offset,
8027 elfcpp::Elf_sizes<size>::ehdr_size,
8028 true, false);
8029
8030 elfcpp::Ehdr<size, big_endian> ehdr(pehdr);
8031 elfcpp::Elf_Word in_flags = ehdr.get_e_flags();
8032 unsigned char ei_class = ehdr.get_e_ident()[elfcpp::EI_CLASS];
8033
8034 this->merge_processor_specific_flags(dynobj->name(), in_flags, ei_class,
8035 true);
8036 }
8037
8038 // Merge .reginfo contents of input objects.
8039 Valtype gprmask = 0;
8040 Valtype cprmask1 = 0;
8041 Valtype cprmask2 = 0;
8042 Valtype cprmask3 = 0;
8043 Valtype cprmask4 = 0;
8044 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
8045 p != input_objects->relobj_end();
8046 ++p)
8047 {
8048 Mips_relobj<size, big_endian>* relobj =
8049 Mips_relobj<size, big_endian>::as_mips_relobj(*p);
8050
8051 gprmask |= relobj->gprmask();
8052 cprmask1 |= relobj->cprmask1();
8053 cprmask2 |= relobj->cprmask2();
8054 cprmask3 |= relobj->cprmask3();
8055 cprmask4 |= relobj->cprmask4();
8056 }
8057
8058 if (this->plt_ != NULL)
8059 {
8060 // Set final PLT offsets for symbols.
8061 this->plt_section()->set_plt_offsets();
8062
8063 // Define _PROCEDURE_LINKAGE_TABLE_ at the start of the .plt section.
8064 // Set STO_MICROMIPS flag if the output has microMIPS code, but only if
8065 // there are no standard PLT entries present.
8066 unsigned char nonvis = 0;
8067 if (this->is_output_micromips()
8068 && !this->plt_section()->has_standard_entries())
8069 nonvis = elfcpp::STO_MICROMIPS >> 2;
8070 symtab->define_in_output_data("_PROCEDURE_LINKAGE_TABLE_", NULL,
8071 Symbol_table::PREDEFINED,
8072 this->plt_,
8073 0, 0, elfcpp::STT_FUNC,
8074 elfcpp::STB_LOCAL,
8075 elfcpp::STV_DEFAULT, nonvis,
8076 false, false);
8077 }
8078
8079 if (this->mips_stubs_ != NULL)
8080 {
8081 // Define _MIPS_STUBS_ at the start of the .MIPS.stubs section.
8082 unsigned char nonvis = 0;
8083 if (this->is_output_micromips())
8084 nonvis = elfcpp::STO_MICROMIPS >> 2;
8085 symtab->define_in_output_data("_MIPS_STUBS_", NULL,
8086 Symbol_table::PREDEFINED,
8087 this->mips_stubs_,
8088 0, 0, elfcpp::STT_FUNC,
8089 elfcpp::STB_LOCAL,
8090 elfcpp::STV_DEFAULT, nonvis,
8091 false, false);
8092 }
8093
8094 if (!parameters->options().relocatable() && !parameters->doing_static_link())
8095 // In case there is no .got section, create one.
8096 this->got_section(symtab, layout);
8097
8098 // Emit any relocs we saved in an attempt to avoid generating COPY
8099 // relocs.
8100 if (this->copy_relocs_.any_saved_relocs())
8101 this->copy_relocs_.emit_mips(this->rel_dyn_section(layout), symtab, layout,
8102 this);
8103
8104 // Emit dynamic relocs.
8105 for (typename std::vector<Dyn_reloc>::iterator p = this->dyn_relocs_.begin();
8106 p != this->dyn_relocs_.end();
8107 ++p)
8108 p->emit(this->rel_dyn_section(layout), this->got_section(), symtab);
8109
8110 if (this->has_got_section())
8111 this->got_section()->lay_out_got(layout, symtab, input_objects);
8112
8113 if (this->mips_stubs_ != NULL)
8114 this->mips_stubs_->set_needs_dynsym_value();
8115
8116 // Check for functions that might need $25 to be valid on entry.
8117 // TODO(sasa): Can we do this without iterating over all symbols?
8118 typedef Symbol_visitor_check_symbols<size, big_endian> Symbol_visitor;
8119 symtab->for_all_symbols<size, Symbol_visitor>(Symbol_visitor(this, layout,
8120 symtab));
8121
8122 // Add NULL segment.
8123 if (!parameters->options().relocatable())
8124 layout->make_output_segment(elfcpp::PT_NULL, 0);
8125
8126 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
8127 p != layout->section_list().end();
8128 ++p)
8129 {
8130 if ((*p)->type() == elfcpp::SHT_MIPS_REGINFO)
8131 {
8132 Mips_output_section_reginfo<size, big_endian>* reginfo =
8133 Mips_output_section_reginfo<size, big_endian>::
8134 as_mips_output_section_reginfo(*p);
8135
8136 reginfo->set_masks(gprmask, cprmask1, cprmask2, cprmask3, cprmask4);
8137
8138 if (!parameters->options().relocatable())
8139 {
8140 Output_segment* reginfo_segment =
8141 layout->make_output_segment(elfcpp::PT_MIPS_REGINFO,
8142 elfcpp::PF_R);
8143 reginfo_segment->add_output_section_to_nonload(reginfo,
8144 elfcpp::PF_R);
8145 }
8146 }
8147 }
8148
8149 // Fill in some more dynamic tags.
8150 // TODO(sasa): Add more dynamic tags.
8151 const Reloc_section* rel_plt = (this->plt_ == NULL
8152 ? NULL : this->plt_->rel_plt());
8153 layout->add_target_dynamic_tags(true, this->got_, rel_plt,
8154 this->rel_dyn_, true, false);
8155
8156 Output_data_dynamic* const odyn = layout->dynamic_data();
8157 if (odyn != NULL
8158 && !parameters->options().relocatable()
8159 && !parameters->doing_static_link())
8160 {
8161 unsigned int d_val;
8162 // This element holds a 32-bit version id for the Runtime
8163 // Linker Interface. This will start at integer value 1.
8164 d_val = 0x01;
8165 odyn->add_constant(elfcpp::DT_MIPS_RLD_VERSION, d_val);
8166
8167 // Dynamic flags
8168 d_val = elfcpp::RHF_NOTPOT;
8169 odyn->add_constant(elfcpp::DT_MIPS_FLAGS, d_val);
8170
8171 // Save layout for using when emiting custom dynamic tags.
8172 this->layout_ = layout;
8173
8174 // This member holds the base address of the segment.
8175 odyn->add_custom(elfcpp::DT_MIPS_BASE_ADDRESS);
8176
8177 // This member holds the number of entries in the .dynsym section.
8178 odyn->add_custom(elfcpp::DT_MIPS_SYMTABNO);
8179
8180 // This member holds the index of the first dynamic symbol
8181 // table entry that corresponds to an entry in the global offset table.
8182 odyn->add_custom(elfcpp::DT_MIPS_GOTSYM);
8183
8184 // This member holds the number of local GOT entries.
8185 odyn->add_constant(elfcpp::DT_MIPS_LOCAL_GOTNO,
8186 this->got_->get_local_gotno());
8187
8188 if (this->plt_ != NULL)
8189 // DT_MIPS_PLTGOT dynamic tag
8190 odyn->add_section_address(elfcpp::DT_MIPS_PLTGOT, this->got_plt_);
8191 }
8192 }
8193
8194// Get the custom dynamic tag value.
8195template<int size, bool big_endian>
8196unsigned int
8197Target_mips<size, big_endian>::do_dynamic_tag_custom_value(elfcpp::DT tag) const
8198{
8199 switch (tag)
8200 {
8201 case elfcpp::DT_MIPS_BASE_ADDRESS:
8202 {
8203 // The base address of the segment.
8204 // At this point, the segment list has been sorted into final order,
8205 // so just return vaddr of the first readable PT_LOAD segment.
8206 Output_segment* seg =
8207 this->layout_->find_output_segment(elfcpp::PT_LOAD, elfcpp::PF_R, 0);
8208 gold_assert(seg != NULL);
8209 return seg->vaddr();
8210 }
8211
8212 case elfcpp::DT_MIPS_SYMTABNO:
8213 // The number of entries in the .dynsym section.
8214 return this->get_dt_mips_symtabno();
8215
8216 case elfcpp::DT_MIPS_GOTSYM:
8217 {
8218 // The index of the first dynamic symbol table entry that corresponds
8219 // to an entry in the GOT.
8220 if (this->got_->first_global_got_dynsym_index() != -1U)
8221 return this->got_->first_global_got_dynsym_index();
8222 else
8223 // In case if we don't have global GOT symbols we default to setting
8224 // DT_MIPS_GOTSYM to the same value as DT_MIPS_SYMTABNO.
8225 return this->get_dt_mips_symtabno();
8226 }
8227
8228 default:
8229 gold_error(_("Unknown dynamic tag 0x%x"), (unsigned int)tag);
8230 }
8231
8232 return (unsigned int)-1;
8233}
8234
8235// Relocate section data.
8236
8237template<int size, bool big_endian>
8238void
8239Target_mips<size, big_endian>::relocate_section(
8240 const Relocate_info<size, big_endian>* relinfo,
8241 unsigned int sh_type,
8242 const unsigned char* prelocs,
8243 size_t reloc_count,
8244 Output_section* output_section,
8245 bool needs_special_offset_handling,
8246 unsigned char* view,
8247 Mips_address address,
8248 section_size_type view_size,
8249 const Reloc_symbol_changes* reloc_symbol_changes)
8250{
8251 typedef Target_mips<size, big_endian> Mips;
8252 typedef typename Target_mips<size, big_endian>::Relocate Mips_relocate;
8253
8254 if (sh_type == elfcpp::SHT_REL)
8255 gold::relocate_section<size, big_endian, Mips, elfcpp::SHT_REL,
8256 Mips_relocate, gold::Default_comdat_behavior>(
8257 relinfo,
8258 this,
8259 prelocs,
8260 reloc_count,
8261 output_section,
8262 needs_special_offset_handling,
8263 view,
8264 address,
8265 view_size,
8266 reloc_symbol_changes);
8267 else if (sh_type == elfcpp::SHT_RELA)
8268 gold::relocate_section<size, big_endian, Mips, elfcpp::SHT_RELA,
8269 Mips_relocate, gold::Default_comdat_behavior>(
8270 relinfo,
8271 this,
8272 prelocs,
8273 reloc_count,
8274 output_section,
8275 needs_special_offset_handling,
8276 view,
8277 address,
8278 view_size,
8279 reloc_symbol_changes);
8280}
8281
8282// Return the size of a relocation while scanning during a relocatable
8283// link.
8284
8285template<int size, bool big_endian>
8286unsigned int
8287Target_mips<size, big_endian>::Relocatable_size_for_reloc::get_size_for_reloc(
8288 unsigned int r_type,
8289 Relobj* object)
8290{
8291 switch (r_type)
8292 {
8293 case elfcpp::R_MIPS_NONE:
8294 case elfcpp::R_MIPS_TLS_DTPMOD64:
8295 case elfcpp::R_MIPS_TLS_DTPREL64:
8296 case elfcpp::R_MIPS_TLS_TPREL64:
8297 return 0;
8298
8299 case elfcpp::R_MIPS_32:
8300 case elfcpp::R_MIPS_TLS_DTPMOD32:
8301 case elfcpp::R_MIPS_TLS_DTPREL32:
8302 case elfcpp::R_MIPS_TLS_TPREL32:
8303 case elfcpp::R_MIPS_REL32:
8304 case elfcpp::R_MIPS_PC32:
8305 case elfcpp::R_MIPS_GPREL32:
8306 case elfcpp::R_MIPS_JALR:
8307 return 4;
8308
8309 case elfcpp::R_MIPS_16:
8310 case elfcpp::R_MIPS_HI16:
8311 case elfcpp::R_MIPS_LO16:
8312 case elfcpp::R_MIPS_GPREL16:
8313 case elfcpp::R_MIPS16_HI16:
8314 case elfcpp::R_MIPS16_LO16:
8315 case elfcpp::R_MIPS_PC16:
8316 case elfcpp::R_MIPS_GOT16:
8317 case elfcpp::R_MIPS16_GOT16:
8318 case elfcpp::R_MIPS_CALL16:
8319 case elfcpp::R_MIPS16_CALL16:
8320 case elfcpp::R_MIPS_GOT_HI16:
8321 case elfcpp::R_MIPS_CALL_HI16:
8322 case elfcpp::R_MIPS_GOT_LO16:
8323 case elfcpp::R_MIPS_CALL_LO16:
8324 case elfcpp::R_MIPS_TLS_DTPREL_HI16:
8325 case elfcpp::R_MIPS_TLS_DTPREL_LO16:
8326 case elfcpp::R_MIPS_TLS_TPREL_HI16:
8327 case elfcpp::R_MIPS_TLS_TPREL_LO16:
8328 case elfcpp::R_MIPS16_GPREL:
8329 case elfcpp::R_MIPS_GOT_DISP:
8330 case elfcpp::R_MIPS_LITERAL:
8331 case elfcpp::R_MIPS_GOT_PAGE:
8332 case elfcpp::R_MIPS_GOT_OFST:
8333 case elfcpp::R_MIPS_TLS_GD:
8334 case elfcpp::R_MIPS_TLS_LDM:
8335 case elfcpp::R_MIPS_TLS_GOTTPREL:
8336 return 2;
8337
8338 // These relocations are not byte sized
8339 case elfcpp::R_MIPS_26:
8340 case elfcpp::R_MIPS16_26:
8341 return 4;
8342
8343 case elfcpp::R_MIPS_COPY:
8344 case elfcpp::R_MIPS_JUMP_SLOT:
8345 object->error(_("unexpected reloc %u in object file"), r_type);
8346 return 0;
8347
8348 default:
8349 object->error(_("unsupported reloc %u in object file"), r_type);
8350 return 0;
8351 }
8352}
8353
8354// Scan the relocs during a relocatable link.
8355
8356template<int size, bool big_endian>
8357void
8358Target_mips<size, big_endian>::scan_relocatable_relocs(
8359 Symbol_table* symtab,
8360 Layout* layout,
8361 Sized_relobj_file<size, big_endian>* object,
8362 unsigned int data_shndx,
8363 unsigned int sh_type,
8364 const unsigned char* prelocs,
8365 size_t reloc_count,
8366 Output_section* output_section,
8367 bool needs_special_offset_handling,
8368 size_t local_symbol_count,
8369 const unsigned char* plocal_symbols,
8370 Relocatable_relocs* rr)
8371{
8372 gold_assert(sh_type == elfcpp::SHT_REL);
8373
8374 typedef Mips_scan_relocatable_relocs<big_endian, elfcpp::SHT_REL,
8375 Relocatable_size_for_reloc> Scan_relocatable_relocs;
8376
8377 gold::scan_relocatable_relocs<size, big_endian, elfcpp::SHT_REL,
8378 Scan_relocatable_relocs>(
8379 symtab,
8380 layout,
8381 object,
8382 data_shndx,
8383 prelocs,
8384 reloc_count,
8385 output_section,
8386 needs_special_offset_handling,
8387 local_symbol_count,
8388 plocal_symbols,
8389 rr);
8390}
8391
8392// Emit relocations for a section.
8393
8394template<int size, bool big_endian>
8395void
8396Target_mips<size, big_endian>::relocate_relocs(
8397 const Relocate_info<size, big_endian>* relinfo,
8398 unsigned int sh_type,
8399 const unsigned char* prelocs,
8400 size_t reloc_count,
8401 Output_section* output_section,
8402 typename elfcpp::Elf_types<size>::Elf_Off
8403 offset_in_output_section,
8404 const Relocatable_relocs* rr,
8405 unsigned char* view,
8406 Mips_address view_address,
8407 section_size_type view_size,
8408 unsigned char* reloc_view,
8409 section_size_type reloc_view_size)
8410{
8411 gold_assert(sh_type == elfcpp::SHT_REL);
8412
8413 gold::relocate_relocs<size, big_endian, elfcpp::SHT_REL>(
8414 relinfo,
8415 prelocs,
8416 reloc_count,
8417 output_section,
8418 offset_in_output_section,
8419 rr,
8420 view,
8421 view_address,
8422 view_size,
8423 reloc_view,
8424 reloc_view_size);
8425}
8426
8427// Perform target-specific processing in a relocatable link. This is
8428// only used if we use the relocation strategy RELOC_SPECIAL.
8429
8430template<int size, bool big_endian>
8431void
8432Target_mips<size, big_endian>::relocate_special_relocatable(
8433 const Relocate_info<size, big_endian>* relinfo,
8434 unsigned int sh_type,
8435 const unsigned char* preloc_in,
8436 size_t relnum,
8437 Output_section* output_section,
8438 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
8439 unsigned char* view,
8440 Mips_address view_address,
8441 section_size_type,
8442 unsigned char* preloc_out)
8443{
8444 // We can only handle REL type relocation sections.
8445 gold_assert(sh_type == elfcpp::SHT_REL);
8446
8447 typedef typename Reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc
8448 Reltype;
8449 typedef typename Reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc_write
8450 Reltype_write;
8451
8452 typedef Mips_relocate_functions<size, big_endian> Reloc_funcs;
8453
8454 const Mips_address invalid_address = static_cast<Mips_address>(0) - 1;
8455
8456 Mips_relobj<size, big_endian>* object =
8457 Mips_relobj<size, big_endian>::as_mips_relobj(relinfo->object);
8458 const unsigned int local_count = object->local_symbol_count();
8459
8460 Reltype reloc(preloc_in);
8461 Reltype_write reloc_write(preloc_out);
8462
8463 elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
8464 const unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
8465 const unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
8466
8467 // Get the new symbol index.
8468 // We only use RELOC_SPECIAL strategy in local relocations.
8469 gold_assert(r_sym < local_count);
8470
8471 // We are adjusting a section symbol. We need to find
8472 // the symbol table index of the section symbol for
8473 // the output section corresponding to input section
8474 // in which this symbol is defined.
8475 bool is_ordinary;
8476 unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
8477 gold_assert(is_ordinary);
8478 Output_section* os = object->output_section(shndx);
8479 gold_assert(os != NULL);
8480 gold_assert(os->needs_symtab_index());
8481 unsigned int new_symndx = os->symtab_index();
8482
8483 // Get the new offset--the location in the output section where
8484 // this relocation should be applied.
8485
8486 Mips_address offset = reloc.get_r_offset();
8487 Mips_address new_offset;
8488 if (offset_in_output_section != invalid_address)
8489 new_offset = offset + offset_in_output_section;
8490 else
8491 {
8492 section_offset_type sot_offset =
8493 convert_types<section_offset_type, Mips_address>(offset);
8494 section_offset_type new_sot_offset =
8495 output_section->output_offset(object, relinfo->data_shndx,
8496 sot_offset);
8497 gold_assert(new_sot_offset != -1);
8498 new_offset = new_sot_offset;
8499 }
8500
8501 // In an object file, r_offset is an offset within the section.
8502 // In an executable or dynamic object, generated by
8503 // --emit-relocs, r_offset is an absolute address.
8504 if (!parameters->options().relocatable())
8505 {
8506 new_offset += view_address;
8507 if (offset_in_output_section != invalid_address)
8508 new_offset -= offset_in_output_section;
8509 }
8510
8511 reloc_write.put_r_offset(new_offset);
8512 reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
8513
8514 // Handle the reloc addend.
8515 // The relocation uses a section symbol in the input file.
8516 // We are adjusting it to use a section symbol in the output
8517 // file. The input section symbol refers to some address in
8518 // the input section. We need the relocation in the output
8519 // file to refer to that same address. This adjustment to
8520 // the addend is the same calculation we use for a simple
8521 // absolute relocation for the input section symbol.
8522
8523 const Symbol_value<size>* psymval = object->local_symbol(r_sym);
8524
8525 unsigned char* paddend = view + offset;
8526 typename Reloc_funcs::Status reloc_status = Reloc_funcs::STATUS_OKAY;
8527 switch (r_type)
8528 {
8529 case elfcpp::R_MIPS_26:
8530 reloc_status = Reloc_funcs::rel26(paddend, object, psymval,
8531 offset_in_output_section, true, 0, sh_type == elfcpp::SHT_REL, NULL,
8532 false /*TODO(sasa): cross mode jump*/, r_type, this->jal_to_bal());
8533 break;
8534
8535 default:
8536 gold_unreachable();
8537 }
8538
8539 // Report any errors.
8540 switch (reloc_status)
8541 {
8542 case Reloc_funcs::STATUS_OKAY:
8543 break;
8544 case Reloc_funcs::STATUS_OVERFLOW:
8545 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
8546 _("relocation overflow"));
8547 break;
8548 case Reloc_funcs::STATUS_BAD_RELOC:
8549 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
8550 _("unexpected opcode while processing relocation"));
8551 break;
8552 default:
8553 gold_unreachable();
8554 }
8555}
8556
8557// Optimize the TLS relocation type based on what we know about the
8558// symbol. IS_FINAL is true if the final address of this symbol is
8559// known at link time.
8560
8561template<int size, bool big_endian>
8562tls::Tls_optimization
8563Target_mips<size, big_endian>::optimize_tls_reloc(bool, int)
8564{
8565 // FIXME: Currently we do not do any TLS optimization.
8566 return tls::TLSOPT_NONE;
8567}
8568
8569// Scan a relocation for a local symbol.
8570
8571template<int size, bool big_endian>
8572inline void
8573Target_mips<size, big_endian>::Scan::local(
8574 Symbol_table* symtab,
8575 Layout* layout,
8576 Target_mips<size, big_endian>* target,
8577 Sized_relobj_file<size, big_endian>* object,
8578 unsigned int data_shndx,
8579 Output_section* output_section,
8580 const elfcpp::Rela<size, big_endian>* rela,
8581 const elfcpp::Rel<size, big_endian>* rel,
8582 unsigned int rel_type,
8583 unsigned int r_type,
8584 const elfcpp::Sym<size, big_endian>& lsym,
8585 bool is_discarded)
8586{
8587 if (is_discarded)
8588 return;
8589
8590 Mips_address r_offset;
8591 typename elfcpp::Elf_types<size>::Elf_WXword r_info;
8592 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
8593
8594 if (rel_type == elfcpp::SHT_RELA)
8595 {
8596 r_offset = rela->get_r_offset();
8597 r_info = rela->get_r_info();
8598 r_addend = rela->get_r_addend();
8599 }
8600 else
8601 {
8602 r_offset = rel->get_r_offset();
8603 r_info = rel->get_r_info();
8604 r_addend = 0;
8605 }
8606
8607 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
8608 Mips_relobj<size, big_endian>* mips_obj =
8609 Mips_relobj<size, big_endian>::as_mips_relobj(object);
8610
8611 if (mips_obj->is_mips16_stub_section(data_shndx))
8612 {
8613 mips_obj->get_mips16_stub_section(data_shndx)
8614 ->new_local_reloc_found(r_type, r_sym);
8615 }
8616
8617 if (r_type == elfcpp::R_MIPS_NONE)
8618 // R_MIPS_NONE is used in mips16 stub sections, to define the target of the
8619 // mips16 stub.
8620 return;
8621
8622 if (!mips16_call_reloc(r_type)
8623 && !mips_obj->section_allows_mips16_refs(data_shndx))
8624 // This reloc would need to refer to a MIPS16 hard-float stub, if
8625 // there is one. We ignore MIPS16 stub sections and .pdr section when
8626 // looking for relocs that would need to refer to MIPS16 stubs.
8627 mips_obj->add_local_non_16bit_call(r_sym);
8628
8629 if (r_type == elfcpp::R_MIPS16_26
8630 && !mips_obj->section_allows_mips16_refs(data_shndx))
8631 mips_obj->add_local_16bit_call(r_sym);
8632
8633 switch (r_type)
8634 {
8635 case elfcpp::R_MIPS_GOT16:
8636 case elfcpp::R_MIPS_CALL16:
8637 case elfcpp::R_MIPS_CALL_HI16:
8638 case elfcpp::R_MIPS_CALL_LO16:
8639 case elfcpp::R_MIPS_GOT_HI16:
8640 case elfcpp::R_MIPS_GOT_LO16:
8641 case elfcpp::R_MIPS_GOT_PAGE:
8642 case elfcpp::R_MIPS_GOT_OFST:
8643 case elfcpp::R_MIPS_GOT_DISP:
8644 case elfcpp::R_MIPS_TLS_GOTTPREL:
8645 case elfcpp::R_MIPS_TLS_GD:
8646 case elfcpp::R_MIPS_TLS_LDM:
8647 case elfcpp::R_MIPS16_GOT16:
8648 case elfcpp::R_MIPS16_CALL16:
8649 case elfcpp::R_MIPS16_TLS_GOTTPREL:
8650 case elfcpp::R_MIPS16_TLS_GD:
8651 case elfcpp::R_MIPS16_TLS_LDM:
8652 case elfcpp::R_MICROMIPS_GOT16:
8653 case elfcpp::R_MICROMIPS_CALL16:
8654 case elfcpp::R_MICROMIPS_CALL_HI16:
8655 case elfcpp::R_MICROMIPS_CALL_LO16:
8656 case elfcpp::R_MICROMIPS_GOT_HI16:
8657 case elfcpp::R_MICROMIPS_GOT_LO16:
8658 case elfcpp::R_MICROMIPS_GOT_PAGE:
8659 case elfcpp::R_MICROMIPS_GOT_OFST:
8660 case elfcpp::R_MICROMIPS_GOT_DISP:
8661 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
8662 case elfcpp::R_MICROMIPS_TLS_GD:
8663 case elfcpp::R_MICROMIPS_TLS_LDM:
8664 // We need a GOT section.
8665 target->got_section(symtab, layout);
8666 break;
8667
8668 default:
8669 break;
8670 }
8671
8672 if (call_lo16_reloc(r_type)
8673 || got_lo16_reloc(r_type)
8674 || got_disp_reloc(r_type))
8675 {
8676 // We may need a local GOT entry for this relocation. We
8677 // don't count R_MIPS_GOT_PAGE because we can estimate the
8678 // maximum number of pages needed by looking at the size of
8679 // the segment. Similar comments apply to R_MIPS*_GOT16 and
8680 // R_MIPS*_CALL16. We don't count R_MIPS_GOT_HI16, or
8681 // R_MIPS_CALL_HI16 because these are always followed by an
8682 // R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16.
8683 Mips_output_data_got<size, big_endian>* got =
8684 target->got_section(symtab, layout);
8685 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
8686 got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type, -1U);
8687 }
8688
8689 switch (r_type)
8690 {
8691 case elfcpp::R_MIPS_CALL16:
8692 case elfcpp::R_MIPS16_CALL16:
8693 case elfcpp::R_MICROMIPS_CALL16:
8694 gold_error(_("CALL16 reloc at 0x%lx not against global symbol "),
8695 (unsigned long)r_offset);
8696 return;
8697
8698 case elfcpp::R_MIPS_GOT_PAGE:
8699 case elfcpp::R_MICROMIPS_GOT_PAGE:
8700 case elfcpp::R_MIPS16_GOT16:
8701 case elfcpp::R_MIPS_GOT16:
8702 case elfcpp::R_MIPS_GOT_HI16:
8703 case elfcpp::R_MIPS_GOT_LO16:
8704 case elfcpp::R_MICROMIPS_GOT16:
8705 case elfcpp::R_MICROMIPS_GOT_HI16:
8706 case elfcpp::R_MICROMIPS_GOT_LO16:
8707 {
8708 // This relocation needs a page entry in the GOT.
8709 // Get the section contents.
8710 section_size_type view_size = 0;
8711 const unsigned char* view = object->section_contents(data_shndx,
8712 &view_size, false);
8713 view += r_offset;
8714
8715 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
8716 Valtype32 addend = (rel_type == elfcpp::SHT_REL ? val & 0xffff
8717 : r_addend);
8718
8719 if (rel_type == elfcpp::SHT_REL && got16_reloc(r_type))
8720 target->got16_addends_.push_back(got16_addend<size, big_endian>(
8721 object, data_shndx, r_type, r_sym, addend));
8722 else
8723 target->got_section()->record_got_page_entry(mips_obj, r_sym, addend);
8724 break;
8725 }
8726
8727 case elfcpp::R_MIPS_HI16:
8728 case elfcpp::R_MIPS16_HI16:
8729 case elfcpp::R_MICROMIPS_HI16:
8730 // Record the reloc so that we can check whether the corresponding LO16
8731 // part exists.
8732 if (rel_type == elfcpp::SHT_REL)
8733 target->got16_addends_.push_back(got16_addend<size, big_endian>(
8734 object, data_shndx, r_type, r_sym, 0));
8735 break;
8736
8737 case elfcpp::R_MIPS_LO16:
8738 case elfcpp::R_MIPS16_LO16:
8739 case elfcpp::R_MICROMIPS_LO16:
8740 {
8741 if (rel_type != elfcpp::SHT_REL)
8742 break;
8743
8744 // Find corresponding GOT16/HI16 relocation.
8745
8746 // According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8747 // be immediately following. However, for the IRIX6 ABI, the next
8748 // relocation may be a composed relocation consisting of several
8749 // relocations for the same address. In that case, the R_MIPS_LO16
8750 // relocation may occur as one of these. We permit a similar
8751 // extension in general, as that is useful for GCC.
8752
8753 // In some cases GCC dead code elimination removes the LO16 but
8754 // keeps the corresponding HI16. This is strictly speaking a
8755 // violation of the ABI but not immediately harmful.
8756
8757 typename std::list<got16_addend<size, big_endian> >::iterator it =
8758 target->got16_addends_.begin();
8759 while (it != target->got16_addends_.end())
8760 {
8761 got16_addend<size, big_endian> _got16_addend = *it;
8762
8763 // TODO(sasa): Split got16_addends_ list into two lists - one for
8764 // GOT16 relocs and the other for HI16 relocs.
8765
8766 // Report an error if we find HI16 or GOT16 reloc from the
8767 // previous section without the matching LO16 part.
8768 if (_got16_addend.object != object
8769 || _got16_addend.shndx != data_shndx)
8770 {
8771 gold_error("Can't find matching LO16 reloc");
8772 break;
8773 }
8774
8775 if (_got16_addend.r_sym != r_sym
8776 || !is_matching_lo16_reloc(_got16_addend.r_type, r_type))
8777 {
8778 ++it;
8779 continue;
8780 }
8781
8782 // We found a matching HI16 or GOT16 reloc for this LO16 reloc.
8783 // For GOT16, we need to calculate combined addend and record GOT page
8784 // entry.
8785 if (got16_reloc(_got16_addend.r_type))
8786 {
8787
8788 section_size_type view_size = 0;
8789 const unsigned char* view = object->section_contents(data_shndx,
8790 &view_size,
8791 false);
8792 view += r_offset;
8793
8794 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
8795 int32_t addend = Bits<16>::sign_extend32(val & 0xffff);
8796
8797 addend = (_got16_addend.addend << 16) + addend;
8798 target->got_section()->record_got_page_entry(mips_obj, r_sym,
8799 addend);
8800 }
8801
8802 it = target->got16_addends_.erase(it);
8803 }
8804 break;
8805 }
8806 }
8807
8808 switch (r_type)
8809 {
8810 case elfcpp::R_MIPS_32:
8811 case elfcpp::R_MIPS_REL32:
8812 case elfcpp::R_MIPS_64:
8813 {
8814 if (parameters->options().output_is_position_independent())
8815 {
8816 // If building a shared library (or a position-independent
8817 // executable), we need to create a dynamic relocation for
8818 // this location.
8819 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8820 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
8821 rel_dyn->add_symbolless_local_addend(object, r_sym,
8822 elfcpp::R_MIPS_REL32,
8823 output_section, data_shndx,
8824 r_offset);
8825 }
8826 break;
8827 }
8828
8829 case elfcpp::R_MIPS_TLS_GOTTPREL:
8830 case elfcpp::R_MIPS16_TLS_GOTTPREL:
8831 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
8832 case elfcpp::R_MIPS_TLS_LDM:
8833 case elfcpp::R_MIPS16_TLS_LDM:
8834 case elfcpp::R_MICROMIPS_TLS_LDM:
8835 case elfcpp::R_MIPS_TLS_GD:
8836 case elfcpp::R_MIPS16_TLS_GD:
8837 case elfcpp::R_MICROMIPS_TLS_GD:
8838 {
8839 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
8840 bool output_is_shared = parameters->options().shared();
8841 const tls::Tls_optimization optimized_type
8842 = Target_mips<size, big_endian>::optimize_tls_reloc(
8843 !output_is_shared, r_type);
8844 switch (r_type)
8845 {
8846 case elfcpp::R_MIPS_TLS_GD:
8847 case elfcpp::R_MIPS16_TLS_GD:
8848 case elfcpp::R_MICROMIPS_TLS_GD:
8849 if (optimized_type == tls::TLSOPT_NONE)
8850 {
8851 // Create a pair of GOT entries for the module index and
8852 // dtv-relative offset.
8853 Mips_output_data_got<size, big_endian>* got =
8854 target->got_section(symtab, layout);
8855 unsigned int shndx = lsym.get_st_shndx();
8856 bool is_ordinary;
8857 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
8858 if (!is_ordinary)
8859 {
8860 object->error(_("local symbol %u has bad shndx %u"),
8861 r_sym, shndx);
8862 break;
8863 }
8864 got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type,
8865 shndx);
8866 }
8867 else
8868 {
8869 // FIXME: TLS optimization not supported yet.
8870 gold_unreachable();
8871 }
8872 break;
8873
8874 case elfcpp::R_MIPS_TLS_LDM:
8875 case elfcpp::R_MIPS16_TLS_LDM:
8876 case elfcpp::R_MICROMIPS_TLS_LDM:
8877 if (optimized_type == tls::TLSOPT_NONE)
8878 {
8879 // We always record LDM symbols as local with index 0.
8880 target->got_section()->record_local_got_symbol(mips_obj, 0,
8881 r_addend, r_type,
8882 -1U);
8883 }
8884 else
8885 {
8886 // FIXME: TLS optimization not supported yet.
8887 gold_unreachable();
8888 }
8889 break;
8890 case elfcpp::R_MIPS_TLS_GOTTPREL:
8891 case elfcpp::R_MIPS16_TLS_GOTTPREL:
8892 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
8893 layout->set_has_static_tls();
8894 if (optimized_type == tls::TLSOPT_NONE)
8895 {
8896 // Create a GOT entry for the tp-relative offset.
8897 Mips_output_data_got<size, big_endian>* got =
8898 target->got_section(symtab, layout);
8899 got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type,
8900 -1U);
8901 }
8902 else
8903 {
8904 // FIXME: TLS optimization not supported yet.
8905 gold_unreachable();
8906 }
8907 break;
8908
8909 default:
8910 gold_unreachable();
8911 }
8912 }
8913 break;
8914
8915 default:
8916 break;
8917 }
8918
8919 // Refuse some position-dependent relocations when creating a
8920 // shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8921 // not PIC, but we can create dynamic relocations and the result
8922 // will be fine. Also do not refuse R_MIPS_LO16, which can be
8923 // combined with R_MIPS_GOT16.
8924 if (parameters->options().shared())
8925 {
8926 switch (r_type)
8927 {
8928 case elfcpp::R_MIPS16_HI16:
8929 case elfcpp::R_MIPS_HI16:
8930 case elfcpp::R_MICROMIPS_HI16:
8931 // Don't refuse a high part relocation if it's against
8932 // no symbol (e.g. part of a compound relocation).
8933 if (r_sym == 0)
8934 break;
8935
8936 // FALLTHROUGH
8937
8938 case elfcpp::R_MIPS16_26:
8939 case elfcpp::R_MIPS_26:
8940 case elfcpp::R_MICROMIPS_26_S1:
8941 gold_error(_("%s: relocation %u against `%s' can not be used when "
8942 "making a shared object; recompile with -fPIC"),
8943 object->name().c_str(), r_type, "a local symbol");
8944 default:
8945 break;
8946 }
8947 }
8948}
8949
8950template<int size, bool big_endian>
8951inline void
8952Target_mips<size, big_endian>::Scan::local(
8953 Symbol_table* symtab,
8954 Layout* layout,
8955 Target_mips<size, big_endian>* target,
8956 Sized_relobj_file<size, big_endian>* object,
8957 unsigned int data_shndx,
8958 Output_section* output_section,
8959 const elfcpp::Rel<size, big_endian>& reloc,
8960 unsigned int r_type,
8961 const elfcpp::Sym<size, big_endian>& lsym,
8962 bool is_discarded)
8963{
8964 if (is_discarded)
8965 return;
8966
8967 local(
8968 symtab,
8969 layout,
8970 target,
8971 object,
8972 data_shndx,
8973 output_section,
8974 (const elfcpp::Rela<size, big_endian>*) NULL,
8975 &reloc,
8976 elfcpp::SHT_REL,
8977 r_type,
8978 lsym, is_discarded);
8979}
8980
8981
8982template<int size, bool big_endian>
8983inline void
8984Target_mips<size, big_endian>::Scan::local(
8985 Symbol_table* symtab,
8986 Layout* layout,
8987 Target_mips<size, big_endian>* target,
8988 Sized_relobj_file<size, big_endian>* object,
8989 unsigned int data_shndx,
8990 Output_section* output_section,
8991 const elfcpp::Rela<size, big_endian>& reloc,
8992 unsigned int r_type,
8993 const elfcpp::Sym<size, big_endian>& lsym,
8994 bool is_discarded)
8995{
8996 if (is_discarded)
8997 return;
8998
8999 local(
9000 symtab,
9001 layout,
9002 target,
9003 object,
9004 data_shndx,
9005 output_section,
9006 &reloc,
9007 (const elfcpp::Rel<size, big_endian>*) NULL,
9008 elfcpp::SHT_RELA,
9009 r_type,
9010 lsym, is_discarded);
9011}
9012
9013// Scan a relocation for a global symbol.
9014
9015template<int size, bool big_endian>
9016inline void
9017Target_mips<size, big_endian>::Scan::global(
9018 Symbol_table* symtab,
9019 Layout* layout,
9020 Target_mips<size, big_endian>* target,
9021 Sized_relobj_file<size, big_endian>* object,
9022 unsigned int data_shndx,
9023 Output_section* output_section,
9024 const elfcpp::Rela<size, big_endian>* rela,
9025 const elfcpp::Rel<size, big_endian>* rel,
9026 unsigned int rel_type,
9027 unsigned int r_type,
9028 Symbol* gsym)
9029{
9030 Mips_address r_offset;
9031 typename elfcpp::Elf_types<size>::Elf_WXword r_info;
9032 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
9033
9034 if (rel_type == elfcpp::SHT_RELA)
9035 {
9036 r_offset = rela->get_r_offset();
9037 r_info = rela->get_r_info();
9038 r_addend = rela->get_r_addend();
9039 }
9040 else
9041 {
9042 r_offset = rel->get_r_offset();
9043 r_info = rel->get_r_info();
9044 r_addend = 0;
9045 }
9046
9047 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
9048 Mips_relobj<size, big_endian>* mips_obj =
9049 Mips_relobj<size, big_endian>::as_mips_relobj(object);
9050 Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
9051
9052 if (mips_obj->is_mips16_stub_section(data_shndx))
9053 {
9054 mips_obj->get_mips16_stub_section(data_shndx)
9055 ->new_global_reloc_found(r_type, mips_sym);
9056 }
9057
9058 if (r_type == elfcpp::R_MIPS_NONE)
9059 // R_MIPS_NONE is used in mips16 stub sections, to define the target of the
9060 // mips16 stub.
9061 return;
9062
9063 if (!mips16_call_reloc(r_type)
9064 && !mips_obj->section_allows_mips16_refs(data_shndx))
9065 // This reloc would need to refer to a MIPS16 hard-float stub, if
9066 // there is one. We ignore MIPS16 stub sections and .pdr section when
9067 // looking for relocs that would need to refer to MIPS16 stubs.
9068 mips_sym->set_need_fn_stub();
9069
9070 // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
9071 // section. We check here to avoid creating a dynamic reloc against
9072 // _GLOBAL_OFFSET_TABLE_.
9073 if (!target->has_got_section()
9074 && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
9075 target->got_section(symtab, layout);
9076
9077 // We need PLT entries if there are static-only relocations against
9078 // an externally-defined function. This can technically occur for
9079 // shared libraries if there are branches to the symbol, although it
9080 // is unlikely that this will be used in practice due to the short
9081 // ranges involved. It can occur for any relative or absolute relocation
9082 // in executables; in that case, the PLT entry becomes the function's
9083 // canonical address.
9084 bool static_reloc = false;
9085
9086 // Set CAN_MAKE_DYNAMIC to true if we can convert this
9087 // relocation into a dynamic one.
9088 bool can_make_dynamic = false;
9089 switch (r_type)
9090 {
9091 case elfcpp::R_MIPS_GOT16:
9092 case elfcpp::R_MIPS_CALL16:
9093 case elfcpp::R_MIPS_CALL_HI16:
9094 case elfcpp::R_MIPS_CALL_LO16:
9095 case elfcpp::R_MIPS_GOT_HI16:
9096 case elfcpp::R_MIPS_GOT_LO16:
9097 case elfcpp::R_MIPS_GOT_PAGE:
9098 case elfcpp::R_MIPS_GOT_OFST:
9099 case elfcpp::R_MIPS_GOT_DISP:
9100 case elfcpp::R_MIPS_TLS_GOTTPREL:
9101 case elfcpp::R_MIPS_TLS_GD:
9102 case elfcpp::R_MIPS_TLS_LDM:
9103 case elfcpp::R_MIPS16_GOT16:
9104 case elfcpp::R_MIPS16_CALL16:
9105 case elfcpp::R_MIPS16_TLS_GOTTPREL:
9106 case elfcpp::R_MIPS16_TLS_GD:
9107 case elfcpp::R_MIPS16_TLS_LDM:
9108 case elfcpp::R_MICROMIPS_GOT16:
9109 case elfcpp::R_MICROMIPS_CALL16:
9110 case elfcpp::R_MICROMIPS_CALL_HI16:
9111 case elfcpp::R_MICROMIPS_CALL_LO16:
9112 case elfcpp::R_MICROMIPS_GOT_HI16:
9113 case elfcpp::R_MICROMIPS_GOT_LO16:
9114 case elfcpp::R_MICROMIPS_GOT_PAGE:
9115 case elfcpp::R_MICROMIPS_GOT_OFST:
9116 case elfcpp::R_MICROMIPS_GOT_DISP:
9117 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
9118 case elfcpp::R_MICROMIPS_TLS_GD:
9119 case elfcpp::R_MICROMIPS_TLS_LDM:
9120 // We need a GOT section.
9121 target->got_section(symtab, layout);
9122 break;
9123
9124 // This is just a hint; it can safely be ignored. Don't set
9125 // has_static_relocs for the corresponding symbol.
9126 case elfcpp::R_MIPS_JALR:
9127 case elfcpp::R_MICROMIPS_JALR:
9128 break;
9129
9130 case elfcpp::R_MIPS_GPREL16:
9131 case elfcpp::R_MIPS_GPREL32:
9132 case elfcpp::R_MIPS16_GPREL:
9133 case elfcpp::R_MICROMIPS_GPREL16:
9134 // TODO(sasa)
9135 // GP-relative relocations always resolve to a definition in a
9136 // regular input file, ignoring the one-definition rule. This is
9137 // important for the GP setup sequence in NewABI code, which
9138 // always resolves to a local function even if other relocations
9139 // against the symbol wouldn't.
9140 //constrain_symbol_p = FALSE;
9141 break;
9142
9143 case elfcpp::R_MIPS_32:
9144 case elfcpp::R_MIPS_REL32:
9145 case elfcpp::R_MIPS_64:
9146 if (parameters->options().shared()
9147 || strcmp(gsym->name(), "__gnu_local_gp") != 0)
9148 {
9149 if (r_type != elfcpp::R_MIPS_REL32)
9150 {
9151 static_reloc = true;
9152 mips_sym->set_pointer_equality_needed();
9153 }
9154 can_make_dynamic = true;
9155 break;
9156 }
9157 // Fall through.
9158
9159 default:
9160 // Most static relocations require pointer equality, except
9161 // for branches.
9162 mips_sym->set_pointer_equality_needed();
9163
9164 // Fall through.
9165
9166 case elfcpp::R_MIPS_26:
9167 case elfcpp::R_MIPS_PC16:
9168 case elfcpp::R_MIPS16_26:
9169 case elfcpp::R_MICROMIPS_26_S1:
9170 case elfcpp::R_MICROMIPS_PC7_S1:
9171 case elfcpp::R_MICROMIPS_PC10_S1:
9172 case elfcpp::R_MICROMIPS_PC16_S1:
9173 case elfcpp::R_MICROMIPS_PC23_S2:
9174 static_reloc = true;
9175 mips_sym->set_has_static_relocs();
9176 break;
9177 }
9178
9179 // If there are call relocations against an externally-defined symbol,
9180 // see whether we can create a MIPS lazy-binding stub for it. We can
9181 // only do this if all references to the function are through call
9182 // relocations, and in that case, the traditional lazy-binding stubs
9183 // are much more efficient than PLT entries.
9184 switch (r_type)
9185 {
9186 case elfcpp::R_MIPS16_CALL16:
9187 case elfcpp::R_MIPS_CALL16:
9188 case elfcpp::R_MIPS_CALL_HI16:
9189 case elfcpp::R_MIPS_CALL_LO16:
9190 case elfcpp::R_MIPS_JALR:
9191 case elfcpp::R_MICROMIPS_CALL16:
9192 case elfcpp::R_MICROMIPS_CALL_HI16:
9193 case elfcpp::R_MICROMIPS_CALL_LO16:
9194 case elfcpp::R_MICROMIPS_JALR:
9195 if (!mips_sym->no_lazy_stub())
9196 {
9197 if ((mips_sym->needs_plt_entry() && mips_sym->is_from_dynobj())
9198 // Calls from shared objects to undefined symbols of type
9199 // STT_NOTYPE need lazy-binding stub.
9200 || (mips_sym->is_undefined() && parameters->options().shared()))
9201 target->mips_stubs_section(layout)->make_entry(mips_sym);
9202 }
9203 break;
9204 default:
9205 {
9206 // We must not create a stub for a symbol that has relocations
9207 // related to taking the function's address.
9208 mips_sym->set_no_lazy_stub();
9209 target->remove_lazy_stub_entry(mips_sym);
9210 break;
9211 }
9212 }
9213
9214 if (relocation_needs_la25_stub<size, big_endian>(mips_obj, r_type,
9215 mips_sym->is_mips16()))
9216 mips_sym->set_has_nonpic_branches();
9217
9218 // R_MIPS_HI16 against _gp_disp is used for $gp setup,
9219 // and has a special meaning.
9220 bool gp_disp_against_hi16 = (!mips_obj->is_newabi()
9221 && strcmp(gsym->name(), "_gp_disp") == 0
9222 && (hi16_reloc(r_type) || lo16_reloc(r_type)));
9223 if (static_reloc && gsym->needs_plt_entry())
9224 {
9225 target->make_plt_entry(symtab, layout, mips_sym, r_type);
9226
9227 // Since this is not a PC-relative relocation, we may be
9228 // taking the address of a function. In that case we need to
9229 // set the entry in the dynamic symbol table to the address of
9230 // the PLT entry.
9231 if (gsym->is_from_dynobj() && !parameters->options().shared())
9232 {
9233 gsym->set_needs_dynsym_value();
9234 // We distinguish between PLT entries and lazy-binding stubs by
9235 // giving the former an st_other value of STO_MIPS_PLT. Set the
9236 // flag if there are any relocations in the binary where pointer
9237 // equality matters.
9238 if (mips_sym->pointer_equality_needed())
9239 mips_sym->set_mips_plt();
9240 }
9241 }
9242 if ((static_reloc || can_make_dynamic) && !gp_disp_against_hi16)
9243 {
9244 // Absolute addressing relocations.
9245 // Make a dynamic relocation if necessary.
9246 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
9247 {
9248 if (gsym->may_need_copy_reloc())
9249 {
9250 target->copy_reloc(symtab, layout, object,
9251 data_shndx, output_section, gsym, *rel);
9252 }
9253 else if (can_make_dynamic)
9254 {
9255 // Create .rel.dyn section.
9256 target->rel_dyn_section(layout);
9257 target->dynamic_reloc(mips_sym, elfcpp::R_MIPS_REL32, mips_obj,
9258 data_shndx, output_section, r_offset);
9259 }
9260 else
9261 gold_error(_("non-dynamic relocations refer to dynamic symbol %s"),
9262 gsym->name());
9263 }
9264 }
9265
9266 bool for_call = false;
9267 switch (r_type)
9268 {
9269 case elfcpp::R_MIPS_CALL16:
9270 case elfcpp::R_MIPS16_CALL16:
9271 case elfcpp::R_MICROMIPS_CALL16:
9272 case elfcpp::R_MIPS_CALL_HI16:
9273 case elfcpp::R_MIPS_CALL_LO16:
9274 case elfcpp::R_MICROMIPS_CALL_HI16:
9275 case elfcpp::R_MICROMIPS_CALL_LO16:
9276 for_call = true;
9277 // Fall through.
9278
9279 case elfcpp::R_MIPS16_GOT16:
9280 case elfcpp::R_MIPS_GOT16:
9281 case elfcpp::R_MIPS_GOT_HI16:
9282 case elfcpp::R_MIPS_GOT_LO16:
9283 case elfcpp::R_MICROMIPS_GOT16:
9284 case elfcpp::R_MICROMIPS_GOT_HI16:
9285 case elfcpp::R_MICROMIPS_GOT_LO16:
9286 case elfcpp::R_MIPS_GOT_DISP:
9287 case elfcpp::R_MICROMIPS_GOT_DISP:
9288 {
9289 // The symbol requires a GOT entry.
9290 Mips_output_data_got<size, big_endian>* got =
9291 target->got_section(symtab, layout);
9292 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
9293 for_call);
9294 mips_sym->set_global_got_area(GGA_NORMAL);
9295 }
9296 break;
9297
9298 case elfcpp::R_MIPS_GOT_PAGE:
9299 case elfcpp::R_MICROMIPS_GOT_PAGE:
9300 {
9301 // This relocation needs a page entry in the GOT.
9302 // Get the section contents.
9303 section_size_type view_size = 0;
9304 const unsigned char* view =
9305 object->section_contents(data_shndx, &view_size, false);
9306 view += r_offset;
9307
9308 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
9309 Valtype32 addend = (rel_type == elfcpp::SHT_REL ? val & 0xffff
9310 : r_addend);
9311 Mips_output_data_got<size, big_endian>* got =
9312 target->got_section(symtab, layout);
9313 got->record_got_page_entry(mips_obj, r_sym, addend);
9314
9315 // If this is a global, overridable symbol, GOT_PAGE will
9316 // decay to GOT_DISP, so we'll need a GOT entry for it.
9317 bool def_regular = (mips_sym->source() == Symbol::FROM_OBJECT
9318 && !mips_sym->object()->is_dynamic()
9319 && !mips_sym->is_undefined());
9320 if (!def_regular
9321 || (parameters->options().output_is_position_independent()
9322 && !parameters->options().Bsymbolic()
9323 && !mips_sym->is_forced_local()))
9324 {
9325 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
9326 for_call);
9327 mips_sym->set_global_got_area(GGA_NORMAL);
9328 }
9329 }
9330 break;
9331
9332 case elfcpp::R_MIPS_TLS_GOTTPREL:
9333 case elfcpp::R_MIPS16_TLS_GOTTPREL:
9334 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
9335 case elfcpp::R_MIPS_TLS_LDM:
9336 case elfcpp::R_MIPS16_TLS_LDM:
9337 case elfcpp::R_MICROMIPS_TLS_LDM:
9338 case elfcpp::R_MIPS_TLS_GD:
9339 case elfcpp::R_MIPS16_TLS_GD:
9340 case elfcpp::R_MICROMIPS_TLS_GD:
9341 {
9342 const bool is_final = gsym->final_value_is_known();
9343 const tls::Tls_optimization optimized_type =
9344 Target_mips<size, big_endian>::optimize_tls_reloc(is_final, r_type);
9345
9346 switch (r_type)
9347 {
9348 case elfcpp::R_MIPS_TLS_GD:
9349 case elfcpp::R_MIPS16_TLS_GD:
9350 case elfcpp::R_MICROMIPS_TLS_GD:
9351 if (optimized_type == tls::TLSOPT_NONE)
9352 {
9353 // Create a pair of GOT entries for the module index and
9354 // dtv-relative offset.
9355 Mips_output_data_got<size, big_endian>* got =
9356 target->got_section(symtab, layout);
9357 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
9358 false);
9359 }
9360 else
9361 {
9362 // FIXME: TLS optimization not supported yet.
9363 gold_unreachable();
9364 }
9365 break;
9366
9367 case elfcpp::R_MIPS_TLS_LDM:
9368 case elfcpp::R_MIPS16_TLS_LDM:
9369 case elfcpp::R_MICROMIPS_TLS_LDM:
9370 if (optimized_type == tls::TLSOPT_NONE)
9371 {
9372 // We always record LDM symbols as local with index 0.
9373 target->got_section()->record_local_got_symbol(mips_obj, 0,
9374 r_addend, r_type,
9375 -1U);
9376 }
9377 else
9378 {
9379 // FIXME: TLS optimization not supported yet.
9380 gold_unreachable();
9381 }
9382 break;
9383 case elfcpp::R_MIPS_TLS_GOTTPREL:
9384 case elfcpp::R_MIPS16_TLS_GOTTPREL:
9385 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
9386 layout->set_has_static_tls();
9387 if (optimized_type == tls::TLSOPT_NONE)
9388 {
9389 // Create a GOT entry for the tp-relative offset.
9390 Mips_output_data_got<size, big_endian>* got =
9391 target->got_section(symtab, layout);
9392 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
9393 false);
9394 }
9395 else
9396 {
9397 // FIXME: TLS optimization not supported yet.
9398 gold_unreachable();
9399 }
9400 break;
9401
9402 default:
9403 gold_unreachable();
9404 }
9405 }
9406 break;
9407 case elfcpp::R_MIPS_COPY:
9408 case elfcpp::R_MIPS_JUMP_SLOT:
9409 // These are relocations which should only be seen by the
9410 // dynamic linker, and should never be seen here.
9411 gold_error(_("%s: unexpected reloc %u in object file"),
9412 object->name().c_str(), r_type);
9413 break;
9414
9415 default:
9416 break;
9417 }
9418
9419 // Refuse some position-dependent relocations when creating a
9420 // shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
9421 // not PIC, but we can create dynamic relocations and the result
9422 // will be fine. Also do not refuse R_MIPS_LO16, which can be
9423 // combined with R_MIPS_GOT16.
9424 if (parameters->options().shared())
9425 {
9426 switch (r_type)
9427 {
9428 case elfcpp::R_MIPS16_HI16:
9429 case elfcpp::R_MIPS_HI16:
9430 case elfcpp::R_MICROMIPS_HI16:
9431 // Don't refuse a high part relocation if it's against
9432 // no symbol (e.g. part of a compound relocation).
9433 if (r_sym == 0)
9434 break;
9435
9436 // R_MIPS_HI16 against _gp_disp is used for $gp setup,
9437 // and has a special meaning.
9438 if (!mips_obj->is_newabi() && strcmp(gsym->name(), "_gp_disp") == 0)
9439 break;
9440
9441 // FALLTHROUGH
9442
9443 case elfcpp::R_MIPS16_26:
9444 case elfcpp::R_MIPS_26:
9445 case elfcpp::R_MICROMIPS_26_S1:
9446 gold_error(_("%s: relocation %u against `%s' can not be used when "
9447 "making a shared object; recompile with -fPIC"),
9448 object->name().c_str(), r_type, gsym->name());
9449 default:
9450 break;
9451 }
9452 }
9453}
9454
9455template<int size, bool big_endian>
9456inline void
9457Target_mips<size, big_endian>::Scan::global(
9458 Symbol_table* symtab,
9459 Layout* layout,
9460 Target_mips<size, big_endian>* target,
9461 Sized_relobj_file<size, big_endian>* object,
9462 unsigned int data_shndx,
9463 Output_section* output_section,
9464 const elfcpp::Rela<size, big_endian>& reloc,
9465 unsigned int r_type,
9466 Symbol* gsym)
9467{
9468 global(
9469 symtab,
9470 layout,
9471 target,
9472 object,
9473 data_shndx,
9474 output_section,
9475 &reloc,
9476 (const elfcpp::Rel<size, big_endian>*) NULL,
9477 elfcpp::SHT_RELA,
9478 r_type,
9479 gsym);
9480}
9481
9482template<int size, bool big_endian>
9483inline void
9484Target_mips<size, big_endian>::Scan::global(
9485 Symbol_table* symtab,
9486 Layout* layout,
9487 Target_mips<size, big_endian>* target,
9488 Sized_relobj_file<size, big_endian>* object,
9489 unsigned int data_shndx,
9490 Output_section* output_section,
9491 const elfcpp::Rel<size, big_endian>& reloc,
9492 unsigned int r_type,
9493 Symbol* gsym)
9494{
9495 global(
9496 symtab,
9497 layout,
9498 target,
9499 object,
9500 data_shndx,
9501 output_section,
9502 (const elfcpp::Rela<size, big_endian>*) NULL,
9503 &reloc,
9504 elfcpp::SHT_REL,
9505 r_type,
9506 gsym);
9507}
9508
9509// Return whether a R_MIPS_32 relocation needs to be applied.
9510
9511template<int size, bool big_endian>
9512inline bool
9513Target_mips<size, big_endian>::Relocate::should_apply_r_mips_32_reloc(
9514 const Mips_symbol<size>* gsym,
9515 unsigned int r_type,
9516 Output_section* output_section,
9517 Target_mips* target)
9518{
9519 // If the output section is not allocated, then we didn't call
9520 // scan_relocs, we didn't create a dynamic reloc, and we must apply
9521 // the reloc here.
9522 if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
9523 return true;
9524
9525 if (gsym == NULL)
9526 return true;
9527 else
9528 {
9529 // For global symbols, we use the same helper routines used in the
9530 // scan pass.
9531 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type))
9532 && !gsym->may_need_copy_reloc())
9533 {
9534 // We have generated dynamic reloc (R_MIPS_REL32).
9535
9536 bool multi_got = false;
9537 if (target->has_got_section())
9538 multi_got = target->got_section()->multi_got();
9539 bool has_got_offset;
9540 if (!multi_got)
9541 has_got_offset = gsym->has_got_offset(GOT_TYPE_STANDARD);
9542 else
9543 has_got_offset = gsym->global_gotoffset() != -1U;
9544 if (!has_got_offset)
9545 return true;
9546 else
9547 // Apply the relocation only if the symbol is in the local got.
9548 // Do not apply the relocation if the symbol is in the global
9549 // got.
9550 return symbol_references_local(gsym, gsym->has_dynsym_index());
9551 }
9552 else
9553 // We have not generated dynamic reloc.
9554 return true;
9555 }
9556}
9557
9558// Perform a relocation.
9559
9560template<int size, bool big_endian>
9561inline bool
9562Target_mips<size, big_endian>::Relocate::relocate(
9563 const Relocate_info<size, big_endian>* relinfo,
9564 Target_mips* target,
9565 Output_section* output_section,
9566 size_t relnum,
9567 const elfcpp::Rela<size, big_endian>* rela,
9568 const elfcpp::Rel<size, big_endian>* rel,
9569 unsigned int rel_type,
9570 unsigned int r_type,
9571 const Sized_symbol<size>* gsym,
9572 const Symbol_value<size>* psymval,
9573 unsigned char* view,
9574 Mips_address address,
9575 section_size_type)
9576{
9577 Mips_address r_offset;
9578 typename elfcpp::Elf_types<size>::Elf_WXword r_info;
9579 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
9580
9581 if (rel_type == elfcpp::SHT_RELA)
9582 {
9583 r_offset = rela->get_r_offset();
9584 r_info = rela->get_r_info();
9585 r_addend = rela->get_r_addend();
9586 }
9587 else
9588 {
9589 r_offset = rel->get_r_offset();
9590 r_info = rel->get_r_info();
9591 r_addend = 0;
9592 }
9593
9594 typedef Mips_relocate_functions<size, big_endian> Reloc_funcs;
9595 typename Reloc_funcs::Status reloc_status = Reloc_funcs::STATUS_OKAY;
9596
9597 Mips_relobj<size, big_endian>* object =
9598 Mips_relobj<size, big_endian>::as_mips_relobj(relinfo->object);
9599
9600 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
9601 bool target_is_16_bit_code = false;
9602 bool target_is_micromips_code = false;
9603 bool cross_mode_jump;
9604
9605 Symbol_value<size> symval;
9606
9607 const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
9608
9609 bool changed_symbol_value = false;
9610 if (gsym == NULL)
9611 {
9612 target_is_16_bit_code = object->local_symbol_is_mips16(r_sym);
9613 target_is_micromips_code = object->local_symbol_is_micromips(r_sym);
9614 if (target_is_16_bit_code || target_is_micromips_code)
9615 {
9616 // MIPS16/microMIPS text labels should be treated as odd.
9617 symval.set_output_value(psymval->value(object, 1));
9618 psymval = &symval;
9619 changed_symbol_value = true;
9620 }
9621 }
9622 else
9623 {
9624 target_is_16_bit_code = mips_sym->is_mips16();
9625 target_is_micromips_code = mips_sym->is_micromips();
9626
9627 // If this is a mips16/microMIPS text symbol, add 1 to the value to make
9628 // it odd. This will cause something like .word SYM to come up with
9629 // the right value when it is loaded into the PC.
9630
9631 if ((mips_sym->is_mips16() || mips_sym->is_micromips())
9632 && psymval->value(object, 0) != 0)
9633 {
9634 symval.set_output_value(psymval->value(object, 0) | 1);
9635 psymval = &symval;
9636 changed_symbol_value = true;
9637 }
9638
9639 // Pick the value to use for symbols defined in shared objects.
9640 if (mips_sym->use_plt_offset(Scan::get_reference_flags(r_type))
9641 || mips_sym->has_lazy_stub())
9642 {
9643 Mips_address value;
9644 if (!mips_sym->has_lazy_stub())
9645 {
9646 // Prefer a standard MIPS PLT entry.
9647 if (mips_sym->has_mips_plt_offset())
9648 {
9649 value = target->plt_section()->mips_entry_address(mips_sym);
9650 target_is_micromips_code = false;
9651 target_is_16_bit_code = false;
9652 }
9653 else
9654 {
9655 value = (target->plt_section()->comp_entry_address(mips_sym)
9656 + 1);
9657 if (target->is_output_micromips())
9658 target_is_micromips_code = true;
9659 else
9660 target_is_16_bit_code = true;
9661 }
9662 }
9663 else
9664 value = target->mips_stubs_section()->stub_address(mips_sym);
9665
9666 symval.set_output_value(value);
9667 psymval = &symval;
9668 }
9669 }
9670
9671 // TRUE if the symbol referred to by this relocation is "_gp_disp".
9672 // Note that such a symbol must always be a global symbol.
9673 bool gp_disp = (gsym != NULL && (strcmp(gsym->name(), "_gp_disp") == 0)
9674 && !object->is_newabi());
9675
9676 // TRUE if the symbol referred to by this relocation is "__gnu_local_gp".
9677 // Note that such a symbol must always be a global symbol.
9678 bool gnu_local_gp = gsym && (strcmp(gsym->name(), "__gnu_local_gp") == 0);
9679
9680
9681 if (gp_disp)
9682 {
9683 if (!hi16_reloc(r_type) && !lo16_reloc(r_type))
9684 gold_error_at_location(relinfo, relnum, r_offset,
9685 _("relocations against _gp_disp are permitted only"
9686 " with R_MIPS_HI16 and R_MIPS_LO16 relocations."));
9687 }
9688 else if (gnu_local_gp)
9689 {
9690 // __gnu_local_gp is _gp symbol.
9691 symval.set_output_value(target->adjusted_gp_value(object));
9692 psymval = &symval;
9693 }
9694
9695 // If this is a reference to a 16-bit function with a stub, we need
9696 // to redirect the relocation to the stub unless:
9697 //
9698 // (a) the relocation is for a MIPS16 JAL;
9699 //
9700 // (b) the relocation is for a MIPS16 PIC call, and there are no
9701 // non-MIPS16 uses of the GOT slot; or
9702 //
9703 // (c) the section allows direct references to MIPS16 functions.
9704 if (r_type != elfcpp::R_MIPS16_26
9705 && !parameters->options().relocatable()
9706 && ((mips_sym != NULL
9707 && mips_sym->has_mips16_fn_stub()
9708 && (r_type != elfcpp::R_MIPS16_CALL16 || mips_sym->need_fn_stub()))
9709 || (mips_sym == NULL
9710 && object->get_local_mips16_fn_stub(r_sym) != NULL))
9711 && !object->section_allows_mips16_refs(relinfo->data_shndx))
9712 {
9713 // This is a 32- or 64-bit call to a 16-bit function. We should
9714 // have already noticed that we were going to need the
9715 // stub.
9716 Mips_address value;
9717 if (mips_sym == NULL)
9718 value = object->get_local_mips16_fn_stub(r_sym)->output_address();
9719 else
9720 {
9721 gold_assert(mips_sym->need_fn_stub());
9722 if (mips_sym->has_la25_stub())
9723 value = target->la25_stub_section()->stub_address(mips_sym);
9724 else
9725 {
9726 value = mips_sym->template
9727 get_mips16_fn_stub<big_endian>()->output_address();
9728 }
9729 }
9730 symval.set_output_value(value);
9731 psymval = &symval;
9732 changed_symbol_value = true;
9733
9734 // The target is 16-bit, but the stub isn't.
9735 target_is_16_bit_code = false;
9736 }
9737 // If this is a MIPS16 call with a stub, that is made through the PLT or
9738 // to a standard MIPS function, we need to redirect the call to the stub.
9739 // Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
9740 // indirect calls should use an indirect stub instead.
9741 else if (r_type == elfcpp::R_MIPS16_26 && !parameters->options().relocatable()
9742 && ((mips_sym != NULL
9743 && (mips_sym->has_mips16_call_stub()
9744 || mips_sym->has_mips16_call_fp_stub()))
9745 || (mips_sym == NULL
9746 && object->get_local_mips16_call_stub(r_sym) != NULL))
9747 && ((mips_sym != NULL && mips_sym->has_plt_offset())
9748 || !target_is_16_bit_code))
9749 {
9750 Mips16_stub_section<size, big_endian>* call_stub;
9751 if (mips_sym == NULL)
9752 call_stub = object->get_local_mips16_call_stub(r_sym);
9753 else
9754 {
9755 // If both call_stub and call_fp_stub are defined, we can figure
9756 // out which one to use by checking which one appears in the input
9757 // file.
9758 if (mips_sym->has_mips16_call_stub()
9759 && mips_sym->has_mips16_call_fp_stub())
9760 {
9761 call_stub = NULL;
9762 for (unsigned int i = 1; i < object->shnum(); ++i)
9763 {
9764 if (object->is_mips16_call_fp_stub_section(i))
9765 {
9766 call_stub = mips_sym->template
9767 get_mips16_call_fp_stub<big_endian>();
9768 break;
9769 }
9770
9771 }
9772 if (call_stub == NULL)
9773 call_stub =
9774 mips_sym->template get_mips16_call_stub<big_endian>();
9775 }
9776 else if (mips_sym->has_mips16_call_stub())
9777 call_stub = mips_sym->template get_mips16_call_stub<big_endian>();
9778 else
9779 call_stub = mips_sym->template get_mips16_call_fp_stub<big_endian>();
9780 }
9781
9782 symval.set_output_value(call_stub->output_address());
9783 psymval = &symval;
9784 changed_symbol_value = true;
9785 }
9786 // If this is a direct call to a PIC function, redirect to the
9787 // non-PIC stub.
9788 else if (mips_sym != NULL
9789 && mips_sym->has_la25_stub()
9790 && relocation_needs_la25_stub<size, big_endian>(
9791 object, r_type, target_is_16_bit_code))
9792 {
9793 Mips_address value = target->la25_stub_section()->stub_address(mips_sym);
9794 if (mips_sym->is_micromips())
9795 value += 1;
9796 symval.set_output_value(value);
9797 psymval = &symval;
9798 }
9799 // For direct MIPS16 and microMIPS calls make sure the compressed PLT
9800 // entry is used if a standard PLT entry has also been made.
9801 else if ((r_type == elfcpp::R_MIPS16_26
9802 || r_type == elfcpp::R_MICROMIPS_26_S1)
9803 && !parameters->options().relocatable()
9804 && mips_sym != NULL
9805 && mips_sym->has_plt_offset()
9806 && mips_sym->has_comp_plt_offset()
9807 && mips_sym->has_mips_plt_offset())
9808 {
9809 Mips_address value = (target->plt_section()->comp_entry_address(mips_sym)
9810 + 1);
9811 symval.set_output_value(value);
9812 psymval = &symval;
9813
9814 target_is_16_bit_code = !target->is_output_micromips();
9815 target_is_micromips_code = target->is_output_micromips();
9816 }
9817
9818 // Make sure MIPS16 and microMIPS are not used together.
9819 if ((r_type == elfcpp::R_MIPS16_26 && target_is_micromips_code)
9820 || (micromips_branch_reloc(r_type) && target_is_16_bit_code))
9821 {
9822 gold_error(_("MIPS16 and microMIPS functions cannot call each other"));
9823 }
9824
9825 // Calls from 16-bit code to 32-bit code and vice versa require the
9826 // mode change. However, we can ignore calls to undefined weak symbols,
9827 // which should never be executed at runtime. This exception is important
9828 // because the assembly writer may have "known" that any definition of the
9829 // symbol would be 16-bit code, and that direct jumps were therefore
9830 // acceptable.
9831 cross_mode_jump =
9832 (!parameters->options().relocatable()
9833 && !(gsym != NULL && gsym->is_weak_undefined())
9834 && ((r_type == elfcpp::R_MIPS16_26 && !target_is_16_bit_code)
9835 || (r_type == elfcpp::R_MICROMIPS_26_S1 && !target_is_micromips_code)
9836 || ((r_type == elfcpp::R_MIPS_26 || r_type == elfcpp::R_MIPS_JALR)
9837 && (target_is_16_bit_code || target_is_micromips_code))));
9838
9839 bool local = (mips_sym == NULL
9840 || (mips_sym->got_only_for_calls()
9841 ? symbol_calls_local(mips_sym, mips_sym->has_dynsym_index())
9842 : symbol_references_local(mips_sym,
9843 mips_sym->has_dynsym_index())));
9844
9845 // Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
9846 // to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
9847 // corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST.
9848 if (got_page_reloc(r_type) && !local)
9849 r_type = (micromips_reloc(r_type) ? elfcpp::R_MICROMIPS_GOT_DISP
9850 : elfcpp::R_MIPS_GOT_DISP);
9851
9852 unsigned int got_offset = 0;
9853 int gp_offset = 0;
9854
9855 bool update_got_entry = false;
9856 bool extract_addend = rel_type == elfcpp::SHT_REL;
9857 switch (r_type)
9858 {
9859 case elfcpp::R_MIPS_NONE:
9860 break;
9861 case elfcpp::R_MIPS_16:
9862 reloc_status = Reloc_funcs::rel16(view, object, psymval, r_addend,
9863 extract_addend, r_type);
9864 break;
9865
9866 case elfcpp::R_MIPS_32:
9867 if (should_apply_r_mips_32_reloc(mips_sym, r_type, output_section,
9868 target))
9869 reloc_status = Reloc_funcs::rel32(view, object, psymval, r_addend,
9870 extract_addend, r_type);
9871 if (mips_sym != NULL
9872 && (mips_sym->is_mips16() || mips_sym->is_micromips())
9873 && mips_sym->global_got_area() == GGA_RELOC_ONLY)
9874 {
9875 // If mips_sym->has_mips16_fn_stub() is false, symbol value is
9876 // already updated by adding +1.
9877 if (mips_sym->has_mips16_fn_stub())
9878 {
9879 gold_assert(mips_sym->need_fn_stub());
9880 Mips16_stub_section<size, big_endian>* fn_stub =
9881 mips_sym->template get_mips16_fn_stub<big_endian>();
9882
9883 symval.set_output_value(fn_stub->output_address());
9884 psymval = &symval;
9885 }
9886 got_offset = mips_sym->global_gotoffset();
9887 update_got_entry = true;
9888 }
9889 break;
9890
9891 case elfcpp::R_MIPS_REL32:
9892 gold_unreachable();
9893
9894 case elfcpp::R_MIPS_PC32:
9895 reloc_status = Reloc_funcs::relpc32(view, object, psymval, address,
9896 r_addend, extract_addend, r_type);
9897 break;
9898
9899 case elfcpp::R_MIPS16_26:
9900 // The calculation for R_MIPS16_26 is just the same as for an
9901 // R_MIPS_26. It's only the storage of the relocated field into
9902 // the output file that's different. So, we just fall through to the
9903 // R_MIPS_26 case here.
9904 case elfcpp::R_MIPS_26:
9905 case elfcpp::R_MICROMIPS_26_S1:
9906 reloc_status = Reloc_funcs::rel26(view, object, psymval, address,
9907 gsym == NULL, r_addend, extract_addend, gsym, cross_mode_jump, r_type,
9908 target->jal_to_bal());
9909 break;
9910
9911 case elfcpp::R_MIPS_HI16:
9912 case elfcpp::R_MIPS16_HI16:
9913 case elfcpp::R_MICROMIPS_HI16:
9914 reloc_status = Reloc_funcs::relhi16(view, object, psymval, r_addend,
3d0064a9 9915 address, gp_disp, r_type, r_sym,
9810d34d
SS
9916 extract_addend);
9917 break;
9918
9919 case elfcpp::R_MIPS_LO16:
9920 case elfcpp::R_MIPS16_LO16:
9921 case elfcpp::R_MICROMIPS_LO16:
9922 case elfcpp::R_MICROMIPS_HI0_LO16:
9923 reloc_status = Reloc_funcs::rello16(target, view, object, psymval,
9924 r_addend, extract_addend, address,
3d0064a9 9925 gp_disp, r_type, r_sym);
9810d34d
SS
9926 break;
9927
9928 case elfcpp::R_MIPS_LITERAL:
9929 case elfcpp::R_MICROMIPS_LITERAL:
9930 // Because we don't merge literal sections, we can handle this
9931 // just like R_MIPS_GPREL16. In the long run, we should merge
9932 // shared literals, and then we will need to additional work
9933 // here.
9934
9935 // Fall through.
9936
9937 case elfcpp::R_MIPS_GPREL16:
9938 case elfcpp::R_MIPS16_GPREL:
9939 case elfcpp::R_MICROMIPS_GPREL7_S2:
9940 case elfcpp::R_MICROMIPS_GPREL16:
9941 reloc_status = Reloc_funcs::relgprel(view, object, psymval,
9942 target->adjusted_gp_value(object),
9943 r_addend, extract_addend,
9944 gsym == NULL, r_type);
9945 break;
9946
9947 case elfcpp::R_MIPS_PC16:
9948 reloc_status = Reloc_funcs::relpc16(view, object, psymval, address,
9949 r_addend, extract_addend, r_type);
9950 break;
9951 case elfcpp::R_MICROMIPS_PC7_S1:
9952 reloc_status = Reloc_funcs::relmicromips_pc7_s1(view, object, psymval,
9953 address, r_addend,
9954 extract_addend, r_type);
9955 break;
9956 case elfcpp::R_MICROMIPS_PC10_S1:
9957 reloc_status = Reloc_funcs::relmicromips_pc10_s1(view, object, psymval,
9958 address, r_addend,
9959 extract_addend, r_type);
9960 break;
9961 case elfcpp::R_MICROMIPS_PC16_S1:
9962 reloc_status = Reloc_funcs::relmicromips_pc16_s1(view, object, psymval,
9963 address, r_addend,
9964 extract_addend, r_type);
9965 break;
9966 case elfcpp::R_MIPS_GPREL32:
9967 reloc_status = Reloc_funcs::relgprel32(view, object, psymval,
9968 target->adjusted_gp_value(object),
9969 r_addend, extract_addend, r_type);
9970 break;
9971 case elfcpp::R_MIPS_GOT_HI16:
9972 case elfcpp::R_MIPS_CALL_HI16:
9973 case elfcpp::R_MICROMIPS_GOT_HI16:
9974 case elfcpp::R_MICROMIPS_CALL_HI16:
9975 if (gsym != NULL)
9976 got_offset = target->got_section()->got_offset(gsym, GOT_TYPE_STANDARD,
9977 object);
9978 else
9979 got_offset = target->got_section()->got_offset(r_sym, GOT_TYPE_STANDARD,
9980 object);
9981 gp_offset = target->got_section()->gp_offset(got_offset, object);
9982 reloc_status = Reloc_funcs::relgot_hi16(view, gp_offset, r_type);
9983 update_got_entry = changed_symbol_value;
9984 break;
9985
9986 case elfcpp::R_MIPS_GOT_LO16:
9987 case elfcpp::R_MIPS_CALL_LO16:
9988 case elfcpp::R_MICROMIPS_GOT_LO16:
9989 case elfcpp::R_MICROMIPS_CALL_LO16:
9990 if (gsym != NULL)
9991 got_offset = target->got_section()->got_offset(gsym, GOT_TYPE_STANDARD,
9992 object);
9993 else
9994 got_offset = target->got_section()->got_offset(r_sym, GOT_TYPE_STANDARD,
9995 object);
9996 gp_offset = target->got_section()->gp_offset(got_offset, object);
9997 reloc_status = Reloc_funcs::relgot_lo16(view, gp_offset, r_type);
9998 update_got_entry = changed_symbol_value;
9999 break;
10000
10001 case elfcpp::R_MIPS_GOT_DISP:
10002 case elfcpp::R_MICROMIPS_GOT_DISP:
10003 if (gsym != NULL)
10004 got_offset = target->got_section()->got_offset(gsym, GOT_TYPE_STANDARD,
10005 object);
10006 else
10007 got_offset = target->got_section()->got_offset(r_sym, GOT_TYPE_STANDARD,
10008 object);
10009 gp_offset = target->got_section()->gp_offset(got_offset, object);
10010 reloc_status = Reloc_funcs::relgot(view, gp_offset, r_type);
10011 break;
10012
10013 case elfcpp::R_MIPS_CALL16:
10014 case elfcpp::R_MIPS16_CALL16:
10015 case elfcpp::R_MICROMIPS_CALL16:
10016 gold_assert(gsym != NULL);
10017 got_offset = target->got_section()->got_offset(gsym, GOT_TYPE_STANDARD,
10018 object);
10019 gp_offset = target->got_section()->gp_offset(got_offset, object);
10020 reloc_status = Reloc_funcs::relgot(view, gp_offset, r_type);
10021 // TODO(sasa): We should also initialize update_got_entry in other places
10022 // where relgot is called.
10023 update_got_entry = changed_symbol_value;
10024 break;
10025
10026 case elfcpp::R_MIPS_GOT16:
10027 case elfcpp::R_MIPS16_GOT16:
10028 case elfcpp::R_MICROMIPS_GOT16:
10029 if (gsym != NULL)
10030 {
10031 got_offset = target->got_section()->got_offset(gsym,
10032 GOT_TYPE_STANDARD,
10033 object);
10034 gp_offset = target->got_section()->gp_offset(got_offset, object);
10035 reloc_status = Reloc_funcs::relgot(view, gp_offset, r_type);
10036 }
10037 else
10038 reloc_status = Reloc_funcs::relgot16_local(view, object, psymval,
10039 r_addend, extract_addend,
3d0064a9 10040 r_type, r_sym);
9810d34d
SS
10041 update_got_entry = changed_symbol_value;
10042 break;
10043
10044 case elfcpp::R_MIPS_TLS_GD:
10045 case elfcpp::R_MIPS16_TLS_GD:
10046 case elfcpp::R_MICROMIPS_TLS_GD:
10047 if (gsym != NULL)
10048 got_offset = target->got_section()->got_offset(gsym, GOT_TYPE_TLS_PAIR,
10049 object);
10050 else
10051 got_offset = target->got_section()->got_offset(r_sym, GOT_TYPE_TLS_PAIR,
10052 object);
10053 gp_offset = target->got_section()->gp_offset(got_offset, object);
10054 reloc_status = Reloc_funcs::relgot(view, gp_offset, r_type);
10055 break;
10056
10057 case elfcpp::R_MIPS_TLS_GOTTPREL:
10058 case elfcpp::R_MIPS16_TLS_GOTTPREL:
10059 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10060 if (gsym != NULL)
10061 got_offset = target->got_section()->got_offset(gsym,
10062 GOT_TYPE_TLS_OFFSET,
10063 object);
10064 else
10065 got_offset = target->got_section()->got_offset(r_sym,
10066 GOT_TYPE_TLS_OFFSET,
10067 object);
10068 gp_offset = target->got_section()->gp_offset(got_offset, object);
10069 reloc_status = Reloc_funcs::relgot(view, gp_offset, r_type);
10070 break;
10071
10072 case elfcpp::R_MIPS_TLS_LDM:
10073 case elfcpp::R_MIPS16_TLS_LDM:
10074 case elfcpp::R_MICROMIPS_TLS_LDM:
10075 // Relocate the field with the offset of the GOT entry for
10076 // the module index.
10077 got_offset = target->got_section()->tls_ldm_offset(object);
10078 gp_offset = target->got_section()->gp_offset(got_offset, object);
10079 reloc_status = Reloc_funcs::relgot(view, gp_offset, r_type);
10080 break;
10081
10082 case elfcpp::R_MIPS_GOT_PAGE:
10083 case elfcpp::R_MICROMIPS_GOT_PAGE:
10084 reloc_status = Reloc_funcs::relgotpage(target, view, object, psymval,
10085 r_addend, extract_addend, r_type);
10086 break;
10087
10088 case elfcpp::R_MIPS_GOT_OFST:
10089 case elfcpp::R_MICROMIPS_GOT_OFST:
10090 reloc_status = Reloc_funcs::relgotofst(target, view, object, psymval,
10091 r_addend, extract_addend, local,
10092 r_type);
10093 break;
10094
10095 case elfcpp::R_MIPS_JALR:
10096 case elfcpp::R_MICROMIPS_JALR:
10097 // This relocation is only a hint. In some cases, we optimize
10098 // it into a bal instruction. But we don't try to optimize
10099 // when the symbol does not resolve locally.
10100 if (gsym == NULL || symbol_calls_local(gsym, gsym->has_dynsym_index()))
10101 reloc_status = Reloc_funcs::reljalr(view, object, psymval, address,
10102 r_addend, extract_addend,
10103 cross_mode_jump, r_type,
10104 target->jalr_to_bal(),
10105 target->jr_to_b());
10106 break;
10107
10108 case elfcpp::R_MIPS_TLS_DTPREL_HI16:
10109 case elfcpp::R_MIPS16_TLS_DTPREL_HI16:
10110 case elfcpp::R_MICROMIPS_TLS_DTPREL_HI16:
10111 reloc_status = Reloc_funcs::tlsrelhi16(view, object, psymval,
10112 elfcpp::DTP_OFFSET, r_addend,
10113 extract_addend, r_type);
10114 break;
10115 case elfcpp::R_MIPS_TLS_DTPREL_LO16:
10116 case elfcpp::R_MIPS16_TLS_DTPREL_LO16:
10117 case elfcpp::R_MICROMIPS_TLS_DTPREL_LO16:
10118 reloc_status = Reloc_funcs::tlsrello16(view, object, psymval,
10119 elfcpp::DTP_OFFSET, r_addend,
10120 extract_addend, r_type);
10121 break;
10122 case elfcpp::R_MIPS_TLS_DTPREL32:
10123 case elfcpp::R_MIPS_TLS_DTPREL64:
10124 reloc_status = Reloc_funcs::tlsrel32(view, object, psymval,
10125 elfcpp::DTP_OFFSET, r_addend,
10126 extract_addend, r_type);
10127 break;
10128 case elfcpp::R_MIPS_TLS_TPREL_HI16:
10129 case elfcpp::R_MIPS16_TLS_TPREL_HI16:
10130 case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
10131 reloc_status = Reloc_funcs::tlsrelhi16(view, object, psymval,
10132 elfcpp::TP_OFFSET, r_addend,
10133 extract_addend, r_type);
10134 break;
10135 case elfcpp::R_MIPS_TLS_TPREL_LO16:
10136 case elfcpp::R_MIPS16_TLS_TPREL_LO16:
10137 case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
10138 reloc_status = Reloc_funcs::tlsrello16(view, object, psymval,
10139 elfcpp::TP_OFFSET, r_addend,
10140 extract_addend, r_type);
10141 break;
10142 case elfcpp::R_MIPS_TLS_TPREL32:
10143 case elfcpp::R_MIPS_TLS_TPREL64:
10144 reloc_status = Reloc_funcs::tlsrel32(view, object, psymval,
10145 elfcpp::TP_OFFSET, r_addend,
10146 extract_addend, r_type);
10147 break;
10148 case elfcpp::R_MIPS_SUB:
10149 case elfcpp::R_MICROMIPS_SUB:
10150 reloc_status = Reloc_funcs::relsub(view, object, psymval, r_addend,
10151 extract_addend, r_type);
10152 break;
10153 default:
10154 gold_error_at_location(relinfo, relnum, r_offset,
10155 _("unsupported reloc %u"), r_type);
10156 break;
10157 }
10158
10159 if (update_got_entry)
10160 {
10161 Mips_output_data_got<size, big_endian>* got = target->got_section();
10162 if (mips_sym != NULL && mips_sym->get_applied_secondary_got_fixup())
10163 got->update_got_entry(got->get_primary_got_offset(mips_sym),
10164 psymval->value(object, 0));
10165 else
10166 got->update_got_entry(got_offset, psymval->value(object, 0));
10167 }
10168
10169 // Report any errors.
10170 switch (reloc_status)
10171 {
10172 case Reloc_funcs::STATUS_OKAY:
10173 break;
10174 case Reloc_funcs::STATUS_OVERFLOW:
10175 gold_error_at_location(relinfo, relnum, r_offset,
10176 _("relocation overflow"));
10177 break;
10178 case Reloc_funcs::STATUS_BAD_RELOC:
10179 gold_error_at_location(relinfo, relnum, r_offset,
10180 _("unexpected opcode while processing relocation"));
10181 break;
10182 default:
10183 gold_unreachable();
10184 }
10185
10186 return true;
10187}
10188
10189template<int size, bool big_endian>
10190inline bool
10191Target_mips<size, big_endian>::Relocate::relocate(
10192 const Relocate_info<size, big_endian>* relinfo,
10193 Target_mips* target,
10194 Output_section* output_section,
10195 size_t relnum,
10196 const elfcpp::Rela<size, big_endian>& reloc,
10197 unsigned int r_type,
10198 const Sized_symbol<size>* gsym,
10199 const Symbol_value<size>* psymval,
10200 unsigned char* view,
10201 Mips_address address,
10202 section_size_type view_size)
10203{
10204 return relocate(
10205 relinfo,
10206 target,
10207 output_section,
10208 relnum,
10209 &reloc,
10210 (const elfcpp::Rel<size, big_endian>*) NULL,
10211 elfcpp::SHT_RELA,
10212 r_type,
10213 gsym,
10214 psymval,
10215 view,
10216 address,
10217 view_size);
10218}
10219
10220template<int size, bool big_endian>
10221inline bool
10222Target_mips<size, big_endian>::Relocate::relocate(
10223 const Relocate_info<size, big_endian>* relinfo,
10224 Target_mips* target,
10225 Output_section* output_section,
10226 size_t relnum,
10227 const elfcpp::Rel<size, big_endian>& reloc,
10228 unsigned int r_type,
10229 const Sized_symbol<size>* gsym,
10230 const Symbol_value<size>* psymval,
10231 unsigned char* view,
10232 Mips_address address,
10233 section_size_type view_size)
10234{
10235 return relocate(
10236 relinfo,
10237 target,
10238 output_section,
10239 relnum,
10240 (const elfcpp::Rela<size, big_endian>*) NULL,
10241 &reloc,
10242 elfcpp::SHT_REL,
10243 r_type,
10244 gsym,
10245 psymval,
10246 view,
10247 address,
10248 view_size);
10249}
10250
10251// Get the Reference_flags for a particular relocation.
10252
10253template<int size, bool big_endian>
10254int
10255Target_mips<size, big_endian>::Scan::get_reference_flags(
10256 unsigned int r_type)
10257{
10258 switch (r_type)
10259 {
10260 case elfcpp::R_MIPS_NONE:
10261 // No symbol reference.
10262 return 0;
10263
10264 case elfcpp::R_MIPS_16:
10265 case elfcpp::R_MIPS_32:
10266 case elfcpp::R_MIPS_64:
10267 case elfcpp::R_MIPS_HI16:
10268 case elfcpp::R_MIPS_LO16:
10269 case elfcpp::R_MIPS16_HI16:
10270 case elfcpp::R_MIPS16_LO16:
10271 case elfcpp::R_MICROMIPS_HI16:
10272 case elfcpp::R_MICROMIPS_LO16:
10273 return Symbol::ABSOLUTE_REF;
10274
10275 case elfcpp::R_MIPS_26:
10276 case elfcpp::R_MIPS16_26:
10277 case elfcpp::R_MICROMIPS_26_S1:
10278 return Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
10279
10280 case elfcpp::R_MIPS_GPREL32:
10281 case elfcpp::R_MIPS_GPREL16:
10282 case elfcpp::R_MIPS_REL32:
10283 case elfcpp::R_MIPS16_GPREL:
10284 return Symbol::RELATIVE_REF;
10285
10286 case elfcpp::R_MIPS_PC16:
10287 case elfcpp::R_MIPS_PC32:
10288 case elfcpp::R_MIPS_JALR:
10289 case elfcpp::R_MICROMIPS_JALR:
10290 return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
10291
10292 case elfcpp::R_MIPS_GOT16:
10293 case elfcpp::R_MIPS_CALL16:
10294 case elfcpp::R_MIPS_GOT_DISP:
10295 case elfcpp::R_MIPS_GOT_HI16:
10296 case elfcpp::R_MIPS_GOT_LO16:
10297 case elfcpp::R_MIPS_CALL_HI16:
10298 case elfcpp::R_MIPS_CALL_LO16:
10299 case elfcpp::R_MIPS_LITERAL:
10300 case elfcpp::R_MIPS_GOT_PAGE:
10301 case elfcpp::R_MIPS_GOT_OFST:
10302 case elfcpp::R_MIPS16_GOT16:
10303 case elfcpp::R_MIPS16_CALL16:
10304 case elfcpp::R_MICROMIPS_GOT16:
10305 case elfcpp::R_MICROMIPS_CALL16:
10306 case elfcpp::R_MICROMIPS_GOT_HI16:
10307 case elfcpp::R_MICROMIPS_GOT_LO16:
10308 case elfcpp::R_MICROMIPS_CALL_HI16:
10309 case elfcpp::R_MICROMIPS_CALL_LO16:
10310 // Absolute in GOT.
10311 return Symbol::RELATIVE_REF;
10312
10313 case elfcpp::R_MIPS_TLS_DTPMOD32:
10314 case elfcpp::R_MIPS_TLS_DTPREL32:
10315 case elfcpp::R_MIPS_TLS_DTPMOD64:
10316 case elfcpp::R_MIPS_TLS_DTPREL64:
10317 case elfcpp::R_MIPS_TLS_GD:
10318 case elfcpp::R_MIPS_TLS_LDM:
10319 case elfcpp::R_MIPS_TLS_DTPREL_HI16:
10320 case elfcpp::R_MIPS_TLS_DTPREL_LO16:
10321 case elfcpp::R_MIPS_TLS_GOTTPREL:
10322 case elfcpp::R_MIPS_TLS_TPREL32:
10323 case elfcpp::R_MIPS_TLS_TPREL64:
10324 case elfcpp::R_MIPS_TLS_TPREL_HI16:
10325 case elfcpp::R_MIPS_TLS_TPREL_LO16:
10326 case elfcpp::R_MIPS16_TLS_GD:
10327 case elfcpp::R_MIPS16_TLS_GOTTPREL:
10328 case elfcpp::R_MICROMIPS_TLS_GD:
10329 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10330 case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
10331 case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
10332 return Symbol::TLS_REF;
10333
10334 case elfcpp::R_MIPS_COPY:
10335 case elfcpp::R_MIPS_JUMP_SLOT:
10336 default:
10337 gold_unreachable();
10338 // Not expected. We will give an error later.
10339 return 0;
10340 }
10341}
10342
10343// Report an unsupported relocation against a local symbol.
10344
10345template<int size, bool big_endian>
10346void
10347Target_mips<size, big_endian>::Scan::unsupported_reloc_local(
10348 Sized_relobj_file<size, big_endian>* object,
10349 unsigned int r_type)
10350{
10351 gold_error(_("%s: unsupported reloc %u against local symbol"),
10352 object->name().c_str(), r_type);
10353}
10354
10355// Report an unsupported relocation against a global symbol.
10356
10357template<int size, bool big_endian>
10358void
10359Target_mips<size, big_endian>::Scan::unsupported_reloc_global(
10360 Sized_relobj_file<size, big_endian>* object,
10361 unsigned int r_type,
10362 Symbol* gsym)
10363{
10364 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
10365 object->name().c_str(), r_type, gsym->demangled_name().c_str());
10366}
10367
10368// Return printable name for ABI.
10369template<int size, bool big_endian>
10370const char*
10371Target_mips<size, big_endian>::elf_mips_abi_name(elfcpp::Elf_Word e_flags,
10372 unsigned char ei_class)
10373{
10374 switch (e_flags & elfcpp::EF_MIPS_ABI)
10375 {
10376 case 0:
10377 if ((e_flags & elfcpp::EF_MIPS_ABI2) != 0)
10378 return "N32";
10379 else if (elfcpp::abi_64(ei_class))
10380 return "64";
10381 else
10382 return "none";
10383 case elfcpp::E_MIPS_ABI_O32:
10384 return "O32";
10385 case elfcpp::E_MIPS_ABI_O64:
10386 return "O64";
10387 case elfcpp::E_MIPS_ABI_EABI32:
10388 return "EABI32";
10389 case elfcpp::E_MIPS_ABI_EABI64:
10390 return "EABI64";
10391 default:
10392 return "unknown abi";
10393 }
10394}
10395
10396template<int size, bool big_endian>
10397const char*
10398Target_mips<size, big_endian>::elf_mips_mach_name(elfcpp::Elf_Word e_flags)
10399{
10400 switch (e_flags & elfcpp::EF_MIPS_MACH)
10401 {
10402 case elfcpp::E_MIPS_MACH_3900:
10403 return "mips:3900";
10404 case elfcpp::E_MIPS_MACH_4010:
10405 return "mips:4010";
10406 case elfcpp::E_MIPS_MACH_4100:
10407 return "mips:4100";
10408 case elfcpp::E_MIPS_MACH_4111:
10409 return "mips:4111";
10410 case elfcpp::E_MIPS_MACH_4120:
10411 return "mips:4120";
10412 case elfcpp::E_MIPS_MACH_4650:
10413 return "mips:4650";
10414 case elfcpp::E_MIPS_MACH_5400:
10415 return "mips:5400";
10416 case elfcpp::E_MIPS_MACH_5500:
10417 return "mips:5500";
10418 case elfcpp::E_MIPS_MACH_SB1:
10419 return "mips:sb1";
10420 case elfcpp::E_MIPS_MACH_9000:
10421 return "mips:9000";
10422 case elfcpp::E_MIPS_MACH_LS2E:
10423 return "mips:loongson-2e";
10424 case elfcpp::E_MIPS_MACH_LS2F:
10425 return "mips:loongson-2f";
10426 case elfcpp::E_MIPS_MACH_LS3A:
10427 return "mips:loongson-3a";
10428 case elfcpp::E_MIPS_MACH_OCTEON:
10429 return "mips:octeon";
10430 case elfcpp::E_MIPS_MACH_OCTEON2:
10431 return "mips:octeon2";
10432 case elfcpp::E_MIPS_MACH_XLR:
10433 return "mips:xlr";
10434 default:
10435 switch (e_flags & elfcpp::EF_MIPS_ARCH)
10436 {
10437 default:
10438 case elfcpp::E_MIPS_ARCH_1:
10439 return "mips:3000";
10440
10441 case elfcpp::E_MIPS_ARCH_2:
10442 return "mips:6000";
10443
10444 case elfcpp::E_MIPS_ARCH_3:
10445 return "mips:4000";
10446
10447 case elfcpp::E_MIPS_ARCH_4:
10448 return "mips:8000";
10449
10450 case elfcpp::E_MIPS_ARCH_5:
10451 return "mips:mips5";
10452
10453 case elfcpp::E_MIPS_ARCH_32:
10454 return "mips:isa32";
10455
10456 case elfcpp::E_MIPS_ARCH_64:
10457 return "mips:isa64";
10458
10459 case elfcpp::E_MIPS_ARCH_32R2:
10460 return "mips:isa32r2";
10461
10462 case elfcpp::E_MIPS_ARCH_64R2:
10463 return "mips:isa64r2";
10464 }
10465 }
10466 return "unknown CPU";
10467}
10468
10469template<int size, bool big_endian>
62661c93 10470const Target::Target_info Target_mips<size, big_endian>::mips_info =
9810d34d
SS
10471{
10472 size, // size
10473 big_endian, // is_big_endian
10474 elfcpp::EM_MIPS, // machine_code
10475 true, // has_make_symbol
10476 false, // has_resolve
10477 false, // has_code_fill
10478 true, // is_default_stack_executable
10479 false, // can_icf_inline_merge_sections
10480 '\0', // wrap_char
10481 "/lib/ld.so.1", // dynamic_linker
10482 0x400000, // default_text_segment_address
10483 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
10484 4 * 1024, // common_pagesize (overridable by -z common-page-size)
10485 false, // isolate_execinstr
10486 0, // rosegment_gap
10487 elfcpp::SHN_UNDEF, // small_common_shndx
10488 elfcpp::SHN_UNDEF, // large_common_shndx
10489 0, // small_common_section_flags
10490 0, // large_common_section_flags
10491 NULL, // attributes_section
10492 NULL, // attributes_vendor
10493 "__start" // entry_symbol_name
10494};
10495
62661c93
SS
10496template<int size, bool big_endian>
10497class Target_mips_nacl : public Target_mips<size, big_endian>
10498{
10499 public:
10500 Target_mips_nacl()
10501 : Target_mips<size, big_endian>(&mips_nacl_info)
10502 { }
10503
10504 private:
10505 static const Target::Target_info mips_nacl_info;
10506};
10507
10508template<int size, bool big_endian>
10509const Target::Target_info Target_mips_nacl<size, big_endian>::mips_nacl_info =
10510{
10511 size, // size
10512 big_endian, // is_big_endian
10513 elfcpp::EM_MIPS, // machine_code
10514 true, // has_make_symbol
10515 false, // has_resolve
10516 false, // has_code_fill
10517 true, // is_default_stack_executable
10518 false, // can_icf_inline_merge_sections
10519 '\0', // wrap_char
10520 "/lib/ld.so.1", // dynamic_linker
10521 0x20000, // default_text_segment_address
10522 0x10000, // abi_pagesize (overridable by -z max-page-size)
10523 0x10000, // common_pagesize (overridable by -z common-page-size)
10524 true, // isolate_execinstr
10525 0x10000000, // rosegment_gap
10526 elfcpp::SHN_UNDEF, // small_common_shndx
10527 elfcpp::SHN_UNDEF, // large_common_shndx
10528 0, // small_common_section_flags
10529 0, // large_common_section_flags
10530 NULL, // attributes_section
10531 NULL, // attributes_vendor
10532 "_start" // entry_symbol_name
10533};
10534
10535// Target selector for Mips. Note this is never instantiated directly.
10536// It's only used in Target_selector_mips_nacl, below.
9810d34d
SS
10537
10538template<int size, bool big_endian>
10539class Target_selector_mips : public Target_selector
10540{
10541public:
10542 Target_selector_mips()
10543 : Target_selector(elfcpp::EM_MIPS, size, big_endian,
10544 (size == 64 ?
10545 (big_endian ? "elf64-tradbigmips" : "elf64-tradlittlemips") :
10546 (big_endian ? "elf32-tradbigmips" : "elf32-tradlittlemips")),
10547 (size == 64 ?
10548 (big_endian ? "elf64-tradbigmips" : "elf64-tradlittlemips") :
10549 (big_endian ? "elf32-tradbigmips" : "elf32-tradlittlemips")))
10550 { }
10551
10552 Target* do_instantiate_target()
10553 { return new Target_mips<size, big_endian>(); }
10554};
10555
62661c93
SS
10556template<int size, bool big_endian>
10557class Target_selector_mips_nacl
10558 : public Target_selector_nacl<Target_selector_mips<size, big_endian>,
10559 Target_mips_nacl<size, big_endian> >
10560{
10561 public:
10562 Target_selector_mips_nacl()
10563 : Target_selector_nacl<Target_selector_mips<size, big_endian>,
10564 Target_mips_nacl<size, big_endian> >(
10565 // NaCl currently supports only MIPS32 little-endian.
10566 "mipsel", "elf32-tradlittlemips-nacl", "elf32-tradlittlemips-nacl")
10567 { }
10568};
9810d34d 10569
62661c93
SS
10570Target_selector_mips_nacl<32, true> target_selector_mips32;
10571Target_selector_mips_nacl<32, false> target_selector_mips32el;
10572Target_selector_mips_nacl<64, true> target_selector_mips64;
10573Target_selector_mips_nacl<64, false> target_selector_mips64el;
9810d34d
SS
10574
10575} // End anonymous namespace.