]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gold/output.cc
Use failif on ld-elf/exclude3 tests
[thirdparty/binutils-gdb.git] / gold / output.cc
CommitLineData
a2fb1b05
ILT
1// output.cc -- manage the output file for gold
2
88597d34 3// Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
6cb15b7f
ILT
4// Written by Ian Lance Taylor <iant@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
a2fb1b05
ILT
23#include "gold.h"
24
25#include <cstdlib>
04bf7072 26#include <cstring>
61ba1cf9
ILT
27#include <cerrno>
28#include <fcntl.h>
29#include <unistd.h>
4e9d8586 30#include <sys/stat.h>
75f65a3e 31#include <algorithm>
88597d34
ILT
32
33#ifdef HAVE_SYS_MMAN_H
34#include <sys/mman.h>
35#endif
36
6a89f575 37#include "libiberty.h"
a2fb1b05 38
8ea8cd50 39#include "dwarf.h"
7e1edb90 40#include "parameters.h"
a2fb1b05 41#include "object.h"
ead1e424
ILT
42#include "symtab.h"
43#include "reloc.h"
b8e6aad9 44#include "merge.h"
2a00e4fb 45#include "descriptors.h"
5393d741 46#include "layout.h"
a2fb1b05
ILT
47#include "output.h"
48
88597d34
ILT
49// For systems without mmap support.
50#ifndef HAVE_MMAP
51# define mmap gold_mmap
52# define munmap gold_munmap
53# define mremap gold_mremap
54# ifndef MAP_FAILED
55# define MAP_FAILED (reinterpret_cast<void*>(-1))
56# endif
57# ifndef PROT_READ
58# define PROT_READ 0
59# endif
60# ifndef PROT_WRITE
61# define PROT_WRITE 0
62# endif
63# ifndef MAP_PRIVATE
64# define MAP_PRIVATE 0
65# endif
66# ifndef MAP_ANONYMOUS
67# define MAP_ANONYMOUS 0
68# endif
69# ifndef MAP_SHARED
70# define MAP_SHARED 0
71# endif
72
73# ifndef ENOSYS
74# define ENOSYS EINVAL
75# endif
76
77static void *
78gold_mmap(void *, size_t, int, int, int, off_t)
79{
80 errno = ENOSYS;
81 return MAP_FAILED;
82}
83
84static int
85gold_munmap(void *, size_t)
86{
87 errno = ENOSYS;
88 return -1;
89}
90
91static void *
92gold_mremap(void *, size_t, size_t, int)
93{
94 errno = ENOSYS;
95 return MAP_FAILED;
96}
97
98#endif
99
100#if defined(HAVE_MMAP) && !defined(HAVE_MREMAP)
101# define mremap gold_mremap
102extern "C" void *gold_mremap(void *, size_t, size_t, int);
103#endif
104
c420411f
ILT
105// Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
106#ifndef MAP_ANONYMOUS
107# define MAP_ANONYMOUS MAP_ANON
108#endif
109
88597d34
ILT
110#ifndef MREMAP_MAYMOVE
111# define MREMAP_MAYMOVE 1
112#endif
113
d0a9ace3
ILT
114// Mingw does not have S_ISLNK.
115#ifndef S_ISLNK
116# define S_ISLNK(mode) 0
117#endif
118
a2fb1b05
ILT
119namespace gold
120{
121
7c0640fa
CC
122// A wrapper around posix_fallocate. If we don't have posix_fallocate,
123// or the --no-posix-fallocate option is set, we try the fallocate
124// system call directly. If that fails, we use ftruncate to set
125// the file size and hope that there is enough disk space.
126
127static int
128gold_fallocate(int o, off_t offset, off_t len)
129{
130#ifdef HAVE_POSIX_FALLOCATE
131 if (parameters->options().posix_fallocate())
132 return ::posix_fallocate(o, offset, len);
133#endif // defined(HAVE_POSIX_FALLOCATE)
134#ifdef HAVE_FALLOCATE
135 if (::fallocate(o, 0, offset, len) == 0)
136 return 0;
137#endif // defined(HAVE_FALLOCATE)
138 if (::ftruncate(o, offset + len) < 0)
139 return errno;
140 return 0;
141}
142
a3ad94ed
ILT
143// Output_data variables.
144
27bc2bce 145bool Output_data::allocated_sizes_are_fixed;
a3ad94ed 146
a2fb1b05
ILT
147// Output_data methods.
148
149Output_data::~Output_data()
150{
151}
152
730cdc88
ILT
153// Return the default alignment for the target size.
154
155uint64_t
156Output_data::default_alignment()
157{
8851ecca
ILT
158 return Output_data::default_alignment_for_size(
159 parameters->target().get_size());
730cdc88
ILT
160}
161
75f65a3e
ILT
162// Return the default alignment for a size--32 or 64.
163
164uint64_t
730cdc88 165Output_data::default_alignment_for_size(int size)
75f65a3e
ILT
166{
167 if (size == 32)
168 return 4;
169 else if (size == 64)
170 return 8;
171 else
a3ad94ed 172 gold_unreachable();
75f65a3e
ILT
173}
174
75f65a3e
ILT
175// Output_section_header methods. This currently assumes that the
176// segment and section lists are complete at construction time.
177
178Output_section_headers::Output_section_headers(
16649710
ILT
179 const Layout* layout,
180 const Layout::Segment_list* segment_list,
6a74a719 181 const Layout::Section_list* section_list,
16649710 182 const Layout::Section_list* unattached_section_list,
d491d34e
ILT
183 const Stringpool* secnamepool,
184 const Output_section* shstrtab_section)
9025d29d 185 : layout_(layout),
75f65a3e 186 segment_list_(segment_list),
6a74a719 187 section_list_(section_list),
a3ad94ed 188 unattached_section_list_(unattached_section_list),
d491d34e
ILT
189 secnamepool_(secnamepool),
190 shstrtab_section_(shstrtab_section)
20e6d0d6
DK
191{
192}
193
194// Compute the current data size.
195
196off_t
197Output_section_headers::do_size() const
75f65a3e 198{
61ba1cf9
ILT
199 // Count all the sections. Start with 1 for the null section.
200 off_t count = 1;
8851ecca 201 if (!parameters->options().relocatable())
6a74a719 202 {
20e6d0d6
DK
203 for (Layout::Segment_list::const_iterator p =
204 this->segment_list_->begin();
205 p != this->segment_list_->end();
6a74a719
ILT
206 ++p)
207 if ((*p)->type() == elfcpp::PT_LOAD)
208 count += (*p)->output_section_count();
209 }
210 else
211 {
20e6d0d6
DK
212 for (Layout::Section_list::const_iterator p =
213 this->section_list_->begin();
214 p != this->section_list_->end();
6a74a719
ILT
215 ++p)
216 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
217 ++count;
218 }
20e6d0d6 219 count += this->unattached_section_list_->size();
75f65a3e 220
8851ecca 221 const int size = parameters->target().get_size();
75f65a3e
ILT
222 int shdr_size;
223 if (size == 32)
224 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
225 else if (size == 64)
226 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
227 else
a3ad94ed 228 gold_unreachable();
75f65a3e 229
20e6d0d6 230 return count * shdr_size;
75f65a3e
ILT
231}
232
61ba1cf9
ILT
233// Write out the section headers.
234
75f65a3e 235void
61ba1cf9 236Output_section_headers::do_write(Output_file* of)
a2fb1b05 237{
8851ecca 238 switch (parameters->size_and_endianness())
61ba1cf9 239 {
9025d29d 240#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
241 case Parameters::TARGET_32_LITTLE:
242 this->do_sized_write<32, false>(of);
243 break;
9025d29d 244#endif
8851ecca
ILT
245#ifdef HAVE_TARGET_32_BIG
246 case Parameters::TARGET_32_BIG:
247 this->do_sized_write<32, true>(of);
248 break;
9025d29d 249#endif
9025d29d 250#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
251 case Parameters::TARGET_64_LITTLE:
252 this->do_sized_write<64, false>(of);
253 break;
9025d29d 254#endif
8851ecca
ILT
255#ifdef HAVE_TARGET_64_BIG
256 case Parameters::TARGET_64_BIG:
257 this->do_sized_write<64, true>(of);
258 break;
259#endif
260 default:
261 gold_unreachable();
61ba1cf9 262 }
61ba1cf9
ILT
263}
264
265template<int size, bool big_endian>
266void
267Output_section_headers::do_sized_write(Output_file* of)
268{
269 off_t all_shdrs_size = this->data_size();
270 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
271
272 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
273 unsigned char* v = view;
274
275 {
276 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
277 oshdr.put_sh_name(0);
278 oshdr.put_sh_type(elfcpp::SHT_NULL);
279 oshdr.put_sh_flags(0);
280 oshdr.put_sh_addr(0);
281 oshdr.put_sh_offset(0);
d491d34e
ILT
282
283 size_t section_count = (this->data_size()
284 / elfcpp::Elf_sizes<size>::shdr_size);
285 if (section_count < elfcpp::SHN_LORESERVE)
286 oshdr.put_sh_size(0);
287 else
288 oshdr.put_sh_size(section_count);
289
290 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
291 if (shstrndx < elfcpp::SHN_LORESERVE)
292 oshdr.put_sh_link(0);
293 else
294 oshdr.put_sh_link(shstrndx);
295
5696ab0b
ILT
296 size_t segment_count = this->segment_list_->size();
297 oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
298
61ba1cf9
ILT
299 oshdr.put_sh_addralign(0);
300 oshdr.put_sh_entsize(0);
301 }
302
303 v += shdr_size;
304
6a74a719 305 unsigned int shndx = 1;
8851ecca 306 if (!parameters->options().relocatable())
6a74a719
ILT
307 {
308 for (Layout::Segment_list::const_iterator p =
309 this->segment_list_->begin();
310 p != this->segment_list_->end();
311 ++p)
312 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
313 this->secnamepool_,
314 v,
315 &shndx);
316 }
317 else
318 {
319 for (Layout::Section_list::const_iterator p =
320 this->section_list_->begin();
321 p != this->section_list_->end();
322 ++p)
323 {
324 // We do unallocated sections below, except that group
325 // sections have to come first.
326 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
327 && (*p)->type() != elfcpp::SHT_GROUP)
328 continue;
329 gold_assert(shndx == (*p)->out_shndx());
330 elfcpp::Shdr_write<size, big_endian> oshdr(v);
331 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
332 v += shdr_size;
333 ++shndx;
334 }
335 }
336
a3ad94ed 337 for (Layout::Section_list::const_iterator p =
16649710
ILT
338 this->unattached_section_list_->begin();
339 p != this->unattached_section_list_->end();
61ba1cf9
ILT
340 ++p)
341 {
6a74a719
ILT
342 // For a relocatable link, we did unallocated group sections
343 // above, since they have to come first.
344 if ((*p)->type() == elfcpp::SHT_GROUP
8851ecca 345 && parameters->options().relocatable())
6a74a719 346 continue;
a3ad94ed 347 gold_assert(shndx == (*p)->out_shndx());
61ba1cf9 348 elfcpp::Shdr_write<size, big_endian> oshdr(v);
16649710 349 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
61ba1cf9 350 v += shdr_size;
ead1e424 351 ++shndx;
61ba1cf9
ILT
352 }
353
354 of->write_output_view(this->offset(), all_shdrs_size, view);
a2fb1b05
ILT
355}
356
54dc6425
ILT
357// Output_segment_header methods.
358
61ba1cf9 359Output_segment_headers::Output_segment_headers(
61ba1cf9 360 const Layout::Segment_list& segment_list)
9025d29d 361 : segment_list_(segment_list)
61ba1cf9 362{
cdc29364 363 this->set_current_data_size_for_child(this->do_size());
61ba1cf9
ILT
364}
365
54dc6425 366void
61ba1cf9 367Output_segment_headers::do_write(Output_file* of)
75f65a3e 368{
8851ecca 369 switch (parameters->size_and_endianness())
61ba1cf9 370 {
9025d29d 371#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
372 case Parameters::TARGET_32_LITTLE:
373 this->do_sized_write<32, false>(of);
374 break;
9025d29d 375#endif
8851ecca
ILT
376#ifdef HAVE_TARGET_32_BIG
377 case Parameters::TARGET_32_BIG:
378 this->do_sized_write<32, true>(of);
379 break;
9025d29d 380#endif
9025d29d 381#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
382 case Parameters::TARGET_64_LITTLE:
383 this->do_sized_write<64, false>(of);
384 break;
9025d29d 385#endif
8851ecca
ILT
386#ifdef HAVE_TARGET_64_BIG
387 case Parameters::TARGET_64_BIG:
388 this->do_sized_write<64, true>(of);
389 break;
390#endif
391 default:
392 gold_unreachable();
61ba1cf9 393 }
61ba1cf9
ILT
394}
395
396template<int size, bool big_endian>
397void
398Output_segment_headers::do_sized_write(Output_file* of)
399{
400 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
401 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
a445fddf 402 gold_assert(all_phdrs_size == this->data_size());
61ba1cf9
ILT
403 unsigned char* view = of->get_output_view(this->offset(),
404 all_phdrs_size);
405 unsigned char* v = view;
406 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
407 p != this->segment_list_.end();
408 ++p)
409 {
410 elfcpp::Phdr_write<size, big_endian> ophdr(v);
411 (*p)->write_header(&ophdr);
412 v += phdr_size;
413 }
414
a445fddf
ILT
415 gold_assert(v - view == all_phdrs_size);
416
61ba1cf9 417 of->write_output_view(this->offset(), all_phdrs_size, view);
75f65a3e
ILT
418}
419
20e6d0d6
DK
420off_t
421Output_segment_headers::do_size() const
422{
423 const int size = parameters->target().get_size();
424 int phdr_size;
425 if (size == 32)
426 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
427 else if (size == 64)
428 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
429 else
430 gold_unreachable();
431
432 return this->segment_list_.size() * phdr_size;
433}
434
75f65a3e
ILT
435// Output_file_header methods.
436
9025d29d 437Output_file_header::Output_file_header(const Target* target,
75f65a3e 438 const Symbol_table* symtab,
a10ae760 439 const Output_segment_headers* osh)
9025d29d 440 : target_(target),
75f65a3e 441 symtab_(symtab),
61ba1cf9 442 segment_header_(osh),
75f65a3e 443 section_header_(NULL),
a10ae760 444 shstrtab_(NULL)
75f65a3e 445{
20e6d0d6 446 this->set_data_size(this->do_size());
75f65a3e
ILT
447}
448
449// Set the section table information for a file header.
450
451void
452Output_file_header::set_section_info(const Output_section_headers* shdrs,
453 const Output_section* shstrtab)
454{
455 this->section_header_ = shdrs;
456 this->shstrtab_ = shstrtab;
457}
458
459// Write out the file header.
460
461void
61ba1cf9 462Output_file_header::do_write(Output_file* of)
54dc6425 463{
27bc2bce
ILT
464 gold_assert(this->offset() == 0);
465
8851ecca 466 switch (parameters->size_and_endianness())
61ba1cf9 467 {
9025d29d 468#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
469 case Parameters::TARGET_32_LITTLE:
470 this->do_sized_write<32, false>(of);
471 break;
9025d29d 472#endif
8851ecca
ILT
473#ifdef HAVE_TARGET_32_BIG
474 case Parameters::TARGET_32_BIG:
475 this->do_sized_write<32, true>(of);
476 break;
9025d29d 477#endif
9025d29d 478#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
479 case Parameters::TARGET_64_LITTLE:
480 this->do_sized_write<64, false>(of);
481 break;
9025d29d 482#endif
8851ecca
ILT
483#ifdef HAVE_TARGET_64_BIG
484 case Parameters::TARGET_64_BIG:
485 this->do_sized_write<64, true>(of);
486 break;
487#endif
488 default:
489 gold_unreachable();
61ba1cf9 490 }
61ba1cf9
ILT
491}
492
cc643b88 493// Write out the file header with appropriate size and endianness.
61ba1cf9
ILT
494
495template<int size, bool big_endian>
496void
497Output_file_header::do_sized_write(Output_file* of)
498{
a3ad94ed 499 gold_assert(this->offset() == 0);
61ba1cf9
ILT
500
501 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
502 unsigned char* view = of->get_output_view(0, ehdr_size);
503 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
504
505 unsigned char e_ident[elfcpp::EI_NIDENT];
506 memset(e_ident, 0, elfcpp::EI_NIDENT);
507 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
508 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
509 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
510 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
511 if (size == 32)
512 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
513 else if (size == 64)
514 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
515 else
a3ad94ed 516 gold_unreachable();
61ba1cf9
ILT
517 e_ident[elfcpp::EI_DATA] = (big_endian
518 ? elfcpp::ELFDATA2MSB
519 : elfcpp::ELFDATA2LSB);
520 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
61ba1cf9
ILT
521 oehdr.put_e_ident(e_ident);
522
523 elfcpp::ET e_type;
8851ecca 524 if (parameters->options().relocatable())
61ba1cf9 525 e_type = elfcpp::ET_REL;
374ad285 526 else if (parameters->options().output_is_position_independent())
436ca963 527 e_type = elfcpp::ET_DYN;
61ba1cf9
ILT
528 else
529 e_type = elfcpp::ET_EXEC;
530 oehdr.put_e_type(e_type);
531
532 oehdr.put_e_machine(this->target_->machine_code());
533 oehdr.put_e_version(elfcpp::EV_CURRENT);
534
d391083d 535 oehdr.put_e_entry(this->entry<size>());
61ba1cf9 536
6a74a719
ILT
537 if (this->segment_header_ == NULL)
538 oehdr.put_e_phoff(0);
539 else
540 oehdr.put_e_phoff(this->segment_header_->offset());
541
61ba1cf9 542 oehdr.put_e_shoff(this->section_header_->offset());
d5b40221 543 oehdr.put_e_flags(this->target_->processor_specific_flags());
61ba1cf9 544 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
6a74a719
ILT
545
546 if (this->segment_header_ == NULL)
547 {
548 oehdr.put_e_phentsize(0);
549 oehdr.put_e_phnum(0);
550 }
551 else
552 {
553 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
5696ab0b
ILT
554 size_t phnum = (this->segment_header_->data_size()
555 / elfcpp::Elf_sizes<size>::phdr_size);
556 if (phnum > elfcpp::PN_XNUM)
557 phnum = elfcpp::PN_XNUM;
558 oehdr.put_e_phnum(phnum);
6a74a719
ILT
559 }
560
61ba1cf9 561 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
d491d34e
ILT
562 size_t section_count = (this->section_header_->data_size()
563 / elfcpp::Elf_sizes<size>::shdr_size);
564
565 if (section_count < elfcpp::SHN_LORESERVE)
566 oehdr.put_e_shnum(this->section_header_->data_size()
567 / elfcpp::Elf_sizes<size>::shdr_size);
568 else
569 oehdr.put_e_shnum(0);
570
571 unsigned int shstrndx = this->shstrtab_->out_shndx();
572 if (shstrndx < elfcpp::SHN_LORESERVE)
573 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
574 else
575 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
61ba1cf9 576
36959681
ILT
577 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
578 // the e_ident field.
579 parameters->target().adjust_elf_header(view, ehdr_size);
580
61ba1cf9 581 of->write_output_view(0, ehdr_size, view);
54dc6425
ILT
582}
583
a10ae760 584// Return the value to use for the entry address.
d391083d
ILT
585
586template<int size>
587typename elfcpp::Elf_types<size>::Elf_Addr
588Output_file_header::entry()
589{
a10ae760 590 const bool should_issue_warning = (parameters->options().entry() != NULL
8851ecca
ILT
591 && !parameters->options().relocatable()
592 && !parameters->options().shared());
a10ae760 593 const char* entry = parameters->entry();
2ea97941 594 Symbol* sym = this->symtab_->lookup(entry);
d391083d
ILT
595
596 typename Sized_symbol<size>::Value_type v;
597 if (sym != NULL)
598 {
599 Sized_symbol<size>* ssym;
600 ssym = this->symtab_->get_sized_symbol<size>(sym);
601 if (!ssym->is_defined() && should_issue_warning)
2ea97941 602 gold_warning("entry symbol '%s' exists but is not defined", entry);
d391083d
ILT
603 v = ssym->value();
604 }
605 else
606 {
607 // We couldn't find the entry symbol. See if we can parse it as
608 // a number. This supports, e.g., -e 0x1000.
609 char* endptr;
2ea97941 610 v = strtoull(entry, &endptr, 0);
d391083d
ILT
611 if (*endptr != '\0')
612 {
613 if (should_issue_warning)
2ea97941 614 gold_warning("cannot find entry symbol '%s'", entry);
d391083d
ILT
615 v = 0;
616 }
617 }
618
619 return v;
620}
621
20e6d0d6
DK
622// Compute the current data size.
623
624off_t
625Output_file_header::do_size() const
626{
627 const int size = parameters->target().get_size();
628 if (size == 32)
629 return elfcpp::Elf_sizes<32>::ehdr_size;
630 else if (size == 64)
631 return elfcpp::Elf_sizes<64>::ehdr_size;
632 else
633 gold_unreachable();
634}
635
dbe717ef
ILT
636// Output_data_const methods.
637
638void
a3ad94ed 639Output_data_const::do_write(Output_file* of)
dbe717ef 640{
a3ad94ed
ILT
641 of->write(this->offset(), this->data_.data(), this->data_.size());
642}
643
644// Output_data_const_buffer methods.
645
646void
647Output_data_const_buffer::do_write(Output_file* of)
648{
649 of->write(this->offset(), this->p_, this->data_size());
dbe717ef
ILT
650}
651
652// Output_section_data methods.
653
16649710
ILT
654// Record the output section, and set the entry size and such.
655
656void
657Output_section_data::set_output_section(Output_section* os)
658{
659 gold_assert(this->output_section_ == NULL);
660 this->output_section_ = os;
661 this->do_adjust_output_section(os);
662}
663
664// Return the section index of the output section.
665
dbe717ef
ILT
666unsigned int
667Output_section_data::do_out_shndx() const
668{
a3ad94ed 669 gold_assert(this->output_section_ != NULL);
dbe717ef
ILT
670 return this->output_section_->out_shndx();
671}
672
759b1a24
ILT
673// Set the alignment, which means we may need to update the alignment
674// of the output section.
675
676void
2ea97941 677Output_section_data::set_addralign(uint64_t addralign)
759b1a24 678{
2ea97941 679 this->addralign_ = addralign;
759b1a24 680 if (this->output_section_ != NULL
2ea97941
ILT
681 && this->output_section_->addralign() < addralign)
682 this->output_section_->set_addralign(addralign);
759b1a24
ILT
683}
684
a3ad94ed
ILT
685// Output_data_strtab methods.
686
27bc2bce 687// Set the final data size.
a3ad94ed
ILT
688
689void
27bc2bce 690Output_data_strtab::set_final_data_size()
a3ad94ed
ILT
691{
692 this->strtab_->set_string_offsets();
693 this->set_data_size(this->strtab_->get_strtab_size());
694}
695
696// Write out a string table.
697
698void
699Output_data_strtab::do_write(Output_file* of)
700{
701 this->strtab_->write(of, this->offset());
702}
703
c06b7b0b
ILT
704// Output_reloc methods.
705
7bf1f802
ILT
706// A reloc against a global symbol.
707
708template<bool dynamic, int size, bool big_endian>
709Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
710 Symbol* gsym,
711 unsigned int type,
712 Output_data* od,
e8c846c3 713 Address address,
0da6fa6c 714 bool is_relative,
13cf9988
DM
715 bool is_symbolless,
716 bool use_plt_offset)
7bf1f802 717 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
0da6fa6c 718 is_relative_(is_relative), is_symbolless_(is_symbolless),
13cf9988 719 is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(INVALID_CODE)
7bf1f802 720{
dceae3c1
ILT
721 // this->type_ is a bitfield; make sure TYPE fits.
722 gold_assert(this->type_ == type);
7bf1f802
ILT
723 this->u1_.gsym = gsym;
724 this->u2_.od = od;
dceae3c1
ILT
725 if (dynamic)
726 this->set_needs_dynsym_index();
7bf1f802
ILT
727}
728
729template<bool dynamic, int size, bool big_endian>
730Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
731 Symbol* gsym,
732 unsigned int type,
ef9beddf 733 Sized_relobj<size, big_endian>* relobj,
7bf1f802 734 unsigned int shndx,
e8c846c3 735 Address address,
0da6fa6c 736 bool is_relative,
13cf9988
DM
737 bool is_symbolless,
738 bool use_plt_offset)
7bf1f802 739 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
0da6fa6c 740 is_relative_(is_relative), is_symbolless_(is_symbolless),
13cf9988 741 is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(shndx)
7bf1f802
ILT
742{
743 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
744 // this->type_ is a bitfield; make sure TYPE fits.
745 gold_assert(this->type_ == type);
7bf1f802
ILT
746 this->u1_.gsym = gsym;
747 this->u2_.relobj = relobj;
dceae3c1
ILT
748 if (dynamic)
749 this->set_needs_dynsym_index();
7bf1f802
ILT
750}
751
752// A reloc against a local symbol.
753
754template<bool dynamic, int size, bool big_endian>
755Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
756 Sized_relobj<size, big_endian>* relobj,
757 unsigned int local_sym_index,
758 unsigned int type,
759 Output_data* od,
e8c846c3 760 Address address,
2ea97941 761 bool is_relative,
0da6fa6c 762 bool is_symbolless,
397b129b
CC
763 bool is_section_symbol,
764 bool use_plt_offset)
7bf1f802 765 : address_(address), local_sym_index_(local_sym_index), type_(type),
0da6fa6c 766 is_relative_(is_relative), is_symbolless_(is_symbolless),
397b129b
CC
767 is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
768 shndx_(INVALID_CODE)
7bf1f802
ILT
769{
770 gold_assert(local_sym_index != GSYM_CODE
771 && local_sym_index != INVALID_CODE);
dceae3c1
ILT
772 // this->type_ is a bitfield; make sure TYPE fits.
773 gold_assert(this->type_ == type);
7bf1f802
ILT
774 this->u1_.relobj = relobj;
775 this->u2_.od = od;
dceae3c1
ILT
776 if (dynamic)
777 this->set_needs_dynsym_index();
7bf1f802
ILT
778}
779
780template<bool dynamic, int size, bool big_endian>
781Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
782 Sized_relobj<size, big_endian>* relobj,
783 unsigned int local_sym_index,
784 unsigned int type,
785 unsigned int shndx,
e8c846c3 786 Address address,
2ea97941 787 bool is_relative,
0da6fa6c 788 bool is_symbolless,
397b129b
CC
789 bool is_section_symbol,
790 bool use_plt_offset)
7bf1f802 791 : address_(address), local_sym_index_(local_sym_index), type_(type),
0da6fa6c 792 is_relative_(is_relative), is_symbolless_(is_symbolless),
397b129b
CC
793 is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
794 shndx_(shndx)
7bf1f802
ILT
795{
796 gold_assert(local_sym_index != GSYM_CODE
797 && local_sym_index != INVALID_CODE);
798 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
799 // this->type_ is a bitfield; make sure TYPE fits.
800 gold_assert(this->type_ == type);
7bf1f802
ILT
801 this->u1_.relobj = relobj;
802 this->u2_.relobj = relobj;
dceae3c1
ILT
803 if (dynamic)
804 this->set_needs_dynsym_index();
7bf1f802
ILT
805}
806
807// A reloc against the STT_SECTION symbol of an output section.
808
809template<bool dynamic, int size, bool big_endian>
810Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
811 Output_section* os,
812 unsigned int type,
813 Output_data* od,
814 Address address)
815 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
0da6fa6c 816 is_relative_(false), is_symbolless_(false),
397b129b 817 is_section_symbol_(true), use_plt_offset_(false), shndx_(INVALID_CODE)
7bf1f802 818{
dceae3c1
ILT
819 // this->type_ is a bitfield; make sure TYPE fits.
820 gold_assert(this->type_ == type);
7bf1f802
ILT
821 this->u1_.os = os;
822 this->u2_.od = od;
823 if (dynamic)
dceae3c1
ILT
824 this->set_needs_dynsym_index();
825 else
826 os->set_needs_symtab_index();
7bf1f802
ILT
827}
828
829template<bool dynamic, int size, bool big_endian>
830Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
831 Output_section* os,
832 unsigned int type,
ef9beddf 833 Sized_relobj<size, big_endian>* relobj,
7bf1f802
ILT
834 unsigned int shndx,
835 Address address)
836 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
0da6fa6c 837 is_relative_(false), is_symbolless_(false),
397b129b 838 is_section_symbol_(true), use_plt_offset_(false), shndx_(shndx)
7bf1f802
ILT
839{
840 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
841 // this->type_ is a bitfield; make sure TYPE fits.
842 gold_assert(this->type_ == type);
7bf1f802
ILT
843 this->u1_.os = os;
844 this->u2_.relobj = relobj;
845 if (dynamic)
dceae3c1
ILT
846 this->set_needs_dynsym_index();
847 else
848 os->set_needs_symtab_index();
849}
850
e291e7b9
ILT
851// An absolute relocation.
852
853template<bool dynamic, int size, bool big_endian>
854Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
855 unsigned int type,
856 Output_data* od,
857 Address address)
858 : address_(address), local_sym_index_(0), type_(type),
0da6fa6c 859 is_relative_(false), is_symbolless_(false),
397b129b 860 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
e291e7b9
ILT
861{
862 // this->type_ is a bitfield; make sure TYPE fits.
863 gold_assert(this->type_ == type);
864 this->u1_.relobj = NULL;
865 this->u2_.od = od;
866}
867
868template<bool dynamic, int size, bool big_endian>
869Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
870 unsigned int type,
871 Sized_relobj<size, big_endian>* relobj,
872 unsigned int shndx,
873 Address address)
874 : address_(address), local_sym_index_(0), type_(type),
0da6fa6c 875 is_relative_(false), is_symbolless_(false),
397b129b 876 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
e291e7b9
ILT
877{
878 gold_assert(shndx != INVALID_CODE);
879 // this->type_ is a bitfield; make sure TYPE fits.
880 gold_assert(this->type_ == type);
881 this->u1_.relobj = NULL;
882 this->u2_.relobj = relobj;
883}
884
885// A target specific relocation.
886
887template<bool dynamic, int size, bool big_endian>
888Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
889 unsigned int type,
890 void* arg,
891 Output_data* od,
892 Address address)
893 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
0da6fa6c 894 is_relative_(false), is_symbolless_(false),
397b129b 895 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
e291e7b9
ILT
896{
897 // this->type_ is a bitfield; make sure TYPE fits.
898 gold_assert(this->type_ == type);
899 this->u1_.arg = arg;
900 this->u2_.od = od;
901}
902
903template<bool dynamic, int size, bool big_endian>
904Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
905 unsigned int type,
906 void* arg,
907 Sized_relobj<size, big_endian>* relobj,
908 unsigned int shndx,
909 Address address)
910 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
0da6fa6c 911 is_relative_(false), is_symbolless_(false),
397b129b 912 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
e291e7b9
ILT
913{
914 gold_assert(shndx != INVALID_CODE);
915 // this->type_ is a bitfield; make sure TYPE fits.
916 gold_assert(this->type_ == type);
917 this->u1_.arg = arg;
918 this->u2_.relobj = relobj;
919}
920
dceae3c1
ILT
921// Record that we need a dynamic symbol index for this relocation.
922
923template<bool dynamic, int size, bool big_endian>
924void
925Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
926set_needs_dynsym_index()
927{
0da6fa6c 928 if (this->is_symbolless_)
dceae3c1
ILT
929 return;
930 switch (this->local_sym_index_)
931 {
932 case INVALID_CODE:
933 gold_unreachable();
934
935 case GSYM_CODE:
936 this->u1_.gsym->set_needs_dynsym_entry();
937 break;
938
939 case SECTION_CODE:
940 this->u1_.os->set_needs_dynsym_index();
941 break;
942
e291e7b9
ILT
943 case TARGET_CODE:
944 // The target must take care of this if necessary.
945 break;
946
dceae3c1
ILT
947 case 0:
948 break;
949
950 default:
951 {
952 const unsigned int lsi = this->local_sym_index_;
6fa2a40b
CC
953 Sized_relobj_file<size, big_endian>* relobj =
954 this->u1_.relobj->sized_relobj();
955 gold_assert(relobj != NULL);
dceae3c1 956 if (!this->is_section_symbol_)
6fa2a40b 957 relobj->set_needs_output_dynsym_entry(lsi);
dceae3c1 958 else
6fa2a40b 959 relobj->output_section(lsi)->set_needs_dynsym_index();
dceae3c1
ILT
960 }
961 break;
962 }
7bf1f802
ILT
963}
964
c06b7b0b
ILT
965// Get the symbol index of a relocation.
966
967template<bool dynamic, int size, bool big_endian>
968unsigned int
969Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
970 const
971{
972 unsigned int index;
0da6fa6c
DM
973 if (this->is_symbolless_)
974 return 0;
c06b7b0b
ILT
975 switch (this->local_sym_index_)
976 {
977 case INVALID_CODE:
a3ad94ed 978 gold_unreachable();
c06b7b0b
ILT
979
980 case GSYM_CODE:
5a6f7e2d 981 if (this->u1_.gsym == NULL)
c06b7b0b
ILT
982 index = 0;
983 else if (dynamic)
5a6f7e2d 984 index = this->u1_.gsym->dynsym_index();
c06b7b0b 985 else
5a6f7e2d 986 index = this->u1_.gsym->symtab_index();
c06b7b0b
ILT
987 break;
988
989 case SECTION_CODE:
990 if (dynamic)
5a6f7e2d 991 index = this->u1_.os->dynsym_index();
c06b7b0b 992 else
5a6f7e2d 993 index = this->u1_.os->symtab_index();
c06b7b0b
ILT
994 break;
995
e291e7b9
ILT
996 case TARGET_CODE:
997 index = parameters->target().reloc_symbol_index(this->u1_.arg,
998 this->type_);
999 break;
1000
436ca963
ILT
1001 case 0:
1002 // Relocations without symbols use a symbol index of 0.
1003 index = 0;
1004 break;
1005
c06b7b0b 1006 default:
dceae3c1
ILT
1007 {
1008 const unsigned int lsi = this->local_sym_index_;
6fa2a40b
CC
1009 Sized_relobj_file<size, big_endian>* relobj =
1010 this->u1_.relobj->sized_relobj();
1011 gold_assert(relobj != NULL);
dceae3c1
ILT
1012 if (!this->is_section_symbol_)
1013 {
1014 if (dynamic)
6fa2a40b 1015 index = relobj->dynsym_index(lsi);
dceae3c1 1016 else
6fa2a40b 1017 index = relobj->symtab_index(lsi);
dceae3c1
ILT
1018 }
1019 else
1020 {
6fa2a40b 1021 Output_section* os = relobj->output_section(lsi);
dceae3c1
ILT
1022 gold_assert(os != NULL);
1023 if (dynamic)
1024 index = os->dynsym_index();
1025 else
1026 index = os->symtab_index();
1027 }
1028 }
c06b7b0b
ILT
1029 break;
1030 }
a3ad94ed 1031 gold_assert(index != -1U);
c06b7b0b
ILT
1032 return index;
1033}
1034
624f8810
ILT
1035// For a local section symbol, get the address of the offset ADDEND
1036// within the input section.
dceae3c1
ILT
1037
1038template<bool dynamic, int size, bool big_endian>
ef9beddf 1039typename elfcpp::Elf_types<size>::Elf_Addr
dceae3c1 1040Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
624f8810 1041 local_section_offset(Addend addend) const
dceae3c1 1042{
624f8810
ILT
1043 gold_assert(this->local_sym_index_ != GSYM_CODE
1044 && this->local_sym_index_ != SECTION_CODE
e291e7b9 1045 && this->local_sym_index_ != TARGET_CODE
624f8810 1046 && this->local_sym_index_ != INVALID_CODE
e291e7b9 1047 && this->local_sym_index_ != 0
624f8810 1048 && this->is_section_symbol_);
dceae3c1 1049 const unsigned int lsi = this->local_sym_index_;
ef9beddf 1050 Output_section* os = this->u1_.relobj->output_section(lsi);
624f8810 1051 gold_assert(os != NULL);
ef9beddf 1052 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
eff45813 1053 if (offset != invalid_address)
624f8810
ILT
1054 return offset + addend;
1055 // This is a merge section.
6fa2a40b
CC
1056 Sized_relobj_file<size, big_endian>* relobj =
1057 this->u1_.relobj->sized_relobj();
1058 gold_assert(relobj != NULL);
1059 offset = os->output_address(relobj, lsi, addend);
eff45813 1060 gold_assert(offset != invalid_address);
dceae3c1
ILT
1061 return offset;
1062}
1063
d98bc257 1064// Get the output address of a relocation.
c06b7b0b
ILT
1065
1066template<bool dynamic, int size, bool big_endian>
a984ee1d 1067typename elfcpp::Elf_types<size>::Elf_Addr
d98bc257 1068Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
c06b7b0b 1069{
a3ad94ed 1070 Address address = this->address_;
5a6f7e2d
ILT
1071 if (this->shndx_ != INVALID_CODE)
1072 {
ef9beddf 1073 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
5a6f7e2d 1074 gold_assert(os != NULL);
ef9beddf 1075 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
eff45813 1076 if (off != invalid_address)
730cdc88
ILT
1077 address += os->address() + off;
1078 else
1079 {
6fa2a40b
CC
1080 Sized_relobj_file<size, big_endian>* relobj =
1081 this->u2_.relobj->sized_relobj();
1082 gold_assert(relobj != NULL);
1083 address = os->output_address(relobj, this->shndx_, address);
eff45813 1084 gold_assert(address != invalid_address);
730cdc88 1085 }
5a6f7e2d
ILT
1086 }
1087 else if (this->u2_.od != NULL)
1088 address += this->u2_.od->address();
d98bc257
ILT
1089 return address;
1090}
1091
1092// Write out the offset and info fields of a Rel or Rela relocation
1093// entry.
1094
1095template<bool dynamic, int size, bool big_endian>
1096template<typename Write_rel>
1097void
1098Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1099 Write_rel* wr) const
1100{
1101 wr->put_r_offset(this->get_address());
0da6fa6c 1102 unsigned int sym_index = this->get_symbol_index();
e8c846c3 1103 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
c06b7b0b
ILT
1104}
1105
1106// Write out a Rel relocation.
1107
1108template<bool dynamic, int size, bool big_endian>
1109void
1110Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1111 unsigned char* pov) const
1112{
1113 elfcpp::Rel_write<size, big_endian> orel(pov);
1114 this->write_rel(&orel);
1115}
1116
e8c846c3
ILT
1117// Get the value of the symbol referred to by a Rel relocation.
1118
1119template<bool dynamic, int size, bool big_endian>
1120typename elfcpp::Elf_types<size>::Elf_Addr
d1f003c6 1121Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
624f8810 1122 Addend addend) const
e8c846c3
ILT
1123{
1124 if (this->local_sym_index_ == GSYM_CODE)
1125 {
1126 const Sized_symbol<size>* sym;
1127 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
13cf9988
DM
1128 if (this->use_plt_offset_ && sym->has_plt_offset())
1129 {
1130 uint64_t plt_address =
1131 parameters->target().plt_address_for_global(sym);
1132 return plt_address + sym->plt_offset();
1133 }
1134 else
1135 return sym->value() + addend;
e8c846c3
ILT
1136 }
1137 gold_assert(this->local_sym_index_ != SECTION_CODE
e291e7b9 1138 && this->local_sym_index_ != TARGET_CODE
d1f003c6 1139 && this->local_sym_index_ != INVALID_CODE
e291e7b9 1140 && this->local_sym_index_ != 0
d1f003c6
ILT
1141 && !this->is_section_symbol_);
1142 const unsigned int lsi = this->local_sym_index_;
6fa2a40b
CC
1143 Sized_relobj_file<size, big_endian>* relobj =
1144 this->u1_.relobj->sized_relobj();
1145 gold_assert(relobj != NULL);
397b129b
CC
1146 if (this->use_plt_offset_)
1147 {
1148 uint64_t plt_address =
1149 parameters->target().plt_address_for_local(relobj, lsi);
1150 return plt_address + relobj->local_plt_offset(lsi);
1151 }
6fa2a40b
CC
1152 const Symbol_value<size>* symval = relobj->local_symbol(lsi);
1153 return symval->value(relobj, addend);
e8c846c3
ILT
1154}
1155
d98bc257
ILT
1156// Reloc comparison. This function sorts the dynamic relocs for the
1157// benefit of the dynamic linker. First we sort all relative relocs
1158// to the front. Among relative relocs, we sort by output address.
1159// Among non-relative relocs, we sort by symbol index, then by output
1160// address.
1161
1162template<bool dynamic, int size, bool big_endian>
1163int
1164Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1165 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1166 const
1167{
1168 if (this->is_relative_)
1169 {
1170 if (!r2.is_relative_)
1171 return -1;
1172 // Otherwise sort by reloc address below.
1173 }
1174 else if (r2.is_relative_)
1175 return 1;
1176 else
1177 {
1178 unsigned int sym1 = this->get_symbol_index();
1179 unsigned int sym2 = r2.get_symbol_index();
1180 if (sym1 < sym2)
1181 return -1;
1182 else if (sym1 > sym2)
1183 return 1;
1184 // Otherwise sort by reloc address.
1185 }
1186
1187 section_offset_type addr1 = this->get_address();
1188 section_offset_type addr2 = r2.get_address();
1189 if (addr1 < addr2)
1190 return -1;
1191 else if (addr1 > addr2)
1192 return 1;
1193
1194 // Final tie breaker, in order to generate the same output on any
1195 // host: reloc type.
1196 unsigned int type1 = this->type_;
1197 unsigned int type2 = r2.type_;
1198 if (type1 < type2)
1199 return -1;
1200 else if (type1 > type2)
1201 return 1;
1202
1203 // These relocs appear to be exactly the same.
1204 return 0;
1205}
1206
c06b7b0b
ILT
1207// Write out a Rela relocation.
1208
1209template<bool dynamic, int size, bool big_endian>
1210void
1211Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1212 unsigned char* pov) const
1213{
1214 elfcpp::Rela_write<size, big_endian> orel(pov);
1215 this->rel_.write_rel(&orel);
e8c846c3 1216 Addend addend = this->addend_;
e291e7b9
ILT
1217 if (this->rel_.is_target_specific())
1218 addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1219 this->rel_.type(), addend);
0da6fa6c 1220 else if (this->rel_.is_symbolless())
d1f003c6
ILT
1221 addend = this->rel_.symbol_value(addend);
1222 else if (this->rel_.is_local_section_symbol())
624f8810 1223 addend = this->rel_.local_section_offset(addend);
e8c846c3 1224 orel.put_r_addend(addend);
c06b7b0b
ILT
1225}
1226
1227// Output_data_reloc_base methods.
1228
16649710
ILT
1229// Adjust the output section.
1230
1231template<int sh_type, bool dynamic, int size, bool big_endian>
1232void
1233Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1234 ::do_adjust_output_section(Output_section* os)
1235{
1236 if (sh_type == elfcpp::SHT_REL)
1237 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1238 else if (sh_type == elfcpp::SHT_RELA)
1239 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1240 else
1241 gold_unreachable();
7223e9ca
ILT
1242
1243 // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
1244 // static link. The backends will generate a dynamic reloc section
1245 // to hold this. In that case we don't want to link to the dynsym
1246 // section, because there isn't one.
1247 if (!dynamic)
16649710 1248 os->set_should_link_to_symtab();
7223e9ca
ILT
1249 else if (parameters->doing_static_link())
1250 ;
1251 else
1252 os->set_should_link_to_dynsym();
16649710
ILT
1253}
1254
c06b7b0b
ILT
1255// Write out relocation data.
1256
1257template<int sh_type, bool dynamic, int size, bool big_endian>
1258void
1259Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1260 Output_file* of)
1261{
1262 const off_t off = this->offset();
1263 const off_t oview_size = this->data_size();
1264 unsigned char* const oview = of->get_output_view(off, oview_size);
1265
3a44184e 1266 if (this->sort_relocs())
d98bc257
ILT
1267 {
1268 gold_assert(dynamic);
1269 std::sort(this->relocs_.begin(), this->relocs_.end(),
1270 Sort_relocs_comparison());
1271 }
1272
c06b7b0b
ILT
1273 unsigned char* pov = oview;
1274 for (typename Relocs::const_iterator p = this->relocs_.begin();
1275 p != this->relocs_.end();
1276 ++p)
1277 {
1278 p->write(pov);
1279 pov += reloc_size;
1280 }
1281
a3ad94ed 1282 gold_assert(pov - oview == oview_size);
c06b7b0b
ILT
1283
1284 of->write_output_view(off, oview_size, oview);
1285
1286 // We no longer need the relocation entries.
1287 this->relocs_.clear();
1288}
1289
6a74a719
ILT
1290// Class Output_relocatable_relocs.
1291
1292template<int sh_type, int size, bool big_endian>
1293void
1294Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1295{
1296 this->set_data_size(this->rr_->output_reloc_count()
1297 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1298}
1299
1300// class Output_data_group.
1301
1302template<int size, bool big_endian>
1303Output_data_group<size, big_endian>::Output_data_group(
6fa2a40b 1304 Sized_relobj_file<size, big_endian>* relobj,
6a74a719 1305 section_size_type entry_count,
8825ac63
ILT
1306 elfcpp::Elf_Word flags,
1307 std::vector<unsigned int>* input_shndxes)
20e6d0d6 1308 : Output_section_data(entry_count * 4, 4, false),
8825ac63
ILT
1309 relobj_(relobj),
1310 flags_(flags)
6a74a719 1311{
8825ac63 1312 this->input_shndxes_.swap(*input_shndxes);
6a74a719
ILT
1313}
1314
1315// Write out the section group, which means translating the section
1316// indexes to apply to the output file.
1317
1318template<int size, bool big_endian>
1319void
1320Output_data_group<size, big_endian>::do_write(Output_file* of)
1321{
1322 const off_t off = this->offset();
1323 const section_size_type oview_size =
1324 convert_to_section_size_type(this->data_size());
1325 unsigned char* const oview = of->get_output_view(off, oview_size);
1326
1327 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1328 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1329 ++contents;
1330
1331 for (std::vector<unsigned int>::const_iterator p =
8825ac63
ILT
1332 this->input_shndxes_.begin();
1333 p != this->input_shndxes_.end();
6a74a719
ILT
1334 ++p, ++contents)
1335 {
ef9beddf 1336 Output_section* os = this->relobj_->output_section(*p);
6a74a719
ILT
1337
1338 unsigned int output_shndx;
1339 if (os != NULL)
1340 output_shndx = os->out_shndx();
1341 else
1342 {
1343 this->relobj_->error(_("section group retained but "
1344 "group element discarded"));
1345 output_shndx = 0;
1346 }
1347
1348 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1349 }
1350
1351 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1352 gold_assert(wrote == oview_size);
1353
1354 of->write_output_view(off, oview_size, oview);
1355
1356 // We no longer need this information.
8825ac63 1357 this->input_shndxes_.clear();
6a74a719
ILT
1358}
1359
dbe717ef 1360// Output_data_got::Got_entry methods.
ead1e424
ILT
1361
1362// Write out the entry.
1363
1364template<int size, bool big_endian>
1365void
7e1edb90 1366Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
ead1e424
ILT
1367{
1368 Valtype val = 0;
1369
1370 switch (this->local_sym_index_)
1371 {
1372 case GSYM_CODE:
1373 {
e8c846c3
ILT
1374 // If the symbol is resolved locally, we need to write out the
1375 // link-time value, which will be relocated dynamically by a
1376 // RELATIVE relocation.
ead1e424 1377 Symbol* gsym = this->u_.gsym;
7223e9ca 1378 if (this->use_plt_offset_ && gsym->has_plt_offset())
67181c72 1379 val = (parameters->target().plt_address_for_global(gsym)
7223e9ca
ILT
1380 + gsym->plt_offset());
1381 else
1382 {
1383 Sized_symbol<size>* sgsym;
1384 // This cast is a bit ugly. We don't want to put a
1385 // virtual method in Symbol, because we want Symbol to be
1386 // as small as possible.
1387 sgsym = static_cast<Sized_symbol<size>*>(gsym);
1388 val = sgsym->value();
1389 }
ead1e424
ILT
1390 }
1391 break;
1392
1393 case CONSTANT_CODE:
1394 val = this->u_.constant;
1395 break;
1396
4829d394
CC
1397 case RESERVED_CODE:
1398 // If we're doing an incremental update, don't touch this GOT entry.
1399 if (parameters->incremental_update())
1400 return;
1401 val = this->u_.constant;
1402 break;
1403
ead1e424 1404 default:
d1f003c6 1405 {
83896202 1406 const Relobj* object = this->u_.object;
d1f003c6 1407 const unsigned int lsi = this->local_sym_index_;
7223e9ca 1408 if (!this->use_plt_offset_)
83896202
ILT
1409 {
1410 uint64_t lval = object->local_symbol_value(lsi, 0);
1411 val = convert_types<Valtype, uint64_t>(lval);
1412 }
7223e9ca
ILT
1413 else
1414 {
67181c72
ILT
1415 uint64_t plt_address =
1416 parameters->target().plt_address_for_local(object, lsi);
1417 val = plt_address + object->local_plt_offset(lsi);
7223e9ca 1418 }
d1f003c6 1419 }
e727fa71 1420 break;
ead1e424
ILT
1421 }
1422
a3ad94ed 1423 elfcpp::Swap<size, big_endian>::writeval(pov, val);
ead1e424
ILT
1424}
1425
dbe717ef 1426// Output_data_got methods.
ead1e424 1427
dbe717ef
ILT
1428// Add an entry for a global symbol to the GOT. This returns true if
1429// this is a new GOT entry, false if the symbol already had a GOT
1430// entry.
1431
1432template<int size, bool big_endian>
1433bool
0a65a3a7
CC
1434Output_data_got<size, big_endian>::add_global(
1435 Symbol* gsym,
1436 unsigned int got_type)
ead1e424 1437{
0a65a3a7 1438 if (gsym->has_got_offset(got_type))
dbe717ef 1439 return false;
ead1e424 1440
4829d394
CC
1441 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, false));
1442 gsym->set_got_offset(got_type, got_offset);
7223e9ca
ILT
1443 return true;
1444}
1445
1446// Like add_global, but use the PLT offset.
1447
1448template<int size, bool big_endian>
1449bool
1450Output_data_got<size, big_endian>::add_global_plt(Symbol* gsym,
1451 unsigned int got_type)
1452{
1453 if (gsym->has_got_offset(got_type))
1454 return false;
1455
4829d394
CC
1456 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, true));
1457 gsym->set_got_offset(got_type, got_offset);
dbe717ef
ILT
1458 return true;
1459}
ead1e424 1460
7bf1f802
ILT
1461// Add an entry for a global symbol to the GOT, and add a dynamic
1462// relocation of type R_TYPE for the GOT entry.
7223e9ca 1463
7bf1f802
ILT
1464template<int size, bool big_endian>
1465void
1466Output_data_got<size, big_endian>::add_global_with_rel(
1467 Symbol* gsym,
0a65a3a7 1468 unsigned int got_type,
83896202 1469 Output_data_reloc_generic* rel_dyn,
7bf1f802
ILT
1470 unsigned int r_type)
1471{
0a65a3a7 1472 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1473 return;
1474
4829d394 1475 unsigned int got_offset = this->add_got_entry(Got_entry());
2ea97941 1476 gsym->set_got_offset(got_type, got_offset);
83896202 1477 rel_dyn->add_global_generic(gsym, r_type, this, got_offset, 0);
7bf1f802
ILT
1478}
1479
0a65a3a7
CC
1480// Add a pair of entries for a global symbol to the GOT, and add
1481// dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1482// If R_TYPE_2 == 0, add the second entry with no relocation.
7bf1f802
ILT
1483template<int size, bool big_endian>
1484void
0a65a3a7
CC
1485Output_data_got<size, big_endian>::add_global_pair_with_rel(
1486 Symbol* gsym,
1487 unsigned int got_type,
83896202 1488 Output_data_reloc_generic* rel_dyn,
0a65a3a7
CC
1489 unsigned int r_type_1,
1490 unsigned int r_type_2)
7bf1f802 1491{
0a65a3a7 1492 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1493 return;
1494
4829d394 1495 unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
2ea97941 1496 gsym->set_got_offset(got_type, got_offset);
83896202 1497 rel_dyn->add_global_generic(gsym, r_type_1, this, got_offset, 0);
0a65a3a7 1498
0a65a3a7 1499 if (r_type_2 != 0)
83896202
ILT
1500 rel_dyn->add_global_generic(gsym, r_type_2, this,
1501 got_offset + size / 8, 0);
7bf1f802
ILT
1502}
1503
0a65a3a7
CC
1504// Add an entry for a local symbol to the GOT. This returns true if
1505// this is a new GOT entry, false if the symbol already has a GOT
1506// entry.
07f397ab
ILT
1507
1508template<int size, bool big_endian>
1509bool
0a65a3a7 1510Output_data_got<size, big_endian>::add_local(
83896202 1511 Relobj* object,
0a65a3a7
CC
1512 unsigned int symndx,
1513 unsigned int got_type)
07f397ab 1514{
0a65a3a7 1515 if (object->local_has_got_offset(symndx, got_type))
07f397ab
ILT
1516 return false;
1517
4829d394
CC
1518 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1519 false));
1520 object->set_local_got_offset(symndx, got_type, got_offset);
7223e9ca
ILT
1521 return true;
1522}
1523
1524// Like add_local, but use the PLT offset.
1525
1526template<int size, bool big_endian>
1527bool
1528Output_data_got<size, big_endian>::add_local_plt(
83896202 1529 Relobj* object,
7223e9ca
ILT
1530 unsigned int symndx,
1531 unsigned int got_type)
1532{
1533 if (object->local_has_got_offset(symndx, got_type))
1534 return false;
1535
4829d394
CC
1536 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1537 true));
1538 object->set_local_got_offset(symndx, got_type, got_offset);
07f397ab
ILT
1539 return true;
1540}
1541
0a65a3a7
CC
1542// Add an entry for a local symbol to the GOT, and add a dynamic
1543// relocation of type R_TYPE for the GOT entry.
7223e9ca 1544
7bf1f802
ILT
1545template<int size, bool big_endian>
1546void
0a65a3a7 1547Output_data_got<size, big_endian>::add_local_with_rel(
83896202 1548 Relobj* object,
0a65a3a7
CC
1549 unsigned int symndx,
1550 unsigned int got_type,
83896202 1551 Output_data_reloc_generic* rel_dyn,
7bf1f802
ILT
1552 unsigned int r_type)
1553{
0a65a3a7 1554 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1555 return;
1556
4829d394 1557 unsigned int got_offset = this->add_got_entry(Got_entry());
2ea97941 1558 object->set_local_got_offset(symndx, got_type, got_offset);
83896202 1559 rel_dyn->add_local_generic(object, symndx, r_type, this, got_offset, 0);
07f397ab
ILT
1560}
1561
0a65a3a7
CC
1562// Add a pair of entries for a local symbol to the GOT, and add
1563// dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1564// If R_TYPE_2 == 0, add the second entry with no relocation.
7bf1f802
ILT
1565template<int size, bool big_endian>
1566void
0a65a3a7 1567Output_data_got<size, big_endian>::add_local_pair_with_rel(
83896202 1568 Relobj* object,
7bf1f802
ILT
1569 unsigned int symndx,
1570 unsigned int shndx,
0a65a3a7 1571 unsigned int got_type,
83896202 1572 Output_data_reloc_generic* rel_dyn,
0a65a3a7
CC
1573 unsigned int r_type_1,
1574 unsigned int r_type_2)
7bf1f802 1575{
0a65a3a7 1576 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1577 return;
1578
4829d394
CC
1579 unsigned int got_offset =
1580 this->add_got_entry_pair(Got_entry(),
1581 Got_entry(object, symndx, false));
2ea97941 1582 object->set_local_got_offset(symndx, got_type, got_offset);
ef9beddf 1583 Output_section* os = object->output_section(shndx);
83896202 1584 rel_dyn->add_output_section_generic(os, r_type_1, this, got_offset, 0);
7bf1f802 1585
0a65a3a7 1586 if (r_type_2 != 0)
83896202
ILT
1587 rel_dyn->add_output_section_generic(os, r_type_2, this,
1588 got_offset + size / 8, 0);
4829d394
CC
1589}
1590
1591// Reserve a slot in the GOT for a local symbol or the second slot of a pair.
1592
1593template<int size, bool big_endian>
1594void
6fa2a40b
CC
1595Output_data_got<size, big_endian>::reserve_local(
1596 unsigned int i,
83896202 1597 Relobj* object,
6fa2a40b
CC
1598 unsigned int sym_index,
1599 unsigned int got_type)
4829d394 1600{
dd74ae06 1601 this->do_reserve_slot(i);
6fa2a40b 1602 object->set_local_got_offset(sym_index, got_type, this->got_offset(i));
4829d394 1603}
7bf1f802 1604
4829d394
CC
1605// Reserve a slot in the GOT for a global symbol.
1606
1607template<int size, bool big_endian>
1608void
6fa2a40b 1609Output_data_got<size, big_endian>::reserve_global(
4829d394
CC
1610 unsigned int i,
1611 Symbol* gsym,
1612 unsigned int got_type)
1613{
dd74ae06 1614 this->do_reserve_slot(i);
4829d394 1615 gsym->set_got_offset(got_type, this->got_offset(i));
7bf1f802
ILT
1616}
1617
ead1e424
ILT
1618// Write out the GOT.
1619
1620template<int size, bool big_endian>
1621void
dbe717ef 1622Output_data_got<size, big_endian>::do_write(Output_file* of)
ead1e424
ILT
1623{
1624 const int add = size / 8;
1625
1626 const off_t off = this->offset();
c06b7b0b 1627 const off_t oview_size = this->data_size();
ead1e424
ILT
1628 unsigned char* const oview = of->get_output_view(off, oview_size);
1629
1630 unsigned char* pov = oview;
1631 for (typename Got_entries::const_iterator p = this->entries_.begin();
1632 p != this->entries_.end();
1633 ++p)
1634 {
7e1edb90 1635 p->write(pov);
ead1e424
ILT
1636 pov += add;
1637 }
1638
a3ad94ed 1639 gold_assert(pov - oview == oview_size);
c06b7b0b 1640
ead1e424
ILT
1641 of->write_output_view(off, oview_size, oview);
1642
1643 // We no longer need the GOT entries.
1644 this->entries_.clear();
1645}
1646
4829d394
CC
1647// Create a new GOT entry and return its offset.
1648
1649template<int size, bool big_endian>
1650unsigned int
1651Output_data_got<size, big_endian>::add_got_entry(Got_entry got_entry)
1652{
1653 if (!this->is_data_size_valid())
1654 {
1655 this->entries_.push_back(got_entry);
1656 this->set_got_size();
1657 return this->last_got_offset();
1658 }
1659 else
1660 {
1661 // For an incremental update, find an available slot.
1662 off_t got_offset = this->free_list_.allocate(size / 8, size / 8, 0);
1663 if (got_offset == -1)
e6455dfb
CC
1664 gold_fallback(_("out of patch space (GOT);"
1665 " relink with --incremental-full"));
4829d394
CC
1666 unsigned int got_index = got_offset / (size / 8);
1667 gold_assert(got_index < this->entries_.size());
1668 this->entries_[got_index] = got_entry;
1669 return static_cast<unsigned int>(got_offset);
1670 }
1671}
1672
1673// Create a pair of new GOT entries and return the offset of the first.
1674
1675template<int size, bool big_endian>
1676unsigned int
1677Output_data_got<size, big_endian>::add_got_entry_pair(Got_entry got_entry_1,
1678 Got_entry got_entry_2)
1679{
1680 if (!this->is_data_size_valid())
1681 {
1682 unsigned int got_offset;
1683 this->entries_.push_back(got_entry_1);
1684 got_offset = this->last_got_offset();
1685 this->entries_.push_back(got_entry_2);
1686 this->set_got_size();
1687 return got_offset;
1688 }
1689 else
1690 {
1691 // For an incremental update, find an available pair of slots.
1692 off_t got_offset = this->free_list_.allocate(2 * size / 8, size / 8, 0);
1693 if (got_offset == -1)
e6455dfb
CC
1694 gold_fallback(_("out of patch space (GOT);"
1695 " relink with --incremental-full"));
4829d394
CC
1696 unsigned int got_index = got_offset / (size / 8);
1697 gold_assert(got_index < this->entries_.size());
1698 this->entries_[got_index] = got_entry_1;
1699 this->entries_[got_index + 1] = got_entry_2;
1700 return static_cast<unsigned int>(got_offset);
1701 }
1702}
1703
cf43a2fe
AM
1704// Replace GOT entry I with a new value.
1705
1706template<int size, bool big_endian>
1707void
1708Output_data_got<size, big_endian>::replace_got_entry(
1709 unsigned int i,
1710 Got_entry got_entry)
1711{
1712 gold_assert(i < this->entries_.size());
1713 this->entries_[i] = got_entry;
1714}
1715
a3ad94ed
ILT
1716// Output_data_dynamic::Dynamic_entry methods.
1717
1718// Write out the entry.
1719
1720template<int size, bool big_endian>
1721void
1722Output_data_dynamic::Dynamic_entry::write(
1723 unsigned char* pov,
7d1a9ebb 1724 const Stringpool* pool) const
a3ad94ed
ILT
1725{
1726 typename elfcpp::Elf_types<size>::Elf_WXword val;
c2b45e22 1727 switch (this->offset_)
a3ad94ed
ILT
1728 {
1729 case DYNAMIC_NUMBER:
1730 val = this->u_.val;
1731 break;
1732
a3ad94ed 1733 case DYNAMIC_SECTION_SIZE:
16649710 1734 val = this->u_.od->data_size();
612a8d3d
DM
1735 if (this->od2 != NULL)
1736 val += this->od2->data_size();
a3ad94ed
ILT
1737 break;
1738
1739 case DYNAMIC_SYMBOL:
1740 {
16649710
ILT
1741 const Sized_symbol<size>* s =
1742 static_cast<const Sized_symbol<size>*>(this->u_.sym);
a3ad94ed
ILT
1743 val = s->value();
1744 }
1745 break;
1746
1747 case DYNAMIC_STRING:
1748 val = pool->get_offset(this->u_.str);
1749 break;
1750
1751 default:
c2b45e22
CC
1752 val = this->u_.od->address() + this->offset_;
1753 break;
a3ad94ed
ILT
1754 }
1755
1756 elfcpp::Dyn_write<size, big_endian> dw(pov);
1757 dw.put_d_tag(this->tag_);
1758 dw.put_d_val(val);
1759}
1760
1761// Output_data_dynamic methods.
1762
16649710
ILT
1763// Adjust the output section to set the entry size.
1764
1765void
1766Output_data_dynamic::do_adjust_output_section(Output_section* os)
1767{
8851ecca 1768 if (parameters->target().get_size() == 32)
16649710 1769 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
8851ecca 1770 else if (parameters->target().get_size() == 64)
16649710
ILT
1771 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1772 else
1773 gold_unreachable();
1774}
1775
a3ad94ed
ILT
1776// Set the final data size.
1777
1778void
27bc2bce 1779Output_data_dynamic::set_final_data_size()
a3ad94ed 1780{
20e6d0d6
DK
1781 // Add the terminating entry if it hasn't been added.
1782 // Because of relaxation, we can run this multiple times.
9e9e071b
ILT
1783 if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1784 {
1785 int extra = parameters->options().spare_dynamic_tags();
1786 for (int i = 0; i < extra; ++i)
1787 this->add_constant(elfcpp::DT_NULL, 0);
1788 this->add_constant(elfcpp::DT_NULL, 0);
1789 }
a3ad94ed
ILT
1790
1791 int dyn_size;
8851ecca 1792 if (parameters->target().get_size() == 32)
a3ad94ed 1793 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
8851ecca 1794 else if (parameters->target().get_size() == 64)
a3ad94ed
ILT
1795 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1796 else
1797 gold_unreachable();
1798 this->set_data_size(this->entries_.size() * dyn_size);
1799}
1800
1801// Write out the dynamic entries.
1802
1803void
1804Output_data_dynamic::do_write(Output_file* of)
1805{
8851ecca 1806 switch (parameters->size_and_endianness())
a3ad94ed 1807 {
9025d29d 1808#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
1809 case Parameters::TARGET_32_LITTLE:
1810 this->sized_write<32, false>(of);
1811 break;
9025d29d 1812#endif
8851ecca
ILT
1813#ifdef HAVE_TARGET_32_BIG
1814 case Parameters::TARGET_32_BIG:
1815 this->sized_write<32, true>(of);
1816 break;
9025d29d 1817#endif
9025d29d 1818#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
1819 case Parameters::TARGET_64_LITTLE:
1820 this->sized_write<64, false>(of);
1821 break;
9025d29d 1822#endif
8851ecca
ILT
1823#ifdef HAVE_TARGET_64_BIG
1824 case Parameters::TARGET_64_BIG:
1825 this->sized_write<64, true>(of);
1826 break;
1827#endif
1828 default:
1829 gold_unreachable();
a3ad94ed 1830 }
a3ad94ed
ILT
1831}
1832
1833template<int size, bool big_endian>
1834void
1835Output_data_dynamic::sized_write(Output_file* of)
1836{
1837 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1838
2ea97941 1839 const off_t offset = this->offset();
a3ad94ed 1840 const off_t oview_size = this->data_size();
2ea97941 1841 unsigned char* const oview = of->get_output_view(offset, oview_size);
a3ad94ed
ILT
1842
1843 unsigned char* pov = oview;
1844 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1845 p != this->entries_.end();
1846 ++p)
1847 {
7d1a9ebb 1848 p->write<size, big_endian>(pov, this->pool_);
a3ad94ed
ILT
1849 pov += dyn_size;
1850 }
1851
1852 gold_assert(pov - oview == oview_size);
1853
2ea97941 1854 of->write_output_view(offset, oview_size, oview);
a3ad94ed
ILT
1855
1856 // We no longer need the dynamic entries.
1857 this->entries_.clear();
1858}
1859
d491d34e
ILT
1860// Class Output_symtab_xindex.
1861
1862void
1863Output_symtab_xindex::do_write(Output_file* of)
1864{
2ea97941 1865 const off_t offset = this->offset();
d491d34e 1866 const off_t oview_size = this->data_size();
2ea97941 1867 unsigned char* const oview = of->get_output_view(offset, oview_size);
d491d34e
ILT
1868
1869 memset(oview, 0, oview_size);
1870
1871 if (parameters->target().is_big_endian())
1872 this->endian_do_write<true>(oview);
1873 else
1874 this->endian_do_write<false>(oview);
1875
2ea97941 1876 of->write_output_view(offset, oview_size, oview);
d491d34e
ILT
1877
1878 // We no longer need the data.
1879 this->entries_.clear();
1880}
1881
1882template<bool big_endian>
1883void
1884Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1885{
1886 for (Xindex_entries::const_iterator p = this->entries_.begin();
1887 p != this->entries_.end();
1888 ++p)
20e6d0d6
DK
1889 {
1890 unsigned int symndx = p->first;
1891 gold_assert(symndx * 4 < this->data_size());
1892 elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1893 }
d491d34e
ILT
1894}
1895
8ea8cd50
CC
1896// Output_fill_debug_info methods.
1897
1898// Return the minimum size needed for a dummy compilation unit header.
1899
1900size_t
1901Output_fill_debug_info::do_minimum_hole_size() const
1902{
1903 // Compile unit header fields: unit_length, version, debug_abbrev_offset,
1904 // address_size.
1905 const size_t len = 4 + 2 + 4 + 1;
1906 // For type units, add type_signature, type_offset.
1907 if (this->is_debug_types_)
1908 return len + 8 + 4;
1909 return len;
1910}
1911
1912// Write a dummy compilation unit header to fill a hole in the
1913// .debug_info or .debug_types section.
1914
1915void
1916Output_fill_debug_info::do_write(Output_file* of, off_t off, size_t len) const
1917{
66570254
CC
1918 gold_debug(DEBUG_INCREMENTAL, "fill_debug_info(%08lx, %08lx)",
1919 static_cast<long>(off), static_cast<long>(len));
8ea8cd50
CC
1920
1921 gold_assert(len >= this->do_minimum_hole_size());
1922
1923 unsigned char* const oview = of->get_output_view(off, len);
1924 unsigned char* pov = oview;
1925
1926 // Write header fields: unit_length, version, debug_abbrev_offset,
1927 // address_size.
1928 if (this->is_big_endian())
1929 {
24c6c55a
DM
1930 elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
1931 elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
1932 elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, 0);
8ea8cd50
CC
1933 }
1934 else
1935 {
24c6c55a
DM
1936 elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
1937 elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
1938 elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, 0);
8ea8cd50
CC
1939 }
1940 pov += 4 + 2 + 4;
1941 *pov++ = 4;
1942
1943 // For type units, the additional header fields -- type_signature,
1944 // type_offset -- can be filled with zeroes.
1945
1946 // Fill the remainder of the free space with zeroes. The first
1947 // zero should tell the consumer there are no DIEs to read in this
1948 // compilation unit.
1949 if (pov < oview + len)
1950 memset(pov, 0, oview + len - pov);
1951
1952 of->write_output_view(off, len, oview);
1953}
1954
1955// Output_fill_debug_line methods.
1956
1957// Return the minimum size needed for a dummy line number program header.
1958
1959size_t
1960Output_fill_debug_line::do_minimum_hole_size() const
1961{
1962 // Line number program header fields: unit_length, version, header_length,
1963 // minimum_instruction_length, default_is_stmt, line_base, line_range,
1964 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
1965 const size_t len = 4 + 2 + 4 + this->header_length;
1966 return len;
1967}
1968
1969// Write a dummy line number program header to fill a hole in the
1970// .debug_line section.
1971
1972void
1973Output_fill_debug_line::do_write(Output_file* of, off_t off, size_t len) const
1974{
66570254
CC
1975 gold_debug(DEBUG_INCREMENTAL, "fill_debug_line(%08lx, %08lx)",
1976 static_cast<long>(off), static_cast<long>(len));
8ea8cd50
CC
1977
1978 gold_assert(len >= this->do_minimum_hole_size());
1979
1980 unsigned char* const oview = of->get_output_view(off, len);
1981 unsigned char* pov = oview;
1982
1983 // Write header fields: unit_length, version, header_length,
1984 // minimum_instruction_length, default_is_stmt, line_base, line_range,
1985 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
1986 // We set the header_length field to cover the entire hole, so the
1987 // line number program is empty.
1988 if (this->is_big_endian())
1989 {
24c6c55a
DM
1990 elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
1991 elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
1992 elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, len - (4 + 2 + 4));
8ea8cd50
CC
1993 }
1994 else
1995 {
24c6c55a
DM
1996 elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
1997 elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
1998 elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, len - (4 + 2 + 4));
8ea8cd50
CC
1999 }
2000 pov += 4 + 2 + 4;
2001 *pov++ = 1; // minimum_instruction_length
2002 *pov++ = 0; // default_is_stmt
2003 *pov++ = 0; // line_base
2004 *pov++ = 5; // line_range
2005 *pov++ = 13; // opcode_base
2006 *pov++ = 0; // standard_opcode_lengths[1]
2007 *pov++ = 1; // standard_opcode_lengths[2]
2008 *pov++ = 1; // standard_opcode_lengths[3]
2009 *pov++ = 1; // standard_opcode_lengths[4]
2010 *pov++ = 1; // standard_opcode_lengths[5]
2011 *pov++ = 0; // standard_opcode_lengths[6]
2012 *pov++ = 0; // standard_opcode_lengths[7]
2013 *pov++ = 0; // standard_opcode_lengths[8]
2014 *pov++ = 1; // standard_opcode_lengths[9]
2015 *pov++ = 0; // standard_opcode_lengths[10]
2016 *pov++ = 0; // standard_opcode_lengths[11]
2017 *pov++ = 1; // standard_opcode_lengths[12]
2018 *pov++ = 0; // include_directories (empty)
2019 *pov++ = 0; // filenames (empty)
2020
2021 // Some consumers don't check the header_length field, and simply
2022 // start reading the line number program immediately following the
2023 // header. For those consumers, we fill the remainder of the free
2024 // space with DW_LNS_set_basic_block opcodes. These are effectively
2025 // no-ops: the resulting line table program will not create any rows.
2026 if (pov < oview + len)
2027 memset(pov, elfcpp::DW_LNS_set_basic_block, oview + len - pov);
2028
2029 of->write_output_view(off, len, oview);
2030}
2031
ead1e424
ILT
2032// Output_section::Input_section methods.
2033
cdc29364
CC
2034// Return the current data size. For an input section we store the size here.
2035// For an Output_section_data, we have to ask it for the size.
2036
2037off_t
2038Output_section::Input_section::current_data_size() const
2039{
2040 if (this->is_input_section())
2041 return this->u1_.data_size;
2042 else
2043 {
2044 this->u2_.posd->pre_finalize_data_size();
2045 return this->u2_.posd->current_data_size();
2046 }
2047}
2048
ead1e424
ILT
2049// Return the data size. For an input section we store the size here.
2050// For an Output_section_data, we have to ask it for the size.
2051
2052off_t
2053Output_section::Input_section::data_size() const
2054{
2055 if (this->is_input_section())
b8e6aad9 2056 return this->u1_.data_size;
ead1e424 2057 else
b8e6aad9 2058 return this->u2_.posd->data_size();
ead1e424
ILT
2059}
2060
0439c796
DK
2061// Return the object for an input section.
2062
2063Relobj*
2064Output_section::Input_section::relobj() const
2065{
2066 if (this->is_input_section())
2067 return this->u2_.object;
2068 else if (this->is_merge_section())
2069 {
2070 gold_assert(this->u2_.pomb->first_relobj() != NULL);
2071 return this->u2_.pomb->first_relobj();
2072 }
2073 else if (this->is_relaxed_input_section())
2074 return this->u2_.poris->relobj();
2075 else
2076 gold_unreachable();
2077}
2078
2079// Return the input section index for an input section.
2080
2081unsigned int
2082Output_section::Input_section::shndx() const
2083{
2084 if (this->is_input_section())
2085 return this->shndx_;
2086 else if (this->is_merge_section())
2087 {
2088 gold_assert(this->u2_.pomb->first_relobj() != NULL);
2089 return this->u2_.pomb->first_shndx();
2090 }
2091 else if (this->is_relaxed_input_section())
2092 return this->u2_.poris->shndx();
2093 else
2094 gold_unreachable();
2095}
2096
ead1e424
ILT
2097// Set the address and file offset.
2098
2099void
96803768
ILT
2100Output_section::Input_section::set_address_and_file_offset(
2101 uint64_t address,
2102 off_t file_offset,
2103 off_t section_file_offset)
ead1e424
ILT
2104{
2105 if (this->is_input_section())
96803768
ILT
2106 this->u2_.object->set_section_offset(this->shndx_,
2107 file_offset - section_file_offset);
ead1e424 2108 else
96803768
ILT
2109 this->u2_.posd->set_address_and_file_offset(address, file_offset);
2110}
2111
a445fddf
ILT
2112// Reset the address and file offset.
2113
2114void
2115Output_section::Input_section::reset_address_and_file_offset()
2116{
2117 if (!this->is_input_section())
2118 this->u2_.posd->reset_address_and_file_offset();
2119}
2120
96803768
ILT
2121// Finalize the data size.
2122
2123void
2124Output_section::Input_section::finalize_data_size()
2125{
2126 if (!this->is_input_section())
2127 this->u2_.posd->finalize_data_size();
b8e6aad9
ILT
2128}
2129
1e983657
ILT
2130// Try to turn an input offset into an output offset. We want to
2131// return the output offset relative to the start of this
2132// Input_section in the output section.
b8e6aad9 2133
8f00aeb8 2134inline bool
8383303e
ILT
2135Output_section::Input_section::output_offset(
2136 const Relobj* object,
2ea97941
ILT
2137 unsigned int shndx,
2138 section_offset_type offset,
ca09d69a 2139 section_offset_type* poutput) const
b8e6aad9
ILT
2140{
2141 if (!this->is_input_section())
2ea97941 2142 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
b8e6aad9
ILT
2143 else
2144 {
2ea97941 2145 if (this->shndx_ != shndx || this->u2_.object != object)
b8e6aad9 2146 return false;
2ea97941 2147 *poutput = offset;
b8e6aad9
ILT
2148 return true;
2149 }
ead1e424
ILT
2150}
2151
a9a60db6
ILT
2152// Return whether this is the merge section for the input section
2153// SHNDX in OBJECT.
2154
2155inline bool
2156Output_section::Input_section::is_merge_section_for(const Relobj* object,
2ea97941 2157 unsigned int shndx) const
a9a60db6
ILT
2158{
2159 if (this->is_input_section())
2160 return false;
2ea97941 2161 return this->u2_.posd->is_merge_section_for(object, shndx);
a9a60db6
ILT
2162}
2163
ead1e424
ILT
2164// Write out the data. We don't have to do anything for an input
2165// section--they are handled via Object::relocate--but this is where
2166// we write out the data for an Output_section_data.
2167
2168void
2169Output_section::Input_section::write(Output_file* of)
2170{
2171 if (!this->is_input_section())
b8e6aad9 2172 this->u2_.posd->write(of);
ead1e424
ILT
2173}
2174
96803768
ILT
2175// Write the data to a buffer. As for write(), we don't have to do
2176// anything for an input section.
2177
2178void
2179Output_section::Input_section::write_to_buffer(unsigned char* buffer)
2180{
2181 if (!this->is_input_section())
2182 this->u2_.posd->write_to_buffer(buffer);
2183}
2184
7d9e3d98
ILT
2185// Print to a map file.
2186
2187void
2188Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
2189{
2190 switch (this->shndx_)
2191 {
2192 case OUTPUT_SECTION_CODE:
2193 case MERGE_DATA_SECTION_CODE:
2194 case MERGE_STRING_SECTION_CODE:
2195 this->u2_.posd->print_to_mapfile(mapfile);
2196 break;
2197
20e6d0d6
DK
2198 case RELAXED_INPUT_SECTION_CODE:
2199 {
2200 Output_relaxed_input_section* relaxed_section =
2201 this->relaxed_input_section();
2202 mapfile->print_input_section(relaxed_section->relobj(),
2203 relaxed_section->shndx());
2204 }
2205 break;
7d9e3d98
ILT
2206 default:
2207 mapfile->print_input_section(this->u2_.object, this->shndx_);
2208 break;
2209 }
2210}
2211
a2fb1b05
ILT
2212// Output_section methods.
2213
2214// Construct an Output_section. NAME will point into a Stringpool.
2215
2ea97941
ILT
2216Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
2217 elfcpp::Elf_Xword flags)
2218 : name_(name),
a2fb1b05
ILT
2219 addralign_(0),
2220 entsize_(0),
a445fddf 2221 load_address_(0),
16649710 2222 link_section_(NULL),
a2fb1b05 2223 link_(0),
16649710 2224 info_section_(NULL),
6a74a719 2225 info_symndx_(NULL),
a2fb1b05 2226 info_(0),
2ea97941
ILT
2227 type_(type),
2228 flags_(flags),
22f0da72 2229 order_(ORDER_INVALID),
91ea499d 2230 out_shndx_(-1U),
c06b7b0b
ILT
2231 symtab_index_(0),
2232 dynsym_index_(0),
ead1e424
ILT
2233 input_sections_(),
2234 first_input_offset_(0),
c51e6221 2235 fills_(),
96803768 2236 postprocessing_buffer_(NULL),
a3ad94ed 2237 needs_symtab_index_(false),
16649710
ILT
2238 needs_dynsym_index_(false),
2239 should_link_to_symtab_(false),
730cdc88 2240 should_link_to_dynsym_(false),
27bc2bce 2241 after_input_sections_(false),
7bf1f802 2242 requires_postprocessing_(false),
a445fddf
ILT
2243 found_in_sections_clause_(false),
2244 has_load_address_(false),
755ab8af 2245 info_uses_section_index_(false),
6e9ba2ca 2246 input_section_order_specified_(false),
2fd32231
ILT
2247 may_sort_attached_input_sections_(false),
2248 must_sort_attached_input_sections_(false),
2249 attached_input_sections_are_sorted_(false),
9f1d377b 2250 is_relro_(false),
8a5e3e08
ILT
2251 is_small_section_(false),
2252 is_large_section_(false),
f5c870d2 2253 generate_code_fills_at_write_(false),
e8cd95c7 2254 is_entsize_zero_(false),
8923b24c 2255 section_offsets_need_adjustment_(false),
1e5d2fb1 2256 is_noload_(false),
131687b4 2257 always_keeps_input_sections_(false),
cdc29364 2258 has_fixed_layout_(false),
9fbd3822 2259 is_patch_space_allowed_(false),
20e6d0d6 2260 tls_offset_(0),
c0a62865 2261 checkpoint_(NULL),
cdc29364 2262 lookup_maps_(new Output_section_lookup_maps),
9fbd3822 2263 free_list_(),
8ea8cd50 2264 free_space_fill_(NULL),
9fbd3822 2265 patch_space_(0)
a2fb1b05 2266{
27bc2bce
ILT
2267 // An unallocated section has no address. Forcing this means that
2268 // we don't need special treatment for symbols defined in debug
2269 // sections.
2ea97941 2270 if ((flags & elfcpp::SHF_ALLOC) == 0)
27bc2bce 2271 this->set_address(0);
a2fb1b05
ILT
2272}
2273
54dc6425
ILT
2274Output_section::~Output_section()
2275{
20e6d0d6 2276 delete this->checkpoint_;
54dc6425
ILT
2277}
2278
16649710
ILT
2279// Set the entry size.
2280
2281void
2282Output_section::set_entsize(uint64_t v)
2283{
e8cd95c7
ILT
2284 if (this->is_entsize_zero_)
2285 ;
2286 else if (this->entsize_ == 0)
16649710 2287 this->entsize_ = v;
e8cd95c7
ILT
2288 else if (this->entsize_ != v)
2289 {
2290 this->entsize_ = 0;
2291 this->is_entsize_zero_ = 1;
2292 }
16649710
ILT
2293}
2294
ead1e424 2295// Add the input section SHNDX, with header SHDR, named SECNAME, in
730cdc88
ILT
2296// OBJECT, to the Output_section. RELOC_SHNDX is the index of a
2297// relocation section which applies to this section, or 0 if none, or
2298// -1U if more than one. Return the offset of the input section
2299// within the output section. Return -1 if the input section will
2300// receive special handling. In the normal case we don't always keep
2301// track of input sections for an Output_section. Instead, each
2302// Object keeps track of the Output_section for each of its input
a445fddf
ILT
2303// sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
2304// track of input sections here; this is used when SECTIONS appears in
2305// a linker script.
a2fb1b05
ILT
2306
2307template<int size, bool big_endian>
2308off_t
6e9ba2ca 2309Output_section::add_input_section(Layout* layout,
6fa2a40b 2310 Sized_relobj_file<size, big_endian>* object,
2ea97941 2311 unsigned int shndx,
ead1e424 2312 const char* secname,
730cdc88 2313 const elfcpp::Shdr<size, big_endian>& shdr,
a445fddf
ILT
2314 unsigned int reloc_shndx,
2315 bool have_sections_script)
a2fb1b05 2316{
2ea97941
ILT
2317 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2318 if ((addralign & (addralign - 1)) != 0)
a2fb1b05 2319 {
75f2446e 2320 object->error(_("invalid alignment %lu for section \"%s\""),
2ea97941
ILT
2321 static_cast<unsigned long>(addralign), secname);
2322 addralign = 1;
a2fb1b05 2323 }
a2fb1b05 2324
2ea97941
ILT
2325 if (addralign > this->addralign_)
2326 this->addralign_ = addralign;
a2fb1b05 2327
44a43cf9 2328 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2ea97941 2329 uint64_t entsize = shdr.get_sh_entsize();
44a43cf9
ILT
2330
2331 // .debug_str is a mergeable string section, but is not always so
2332 // marked by compilers. Mark manually here so we can optimize.
2333 if (strcmp(secname, ".debug_str") == 0)
4f833eee
ILT
2334 {
2335 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2ea97941 2336 entsize = 1;
4f833eee 2337 }
44a43cf9 2338
e8cd95c7
ILT
2339 this->update_flags_for_input_section(sh_flags);
2340 this->set_entsize(entsize);
2341
b8e6aad9 2342 // If this is a SHF_MERGE section, we pass all the input sections to
730cdc88 2343 // a Output_data_merge. We don't try to handle relocations for such
e0b64032
ILT
2344 // a section. We don't try to handle empty merge sections--they
2345 // mess up the mappings, and are useless anyhow.
cdc29364 2346 // FIXME: Need to handle merge sections during incremental update.
44a43cf9 2347 if ((sh_flags & elfcpp::SHF_MERGE) != 0
e0b64032 2348 && reloc_shndx == 0
cdc29364
CC
2349 && shdr.get_sh_size() > 0
2350 && !parameters->incremental())
b8e6aad9 2351 {
0439c796
DK
2352 // Keep information about merged input sections for rebuilding fast
2353 // lookup maps if we have sections-script or we do relaxation.
131687b4
DK
2354 bool keeps_input_sections = (this->always_keeps_input_sections_
2355 || have_sections_script
2356 || parameters->target().may_relax());
2357
0439c796
DK
2358 if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2359 addralign, keeps_input_sections))
b8e6aad9
ILT
2360 {
2361 // Tell the relocation routines that they need to call the
730cdc88 2362 // output_offset method to determine the final address.
b8e6aad9
ILT
2363 return -1;
2364 }
2365 }
2366
cdc29364
CC
2367 section_size_type input_section_size = shdr.get_sh_size();
2368 section_size_type uncompressed_size;
2369 if (object->section_is_compressed(shndx, &uncompressed_size))
2370 input_section_size = uncompressed_size;
2371
2372 off_t offset_in_section;
2373 off_t aligned_offset_in_section;
2374 if (this->has_fixed_layout())
2375 {
2376 // For incremental updates, find a chunk of unused space in the section.
2377 offset_in_section = this->free_list_.allocate(input_section_size,
2378 addralign, 0);
2379 if (offset_in_section == -1)
9fbd3822
CC
2380 gold_fallback(_("out of patch space in section %s; "
2381 "relink with --incremental-full"),
2382 this->name());
cdc29364
CC
2383 aligned_offset_in_section = offset_in_section;
2384 }
2385 else
2386 {
2387 offset_in_section = this->current_data_size_for_child();
2388 aligned_offset_in_section = align_address(offset_in_section,
2389 addralign);
2390 this->set_current_data_size_for_child(aligned_offset_in_section
2391 + input_section_size);
2392 }
c51e6221 2393
c0a62865
DK
2394 // Determine if we want to delay code-fill generation until the output
2395 // section is written. When the target is relaxing, we want to delay fill
4cf7a849
ST
2396 // generating to avoid adjusting them during relaxation. Also, if we are
2397 // sorting input sections we must delay fill generation.
c0a62865
DK
2398 if (!this->generate_code_fills_at_write_
2399 && !have_sections_script
2400 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2401 && parameters->target().has_code_fill()
4cf7a849 2402 && (parameters->target().may_relax()
e9552f7e 2403 || layout->is_section_ordering_specified()))
c0a62865
DK
2404 {
2405 gold_assert(this->fills_.empty());
2406 this->generate_code_fills_at_write_ = true;
2407 }
2408
c51e6221 2409 if (aligned_offset_in_section > offset_in_section
c0a62865 2410 && !this->generate_code_fills_at_write_
a445fddf 2411 && !have_sections_script
44a43cf9 2412 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
029ba973 2413 && parameters->target().has_code_fill())
c51e6221
ILT
2414 {
2415 // We need to add some fill data. Using fill_list_ when
2416 // possible is an optimization, since we will often have fill
2417 // sections without input sections.
2418 off_t fill_len = aligned_offset_in_section - offset_in_section;
2419 if (this->input_sections_.empty())
2420 this->fills_.push_back(Fill(offset_in_section, fill_len));
2421 else
2422 {
029ba973 2423 std::string fill_data(parameters->target().code_fill(fill_len));
c51e6221
ILT
2424 Output_data_const* odc = new Output_data_const(fill_data, 1);
2425 this->input_sections_.push_back(Input_section(odc));
2426 }
2427 }
2428
ead1e424 2429 // We need to keep track of this section if we are already keeping
2fd32231
ILT
2430 // track of sections, or if we are relaxing. Also, if this is a
2431 // section which requires sorting, or which may require sorting in
6e9ba2ca
ST
2432 // the future, we keep track of the sections. If the
2433 // --section-ordering-file option is used to specify the order of
2434 // sections, we need to keep track of sections.
131687b4
DK
2435 if (this->always_keeps_input_sections_
2436 || have_sections_script
2fd32231
ILT
2437 || !this->input_sections_.empty()
2438 || this->may_sort_attached_input_sections()
7d9e3d98 2439 || this->must_sort_attached_input_sections()
20e6d0d6 2440 || parameters->options().user_set_Map()
6e9ba2ca 2441 || parameters->target().may_relax()
e9552f7e 2442 || layout->is_section_ordering_specified())
6e9ba2ca 2443 {
6fc6ea19 2444 Input_section isecn(object, shndx, input_section_size, addralign);
f0558624
ST
2445 /* If section ordering is requested by specifying a ordering file,
2446 using --section-ordering-file, match the section name with
2447 a pattern. */
2448 if (parameters->options().section_ordering_file())
6e9ba2ca
ST
2449 {
2450 unsigned int section_order_index =
2451 layout->find_section_order_index(std::string(secname));
2452 if (section_order_index != 0)
2453 {
2454 isecn.set_section_order_index(section_order_index);
2455 this->set_input_section_order_specified();
2456 }
2457 }
cdc29364
CC
2458 if (this->has_fixed_layout())
2459 {
2460 // For incremental updates, finalize the address and offset now.
2461 uint64_t addr = this->address();
2462 isecn.set_address_and_file_offset(addr + aligned_offset_in_section,
2463 aligned_offset_in_section,
2464 this->offset());
2465 }
6e9ba2ca
ST
2466 this->input_sections_.push_back(isecn);
2467 }
54dc6425 2468
c51e6221 2469 return aligned_offset_in_section;
61ba1cf9
ILT
2470}
2471
ead1e424
ILT
2472// Add arbitrary data to an output section.
2473
2474void
2475Output_section::add_output_section_data(Output_section_data* posd)
2476{
b8e6aad9
ILT
2477 Input_section inp(posd);
2478 this->add_output_section_data(&inp);
a445fddf
ILT
2479
2480 if (posd->is_data_size_valid())
2481 {
cdc29364
CC
2482 off_t offset_in_section;
2483 if (this->has_fixed_layout())
2484 {
2485 // For incremental updates, find a chunk of unused space.
2486 offset_in_section = this->free_list_.allocate(posd->data_size(),
2487 posd->addralign(), 0);
2488 if (offset_in_section == -1)
9fbd3822
CC
2489 gold_fallback(_("out of patch space in section %s; "
2490 "relink with --incremental-full"),
2491 this->name());
cdc29364
CC
2492 // Finalize the address and offset now.
2493 uint64_t addr = this->address();
2494 off_t offset = this->offset();
2495 posd->set_address_and_file_offset(addr + offset_in_section,
2496 offset + offset_in_section);
2497 }
2498 else
2499 {
2500 offset_in_section = this->current_data_size_for_child();
2501 off_t aligned_offset_in_section = align_address(offset_in_section,
2502 posd->addralign());
2503 this->set_current_data_size_for_child(aligned_offset_in_section
2504 + posd->data_size());
2505 }
2506 }
2507 else if (this->has_fixed_layout())
2508 {
2509 // For incremental updates, arrange for the data to have a fixed layout.
2510 // This will mean that additions to the data must be allocated from
2511 // free space within the containing output section.
2512 uint64_t addr = this->address();
2513 posd->set_address(addr);
2514 posd->set_file_offset(0);
4829d394
CC
2515 // FIXME: This should eventually be unreachable.
2516 // gold_unreachable();
a445fddf 2517 }
b8e6aad9
ILT
2518}
2519
c0a62865
DK
2520// Add a relaxed input section.
2521
2522void
d06fb4d1
DK
2523Output_section::add_relaxed_input_section(Layout* layout,
2524 Output_relaxed_input_section* poris,
2525 const std::string& name)
c0a62865
DK
2526{
2527 Input_section inp(poris);
d06fb4d1
DK
2528
2529 // If the --section-ordering-file option is used to specify the order of
2530 // sections, we need to keep track of sections.
e9552f7e 2531 if (layout->is_section_ordering_specified())
d06fb4d1
DK
2532 {
2533 unsigned int section_order_index =
2534 layout->find_section_order_index(name);
2535 if (section_order_index != 0)
2536 {
2537 inp.set_section_order_index(section_order_index);
2538 this->set_input_section_order_specified();
2539 }
2540 }
2541
c0a62865 2542 this->add_output_section_data(&inp);
0439c796
DK
2543 if (this->lookup_maps_->is_valid())
2544 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2545 poris->shndx(), poris);
c0a62865
DK
2546
2547 // For a relaxed section, we use the current data size. Linker scripts
2548 // get all the input sections, including relaxed one from an output
2549 // section and add them back to them same output section to compute the
2550 // output section size. If we do not account for sizes of relaxed input
2551 // sections, an output section would be incorrectly sized.
2552 off_t offset_in_section = this->current_data_size_for_child();
2553 off_t aligned_offset_in_section = align_address(offset_in_section,
2554 poris->addralign());
2555 this->set_current_data_size_for_child(aligned_offset_in_section
2556 + poris->current_data_size());
2557}
2558
b8e6aad9 2559// Add arbitrary data to an output section by Input_section.
c06b7b0b 2560
b8e6aad9
ILT
2561void
2562Output_section::add_output_section_data(Input_section* inp)
2563{
ead1e424 2564 if (this->input_sections_.empty())
27bc2bce 2565 this->first_input_offset_ = this->current_data_size_for_child();
c06b7b0b 2566
b8e6aad9 2567 this->input_sections_.push_back(*inp);
c06b7b0b 2568
2ea97941
ILT
2569 uint64_t addralign = inp->addralign();
2570 if (addralign > this->addralign_)
2571 this->addralign_ = addralign;
c06b7b0b 2572
b8e6aad9
ILT
2573 inp->set_output_section(this);
2574}
2575
2576// Add a merge section to an output section.
2577
2578void
2579Output_section::add_output_merge_section(Output_section_data* posd,
2ea97941 2580 bool is_string, uint64_t entsize)
b8e6aad9 2581{
2ea97941 2582 Input_section inp(posd, is_string, entsize);
b8e6aad9
ILT
2583 this->add_output_section_data(&inp);
2584}
2585
2586// Add an input section to a SHF_MERGE section.
2587
2588bool
2ea97941
ILT
2589Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2590 uint64_t flags, uint64_t entsize,
0439c796
DK
2591 uint64_t addralign,
2592 bool keeps_input_sections)
b8e6aad9 2593{
2ea97941 2594 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
87f95776
ILT
2595
2596 // We only merge strings if the alignment is not more than the
2597 // character size. This could be handled, but it's unusual.
2ea97941 2598 if (is_string && addralign > entsize)
b8e6aad9
ILT
2599 return false;
2600
20e6d0d6
DK
2601 // We cannot restore merged input section states.
2602 gold_assert(this->checkpoint_ == NULL);
2603
c0a62865 2604 // Look up merge sections by required properties.
0439c796
DK
2605 // Currently, we only invalidate the lookup maps in script processing
2606 // and relaxation. We should not have done either when we reach here.
2607 // So we assume that the lookup maps are valid to simply code.
2608 gold_assert(this->lookup_maps_->is_valid());
2ea97941 2609 Merge_section_properties msp(is_string, entsize, addralign);
0439c796
DK
2610 Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2611 bool is_new = false;
2612 if (pomb != NULL)
c0a62865 2613 {
6bf924b0
DK
2614 gold_assert(pomb->is_string() == is_string
2615 && pomb->entsize() == entsize
2616 && pomb->addralign() == addralign);
c0a62865 2617 }
b8e6aad9
ILT
2618 else
2619 {
6bf924b0
DK
2620 // Create a new Output_merge_data or Output_merge_string_data.
2621 if (!is_string)
2622 pomb = new Output_merge_data(entsize, addralign);
2623 else
9a0910c3 2624 {
6bf924b0
DK
2625 switch (entsize)
2626 {
2627 case 1:
2628 pomb = new Output_merge_string<char>(addralign);
2629 break;
2630 case 2:
2631 pomb = new Output_merge_string<uint16_t>(addralign);
2632 break;
2633 case 4:
2634 pomb = new Output_merge_string<uint32_t>(addralign);
2635 break;
2636 default:
2637 return false;
2638 }
9a0910c3 2639 }
0439c796
DK
2640 // If we need to do script processing or relaxation, we need to keep
2641 // the original input sections to rebuild the fast lookup maps.
2642 if (keeps_input_sections)
2643 pomb->set_keeps_input_sections();
2644 is_new = true;
b8e6aad9
ILT
2645 }
2646
6bf924b0
DK
2647 if (pomb->add_input_section(object, shndx))
2648 {
0439c796
DK
2649 // Add new merge section to this output section and link merge
2650 // section properties to new merge section in map.
2651 if (is_new)
2652 {
2653 this->add_output_merge_section(pomb, is_string, entsize);
2654 this->lookup_maps_->add_merge_section(msp, pomb);
2655 }
2656
6bf924b0
DK
2657 // Add input section to new merge section and link input section to new
2658 // merge section in map.
0439c796 2659 this->lookup_maps_->add_merge_input_section(object, shndx, pomb);
6bf924b0
DK
2660 return true;
2661 }
2662 else
0439c796
DK
2663 {
2664 // If add_input_section failed, delete new merge section to avoid
2665 // exporting empty merge sections in Output_section::get_input_section.
2666 if (is_new)
2667 delete pomb;
2668 return false;
2669 }
b8e6aad9
ILT
2670}
2671
c0a62865 2672// Build a relaxation map to speed up relaxation of existing input sections.
2ea97941 2673// Look up to the first LIMIT elements in INPUT_SECTIONS.
c0a62865 2674
20e6d0d6 2675void
c0a62865 2676Output_section::build_relaxation_map(
2ea97941 2677 const Input_section_list& input_sections,
c0a62865
DK
2678 size_t limit,
2679 Relaxation_map* relaxation_map) const
20e6d0d6 2680{
c0a62865
DK
2681 for (size_t i = 0; i < limit; ++i)
2682 {
2ea97941 2683 const Input_section& is(input_sections[i]);
c0a62865
DK
2684 if (is.is_input_section() || is.is_relaxed_input_section())
2685 {
5ac169d4
DK
2686 Section_id sid(is.relobj(), is.shndx());
2687 (*relaxation_map)[sid] = i;
c0a62865
DK
2688 }
2689 }
2690}
2691
2692// Convert regular input sections in INPUT_SECTIONS into relaxed input
5ac169d4
DK
2693// sections in RELAXED_SECTIONS. MAP is a prebuilt map from section id
2694// indices of INPUT_SECTIONS.
20e6d0d6 2695
c0a62865
DK
2696void
2697Output_section::convert_input_sections_in_list_to_relaxed_sections(
2698 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2699 const Relaxation_map& map,
2ea97941 2700 Input_section_list* input_sections)
c0a62865
DK
2701{
2702 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2703 {
2704 Output_relaxed_input_section* poris = relaxed_sections[i];
5ac169d4
DK
2705 Section_id sid(poris->relobj(), poris->shndx());
2706 Relaxation_map::const_iterator p = map.find(sid);
c0a62865 2707 gold_assert(p != map.end());
2ea97941 2708 gold_assert((*input_sections)[p->second].is_input_section());
d06fb4d1
DK
2709
2710 // Remember section order index of original input section
2711 // if it is set. Copy it to the relaxed input section.
2712 unsigned int soi =
2713 (*input_sections)[p->second].section_order_index();
2ea97941 2714 (*input_sections)[p->second] = Input_section(poris);
d06fb4d1 2715 (*input_sections)[p->second].set_section_order_index(soi);
c0a62865
DK
2716 }
2717}
2718
2719// Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2720// is a vector of pointers to Output_relaxed_input_section or its derived
2721// classes. The relaxed sections must correspond to existing input sections.
2722
2723void
2724Output_section::convert_input_sections_to_relaxed_sections(
2725 const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2726{
029ba973 2727 gold_assert(parameters->target().may_relax());
20e6d0d6 2728
c0a62865
DK
2729 // We want to make sure that restore_states does not undo the effect of
2730 // this. If there is no checkpoint active, just search the current
2731 // input section list and replace the sections there. If there is
2732 // a checkpoint, also replace the sections there.
2733
2734 // By default, we look at the whole list.
2735 size_t limit = this->input_sections_.size();
2736
2737 if (this->checkpoint_ != NULL)
20e6d0d6 2738 {
c0a62865
DK
2739 // Replace input sections with relaxed input section in the saved
2740 // copy of the input section list.
2741 if (this->checkpoint_->input_sections_saved())
20e6d0d6 2742 {
c0a62865
DK
2743 Relaxation_map map;
2744 this->build_relaxation_map(
2745 *(this->checkpoint_->input_sections()),
2746 this->checkpoint_->input_sections()->size(),
2747 &map);
2748 this->convert_input_sections_in_list_to_relaxed_sections(
2749 relaxed_sections,
2750 map,
2751 this->checkpoint_->input_sections());
2752 }
2753 else
2754 {
2755 // We have not copied the input section list yet. Instead, just
2756 // look at the portion that would be saved.
2757 limit = this->checkpoint_->input_sections_size();
20e6d0d6 2758 }
20e6d0d6 2759 }
c0a62865
DK
2760
2761 // Convert input sections in input_section_list.
2762 Relaxation_map map;
2763 this->build_relaxation_map(this->input_sections_, limit, &map);
2764 this->convert_input_sections_in_list_to_relaxed_sections(
2765 relaxed_sections,
2766 map,
2767 &this->input_sections_);
41263c05
DK
2768
2769 // Update fast look-up map.
0439c796 2770 if (this->lookup_maps_->is_valid())
41263c05
DK
2771 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2772 {
2773 Output_relaxed_input_section* poris = relaxed_sections[i];
0439c796
DK
2774 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2775 poris->shndx(), poris);
41263c05 2776 }
20e6d0d6
DK
2777}
2778
9c547ec3
ILT
2779// Update the output section flags based on input section flags.
2780
2781void
2ea97941 2782Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
9c547ec3
ILT
2783{
2784 // If we created the section with SHF_ALLOC clear, we set the
2785 // address. If we are now setting the SHF_ALLOC flag, we need to
2786 // undo that.
2787 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2ea97941 2788 && (flags & elfcpp::SHF_ALLOC) != 0)
9c547ec3
ILT
2789 this->mark_address_invalid();
2790
2ea97941 2791 this->flags_ |= (flags
9c547ec3
ILT
2792 & (elfcpp::SHF_WRITE
2793 | elfcpp::SHF_ALLOC
2794 | elfcpp::SHF_EXECINSTR));
e8cd95c7
ILT
2795
2796 if ((flags & elfcpp::SHF_MERGE) == 0)
2797 this->flags_ &=~ elfcpp::SHF_MERGE;
2798 else
2799 {
2800 if (this->current_data_size_for_child() == 0)
2801 this->flags_ |= elfcpp::SHF_MERGE;
2802 }
2803
2804 if ((flags & elfcpp::SHF_STRINGS) == 0)
2805 this->flags_ &=~ elfcpp::SHF_STRINGS;
2806 else
2807 {
2808 if (this->current_data_size_for_child() == 0)
2809 this->flags_ |= elfcpp::SHF_STRINGS;
2810 }
9c547ec3
ILT
2811}
2812
2ea97941 2813// Find the merge section into which an input section with index SHNDX in
c0a62865
DK
2814// OBJECT has been added. Return NULL if none found.
2815
2816Output_section_data*
2817Output_section::find_merge_section(const Relobj* object,
2ea97941 2818 unsigned int shndx) const
c0a62865 2819{
0439c796
DK
2820 if (!this->lookup_maps_->is_valid())
2821 this->build_lookup_maps();
2822 return this->lookup_maps_->find_merge_section(object, shndx);
2823}
2824
2825// Build the lookup maps for merge and relaxed sections. This is needs
2826// to be declared as a const methods so that it is callable with a const
2827// Output_section pointer. The method only updates states of the maps.
2828
2829void
2830Output_section::build_lookup_maps() const
2831{
2832 this->lookup_maps_->clear();
2833 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2834 p != this->input_sections_.end();
2835 ++p)
c0a62865 2836 {
0439c796
DK
2837 if (p->is_merge_section())
2838 {
2839 Output_merge_base* pomb = p->output_merge_base();
2840 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
2841 pomb->addralign());
2842 this->lookup_maps_->add_merge_section(msp, pomb);
2843 for (Output_merge_base::Input_sections::const_iterator is =
2844 pomb->input_sections_begin();
2845 is != pomb->input_sections_end();
2846 ++is)
2847 {
2848 const Const_section_id& csid = *is;
2849 this->lookup_maps_->add_merge_input_section(csid.first,
2850 csid.second, pomb);
2851 }
2852
2853 }
2854 else if (p->is_relaxed_input_section())
2855 {
2856 Output_relaxed_input_section* poris = p->relaxed_input_section();
2857 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2858 poris->shndx(), poris);
2859 }
c0a62865 2860 }
c0a62865
DK
2861}
2862
2863// Find an relaxed input section corresponding to an input section
2ea97941 2864// in OBJECT with index SHNDX.
c0a62865 2865
d6344fb5 2866const Output_relaxed_input_section*
c0a62865 2867Output_section::find_relaxed_input_section(const Relobj* object,
2ea97941 2868 unsigned int shndx) const
c0a62865 2869{
0439c796
DK
2870 if (!this->lookup_maps_->is_valid())
2871 this->build_lookup_maps();
2872 return this->lookup_maps_->find_relaxed_input_section(object, shndx);
c0a62865
DK
2873}
2874
2ea97941
ILT
2875// Given an address OFFSET relative to the start of input section
2876// SHNDX in OBJECT, return whether this address is being included in
2877// the final link. This should only be called if SHNDX in OBJECT has
730cdc88
ILT
2878// a special mapping.
2879
2880bool
2881Output_section::is_input_address_mapped(const Relobj* object,
2ea97941
ILT
2882 unsigned int shndx,
2883 off_t offset) const
730cdc88 2884{
c0a62865 2885 // Look at the Output_section_data_maps first.
2ea97941 2886 const Output_section_data* posd = this->find_merge_section(object, shndx);
c0a62865 2887 if (posd == NULL)
2ea97941 2888 posd = this->find_relaxed_input_section(object, shndx);
c0a62865
DK
2889
2890 if (posd != NULL)
2891 {
2ea97941
ILT
2892 section_offset_type output_offset;
2893 bool found = posd->output_offset(object, shndx, offset, &output_offset);
c0a62865 2894 gold_assert(found);
2ea97941 2895 return output_offset != -1;
c0a62865
DK
2896 }
2897
2898 // Fall back to the slow look-up.
730cdc88
ILT
2899 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2900 p != this->input_sections_.end();
2901 ++p)
2902 {
2ea97941
ILT
2903 section_offset_type output_offset;
2904 if (p->output_offset(object, shndx, offset, &output_offset))
2905 return output_offset != -1;
730cdc88
ILT
2906 }
2907
2908 // By default we assume that the address is mapped. This should
2909 // only be called after we have passed all sections to Layout. At
2910 // that point we should know what we are discarding.
2911 return true;
2912}
2913
2ea97941
ILT
2914// Given an address OFFSET relative to the start of input section
2915// SHNDX in object OBJECT, return the output offset relative to the
1e983657 2916// start of the input section in the output section. This should only
2ea97941 2917// be called if SHNDX in OBJECT has a special mapping.
730cdc88 2918
8383303e 2919section_offset_type
2ea97941
ILT
2920Output_section::output_offset(const Relobj* object, unsigned int shndx,
2921 section_offset_type offset) const
730cdc88 2922{
c0a62865
DK
2923 // This can only be called meaningfully when we know the data size
2924 // of this.
2925 gold_assert(this->is_data_size_valid());
730cdc88 2926
c0a62865 2927 // Look at the Output_section_data_maps first.
2ea97941 2928 const Output_section_data* posd = this->find_merge_section(object, shndx);
c0a62865 2929 if (posd == NULL)
2ea97941 2930 posd = this->find_relaxed_input_section(object, shndx);
c0a62865
DK
2931 if (posd != NULL)
2932 {
2ea97941
ILT
2933 section_offset_type output_offset;
2934 bool found = posd->output_offset(object, shndx, offset, &output_offset);
c0a62865 2935 gold_assert(found);
2ea97941 2936 return output_offset;
c0a62865
DK
2937 }
2938
2939 // Fall back to the slow look-up.
730cdc88
ILT
2940 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2941 p != this->input_sections_.end();
2942 ++p)
2943 {
2ea97941
ILT
2944 section_offset_type output_offset;
2945 if (p->output_offset(object, shndx, offset, &output_offset))
2946 return output_offset;
730cdc88
ILT
2947 }
2948 gold_unreachable();
2949}
2950
2ea97941
ILT
2951// Return the output virtual address of OFFSET relative to the start
2952// of input section SHNDX in object OBJECT.
b8e6aad9
ILT
2953
2954uint64_t
2ea97941
ILT
2955Output_section::output_address(const Relobj* object, unsigned int shndx,
2956 off_t offset) const
b8e6aad9
ILT
2957{
2958 uint64_t addr = this->address() + this->first_input_offset_;
c0a62865
DK
2959
2960 // Look at the Output_section_data_maps first.
2ea97941 2961 const Output_section_data* posd = this->find_merge_section(object, shndx);
c0a62865 2962 if (posd == NULL)
2ea97941 2963 posd = this->find_relaxed_input_section(object, shndx);
c0a62865
DK
2964 if (posd != NULL && posd->is_address_valid())
2965 {
2ea97941
ILT
2966 section_offset_type output_offset;
2967 bool found = posd->output_offset(object, shndx, offset, &output_offset);
c0a62865 2968 gold_assert(found);
2ea97941 2969 return posd->address() + output_offset;
c0a62865
DK
2970 }
2971
2972 // Fall back to the slow look-up.
b8e6aad9
ILT
2973 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2974 p != this->input_sections_.end();
2975 ++p)
2976 {
2977 addr = align_address(addr, p->addralign());
2ea97941
ILT
2978 section_offset_type output_offset;
2979 if (p->output_offset(object, shndx, offset, &output_offset))
730cdc88 2980 {
2ea97941 2981 if (output_offset == -1)
eff45813 2982 return -1ULL;
2ea97941 2983 return addr + output_offset;
730cdc88 2984 }
b8e6aad9
ILT
2985 addr += p->data_size();
2986 }
2987
2988 // If we get here, it means that we don't know the mapping for this
2989 // input section. This might happen in principle if
2990 // add_input_section were called before add_output_section_data.
2991 // But it should never actually happen.
2992
2993 gold_unreachable();
ead1e424
ILT
2994}
2995
e29e076a 2996// Find the output address of the start of the merged section for
2ea97941 2997// input section SHNDX in object OBJECT.
a9a60db6 2998
e29e076a
ILT
2999bool
3000Output_section::find_starting_output_address(const Relobj* object,
2ea97941 3001 unsigned int shndx,
e29e076a 3002 uint64_t* paddr) const
a9a60db6 3003{
c0a62865
DK
3004 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
3005 // Looking up the merge section map does not always work as we sometimes
3006 // find a merge section without its address set.
a9a60db6
ILT
3007 uint64_t addr = this->address() + this->first_input_offset_;
3008 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3009 p != this->input_sections_.end();
3010 ++p)
3011 {
3012 addr = align_address(addr, p->addralign());
3013
3014 // It would be nice if we could use the existing output_offset
3015 // method to get the output offset of input offset 0.
3016 // Unfortunately we don't know for sure that input offset 0 is
3017 // mapped at all.
2ea97941 3018 if (p->is_merge_section_for(object, shndx))
e29e076a
ILT
3019 {
3020 *paddr = addr;
3021 return true;
3022 }
a9a60db6
ILT
3023
3024 addr += p->data_size();
3025 }
e29e076a
ILT
3026
3027 // We couldn't find a merge output section for this input section.
3028 return false;
a9a60db6
ILT
3029}
3030
cdc29364
CC
3031// Update the data size of an Output_section.
3032
3033void
3034Output_section::update_data_size()
3035{
3036 if (this->input_sections_.empty())
3037 return;
3038
3039 if (this->must_sort_attached_input_sections()
3040 || this->input_section_order_specified())
3041 this->sort_attached_input_sections();
3042
3043 off_t off = this->first_input_offset_;
3044 for (Input_section_list::iterator p = this->input_sections_.begin();
3045 p != this->input_sections_.end();
3046 ++p)
3047 {
3048 off = align_address(off, p->addralign());
3049 off += p->current_data_size();
3050 }
3051
3052 this->set_current_data_size_for_child(off);
3053}
3054
27bc2bce 3055// Set the data size of an Output_section. This is where we handle
ead1e424
ILT
3056// setting the addresses of any Output_section_data objects.
3057
3058void
27bc2bce 3059Output_section::set_final_data_size()
ead1e424 3060{
9fbd3822
CC
3061 off_t data_size;
3062
ead1e424 3063 if (this->input_sections_.empty())
9fbd3822
CC
3064 data_size = this->current_data_size_for_child();
3065 else
27bc2bce 3066 {
9fbd3822
CC
3067 if (this->must_sort_attached_input_sections()
3068 || this->input_section_order_specified())
3069 this->sort_attached_input_sections();
ead1e424 3070
9fbd3822
CC
3071 uint64_t address = this->address();
3072 off_t startoff = this->offset();
3073 off_t off = startoff + this->first_input_offset_;
3074 for (Input_section_list::iterator p = this->input_sections_.begin();
3075 p != this->input_sections_.end();
3076 ++p)
3077 {
3078 off = align_address(off, p->addralign());
3079 p->set_address_and_file_offset(address + (off - startoff), off,
3080 startoff);
3081 off += p->data_size();
3082 }
3083 data_size = off - startoff;
3084 }
2fd32231 3085
9fbd3822
CC
3086 // For full incremental links, we want to allocate some patch space
3087 // in most sections for subsequent incremental updates.
3088 if (this->is_patch_space_allowed_ && parameters->incremental_full())
ead1e424 3089 {
9fbd3822 3090 double pct = parameters->options().incremental_patch();
8ea8cd50
CC
3091 size_t extra = static_cast<size_t>(data_size * pct);
3092 if (this->free_space_fill_ != NULL
3093 && this->free_space_fill_->minimum_hole_size() > extra)
3094 extra = this->free_space_fill_->minimum_hole_size();
9fbd3822
CC
3095 off_t new_size = align_address(data_size + extra, this->addralign());
3096 this->patch_space_ = new_size - data_size;
3097 gold_debug(DEBUG_INCREMENTAL,
3098 "set_final_data_size: %08lx + %08lx: section %s",
3099 static_cast<long>(data_size),
3100 static_cast<long>(this->patch_space_),
3101 this->name());
3102 data_size = new_size;
ead1e424
ILT
3103 }
3104
9fbd3822 3105 this->set_data_size(data_size);
ead1e424 3106}
9a0910c3 3107
a445fddf
ILT
3108// Reset the address and file offset.
3109
3110void
3111Output_section::do_reset_address_and_file_offset()
3112{
20e6d0d6
DK
3113 // An unallocated section has no address. Forcing this means that
3114 // we don't need special treatment for symbols defined in debug
1e5d2fb1
DK
3115 // sections. We do the same in the constructor. This does not
3116 // apply to NOLOAD sections though.
3117 if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
20e6d0d6
DK
3118 this->set_address(0);
3119
a445fddf
ILT
3120 for (Input_section_list::iterator p = this->input_sections_.begin();
3121 p != this->input_sections_.end();
3122 ++p)
3123 p->reset_address_and_file_offset();
9fbd3822
CC
3124
3125 // Remove any patch space that was added in set_final_data_size.
3126 if (this->patch_space_ > 0)
3127 {
3128 this->set_current_data_size_for_child(this->current_data_size_for_child()
3129 - this->patch_space_);
3130 this->patch_space_ = 0;
3131 }
a445fddf 3132}
9fbd3822 3133
20e6d0d6
DK
3134// Return true if address and file offset have the values after reset.
3135
3136bool
3137Output_section::do_address_and_file_offset_have_reset_values() const
3138{
3139 if (this->is_offset_valid())
3140 return false;
3141
3142 // An unallocated section has address 0 after its construction or a reset.
3143 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
3144 return this->is_address_valid() && this->address() == 0;
3145 else
3146 return !this->is_address_valid();
3147}
a445fddf 3148
7bf1f802
ILT
3149// Set the TLS offset. Called only for SHT_TLS sections.
3150
3151void
3152Output_section::do_set_tls_offset(uint64_t tls_base)
3153{
3154 this->tls_offset_ = this->address() - tls_base;
3155}
3156
2fd32231
ILT
3157// In a few cases we need to sort the input sections attached to an
3158// output section. This is used to implement the type of constructor
3159// priority ordering implemented by the GNU linker, in which the
3160// priority becomes part of the section name and the sections are
3161// sorted by name. We only do this for an output section if we see an
5393d741 3162// attached input section matching ".ctors.*", ".dtors.*",
2fd32231
ILT
3163// ".init_array.*" or ".fini_array.*".
3164
3165class Output_section::Input_section_sort_entry
3166{
3167 public:
3168 Input_section_sort_entry()
3169 : input_section_(), index_(-1U), section_has_name_(false),
3170 section_name_()
3171 { }
3172
2ea97941 3173 Input_section_sort_entry(const Input_section& input_section,
6e9ba2ca
ST
3174 unsigned int index,
3175 bool must_sort_attached_input_sections)
2ea97941
ILT
3176 : input_section_(input_section), index_(index),
3177 section_has_name_(input_section.is_input_section()
3178 || input_section.is_relaxed_input_section())
2fd32231 3179 {
6e9ba2ca
ST
3180 if (this->section_has_name_
3181 && must_sort_attached_input_sections)
2fd32231
ILT
3182 {
3183 // This is only called single-threaded from Layout::finalize,
3184 // so it is OK to lock. Unfortunately we have no way to pass
3185 // in a Task token.
3186 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
2ea97941
ILT
3187 Object* obj = (input_section.is_input_section()
3188 ? input_section.relobj()
3189 : input_section.relaxed_input_section()->relobj());
2fd32231
ILT
3190 Task_lock_obj<Object> tl(dummy_task, obj);
3191
3192 // This is a slow operation, which should be cached in
3193 // Layout::layout if this becomes a speed problem.
2ea97941 3194 this->section_name_ = obj->section_name(input_section.shndx());
2fd32231
ILT
3195 }
3196 }
3197
3198 // Return the Input_section.
3199 const Input_section&
3200 input_section() const
3201 {
3202 gold_assert(this->index_ != -1U);
3203 return this->input_section_;
3204 }
3205
3206 // The index of this entry in the original list. This is used to
3207 // make the sort stable.
3208 unsigned int
3209 index() const
3210 {
3211 gold_assert(this->index_ != -1U);
3212 return this->index_;
3213 }
3214
3215 // Whether there is a section name.
3216 bool
3217 section_has_name() const
3218 { return this->section_has_name_; }
3219
3220 // The section name.
3221 const std::string&
3222 section_name() const
3223 {
3224 gold_assert(this->section_has_name_);
3225 return this->section_name_;
3226 }
3227
ab794b6b
ILT
3228 // Return true if the section name has a priority. This is assumed
3229 // to be true if it has a dot after the initial dot.
2fd32231 3230 bool
ab794b6b 3231 has_priority() const
2fd32231
ILT
3232 {
3233 gold_assert(this->section_has_name_);
2a0ff005 3234 return this->section_name_.find('.', 1) != std::string::npos;
2fd32231
ILT
3235 }
3236
5393d741
ILT
3237 // Return the priority. Believe it or not, gcc encodes the priority
3238 // differently for .ctors/.dtors and .init_array/.fini_array
3239 // sections.
3240 unsigned int
3241 get_priority() const
3242 {
3243 gold_assert(this->section_has_name_);
3244 bool is_ctors;
3245 if (is_prefix_of(".ctors.", this->section_name_.c_str())
3246 || is_prefix_of(".dtors.", this->section_name_.c_str()))
3247 is_ctors = true;
3248 else if (is_prefix_of(".init_array.", this->section_name_.c_str())
3249 || is_prefix_of(".fini_array.", this->section_name_.c_str()))
3250 is_ctors = false;
3251 else
3252 return 0;
3253 char* end;
3254 unsigned long prio = strtoul((this->section_name_.c_str()
3255 + (is_ctors ? 7 : 12)),
3256 &end, 10);
3257 if (*end != '\0')
3258 return 0;
3259 else if (is_ctors)
3260 return 65535 - prio;
3261 else
3262 return prio;
3263 }
3264
ab794b6b
ILT
3265 // Return true if this an input file whose base name matches
3266 // FILE_NAME. The base name must have an extension of ".o", and
3267 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
3268 // This is to match crtbegin.o as well as crtbeginS.o without
3269 // getting confused by other possibilities. Overall matching the
3270 // file name this way is a dreadful hack, but the GNU linker does it
3271 // in order to better support gcc, and we need to be compatible.
2fd32231 3272 bool
5393d741
ILT
3273 match_file_name(const char* file_name) const
3274 { return Layout::match_file_name(this->input_section_.relobj(), file_name); }
2fd32231 3275
8fe2a369
ST
3276 // Returns 1 if THIS should appear before S in section order, -1 if S
3277 // appears before THIS and 0 if they are not comparable.
6e9ba2ca
ST
3278 int
3279 compare_section_ordering(const Input_section_sort_entry& s) const
3280 {
8fe2a369
ST
3281 unsigned int this_secn_index = this->input_section_.section_order_index();
3282 unsigned int s_secn_index = s.input_section().section_order_index();
3283 if (this_secn_index > 0 && s_secn_index > 0)
3284 {
3285 if (this_secn_index < s_secn_index)
3286 return 1;
3287 else if (this_secn_index > s_secn_index)
3288 return -1;
3289 }
3290 return 0;
6e9ba2ca
ST
3291 }
3292
2fd32231
ILT
3293 private:
3294 // The Input_section we are sorting.
3295 Input_section input_section_;
3296 // The index of this Input_section in the original list.
3297 unsigned int index_;
3298 // Whether this Input_section has a section name--it won't if this
3299 // is some random Output_section_data.
3300 bool section_has_name_;
3301 // The section name if there is one.
3302 std::string section_name_;
3303};
3304
3305// Return true if S1 should come before S2 in the output section.
3306
3307bool
3308Output_section::Input_section_sort_compare::operator()(
3309 const Output_section::Input_section_sort_entry& s1,
3310 const Output_section::Input_section_sort_entry& s2) const
3311{
ab794b6b
ILT
3312 // crtbegin.o must come first.
3313 bool s1_begin = s1.match_file_name("crtbegin");
3314 bool s2_begin = s2.match_file_name("crtbegin");
2fd32231
ILT
3315 if (s1_begin || s2_begin)
3316 {
3317 if (!s1_begin)
3318 return false;
3319 if (!s2_begin)
3320 return true;
3321 return s1.index() < s2.index();
3322 }
3323
ab794b6b
ILT
3324 // crtend.o must come last.
3325 bool s1_end = s1.match_file_name("crtend");
3326 bool s2_end = s2.match_file_name("crtend");
2fd32231
ILT
3327 if (s1_end || s2_end)
3328 {
3329 if (!s1_end)
3330 return true;
3331 if (!s2_end)
3332 return false;
3333 return s1.index() < s2.index();
3334 }
3335
ab794b6b
ILT
3336 // We sort all the sections with no names to the end.
3337 if (!s1.section_has_name() || !s2.section_has_name())
3338 {
3339 if (s1.section_has_name())
3340 return true;
3341 if (s2.section_has_name())
3342 return false;
3343 return s1.index() < s2.index();
3344 }
2fd32231 3345
ab794b6b 3346 // A section with a priority follows a section without a priority.
ab794b6b
ILT
3347 bool s1_has_priority = s1.has_priority();
3348 bool s2_has_priority = s2.has_priority();
3349 if (s1_has_priority && !s2_has_priority)
2fd32231 3350 return false;
ab794b6b 3351 if (!s1_has_priority && s2_has_priority)
2fd32231
ILT
3352 return true;
3353
6e9ba2ca
ST
3354 // Check if a section order exists for these sections through a section
3355 // ordering file. If sequence_num is 0, an order does not exist.
3356 int sequence_num = s1.compare_section_ordering(s2);
3357 if (sequence_num != 0)
3358 return sequence_num == 1;
3359
2fd32231
ILT
3360 // Otherwise we sort by name.
3361 int compare = s1.section_name().compare(s2.section_name());
3362 if (compare != 0)
3363 return compare < 0;
3364
3365 // Otherwise we keep the input order.
3366 return s1.index() < s2.index();
3367}
3368
2a0ff005
DK
3369// Return true if S1 should come before S2 in an .init_array or .fini_array
3370// output section.
3371
3372bool
3373Output_section::Input_section_sort_init_fini_compare::operator()(
3374 const Output_section::Input_section_sort_entry& s1,
3375 const Output_section::Input_section_sort_entry& s2) const
3376{
3377 // We sort all the sections with no names to the end.
3378 if (!s1.section_has_name() || !s2.section_has_name())
3379 {
3380 if (s1.section_has_name())
3381 return true;
3382 if (s2.section_has_name())
3383 return false;
3384 return s1.index() < s2.index();
3385 }
3386
3387 // A section without a priority follows a section with a priority.
3388 // This is the reverse of .ctors and .dtors sections.
3389 bool s1_has_priority = s1.has_priority();
3390 bool s2_has_priority = s2.has_priority();
3391 if (s1_has_priority && !s2_has_priority)
3392 return true;
3393 if (!s1_has_priority && s2_has_priority)
3394 return false;
3395
5393d741
ILT
3396 // .ctors and .dtors sections without priority come after
3397 // .init_array and .fini_array sections without priority.
3398 if (!s1_has_priority
3399 && (s1.section_name() == ".ctors" || s1.section_name() == ".dtors")
3400 && s1.section_name() != s2.section_name())
3401 return false;
3402 if (!s2_has_priority
3403 && (s2.section_name() == ".ctors" || s2.section_name() == ".dtors")
3404 && s2.section_name() != s1.section_name())
3405 return true;
3406
3407 // Sort by priority if we can.
3408 if (s1_has_priority)
3409 {
3410 unsigned int s1_prio = s1.get_priority();
3411 unsigned int s2_prio = s2.get_priority();
3412 if (s1_prio < s2_prio)
3413 return true;
3414 else if (s1_prio > s2_prio)
3415 return false;
3416 }
3417
6e9ba2ca
ST
3418 // Check if a section order exists for these sections through a section
3419 // ordering file. If sequence_num is 0, an order does not exist.
3420 int sequence_num = s1.compare_section_ordering(s2);
3421 if (sequence_num != 0)
3422 return sequence_num == 1;
3423
2a0ff005
DK
3424 // Otherwise we sort by name.
3425 int compare = s1.section_name().compare(s2.section_name());
3426 if (compare != 0)
3427 return compare < 0;
3428
3429 // Otherwise we keep the input order.
3430 return s1.index() < s2.index();
3431}
3432
8fe2a369
ST
3433// Return true if S1 should come before S2. Sections that do not match
3434// any pattern in the section ordering file are placed ahead of the sections
3435// that match some pattern.
3436
6e9ba2ca
ST
3437bool
3438Output_section::Input_section_sort_section_order_index_compare::operator()(
3439 const Output_section::Input_section_sort_entry& s1,
3440 const Output_section::Input_section_sort_entry& s2) const
3441{
8fe2a369
ST
3442 unsigned int s1_secn_index = s1.input_section().section_order_index();
3443 unsigned int s2_secn_index = s2.input_section().section_order_index();
6e9ba2ca 3444
8fe2a369
ST
3445 // Keep input order if section ordering cannot determine order.
3446 if (s1_secn_index == s2_secn_index)
3447 return s1.index() < s2.index();
3448
3449 return s1_secn_index < s2_secn_index;
6e9ba2ca
ST
3450}
3451
e9552f7e
ST
3452// This updates the section order index of input sections according to the
3453// the order specified in the mapping from Section id to order index.
3454
3455void
3456Output_section::update_section_layout(
f0558624 3457 const Section_layout_order* order_map)
e9552f7e
ST
3458{
3459 for (Input_section_list::iterator p = this->input_sections_.begin();
3460 p != this->input_sections_.end();
3461 ++p)
3462 {
3463 if (p->is_input_section()
3464 || p->is_relaxed_input_section())
3465 {
3466 Object* obj = (p->is_input_section()
3467 ? p->relobj()
3468 : p->relaxed_input_section()->relobj());
3469 unsigned int shndx = p->shndx();
3470 Section_layout_order::const_iterator it
f0558624
ST
3471 = order_map->find(Section_id(obj, shndx));
3472 if (it == order_map->end())
e9552f7e
ST
3473 continue;
3474 unsigned int section_order_index = it->second;
3475 if (section_order_index != 0)
3476 {
3477 p->set_section_order_index(section_order_index);
3478 this->set_input_section_order_specified();
3479 }
3480 }
3481 }
3482}
3483
2fd32231
ILT
3484// Sort the input sections attached to an output section.
3485
3486void
3487Output_section::sort_attached_input_sections()
3488{
3489 if (this->attached_input_sections_are_sorted_)
3490 return;
3491
20e6d0d6
DK
3492 if (this->checkpoint_ != NULL
3493 && !this->checkpoint_->input_sections_saved())
3494 this->checkpoint_->save_input_sections();
3495
2fd32231
ILT
3496 // The only thing we know about an input section is the object and
3497 // the section index. We need the section name. Recomputing this
3498 // is slow but this is an unusual case. If this becomes a speed
3499 // problem we can cache the names as required in Layout::layout.
3500
3501 // We start by building a larger vector holding a copy of each
3502 // Input_section, plus its current index in the list and its name.
3503 std::vector<Input_section_sort_entry> sort_list;
3504
3505 unsigned int i = 0;
3506 for (Input_section_list::iterator p = this->input_sections_.begin();
3507 p != this->input_sections_.end();
3508 ++p, ++i)
6e9ba2ca
ST
3509 sort_list.push_back(Input_section_sort_entry(*p, i,
3510 this->must_sort_attached_input_sections()));
2fd32231
ILT
3511
3512 // Sort the input sections.
6e9ba2ca
ST
3513 if (this->must_sort_attached_input_sections())
3514 {
3515 if (this->type() == elfcpp::SHT_PREINIT_ARRAY
3516 || this->type() == elfcpp::SHT_INIT_ARRAY
3517 || this->type() == elfcpp::SHT_FINI_ARRAY)
3518 std::sort(sort_list.begin(), sort_list.end(),
3519 Input_section_sort_init_fini_compare());
3520 else
3521 std::sort(sort_list.begin(), sort_list.end(),
3522 Input_section_sort_compare());
3523 }
2a0ff005 3524 else
6e9ba2ca 3525 {
e9552f7e 3526 gold_assert(this->input_section_order_specified());
6e9ba2ca
ST
3527 std::sort(sort_list.begin(), sort_list.end(),
3528 Input_section_sort_section_order_index_compare());
3529 }
2fd32231
ILT
3530
3531 // Copy the sorted input sections back to our list.
3532 this->input_sections_.clear();
3533 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
3534 p != sort_list.end();
3535 ++p)
3536 this->input_sections_.push_back(p->input_section());
6e9ba2ca 3537 sort_list.clear();
2fd32231
ILT
3538
3539 // Remember that we sorted the input sections, since we might get
3540 // called again.
3541 this->attached_input_sections_are_sorted_ = true;
3542}
3543
61ba1cf9
ILT
3544// Write the section header to *OSHDR.
3545
3546template<int size, bool big_endian>
3547void
16649710
ILT
3548Output_section::write_header(const Layout* layout,
3549 const Stringpool* secnamepool,
61ba1cf9
ILT
3550 elfcpp::Shdr_write<size, big_endian>* oshdr) const
3551{
3552 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
3553 oshdr->put_sh_type(this->type_);
6a74a719 3554
2ea97941 3555 elfcpp::Elf_Xword flags = this->flags_;
755ab8af 3556 if (this->info_section_ != NULL && this->info_uses_section_index_)
2ea97941
ILT
3557 flags |= elfcpp::SHF_INFO_LINK;
3558 oshdr->put_sh_flags(flags);
6a74a719 3559
61ba1cf9
ILT
3560 oshdr->put_sh_addr(this->address());
3561 oshdr->put_sh_offset(this->offset());
3562 oshdr->put_sh_size(this->data_size());
16649710
ILT
3563 if (this->link_section_ != NULL)
3564 oshdr->put_sh_link(this->link_section_->out_shndx());
3565 else if (this->should_link_to_symtab_)
886f533a 3566 oshdr->put_sh_link(layout->symtab_section_shndx());
16649710
ILT
3567 else if (this->should_link_to_dynsym_)
3568 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
3569 else
3570 oshdr->put_sh_link(this->link_);
755ab8af 3571
2ea97941 3572 elfcpp::Elf_Word info;
16649710 3573 if (this->info_section_ != NULL)
755ab8af
ILT
3574 {
3575 if (this->info_uses_section_index_)
2ea97941 3576 info = this->info_section_->out_shndx();
755ab8af 3577 else
2ea97941 3578 info = this->info_section_->symtab_index();
755ab8af 3579 }
6a74a719 3580 else if (this->info_symndx_ != NULL)
2ea97941 3581 info = this->info_symndx_->symtab_index();
16649710 3582 else
2ea97941
ILT
3583 info = this->info_;
3584 oshdr->put_sh_info(info);
755ab8af 3585
61ba1cf9
ILT
3586 oshdr->put_sh_addralign(this->addralign_);
3587 oshdr->put_sh_entsize(this->entsize_);
a2fb1b05
ILT
3588}
3589
ead1e424
ILT
3590// Write out the data. For input sections the data is written out by
3591// Object::relocate, but we have to handle Output_section_data objects
3592// here.
3593
3594void
3595Output_section::do_write(Output_file* of)
3596{
96803768
ILT
3597 gold_assert(!this->requires_postprocessing());
3598
c0a62865
DK
3599 // If the target performs relaxation, we delay filler generation until now.
3600 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3601
c51e6221
ILT
3602 off_t output_section_file_offset = this->offset();
3603 for (Fill_list::iterator p = this->fills_.begin();
3604 p != this->fills_.end();
3605 ++p)
3606 {
8851ecca 3607 std::string fill_data(parameters->target().code_fill(p->length()));
c51e6221 3608 of->write(output_section_file_offset + p->section_offset(),
a445fddf 3609 fill_data.data(), fill_data.size());
c51e6221
ILT
3610 }
3611
c0a62865 3612 off_t off = this->offset() + this->first_input_offset_;
ead1e424
ILT
3613 for (Input_section_list::iterator p = this->input_sections_.begin();
3614 p != this->input_sections_.end();
3615 ++p)
c0a62865
DK
3616 {
3617 off_t aligned_off = align_address(off, p->addralign());
3618 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3619 {
3620 size_t fill_len = aligned_off - off;
3621 std::string fill_data(parameters->target().code_fill(fill_len));
3622 of->write(off, fill_data.data(), fill_data.size());
3623 }
3624
3625 p->write(of);
3626 off = aligned_off + p->data_size();
3627 }
8ea8cd50
CC
3628
3629 // For incremental links, fill in unused chunks in debug sections
3630 // with dummy compilation unit headers.
3631 if (this->free_space_fill_ != NULL)
3632 {
3633 for (Free_list::Const_iterator p = this->free_list_.begin();
3634 p != this->free_list_.end();
3635 ++p)
3636 {
3637 off_t off = p->start_;
3638 size_t len = p->end_ - off;
3639 this->free_space_fill_->write(of, this->offset() + off, len);
3640 }
3641 if (this->patch_space_ > 0)
3642 {
3643 off_t off = this->current_data_size_for_child() - this->patch_space_;
3644 this->free_space_fill_->write(of, this->offset() + off,
3645 this->patch_space_);
3646 }
3647 }
ead1e424
ILT
3648}
3649
96803768
ILT
3650// If a section requires postprocessing, create the buffer to use.
3651
3652void
3653Output_section::create_postprocessing_buffer()
3654{
3655 gold_assert(this->requires_postprocessing());
1bedcac5
ILT
3656
3657 if (this->postprocessing_buffer_ != NULL)
3658 return;
96803768
ILT
3659
3660 if (!this->input_sections_.empty())
3661 {
3662 off_t off = this->first_input_offset_;
3663 for (Input_section_list::iterator p = this->input_sections_.begin();
3664 p != this->input_sections_.end();
3665 ++p)
3666 {
3667 off = align_address(off, p->addralign());
3668 p->finalize_data_size();
3669 off += p->data_size();
3670 }
3671 this->set_current_data_size_for_child(off);
3672 }
3673
3674 off_t buffer_size = this->current_data_size_for_child();
3675 this->postprocessing_buffer_ = new unsigned char[buffer_size];
3676}
3677
3678// Write all the data of an Output_section into the postprocessing
3679// buffer. This is used for sections which require postprocessing,
3680// such as compression. Input sections are handled by
3681// Object::Relocate.
3682
3683void
3684Output_section::write_to_postprocessing_buffer()
3685{
3686 gold_assert(this->requires_postprocessing());
3687
c0a62865
DK
3688 // If the target performs relaxation, we delay filler generation until now.
3689 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3690
96803768
ILT
3691 unsigned char* buffer = this->postprocessing_buffer();
3692 for (Fill_list::iterator p = this->fills_.begin();
3693 p != this->fills_.end();
3694 ++p)
3695 {
8851ecca 3696 std::string fill_data(parameters->target().code_fill(p->length()));
a445fddf
ILT
3697 memcpy(buffer + p->section_offset(), fill_data.data(),
3698 fill_data.size());
96803768
ILT
3699 }
3700
3701 off_t off = this->first_input_offset_;
3702 for (Input_section_list::iterator p = this->input_sections_.begin();
3703 p != this->input_sections_.end();
3704 ++p)
3705 {
c0a62865
DK
3706 off_t aligned_off = align_address(off, p->addralign());
3707 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3708 {
3709 size_t fill_len = aligned_off - off;
3710 std::string fill_data(parameters->target().code_fill(fill_len));
3711 memcpy(buffer + off, fill_data.data(), fill_data.size());
3712 }
3713
3714 p->write_to_buffer(buffer + aligned_off);
3715 off = aligned_off + p->data_size();
96803768
ILT
3716 }
3717}
3718
a445fddf
ILT
3719// Get the input sections for linker script processing. We leave
3720// behind the Output_section_data entries. Note that this may be
3721// slightly incorrect for merge sections. We will leave them behind,
3722// but it is possible that the script says that they should follow
3723// some other input sections, as in:
3724// .rodata { *(.rodata) *(.rodata.cst*) }
3725// For that matter, we don't handle this correctly:
3726// .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3727// With luck this will never matter.
3728
3729uint64_t
3730Output_section::get_input_sections(
2ea97941 3731 uint64_t address,
a445fddf 3732 const std::string& fill,
6625d24e 3733 std::list<Input_section>* input_sections)
a445fddf 3734{
20e6d0d6
DK
3735 if (this->checkpoint_ != NULL
3736 && !this->checkpoint_->input_sections_saved())
3737 this->checkpoint_->save_input_sections();
3738
0439c796
DK
3739 // Invalidate fast look-up maps.
3740 this->lookup_maps_->invalidate();
c0a62865 3741
2ea97941 3742 uint64_t orig_address = address;
a445fddf 3743
2ea97941 3744 address = align_address(address, this->addralign());
a445fddf
ILT
3745
3746 Input_section_list remaining;
3747 for (Input_section_list::iterator p = this->input_sections_.begin();
3748 p != this->input_sections_.end();
3749 ++p)
3750 {
0439c796
DK
3751 if (p->is_input_section()
3752 || p->is_relaxed_input_section()
3753 || p->is_merge_section())
6625d24e 3754 input_sections->push_back(*p);
a445fddf
ILT
3755 else
3756 {
2ea97941
ILT
3757 uint64_t aligned_address = align_address(address, p->addralign());
3758 if (aligned_address != address && !fill.empty())
a445fddf
ILT
3759 {
3760 section_size_type length =
2ea97941 3761 convert_to_section_size_type(aligned_address - address);
a445fddf
ILT
3762 std::string this_fill;
3763 this_fill.reserve(length);
3764 while (this_fill.length() + fill.length() <= length)
3765 this_fill += fill;
3766 if (this_fill.length() < length)
3767 this_fill.append(fill, 0, length - this_fill.length());
3768
3769 Output_section_data* posd = new Output_data_const(this_fill, 0);
3770 remaining.push_back(Input_section(posd));
3771 }
2ea97941 3772 address = aligned_address;
a445fddf
ILT
3773
3774 remaining.push_back(*p);
3775
3776 p->finalize_data_size();
2ea97941 3777 address += p->data_size();
a445fddf
ILT
3778 }
3779 }
3780
3781 this->input_sections_.swap(remaining);
3782 this->first_input_offset_ = 0;
3783
2ea97941
ILT
3784 uint64_t data_size = address - orig_address;
3785 this->set_current_data_size_for_child(data_size);
3786 return data_size;
a445fddf
ILT
3787}
3788
6625d24e
DK
3789// Add a script input section. SIS is an Output_section::Input_section,
3790// which can be either a plain input section or a special input section like
3791// a relaxed input section. For a special input section, its size must be
3792// finalized.
a445fddf
ILT
3793
3794void
6625d24e 3795Output_section::add_script_input_section(const Input_section& sis)
a445fddf 3796{
6625d24e
DK
3797 uint64_t data_size = sis.data_size();
3798 uint64_t addralign = sis.addralign();
2ea97941
ILT
3799 if (addralign > this->addralign_)
3800 this->addralign_ = addralign;
a445fddf
ILT
3801
3802 off_t offset_in_section = this->current_data_size_for_child();
3803 off_t aligned_offset_in_section = align_address(offset_in_section,
2ea97941 3804 addralign);
a445fddf
ILT
3805
3806 this->set_current_data_size_for_child(aligned_offset_in_section
2ea97941 3807 + data_size);
a445fddf 3808
6625d24e 3809 this->input_sections_.push_back(sis);
0439c796
DK
3810
3811 // Update fast lookup maps if necessary.
3812 if (this->lookup_maps_->is_valid())
3813 {
3814 if (sis.is_merge_section())
3815 {
3816 Output_merge_base* pomb = sis.output_merge_base();
3817 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
3818 pomb->addralign());
3819 this->lookup_maps_->add_merge_section(msp, pomb);
3820 for (Output_merge_base::Input_sections::const_iterator p =
3821 pomb->input_sections_begin();
3822 p != pomb->input_sections_end();
3823 ++p)
3824 this->lookup_maps_->add_merge_input_section(p->first, p->second,
3825 pomb);
3826 }
3827 else if (sis.is_relaxed_input_section())
3828 {
3829 Output_relaxed_input_section* poris = sis.relaxed_input_section();
3830 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3831 poris->shndx(), poris);
3832 }
3833 }
20e6d0d6
DK
3834}
3835
8923b24c 3836// Save states for relaxation.
20e6d0d6
DK
3837
3838void
3839Output_section::save_states()
3840{
3841 gold_assert(this->checkpoint_ == NULL);
3842 Checkpoint_output_section* checkpoint =
3843 new Checkpoint_output_section(this->addralign_, this->flags_,
3844 this->input_sections_,
3845 this->first_input_offset_,
3846 this->attached_input_sections_are_sorted_);
3847 this->checkpoint_ = checkpoint;
3848 gold_assert(this->fills_.empty());
3849}
3850
8923b24c
DK
3851void
3852Output_section::discard_states()
3853{
3854 gold_assert(this->checkpoint_ != NULL);
3855 delete this->checkpoint_;
3856 this->checkpoint_ = NULL;
3857 gold_assert(this->fills_.empty());
3858
0439c796
DK
3859 // Simply invalidate the fast lookup maps since we do not keep
3860 // track of them.
3861 this->lookup_maps_->invalidate();
8923b24c
DK
3862}
3863
20e6d0d6
DK
3864void
3865Output_section::restore_states()
3866{
3867 gold_assert(this->checkpoint_ != NULL);
3868 Checkpoint_output_section* checkpoint = this->checkpoint_;
3869
3870 this->addralign_ = checkpoint->addralign();
3871 this->flags_ = checkpoint->flags();
3872 this->first_input_offset_ = checkpoint->first_input_offset();
3873
3874 if (!checkpoint->input_sections_saved())
3875 {
3876 // If we have not copied the input sections, just resize it.
3877 size_t old_size = checkpoint->input_sections_size();
3878 gold_assert(this->input_sections_.size() >= old_size);
3879 this->input_sections_.resize(old_size);
3880 }
3881 else
3882 {
3883 // We need to copy the whole list. This is not efficient for
3884 // extremely large output with hundreads of thousands of input
3885 // objects. We may need to re-think how we should pass sections
3886 // to scripts.
c0a62865 3887 this->input_sections_ = *checkpoint->input_sections();
20e6d0d6
DK
3888 }
3889
3890 this->attached_input_sections_are_sorted_ =
3891 checkpoint->attached_input_sections_are_sorted();
c0a62865 3892
0439c796
DK
3893 // Simply invalidate the fast lookup maps since we do not keep
3894 // track of them.
3895 this->lookup_maps_->invalidate();
a445fddf
ILT
3896}
3897
8923b24c
DK
3898// Update the section offsets of input sections in this. This is required if
3899// relaxation causes some input sections to change sizes.
3900
3901void
3902Output_section::adjust_section_offsets()
3903{
3904 if (!this->section_offsets_need_adjustment_)
3905 return;
3906
3907 off_t off = 0;
3908 for (Input_section_list::iterator p = this->input_sections_.begin();
3909 p != this->input_sections_.end();
3910 ++p)
3911 {
3912 off = align_address(off, p->addralign());
3913 if (p->is_input_section())
3914 p->relobj()->set_section_offset(p->shndx(), off);
3915 off += p->data_size();
3916 }
3917
3918 this->section_offsets_need_adjustment_ = false;
3919}
3920
7d9e3d98
ILT
3921// Print to the map file.
3922
3923void
3924Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3925{
3926 mapfile->print_output_section(this);
3927
3928 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3929 p != this->input_sections_.end();
3930 ++p)
3931 p->print_to_mapfile(mapfile);
3932}
3933
38c5e8b4
ILT
3934// Print stats for merge sections to stderr.
3935
3936void
3937Output_section::print_merge_stats()
3938{
3939 Input_section_list::iterator p;
3940 for (p = this->input_sections_.begin();
3941 p != this->input_sections_.end();
3942 ++p)
3943 p->print_merge_stats(this->name_);
3944}
3945
cdc29364
CC
3946// Set a fixed layout for the section. Used for incremental update links.
3947
3948void
3949Output_section::set_fixed_layout(uint64_t sh_addr, off_t sh_offset,
3950 off_t sh_size, uint64_t sh_addralign)
3951{
3952 this->addralign_ = sh_addralign;
3953 this->set_current_data_size(sh_size);
3954 if ((this->flags_ & elfcpp::SHF_ALLOC) != 0)
3955 this->set_address(sh_addr);
3956 this->set_file_offset(sh_offset);
3957 this->finalize_data_size();
3958 this->free_list_.init(sh_size, false);
3959 this->has_fixed_layout_ = true;
3960}
3961
3962// Reserve space within the fixed layout for the section. Used for
3963// incremental update links.
5146f448 3964
cdc29364
CC
3965void
3966Output_section::reserve(uint64_t sh_offset, uint64_t sh_size)
3967{
3968 this->free_list_.remove(sh_offset, sh_offset + sh_size);
3969}
3970
5146f448
CC
3971// Allocate space from the free list for the section. Used for
3972// incremental update links.
3973
3974off_t
3975Output_section::allocate(off_t len, uint64_t addralign)
3976{
3977 return this->free_list_.allocate(len, addralign, 0);
3978}
3979
a2fb1b05
ILT
3980// Output segment methods.
3981
2ea97941 3982Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
22f0da72 3983 : vaddr_(0),
a2fb1b05
ILT
3984 paddr_(0),
3985 memsz_(0),
a445fddf
ILT
3986 max_align_(0),
3987 min_p_align_(0),
a2fb1b05
ILT
3988 offset_(0),
3989 filesz_(0),
2ea97941
ILT
3990 type_(type),
3991 flags_(flags),
a445fddf 3992 is_max_align_known_(false),
8a5e3e08
ILT
3993 are_addresses_set_(false),
3994 is_large_data_segment_(false)
a2fb1b05 3995{
bb321bb1
ILT
3996 // The ELF ABI specifies that a PT_TLS segment always has PF_R as
3997 // the flags.
3998 if (type == elfcpp::PT_TLS)
3999 this->flags_ = elfcpp::PF_R;
a2fb1b05
ILT
4000}
4001
22f0da72 4002// Add an Output_section to a PT_LOAD Output_segment.
a2fb1b05
ILT
4003
4004void
22f0da72
ILT
4005Output_segment::add_output_section_to_load(Layout* layout,
4006 Output_section* os,
4007 elfcpp::Elf_Word seg_flags)
a2fb1b05 4008{
22f0da72 4009 gold_assert(this->type() == elfcpp::PT_LOAD);
a3ad94ed 4010 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
a445fddf 4011 gold_assert(!this->is_max_align_known_);
8a5e3e08 4012 gold_assert(os->is_large_data_section() == this->is_large_data_segment());
75f65a3e 4013
a192ba05 4014 this->update_flags_for_output_section(seg_flags);
75f65a3e 4015
22f0da72
ILT
4016 // We don't want to change the ordering if we have a linker script
4017 // with a SECTIONS clause.
4018 Output_section_order order = os->order();
4019 if (layout->script_options()->saw_sections_clause())
4020 order = static_cast<Output_section_order>(0);
75f65a3e 4021 else
22f0da72 4022 gold_assert(order != ORDER_INVALID);
54dc6425 4023
22f0da72
ILT
4024 this->output_lists_[order].push_back(os);
4025}
9f1d377b 4026
22f0da72 4027// Add an Output_section to a non-PT_LOAD Output_segment.
1a2dff53 4028
22f0da72
ILT
4029void
4030Output_segment::add_output_section_to_nonload(Output_section* os,
4031 elfcpp::Elf_Word seg_flags)
4032{
4033 gold_assert(this->type() != elfcpp::PT_LOAD);
4034 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4035 gold_assert(!this->is_max_align_known_);
1a2dff53 4036
22f0da72 4037 this->update_flags_for_output_section(seg_flags);
9f1d377b 4038
22f0da72
ILT
4039 this->output_lists_[0].push_back(os);
4040}
8a5e3e08 4041
22f0da72
ILT
4042// Remove an Output_section from this segment. It is an error if it
4043// is not present.
8a5e3e08 4044
22f0da72
ILT
4045void
4046Output_segment::remove_output_section(Output_section* os)
4047{
4048 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
8a5e3e08 4049 {
22f0da72
ILT
4050 Output_data_list* pdl = &this->output_lists_[i];
4051 for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p)
8a5e3e08 4052 {
22f0da72 4053 if (*p == os)
8a5e3e08 4054 {
22f0da72 4055 pdl->erase(p);
8a5e3e08
ILT
4056 return;
4057 }
4058 }
f5c870d2 4059 }
1650c4ff
ILT
4060 gold_unreachable();
4061}
4062
a192ba05
ILT
4063// Add an Output_data (which need not be an Output_section) to the
4064// start of a segment.
75f65a3e
ILT
4065
4066void
4067Output_segment::add_initial_output_data(Output_data* od)
4068{
a445fddf 4069 gold_assert(!this->is_max_align_known_);
22f0da72
ILT
4070 Output_data_list::iterator p = this->output_lists_[0].begin();
4071 this->output_lists_[0].insert(p, od);
4072}
4073
4074// Return true if this segment has any sections which hold actual
4075// data, rather than being a BSS section.
4076
4077bool
4078Output_segment::has_any_data_sections() const
4079{
4080 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4081 {
4082 const Output_data_list* pdl = &this->output_lists_[i];
4083 for (Output_data_list::const_iterator p = pdl->begin();
4084 p != pdl->end();
4085 ++p)
4086 {
4087 if (!(*p)->is_section())
4088 return true;
4089 if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS)
4090 return true;
4091 }
4092 }
4093 return false;
75f65a3e
ILT
4094}
4095
5bc2f5be
CC
4096// Return whether the first data section (not counting TLS sections)
4097// is a relro section.
9f1d377b
ILT
4098
4099bool
4100Output_segment::is_first_section_relro() const
4101{
22f0da72
ILT
4102 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4103 {
5bc2f5be
CC
4104 if (i == static_cast<int>(ORDER_TLS_DATA)
4105 || i == static_cast<int>(ORDER_TLS_BSS))
4106 continue;
22f0da72
ILT
4107 const Output_data_list* pdl = &this->output_lists_[i];
4108 if (!pdl->empty())
4109 {
4110 Output_data* p = pdl->front();
4111 return p->is_section() && p->output_section()->is_relro();
4112 }
4113 }
4114 return false;
9f1d377b
ILT
4115}
4116
75f65a3e 4117// Return the maximum alignment of the Output_data in Output_segment.
75f65a3e
ILT
4118
4119uint64_t
a445fddf 4120Output_segment::maximum_alignment()
75f65a3e 4121{
a445fddf 4122 if (!this->is_max_align_known_)
ead1e424 4123 {
22f0da72
ILT
4124 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4125 {
4126 const Output_data_list* pdl = &this->output_lists_[i];
4127 uint64_t addralign = Output_segment::maximum_alignment_list(pdl);
4128 if (addralign > this->max_align_)
4129 this->max_align_ = addralign;
4130 }
a445fddf 4131 this->is_max_align_known_ = true;
ead1e424
ILT
4132 }
4133
a445fddf 4134 return this->max_align_;
75f65a3e
ILT
4135}
4136
ead1e424
ILT
4137// Return the maximum alignment of a list of Output_data.
4138
4139uint64_t
a445fddf 4140Output_segment::maximum_alignment_list(const Output_data_list* pdl)
ead1e424
ILT
4141{
4142 uint64_t ret = 0;
4143 for (Output_data_list::const_iterator p = pdl->begin();
4144 p != pdl->end();
4145 ++p)
4146 {
2ea97941
ILT
4147 uint64_t addralign = (*p)->addralign();
4148 if (addralign > ret)
4149 ret = addralign;
ead1e424
ILT
4150 }
4151 return ret;
4152}
4153
22f0da72 4154// Return whether this segment has any dynamic relocs.
4f4c5f80 4155
22f0da72
ILT
4156bool
4157Output_segment::has_dynamic_reloc() const
4f4c5f80 4158{
22f0da72
ILT
4159 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4160 if (this->has_dynamic_reloc_list(&this->output_lists_[i]))
4161 return true;
4162 return false;
4f4c5f80
ILT
4163}
4164
22f0da72 4165// Return whether this Output_data_list has any dynamic relocs.
4f4c5f80 4166
22f0da72
ILT
4167bool
4168Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const
4f4c5f80 4169{
4f4c5f80
ILT
4170 for (Output_data_list::const_iterator p = pdl->begin();
4171 p != pdl->end();
4172 ++p)
22f0da72
ILT
4173 if ((*p)->has_dynamic_reloc())
4174 return true;
4175 return false;
4f4c5f80
ILT
4176}
4177
a445fddf
ILT
4178// Set the section addresses for an Output_segment. If RESET is true,
4179// reset the addresses first. ADDR is the address and *POFF is the
4180// file offset. Set the section indexes starting with *PSHNDX.
5bc2f5be
CC
4181// INCREASE_RELRO is the size of the portion of the first non-relro
4182// section that should be included in the PT_GNU_RELRO segment.
4183// If this segment has relro sections, and has been aligned for
4184// that purpose, set *HAS_RELRO to TRUE. Return the address of
4185// the immediately following segment. Update *HAS_RELRO, *POFF,
4186// and *PSHNDX.
75f65a3e
ILT
4187
4188uint64_t
cdc29364 4189Output_segment::set_section_addresses(Layout* layout, bool reset,
1a2dff53 4190 uint64_t addr,
fd064a5b 4191 unsigned int* increase_relro,
fc497986 4192 bool* has_relro,
1a2dff53 4193 off_t* poff,
ead1e424 4194 unsigned int* pshndx)
75f65a3e 4195{
a3ad94ed 4196 gold_assert(this->type_ == elfcpp::PT_LOAD);
75f65a3e 4197
fc497986 4198 uint64_t last_relro_pad = 0;
1a2dff53
ILT
4199 off_t orig_off = *poff;
4200
5bc2f5be
CC
4201 bool in_tls = false;
4202
1a2dff53
ILT
4203 // If we have relro sections, we need to pad forward now so that the
4204 // relro sections plus INCREASE_RELRO end on a common page boundary.
4205 if (parameters->options().relro()
4206 && this->is_first_section_relro()
4207 && (!this->are_addresses_set_ || reset))
4208 {
4209 uint64_t relro_size = 0;
4210 off_t off = *poff;
fc497986 4211 uint64_t max_align = 0;
5bc2f5be 4212 for (int i = 0; i <= static_cast<int>(ORDER_RELRO_LAST); ++i)
1a2dff53 4213 {
22f0da72
ILT
4214 Output_data_list* pdl = &this->output_lists_[i];
4215 Output_data_list::iterator p;
4216 for (p = pdl->begin(); p != pdl->end(); ++p)
1a2dff53 4217 {
22f0da72
ILT
4218 if (!(*p)->is_section())
4219 break;
fc497986
CC
4220 uint64_t align = (*p)->addralign();
4221 if (align > max_align)
4222 max_align = align;
5bc2f5be
CC
4223 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4224 in_tls = true;
4225 else if (in_tls)
4226 {
4227 // Align the first non-TLS section to the alignment
4228 // of the TLS segment.
4229 align = max_align;
4230 in_tls = false;
4231 }
fc497986 4232 relro_size = align_address(relro_size, align);
5bc2f5be
CC
4233 // Ignore the size of the .tbss section.
4234 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS)
4235 && (*p)->is_section_type(elfcpp::SHT_NOBITS))
4236 continue;
22f0da72
ILT
4237 if ((*p)->is_address_valid())
4238 relro_size += (*p)->data_size();
4239 else
4240 {
4241 // FIXME: This could be faster.
4242 (*p)->set_address_and_file_offset(addr + relro_size,
4243 off + relro_size);
4244 relro_size += (*p)->data_size();
4245 (*p)->reset_address_and_file_offset();
4246 }
1a2dff53 4247 }
22f0da72
ILT
4248 if (p != pdl->end())
4249 break;
1a2dff53 4250 }
fd064a5b 4251 relro_size += *increase_relro;
fc497986
CC
4252 // Pad the total relro size to a multiple of the maximum
4253 // section alignment seen.
4254 uint64_t aligned_size = align_address(relro_size, max_align);
4255 // Note the amount of padding added after the last relro section.
4256 last_relro_pad = aligned_size - relro_size;
fc497986 4257 *has_relro = true;
1a2dff53
ILT
4258
4259 uint64_t page_align = parameters->target().common_pagesize();
4260
4261 // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
fc497986 4262 uint64_t desired_align = page_align - (aligned_size % page_align);
1a2dff53
ILT
4263 if (desired_align < *poff % page_align)
4264 *poff += page_align - *poff % page_align;
4265 *poff += desired_align - *poff % page_align;
4266 addr += *poff - orig_off;
4267 orig_off = *poff;
4268 }
4269
a445fddf
ILT
4270 if (!reset && this->are_addresses_set_)
4271 {
4272 gold_assert(this->paddr_ == addr);
4273 addr = this->vaddr_;
4274 }
4275 else
4276 {
4277 this->vaddr_ = addr;
4278 this->paddr_ = addr;
4279 this->are_addresses_set_ = true;
4280 }
75f65a3e 4281
5bc2f5be 4282 in_tls = false;
96a2b4e4 4283
75f65a3e
ILT
4284 this->offset_ = orig_off;
4285
22f0da72
ILT
4286 off_t off = 0;
4287 uint64_t ret;
4288 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4289 {
fc497986
CC
4290 if (i == static_cast<int>(ORDER_RELRO_LAST))
4291 {
4292 *poff += last_relro_pad;
4293 addr += last_relro_pad;
fd064a5b
CC
4294 if (this->output_lists_[i].empty())
4295 {
4296 // If there is nothing in the ORDER_RELRO_LAST list,
4297 // the padding will occur at the end of the relro
4298 // segment, and we need to add it to *INCREASE_RELRO.
4299 *increase_relro += last_relro_pad;
4300 }
fc497986 4301 }
5bc2f5be
CC
4302 addr = this->set_section_list_addresses(layout, reset,
4303 &this->output_lists_[i],
4304 addr, poff, pshndx, &in_tls);
22f0da72
ILT
4305 if (i < static_cast<int>(ORDER_SMALL_BSS))
4306 {
4307 this->filesz_ = *poff - orig_off;
4308 off = *poff;
4309 }
75f65a3e 4310
22f0da72
ILT
4311 ret = addr;
4312 }
96a2b4e4
ILT
4313
4314 // If the last section was a TLS section, align upward to the
4315 // alignment of the TLS segment, so that the overall size of the TLS
4316 // segment is aligned.
4317 if (in_tls)
4318 {
4319 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
4320 *poff = align_address(*poff, segment_align);
4321 }
4322
75f65a3e
ILT
4323 this->memsz_ = *poff - orig_off;
4324
4325 // Ignore the file offset adjustments made by the BSS Output_data
4326 // objects.
4327 *poff = off;
61ba1cf9
ILT
4328
4329 return ret;
75f65a3e
ILT
4330}
4331
b8e6aad9
ILT
4332// Set the addresses and file offsets in a list of Output_data
4333// structures.
75f65a3e
ILT
4334
4335uint64_t
cdc29364 4336Output_segment::set_section_list_addresses(Layout* layout, bool reset,
96a2b4e4 4337 Output_data_list* pdl,
ead1e424 4338 uint64_t addr, off_t* poff,
96a2b4e4 4339 unsigned int* pshndx,
1a2dff53 4340 bool* in_tls)
75f65a3e 4341{
ead1e424 4342 off_t startoff = *poff;
cdc29364
CC
4343 // For incremental updates, we may allocate non-fixed sections from
4344 // free space in the file. This keeps track of the high-water mark.
4345 off_t maxoff = startoff;
75f65a3e 4346
ead1e424 4347 off_t off = startoff;
75f65a3e
ILT
4348 for (Output_data_list::iterator p = pdl->begin();
4349 p != pdl->end();
4350 ++p)
4351 {
a445fddf
ILT
4352 if (reset)
4353 (*p)->reset_address_and_file_offset();
4354
cdc29364
CC
4355 // When doing an incremental update or when using a linker script,
4356 // the section will most likely already have an address.
a445fddf 4357 if (!(*p)->is_address_valid())
3802b2dd 4358 {
96a2b4e4
ILT
4359 uint64_t align = (*p)->addralign();
4360
4361 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4362 {
4363 // Give the first TLS section the alignment of the
4364 // entire TLS segment. Otherwise the TLS segment as a
4365 // whole may be misaligned.
4366 if (!*in_tls)
4367 {
4368 Output_segment* tls_segment = layout->tls_segment();
4369 gold_assert(tls_segment != NULL);
4370 uint64_t segment_align = tls_segment->maximum_alignment();
4371 gold_assert(segment_align >= align);
4372 align = segment_align;
4373
4374 *in_tls = true;
4375 }
4376 }
4377 else
4378 {
4379 // If this is the first section after the TLS segment,
4380 // align it to at least the alignment of the TLS
4381 // segment, so that the size of the overall TLS segment
4382 // is aligned.
4383 if (*in_tls)
4384 {
4385 uint64_t segment_align =
4386 layout->tls_segment()->maximum_alignment();
4387 if (segment_align > align)
4388 align = segment_align;
4389
4390 *in_tls = false;
4391 }
4392 }
4393
fb0e076f 4394 if (!parameters->incremental_update())
cdc29364
CC
4395 {
4396 off = align_address(off, align);
4397 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4398 }
4399 else
4400 {
4401 // Incremental update: allocate file space from free list.
4402 (*p)->pre_finalize_data_size();
4403 off_t current_size = (*p)->current_data_size();
4404 off = layout->allocate(current_size, align, startoff);
4405 if (off == -1)
4406 {
4407 gold_assert((*p)->output_section() != NULL);
e6455dfb
CC
4408 gold_fallback(_("out of patch space for section %s; "
4409 "relink with --incremental-full"),
4410 (*p)->output_section()->name());
cdc29364
CC
4411 }
4412 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4413 if ((*p)->data_size() > current_size)
4414 {
4415 gold_assert((*p)->output_section() != NULL);
e6455dfb
CC
4416 gold_fallback(_("%s: section changed size; "
4417 "relink with --incremental-full"),
4418 (*p)->output_section()->name());
cdc29364
CC
4419 }
4420 }
3802b2dd 4421 }
cdc29364
CC
4422 else if (parameters->incremental_update())
4423 {
4424 // For incremental updates, use the fixed offset for the
4425 // high-water mark computation.
4426 off = (*p)->offset();
4427 }
a445fddf
ILT
4428 else
4429 {
4430 // The script may have inserted a skip forward, but it
4431 // better not have moved backward.
661be1e2
ILT
4432 if ((*p)->address() >= addr + (off - startoff))
4433 off += (*p)->address() - (addr + (off - startoff));
4434 else
4435 {
4436 if (!layout->script_options()->saw_sections_clause())
4437 gold_unreachable();
4438 else
4439 {
4440 Output_section* os = (*p)->output_section();
64b1ae37
DK
4441
4442 // Cast to unsigned long long to avoid format warnings.
4443 unsigned long long previous_dot =
4444 static_cast<unsigned long long>(addr + (off - startoff));
4445 unsigned long long dot =
4446 static_cast<unsigned long long>((*p)->address());
4447
661be1e2
ILT
4448 if (os == NULL)
4449 gold_error(_("dot moves backward in linker script "
64b1ae37 4450 "from 0x%llx to 0x%llx"), previous_dot, dot);
661be1e2
ILT
4451 else
4452 gold_error(_("address of section '%s' moves backward "
4453 "from 0x%llx to 0x%llx"),
64b1ae37 4454 os->name(), previous_dot, dot);
661be1e2
ILT
4455 }
4456 }
a445fddf
ILT
4457 (*p)->set_file_offset(off);
4458 (*p)->finalize_data_size();
4459 }
ead1e424 4460
9fbd3822
CC
4461 if (parameters->incremental_update())
4462 gold_debug(DEBUG_INCREMENTAL,
4463 "set_section_list_addresses: %08lx %08lx %s",
4464 static_cast<long>(off),
4465 static_cast<long>((*p)->data_size()),
4466 ((*p)->output_section() != NULL
4467 ? (*p)->output_section()->name() : "(special)"));
4468
4469 // We want to ignore the size of a SHF_TLS SHT_NOBITS
96a2b4e4
ILT
4470 // section. Such a section does not affect the size of a
4471 // PT_LOAD segment.
4472 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
ead1e424
ILT
4473 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
4474 off += (*p)->data_size();
75f65a3e 4475
cdc29364
CC
4476 if (off > maxoff)
4477 maxoff = off;
4478
ead1e424
ILT
4479 if ((*p)->is_section())
4480 {
4481 (*p)->set_out_shndx(*pshndx);
4482 ++*pshndx;
4483 }
75f65a3e
ILT
4484 }
4485
cdc29364
CC
4486 *poff = maxoff;
4487 return addr + (maxoff - startoff);
75f65a3e
ILT
4488}
4489
4490// For a non-PT_LOAD segment, set the offset from the sections, if
1a2dff53 4491// any. Add INCREASE to the file size and the memory size.
75f65a3e
ILT
4492
4493void
1a2dff53 4494Output_segment::set_offset(unsigned int increase)
75f65a3e 4495{
a3ad94ed 4496 gold_assert(this->type_ != elfcpp::PT_LOAD);
75f65a3e 4497
a445fddf
ILT
4498 gold_assert(!this->are_addresses_set_);
4499
22f0da72
ILT
4500 // A non-load section only uses output_lists_[0].
4501
4502 Output_data_list* pdl = &this->output_lists_[0];
4503
4504 if (pdl->empty())
75f65a3e 4505 {
1a2dff53 4506 gold_assert(increase == 0);
75f65a3e
ILT
4507 this->vaddr_ = 0;
4508 this->paddr_ = 0;
a445fddf 4509 this->are_addresses_set_ = true;
75f65a3e 4510 this->memsz_ = 0;
a445fddf 4511 this->min_p_align_ = 0;
75f65a3e
ILT
4512 this->offset_ = 0;
4513 this->filesz_ = 0;
4514 return;
4515 }
4516
22f0da72 4517 // Find the first and last section by address.
5f1ab67a
ILT
4518 const Output_data* first = NULL;
4519 const Output_data* last_data = NULL;
4520 const Output_data* last_bss = NULL;
22f0da72
ILT
4521 for (Output_data_list::const_iterator p = pdl->begin();
4522 p != pdl->end();
4523 ++p)
4524 {
4525 if (first == NULL
4526 || (*p)->address() < first->address()
4527 || ((*p)->address() == first->address()
4528 && (*p)->data_size() < first->data_size()))
4529 first = *p;
4530 const Output_data** plast;
4531 if ((*p)->is_section()
4532 && (*p)->output_section()->type() == elfcpp::SHT_NOBITS)
4533 plast = &last_bss;
4534 else
4535 plast = &last_data;
4536 if (*plast == NULL
4537 || (*p)->address() > (*plast)->address()
4538 || ((*p)->address() == (*plast)->address()
4539 && (*p)->data_size() > (*plast)->data_size()))
4540 *plast = *p;
4541 }
5f1ab67a 4542
75f65a3e 4543 this->vaddr_ = first->address();
a445fddf
ILT
4544 this->paddr_ = (first->has_load_address()
4545 ? first->load_address()
4546 : this->vaddr_);
4547 this->are_addresses_set_ = true;
75f65a3e
ILT
4548 this->offset_ = first->offset();
4549
22f0da72 4550 if (last_data == NULL)
75f65a3e
ILT
4551 this->filesz_ = 0;
4552 else
5f1ab67a
ILT
4553 this->filesz_ = (last_data->address()
4554 + last_data->data_size()
4555 - this->vaddr_);
75f65a3e 4556
5f1ab67a 4557 const Output_data* last = last_bss != NULL ? last_bss : last_data;
75f65a3e
ILT
4558 this->memsz_ = (last->address()
4559 + last->data_size()
4560 - this->vaddr_);
96a2b4e4 4561
1a2dff53
ILT
4562 this->filesz_ += increase;
4563 this->memsz_ += increase;
4564
fd064a5b
CC
4565 // If this is a RELRO segment, verify that the segment ends at a
4566 // page boundary.
4567 if (this->type_ == elfcpp::PT_GNU_RELRO)
4568 {
4569 uint64_t page_align = parameters->target().common_pagesize();
4570 uint64_t segment_end = this->vaddr_ + this->memsz_;
cdc29364
CC
4571 if (parameters->incremental_update())
4572 {
4573 // The INCREASE_RELRO calculation is bypassed for an incremental
4574 // update, so we need to adjust the segment size manually here.
4575 segment_end = align_address(segment_end, page_align);
4576 this->memsz_ = segment_end - this->vaddr_;
4577 }
4578 else
4579 gold_assert(segment_end == align_address(segment_end, page_align));
fd064a5b
CC
4580 }
4581
96a2b4e4
ILT
4582 // If this is a TLS segment, align the memory size. The code in
4583 // set_section_list ensures that the section after the TLS segment
4584 // is aligned to give us room.
4585 if (this->type_ == elfcpp::PT_TLS)
4586 {
4587 uint64_t segment_align = this->maximum_alignment();
4588 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
4589 this->memsz_ = align_address(this->memsz_, segment_align);
4590 }
75f65a3e
ILT
4591}
4592
7bf1f802
ILT
4593// Set the TLS offsets of the sections in the PT_TLS segment.
4594
4595void
4596Output_segment::set_tls_offsets()
4597{
4598 gold_assert(this->type_ == elfcpp::PT_TLS);
4599
22f0da72
ILT
4600 for (Output_data_list::iterator p = this->output_lists_[0].begin();
4601 p != this->output_lists_[0].end();
7bf1f802
ILT
4602 ++p)
4603 (*p)->set_tls_offset(this->vaddr_);
4604}
4605
22f0da72 4606// Return the load address of the first section.
a445fddf
ILT
4607
4608uint64_t
4609Output_segment::first_section_load_address() const
4610{
22f0da72
ILT
4611 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4612 {
4613 const Output_data_list* pdl = &this->output_lists_[i];
4614 for (Output_data_list::const_iterator p = pdl->begin();
4615 p != pdl->end();
4616 ++p)
4617 {
4618 if ((*p)->is_section())
4619 return ((*p)->has_load_address()
4620 ? (*p)->load_address()
4621 : (*p)->address());
4622 }
4623 }
a445fddf
ILT
4624 gold_unreachable();
4625}
4626
75f65a3e
ILT
4627// Return the number of Output_sections in an Output_segment.
4628
4629unsigned int
4630Output_segment::output_section_count() const
4631{
22f0da72
ILT
4632 unsigned int ret = 0;
4633 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4634 ret += this->output_section_count_list(&this->output_lists_[i]);
4635 return ret;
75f65a3e
ILT
4636}
4637
4638// Return the number of Output_sections in an Output_data_list.
4639
4640unsigned int
4641Output_segment::output_section_count_list(const Output_data_list* pdl) const
4642{
4643 unsigned int count = 0;
4644 for (Output_data_list::const_iterator p = pdl->begin();
4645 p != pdl->end();
4646 ++p)
4647 {
4648 if ((*p)->is_section())
4649 ++count;
4650 }
4651 return count;
a2fb1b05
ILT
4652}
4653
1c4f3631
ILT
4654// Return the section attached to the list segment with the lowest
4655// load address. This is used when handling a PHDRS clause in a
4656// linker script.
4657
4658Output_section*
4659Output_segment::section_with_lowest_load_address() const
4660{
4661 Output_section* found = NULL;
4662 uint64_t found_lma = 0;
22f0da72
ILT
4663 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4664 this->lowest_load_address_in_list(&this->output_lists_[i], &found,
4665 &found_lma);
1c4f3631
ILT
4666 return found;
4667}
4668
4669// Look through a list for a section with a lower load address.
4670
4671void
4672Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4673 Output_section** found,
4674 uint64_t* found_lma) const
4675{
4676 for (Output_data_list::const_iterator p = pdl->begin();
4677 p != pdl->end();
4678 ++p)
4679 {
4680 if (!(*p)->is_section())
4681 continue;
4682 Output_section* os = static_cast<Output_section*>(*p);
4683 uint64_t lma = (os->has_load_address()
4684 ? os->load_address()
4685 : os->address());
4686 if (*found == NULL || lma < *found_lma)
4687 {
4688 *found = os;
4689 *found_lma = lma;
4690 }
4691 }
4692}
4693
61ba1cf9
ILT
4694// Write the segment data into *OPHDR.
4695
4696template<int size, bool big_endian>
4697void
ead1e424 4698Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
61ba1cf9
ILT
4699{
4700 ophdr->put_p_type(this->type_);
4701 ophdr->put_p_offset(this->offset_);
4702 ophdr->put_p_vaddr(this->vaddr_);
4703 ophdr->put_p_paddr(this->paddr_);
4704 ophdr->put_p_filesz(this->filesz_);
4705 ophdr->put_p_memsz(this->memsz_);
4706 ophdr->put_p_flags(this->flags_);
a445fddf 4707 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
61ba1cf9
ILT
4708}
4709
4710// Write the section headers into V.
4711
4712template<int size, bool big_endian>
4713unsigned char*
16649710
ILT
4714Output_segment::write_section_headers(const Layout* layout,
4715 const Stringpool* secnamepool,
ead1e424 4716 unsigned char* v,
ca09d69a 4717 unsigned int* pshndx) const
5482377d 4718{
ead1e424
ILT
4719 // Every section that is attached to a segment must be attached to a
4720 // PT_LOAD segment, so we only write out section headers for PT_LOAD
4721 // segments.
4722 if (this->type_ != elfcpp::PT_LOAD)
4723 return v;
4724
22f0da72
ILT
4725 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4726 {
4727 const Output_data_list* pdl = &this->output_lists_[i];
4728 v = this->write_section_headers_list<size, big_endian>(layout,
4729 secnamepool,
4730 pdl,
4731 v, pshndx);
4732 }
4733
61ba1cf9
ILT
4734 return v;
4735}
4736
4737template<int size, bool big_endian>
4738unsigned char*
16649710
ILT
4739Output_segment::write_section_headers_list(const Layout* layout,
4740 const Stringpool* secnamepool,
61ba1cf9 4741 const Output_data_list* pdl,
ead1e424 4742 unsigned char* v,
7d1a9ebb 4743 unsigned int* pshndx) const
61ba1cf9
ILT
4744{
4745 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4746 for (Output_data_list::const_iterator p = pdl->begin();
4747 p != pdl->end();
4748 ++p)
4749 {
4750 if ((*p)->is_section())
4751 {
5482377d 4752 const Output_section* ps = static_cast<const Output_section*>(*p);
a3ad94ed 4753 gold_assert(*pshndx == ps->out_shndx());
61ba1cf9 4754 elfcpp::Shdr_write<size, big_endian> oshdr(v);
16649710 4755 ps->write_header(layout, secnamepool, &oshdr);
61ba1cf9 4756 v += shdr_size;
ead1e424 4757 ++*pshndx;
61ba1cf9
ILT
4758 }
4759 }
4760 return v;
4761}
4762
7d9e3d98
ILT
4763// Print the output sections to the map file.
4764
4765void
4766Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4767{
4768 if (this->type() != elfcpp::PT_LOAD)
4769 return;
22f0da72
ILT
4770 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4771 this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]);
7d9e3d98
ILT
4772}
4773
4774// Print an output section list to the map file.
4775
4776void
4777Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4778 const Output_data_list* pdl) const
4779{
4780 for (Output_data_list::const_iterator p = pdl->begin();
4781 p != pdl->end();
4782 ++p)
4783 (*p)->print_to_mapfile(mapfile);
4784}
4785
a2fb1b05
ILT
4786// Output_file methods.
4787
14144f39
ILT
4788Output_file::Output_file(const char* name)
4789 : name_(name),
61ba1cf9
ILT
4790 o_(-1),
4791 file_size_(0),
c420411f 4792 base_(NULL),
516cb3d0 4793 map_is_anonymous_(false),
88597d34 4794 map_is_allocated_(false),
516cb3d0 4795 is_temporary_(false)
61ba1cf9
ILT
4796{
4797}
4798
404c2abb 4799// Try to open an existing file. Returns false if the file doesn't
aa92d6ed
CC
4800// exist, has a size of 0 or can't be mmapped. If BASE_NAME is not
4801// NULL, open that file as the base for incremental linking, and
4802// copy its contents to the new output file. This routine can
4803// be called for incremental updates, in which case WRITABLE should
4804// be true, or by the incremental-dump utility, in which case
4805// WRITABLE should be false.
404c2abb
ILT
4806
4807bool
aa92d6ed 4808Output_file::open_base_file(const char* base_name, bool writable)
404c2abb
ILT
4809{
4810 // The name "-" means "stdout".
4811 if (strcmp(this->name_, "-") == 0)
4812 return false;
4813
aa92d6ed
CC
4814 bool use_base_file = base_name != NULL;
4815 if (!use_base_file)
4816 base_name = this->name_;
4817 else if (strcmp(base_name, this->name_) == 0)
4818 gold_fatal(_("%s: incremental base and output file name are the same"),
4819 base_name);
4820
404c2abb
ILT
4821 // Don't bother opening files with a size of zero.
4822 struct stat s;
aa92d6ed
CC
4823 if (::stat(base_name, &s) != 0)
4824 {
4825 gold_info(_("%s: stat: %s"), base_name, strerror(errno));
4826 return false;
4827 }
4828 if (s.st_size == 0)
4829 {
4830 gold_info(_("%s: incremental base file is empty"), base_name);
4831 return false;
4832 }
4833
4834 // If we're using a base file, we want to open it read-only.
4835 if (use_base_file)
4836 writable = false;
404c2abb 4837
aa92d6ed
CC
4838 int oflags = writable ? O_RDWR : O_RDONLY;
4839 int o = open_descriptor(-1, base_name, oflags, 0);
404c2abb 4840 if (o < 0)
aa92d6ed
CC
4841 {
4842 gold_info(_("%s: open: %s"), base_name, strerror(errno));
4843 return false;
4844 }
4845
4846 // If the base file and the output file are different, open a
4847 // new output file and read the contents from the base file into
4848 // the newly-mapped region.
4849 if (use_base_file)
4850 {
4851 this->open(s.st_size);
dfb45471
CC
4852 ssize_t bytes_to_read = s.st_size;
4853 unsigned char* p = this->base_;
4854 while (bytes_to_read > 0)
4855 {
4856 ssize_t len = ::read(o, p, bytes_to_read);
4857 if (len < 0)
4858 {
4859 gold_info(_("%s: read failed: %s"), base_name, strerror(errno));
4860 return false;
4861 }
4862 if (len == 0)
4863 {
4864 gold_info(_("%s: file too short: read only %lld of %lld bytes"),
4865 base_name,
4866 static_cast<long long>(s.st_size - bytes_to_read),
4867 static_cast<long long>(s.st_size));
4868 return false;
4869 }
4870 p += len;
4871 bytes_to_read -= len;
4872 }
aa92d6ed
CC
4873 ::close(o);
4874 return true;
4875 }
4876
404c2abb
ILT
4877 this->o_ = o;
4878 this->file_size_ = s.st_size;
4879
aa92d6ed 4880 if (!this->map_no_anonymous(writable))
404c2abb
ILT
4881 {
4882 release_descriptor(o, true);
4883 this->o_ = -1;
4884 this->file_size_ = 0;
4885 return false;
4886 }
4887
4888 return true;
4889}
4890
61ba1cf9
ILT
4891// Open the output file.
4892
a2fb1b05 4893void
61ba1cf9 4894Output_file::open(off_t file_size)
a2fb1b05 4895{
61ba1cf9
ILT
4896 this->file_size_ = file_size;
4897
4e9d8586
ILT
4898 // Unlink the file first; otherwise the open() may fail if the file
4899 // is busy (e.g. it's an executable that's currently being executed).
4900 //
4901 // However, the linker may be part of a system where a zero-length
4902 // file is created for it to write to, with tight permissions (gcc
4903 // 2.95 did something like this). Unlinking the file would work
4904 // around those permission controls, so we only unlink if the file
4905 // has a non-zero size. We also unlink only regular files to avoid
4906 // trouble with directories/etc.
4907 //
4908 // If we fail, continue; this command is merely a best-effort attempt
4909 // to improve the odds for open().
4910
42a1b686 4911 // We let the name "-" mean "stdout"
516cb3d0 4912 if (!this->is_temporary_)
42a1b686 4913 {
516cb3d0
ILT
4914 if (strcmp(this->name_, "-") == 0)
4915 this->o_ = STDOUT_FILENO;
4916 else
4917 {
4918 struct stat s;
6a89f575
CC
4919 if (::stat(this->name_, &s) == 0
4920 && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
4921 {
4922 if (s.st_size != 0)
4923 ::unlink(this->name_);
4924 else if (!parameters->options().relocatable())
4925 {
4926 // If we don't unlink the existing file, add execute
4927 // permission where read permissions already exist
4928 // and where the umask permits.
4929 int mask = ::umask(0);
4930 ::umask(mask);
4931 s.st_mode |= (s.st_mode & 0444) >> 2;
4932 ::chmod(this->name_, s.st_mode & ~mask);
4933 }
4934 }
516cb3d0 4935
8851ecca 4936 int mode = parameters->options().relocatable() ? 0666 : 0777;
2a00e4fb
ILT
4937 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
4938 mode);
516cb3d0
ILT
4939 if (o < 0)
4940 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4941 this->o_ = o;
4942 }
42a1b686 4943 }
61ba1cf9 4944
27bc2bce
ILT
4945 this->map();
4946}
4947
4948// Resize the output file.
4949
4950void
4951Output_file::resize(off_t file_size)
4952{
c420411f
ILT
4953 // If the mmap is mapping an anonymous memory buffer, this is easy:
4954 // just mremap to the new size. If it's mapping to a file, we want
4955 // to unmap to flush to the file, then remap after growing the file.
4956 if (this->map_is_anonymous_)
4957 {
88597d34
ILT
4958 void* base;
4959 if (!this->map_is_allocated_)
4960 {
4961 base = ::mremap(this->base_, this->file_size_, file_size,
4962 MREMAP_MAYMOVE);
4963 if (base == MAP_FAILED)
4964 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
4965 }
4966 else
4967 {
4968 base = realloc(this->base_, file_size);
4969 if (base == NULL)
4970 gold_nomem();
4971 if (file_size > this->file_size_)
4972 memset(static_cast<char*>(base) + this->file_size_, 0,
4973 file_size - this->file_size_);
4974 }
c420411f
ILT
4975 this->base_ = static_cast<unsigned char*>(base);
4976 this->file_size_ = file_size;
4977 }
4978 else
4979 {
4980 this->unmap();
4981 this->file_size_ = file_size;
aa92d6ed 4982 if (!this->map_no_anonymous(true))
fdcac5af 4983 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
c420411f 4984 }
27bc2bce
ILT
4985}
4986
404c2abb
ILT
4987// Map an anonymous block of memory which will later be written to the
4988// file. Return whether the map succeeded.
26736d8e 4989
404c2abb 4990bool
26736d8e
ILT
4991Output_file::map_anonymous()
4992{
404c2abb
ILT
4993 void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4994 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
88597d34 4995 if (base == MAP_FAILED)
404c2abb 4996 {
88597d34
ILT
4997 base = malloc(this->file_size_);
4998 if (base == NULL)
4999 return false;
5000 memset(base, 0, this->file_size_);
5001 this->map_is_allocated_ = true;
404c2abb 5002 }
88597d34
ILT
5003 this->base_ = static_cast<unsigned char*>(base);
5004 this->map_is_anonymous_ = true;
5005 return true;
26736d8e
ILT
5006}
5007
404c2abb 5008// Map the file into memory. Return whether the mapping succeeded.
aa92d6ed 5009// If WRITABLE is true, map with write access.
27bc2bce 5010
404c2abb 5011bool
aa92d6ed 5012Output_file::map_no_anonymous(bool writable)
27bc2bce 5013{
c420411f 5014 const int o = this->o_;
61ba1cf9 5015
c420411f
ILT
5016 // If the output file is not a regular file, don't try to mmap it;
5017 // instead, we'll mmap a block of memory (an anonymous buffer), and
5018 // then later write the buffer to the file.
5019 void* base;
5020 struct stat statbuf;
42a1b686
ILT
5021 if (o == STDOUT_FILENO || o == STDERR_FILENO
5022 || ::fstat(o, &statbuf) != 0
516cb3d0
ILT
5023 || !S_ISREG(statbuf.st_mode)
5024 || this->is_temporary_)
404c2abb
ILT
5025 return false;
5026
5027 // Ensure that we have disk space available for the file. If we
5028 // don't do this, it is possible that we will call munmap, close,
5029 // and exit with dirty buffers still in the cache with no assigned
5030 // disk blocks. If the disk is out of space at that point, the
5031 // output file will wind up incomplete, but we will have already
5032 // exited. The alternative to fallocate would be to use fdatasync,
5033 // but that would be a more significant performance hit.
bab9090f
CC
5034 if (writable)
5035 {
7c0640fa 5036 int err = gold_fallocate(o, 0, this->file_size_);
bab9090f
CC
5037 if (err != 0)
5038 gold_fatal(_("%s: %s"), this->name_, strerror(err));
5039 }
404c2abb
ILT
5040
5041 // Map the file into memory.
aa92d6ed
CC
5042 int prot = PROT_READ;
5043 if (writable)
5044 prot |= PROT_WRITE;
5045 base = ::mmap(NULL, this->file_size_, prot, MAP_SHARED, o, 0);
404c2abb
ILT
5046
5047 // The mmap call might fail because of file system issues: the file
5048 // system might not support mmap at all, or it might not support
5049 // mmap with PROT_WRITE.
61ba1cf9 5050 if (base == MAP_FAILED)
404c2abb
ILT
5051 return false;
5052
5053 this->map_is_anonymous_ = false;
61ba1cf9 5054 this->base_ = static_cast<unsigned char*>(base);
404c2abb
ILT
5055 return true;
5056}
5057
5058// Map the file into memory.
5059
5060void
5061Output_file::map()
5062{
7c0640fa
CC
5063 if (parameters->options().mmap_output_file()
5064 && this->map_no_anonymous(true))
404c2abb
ILT
5065 return;
5066
5067 // The mmap call might fail because of file system issues: the file
5068 // system might not support mmap at all, or it might not support
5069 // mmap with PROT_WRITE. I'm not sure which errno values we will
5070 // see in all cases, so if the mmap fails for any reason and we
5071 // don't care about file contents, try for an anonymous map.
5072 if (this->map_anonymous())
5073 return;
5074
5075 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
5076 this->name_, static_cast<unsigned long>(this->file_size_),
5077 strerror(errno));
61ba1cf9
ILT
5078}
5079
c420411f 5080// Unmap the file from memory.
61ba1cf9
ILT
5081
5082void
c420411f 5083Output_file::unmap()
61ba1cf9 5084{
88597d34
ILT
5085 if (this->map_is_anonymous_)
5086 {
5087 // We've already written out the data, so there is no reason to
5088 // waste time unmapping or freeing the memory.
5089 }
5090 else
5091 {
5092 if (::munmap(this->base_, this->file_size_) < 0)
5093 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
5094 }
61ba1cf9 5095 this->base_ = NULL;
c420411f
ILT
5096}
5097
5098// Close the output file.
5099
5100void
5101Output_file::close()
5102{
5103 // If the map isn't file-backed, we need to write it now.
516cb3d0 5104 if (this->map_is_anonymous_ && !this->is_temporary_)
c420411f
ILT
5105 {
5106 size_t bytes_to_write = this->file_size_;
6d1e3092 5107 size_t offset = 0;
c420411f
ILT
5108 while (bytes_to_write > 0)
5109 {
6d1e3092
CD
5110 ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
5111 bytes_to_write);
c420411f
ILT
5112 if (bytes_written == 0)
5113 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
5114 else if (bytes_written < 0)
5115 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
5116 else
6d1e3092
CD
5117 {
5118 bytes_to_write -= bytes_written;
5119 offset += bytes_written;
5120 }
c420411f
ILT
5121 }
5122 }
5123 this->unmap();
61ba1cf9 5124
42a1b686 5125 // We don't close stdout or stderr
516cb3d0
ILT
5126 if (this->o_ != STDOUT_FILENO
5127 && this->o_ != STDERR_FILENO
5128 && !this->is_temporary_)
42a1b686
ILT
5129 if (::close(this->o_) < 0)
5130 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
61ba1cf9 5131 this->o_ = -1;
a2fb1b05
ILT
5132}
5133
5134// Instantiate the templates we need. We could use the configure
5135// script to restrict this to only the ones for implemented targets.
5136
193a53d9 5137#ifdef HAVE_TARGET_32_LITTLE
a2fb1b05
ILT
5138template
5139off_t
5140Output_section::add_input_section<32, false>(
6e9ba2ca 5141 Layout* layout,
6fa2a40b 5142 Sized_relobj_file<32, false>* object,
2ea97941 5143 unsigned int shndx,
a2fb1b05 5144 const char* secname,
730cdc88 5145 const elfcpp::Shdr<32, false>& shdr,
a445fddf
ILT
5146 unsigned int reloc_shndx,
5147 bool have_sections_script);
193a53d9 5148#endif
a2fb1b05 5149
193a53d9 5150#ifdef HAVE_TARGET_32_BIG
a2fb1b05
ILT
5151template
5152off_t
5153Output_section::add_input_section<32, true>(
6e9ba2ca 5154 Layout* layout,
6fa2a40b 5155 Sized_relobj_file<32, true>* object,
2ea97941 5156 unsigned int shndx,
a2fb1b05 5157 const char* secname,
730cdc88 5158 const elfcpp::Shdr<32, true>& shdr,
a445fddf
ILT
5159 unsigned int reloc_shndx,
5160 bool have_sections_script);
193a53d9 5161#endif
a2fb1b05 5162
193a53d9 5163#ifdef HAVE_TARGET_64_LITTLE
a2fb1b05
ILT
5164template
5165off_t
5166Output_section::add_input_section<64, false>(
6e9ba2ca 5167 Layout* layout,
6fa2a40b 5168 Sized_relobj_file<64, false>* object,
2ea97941 5169 unsigned int shndx,
a2fb1b05 5170 const char* secname,
730cdc88 5171 const elfcpp::Shdr<64, false>& shdr,
a445fddf
ILT
5172 unsigned int reloc_shndx,
5173 bool have_sections_script);
193a53d9 5174#endif
a2fb1b05 5175
193a53d9 5176#ifdef HAVE_TARGET_64_BIG
a2fb1b05
ILT
5177template
5178off_t
5179Output_section::add_input_section<64, true>(
6e9ba2ca 5180 Layout* layout,
6fa2a40b 5181 Sized_relobj_file<64, true>* object,
2ea97941 5182 unsigned int shndx,
a2fb1b05 5183 const char* secname,
730cdc88 5184 const elfcpp::Shdr<64, true>& shdr,
a445fddf
ILT
5185 unsigned int reloc_shndx,
5186 bool have_sections_script);
193a53d9 5187#endif
a2fb1b05 5188
bbbfea06
CC
5189#ifdef HAVE_TARGET_32_LITTLE
5190template
5191class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
5192#endif
5193
5194#ifdef HAVE_TARGET_32_BIG
5195template
5196class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
5197#endif
5198
5199#ifdef HAVE_TARGET_64_LITTLE
5200template
5201class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
5202#endif
5203
5204#ifdef HAVE_TARGET_64_BIG
5205template
5206class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
5207#endif
5208
5209#ifdef HAVE_TARGET_32_LITTLE
5210template
5211class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
5212#endif
5213
5214#ifdef HAVE_TARGET_32_BIG
5215template
5216class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
5217#endif
5218
5219#ifdef HAVE_TARGET_64_LITTLE
5220template
5221class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
5222#endif
5223
5224#ifdef HAVE_TARGET_64_BIG
5225template
5226class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
5227#endif
5228
5229#ifdef HAVE_TARGET_32_LITTLE
5230template
5231class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
5232#endif
5233
5234#ifdef HAVE_TARGET_32_BIG
5235template
5236class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
5237#endif
5238
5239#ifdef HAVE_TARGET_64_LITTLE
5240template
5241class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
5242#endif
5243
5244#ifdef HAVE_TARGET_64_BIG
5245template
5246class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
5247#endif
5248
5249#ifdef HAVE_TARGET_32_LITTLE
5250template
5251class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
5252#endif
5253
5254#ifdef HAVE_TARGET_32_BIG
5255template
5256class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
5257#endif
5258
5259#ifdef HAVE_TARGET_64_LITTLE
5260template
5261class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
5262#endif
5263
5264#ifdef HAVE_TARGET_64_BIG
5265template
5266class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
5267#endif
5268
193a53d9 5269#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
5270template
5271class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
193a53d9 5272#endif
c06b7b0b 5273
193a53d9 5274#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
5275template
5276class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
193a53d9 5277#endif
c06b7b0b 5278
193a53d9 5279#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
5280template
5281class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
193a53d9 5282#endif
c06b7b0b 5283
193a53d9 5284#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
5285template
5286class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
193a53d9 5287#endif
c06b7b0b 5288
193a53d9 5289#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
5290template
5291class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
193a53d9 5292#endif
c06b7b0b 5293
193a53d9 5294#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
5295template
5296class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
193a53d9 5297#endif
c06b7b0b 5298
193a53d9 5299#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
5300template
5301class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
193a53d9 5302#endif
c06b7b0b 5303
193a53d9 5304#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
5305template
5306class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
193a53d9 5307#endif
c06b7b0b 5308
193a53d9 5309#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
5310template
5311class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
193a53d9 5312#endif
c06b7b0b 5313
193a53d9 5314#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
5315template
5316class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
193a53d9 5317#endif
c06b7b0b 5318
193a53d9 5319#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
5320template
5321class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
193a53d9 5322#endif
c06b7b0b 5323
193a53d9 5324#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
5325template
5326class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
193a53d9 5327#endif
c06b7b0b 5328
193a53d9 5329#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
5330template
5331class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
193a53d9 5332#endif
c06b7b0b 5333
193a53d9 5334#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
5335template
5336class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
193a53d9 5337#endif
c06b7b0b 5338
193a53d9 5339#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
5340template
5341class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
193a53d9 5342#endif
c06b7b0b 5343
193a53d9 5344#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
5345template
5346class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
193a53d9 5347#endif
c06b7b0b 5348
6a74a719
ILT
5349#ifdef HAVE_TARGET_32_LITTLE
5350template
5351class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
5352#endif
5353
5354#ifdef HAVE_TARGET_32_BIG
5355template
5356class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
5357#endif
5358
5359#ifdef HAVE_TARGET_64_LITTLE
5360template
5361class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
5362#endif
5363
5364#ifdef HAVE_TARGET_64_BIG
5365template
5366class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
5367#endif
5368
5369#ifdef HAVE_TARGET_32_LITTLE
5370template
5371class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
5372#endif
5373
5374#ifdef HAVE_TARGET_32_BIG
5375template
5376class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
5377#endif
5378
5379#ifdef HAVE_TARGET_64_LITTLE
5380template
5381class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
5382#endif
5383
5384#ifdef HAVE_TARGET_64_BIG
5385template
5386class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
5387#endif
5388
5389#ifdef HAVE_TARGET_32_LITTLE
5390template
5391class Output_data_group<32, false>;
5392#endif
5393
5394#ifdef HAVE_TARGET_32_BIG
5395template
5396class Output_data_group<32, true>;
5397#endif
5398
5399#ifdef HAVE_TARGET_64_LITTLE
5400template
5401class Output_data_group<64, false>;
5402#endif
5403
5404#ifdef HAVE_TARGET_64_BIG
5405template
5406class Output_data_group<64, true>;
5407#endif
5408
193a53d9 5409#ifdef HAVE_TARGET_32_LITTLE
ead1e424 5410template
dbe717ef 5411class Output_data_got<32, false>;
193a53d9 5412#endif
ead1e424 5413
193a53d9 5414#ifdef HAVE_TARGET_32_BIG
ead1e424 5415template
dbe717ef 5416class Output_data_got<32, true>;
193a53d9 5417#endif
ead1e424 5418
193a53d9 5419#ifdef HAVE_TARGET_64_LITTLE
ead1e424 5420template
dbe717ef 5421class Output_data_got<64, false>;
193a53d9 5422#endif
ead1e424 5423
193a53d9 5424#ifdef HAVE_TARGET_64_BIG
ead1e424 5425template
dbe717ef 5426class Output_data_got<64, true>;
193a53d9 5427#endif
ead1e424 5428
a2fb1b05 5429} // End namespace gold.