]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gold/output.cc
* ppc-opc.c (powerpc_opcodes): Enable divdeu, devweu, divde,
[thirdparty/binutils-gdb.git] / gold / output.cc
CommitLineData
a2fb1b05
ILT
1// output.cc -- manage the output file for gold
2
e29e076a 3// Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
6cb15b7f
ILT
4// Written by Ian Lance Taylor <iant@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
a2fb1b05
ILT
23#include "gold.h"
24
25#include <cstdlib>
04bf7072 26#include <cstring>
61ba1cf9
ILT
27#include <cerrno>
28#include <fcntl.h>
29#include <unistd.h>
30#include <sys/mman.h>
4e9d8586 31#include <sys/stat.h>
75f65a3e 32#include <algorithm>
6a89f575 33#include "libiberty.h"
a2fb1b05 34
7e1edb90 35#include "parameters.h"
a2fb1b05 36#include "object.h"
ead1e424
ILT
37#include "symtab.h"
38#include "reloc.h"
b8e6aad9 39#include "merge.h"
2a00e4fb 40#include "descriptors.h"
a2fb1b05
ILT
41#include "output.h"
42
c420411f
ILT
43// Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
44#ifndef MAP_ANONYMOUS
45# define MAP_ANONYMOUS MAP_ANON
46#endif
47
9201d894
ILT
48#ifndef HAVE_POSIX_FALLOCATE
49// A dummy, non general, version of posix_fallocate. Here we just set
50// the file size and hope that there is enough disk space. FIXME: We
51// could allocate disk space by walking block by block and writing a
52// zero byte into each block.
53static int
54posix_fallocate(int o, off_t offset, off_t len)
55{
56 return ftruncate(o, offset + len);
57}
58#endif // !defined(HAVE_POSIX_FALLOCATE)
59
a2fb1b05
ILT
60namespace gold
61{
62
a3ad94ed
ILT
63// Output_data variables.
64
27bc2bce 65bool Output_data::allocated_sizes_are_fixed;
a3ad94ed 66
a2fb1b05
ILT
67// Output_data methods.
68
69Output_data::~Output_data()
70{
71}
72
730cdc88
ILT
73// Return the default alignment for the target size.
74
75uint64_t
76Output_data::default_alignment()
77{
8851ecca
ILT
78 return Output_data::default_alignment_for_size(
79 parameters->target().get_size());
730cdc88
ILT
80}
81
75f65a3e
ILT
82// Return the default alignment for a size--32 or 64.
83
84uint64_t
730cdc88 85Output_data::default_alignment_for_size(int size)
75f65a3e
ILT
86{
87 if (size == 32)
88 return 4;
89 else if (size == 64)
90 return 8;
91 else
a3ad94ed 92 gold_unreachable();
75f65a3e
ILT
93}
94
75f65a3e
ILT
95// Output_section_header methods. This currently assumes that the
96// segment and section lists are complete at construction time.
97
98Output_section_headers::Output_section_headers(
16649710
ILT
99 const Layout* layout,
100 const Layout::Segment_list* segment_list,
6a74a719 101 const Layout::Section_list* section_list,
16649710 102 const Layout::Section_list* unattached_section_list,
d491d34e
ILT
103 const Stringpool* secnamepool,
104 const Output_section* shstrtab_section)
9025d29d 105 : layout_(layout),
75f65a3e 106 segment_list_(segment_list),
6a74a719 107 section_list_(section_list),
a3ad94ed 108 unattached_section_list_(unattached_section_list),
d491d34e
ILT
109 secnamepool_(secnamepool),
110 shstrtab_section_(shstrtab_section)
20e6d0d6
DK
111{
112}
113
114// Compute the current data size.
115
116off_t
117Output_section_headers::do_size() const
75f65a3e 118{
61ba1cf9
ILT
119 // Count all the sections. Start with 1 for the null section.
120 off_t count = 1;
8851ecca 121 if (!parameters->options().relocatable())
6a74a719 122 {
20e6d0d6
DK
123 for (Layout::Segment_list::const_iterator p =
124 this->segment_list_->begin();
125 p != this->segment_list_->end();
6a74a719
ILT
126 ++p)
127 if ((*p)->type() == elfcpp::PT_LOAD)
128 count += (*p)->output_section_count();
129 }
130 else
131 {
20e6d0d6
DK
132 for (Layout::Section_list::const_iterator p =
133 this->section_list_->begin();
134 p != this->section_list_->end();
6a74a719
ILT
135 ++p)
136 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
137 ++count;
138 }
20e6d0d6 139 count += this->unattached_section_list_->size();
75f65a3e 140
8851ecca 141 const int size = parameters->target().get_size();
75f65a3e
ILT
142 int shdr_size;
143 if (size == 32)
144 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
145 else if (size == 64)
146 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
147 else
a3ad94ed 148 gold_unreachable();
75f65a3e 149
20e6d0d6 150 return count * shdr_size;
75f65a3e
ILT
151}
152
61ba1cf9
ILT
153// Write out the section headers.
154
75f65a3e 155void
61ba1cf9 156Output_section_headers::do_write(Output_file* of)
a2fb1b05 157{
8851ecca 158 switch (parameters->size_and_endianness())
61ba1cf9 159 {
9025d29d 160#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
161 case Parameters::TARGET_32_LITTLE:
162 this->do_sized_write<32, false>(of);
163 break;
9025d29d 164#endif
8851ecca
ILT
165#ifdef HAVE_TARGET_32_BIG
166 case Parameters::TARGET_32_BIG:
167 this->do_sized_write<32, true>(of);
168 break;
9025d29d 169#endif
9025d29d 170#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
171 case Parameters::TARGET_64_LITTLE:
172 this->do_sized_write<64, false>(of);
173 break;
9025d29d 174#endif
8851ecca
ILT
175#ifdef HAVE_TARGET_64_BIG
176 case Parameters::TARGET_64_BIG:
177 this->do_sized_write<64, true>(of);
178 break;
179#endif
180 default:
181 gold_unreachable();
61ba1cf9 182 }
61ba1cf9
ILT
183}
184
185template<int size, bool big_endian>
186void
187Output_section_headers::do_sized_write(Output_file* of)
188{
189 off_t all_shdrs_size = this->data_size();
190 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
191
192 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
193 unsigned char* v = view;
194
195 {
196 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
197 oshdr.put_sh_name(0);
198 oshdr.put_sh_type(elfcpp::SHT_NULL);
199 oshdr.put_sh_flags(0);
200 oshdr.put_sh_addr(0);
201 oshdr.put_sh_offset(0);
d491d34e
ILT
202
203 size_t section_count = (this->data_size()
204 / elfcpp::Elf_sizes<size>::shdr_size);
205 if (section_count < elfcpp::SHN_LORESERVE)
206 oshdr.put_sh_size(0);
207 else
208 oshdr.put_sh_size(section_count);
209
210 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
211 if (shstrndx < elfcpp::SHN_LORESERVE)
212 oshdr.put_sh_link(0);
213 else
214 oshdr.put_sh_link(shstrndx);
215
5696ab0b
ILT
216 size_t segment_count = this->segment_list_->size();
217 oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
218
61ba1cf9
ILT
219 oshdr.put_sh_addralign(0);
220 oshdr.put_sh_entsize(0);
221 }
222
223 v += shdr_size;
224
6a74a719 225 unsigned int shndx = 1;
8851ecca 226 if (!parameters->options().relocatable())
6a74a719
ILT
227 {
228 for (Layout::Segment_list::const_iterator p =
229 this->segment_list_->begin();
230 p != this->segment_list_->end();
231 ++p)
232 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
233 this->secnamepool_,
234 v,
235 &shndx);
236 }
237 else
238 {
239 for (Layout::Section_list::const_iterator p =
240 this->section_list_->begin();
241 p != this->section_list_->end();
242 ++p)
243 {
244 // We do unallocated sections below, except that group
245 // sections have to come first.
246 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
247 && (*p)->type() != elfcpp::SHT_GROUP)
248 continue;
249 gold_assert(shndx == (*p)->out_shndx());
250 elfcpp::Shdr_write<size, big_endian> oshdr(v);
251 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
252 v += shdr_size;
253 ++shndx;
254 }
255 }
256
a3ad94ed 257 for (Layout::Section_list::const_iterator p =
16649710
ILT
258 this->unattached_section_list_->begin();
259 p != this->unattached_section_list_->end();
61ba1cf9
ILT
260 ++p)
261 {
6a74a719
ILT
262 // For a relocatable link, we did unallocated group sections
263 // above, since they have to come first.
264 if ((*p)->type() == elfcpp::SHT_GROUP
8851ecca 265 && parameters->options().relocatable())
6a74a719 266 continue;
a3ad94ed 267 gold_assert(shndx == (*p)->out_shndx());
61ba1cf9 268 elfcpp::Shdr_write<size, big_endian> oshdr(v);
16649710 269 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
61ba1cf9 270 v += shdr_size;
ead1e424 271 ++shndx;
61ba1cf9
ILT
272 }
273
274 of->write_output_view(this->offset(), all_shdrs_size, view);
a2fb1b05
ILT
275}
276
54dc6425
ILT
277// Output_segment_header methods.
278
61ba1cf9 279Output_segment_headers::Output_segment_headers(
61ba1cf9 280 const Layout::Segment_list& segment_list)
9025d29d 281 : segment_list_(segment_list)
61ba1cf9 282{
61ba1cf9
ILT
283}
284
54dc6425 285void
61ba1cf9 286Output_segment_headers::do_write(Output_file* of)
75f65a3e 287{
8851ecca 288 switch (parameters->size_and_endianness())
61ba1cf9 289 {
9025d29d 290#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
291 case Parameters::TARGET_32_LITTLE:
292 this->do_sized_write<32, false>(of);
293 break;
9025d29d 294#endif
8851ecca
ILT
295#ifdef HAVE_TARGET_32_BIG
296 case Parameters::TARGET_32_BIG:
297 this->do_sized_write<32, true>(of);
298 break;
9025d29d 299#endif
9025d29d 300#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
301 case Parameters::TARGET_64_LITTLE:
302 this->do_sized_write<64, false>(of);
303 break;
9025d29d 304#endif
8851ecca
ILT
305#ifdef HAVE_TARGET_64_BIG
306 case Parameters::TARGET_64_BIG:
307 this->do_sized_write<64, true>(of);
308 break;
309#endif
310 default:
311 gold_unreachable();
61ba1cf9 312 }
61ba1cf9
ILT
313}
314
315template<int size, bool big_endian>
316void
317Output_segment_headers::do_sized_write(Output_file* of)
318{
319 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
320 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
a445fddf 321 gold_assert(all_phdrs_size == this->data_size());
61ba1cf9
ILT
322 unsigned char* view = of->get_output_view(this->offset(),
323 all_phdrs_size);
324 unsigned char* v = view;
325 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
326 p != this->segment_list_.end();
327 ++p)
328 {
329 elfcpp::Phdr_write<size, big_endian> ophdr(v);
330 (*p)->write_header(&ophdr);
331 v += phdr_size;
332 }
333
a445fddf
ILT
334 gold_assert(v - view == all_phdrs_size);
335
61ba1cf9 336 of->write_output_view(this->offset(), all_phdrs_size, view);
75f65a3e
ILT
337}
338
20e6d0d6
DK
339off_t
340Output_segment_headers::do_size() const
341{
342 const int size = parameters->target().get_size();
343 int phdr_size;
344 if (size == 32)
345 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
346 else if (size == 64)
347 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
348 else
349 gold_unreachable();
350
351 return this->segment_list_.size() * phdr_size;
352}
353
75f65a3e
ILT
354// Output_file_header methods.
355
9025d29d 356Output_file_header::Output_file_header(const Target* target,
75f65a3e 357 const Symbol_table* symtab,
d391083d 358 const Output_segment_headers* osh,
2ea97941 359 const char* entry)
9025d29d 360 : target_(target),
75f65a3e 361 symtab_(symtab),
61ba1cf9 362 segment_header_(osh),
75f65a3e 363 section_header_(NULL),
d391083d 364 shstrtab_(NULL),
2ea97941 365 entry_(entry)
75f65a3e 366{
20e6d0d6 367 this->set_data_size(this->do_size());
75f65a3e
ILT
368}
369
370// Set the section table information for a file header.
371
372void
373Output_file_header::set_section_info(const Output_section_headers* shdrs,
374 const Output_section* shstrtab)
375{
376 this->section_header_ = shdrs;
377 this->shstrtab_ = shstrtab;
378}
379
380// Write out the file header.
381
382void
61ba1cf9 383Output_file_header::do_write(Output_file* of)
54dc6425 384{
27bc2bce
ILT
385 gold_assert(this->offset() == 0);
386
8851ecca 387 switch (parameters->size_and_endianness())
61ba1cf9 388 {
9025d29d 389#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
390 case Parameters::TARGET_32_LITTLE:
391 this->do_sized_write<32, false>(of);
392 break;
9025d29d 393#endif
8851ecca
ILT
394#ifdef HAVE_TARGET_32_BIG
395 case Parameters::TARGET_32_BIG:
396 this->do_sized_write<32, true>(of);
397 break;
9025d29d 398#endif
9025d29d 399#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
400 case Parameters::TARGET_64_LITTLE:
401 this->do_sized_write<64, false>(of);
402 break;
9025d29d 403#endif
8851ecca
ILT
404#ifdef HAVE_TARGET_64_BIG
405 case Parameters::TARGET_64_BIG:
406 this->do_sized_write<64, true>(of);
407 break;
408#endif
409 default:
410 gold_unreachable();
61ba1cf9 411 }
61ba1cf9
ILT
412}
413
414// Write out the file header with appropriate size and endianess.
415
416template<int size, bool big_endian>
417void
418Output_file_header::do_sized_write(Output_file* of)
419{
a3ad94ed 420 gold_assert(this->offset() == 0);
61ba1cf9
ILT
421
422 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
423 unsigned char* view = of->get_output_view(0, ehdr_size);
424 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
425
426 unsigned char e_ident[elfcpp::EI_NIDENT];
427 memset(e_ident, 0, elfcpp::EI_NIDENT);
428 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
429 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
430 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
431 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
432 if (size == 32)
433 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
434 else if (size == 64)
435 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
436 else
a3ad94ed 437 gold_unreachable();
61ba1cf9
ILT
438 e_ident[elfcpp::EI_DATA] = (big_endian
439 ? elfcpp::ELFDATA2MSB
440 : elfcpp::ELFDATA2LSB);
441 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
61ba1cf9
ILT
442 oehdr.put_e_ident(e_ident);
443
444 elfcpp::ET e_type;
8851ecca 445 if (parameters->options().relocatable())
61ba1cf9 446 e_type = elfcpp::ET_REL;
374ad285 447 else if (parameters->options().output_is_position_independent())
436ca963 448 e_type = elfcpp::ET_DYN;
61ba1cf9
ILT
449 else
450 e_type = elfcpp::ET_EXEC;
451 oehdr.put_e_type(e_type);
452
453 oehdr.put_e_machine(this->target_->machine_code());
454 oehdr.put_e_version(elfcpp::EV_CURRENT);
455
d391083d 456 oehdr.put_e_entry(this->entry<size>());
61ba1cf9 457
6a74a719
ILT
458 if (this->segment_header_ == NULL)
459 oehdr.put_e_phoff(0);
460 else
461 oehdr.put_e_phoff(this->segment_header_->offset());
462
61ba1cf9 463 oehdr.put_e_shoff(this->section_header_->offset());
d5b40221 464 oehdr.put_e_flags(this->target_->processor_specific_flags());
61ba1cf9 465 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
6a74a719
ILT
466
467 if (this->segment_header_ == NULL)
468 {
469 oehdr.put_e_phentsize(0);
470 oehdr.put_e_phnum(0);
471 }
472 else
473 {
474 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
5696ab0b
ILT
475 size_t phnum = (this->segment_header_->data_size()
476 / elfcpp::Elf_sizes<size>::phdr_size);
477 if (phnum > elfcpp::PN_XNUM)
478 phnum = elfcpp::PN_XNUM;
479 oehdr.put_e_phnum(phnum);
6a74a719
ILT
480 }
481
61ba1cf9 482 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
d491d34e
ILT
483 size_t section_count = (this->section_header_->data_size()
484 / elfcpp::Elf_sizes<size>::shdr_size);
485
486 if (section_count < elfcpp::SHN_LORESERVE)
487 oehdr.put_e_shnum(this->section_header_->data_size()
488 / elfcpp::Elf_sizes<size>::shdr_size);
489 else
490 oehdr.put_e_shnum(0);
491
492 unsigned int shstrndx = this->shstrtab_->out_shndx();
493 if (shstrndx < elfcpp::SHN_LORESERVE)
494 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
495 else
496 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
61ba1cf9 497
36959681
ILT
498 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
499 // the e_ident field.
500 parameters->target().adjust_elf_header(view, ehdr_size);
501
61ba1cf9 502 of->write_output_view(0, ehdr_size, view);
54dc6425
ILT
503}
504
d391083d
ILT
505// Return the value to use for the entry address. THIS->ENTRY_ is the
506// symbol specified on the command line, if any.
507
508template<int size>
509typename elfcpp::Elf_types<size>::Elf_Addr
510Output_file_header::entry()
511{
512 const bool should_issue_warning = (this->entry_ != NULL
8851ecca
ILT
513 && !parameters->options().relocatable()
514 && !parameters->options().shared());
d391083d
ILT
515
516 // FIXME: Need to support target specific entry symbol.
2ea97941
ILT
517 const char* entry = this->entry_;
518 if (entry == NULL)
519 entry = "_start";
d391083d 520
2ea97941 521 Symbol* sym = this->symtab_->lookup(entry);
d391083d
ILT
522
523 typename Sized_symbol<size>::Value_type v;
524 if (sym != NULL)
525 {
526 Sized_symbol<size>* ssym;
527 ssym = this->symtab_->get_sized_symbol<size>(sym);
528 if (!ssym->is_defined() && should_issue_warning)
2ea97941 529 gold_warning("entry symbol '%s' exists but is not defined", entry);
d391083d
ILT
530 v = ssym->value();
531 }
532 else
533 {
534 // We couldn't find the entry symbol. See if we can parse it as
535 // a number. This supports, e.g., -e 0x1000.
536 char* endptr;
2ea97941 537 v = strtoull(entry, &endptr, 0);
d391083d
ILT
538 if (*endptr != '\0')
539 {
540 if (should_issue_warning)
2ea97941 541 gold_warning("cannot find entry symbol '%s'", entry);
d391083d
ILT
542 v = 0;
543 }
544 }
545
546 return v;
547}
548
20e6d0d6
DK
549// Compute the current data size.
550
551off_t
552Output_file_header::do_size() const
553{
554 const int size = parameters->target().get_size();
555 if (size == 32)
556 return elfcpp::Elf_sizes<32>::ehdr_size;
557 else if (size == 64)
558 return elfcpp::Elf_sizes<64>::ehdr_size;
559 else
560 gold_unreachable();
561}
562
dbe717ef
ILT
563// Output_data_const methods.
564
565void
a3ad94ed 566Output_data_const::do_write(Output_file* of)
dbe717ef 567{
a3ad94ed
ILT
568 of->write(this->offset(), this->data_.data(), this->data_.size());
569}
570
571// Output_data_const_buffer methods.
572
573void
574Output_data_const_buffer::do_write(Output_file* of)
575{
576 of->write(this->offset(), this->p_, this->data_size());
dbe717ef
ILT
577}
578
579// Output_section_data methods.
580
16649710
ILT
581// Record the output section, and set the entry size and such.
582
583void
584Output_section_data::set_output_section(Output_section* os)
585{
586 gold_assert(this->output_section_ == NULL);
587 this->output_section_ = os;
588 this->do_adjust_output_section(os);
589}
590
591// Return the section index of the output section.
592
dbe717ef
ILT
593unsigned int
594Output_section_data::do_out_shndx() const
595{
a3ad94ed 596 gold_assert(this->output_section_ != NULL);
dbe717ef
ILT
597 return this->output_section_->out_shndx();
598}
599
759b1a24
ILT
600// Set the alignment, which means we may need to update the alignment
601// of the output section.
602
603void
2ea97941 604Output_section_data::set_addralign(uint64_t addralign)
759b1a24 605{
2ea97941 606 this->addralign_ = addralign;
759b1a24 607 if (this->output_section_ != NULL
2ea97941
ILT
608 && this->output_section_->addralign() < addralign)
609 this->output_section_->set_addralign(addralign);
759b1a24
ILT
610}
611
a3ad94ed
ILT
612// Output_data_strtab methods.
613
27bc2bce 614// Set the final data size.
a3ad94ed
ILT
615
616void
27bc2bce 617Output_data_strtab::set_final_data_size()
a3ad94ed
ILT
618{
619 this->strtab_->set_string_offsets();
620 this->set_data_size(this->strtab_->get_strtab_size());
621}
622
623// Write out a string table.
624
625void
626Output_data_strtab::do_write(Output_file* of)
627{
628 this->strtab_->write(of, this->offset());
629}
630
c06b7b0b
ILT
631// Output_reloc methods.
632
7bf1f802
ILT
633// A reloc against a global symbol.
634
635template<bool dynamic, int size, bool big_endian>
636Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
637 Symbol* gsym,
638 unsigned int type,
639 Output_data* od,
e8c846c3 640 Address address,
0da6fa6c
DM
641 bool is_relative,
642 bool is_symbolless)
7bf1f802 643 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
0da6fa6c
DM
644 is_relative_(is_relative), is_symbolless_(is_symbolless),
645 is_section_symbol_(false), shndx_(INVALID_CODE)
7bf1f802 646{
dceae3c1
ILT
647 // this->type_ is a bitfield; make sure TYPE fits.
648 gold_assert(this->type_ == type);
7bf1f802
ILT
649 this->u1_.gsym = gsym;
650 this->u2_.od = od;
dceae3c1
ILT
651 if (dynamic)
652 this->set_needs_dynsym_index();
7bf1f802
ILT
653}
654
655template<bool dynamic, int size, bool big_endian>
656Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
657 Symbol* gsym,
658 unsigned int type,
ef9beddf 659 Sized_relobj<size, big_endian>* relobj,
7bf1f802 660 unsigned int shndx,
e8c846c3 661 Address address,
0da6fa6c
DM
662 bool is_relative,
663 bool is_symbolless)
7bf1f802 664 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
0da6fa6c
DM
665 is_relative_(is_relative), is_symbolless_(is_symbolless),
666 is_section_symbol_(false), shndx_(shndx)
7bf1f802
ILT
667{
668 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
669 // this->type_ is a bitfield; make sure TYPE fits.
670 gold_assert(this->type_ == type);
7bf1f802
ILT
671 this->u1_.gsym = gsym;
672 this->u2_.relobj = relobj;
dceae3c1
ILT
673 if (dynamic)
674 this->set_needs_dynsym_index();
7bf1f802
ILT
675}
676
677// A reloc against a local symbol.
678
679template<bool dynamic, int size, bool big_endian>
680Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
681 Sized_relobj<size, big_endian>* relobj,
682 unsigned int local_sym_index,
683 unsigned int type,
684 Output_data* od,
e8c846c3 685 Address address,
2ea97941 686 bool is_relative,
0da6fa6c 687 bool is_symbolless,
dceae3c1 688 bool is_section_symbol)
7bf1f802 689 : address_(address), local_sym_index_(local_sym_index), type_(type),
0da6fa6c
DM
690 is_relative_(is_relative), is_symbolless_(is_symbolless),
691 is_section_symbol_(is_section_symbol), shndx_(INVALID_CODE)
7bf1f802
ILT
692{
693 gold_assert(local_sym_index != GSYM_CODE
694 && local_sym_index != INVALID_CODE);
dceae3c1
ILT
695 // this->type_ is a bitfield; make sure TYPE fits.
696 gold_assert(this->type_ == type);
7bf1f802
ILT
697 this->u1_.relobj = relobj;
698 this->u2_.od = od;
dceae3c1
ILT
699 if (dynamic)
700 this->set_needs_dynsym_index();
7bf1f802
ILT
701}
702
703template<bool dynamic, int size, bool big_endian>
704Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
705 Sized_relobj<size, big_endian>* relobj,
706 unsigned int local_sym_index,
707 unsigned int type,
708 unsigned int shndx,
e8c846c3 709 Address address,
2ea97941 710 bool is_relative,
0da6fa6c 711 bool is_symbolless,
dceae3c1 712 bool is_section_symbol)
7bf1f802 713 : address_(address), local_sym_index_(local_sym_index), type_(type),
0da6fa6c
DM
714 is_relative_(is_relative), is_symbolless_(is_symbolless),
715 is_section_symbol_(is_section_symbol), shndx_(shndx)
7bf1f802
ILT
716{
717 gold_assert(local_sym_index != GSYM_CODE
718 && local_sym_index != INVALID_CODE);
719 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
720 // this->type_ is a bitfield; make sure TYPE fits.
721 gold_assert(this->type_ == type);
7bf1f802
ILT
722 this->u1_.relobj = relobj;
723 this->u2_.relobj = relobj;
dceae3c1
ILT
724 if (dynamic)
725 this->set_needs_dynsym_index();
7bf1f802
ILT
726}
727
728// A reloc against the STT_SECTION symbol of an output section.
729
730template<bool dynamic, int size, bool big_endian>
731Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
732 Output_section* os,
733 unsigned int type,
734 Output_data* od,
735 Address address)
736 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
0da6fa6c
DM
737 is_relative_(false), is_symbolless_(false),
738 is_section_symbol_(true), shndx_(INVALID_CODE)
7bf1f802 739{
dceae3c1
ILT
740 // this->type_ is a bitfield; make sure TYPE fits.
741 gold_assert(this->type_ == type);
7bf1f802
ILT
742 this->u1_.os = os;
743 this->u2_.od = od;
744 if (dynamic)
dceae3c1
ILT
745 this->set_needs_dynsym_index();
746 else
747 os->set_needs_symtab_index();
7bf1f802
ILT
748}
749
750template<bool dynamic, int size, bool big_endian>
751Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
752 Output_section* os,
753 unsigned int type,
ef9beddf 754 Sized_relobj<size, big_endian>* relobj,
7bf1f802
ILT
755 unsigned int shndx,
756 Address address)
757 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
0da6fa6c
DM
758 is_relative_(false), is_symbolless_(false),
759 is_section_symbol_(true), shndx_(shndx)
7bf1f802
ILT
760{
761 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
762 // this->type_ is a bitfield; make sure TYPE fits.
763 gold_assert(this->type_ == type);
7bf1f802
ILT
764 this->u1_.os = os;
765 this->u2_.relobj = relobj;
766 if (dynamic)
dceae3c1
ILT
767 this->set_needs_dynsym_index();
768 else
769 os->set_needs_symtab_index();
770}
771
e291e7b9
ILT
772// An absolute relocation.
773
774template<bool dynamic, int size, bool big_endian>
775Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
776 unsigned int type,
777 Output_data* od,
778 Address address)
779 : address_(address), local_sym_index_(0), type_(type),
0da6fa6c
DM
780 is_relative_(false), is_symbolless_(false),
781 is_section_symbol_(false), shndx_(INVALID_CODE)
e291e7b9
ILT
782{
783 // this->type_ is a bitfield; make sure TYPE fits.
784 gold_assert(this->type_ == type);
785 this->u1_.relobj = NULL;
786 this->u2_.od = od;
787}
788
789template<bool dynamic, int size, bool big_endian>
790Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
791 unsigned int type,
792 Sized_relobj<size, big_endian>* relobj,
793 unsigned int shndx,
794 Address address)
795 : address_(address), local_sym_index_(0), type_(type),
0da6fa6c
DM
796 is_relative_(false), is_symbolless_(false),
797 is_section_symbol_(false), shndx_(shndx)
e291e7b9
ILT
798{
799 gold_assert(shndx != INVALID_CODE);
800 // this->type_ is a bitfield; make sure TYPE fits.
801 gold_assert(this->type_ == type);
802 this->u1_.relobj = NULL;
803 this->u2_.relobj = relobj;
804}
805
806// A target specific relocation.
807
808template<bool dynamic, int size, bool big_endian>
809Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
810 unsigned int type,
811 void* arg,
812 Output_data* od,
813 Address address)
814 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
0da6fa6c
DM
815 is_relative_(false), is_symbolless_(false),
816 is_section_symbol_(false), shndx_(INVALID_CODE)
e291e7b9
ILT
817{
818 // this->type_ is a bitfield; make sure TYPE fits.
819 gold_assert(this->type_ == type);
820 this->u1_.arg = arg;
821 this->u2_.od = od;
822}
823
824template<bool dynamic, int size, bool big_endian>
825Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
826 unsigned int type,
827 void* arg,
828 Sized_relobj<size, big_endian>* relobj,
829 unsigned int shndx,
830 Address address)
831 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
0da6fa6c
DM
832 is_relative_(false), is_symbolless_(false),
833 is_section_symbol_(false), shndx_(shndx)
e291e7b9
ILT
834{
835 gold_assert(shndx != INVALID_CODE);
836 // this->type_ is a bitfield; make sure TYPE fits.
837 gold_assert(this->type_ == type);
838 this->u1_.arg = arg;
839 this->u2_.relobj = relobj;
840}
841
dceae3c1
ILT
842// Record that we need a dynamic symbol index for this relocation.
843
844template<bool dynamic, int size, bool big_endian>
845void
846Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
847set_needs_dynsym_index()
848{
0da6fa6c 849 if (this->is_symbolless_)
dceae3c1
ILT
850 return;
851 switch (this->local_sym_index_)
852 {
853 case INVALID_CODE:
854 gold_unreachable();
855
856 case GSYM_CODE:
857 this->u1_.gsym->set_needs_dynsym_entry();
858 break;
859
860 case SECTION_CODE:
861 this->u1_.os->set_needs_dynsym_index();
862 break;
863
e291e7b9
ILT
864 case TARGET_CODE:
865 // The target must take care of this if necessary.
866 break;
867
dceae3c1
ILT
868 case 0:
869 break;
870
871 default:
872 {
873 const unsigned int lsi = this->local_sym_index_;
874 if (!this->is_section_symbol_)
875 this->u1_.relobj->set_needs_output_dynsym_entry(lsi);
876 else
ef9beddf 877 this->u1_.relobj->output_section(lsi)->set_needs_dynsym_index();
dceae3c1
ILT
878 }
879 break;
880 }
7bf1f802
ILT
881}
882
c06b7b0b
ILT
883// Get the symbol index of a relocation.
884
885template<bool dynamic, int size, bool big_endian>
886unsigned int
887Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
888 const
889{
890 unsigned int index;
0da6fa6c
DM
891 if (this->is_symbolless_)
892 return 0;
c06b7b0b
ILT
893 switch (this->local_sym_index_)
894 {
895 case INVALID_CODE:
a3ad94ed 896 gold_unreachable();
c06b7b0b
ILT
897
898 case GSYM_CODE:
5a6f7e2d 899 if (this->u1_.gsym == NULL)
c06b7b0b
ILT
900 index = 0;
901 else if (dynamic)
5a6f7e2d 902 index = this->u1_.gsym->dynsym_index();
c06b7b0b 903 else
5a6f7e2d 904 index = this->u1_.gsym->symtab_index();
c06b7b0b
ILT
905 break;
906
907 case SECTION_CODE:
908 if (dynamic)
5a6f7e2d 909 index = this->u1_.os->dynsym_index();
c06b7b0b 910 else
5a6f7e2d 911 index = this->u1_.os->symtab_index();
c06b7b0b
ILT
912 break;
913
e291e7b9
ILT
914 case TARGET_CODE:
915 index = parameters->target().reloc_symbol_index(this->u1_.arg,
916 this->type_);
917 break;
918
436ca963
ILT
919 case 0:
920 // Relocations without symbols use a symbol index of 0.
921 index = 0;
922 break;
923
c06b7b0b 924 default:
dceae3c1
ILT
925 {
926 const unsigned int lsi = this->local_sym_index_;
927 if (!this->is_section_symbol_)
928 {
929 if (dynamic)
930 index = this->u1_.relobj->dynsym_index(lsi);
931 else
932 index = this->u1_.relobj->symtab_index(lsi);
933 }
934 else
935 {
ef9beddf 936 Output_section* os = this->u1_.relobj->output_section(lsi);
dceae3c1
ILT
937 gold_assert(os != NULL);
938 if (dynamic)
939 index = os->dynsym_index();
940 else
941 index = os->symtab_index();
942 }
943 }
c06b7b0b
ILT
944 break;
945 }
a3ad94ed 946 gold_assert(index != -1U);
c06b7b0b
ILT
947 return index;
948}
949
624f8810
ILT
950// For a local section symbol, get the address of the offset ADDEND
951// within the input section.
dceae3c1
ILT
952
953template<bool dynamic, int size, bool big_endian>
ef9beddf 954typename elfcpp::Elf_types<size>::Elf_Addr
dceae3c1 955Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
624f8810 956 local_section_offset(Addend addend) const
dceae3c1 957{
624f8810
ILT
958 gold_assert(this->local_sym_index_ != GSYM_CODE
959 && this->local_sym_index_ != SECTION_CODE
e291e7b9 960 && this->local_sym_index_ != TARGET_CODE
624f8810 961 && this->local_sym_index_ != INVALID_CODE
e291e7b9 962 && this->local_sym_index_ != 0
624f8810 963 && this->is_section_symbol_);
dceae3c1 964 const unsigned int lsi = this->local_sym_index_;
ef9beddf 965 Output_section* os = this->u1_.relobj->output_section(lsi);
624f8810 966 gold_assert(os != NULL);
ef9beddf 967 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
eff45813 968 if (offset != invalid_address)
624f8810
ILT
969 return offset + addend;
970 // This is a merge section.
971 offset = os->output_address(this->u1_.relobj, lsi, addend);
eff45813 972 gold_assert(offset != invalid_address);
dceae3c1
ILT
973 return offset;
974}
975
d98bc257 976// Get the output address of a relocation.
c06b7b0b
ILT
977
978template<bool dynamic, int size, bool big_endian>
a984ee1d 979typename elfcpp::Elf_types<size>::Elf_Addr
d98bc257 980Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
c06b7b0b 981{
a3ad94ed 982 Address address = this->address_;
5a6f7e2d
ILT
983 if (this->shndx_ != INVALID_CODE)
984 {
ef9beddf 985 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
5a6f7e2d 986 gold_assert(os != NULL);
ef9beddf 987 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
eff45813 988 if (off != invalid_address)
730cdc88
ILT
989 address += os->address() + off;
990 else
991 {
992 address = os->output_address(this->u2_.relobj, this->shndx_,
993 address);
eff45813 994 gold_assert(address != invalid_address);
730cdc88 995 }
5a6f7e2d
ILT
996 }
997 else if (this->u2_.od != NULL)
998 address += this->u2_.od->address();
d98bc257
ILT
999 return address;
1000}
1001
1002// Write out the offset and info fields of a Rel or Rela relocation
1003// entry.
1004
1005template<bool dynamic, int size, bool big_endian>
1006template<typename Write_rel>
1007void
1008Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1009 Write_rel* wr) const
1010{
1011 wr->put_r_offset(this->get_address());
0da6fa6c 1012 unsigned int sym_index = this->get_symbol_index();
e8c846c3 1013 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
c06b7b0b
ILT
1014}
1015
1016// Write out a Rel relocation.
1017
1018template<bool dynamic, int size, bool big_endian>
1019void
1020Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1021 unsigned char* pov) const
1022{
1023 elfcpp::Rel_write<size, big_endian> orel(pov);
1024 this->write_rel(&orel);
1025}
1026
e8c846c3
ILT
1027// Get the value of the symbol referred to by a Rel relocation.
1028
1029template<bool dynamic, int size, bool big_endian>
1030typename elfcpp::Elf_types<size>::Elf_Addr
d1f003c6 1031Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
624f8810 1032 Addend addend) const
e8c846c3
ILT
1033{
1034 if (this->local_sym_index_ == GSYM_CODE)
1035 {
1036 const Sized_symbol<size>* sym;
1037 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
d1f003c6 1038 return sym->value() + addend;
e8c846c3
ILT
1039 }
1040 gold_assert(this->local_sym_index_ != SECTION_CODE
e291e7b9 1041 && this->local_sym_index_ != TARGET_CODE
d1f003c6 1042 && this->local_sym_index_ != INVALID_CODE
e291e7b9 1043 && this->local_sym_index_ != 0
d1f003c6
ILT
1044 && !this->is_section_symbol_);
1045 const unsigned int lsi = this->local_sym_index_;
1046 const Symbol_value<size>* symval = this->u1_.relobj->local_symbol(lsi);
1047 return symval->value(this->u1_.relobj, addend);
e8c846c3
ILT
1048}
1049
d98bc257
ILT
1050// Reloc comparison. This function sorts the dynamic relocs for the
1051// benefit of the dynamic linker. First we sort all relative relocs
1052// to the front. Among relative relocs, we sort by output address.
1053// Among non-relative relocs, we sort by symbol index, then by output
1054// address.
1055
1056template<bool dynamic, int size, bool big_endian>
1057int
1058Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1059 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1060 const
1061{
1062 if (this->is_relative_)
1063 {
1064 if (!r2.is_relative_)
1065 return -1;
1066 // Otherwise sort by reloc address below.
1067 }
1068 else if (r2.is_relative_)
1069 return 1;
1070 else
1071 {
1072 unsigned int sym1 = this->get_symbol_index();
1073 unsigned int sym2 = r2.get_symbol_index();
1074 if (sym1 < sym2)
1075 return -1;
1076 else if (sym1 > sym2)
1077 return 1;
1078 // Otherwise sort by reloc address.
1079 }
1080
1081 section_offset_type addr1 = this->get_address();
1082 section_offset_type addr2 = r2.get_address();
1083 if (addr1 < addr2)
1084 return -1;
1085 else if (addr1 > addr2)
1086 return 1;
1087
1088 // Final tie breaker, in order to generate the same output on any
1089 // host: reloc type.
1090 unsigned int type1 = this->type_;
1091 unsigned int type2 = r2.type_;
1092 if (type1 < type2)
1093 return -1;
1094 else if (type1 > type2)
1095 return 1;
1096
1097 // These relocs appear to be exactly the same.
1098 return 0;
1099}
1100
c06b7b0b
ILT
1101// Write out a Rela relocation.
1102
1103template<bool dynamic, int size, bool big_endian>
1104void
1105Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1106 unsigned char* pov) const
1107{
1108 elfcpp::Rela_write<size, big_endian> orel(pov);
1109 this->rel_.write_rel(&orel);
e8c846c3 1110 Addend addend = this->addend_;
e291e7b9
ILT
1111 if (this->rel_.is_target_specific())
1112 addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1113 this->rel_.type(), addend);
0da6fa6c 1114 else if (this->rel_.is_symbolless())
d1f003c6
ILT
1115 addend = this->rel_.symbol_value(addend);
1116 else if (this->rel_.is_local_section_symbol())
624f8810 1117 addend = this->rel_.local_section_offset(addend);
e8c846c3 1118 orel.put_r_addend(addend);
c06b7b0b
ILT
1119}
1120
1121// Output_data_reloc_base methods.
1122
16649710
ILT
1123// Adjust the output section.
1124
1125template<int sh_type, bool dynamic, int size, bool big_endian>
1126void
1127Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1128 ::do_adjust_output_section(Output_section* os)
1129{
1130 if (sh_type == elfcpp::SHT_REL)
1131 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1132 else if (sh_type == elfcpp::SHT_RELA)
1133 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1134 else
1135 gold_unreachable();
1136 if (dynamic)
1137 os->set_should_link_to_dynsym();
1138 else
1139 os->set_should_link_to_symtab();
1140}
1141
c06b7b0b
ILT
1142// Write out relocation data.
1143
1144template<int sh_type, bool dynamic, int size, bool big_endian>
1145void
1146Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1147 Output_file* of)
1148{
1149 const off_t off = this->offset();
1150 const off_t oview_size = this->data_size();
1151 unsigned char* const oview = of->get_output_view(off, oview_size);
1152
3a44184e 1153 if (this->sort_relocs())
d98bc257
ILT
1154 {
1155 gold_assert(dynamic);
1156 std::sort(this->relocs_.begin(), this->relocs_.end(),
1157 Sort_relocs_comparison());
1158 }
1159
c06b7b0b
ILT
1160 unsigned char* pov = oview;
1161 for (typename Relocs::const_iterator p = this->relocs_.begin();
1162 p != this->relocs_.end();
1163 ++p)
1164 {
1165 p->write(pov);
1166 pov += reloc_size;
1167 }
1168
a3ad94ed 1169 gold_assert(pov - oview == oview_size);
c06b7b0b
ILT
1170
1171 of->write_output_view(off, oview_size, oview);
1172
1173 // We no longer need the relocation entries.
1174 this->relocs_.clear();
1175}
1176
6a74a719
ILT
1177// Class Output_relocatable_relocs.
1178
1179template<int sh_type, int size, bool big_endian>
1180void
1181Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1182{
1183 this->set_data_size(this->rr_->output_reloc_count()
1184 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1185}
1186
1187// class Output_data_group.
1188
1189template<int size, bool big_endian>
1190Output_data_group<size, big_endian>::Output_data_group(
1191 Sized_relobj<size, big_endian>* relobj,
1192 section_size_type entry_count,
8825ac63
ILT
1193 elfcpp::Elf_Word flags,
1194 std::vector<unsigned int>* input_shndxes)
20e6d0d6 1195 : Output_section_data(entry_count * 4, 4, false),
8825ac63
ILT
1196 relobj_(relobj),
1197 flags_(flags)
6a74a719 1198{
8825ac63 1199 this->input_shndxes_.swap(*input_shndxes);
6a74a719
ILT
1200}
1201
1202// Write out the section group, which means translating the section
1203// indexes to apply to the output file.
1204
1205template<int size, bool big_endian>
1206void
1207Output_data_group<size, big_endian>::do_write(Output_file* of)
1208{
1209 const off_t off = this->offset();
1210 const section_size_type oview_size =
1211 convert_to_section_size_type(this->data_size());
1212 unsigned char* const oview = of->get_output_view(off, oview_size);
1213
1214 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1215 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1216 ++contents;
1217
1218 for (std::vector<unsigned int>::const_iterator p =
8825ac63
ILT
1219 this->input_shndxes_.begin();
1220 p != this->input_shndxes_.end();
6a74a719
ILT
1221 ++p, ++contents)
1222 {
ef9beddf 1223 Output_section* os = this->relobj_->output_section(*p);
6a74a719
ILT
1224
1225 unsigned int output_shndx;
1226 if (os != NULL)
1227 output_shndx = os->out_shndx();
1228 else
1229 {
1230 this->relobj_->error(_("section group retained but "
1231 "group element discarded"));
1232 output_shndx = 0;
1233 }
1234
1235 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1236 }
1237
1238 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1239 gold_assert(wrote == oview_size);
1240
1241 of->write_output_view(off, oview_size, oview);
1242
1243 // We no longer need this information.
8825ac63 1244 this->input_shndxes_.clear();
6a74a719
ILT
1245}
1246
dbe717ef 1247// Output_data_got::Got_entry methods.
ead1e424
ILT
1248
1249// Write out the entry.
1250
1251template<int size, bool big_endian>
1252void
7e1edb90 1253Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
ead1e424
ILT
1254{
1255 Valtype val = 0;
1256
1257 switch (this->local_sym_index_)
1258 {
1259 case GSYM_CODE:
1260 {
e8c846c3
ILT
1261 // If the symbol is resolved locally, we need to write out the
1262 // link-time value, which will be relocated dynamically by a
1263 // RELATIVE relocation.
ead1e424 1264 Symbol* gsym = this->u_.gsym;
e8c846c3
ILT
1265 Sized_symbol<size>* sgsym;
1266 // This cast is a bit ugly. We don't want to put a
1267 // virtual method in Symbol, because we want Symbol to be
1268 // as small as possible.
1269 sgsym = static_cast<Sized_symbol<size>*>(gsym);
1270 val = sgsym->value();
ead1e424
ILT
1271 }
1272 break;
1273
1274 case CONSTANT_CODE:
1275 val = this->u_.constant;
1276 break;
1277
1278 default:
d1f003c6
ILT
1279 {
1280 const unsigned int lsi = this->local_sym_index_;
1281 const Symbol_value<size>* symval = this->u_.object->local_symbol(lsi);
1282 val = symval->value(this->u_.object, 0);
1283 }
e727fa71 1284 break;
ead1e424
ILT
1285 }
1286
a3ad94ed 1287 elfcpp::Swap<size, big_endian>::writeval(pov, val);
ead1e424
ILT
1288}
1289
dbe717ef 1290// Output_data_got methods.
ead1e424 1291
dbe717ef
ILT
1292// Add an entry for a global symbol to the GOT. This returns true if
1293// this is a new GOT entry, false if the symbol already had a GOT
1294// entry.
1295
1296template<int size, bool big_endian>
1297bool
0a65a3a7
CC
1298Output_data_got<size, big_endian>::add_global(
1299 Symbol* gsym,
1300 unsigned int got_type)
ead1e424 1301{
0a65a3a7 1302 if (gsym->has_got_offset(got_type))
dbe717ef 1303 return false;
ead1e424 1304
dbe717ef
ILT
1305 this->entries_.push_back(Got_entry(gsym));
1306 this->set_got_size();
0a65a3a7 1307 gsym->set_got_offset(got_type, this->last_got_offset());
dbe717ef
ILT
1308 return true;
1309}
ead1e424 1310
7bf1f802
ILT
1311// Add an entry for a global symbol to the GOT, and add a dynamic
1312// relocation of type R_TYPE for the GOT entry.
1313template<int size, bool big_endian>
1314void
1315Output_data_got<size, big_endian>::add_global_with_rel(
1316 Symbol* gsym,
0a65a3a7 1317 unsigned int got_type,
7bf1f802
ILT
1318 Rel_dyn* rel_dyn,
1319 unsigned int r_type)
1320{
0a65a3a7 1321 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1322 return;
1323
1324 this->entries_.push_back(Got_entry());
1325 this->set_got_size();
2ea97941
ILT
1326 unsigned int got_offset = this->last_got_offset();
1327 gsym->set_got_offset(got_type, got_offset);
1328 rel_dyn->add_global(gsym, r_type, this, got_offset);
7bf1f802
ILT
1329}
1330
1331template<int size, bool big_endian>
1332void
1333Output_data_got<size, big_endian>::add_global_with_rela(
1334 Symbol* gsym,
0a65a3a7 1335 unsigned int got_type,
7bf1f802
ILT
1336 Rela_dyn* rela_dyn,
1337 unsigned int r_type)
1338{
0a65a3a7 1339 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1340 return;
1341
1342 this->entries_.push_back(Got_entry());
1343 this->set_got_size();
2ea97941
ILT
1344 unsigned int got_offset = this->last_got_offset();
1345 gsym->set_got_offset(got_type, got_offset);
1346 rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
7bf1f802
ILT
1347}
1348
0a65a3a7
CC
1349// Add a pair of entries for a global symbol to the GOT, and add
1350// dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1351// If R_TYPE_2 == 0, add the second entry with no relocation.
7bf1f802
ILT
1352template<int size, bool big_endian>
1353void
0a65a3a7
CC
1354Output_data_got<size, big_endian>::add_global_pair_with_rel(
1355 Symbol* gsym,
1356 unsigned int got_type,
7bf1f802 1357 Rel_dyn* rel_dyn,
0a65a3a7
CC
1358 unsigned int r_type_1,
1359 unsigned int r_type_2)
7bf1f802 1360{
0a65a3a7 1361 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1362 return;
1363
1364 this->entries_.push_back(Got_entry());
2ea97941
ILT
1365 unsigned int got_offset = this->last_got_offset();
1366 gsym->set_got_offset(got_type, got_offset);
1367 rel_dyn->add_global(gsym, r_type_1, this, got_offset);
0a65a3a7
CC
1368
1369 this->entries_.push_back(Got_entry());
1370 if (r_type_2 != 0)
1371 {
2ea97941
ILT
1372 got_offset = this->last_got_offset();
1373 rel_dyn->add_global(gsym, r_type_2, this, got_offset);
0a65a3a7
CC
1374 }
1375
1376 this->set_got_size();
7bf1f802
ILT
1377}
1378
1379template<int size, bool big_endian>
1380void
0a65a3a7
CC
1381Output_data_got<size, big_endian>::add_global_pair_with_rela(
1382 Symbol* gsym,
1383 unsigned int got_type,
7bf1f802 1384 Rela_dyn* rela_dyn,
0a65a3a7
CC
1385 unsigned int r_type_1,
1386 unsigned int r_type_2)
7bf1f802 1387{
0a65a3a7 1388 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1389 return;
1390
1391 this->entries_.push_back(Got_entry());
2ea97941
ILT
1392 unsigned int got_offset = this->last_got_offset();
1393 gsym->set_got_offset(got_type, got_offset);
1394 rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
0a65a3a7
CC
1395
1396 this->entries_.push_back(Got_entry());
1397 if (r_type_2 != 0)
1398 {
2ea97941
ILT
1399 got_offset = this->last_got_offset();
1400 rela_dyn->add_global(gsym, r_type_2, this, got_offset, 0);
0a65a3a7
CC
1401 }
1402
1403 this->set_got_size();
7bf1f802
ILT
1404}
1405
0a65a3a7
CC
1406// Add an entry for a local symbol to the GOT. This returns true if
1407// this is a new GOT entry, false if the symbol already has a GOT
1408// entry.
07f397ab
ILT
1409
1410template<int size, bool big_endian>
1411bool
0a65a3a7
CC
1412Output_data_got<size, big_endian>::add_local(
1413 Sized_relobj<size, big_endian>* object,
1414 unsigned int symndx,
1415 unsigned int got_type)
07f397ab 1416{
0a65a3a7 1417 if (object->local_has_got_offset(symndx, got_type))
07f397ab
ILT
1418 return false;
1419
0a65a3a7 1420 this->entries_.push_back(Got_entry(object, symndx));
07f397ab 1421 this->set_got_size();
0a65a3a7 1422 object->set_local_got_offset(symndx, got_type, this->last_got_offset());
07f397ab
ILT
1423 return true;
1424}
1425
0a65a3a7
CC
1426// Add an entry for a local symbol to the GOT, and add a dynamic
1427// relocation of type R_TYPE for the GOT entry.
7bf1f802
ILT
1428template<int size, bool big_endian>
1429void
0a65a3a7
CC
1430Output_data_got<size, big_endian>::add_local_with_rel(
1431 Sized_relobj<size, big_endian>* object,
1432 unsigned int symndx,
1433 unsigned int got_type,
7bf1f802
ILT
1434 Rel_dyn* rel_dyn,
1435 unsigned int r_type)
1436{
0a65a3a7 1437 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1438 return;
1439
1440 this->entries_.push_back(Got_entry());
1441 this->set_got_size();
2ea97941
ILT
1442 unsigned int got_offset = this->last_got_offset();
1443 object->set_local_got_offset(symndx, got_type, got_offset);
1444 rel_dyn->add_local(object, symndx, r_type, this, got_offset);
7bf1f802
ILT
1445}
1446
1447template<int size, bool big_endian>
1448void
0a65a3a7
CC
1449Output_data_got<size, big_endian>::add_local_with_rela(
1450 Sized_relobj<size, big_endian>* object,
1451 unsigned int symndx,
1452 unsigned int got_type,
7bf1f802
ILT
1453 Rela_dyn* rela_dyn,
1454 unsigned int r_type)
1455{
0a65a3a7 1456 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1457 return;
1458
1459 this->entries_.push_back(Got_entry());
1460 this->set_got_size();
2ea97941
ILT
1461 unsigned int got_offset = this->last_got_offset();
1462 object->set_local_got_offset(symndx, got_type, got_offset);
1463 rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
07f397ab
ILT
1464}
1465
0a65a3a7
CC
1466// Add a pair of entries for a local symbol to the GOT, and add
1467// dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1468// If R_TYPE_2 == 0, add the second entry with no relocation.
7bf1f802
ILT
1469template<int size, bool big_endian>
1470void
0a65a3a7 1471Output_data_got<size, big_endian>::add_local_pair_with_rel(
7bf1f802
ILT
1472 Sized_relobj<size, big_endian>* object,
1473 unsigned int symndx,
1474 unsigned int shndx,
0a65a3a7 1475 unsigned int got_type,
7bf1f802 1476 Rel_dyn* rel_dyn,
0a65a3a7
CC
1477 unsigned int r_type_1,
1478 unsigned int r_type_2)
7bf1f802 1479{
0a65a3a7 1480 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1481 return;
1482
1483 this->entries_.push_back(Got_entry());
2ea97941
ILT
1484 unsigned int got_offset = this->last_got_offset();
1485 object->set_local_got_offset(symndx, got_type, got_offset);
ef9beddf 1486 Output_section* os = object->output_section(shndx);
2ea97941 1487 rel_dyn->add_output_section(os, r_type_1, this, got_offset);
7bf1f802 1488
0a65a3a7
CC
1489 this->entries_.push_back(Got_entry(object, symndx));
1490 if (r_type_2 != 0)
1491 {
2ea97941
ILT
1492 got_offset = this->last_got_offset();
1493 rel_dyn->add_output_section(os, r_type_2, this, got_offset);
0a65a3a7 1494 }
7bf1f802
ILT
1495
1496 this->set_got_size();
1497}
1498
1499template<int size, bool big_endian>
1500void
0a65a3a7 1501Output_data_got<size, big_endian>::add_local_pair_with_rela(
7bf1f802
ILT
1502 Sized_relobj<size, big_endian>* object,
1503 unsigned int symndx,
1504 unsigned int shndx,
0a65a3a7 1505 unsigned int got_type,
7bf1f802 1506 Rela_dyn* rela_dyn,
0a65a3a7
CC
1507 unsigned int r_type_1,
1508 unsigned int r_type_2)
7bf1f802 1509{
0a65a3a7 1510 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1511 return;
1512
1513 this->entries_.push_back(Got_entry());
2ea97941
ILT
1514 unsigned int got_offset = this->last_got_offset();
1515 object->set_local_got_offset(symndx, got_type, got_offset);
ef9beddf 1516 Output_section* os = object->output_section(shndx);
2ea97941 1517 rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
7bf1f802 1518
0a65a3a7
CC
1519 this->entries_.push_back(Got_entry(object, symndx));
1520 if (r_type_2 != 0)
1521 {
2ea97941
ILT
1522 got_offset = this->last_got_offset();
1523 rela_dyn->add_output_section(os, r_type_2, this, got_offset, 0);
0a65a3a7 1524 }
7bf1f802
ILT
1525
1526 this->set_got_size();
1527}
1528
ead1e424
ILT
1529// Write out the GOT.
1530
1531template<int size, bool big_endian>
1532void
dbe717ef 1533Output_data_got<size, big_endian>::do_write(Output_file* of)
ead1e424
ILT
1534{
1535 const int add = size / 8;
1536
1537 const off_t off = this->offset();
c06b7b0b 1538 const off_t oview_size = this->data_size();
ead1e424
ILT
1539 unsigned char* const oview = of->get_output_view(off, oview_size);
1540
1541 unsigned char* pov = oview;
1542 for (typename Got_entries::const_iterator p = this->entries_.begin();
1543 p != this->entries_.end();
1544 ++p)
1545 {
7e1edb90 1546 p->write(pov);
ead1e424
ILT
1547 pov += add;
1548 }
1549
a3ad94ed 1550 gold_assert(pov - oview == oview_size);
c06b7b0b 1551
ead1e424
ILT
1552 of->write_output_view(off, oview_size, oview);
1553
1554 // We no longer need the GOT entries.
1555 this->entries_.clear();
1556}
1557
a3ad94ed
ILT
1558// Output_data_dynamic::Dynamic_entry methods.
1559
1560// Write out the entry.
1561
1562template<int size, bool big_endian>
1563void
1564Output_data_dynamic::Dynamic_entry::write(
1565 unsigned char* pov,
7d1a9ebb 1566 const Stringpool* pool) const
a3ad94ed
ILT
1567{
1568 typename elfcpp::Elf_types<size>::Elf_WXword val;
c2b45e22 1569 switch (this->offset_)
a3ad94ed
ILT
1570 {
1571 case DYNAMIC_NUMBER:
1572 val = this->u_.val;
1573 break;
1574
a3ad94ed 1575 case DYNAMIC_SECTION_SIZE:
16649710 1576 val = this->u_.od->data_size();
612a8d3d
DM
1577 if (this->od2 != NULL)
1578 val += this->od2->data_size();
a3ad94ed
ILT
1579 break;
1580
1581 case DYNAMIC_SYMBOL:
1582 {
16649710
ILT
1583 const Sized_symbol<size>* s =
1584 static_cast<const Sized_symbol<size>*>(this->u_.sym);
a3ad94ed
ILT
1585 val = s->value();
1586 }
1587 break;
1588
1589 case DYNAMIC_STRING:
1590 val = pool->get_offset(this->u_.str);
1591 break;
1592
1593 default:
c2b45e22
CC
1594 val = this->u_.od->address() + this->offset_;
1595 break;
a3ad94ed
ILT
1596 }
1597
1598 elfcpp::Dyn_write<size, big_endian> dw(pov);
1599 dw.put_d_tag(this->tag_);
1600 dw.put_d_val(val);
1601}
1602
1603// Output_data_dynamic methods.
1604
16649710
ILT
1605// Adjust the output section to set the entry size.
1606
1607void
1608Output_data_dynamic::do_adjust_output_section(Output_section* os)
1609{
8851ecca 1610 if (parameters->target().get_size() == 32)
16649710 1611 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
8851ecca 1612 else if (parameters->target().get_size() == 64)
16649710
ILT
1613 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1614 else
1615 gold_unreachable();
1616}
1617
a3ad94ed
ILT
1618// Set the final data size.
1619
1620void
27bc2bce 1621Output_data_dynamic::set_final_data_size()
a3ad94ed 1622{
20e6d0d6
DK
1623 // Add the terminating entry if it hasn't been added.
1624 // Because of relaxation, we can run this multiple times.
9e9e071b
ILT
1625 if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1626 {
1627 int extra = parameters->options().spare_dynamic_tags();
1628 for (int i = 0; i < extra; ++i)
1629 this->add_constant(elfcpp::DT_NULL, 0);
1630 this->add_constant(elfcpp::DT_NULL, 0);
1631 }
a3ad94ed
ILT
1632
1633 int dyn_size;
8851ecca 1634 if (parameters->target().get_size() == 32)
a3ad94ed 1635 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
8851ecca 1636 else if (parameters->target().get_size() == 64)
a3ad94ed
ILT
1637 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1638 else
1639 gold_unreachable();
1640 this->set_data_size(this->entries_.size() * dyn_size);
1641}
1642
1643// Write out the dynamic entries.
1644
1645void
1646Output_data_dynamic::do_write(Output_file* of)
1647{
8851ecca 1648 switch (parameters->size_and_endianness())
a3ad94ed 1649 {
9025d29d 1650#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
1651 case Parameters::TARGET_32_LITTLE:
1652 this->sized_write<32, false>(of);
1653 break;
9025d29d 1654#endif
8851ecca
ILT
1655#ifdef HAVE_TARGET_32_BIG
1656 case Parameters::TARGET_32_BIG:
1657 this->sized_write<32, true>(of);
1658 break;
9025d29d 1659#endif
9025d29d 1660#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
1661 case Parameters::TARGET_64_LITTLE:
1662 this->sized_write<64, false>(of);
1663 break;
9025d29d 1664#endif
8851ecca
ILT
1665#ifdef HAVE_TARGET_64_BIG
1666 case Parameters::TARGET_64_BIG:
1667 this->sized_write<64, true>(of);
1668 break;
1669#endif
1670 default:
1671 gold_unreachable();
a3ad94ed 1672 }
a3ad94ed
ILT
1673}
1674
1675template<int size, bool big_endian>
1676void
1677Output_data_dynamic::sized_write(Output_file* of)
1678{
1679 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1680
2ea97941 1681 const off_t offset = this->offset();
a3ad94ed 1682 const off_t oview_size = this->data_size();
2ea97941 1683 unsigned char* const oview = of->get_output_view(offset, oview_size);
a3ad94ed
ILT
1684
1685 unsigned char* pov = oview;
1686 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1687 p != this->entries_.end();
1688 ++p)
1689 {
7d1a9ebb 1690 p->write<size, big_endian>(pov, this->pool_);
a3ad94ed
ILT
1691 pov += dyn_size;
1692 }
1693
1694 gold_assert(pov - oview == oview_size);
1695
2ea97941 1696 of->write_output_view(offset, oview_size, oview);
a3ad94ed
ILT
1697
1698 // We no longer need the dynamic entries.
1699 this->entries_.clear();
1700}
1701
d491d34e
ILT
1702// Class Output_symtab_xindex.
1703
1704void
1705Output_symtab_xindex::do_write(Output_file* of)
1706{
2ea97941 1707 const off_t offset = this->offset();
d491d34e 1708 const off_t oview_size = this->data_size();
2ea97941 1709 unsigned char* const oview = of->get_output_view(offset, oview_size);
d491d34e
ILT
1710
1711 memset(oview, 0, oview_size);
1712
1713 if (parameters->target().is_big_endian())
1714 this->endian_do_write<true>(oview);
1715 else
1716 this->endian_do_write<false>(oview);
1717
2ea97941 1718 of->write_output_view(offset, oview_size, oview);
d491d34e
ILT
1719
1720 // We no longer need the data.
1721 this->entries_.clear();
1722}
1723
1724template<bool big_endian>
1725void
1726Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1727{
1728 for (Xindex_entries::const_iterator p = this->entries_.begin();
1729 p != this->entries_.end();
1730 ++p)
20e6d0d6
DK
1731 {
1732 unsigned int symndx = p->first;
1733 gold_assert(symndx * 4 < this->data_size());
1734 elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1735 }
d491d34e
ILT
1736}
1737
ead1e424
ILT
1738// Output_section::Input_section methods.
1739
1740// Return the data size. For an input section we store the size here.
1741// For an Output_section_data, we have to ask it for the size.
1742
1743off_t
1744Output_section::Input_section::data_size() const
1745{
1746 if (this->is_input_section())
b8e6aad9 1747 return this->u1_.data_size;
ead1e424 1748 else
b8e6aad9 1749 return this->u2_.posd->data_size();
ead1e424
ILT
1750}
1751
1752// Set the address and file offset.
1753
1754void
96803768
ILT
1755Output_section::Input_section::set_address_and_file_offset(
1756 uint64_t address,
1757 off_t file_offset,
1758 off_t section_file_offset)
ead1e424
ILT
1759{
1760 if (this->is_input_section())
96803768
ILT
1761 this->u2_.object->set_section_offset(this->shndx_,
1762 file_offset - section_file_offset);
ead1e424 1763 else
96803768
ILT
1764 this->u2_.posd->set_address_and_file_offset(address, file_offset);
1765}
1766
a445fddf
ILT
1767// Reset the address and file offset.
1768
1769void
1770Output_section::Input_section::reset_address_and_file_offset()
1771{
1772 if (!this->is_input_section())
1773 this->u2_.posd->reset_address_and_file_offset();
1774}
1775
96803768
ILT
1776// Finalize the data size.
1777
1778void
1779Output_section::Input_section::finalize_data_size()
1780{
1781 if (!this->is_input_section())
1782 this->u2_.posd->finalize_data_size();
b8e6aad9
ILT
1783}
1784
1e983657
ILT
1785// Try to turn an input offset into an output offset. We want to
1786// return the output offset relative to the start of this
1787// Input_section in the output section.
b8e6aad9 1788
8f00aeb8 1789inline bool
8383303e
ILT
1790Output_section::Input_section::output_offset(
1791 const Relobj* object,
2ea97941
ILT
1792 unsigned int shndx,
1793 section_offset_type offset,
8383303e 1794 section_offset_type *poutput) const
b8e6aad9
ILT
1795{
1796 if (!this->is_input_section())
2ea97941 1797 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
b8e6aad9
ILT
1798 else
1799 {
2ea97941 1800 if (this->shndx_ != shndx || this->u2_.object != object)
b8e6aad9 1801 return false;
2ea97941 1802 *poutput = offset;
b8e6aad9
ILT
1803 return true;
1804 }
ead1e424
ILT
1805}
1806
a9a60db6
ILT
1807// Return whether this is the merge section for the input section
1808// SHNDX in OBJECT.
1809
1810inline bool
1811Output_section::Input_section::is_merge_section_for(const Relobj* object,
2ea97941 1812 unsigned int shndx) const
a9a60db6
ILT
1813{
1814 if (this->is_input_section())
1815 return false;
2ea97941 1816 return this->u2_.posd->is_merge_section_for(object, shndx);
a9a60db6
ILT
1817}
1818
ead1e424
ILT
1819// Write out the data. We don't have to do anything for an input
1820// section--they are handled via Object::relocate--but this is where
1821// we write out the data for an Output_section_data.
1822
1823void
1824Output_section::Input_section::write(Output_file* of)
1825{
1826 if (!this->is_input_section())
b8e6aad9 1827 this->u2_.posd->write(of);
ead1e424
ILT
1828}
1829
96803768
ILT
1830// Write the data to a buffer. As for write(), we don't have to do
1831// anything for an input section.
1832
1833void
1834Output_section::Input_section::write_to_buffer(unsigned char* buffer)
1835{
1836 if (!this->is_input_section())
1837 this->u2_.posd->write_to_buffer(buffer);
1838}
1839
7d9e3d98
ILT
1840// Print to a map file.
1841
1842void
1843Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
1844{
1845 switch (this->shndx_)
1846 {
1847 case OUTPUT_SECTION_CODE:
1848 case MERGE_DATA_SECTION_CODE:
1849 case MERGE_STRING_SECTION_CODE:
1850 this->u2_.posd->print_to_mapfile(mapfile);
1851 break;
1852
20e6d0d6
DK
1853 case RELAXED_INPUT_SECTION_CODE:
1854 {
1855 Output_relaxed_input_section* relaxed_section =
1856 this->relaxed_input_section();
1857 mapfile->print_input_section(relaxed_section->relobj(),
1858 relaxed_section->shndx());
1859 }
1860 break;
7d9e3d98
ILT
1861 default:
1862 mapfile->print_input_section(this->u2_.object, this->shndx_);
1863 break;
1864 }
1865}
1866
a2fb1b05
ILT
1867// Output_section methods.
1868
1869// Construct an Output_section. NAME will point into a Stringpool.
1870
2ea97941
ILT
1871Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
1872 elfcpp::Elf_Xword flags)
1873 : name_(name),
a2fb1b05
ILT
1874 addralign_(0),
1875 entsize_(0),
a445fddf 1876 load_address_(0),
16649710 1877 link_section_(NULL),
a2fb1b05 1878 link_(0),
16649710 1879 info_section_(NULL),
6a74a719 1880 info_symndx_(NULL),
a2fb1b05 1881 info_(0),
2ea97941
ILT
1882 type_(type),
1883 flags_(flags),
91ea499d 1884 out_shndx_(-1U),
c06b7b0b
ILT
1885 symtab_index_(0),
1886 dynsym_index_(0),
ead1e424
ILT
1887 input_sections_(),
1888 first_input_offset_(0),
c51e6221 1889 fills_(),
96803768 1890 postprocessing_buffer_(NULL),
a3ad94ed 1891 needs_symtab_index_(false),
16649710
ILT
1892 needs_dynsym_index_(false),
1893 should_link_to_symtab_(false),
730cdc88 1894 should_link_to_dynsym_(false),
27bc2bce 1895 after_input_sections_(false),
7bf1f802 1896 requires_postprocessing_(false),
a445fddf
ILT
1897 found_in_sections_clause_(false),
1898 has_load_address_(false),
755ab8af 1899 info_uses_section_index_(false),
2fd32231
ILT
1900 may_sort_attached_input_sections_(false),
1901 must_sort_attached_input_sections_(false),
1902 attached_input_sections_are_sorted_(false),
9f1d377b
ILT
1903 is_relro_(false),
1904 is_relro_local_(false),
1a2dff53
ILT
1905 is_last_relro_(false),
1906 is_first_non_relro_(false),
8a5e3e08
ILT
1907 is_small_section_(false),
1908 is_large_section_(false),
f5c870d2
ILT
1909 is_interp_(false),
1910 is_dynamic_linker_section_(false),
1911 generate_code_fills_at_write_(false),
e8cd95c7 1912 is_entsize_zero_(false),
8923b24c 1913 section_offsets_need_adjustment_(false),
1e5d2fb1 1914 is_noload_(false),
20e6d0d6 1915 tls_offset_(0),
c0a62865
DK
1916 checkpoint_(NULL),
1917 merge_section_map_(),
1918 merge_section_by_properties_map_(),
1919 relaxed_input_section_map_(),
f5c870d2 1920 is_relaxed_input_section_map_valid_(true)
a2fb1b05 1921{
27bc2bce
ILT
1922 // An unallocated section has no address. Forcing this means that
1923 // we don't need special treatment for symbols defined in debug
1924 // sections.
2ea97941 1925 if ((flags & elfcpp::SHF_ALLOC) == 0)
27bc2bce 1926 this->set_address(0);
a2fb1b05
ILT
1927}
1928
54dc6425
ILT
1929Output_section::~Output_section()
1930{
20e6d0d6 1931 delete this->checkpoint_;
54dc6425
ILT
1932}
1933
16649710
ILT
1934// Set the entry size.
1935
1936void
1937Output_section::set_entsize(uint64_t v)
1938{
e8cd95c7
ILT
1939 if (this->is_entsize_zero_)
1940 ;
1941 else if (this->entsize_ == 0)
16649710 1942 this->entsize_ = v;
e8cd95c7
ILT
1943 else if (this->entsize_ != v)
1944 {
1945 this->entsize_ = 0;
1946 this->is_entsize_zero_ = 1;
1947 }
16649710
ILT
1948}
1949
ead1e424 1950// Add the input section SHNDX, with header SHDR, named SECNAME, in
730cdc88
ILT
1951// OBJECT, to the Output_section. RELOC_SHNDX is the index of a
1952// relocation section which applies to this section, or 0 if none, or
1953// -1U if more than one. Return the offset of the input section
1954// within the output section. Return -1 if the input section will
1955// receive special handling. In the normal case we don't always keep
1956// track of input sections for an Output_section. Instead, each
1957// Object keeps track of the Output_section for each of its input
a445fddf
ILT
1958// sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
1959// track of input sections here; this is used when SECTIONS appears in
1960// a linker script.
a2fb1b05
ILT
1961
1962template<int size, bool big_endian>
1963off_t
730cdc88 1964Output_section::add_input_section(Sized_relobj<size, big_endian>* object,
2ea97941 1965 unsigned int shndx,
ead1e424 1966 const char* secname,
730cdc88 1967 const elfcpp::Shdr<size, big_endian>& shdr,
a445fddf
ILT
1968 unsigned int reloc_shndx,
1969 bool have_sections_script)
a2fb1b05 1970{
2ea97941
ILT
1971 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
1972 if ((addralign & (addralign - 1)) != 0)
a2fb1b05 1973 {
75f2446e 1974 object->error(_("invalid alignment %lu for section \"%s\""),
2ea97941
ILT
1975 static_cast<unsigned long>(addralign), secname);
1976 addralign = 1;
a2fb1b05 1977 }
a2fb1b05 1978
2ea97941
ILT
1979 if (addralign > this->addralign_)
1980 this->addralign_ = addralign;
a2fb1b05 1981
44a43cf9 1982 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2ea97941 1983 uint64_t entsize = shdr.get_sh_entsize();
44a43cf9
ILT
1984
1985 // .debug_str is a mergeable string section, but is not always so
1986 // marked by compilers. Mark manually here so we can optimize.
1987 if (strcmp(secname, ".debug_str") == 0)
4f833eee
ILT
1988 {
1989 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2ea97941 1990 entsize = 1;
4f833eee 1991 }
44a43cf9 1992
e8cd95c7
ILT
1993 this->update_flags_for_input_section(sh_flags);
1994 this->set_entsize(entsize);
1995
b8e6aad9 1996 // If this is a SHF_MERGE section, we pass all the input sections to
730cdc88 1997 // a Output_data_merge. We don't try to handle relocations for such
e0b64032
ILT
1998 // a section. We don't try to handle empty merge sections--they
1999 // mess up the mappings, and are useless anyhow.
44a43cf9 2000 if ((sh_flags & elfcpp::SHF_MERGE) != 0
e0b64032
ILT
2001 && reloc_shndx == 0
2002 && shdr.get_sh_size() > 0)
b8e6aad9 2003 {
2ea97941
ILT
2004 if (this->add_merge_input_section(object, shndx, sh_flags,
2005 entsize, addralign))
b8e6aad9
ILT
2006 {
2007 // Tell the relocation routines that they need to call the
730cdc88 2008 // output_offset method to determine the final address.
b8e6aad9
ILT
2009 return -1;
2010 }
2011 }
2012
27bc2bce 2013 off_t offset_in_section = this->current_data_size_for_child();
c51e6221 2014 off_t aligned_offset_in_section = align_address(offset_in_section,
2ea97941 2015 addralign);
c51e6221 2016
c0a62865
DK
2017 // Determine if we want to delay code-fill generation until the output
2018 // section is written. When the target is relaxing, we want to delay fill
2019 // generating to avoid adjusting them during relaxation.
2020 if (!this->generate_code_fills_at_write_
2021 && !have_sections_script
2022 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2023 && parameters->target().has_code_fill()
2024 && parameters->target().may_relax())
2025 {
2026 gold_assert(this->fills_.empty());
2027 this->generate_code_fills_at_write_ = true;
2028 }
2029
c51e6221 2030 if (aligned_offset_in_section > offset_in_section
c0a62865 2031 && !this->generate_code_fills_at_write_
a445fddf 2032 && !have_sections_script
44a43cf9 2033 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
029ba973 2034 && parameters->target().has_code_fill())
c51e6221
ILT
2035 {
2036 // We need to add some fill data. Using fill_list_ when
2037 // possible is an optimization, since we will often have fill
2038 // sections without input sections.
2039 off_t fill_len = aligned_offset_in_section - offset_in_section;
2040 if (this->input_sections_.empty())
2041 this->fills_.push_back(Fill(offset_in_section, fill_len));
2042 else
2043 {
029ba973 2044 std::string fill_data(parameters->target().code_fill(fill_len));
c51e6221
ILT
2045 Output_data_const* odc = new Output_data_const(fill_data, 1);
2046 this->input_sections_.push_back(Input_section(odc));
2047 }
2048 }
2049
27bc2bce
ILT
2050 this->set_current_data_size_for_child(aligned_offset_in_section
2051 + shdr.get_sh_size());
a2fb1b05 2052
ead1e424 2053 // We need to keep track of this section if we are already keeping
2fd32231
ILT
2054 // track of sections, or if we are relaxing. Also, if this is a
2055 // section which requires sorting, or which may require sorting in
20e6d0d6 2056 // the future, we keep track of the sections.
2fd32231
ILT
2057 if (have_sections_script
2058 || !this->input_sections_.empty()
2059 || this->may_sort_attached_input_sections()
7d9e3d98 2060 || this->must_sort_attached_input_sections()
20e6d0d6 2061 || parameters->options().user_set_Map()
029ba973 2062 || parameters->target().may_relax())
2ea97941 2063 this->input_sections_.push_back(Input_section(object, shndx,
ead1e424 2064 shdr.get_sh_size(),
2ea97941 2065 addralign));
54dc6425 2066
c51e6221 2067 return aligned_offset_in_section;
61ba1cf9
ILT
2068}
2069
ead1e424
ILT
2070// Add arbitrary data to an output section.
2071
2072void
2073Output_section::add_output_section_data(Output_section_data* posd)
2074{
b8e6aad9
ILT
2075 Input_section inp(posd);
2076 this->add_output_section_data(&inp);
a445fddf
ILT
2077
2078 if (posd->is_data_size_valid())
2079 {
2080 off_t offset_in_section = this->current_data_size_for_child();
2081 off_t aligned_offset_in_section = align_address(offset_in_section,
2082 posd->addralign());
2083 this->set_current_data_size_for_child(aligned_offset_in_section
2084 + posd->data_size());
2085 }
b8e6aad9
ILT
2086}
2087
c0a62865
DK
2088// Add a relaxed input section.
2089
2090void
2091Output_section::add_relaxed_input_section(Output_relaxed_input_section* poris)
2092{
2093 Input_section inp(poris);
2094 this->add_output_section_data(&inp);
2095 if (this->is_relaxed_input_section_map_valid_)
2096 {
5ac169d4
DK
2097 Const_section_id csid(poris->relobj(), poris->shndx());
2098 this->relaxed_input_section_map_[csid] = poris;
c0a62865
DK
2099 }
2100
2101 // For a relaxed section, we use the current data size. Linker scripts
2102 // get all the input sections, including relaxed one from an output
2103 // section and add them back to them same output section to compute the
2104 // output section size. If we do not account for sizes of relaxed input
2105 // sections, an output section would be incorrectly sized.
2106 off_t offset_in_section = this->current_data_size_for_child();
2107 off_t aligned_offset_in_section = align_address(offset_in_section,
2108 poris->addralign());
2109 this->set_current_data_size_for_child(aligned_offset_in_section
2110 + poris->current_data_size());
2111}
2112
b8e6aad9 2113// Add arbitrary data to an output section by Input_section.
c06b7b0b 2114
b8e6aad9
ILT
2115void
2116Output_section::add_output_section_data(Input_section* inp)
2117{
ead1e424 2118 if (this->input_sections_.empty())
27bc2bce 2119 this->first_input_offset_ = this->current_data_size_for_child();
c06b7b0b 2120
b8e6aad9 2121 this->input_sections_.push_back(*inp);
c06b7b0b 2122
2ea97941
ILT
2123 uint64_t addralign = inp->addralign();
2124 if (addralign > this->addralign_)
2125 this->addralign_ = addralign;
c06b7b0b 2126
b8e6aad9
ILT
2127 inp->set_output_section(this);
2128}
2129
2130// Add a merge section to an output section.
2131
2132void
2133Output_section::add_output_merge_section(Output_section_data* posd,
2ea97941 2134 bool is_string, uint64_t entsize)
b8e6aad9 2135{
2ea97941 2136 Input_section inp(posd, is_string, entsize);
b8e6aad9
ILT
2137 this->add_output_section_data(&inp);
2138}
2139
2140// Add an input section to a SHF_MERGE section.
2141
2142bool
2ea97941
ILT
2143Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2144 uint64_t flags, uint64_t entsize,
2145 uint64_t addralign)
b8e6aad9 2146{
2ea97941 2147 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
87f95776
ILT
2148
2149 // We only merge strings if the alignment is not more than the
2150 // character size. This could be handled, but it's unusual.
2ea97941 2151 if (is_string && addralign > entsize)
b8e6aad9
ILT
2152 return false;
2153
20e6d0d6
DK
2154 // We cannot restore merged input section states.
2155 gold_assert(this->checkpoint_ == NULL);
2156
c0a62865 2157 // Look up merge sections by required properties.
6bf924b0 2158 Output_merge_base* pomb;
2ea97941 2159 Merge_section_properties msp(is_string, entsize, addralign);
c0a62865
DK
2160 Merge_section_by_properties_map::const_iterator p =
2161 this->merge_section_by_properties_map_.find(msp);
2162 if (p != this->merge_section_by_properties_map_.end())
2163 {
6bf924b0
DK
2164 pomb = p->second;
2165 gold_assert(pomb->is_string() == is_string
2166 && pomb->entsize() == entsize
2167 && pomb->addralign() == addralign);
c0a62865 2168 }
b8e6aad9
ILT
2169 else
2170 {
6bf924b0
DK
2171 // Create a new Output_merge_data or Output_merge_string_data.
2172 if (!is_string)
2173 pomb = new Output_merge_data(entsize, addralign);
2174 else
9a0910c3 2175 {
6bf924b0
DK
2176 switch (entsize)
2177 {
2178 case 1:
2179 pomb = new Output_merge_string<char>(addralign);
2180 break;
2181 case 2:
2182 pomb = new Output_merge_string<uint16_t>(addralign);
2183 break;
2184 case 4:
2185 pomb = new Output_merge_string<uint32_t>(addralign);
2186 break;
2187 default:
2188 return false;
2189 }
9a0910c3 2190 }
6bf924b0
DK
2191 // Add new merge section to this output section and link merge
2192 // section properties to new merge section in map.
2193 this->add_output_merge_section(pomb, is_string, entsize);
2194 this->merge_section_by_properties_map_[msp] = pomb;
b8e6aad9
ILT
2195 }
2196
6bf924b0
DK
2197 if (pomb->add_input_section(object, shndx))
2198 {
2199 // Add input section to new merge section and link input section to new
2200 // merge section in map.
2201 Const_section_id csid(object, shndx);
2202 this->merge_section_map_[csid] = pomb;
2203 return true;
2204 }
2205 else
2206 return false;
b8e6aad9
ILT
2207}
2208
c0a62865 2209// Build a relaxation map to speed up relaxation of existing input sections.
2ea97941 2210// Look up to the first LIMIT elements in INPUT_SECTIONS.
c0a62865 2211
20e6d0d6 2212void
c0a62865 2213Output_section::build_relaxation_map(
2ea97941 2214 const Input_section_list& input_sections,
c0a62865
DK
2215 size_t limit,
2216 Relaxation_map* relaxation_map) const
20e6d0d6 2217{
c0a62865
DK
2218 for (size_t i = 0; i < limit; ++i)
2219 {
2ea97941 2220 const Input_section& is(input_sections[i]);
c0a62865
DK
2221 if (is.is_input_section() || is.is_relaxed_input_section())
2222 {
5ac169d4
DK
2223 Section_id sid(is.relobj(), is.shndx());
2224 (*relaxation_map)[sid] = i;
c0a62865
DK
2225 }
2226 }
2227}
2228
2229// Convert regular input sections in INPUT_SECTIONS into relaxed input
5ac169d4
DK
2230// sections in RELAXED_SECTIONS. MAP is a prebuilt map from section id
2231// indices of INPUT_SECTIONS.
20e6d0d6 2232
c0a62865
DK
2233void
2234Output_section::convert_input_sections_in_list_to_relaxed_sections(
2235 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2236 const Relaxation_map& map,
2ea97941 2237 Input_section_list* input_sections)
c0a62865
DK
2238{
2239 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2240 {
2241 Output_relaxed_input_section* poris = relaxed_sections[i];
5ac169d4
DK
2242 Section_id sid(poris->relobj(), poris->shndx());
2243 Relaxation_map::const_iterator p = map.find(sid);
c0a62865 2244 gold_assert(p != map.end());
2ea97941
ILT
2245 gold_assert((*input_sections)[p->second].is_input_section());
2246 (*input_sections)[p->second] = Input_section(poris);
c0a62865
DK
2247 }
2248}
2249
2250// Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2251// is a vector of pointers to Output_relaxed_input_section or its derived
2252// classes. The relaxed sections must correspond to existing input sections.
2253
2254void
2255Output_section::convert_input_sections_to_relaxed_sections(
2256 const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2257{
029ba973 2258 gold_assert(parameters->target().may_relax());
20e6d0d6 2259
c0a62865
DK
2260 // We want to make sure that restore_states does not undo the effect of
2261 // this. If there is no checkpoint active, just search the current
2262 // input section list and replace the sections there. If there is
2263 // a checkpoint, also replace the sections there.
2264
2265 // By default, we look at the whole list.
2266 size_t limit = this->input_sections_.size();
2267
2268 if (this->checkpoint_ != NULL)
20e6d0d6 2269 {
c0a62865
DK
2270 // Replace input sections with relaxed input section in the saved
2271 // copy of the input section list.
2272 if (this->checkpoint_->input_sections_saved())
20e6d0d6 2273 {
c0a62865
DK
2274 Relaxation_map map;
2275 this->build_relaxation_map(
2276 *(this->checkpoint_->input_sections()),
2277 this->checkpoint_->input_sections()->size(),
2278 &map);
2279 this->convert_input_sections_in_list_to_relaxed_sections(
2280 relaxed_sections,
2281 map,
2282 this->checkpoint_->input_sections());
2283 }
2284 else
2285 {
2286 // We have not copied the input section list yet. Instead, just
2287 // look at the portion that would be saved.
2288 limit = this->checkpoint_->input_sections_size();
20e6d0d6 2289 }
20e6d0d6 2290 }
c0a62865
DK
2291
2292 // Convert input sections in input_section_list.
2293 Relaxation_map map;
2294 this->build_relaxation_map(this->input_sections_, limit, &map);
2295 this->convert_input_sections_in_list_to_relaxed_sections(
2296 relaxed_sections,
2297 map,
2298 &this->input_sections_);
41263c05
DK
2299
2300 // Update fast look-up map.
2301 if (this->is_relaxed_input_section_map_valid_)
2302 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2303 {
2304 Output_relaxed_input_section* poris = relaxed_sections[i];
5ac169d4
DK
2305 Const_section_id csid(poris->relobj(), poris->shndx());
2306 this->relaxed_input_section_map_[csid] = poris;
41263c05 2307 }
20e6d0d6
DK
2308}
2309
9c547ec3
ILT
2310// Update the output section flags based on input section flags.
2311
2312void
2ea97941 2313Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
9c547ec3
ILT
2314{
2315 // If we created the section with SHF_ALLOC clear, we set the
2316 // address. If we are now setting the SHF_ALLOC flag, we need to
2317 // undo that.
2318 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2ea97941 2319 && (flags & elfcpp::SHF_ALLOC) != 0)
9c547ec3
ILT
2320 this->mark_address_invalid();
2321
2ea97941 2322 this->flags_ |= (flags
9c547ec3
ILT
2323 & (elfcpp::SHF_WRITE
2324 | elfcpp::SHF_ALLOC
2325 | elfcpp::SHF_EXECINSTR));
e8cd95c7
ILT
2326
2327 if ((flags & elfcpp::SHF_MERGE) == 0)
2328 this->flags_ &=~ elfcpp::SHF_MERGE;
2329 else
2330 {
2331 if (this->current_data_size_for_child() == 0)
2332 this->flags_ |= elfcpp::SHF_MERGE;
2333 }
2334
2335 if ((flags & elfcpp::SHF_STRINGS) == 0)
2336 this->flags_ &=~ elfcpp::SHF_STRINGS;
2337 else
2338 {
2339 if (this->current_data_size_for_child() == 0)
2340 this->flags_ |= elfcpp::SHF_STRINGS;
2341 }
9c547ec3
ILT
2342}
2343
2ea97941 2344// Find the merge section into which an input section with index SHNDX in
c0a62865
DK
2345// OBJECT has been added. Return NULL if none found.
2346
2347Output_section_data*
2348Output_section::find_merge_section(const Relobj* object,
2ea97941 2349 unsigned int shndx) const
c0a62865 2350{
5ac169d4 2351 Const_section_id csid(object, shndx);
c0a62865 2352 Output_section_data_by_input_section_map::const_iterator p =
5ac169d4 2353 this->merge_section_map_.find(csid);
c0a62865
DK
2354 if (p != this->merge_section_map_.end())
2355 {
2356 Output_section_data* posd = p->second;
2ea97941 2357 gold_assert(posd->is_merge_section_for(object, shndx));
c0a62865
DK
2358 return posd;
2359 }
2360 else
2361 return NULL;
2362}
2363
2364// Find an relaxed input section corresponding to an input section
2ea97941 2365// in OBJECT with index SHNDX.
c0a62865 2366
d6344fb5 2367const Output_relaxed_input_section*
c0a62865 2368Output_section::find_relaxed_input_section(const Relobj* object,
2ea97941 2369 unsigned int shndx) const
c0a62865
DK
2370{
2371 // Be careful that the map may not be valid due to input section export
2372 // to scripts or a check-point restore.
2373 if (!this->is_relaxed_input_section_map_valid_)
2374 {
2375 // Rebuild the map as needed.
2376 this->relaxed_input_section_map_.clear();
2377 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2378 p != this->input_sections_.end();
2379 ++p)
2380 if (p->is_relaxed_input_section())
2381 {
5ac169d4
DK
2382 Const_section_id csid(p->relobj(), p->shndx());
2383 this->relaxed_input_section_map_[csid] =
c0a62865
DK
2384 p->relaxed_input_section();
2385 }
2386 this->is_relaxed_input_section_map_valid_ = true;
2387 }
2388
5ac169d4 2389 Const_section_id csid(object, shndx);
d6344fb5 2390 Output_relaxed_input_section_by_input_section_map::const_iterator p =
5ac169d4 2391 this->relaxed_input_section_map_.find(csid);
c0a62865
DK
2392 if (p != this->relaxed_input_section_map_.end())
2393 return p->second;
2394 else
2395 return NULL;
2396}
2397
2ea97941
ILT
2398// Given an address OFFSET relative to the start of input section
2399// SHNDX in OBJECT, return whether this address is being included in
2400// the final link. This should only be called if SHNDX in OBJECT has
730cdc88
ILT
2401// a special mapping.
2402
2403bool
2404Output_section::is_input_address_mapped(const Relobj* object,
2ea97941
ILT
2405 unsigned int shndx,
2406 off_t offset) const
730cdc88 2407{
c0a62865 2408 // Look at the Output_section_data_maps first.
2ea97941 2409 const Output_section_data* posd = this->find_merge_section(object, shndx);
c0a62865 2410 if (posd == NULL)
2ea97941 2411 posd = this->find_relaxed_input_section(object, shndx);
c0a62865
DK
2412
2413 if (posd != NULL)
2414 {
2ea97941
ILT
2415 section_offset_type output_offset;
2416 bool found = posd->output_offset(object, shndx, offset, &output_offset);
c0a62865 2417 gold_assert(found);
2ea97941 2418 return output_offset != -1;
c0a62865
DK
2419 }
2420
2421 // Fall back to the slow look-up.
730cdc88
ILT
2422 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2423 p != this->input_sections_.end();
2424 ++p)
2425 {
2ea97941
ILT
2426 section_offset_type output_offset;
2427 if (p->output_offset(object, shndx, offset, &output_offset))
2428 return output_offset != -1;
730cdc88
ILT
2429 }
2430
2431 // By default we assume that the address is mapped. This should
2432 // only be called after we have passed all sections to Layout. At
2433 // that point we should know what we are discarding.
2434 return true;
2435}
2436
2ea97941
ILT
2437// Given an address OFFSET relative to the start of input section
2438// SHNDX in object OBJECT, return the output offset relative to the
1e983657 2439// start of the input section in the output section. This should only
2ea97941 2440// be called if SHNDX in OBJECT has a special mapping.
730cdc88 2441
8383303e 2442section_offset_type
2ea97941
ILT
2443Output_section::output_offset(const Relobj* object, unsigned int shndx,
2444 section_offset_type offset) const
730cdc88 2445{
c0a62865
DK
2446 // This can only be called meaningfully when we know the data size
2447 // of this.
2448 gold_assert(this->is_data_size_valid());
730cdc88 2449
c0a62865 2450 // Look at the Output_section_data_maps first.
2ea97941 2451 const Output_section_data* posd = this->find_merge_section(object, shndx);
c0a62865 2452 if (posd == NULL)
2ea97941 2453 posd = this->find_relaxed_input_section(object, shndx);
c0a62865
DK
2454 if (posd != NULL)
2455 {
2ea97941
ILT
2456 section_offset_type output_offset;
2457 bool found = posd->output_offset(object, shndx, offset, &output_offset);
c0a62865 2458 gold_assert(found);
2ea97941 2459 return output_offset;
c0a62865
DK
2460 }
2461
2462 // Fall back to the slow look-up.
730cdc88
ILT
2463 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2464 p != this->input_sections_.end();
2465 ++p)
2466 {
2ea97941
ILT
2467 section_offset_type output_offset;
2468 if (p->output_offset(object, shndx, offset, &output_offset))
2469 return output_offset;
730cdc88
ILT
2470 }
2471 gold_unreachable();
2472}
2473
2ea97941
ILT
2474// Return the output virtual address of OFFSET relative to the start
2475// of input section SHNDX in object OBJECT.
b8e6aad9
ILT
2476
2477uint64_t
2ea97941
ILT
2478Output_section::output_address(const Relobj* object, unsigned int shndx,
2479 off_t offset) const
b8e6aad9
ILT
2480{
2481 uint64_t addr = this->address() + this->first_input_offset_;
c0a62865
DK
2482
2483 // Look at the Output_section_data_maps first.
2ea97941 2484 const Output_section_data* posd = this->find_merge_section(object, shndx);
c0a62865 2485 if (posd == NULL)
2ea97941 2486 posd = this->find_relaxed_input_section(object, shndx);
c0a62865
DK
2487 if (posd != NULL && posd->is_address_valid())
2488 {
2ea97941
ILT
2489 section_offset_type output_offset;
2490 bool found = posd->output_offset(object, shndx, offset, &output_offset);
c0a62865 2491 gold_assert(found);
2ea97941 2492 return posd->address() + output_offset;
c0a62865
DK
2493 }
2494
2495 // Fall back to the slow look-up.
b8e6aad9
ILT
2496 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2497 p != this->input_sections_.end();
2498 ++p)
2499 {
2500 addr = align_address(addr, p->addralign());
2ea97941
ILT
2501 section_offset_type output_offset;
2502 if (p->output_offset(object, shndx, offset, &output_offset))
730cdc88 2503 {
2ea97941 2504 if (output_offset == -1)
eff45813 2505 return -1ULL;
2ea97941 2506 return addr + output_offset;
730cdc88 2507 }
b8e6aad9
ILT
2508 addr += p->data_size();
2509 }
2510
2511 // If we get here, it means that we don't know the mapping for this
2512 // input section. This might happen in principle if
2513 // add_input_section were called before add_output_section_data.
2514 // But it should never actually happen.
2515
2516 gold_unreachable();
ead1e424
ILT
2517}
2518
e29e076a 2519// Find the output address of the start of the merged section for
2ea97941 2520// input section SHNDX in object OBJECT.
a9a60db6 2521
e29e076a
ILT
2522bool
2523Output_section::find_starting_output_address(const Relobj* object,
2ea97941 2524 unsigned int shndx,
e29e076a 2525 uint64_t* paddr) const
a9a60db6 2526{
c0a62865
DK
2527 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
2528 // Looking up the merge section map does not always work as we sometimes
2529 // find a merge section without its address set.
a9a60db6
ILT
2530 uint64_t addr = this->address() + this->first_input_offset_;
2531 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2532 p != this->input_sections_.end();
2533 ++p)
2534 {
2535 addr = align_address(addr, p->addralign());
2536
2537 // It would be nice if we could use the existing output_offset
2538 // method to get the output offset of input offset 0.
2539 // Unfortunately we don't know for sure that input offset 0 is
2540 // mapped at all.
2ea97941 2541 if (p->is_merge_section_for(object, shndx))
e29e076a
ILT
2542 {
2543 *paddr = addr;
2544 return true;
2545 }
a9a60db6
ILT
2546
2547 addr += p->data_size();
2548 }
e29e076a
ILT
2549
2550 // We couldn't find a merge output section for this input section.
2551 return false;
a9a60db6
ILT
2552}
2553
27bc2bce 2554// Set the data size of an Output_section. This is where we handle
ead1e424
ILT
2555// setting the addresses of any Output_section_data objects.
2556
2557void
27bc2bce 2558Output_section::set_final_data_size()
ead1e424
ILT
2559{
2560 if (this->input_sections_.empty())
27bc2bce
ILT
2561 {
2562 this->set_data_size(this->current_data_size_for_child());
2563 return;
2564 }
ead1e424 2565
2fd32231
ILT
2566 if (this->must_sort_attached_input_sections())
2567 this->sort_attached_input_sections();
2568
2ea97941 2569 uint64_t address = this->address();
27bc2bce 2570 off_t startoff = this->offset();
ead1e424
ILT
2571 off_t off = startoff + this->first_input_offset_;
2572 for (Input_section_list::iterator p = this->input_sections_.begin();
2573 p != this->input_sections_.end();
2574 ++p)
2575 {
2576 off = align_address(off, p->addralign());
2ea97941 2577 p->set_address_and_file_offset(address + (off - startoff), off,
96803768 2578 startoff);
ead1e424
ILT
2579 off += p->data_size();
2580 }
2581
2582 this->set_data_size(off - startoff);
2583}
9a0910c3 2584
a445fddf
ILT
2585// Reset the address and file offset.
2586
2587void
2588Output_section::do_reset_address_and_file_offset()
2589{
20e6d0d6
DK
2590 // An unallocated section has no address. Forcing this means that
2591 // we don't need special treatment for symbols defined in debug
1e5d2fb1
DK
2592 // sections. We do the same in the constructor. This does not
2593 // apply to NOLOAD sections though.
2594 if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
20e6d0d6
DK
2595 this->set_address(0);
2596
a445fddf
ILT
2597 for (Input_section_list::iterator p = this->input_sections_.begin();
2598 p != this->input_sections_.end();
2599 ++p)
2600 p->reset_address_and_file_offset();
2601}
20e6d0d6
DK
2602
2603// Return true if address and file offset have the values after reset.
2604
2605bool
2606Output_section::do_address_and_file_offset_have_reset_values() const
2607{
2608 if (this->is_offset_valid())
2609 return false;
2610
2611 // An unallocated section has address 0 after its construction or a reset.
2612 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
2613 return this->is_address_valid() && this->address() == 0;
2614 else
2615 return !this->is_address_valid();
2616}
a445fddf 2617
7bf1f802
ILT
2618// Set the TLS offset. Called only for SHT_TLS sections.
2619
2620void
2621Output_section::do_set_tls_offset(uint64_t tls_base)
2622{
2623 this->tls_offset_ = this->address() - tls_base;
2624}
2625
2fd32231
ILT
2626// In a few cases we need to sort the input sections attached to an
2627// output section. This is used to implement the type of constructor
2628// priority ordering implemented by the GNU linker, in which the
2629// priority becomes part of the section name and the sections are
2630// sorted by name. We only do this for an output section if we see an
2631// attached input section matching ".ctor.*", ".dtor.*",
2632// ".init_array.*" or ".fini_array.*".
2633
2634class Output_section::Input_section_sort_entry
2635{
2636 public:
2637 Input_section_sort_entry()
2638 : input_section_(), index_(-1U), section_has_name_(false),
2639 section_name_()
2640 { }
2641
2ea97941
ILT
2642 Input_section_sort_entry(const Input_section& input_section,
2643 unsigned int index)
2644 : input_section_(input_section), index_(index),
2645 section_has_name_(input_section.is_input_section()
2646 || input_section.is_relaxed_input_section())
2fd32231
ILT
2647 {
2648 if (this->section_has_name_)
2649 {
2650 // This is only called single-threaded from Layout::finalize,
2651 // so it is OK to lock. Unfortunately we have no way to pass
2652 // in a Task token.
2653 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
2ea97941
ILT
2654 Object* obj = (input_section.is_input_section()
2655 ? input_section.relobj()
2656 : input_section.relaxed_input_section()->relobj());
2fd32231
ILT
2657 Task_lock_obj<Object> tl(dummy_task, obj);
2658
2659 // This is a slow operation, which should be cached in
2660 // Layout::layout if this becomes a speed problem.
2ea97941 2661 this->section_name_ = obj->section_name(input_section.shndx());
2fd32231
ILT
2662 }
2663 }
2664
2665 // Return the Input_section.
2666 const Input_section&
2667 input_section() const
2668 {
2669 gold_assert(this->index_ != -1U);
2670 return this->input_section_;
2671 }
2672
2673 // The index of this entry in the original list. This is used to
2674 // make the sort stable.
2675 unsigned int
2676 index() const
2677 {
2678 gold_assert(this->index_ != -1U);
2679 return this->index_;
2680 }
2681
2682 // Whether there is a section name.
2683 bool
2684 section_has_name() const
2685 { return this->section_has_name_; }
2686
2687 // The section name.
2688 const std::string&
2689 section_name() const
2690 {
2691 gold_assert(this->section_has_name_);
2692 return this->section_name_;
2693 }
2694
ab794b6b
ILT
2695 // Return true if the section name has a priority. This is assumed
2696 // to be true if it has a dot after the initial dot.
2fd32231 2697 bool
ab794b6b 2698 has_priority() const
2fd32231
ILT
2699 {
2700 gold_assert(this->section_has_name_);
2a0ff005 2701 return this->section_name_.find('.', 1) != std::string::npos;
2fd32231
ILT
2702 }
2703
ab794b6b
ILT
2704 // Return true if this an input file whose base name matches
2705 // FILE_NAME. The base name must have an extension of ".o", and
2706 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
2707 // This is to match crtbegin.o as well as crtbeginS.o without
2708 // getting confused by other possibilities. Overall matching the
2709 // file name this way is a dreadful hack, but the GNU linker does it
2710 // in order to better support gcc, and we need to be compatible.
2fd32231 2711 bool
2ea97941 2712 match_file_name(const char* match_file_name) const
2fd32231 2713 {
2fd32231
ILT
2714 const std::string& file_name(this->input_section_.relobj()->name());
2715 const char* base_name = lbasename(file_name.c_str());
2ea97941
ILT
2716 size_t match_len = strlen(match_file_name);
2717 if (strncmp(base_name, match_file_name, match_len) != 0)
2fd32231
ILT
2718 return false;
2719 size_t base_len = strlen(base_name);
2720 if (base_len != match_len + 2 && base_len != match_len + 3)
2721 return false;
2722 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
2723 }
2724
2725 private:
2726 // The Input_section we are sorting.
2727 Input_section input_section_;
2728 // The index of this Input_section in the original list.
2729 unsigned int index_;
2730 // Whether this Input_section has a section name--it won't if this
2731 // is some random Output_section_data.
2732 bool section_has_name_;
2733 // The section name if there is one.
2734 std::string section_name_;
2735};
2736
2737// Return true if S1 should come before S2 in the output section.
2738
2739bool
2740Output_section::Input_section_sort_compare::operator()(
2741 const Output_section::Input_section_sort_entry& s1,
2742 const Output_section::Input_section_sort_entry& s2) const
2743{
ab794b6b
ILT
2744 // crtbegin.o must come first.
2745 bool s1_begin = s1.match_file_name("crtbegin");
2746 bool s2_begin = s2.match_file_name("crtbegin");
2fd32231
ILT
2747 if (s1_begin || s2_begin)
2748 {
2749 if (!s1_begin)
2750 return false;
2751 if (!s2_begin)
2752 return true;
2753 return s1.index() < s2.index();
2754 }
2755
ab794b6b
ILT
2756 // crtend.o must come last.
2757 bool s1_end = s1.match_file_name("crtend");
2758 bool s2_end = s2.match_file_name("crtend");
2fd32231
ILT
2759 if (s1_end || s2_end)
2760 {
2761 if (!s1_end)
2762 return true;
2763 if (!s2_end)
2764 return false;
2765 return s1.index() < s2.index();
2766 }
2767
ab794b6b
ILT
2768 // We sort all the sections with no names to the end.
2769 if (!s1.section_has_name() || !s2.section_has_name())
2770 {
2771 if (s1.section_has_name())
2772 return true;
2773 if (s2.section_has_name())
2774 return false;
2775 return s1.index() < s2.index();
2776 }
2fd32231 2777
ab794b6b 2778 // A section with a priority follows a section without a priority.
ab794b6b
ILT
2779 bool s1_has_priority = s1.has_priority();
2780 bool s2_has_priority = s2.has_priority();
2781 if (s1_has_priority && !s2_has_priority)
2fd32231 2782 return false;
ab794b6b 2783 if (!s1_has_priority && s2_has_priority)
2fd32231
ILT
2784 return true;
2785
2786 // Otherwise we sort by name.
2787 int compare = s1.section_name().compare(s2.section_name());
2788 if (compare != 0)
2789 return compare < 0;
2790
2791 // Otherwise we keep the input order.
2792 return s1.index() < s2.index();
2793}
2794
2a0ff005
DK
2795// Return true if S1 should come before S2 in an .init_array or .fini_array
2796// output section.
2797
2798bool
2799Output_section::Input_section_sort_init_fini_compare::operator()(
2800 const Output_section::Input_section_sort_entry& s1,
2801 const Output_section::Input_section_sort_entry& s2) const
2802{
2803 // We sort all the sections with no names to the end.
2804 if (!s1.section_has_name() || !s2.section_has_name())
2805 {
2806 if (s1.section_has_name())
2807 return true;
2808 if (s2.section_has_name())
2809 return false;
2810 return s1.index() < s2.index();
2811 }
2812
2813 // A section without a priority follows a section with a priority.
2814 // This is the reverse of .ctors and .dtors sections.
2815 bool s1_has_priority = s1.has_priority();
2816 bool s2_has_priority = s2.has_priority();
2817 if (s1_has_priority && !s2_has_priority)
2818 return true;
2819 if (!s1_has_priority && s2_has_priority)
2820 return false;
2821
2822 // Otherwise we sort by name.
2823 int compare = s1.section_name().compare(s2.section_name());
2824 if (compare != 0)
2825 return compare < 0;
2826
2827 // Otherwise we keep the input order.
2828 return s1.index() < s2.index();
2829}
2830
2fd32231
ILT
2831// Sort the input sections attached to an output section.
2832
2833void
2834Output_section::sort_attached_input_sections()
2835{
2836 if (this->attached_input_sections_are_sorted_)
2837 return;
2838
20e6d0d6
DK
2839 if (this->checkpoint_ != NULL
2840 && !this->checkpoint_->input_sections_saved())
2841 this->checkpoint_->save_input_sections();
2842
2fd32231
ILT
2843 // The only thing we know about an input section is the object and
2844 // the section index. We need the section name. Recomputing this
2845 // is slow but this is an unusual case. If this becomes a speed
2846 // problem we can cache the names as required in Layout::layout.
2847
2848 // We start by building a larger vector holding a copy of each
2849 // Input_section, plus its current index in the list and its name.
2850 std::vector<Input_section_sort_entry> sort_list;
2851
2852 unsigned int i = 0;
2853 for (Input_section_list::iterator p = this->input_sections_.begin();
2854 p != this->input_sections_.end();
2855 ++p, ++i)
2856 sort_list.push_back(Input_section_sort_entry(*p, i));
2857
2858 // Sort the input sections.
2a0ff005
DK
2859 if (this->type() == elfcpp::SHT_PREINIT_ARRAY
2860 || this->type() == elfcpp::SHT_INIT_ARRAY
2861 || this->type() == elfcpp::SHT_FINI_ARRAY)
2862 std::sort(sort_list.begin(), sort_list.end(),
2863 Input_section_sort_init_fini_compare());
2864 else
2865 std::sort(sort_list.begin(), sort_list.end(),
2866 Input_section_sort_compare());
2fd32231
ILT
2867
2868 // Copy the sorted input sections back to our list.
2869 this->input_sections_.clear();
2870 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
2871 p != sort_list.end();
2872 ++p)
2873 this->input_sections_.push_back(p->input_section());
2874
2875 // Remember that we sorted the input sections, since we might get
2876 // called again.
2877 this->attached_input_sections_are_sorted_ = true;
2878}
2879
61ba1cf9
ILT
2880// Write the section header to *OSHDR.
2881
2882template<int size, bool big_endian>
2883void
16649710
ILT
2884Output_section::write_header(const Layout* layout,
2885 const Stringpool* secnamepool,
61ba1cf9
ILT
2886 elfcpp::Shdr_write<size, big_endian>* oshdr) const
2887{
2888 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
2889 oshdr->put_sh_type(this->type_);
6a74a719 2890
2ea97941 2891 elfcpp::Elf_Xword flags = this->flags_;
755ab8af 2892 if (this->info_section_ != NULL && this->info_uses_section_index_)
2ea97941
ILT
2893 flags |= elfcpp::SHF_INFO_LINK;
2894 oshdr->put_sh_flags(flags);
6a74a719 2895
61ba1cf9
ILT
2896 oshdr->put_sh_addr(this->address());
2897 oshdr->put_sh_offset(this->offset());
2898 oshdr->put_sh_size(this->data_size());
16649710
ILT
2899 if (this->link_section_ != NULL)
2900 oshdr->put_sh_link(this->link_section_->out_shndx());
2901 else if (this->should_link_to_symtab_)
2902 oshdr->put_sh_link(layout->symtab_section()->out_shndx());
2903 else if (this->should_link_to_dynsym_)
2904 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
2905 else
2906 oshdr->put_sh_link(this->link_);
755ab8af 2907
2ea97941 2908 elfcpp::Elf_Word info;
16649710 2909 if (this->info_section_ != NULL)
755ab8af
ILT
2910 {
2911 if (this->info_uses_section_index_)
2ea97941 2912 info = this->info_section_->out_shndx();
755ab8af 2913 else
2ea97941 2914 info = this->info_section_->symtab_index();
755ab8af 2915 }
6a74a719 2916 else if (this->info_symndx_ != NULL)
2ea97941 2917 info = this->info_symndx_->symtab_index();
16649710 2918 else
2ea97941
ILT
2919 info = this->info_;
2920 oshdr->put_sh_info(info);
755ab8af 2921
61ba1cf9
ILT
2922 oshdr->put_sh_addralign(this->addralign_);
2923 oshdr->put_sh_entsize(this->entsize_);
a2fb1b05
ILT
2924}
2925
ead1e424
ILT
2926// Write out the data. For input sections the data is written out by
2927// Object::relocate, but we have to handle Output_section_data objects
2928// here.
2929
2930void
2931Output_section::do_write(Output_file* of)
2932{
96803768
ILT
2933 gold_assert(!this->requires_postprocessing());
2934
c0a62865
DK
2935 // If the target performs relaxation, we delay filler generation until now.
2936 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
2937
c51e6221
ILT
2938 off_t output_section_file_offset = this->offset();
2939 for (Fill_list::iterator p = this->fills_.begin();
2940 p != this->fills_.end();
2941 ++p)
2942 {
8851ecca 2943 std::string fill_data(parameters->target().code_fill(p->length()));
c51e6221 2944 of->write(output_section_file_offset + p->section_offset(),
a445fddf 2945 fill_data.data(), fill_data.size());
c51e6221
ILT
2946 }
2947
c0a62865 2948 off_t off = this->offset() + this->first_input_offset_;
ead1e424
ILT
2949 for (Input_section_list::iterator p = this->input_sections_.begin();
2950 p != this->input_sections_.end();
2951 ++p)
c0a62865
DK
2952 {
2953 off_t aligned_off = align_address(off, p->addralign());
2954 if (this->generate_code_fills_at_write_ && (off != aligned_off))
2955 {
2956 size_t fill_len = aligned_off - off;
2957 std::string fill_data(parameters->target().code_fill(fill_len));
2958 of->write(off, fill_data.data(), fill_data.size());
2959 }
2960
2961 p->write(of);
2962 off = aligned_off + p->data_size();
2963 }
ead1e424
ILT
2964}
2965
96803768
ILT
2966// If a section requires postprocessing, create the buffer to use.
2967
2968void
2969Output_section::create_postprocessing_buffer()
2970{
2971 gold_assert(this->requires_postprocessing());
1bedcac5
ILT
2972
2973 if (this->postprocessing_buffer_ != NULL)
2974 return;
96803768
ILT
2975
2976 if (!this->input_sections_.empty())
2977 {
2978 off_t off = this->first_input_offset_;
2979 for (Input_section_list::iterator p = this->input_sections_.begin();
2980 p != this->input_sections_.end();
2981 ++p)
2982 {
2983 off = align_address(off, p->addralign());
2984 p->finalize_data_size();
2985 off += p->data_size();
2986 }
2987 this->set_current_data_size_for_child(off);
2988 }
2989
2990 off_t buffer_size = this->current_data_size_for_child();
2991 this->postprocessing_buffer_ = new unsigned char[buffer_size];
2992}
2993
2994// Write all the data of an Output_section into the postprocessing
2995// buffer. This is used for sections which require postprocessing,
2996// such as compression. Input sections are handled by
2997// Object::Relocate.
2998
2999void
3000Output_section::write_to_postprocessing_buffer()
3001{
3002 gold_assert(this->requires_postprocessing());
3003
c0a62865
DK
3004 // If the target performs relaxation, we delay filler generation until now.
3005 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3006
96803768
ILT
3007 unsigned char* buffer = this->postprocessing_buffer();
3008 for (Fill_list::iterator p = this->fills_.begin();
3009 p != this->fills_.end();
3010 ++p)
3011 {
8851ecca 3012 std::string fill_data(parameters->target().code_fill(p->length()));
a445fddf
ILT
3013 memcpy(buffer + p->section_offset(), fill_data.data(),
3014 fill_data.size());
96803768
ILT
3015 }
3016
3017 off_t off = this->first_input_offset_;
3018 for (Input_section_list::iterator p = this->input_sections_.begin();
3019 p != this->input_sections_.end();
3020 ++p)
3021 {
c0a62865
DK
3022 off_t aligned_off = align_address(off, p->addralign());
3023 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3024 {
3025 size_t fill_len = aligned_off - off;
3026 std::string fill_data(parameters->target().code_fill(fill_len));
3027 memcpy(buffer + off, fill_data.data(), fill_data.size());
3028 }
3029
3030 p->write_to_buffer(buffer + aligned_off);
3031 off = aligned_off + p->data_size();
96803768
ILT
3032 }
3033}
3034
a445fddf
ILT
3035// Get the input sections for linker script processing. We leave
3036// behind the Output_section_data entries. Note that this may be
3037// slightly incorrect for merge sections. We will leave them behind,
3038// but it is possible that the script says that they should follow
3039// some other input sections, as in:
3040// .rodata { *(.rodata) *(.rodata.cst*) }
3041// For that matter, we don't handle this correctly:
3042// .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3043// With luck this will never matter.
3044
3045uint64_t
3046Output_section::get_input_sections(
2ea97941 3047 uint64_t address,
a445fddf 3048 const std::string& fill,
2ea97941 3049 std::list<Simple_input_section>* input_sections)
a445fddf 3050{
20e6d0d6
DK
3051 if (this->checkpoint_ != NULL
3052 && !this->checkpoint_->input_sections_saved())
3053 this->checkpoint_->save_input_sections();
3054
c0a62865
DK
3055 // Invalidate the relaxed input section map.
3056 this->is_relaxed_input_section_map_valid_ = false;
3057
2ea97941 3058 uint64_t orig_address = address;
a445fddf 3059
2ea97941 3060 address = align_address(address, this->addralign());
a445fddf
ILT
3061
3062 Input_section_list remaining;
3063 for (Input_section_list::iterator p = this->input_sections_.begin();
3064 p != this->input_sections_.end();
3065 ++p)
3066 {
3067 if (p->is_input_section())
2ea97941 3068 input_sections->push_back(Simple_input_section(p->relobj(),
20e6d0d6
DK
3069 p->shndx()));
3070 else if (p->is_relaxed_input_section())
2ea97941 3071 input_sections->push_back(
20e6d0d6 3072 Simple_input_section(p->relaxed_input_section()));
a445fddf
ILT
3073 else
3074 {
2ea97941
ILT
3075 uint64_t aligned_address = align_address(address, p->addralign());
3076 if (aligned_address != address && !fill.empty())
a445fddf
ILT
3077 {
3078 section_size_type length =
2ea97941 3079 convert_to_section_size_type(aligned_address - address);
a445fddf
ILT
3080 std::string this_fill;
3081 this_fill.reserve(length);
3082 while (this_fill.length() + fill.length() <= length)
3083 this_fill += fill;
3084 if (this_fill.length() < length)
3085 this_fill.append(fill, 0, length - this_fill.length());
3086
3087 Output_section_data* posd = new Output_data_const(this_fill, 0);
3088 remaining.push_back(Input_section(posd));
3089 }
2ea97941 3090 address = aligned_address;
a445fddf
ILT
3091
3092 remaining.push_back(*p);
3093
3094 p->finalize_data_size();
2ea97941 3095 address += p->data_size();
a445fddf
ILT
3096 }
3097 }
3098
3099 this->input_sections_.swap(remaining);
3100 this->first_input_offset_ = 0;
3101
2ea97941
ILT
3102 uint64_t data_size = address - orig_address;
3103 this->set_current_data_size_for_child(data_size);
3104 return data_size;
a445fddf
ILT
3105}
3106
8923b24c 3107// Add an simple input section.
a445fddf
ILT
3108
3109void
8923b24c
DK
3110Output_section::add_simple_input_section(const Simple_input_section& sis,
3111 off_t data_size,
3112 uint64_t addralign)
a445fddf 3113{
2ea97941
ILT
3114 if (addralign > this->addralign_)
3115 this->addralign_ = addralign;
a445fddf
ILT
3116
3117 off_t offset_in_section = this->current_data_size_for_child();
3118 off_t aligned_offset_in_section = align_address(offset_in_section,
2ea97941 3119 addralign);
a445fddf
ILT
3120
3121 this->set_current_data_size_for_child(aligned_offset_in_section
2ea97941 3122 + data_size);
a445fddf 3123
20e6d0d6
DK
3124 Input_section is =
3125 (sis.is_relaxed_input_section()
3126 ? Input_section(sis.relaxed_input_section())
2ea97941 3127 : Input_section(sis.relobj(), sis.shndx(), data_size, addralign));
20e6d0d6
DK
3128 this->input_sections_.push_back(is);
3129}
3130
8923b24c 3131// Save states for relaxation.
20e6d0d6
DK
3132
3133void
3134Output_section::save_states()
3135{
3136 gold_assert(this->checkpoint_ == NULL);
3137 Checkpoint_output_section* checkpoint =
3138 new Checkpoint_output_section(this->addralign_, this->flags_,
3139 this->input_sections_,
3140 this->first_input_offset_,
3141 this->attached_input_sections_are_sorted_);
3142 this->checkpoint_ = checkpoint;
3143 gold_assert(this->fills_.empty());
3144}
3145
8923b24c
DK
3146void
3147Output_section::discard_states()
3148{
3149 gold_assert(this->checkpoint_ != NULL);
3150 delete this->checkpoint_;
3151 this->checkpoint_ = NULL;
3152 gold_assert(this->fills_.empty());
3153
3154 // Simply invalidate the relaxed input section map since we do not keep
3155 // track of it.
3156 this->is_relaxed_input_section_map_valid_ = false;
3157}
3158
20e6d0d6
DK
3159void
3160Output_section::restore_states()
3161{
3162 gold_assert(this->checkpoint_ != NULL);
3163 Checkpoint_output_section* checkpoint = this->checkpoint_;
3164
3165 this->addralign_ = checkpoint->addralign();
3166 this->flags_ = checkpoint->flags();
3167 this->first_input_offset_ = checkpoint->first_input_offset();
3168
3169 if (!checkpoint->input_sections_saved())
3170 {
3171 // If we have not copied the input sections, just resize it.
3172 size_t old_size = checkpoint->input_sections_size();
3173 gold_assert(this->input_sections_.size() >= old_size);
3174 this->input_sections_.resize(old_size);
3175 }
3176 else
3177 {
3178 // We need to copy the whole list. This is not efficient for
3179 // extremely large output with hundreads of thousands of input
3180 // objects. We may need to re-think how we should pass sections
3181 // to scripts.
c0a62865 3182 this->input_sections_ = *checkpoint->input_sections();
20e6d0d6
DK
3183 }
3184
3185 this->attached_input_sections_are_sorted_ =
3186 checkpoint->attached_input_sections_are_sorted();
c0a62865
DK
3187
3188 // Simply invalidate the relaxed input section map since we do not keep
3189 // track of it.
3190 this->is_relaxed_input_section_map_valid_ = false;
a445fddf
ILT
3191}
3192
8923b24c
DK
3193// Update the section offsets of input sections in this. This is required if
3194// relaxation causes some input sections to change sizes.
3195
3196void
3197Output_section::adjust_section_offsets()
3198{
3199 if (!this->section_offsets_need_adjustment_)
3200 return;
3201
3202 off_t off = 0;
3203 for (Input_section_list::iterator p = this->input_sections_.begin();
3204 p != this->input_sections_.end();
3205 ++p)
3206 {
3207 off = align_address(off, p->addralign());
3208 if (p->is_input_section())
3209 p->relobj()->set_section_offset(p->shndx(), off);
3210 off += p->data_size();
3211 }
3212
3213 this->section_offsets_need_adjustment_ = false;
3214}
3215
7d9e3d98
ILT
3216// Print to the map file.
3217
3218void
3219Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3220{
3221 mapfile->print_output_section(this);
3222
3223 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3224 p != this->input_sections_.end();
3225 ++p)
3226 p->print_to_mapfile(mapfile);
3227}
3228
38c5e8b4
ILT
3229// Print stats for merge sections to stderr.
3230
3231void
3232Output_section::print_merge_stats()
3233{
3234 Input_section_list::iterator p;
3235 for (p = this->input_sections_.begin();
3236 p != this->input_sections_.end();
3237 ++p)
3238 p->print_merge_stats(this->name_);
3239}
3240
a2fb1b05
ILT
3241// Output segment methods.
3242
2ea97941 3243Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
54dc6425 3244 : output_data_(),
75f65a3e 3245 output_bss_(),
a2fb1b05
ILT
3246 vaddr_(0),
3247 paddr_(0),
3248 memsz_(0),
a445fddf
ILT
3249 max_align_(0),
3250 min_p_align_(0),
a2fb1b05
ILT
3251 offset_(0),
3252 filesz_(0),
2ea97941
ILT
3253 type_(type),
3254 flags_(flags),
a445fddf 3255 is_max_align_known_(false),
8a5e3e08
ILT
3256 are_addresses_set_(false),
3257 is_large_data_segment_(false)
a2fb1b05 3258{
bb321bb1
ILT
3259 // The ELF ABI specifies that a PT_TLS segment always has PF_R as
3260 // the flags.
3261 if (type == elfcpp::PT_TLS)
3262 this->flags_ = elfcpp::PF_R;
a2fb1b05
ILT
3263}
3264
3265// Add an Output_section to an Output_segment.
3266
3267void
75f65a3e 3268Output_segment::add_output_section(Output_section* os,
f5c870d2
ILT
3269 elfcpp::Elf_Word seg_flags,
3270 bool do_sort)
a2fb1b05 3271{
a3ad94ed 3272 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
a445fddf 3273 gold_assert(!this->is_max_align_known_);
8a5e3e08 3274 gold_assert(os->is_large_data_section() == this->is_large_data_segment());
96a0d71b 3275 gold_assert(this->type() == elfcpp::PT_LOAD || !do_sort);
75f65a3e 3276
a192ba05 3277 this->update_flags_for_output_section(seg_flags);
75f65a3e
ILT
3278
3279 Output_segment::Output_data_list* pdl;
3280 if (os->type() == elfcpp::SHT_NOBITS)
3281 pdl = &this->output_bss_;
3282 else
3283 pdl = &this->output_data_;
54dc6425 3284
f5c870d2
ILT
3285 // Note that while there may be many input sections in an output
3286 // section, there are normally only a few output sections in an
3287 // output segment. The loops below are expected to be fast.
3288
a2fb1b05 3289 // So that PT_NOTE segments will work correctly, we need to ensure
96a0d71b 3290 // that all SHT_NOTE sections are adjacent.
61ba1cf9 3291 if (os->type() == elfcpp::SHT_NOTE && !pdl->empty())
a2fb1b05 3292 {
a3ad94ed 3293 Output_segment::Output_data_list::iterator p = pdl->end();
75f65a3e 3294 do
54dc6425 3295 {
75f65a3e 3296 --p;
54dc6425
ILT
3297 if ((*p)->is_section_type(elfcpp::SHT_NOTE))
3298 {
3299 ++p;
75f65a3e 3300 pdl->insert(p, os);
54dc6425
ILT
3301 return;
3302 }
3303 }
75f65a3e 3304 while (p != pdl->begin());
54dc6425
ILT
3305 }
3306
3307 // Similarly, so that PT_TLS segments will work, we need to group
75f65a3e
ILT
3308 // SHF_TLS sections. An SHF_TLS/SHT_NOBITS section is a special
3309 // case: we group the SHF_TLS/SHT_NOBITS sections right after the
3310 // SHF_TLS/SHT_PROGBITS sections. This lets us set up PT_TLS
07f397ab 3311 // correctly. SHF_TLS sections get added to both a PT_LOAD segment
f5c870d2
ILT
3312 // and the PT_TLS segment; we do this grouping only for the PT_LOAD
3313 // segment.
07f397ab 3314 if (this->type_ != elfcpp::PT_TLS
2d924fd9 3315 && (os->flags() & elfcpp::SHF_TLS) != 0)
54dc6425 3316 {
75f65a3e 3317 pdl = &this->output_data_;
661be1e2 3318 if (!pdl->empty())
a2fb1b05 3319 {
661be1e2
ILT
3320 bool nobits = os->type() == elfcpp::SHT_NOBITS;
3321 bool sawtls = false;
3322 Output_segment::Output_data_list::iterator p = pdl->end();
3323 gold_assert(p != pdl->begin());
3324 do
a2fb1b05 3325 {
661be1e2
ILT
3326 --p;
3327 bool insert;
3328 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
3329 {
3330 sawtls = true;
3331 // Put a NOBITS section after the first TLS section.
3332 // Put a PROGBITS section after the first
3333 // TLS/PROGBITS section.
3334 insert = nobits || !(*p)->is_section_type(elfcpp::SHT_NOBITS);
3335 }
3336 else
3337 {
3338 // If we've gone past the TLS sections, but we've
3339 // seen a TLS section, then we need to insert this
3340 // section now.
3341 insert = sawtls;
3342 }
3343
3344 if (insert)
3345 {
3346 ++p;
3347 pdl->insert(p, os);
3348 return;
3349 }
a2fb1b05 3350 }
661be1e2 3351 while (p != pdl->begin());
a2fb1b05 3352 }
ead1e424 3353
dbe717ef
ILT
3354 // There are no TLS sections yet; put this one at the requested
3355 // location in the section list.
a2fb1b05
ILT
3356 }
3357
1a2dff53 3358 if (do_sort)
9f1d377b 3359 {
1a2dff53
ILT
3360 // For the PT_GNU_RELRO segment, we need to group relro
3361 // sections, and we need to put them before any non-relro
3362 // sections. Any relro local sections go before relro non-local
3363 // sections. One section may be marked as the last relro
3364 // section.
3365 if (os->is_relro())
9f1d377b 3366 {
1a2dff53
ILT
3367 gold_assert(pdl == &this->output_data_);
3368 Output_segment::Output_data_list::iterator p;
3369 for (p = pdl->begin(); p != pdl->end(); ++p)
3370 {
3371 if (!(*p)->is_section())
3372 break;
9f1d377b 3373
1a2dff53
ILT
3374 Output_section* pos = (*p)->output_section();
3375 if (!pos->is_relro()
3376 || (os->is_relro_local() && !pos->is_relro_local())
3377 || (!os->is_last_relro() && pos->is_last_relro()))
3378 break;
3379 }
3380
3381 pdl->insert(p, os);
3382 return;
9f1d377b
ILT
3383 }
3384
1a2dff53
ILT
3385 // One section may be marked as the first section which follows
3386 // the relro sections.
3387 if (os->is_first_non_relro())
3388 {
3389 gold_assert(pdl == &this->output_data_);
3390 Output_segment::Output_data_list::iterator p;
3391 for (p = pdl->begin(); p != pdl->end(); ++p)
3392 {
3393 if (!(*p)->is_section())
3394 break;
3395
3396 Output_section* pos = (*p)->output_section();
3397 if (!pos->is_relro())
3398 break;
3399 }
3400
3401 pdl->insert(p, os);
3402 return;
3403 }
9f1d377b
ILT
3404 }
3405
8a5e3e08
ILT
3406 // Small data sections go at the end of the list of data sections.
3407 // If OS is not small, and there are small sections, we have to
3408 // insert it before the first small section.
3409 if (os->type() != elfcpp::SHT_NOBITS
3410 && !os->is_small_section()
3411 && !pdl->empty()
3412 && pdl->back()->is_section()
3413 && pdl->back()->output_section()->is_small_section())
3414 {
3415 for (Output_segment::Output_data_list::iterator p = pdl->begin();
3416 p != pdl->end();
3417 ++p)
3418 {
3419 if ((*p)->is_section()
3420 && (*p)->output_section()->is_small_section())
3421 {
3422 pdl->insert(p, os);
3423 return;
3424 }
3425 }
3426 gold_unreachable();
3427 }
3428
3429 // A small BSS section goes at the start of the BSS sections, after
3430 // other small BSS sections.
3431 if (os->type() == elfcpp::SHT_NOBITS && os->is_small_section())
3432 {
3433 for (Output_segment::Output_data_list::iterator p = pdl->begin();
3434 p != pdl->end();
3435 ++p)
3436 {
3437 if (!(*p)->is_section()
3438 || !(*p)->output_section()->is_small_section())
3439 {
3440 pdl->insert(p, os);
3441 return;
3442 }
3443 }
3444 }
3445
3446 // A large BSS section goes at the end of the BSS sections, which
3447 // means that one that is not large must come before the first large
3448 // one.
3449 if (os->type() == elfcpp::SHT_NOBITS
3450 && !os->is_large_section()
3451 && !pdl->empty()
3452 && pdl->back()->is_section()
3453 && pdl->back()->output_section()->is_large_section())
3454 {
3455 for (Output_segment::Output_data_list::iterator p = pdl->begin();
3456 p != pdl->end();
3457 ++p)
3458 {
3459 if ((*p)->is_section()
3460 && (*p)->output_section()->is_large_section())
3461 {
3462 pdl->insert(p, os);
3463 return;
3464 }
3465 }
3466 gold_unreachable();
3467 }
3468
f5c870d2
ILT
3469 // We do some further output section sorting in order to make the
3470 // generated program run more efficiently. We should only do this
3471 // when not using a linker script, so it is controled by the DO_SORT
3472 // parameter.
3473 if (do_sort)
3474 {
3475 // FreeBSD requires the .interp section to be in the first page
3476 // of the executable. That is a more efficient location anyhow
3477 // for any OS, since it means that the kernel will have the data
3478 // handy after it reads the program headers.
3479 if (os->is_interp() && !pdl->empty())
3480 {
3481 pdl->insert(pdl->begin(), os);
3482 return;
3483 }
3484
3485 // Put loadable non-writable notes immediately after the .interp
3486 // sections, so that the PT_NOTE segment is on the first page of
3487 // the executable.
3488 if (os->type() == elfcpp::SHT_NOTE
3489 && (os->flags() & elfcpp::SHF_WRITE) == 0
3490 && !pdl->empty())
3491 {
3492 Output_segment::Output_data_list::iterator p = pdl->begin();
3493 if ((*p)->is_section() && (*p)->output_section()->is_interp())
3494 ++p;
3495 pdl->insert(p, os);
96a0d71b 3496 return;
f5c870d2
ILT
3497 }
3498
3499 // If this section is used by the dynamic linker, and it is not
3500 // writable, then put it first, after the .interp section and
3501 // any loadable notes. This makes it more likely that the
3502 // dynamic linker will have to read less data from the disk.
3503 if (os->is_dynamic_linker_section()
3504 && !pdl->empty()
3505 && (os->flags() & elfcpp::SHF_WRITE) == 0)
3506 {
3507 bool is_reloc = (os->type() == elfcpp::SHT_REL
3508 || os->type() == elfcpp::SHT_RELA);
3509 Output_segment::Output_data_list::iterator p = pdl->begin();
3510 while (p != pdl->end()
3511 && (*p)->is_section()
3512 && ((*p)->output_section()->is_dynamic_linker_section()
3513 || (*p)->output_section()->type() == elfcpp::SHT_NOTE))
3514 {
3515 // Put reloc sections after the other ones. Putting the
3516 // dynamic reloc sections first confuses BFD, notably
3517 // objcopy and strip.
3518 if (!is_reloc
3519 && ((*p)->output_section()->type() == elfcpp::SHT_REL
3520 || (*p)->output_section()->type() == elfcpp::SHT_RELA))
3521 break;
3522 ++p;
3523 }
3524 pdl->insert(p, os);
3525 return;
3526 }
3527 }
3528
3529 // If there were no constraints on the output section, just add it
3530 // to the end of the list.
01676dcd 3531 pdl->push_back(os);
75f65a3e
ILT
3532}
3533
1650c4ff
ILT
3534// Remove an Output_section from this segment. It is an error if it
3535// is not present.
3536
3537void
3538Output_segment::remove_output_section(Output_section* os)
3539{
3540 // We only need this for SHT_PROGBITS.
3541 gold_assert(os->type() == elfcpp::SHT_PROGBITS);
3542 for (Output_data_list::iterator p = this->output_data_.begin();
3543 p != this->output_data_.end();
3544 ++p)
3545 {
3546 if (*p == os)
3547 {
3548 this->output_data_.erase(p);
3549 return;
3550 }
3551 }
3552 gold_unreachable();
3553}
3554
a192ba05
ILT
3555// Add an Output_data (which need not be an Output_section) to the
3556// start of a segment.
75f65a3e
ILT
3557
3558void
3559Output_segment::add_initial_output_data(Output_data* od)
3560{
a445fddf 3561 gold_assert(!this->is_max_align_known_);
75f65a3e
ILT
3562 this->output_data_.push_front(od);
3563}
3564
9f1d377b
ILT
3565// Return whether the first data section is a relro section.
3566
3567bool
3568Output_segment::is_first_section_relro() const
3569{
3570 return (!this->output_data_.empty()
3571 && this->output_data_.front()->is_section()
3572 && this->output_data_.front()->output_section()->is_relro());
3573}
3574
75f65a3e 3575// Return the maximum alignment of the Output_data in Output_segment.
75f65a3e
ILT
3576
3577uint64_t
a445fddf 3578Output_segment::maximum_alignment()
75f65a3e 3579{
a445fddf 3580 if (!this->is_max_align_known_)
ead1e424 3581 {
2ea97941 3582 uint64_t addralign;
ead1e424 3583
2ea97941
ILT
3584 addralign = Output_segment::maximum_alignment_list(&this->output_data_);
3585 if (addralign > this->max_align_)
3586 this->max_align_ = addralign;
ead1e424 3587
2ea97941
ILT
3588 addralign = Output_segment::maximum_alignment_list(&this->output_bss_);
3589 if (addralign > this->max_align_)
3590 this->max_align_ = addralign;
ead1e424 3591
a445fddf 3592 this->is_max_align_known_ = true;
ead1e424
ILT
3593 }
3594
a445fddf 3595 return this->max_align_;
75f65a3e
ILT
3596}
3597
ead1e424
ILT
3598// Return the maximum alignment of a list of Output_data.
3599
3600uint64_t
a445fddf 3601Output_segment::maximum_alignment_list(const Output_data_list* pdl)
ead1e424
ILT
3602{
3603 uint64_t ret = 0;
3604 for (Output_data_list::const_iterator p = pdl->begin();
3605 p != pdl->end();
3606 ++p)
3607 {
2ea97941
ILT
3608 uint64_t addralign = (*p)->addralign();
3609 if (addralign > ret)
3610 ret = addralign;
ead1e424
ILT
3611 }
3612 return ret;
3613}
3614
4f4c5f80
ILT
3615// Return the number of dynamic relocs applied to this segment.
3616
3617unsigned int
3618Output_segment::dynamic_reloc_count() const
3619{
3620 return (this->dynamic_reloc_count_list(&this->output_data_)
3621 + this->dynamic_reloc_count_list(&this->output_bss_));
3622}
3623
3624// Return the number of dynamic relocs applied to an Output_data_list.
3625
3626unsigned int
3627Output_segment::dynamic_reloc_count_list(const Output_data_list* pdl) const
3628{
3629 unsigned int count = 0;
3630 for (Output_data_list::const_iterator p = pdl->begin();
3631 p != pdl->end();
3632 ++p)
3633 count += (*p)->dynamic_reloc_count();
3634 return count;
3635}
3636
a445fddf
ILT
3637// Set the section addresses for an Output_segment. If RESET is true,
3638// reset the addresses first. ADDR is the address and *POFF is the
3639// file offset. Set the section indexes starting with *PSHNDX.
3640// Return the address of the immediately following segment. Update
3641// *POFF and *PSHNDX.
75f65a3e
ILT
3642
3643uint64_t
96a2b4e4 3644Output_segment::set_section_addresses(const Layout* layout, bool reset,
1a2dff53
ILT
3645 uint64_t addr,
3646 unsigned int increase_relro,
3647 off_t* poff,
ead1e424 3648 unsigned int* pshndx)
75f65a3e 3649{
a3ad94ed 3650 gold_assert(this->type_ == elfcpp::PT_LOAD);
75f65a3e 3651
1a2dff53
ILT
3652 off_t orig_off = *poff;
3653
3654 // If we have relro sections, we need to pad forward now so that the
3655 // relro sections plus INCREASE_RELRO end on a common page boundary.
3656 if (parameters->options().relro()
3657 && this->is_first_section_relro()
3658 && (!this->are_addresses_set_ || reset))
3659 {
3660 uint64_t relro_size = 0;
3661 off_t off = *poff;
3662 for (Output_data_list::iterator p = this->output_data_.begin();
3663 p != this->output_data_.end();
3664 ++p)
3665 {
3666 if (!(*p)->is_section())
3667 break;
3668 Output_section* pos = (*p)->output_section();
3669 if (!pos->is_relro())
3670 break;
3671 gold_assert(!(*p)->is_section_flag_set(elfcpp::SHF_TLS));
3672 if ((*p)->is_address_valid())
3673 relro_size += (*p)->data_size();
3674 else
3675 {
3676 // FIXME: This could be faster.
3677 (*p)->set_address_and_file_offset(addr + relro_size,
3678 off + relro_size);
3679 relro_size += (*p)->data_size();
3680 (*p)->reset_address_and_file_offset();
3681 }
3682 }
3683 relro_size += increase_relro;
3684
3685 uint64_t page_align = parameters->target().common_pagesize();
3686
3687 // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
3688 uint64_t desired_align = page_align - (relro_size % page_align);
3689 if (desired_align < *poff % page_align)
3690 *poff += page_align - *poff % page_align;
3691 *poff += desired_align - *poff % page_align;
3692 addr += *poff - orig_off;
3693 orig_off = *poff;
3694 }
3695
a445fddf
ILT
3696 if (!reset && this->are_addresses_set_)
3697 {
3698 gold_assert(this->paddr_ == addr);
3699 addr = this->vaddr_;
3700 }
3701 else
3702 {
3703 this->vaddr_ = addr;
3704 this->paddr_ = addr;
3705 this->are_addresses_set_ = true;
3706 }
75f65a3e 3707
96a2b4e4
ILT
3708 bool in_tls = false;
3709
75f65a3e
ILT
3710 this->offset_ = orig_off;
3711
96a2b4e4 3712 addr = this->set_section_list_addresses(layout, reset, &this->output_data_,
1a2dff53 3713 addr, poff, pshndx, &in_tls);
75f65a3e
ILT
3714 this->filesz_ = *poff - orig_off;
3715
3716 off_t off = *poff;
3717
96a2b4e4
ILT
3718 uint64_t ret = this->set_section_list_addresses(layout, reset,
3719 &this->output_bss_,
3720 addr, poff, pshndx,
1a2dff53 3721 &in_tls);
96a2b4e4
ILT
3722
3723 // If the last section was a TLS section, align upward to the
3724 // alignment of the TLS segment, so that the overall size of the TLS
3725 // segment is aligned.
3726 if (in_tls)
3727 {
3728 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
3729 *poff = align_address(*poff, segment_align);
3730 }
3731
75f65a3e
ILT
3732 this->memsz_ = *poff - orig_off;
3733
3734 // Ignore the file offset adjustments made by the BSS Output_data
3735 // objects.
3736 *poff = off;
61ba1cf9
ILT
3737
3738 return ret;
75f65a3e
ILT
3739}
3740
b8e6aad9
ILT
3741// Set the addresses and file offsets in a list of Output_data
3742// structures.
75f65a3e
ILT
3743
3744uint64_t
96a2b4e4
ILT
3745Output_segment::set_section_list_addresses(const Layout* layout, bool reset,
3746 Output_data_list* pdl,
ead1e424 3747 uint64_t addr, off_t* poff,
96a2b4e4 3748 unsigned int* pshndx,
1a2dff53 3749 bool* in_tls)
75f65a3e 3750{
ead1e424 3751 off_t startoff = *poff;
75f65a3e 3752
ead1e424 3753 off_t off = startoff;
75f65a3e
ILT
3754 for (Output_data_list::iterator p = pdl->begin();
3755 p != pdl->end();
3756 ++p)
3757 {
a445fddf
ILT
3758 if (reset)
3759 (*p)->reset_address_and_file_offset();
3760
3761 // When using a linker script the section will most likely
3762 // already have an address.
3763 if (!(*p)->is_address_valid())
3802b2dd 3764 {
96a2b4e4
ILT
3765 uint64_t align = (*p)->addralign();
3766
3767 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
3768 {
3769 // Give the first TLS section the alignment of the
3770 // entire TLS segment. Otherwise the TLS segment as a
3771 // whole may be misaligned.
3772 if (!*in_tls)
3773 {
3774 Output_segment* tls_segment = layout->tls_segment();
3775 gold_assert(tls_segment != NULL);
3776 uint64_t segment_align = tls_segment->maximum_alignment();
3777 gold_assert(segment_align >= align);
3778 align = segment_align;
3779
3780 *in_tls = true;
3781 }
3782 }
3783 else
3784 {
3785 // If this is the first section after the TLS segment,
3786 // align it to at least the alignment of the TLS
3787 // segment, so that the size of the overall TLS segment
3788 // is aligned.
3789 if (*in_tls)
3790 {
3791 uint64_t segment_align =
3792 layout->tls_segment()->maximum_alignment();
3793 if (segment_align > align)
3794 align = segment_align;
3795
3796 *in_tls = false;
3797 }
3798 }
3799
3800 off = align_address(off, align);
3802b2dd
ILT
3801 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
3802 }
a445fddf
ILT
3803 else
3804 {
3805 // The script may have inserted a skip forward, but it
3806 // better not have moved backward.
661be1e2
ILT
3807 if ((*p)->address() >= addr + (off - startoff))
3808 off += (*p)->address() - (addr + (off - startoff));
3809 else
3810 {
3811 if (!layout->script_options()->saw_sections_clause())
3812 gold_unreachable();
3813 else
3814 {
3815 Output_section* os = (*p)->output_section();
64b1ae37
DK
3816
3817 // Cast to unsigned long long to avoid format warnings.
3818 unsigned long long previous_dot =
3819 static_cast<unsigned long long>(addr + (off - startoff));
3820 unsigned long long dot =
3821 static_cast<unsigned long long>((*p)->address());
3822
661be1e2
ILT
3823 if (os == NULL)
3824 gold_error(_("dot moves backward in linker script "
64b1ae37 3825 "from 0x%llx to 0x%llx"), previous_dot, dot);
661be1e2
ILT
3826 else
3827 gold_error(_("address of section '%s' moves backward "
3828 "from 0x%llx to 0x%llx"),
64b1ae37 3829 os->name(), previous_dot, dot);
661be1e2
ILT
3830 }
3831 }
a445fddf
ILT
3832 (*p)->set_file_offset(off);
3833 (*p)->finalize_data_size();
3834 }
ead1e424 3835
96a2b4e4
ILT
3836 // We want to ignore the size of a SHF_TLS or SHT_NOBITS
3837 // section. Such a section does not affect the size of a
3838 // PT_LOAD segment.
3839 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
ead1e424
ILT
3840 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
3841 off += (*p)->data_size();
75f65a3e 3842
ead1e424
ILT
3843 if ((*p)->is_section())
3844 {
3845 (*p)->set_out_shndx(*pshndx);
3846 ++*pshndx;
3847 }
75f65a3e
ILT
3848 }
3849
3850 *poff = off;
ead1e424 3851 return addr + (off - startoff);
75f65a3e
ILT
3852}
3853
3854// For a non-PT_LOAD segment, set the offset from the sections, if
1a2dff53 3855// any. Add INCREASE to the file size and the memory size.
75f65a3e
ILT
3856
3857void
1a2dff53 3858Output_segment::set_offset(unsigned int increase)
75f65a3e 3859{
a3ad94ed 3860 gold_assert(this->type_ != elfcpp::PT_LOAD);
75f65a3e 3861
a445fddf
ILT
3862 gold_assert(!this->are_addresses_set_);
3863
75f65a3e
ILT
3864 if (this->output_data_.empty() && this->output_bss_.empty())
3865 {
1a2dff53 3866 gold_assert(increase == 0);
75f65a3e
ILT
3867 this->vaddr_ = 0;
3868 this->paddr_ = 0;
a445fddf 3869 this->are_addresses_set_ = true;
75f65a3e 3870 this->memsz_ = 0;
a445fddf 3871 this->min_p_align_ = 0;
75f65a3e
ILT
3872 this->offset_ = 0;
3873 this->filesz_ = 0;
3874 return;
3875 }
3876
3877 const Output_data* first;
3878 if (this->output_data_.empty())
3879 first = this->output_bss_.front();
3880 else
3881 first = this->output_data_.front();
3882 this->vaddr_ = first->address();
a445fddf
ILT
3883 this->paddr_ = (first->has_load_address()
3884 ? first->load_address()
3885 : this->vaddr_);
3886 this->are_addresses_set_ = true;
75f65a3e
ILT
3887 this->offset_ = first->offset();
3888
3889 if (this->output_data_.empty())
3890 this->filesz_ = 0;
3891 else
3892 {
3893 const Output_data* last_data = this->output_data_.back();
3894 this->filesz_ = (last_data->address()
3895 + last_data->data_size()
3896 - this->vaddr_);
3897 }
3898
3899 const Output_data* last;
3900 if (this->output_bss_.empty())
3901 last = this->output_data_.back();
3902 else
3903 last = this->output_bss_.back();
3904 this->memsz_ = (last->address()
3905 + last->data_size()
3906 - this->vaddr_);
96a2b4e4 3907
1a2dff53
ILT
3908 this->filesz_ += increase;
3909 this->memsz_ += increase;
3910
96a2b4e4
ILT
3911 // If this is a TLS segment, align the memory size. The code in
3912 // set_section_list ensures that the section after the TLS segment
3913 // is aligned to give us room.
3914 if (this->type_ == elfcpp::PT_TLS)
3915 {
3916 uint64_t segment_align = this->maximum_alignment();
3917 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
3918 this->memsz_ = align_address(this->memsz_, segment_align);
3919 }
75f65a3e
ILT
3920}
3921
7bf1f802
ILT
3922// Set the TLS offsets of the sections in the PT_TLS segment.
3923
3924void
3925Output_segment::set_tls_offsets()
3926{
3927 gold_assert(this->type_ == elfcpp::PT_TLS);
3928
3929 for (Output_data_list::iterator p = this->output_data_.begin();
3930 p != this->output_data_.end();
3931 ++p)
3932 (*p)->set_tls_offset(this->vaddr_);
3933
3934 for (Output_data_list::iterator p = this->output_bss_.begin();
3935 p != this->output_bss_.end();
3936 ++p)
3937 (*p)->set_tls_offset(this->vaddr_);
3938}
3939
a445fddf
ILT
3940// Return the address of the first section.
3941
3942uint64_t
3943Output_segment::first_section_load_address() const
3944{
3945 for (Output_data_list::const_iterator p = this->output_data_.begin();
3946 p != this->output_data_.end();
3947 ++p)
3948 if ((*p)->is_section())
3949 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
3950
3951 for (Output_data_list::const_iterator p = this->output_bss_.begin();
3952 p != this->output_bss_.end();
3953 ++p)
3954 if ((*p)->is_section())
3955 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
3956
3957 gold_unreachable();
3958}
3959
75f65a3e
ILT
3960// Return the number of Output_sections in an Output_segment.
3961
3962unsigned int
3963Output_segment::output_section_count() const
3964{
3965 return (this->output_section_count_list(&this->output_data_)
3966 + this->output_section_count_list(&this->output_bss_));
3967}
3968
3969// Return the number of Output_sections in an Output_data_list.
3970
3971unsigned int
3972Output_segment::output_section_count_list(const Output_data_list* pdl) const
3973{
3974 unsigned int count = 0;
3975 for (Output_data_list::const_iterator p = pdl->begin();
3976 p != pdl->end();
3977 ++p)
3978 {
3979 if ((*p)->is_section())
3980 ++count;
3981 }
3982 return count;
a2fb1b05
ILT
3983}
3984
1c4f3631
ILT
3985// Return the section attached to the list segment with the lowest
3986// load address. This is used when handling a PHDRS clause in a
3987// linker script.
3988
3989Output_section*
3990Output_segment::section_with_lowest_load_address() const
3991{
3992 Output_section* found = NULL;
3993 uint64_t found_lma = 0;
3994 this->lowest_load_address_in_list(&this->output_data_, &found, &found_lma);
3995
3996 Output_section* found_data = found;
3997 this->lowest_load_address_in_list(&this->output_bss_, &found, &found_lma);
3998 if (found != found_data && found_data != NULL)
3999 {
4000 gold_error(_("nobits section %s may not precede progbits section %s "
4001 "in same segment"),
4002 found->name(), found_data->name());
4003 return NULL;
4004 }
4005
4006 return found;
4007}
4008
4009// Look through a list for a section with a lower load address.
4010
4011void
4012Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4013 Output_section** found,
4014 uint64_t* found_lma) const
4015{
4016 for (Output_data_list::const_iterator p = pdl->begin();
4017 p != pdl->end();
4018 ++p)
4019 {
4020 if (!(*p)->is_section())
4021 continue;
4022 Output_section* os = static_cast<Output_section*>(*p);
4023 uint64_t lma = (os->has_load_address()
4024 ? os->load_address()
4025 : os->address());
4026 if (*found == NULL || lma < *found_lma)
4027 {
4028 *found = os;
4029 *found_lma = lma;
4030 }
4031 }
4032}
4033
61ba1cf9
ILT
4034// Write the segment data into *OPHDR.
4035
4036template<int size, bool big_endian>
4037void
ead1e424 4038Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
61ba1cf9
ILT
4039{
4040 ophdr->put_p_type(this->type_);
4041 ophdr->put_p_offset(this->offset_);
4042 ophdr->put_p_vaddr(this->vaddr_);
4043 ophdr->put_p_paddr(this->paddr_);
4044 ophdr->put_p_filesz(this->filesz_);
4045 ophdr->put_p_memsz(this->memsz_);
4046 ophdr->put_p_flags(this->flags_);
a445fddf 4047 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
61ba1cf9
ILT
4048}
4049
4050// Write the section headers into V.
4051
4052template<int size, bool big_endian>
4053unsigned char*
16649710
ILT
4054Output_segment::write_section_headers(const Layout* layout,
4055 const Stringpool* secnamepool,
ead1e424 4056 unsigned char* v,
7d1a9ebb 4057 unsigned int *pshndx) const
5482377d 4058{
ead1e424
ILT
4059 // Every section that is attached to a segment must be attached to a
4060 // PT_LOAD segment, so we only write out section headers for PT_LOAD
4061 // segments.
4062 if (this->type_ != elfcpp::PT_LOAD)
4063 return v;
4064
7d1a9ebb
ILT
4065 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
4066 &this->output_data_,
4067 v, pshndx);
4068 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
4069 &this->output_bss_,
4070 v, pshndx);
61ba1cf9
ILT
4071 return v;
4072}
4073
4074template<int size, bool big_endian>
4075unsigned char*
16649710
ILT
4076Output_segment::write_section_headers_list(const Layout* layout,
4077 const Stringpool* secnamepool,
61ba1cf9 4078 const Output_data_list* pdl,
ead1e424 4079 unsigned char* v,
7d1a9ebb 4080 unsigned int* pshndx) const
61ba1cf9
ILT
4081{
4082 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4083 for (Output_data_list::const_iterator p = pdl->begin();
4084 p != pdl->end();
4085 ++p)
4086 {
4087 if ((*p)->is_section())
4088 {
5482377d 4089 const Output_section* ps = static_cast<const Output_section*>(*p);
a3ad94ed 4090 gold_assert(*pshndx == ps->out_shndx());
61ba1cf9 4091 elfcpp::Shdr_write<size, big_endian> oshdr(v);
16649710 4092 ps->write_header(layout, secnamepool, &oshdr);
61ba1cf9 4093 v += shdr_size;
ead1e424 4094 ++*pshndx;
61ba1cf9
ILT
4095 }
4096 }
4097 return v;
4098}
4099
7d9e3d98
ILT
4100// Print the output sections to the map file.
4101
4102void
4103Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4104{
4105 if (this->type() != elfcpp::PT_LOAD)
4106 return;
4107 this->print_section_list_to_mapfile(mapfile, &this->output_data_);
4108 this->print_section_list_to_mapfile(mapfile, &this->output_bss_);
4109}
4110
4111// Print an output section list to the map file.
4112
4113void
4114Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4115 const Output_data_list* pdl) const
4116{
4117 for (Output_data_list::const_iterator p = pdl->begin();
4118 p != pdl->end();
4119 ++p)
4120 (*p)->print_to_mapfile(mapfile);
4121}
4122
a2fb1b05
ILT
4123// Output_file methods.
4124
14144f39
ILT
4125Output_file::Output_file(const char* name)
4126 : name_(name),
61ba1cf9
ILT
4127 o_(-1),
4128 file_size_(0),
c420411f 4129 base_(NULL),
516cb3d0
ILT
4130 map_is_anonymous_(false),
4131 is_temporary_(false)
61ba1cf9
ILT
4132{
4133}
4134
404c2abb
ILT
4135// Try to open an existing file. Returns false if the file doesn't
4136// exist, has a size of 0 or can't be mmapped.
4137
4138bool
4139Output_file::open_for_modification()
4140{
4141 // The name "-" means "stdout".
4142 if (strcmp(this->name_, "-") == 0)
4143 return false;
4144
4145 // Don't bother opening files with a size of zero.
4146 struct stat s;
4147 if (::stat(this->name_, &s) != 0 || s.st_size == 0)
4148 return false;
4149
4150 int o = open_descriptor(-1, this->name_, O_RDWR, 0);
4151 if (o < 0)
4152 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4153 this->o_ = o;
4154 this->file_size_ = s.st_size;
4155
4156 // If the file can't be mmapped, copying the content to an anonymous
4157 // map will probably negate the performance benefits of incremental
4158 // linking. This could be helped by using views and loading only
4159 // the necessary parts, but this is not supported as of now.
4160 if (!this->map_no_anonymous())
4161 {
4162 release_descriptor(o, true);
4163 this->o_ = -1;
4164 this->file_size_ = 0;
4165 return false;
4166 }
4167
4168 return true;
4169}
4170
61ba1cf9
ILT
4171// Open the output file.
4172
a2fb1b05 4173void
61ba1cf9 4174Output_file::open(off_t file_size)
a2fb1b05 4175{
61ba1cf9
ILT
4176 this->file_size_ = file_size;
4177
4e9d8586
ILT
4178 // Unlink the file first; otherwise the open() may fail if the file
4179 // is busy (e.g. it's an executable that's currently being executed).
4180 //
4181 // However, the linker may be part of a system where a zero-length
4182 // file is created for it to write to, with tight permissions (gcc
4183 // 2.95 did something like this). Unlinking the file would work
4184 // around those permission controls, so we only unlink if the file
4185 // has a non-zero size. We also unlink only regular files to avoid
4186 // trouble with directories/etc.
4187 //
4188 // If we fail, continue; this command is merely a best-effort attempt
4189 // to improve the odds for open().
4190
42a1b686 4191 // We let the name "-" mean "stdout"
516cb3d0 4192 if (!this->is_temporary_)
42a1b686 4193 {
516cb3d0
ILT
4194 if (strcmp(this->name_, "-") == 0)
4195 this->o_ = STDOUT_FILENO;
4196 else
4197 {
4198 struct stat s;
6a89f575
CC
4199 if (::stat(this->name_, &s) == 0
4200 && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
4201 {
4202 if (s.st_size != 0)
4203 ::unlink(this->name_);
4204 else if (!parameters->options().relocatable())
4205 {
4206 // If we don't unlink the existing file, add execute
4207 // permission where read permissions already exist
4208 // and where the umask permits.
4209 int mask = ::umask(0);
4210 ::umask(mask);
4211 s.st_mode |= (s.st_mode & 0444) >> 2;
4212 ::chmod(this->name_, s.st_mode & ~mask);
4213 }
4214 }
516cb3d0 4215
8851ecca 4216 int mode = parameters->options().relocatable() ? 0666 : 0777;
2a00e4fb
ILT
4217 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
4218 mode);
516cb3d0
ILT
4219 if (o < 0)
4220 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4221 this->o_ = o;
4222 }
42a1b686 4223 }
61ba1cf9 4224
27bc2bce
ILT
4225 this->map();
4226}
4227
4228// Resize the output file.
4229
4230void
4231Output_file::resize(off_t file_size)
4232{
c420411f
ILT
4233 // If the mmap is mapping an anonymous memory buffer, this is easy:
4234 // just mremap to the new size. If it's mapping to a file, we want
4235 // to unmap to flush to the file, then remap after growing the file.
4236 if (this->map_is_anonymous_)
4237 {
4238 void* base = ::mremap(this->base_, this->file_size_, file_size,
4239 MREMAP_MAYMOVE);
4240 if (base == MAP_FAILED)
4241 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
4242 this->base_ = static_cast<unsigned char*>(base);
4243 this->file_size_ = file_size;
4244 }
4245 else
4246 {
4247 this->unmap();
4248 this->file_size_ = file_size;
fdcac5af
ILT
4249 if (!this->map_no_anonymous())
4250 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
c420411f 4251 }
27bc2bce
ILT
4252}
4253
404c2abb
ILT
4254// Map an anonymous block of memory which will later be written to the
4255// file. Return whether the map succeeded.
26736d8e 4256
404c2abb 4257bool
26736d8e
ILT
4258Output_file::map_anonymous()
4259{
404c2abb
ILT
4260 void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4261 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
4262 if (base != MAP_FAILED)
4263 {
4264 this->map_is_anonymous_ = true;
4265 this->base_ = static_cast<unsigned char*>(base);
4266 return true;
4267 }
4268 return false;
26736d8e
ILT
4269}
4270
404c2abb 4271// Map the file into memory. Return whether the mapping succeeded.
27bc2bce 4272
404c2abb
ILT
4273bool
4274Output_file::map_no_anonymous()
27bc2bce 4275{
c420411f 4276 const int o = this->o_;
61ba1cf9 4277
c420411f
ILT
4278 // If the output file is not a regular file, don't try to mmap it;
4279 // instead, we'll mmap a block of memory (an anonymous buffer), and
4280 // then later write the buffer to the file.
4281 void* base;
4282 struct stat statbuf;
42a1b686
ILT
4283 if (o == STDOUT_FILENO || o == STDERR_FILENO
4284 || ::fstat(o, &statbuf) != 0
516cb3d0
ILT
4285 || !S_ISREG(statbuf.st_mode)
4286 || this->is_temporary_)
404c2abb
ILT
4287 return false;
4288
4289 // Ensure that we have disk space available for the file. If we
4290 // don't do this, it is possible that we will call munmap, close,
4291 // and exit with dirty buffers still in the cache with no assigned
4292 // disk blocks. If the disk is out of space at that point, the
4293 // output file will wind up incomplete, but we will have already
4294 // exited. The alternative to fallocate would be to use fdatasync,
4295 // but that would be a more significant performance hit.
4296 if (::posix_fallocate(o, 0, this->file_size_) < 0)
4297 gold_fatal(_("%s: %s"), this->name_, strerror(errno));
4298
4299 // Map the file into memory.
4300 base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4301 MAP_SHARED, o, 0);
4302
4303 // The mmap call might fail because of file system issues: the file
4304 // system might not support mmap at all, or it might not support
4305 // mmap with PROT_WRITE.
61ba1cf9 4306 if (base == MAP_FAILED)
404c2abb
ILT
4307 return false;
4308
4309 this->map_is_anonymous_ = false;
61ba1cf9 4310 this->base_ = static_cast<unsigned char*>(base);
404c2abb
ILT
4311 return true;
4312}
4313
4314// Map the file into memory.
4315
4316void
4317Output_file::map()
4318{
4319 if (this->map_no_anonymous())
4320 return;
4321
4322 // The mmap call might fail because of file system issues: the file
4323 // system might not support mmap at all, or it might not support
4324 // mmap with PROT_WRITE. I'm not sure which errno values we will
4325 // see in all cases, so if the mmap fails for any reason and we
4326 // don't care about file contents, try for an anonymous map.
4327 if (this->map_anonymous())
4328 return;
4329
4330 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
4331 this->name_, static_cast<unsigned long>(this->file_size_),
4332 strerror(errno));
61ba1cf9
ILT
4333}
4334
c420411f 4335// Unmap the file from memory.
61ba1cf9
ILT
4336
4337void
c420411f 4338Output_file::unmap()
61ba1cf9
ILT
4339{
4340 if (::munmap(this->base_, this->file_size_) < 0)
a0c4fb0a 4341 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
61ba1cf9 4342 this->base_ = NULL;
c420411f
ILT
4343}
4344
4345// Close the output file.
4346
4347void
4348Output_file::close()
4349{
4350 // If the map isn't file-backed, we need to write it now.
516cb3d0 4351 if (this->map_is_anonymous_ && !this->is_temporary_)
c420411f
ILT
4352 {
4353 size_t bytes_to_write = this->file_size_;
6d1e3092 4354 size_t offset = 0;
c420411f
ILT
4355 while (bytes_to_write > 0)
4356 {
6d1e3092
CD
4357 ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
4358 bytes_to_write);
c420411f
ILT
4359 if (bytes_written == 0)
4360 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
4361 else if (bytes_written < 0)
4362 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
4363 else
6d1e3092
CD
4364 {
4365 bytes_to_write -= bytes_written;
4366 offset += bytes_written;
4367 }
c420411f
ILT
4368 }
4369 }
4370 this->unmap();
61ba1cf9 4371
42a1b686 4372 // We don't close stdout or stderr
516cb3d0
ILT
4373 if (this->o_ != STDOUT_FILENO
4374 && this->o_ != STDERR_FILENO
4375 && !this->is_temporary_)
42a1b686
ILT
4376 if (::close(this->o_) < 0)
4377 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
61ba1cf9 4378 this->o_ = -1;
a2fb1b05
ILT
4379}
4380
4381// Instantiate the templates we need. We could use the configure
4382// script to restrict this to only the ones for implemented targets.
4383
193a53d9 4384#ifdef HAVE_TARGET_32_LITTLE
a2fb1b05
ILT
4385template
4386off_t
4387Output_section::add_input_section<32, false>(
730cdc88 4388 Sized_relobj<32, false>* object,
2ea97941 4389 unsigned int shndx,
a2fb1b05 4390 const char* secname,
730cdc88 4391 const elfcpp::Shdr<32, false>& shdr,
a445fddf
ILT
4392 unsigned int reloc_shndx,
4393 bool have_sections_script);
193a53d9 4394#endif
a2fb1b05 4395
193a53d9 4396#ifdef HAVE_TARGET_32_BIG
a2fb1b05
ILT
4397template
4398off_t
4399Output_section::add_input_section<32, true>(
730cdc88 4400 Sized_relobj<32, true>* object,
2ea97941 4401 unsigned int shndx,
a2fb1b05 4402 const char* secname,
730cdc88 4403 const elfcpp::Shdr<32, true>& shdr,
a445fddf
ILT
4404 unsigned int reloc_shndx,
4405 bool have_sections_script);
193a53d9 4406#endif
a2fb1b05 4407
193a53d9 4408#ifdef HAVE_TARGET_64_LITTLE
a2fb1b05
ILT
4409template
4410off_t
4411Output_section::add_input_section<64, false>(
730cdc88 4412 Sized_relobj<64, false>* object,
2ea97941 4413 unsigned int shndx,
a2fb1b05 4414 const char* secname,
730cdc88 4415 const elfcpp::Shdr<64, false>& shdr,
a445fddf
ILT
4416 unsigned int reloc_shndx,
4417 bool have_sections_script);
193a53d9 4418#endif
a2fb1b05 4419
193a53d9 4420#ifdef HAVE_TARGET_64_BIG
a2fb1b05
ILT
4421template
4422off_t
4423Output_section::add_input_section<64, true>(
730cdc88 4424 Sized_relobj<64, true>* object,
2ea97941 4425 unsigned int shndx,
a2fb1b05 4426 const char* secname,
730cdc88 4427 const elfcpp::Shdr<64, true>& shdr,
a445fddf
ILT
4428 unsigned int reloc_shndx,
4429 bool have_sections_script);
193a53d9 4430#endif
a2fb1b05 4431
bbbfea06
CC
4432#ifdef HAVE_TARGET_32_LITTLE
4433template
4434class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
4435#endif
4436
4437#ifdef HAVE_TARGET_32_BIG
4438template
4439class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
4440#endif
4441
4442#ifdef HAVE_TARGET_64_LITTLE
4443template
4444class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
4445#endif
4446
4447#ifdef HAVE_TARGET_64_BIG
4448template
4449class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
4450#endif
4451
4452#ifdef HAVE_TARGET_32_LITTLE
4453template
4454class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
4455#endif
4456
4457#ifdef HAVE_TARGET_32_BIG
4458template
4459class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
4460#endif
4461
4462#ifdef HAVE_TARGET_64_LITTLE
4463template
4464class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
4465#endif
4466
4467#ifdef HAVE_TARGET_64_BIG
4468template
4469class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
4470#endif
4471
4472#ifdef HAVE_TARGET_32_LITTLE
4473template
4474class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
4475#endif
4476
4477#ifdef HAVE_TARGET_32_BIG
4478template
4479class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
4480#endif
4481
4482#ifdef HAVE_TARGET_64_LITTLE
4483template
4484class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
4485#endif
4486
4487#ifdef HAVE_TARGET_64_BIG
4488template
4489class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
4490#endif
4491
4492#ifdef HAVE_TARGET_32_LITTLE
4493template
4494class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
4495#endif
4496
4497#ifdef HAVE_TARGET_32_BIG
4498template
4499class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
4500#endif
4501
4502#ifdef HAVE_TARGET_64_LITTLE
4503template
4504class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
4505#endif
4506
4507#ifdef HAVE_TARGET_64_BIG
4508template
4509class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
4510#endif
4511
193a53d9 4512#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
4513template
4514class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
193a53d9 4515#endif
c06b7b0b 4516
193a53d9 4517#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
4518template
4519class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
193a53d9 4520#endif
c06b7b0b 4521
193a53d9 4522#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
4523template
4524class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
193a53d9 4525#endif
c06b7b0b 4526
193a53d9 4527#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
4528template
4529class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
193a53d9 4530#endif
c06b7b0b 4531
193a53d9 4532#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
4533template
4534class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
193a53d9 4535#endif
c06b7b0b 4536
193a53d9 4537#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
4538template
4539class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
193a53d9 4540#endif
c06b7b0b 4541
193a53d9 4542#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
4543template
4544class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
193a53d9 4545#endif
c06b7b0b 4546
193a53d9 4547#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
4548template
4549class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
193a53d9 4550#endif
c06b7b0b 4551
193a53d9 4552#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
4553template
4554class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
193a53d9 4555#endif
c06b7b0b 4556
193a53d9 4557#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
4558template
4559class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
193a53d9 4560#endif
c06b7b0b 4561
193a53d9 4562#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
4563template
4564class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
193a53d9 4565#endif
c06b7b0b 4566
193a53d9 4567#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
4568template
4569class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
193a53d9 4570#endif
c06b7b0b 4571
193a53d9 4572#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
4573template
4574class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
193a53d9 4575#endif
c06b7b0b 4576
193a53d9 4577#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
4578template
4579class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
193a53d9 4580#endif
c06b7b0b 4581
193a53d9 4582#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
4583template
4584class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
193a53d9 4585#endif
c06b7b0b 4586
193a53d9 4587#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
4588template
4589class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
193a53d9 4590#endif
c06b7b0b 4591
6a74a719
ILT
4592#ifdef HAVE_TARGET_32_LITTLE
4593template
4594class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
4595#endif
4596
4597#ifdef HAVE_TARGET_32_BIG
4598template
4599class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
4600#endif
4601
4602#ifdef HAVE_TARGET_64_LITTLE
4603template
4604class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
4605#endif
4606
4607#ifdef HAVE_TARGET_64_BIG
4608template
4609class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
4610#endif
4611
4612#ifdef HAVE_TARGET_32_LITTLE
4613template
4614class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
4615#endif
4616
4617#ifdef HAVE_TARGET_32_BIG
4618template
4619class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
4620#endif
4621
4622#ifdef HAVE_TARGET_64_LITTLE
4623template
4624class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
4625#endif
4626
4627#ifdef HAVE_TARGET_64_BIG
4628template
4629class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
4630#endif
4631
4632#ifdef HAVE_TARGET_32_LITTLE
4633template
4634class Output_data_group<32, false>;
4635#endif
4636
4637#ifdef HAVE_TARGET_32_BIG
4638template
4639class Output_data_group<32, true>;
4640#endif
4641
4642#ifdef HAVE_TARGET_64_LITTLE
4643template
4644class Output_data_group<64, false>;
4645#endif
4646
4647#ifdef HAVE_TARGET_64_BIG
4648template
4649class Output_data_group<64, true>;
4650#endif
4651
193a53d9 4652#ifdef HAVE_TARGET_32_LITTLE
ead1e424 4653template
dbe717ef 4654class Output_data_got<32, false>;
193a53d9 4655#endif
ead1e424 4656
193a53d9 4657#ifdef HAVE_TARGET_32_BIG
ead1e424 4658template
dbe717ef 4659class Output_data_got<32, true>;
193a53d9 4660#endif
ead1e424 4661
193a53d9 4662#ifdef HAVE_TARGET_64_LITTLE
ead1e424 4663template
dbe717ef 4664class Output_data_got<64, false>;
193a53d9 4665#endif
ead1e424 4666
193a53d9 4667#ifdef HAVE_TARGET_64_BIG
ead1e424 4668template
dbe717ef 4669class Output_data_got<64, true>;
193a53d9 4670#endif
ead1e424 4671
a2fb1b05 4672} // End namespace gold.