]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gold/output.cc
* section.c (BFD_FAKE_SECTION): Update.
[thirdparty/binutils-gdb.git] / gold / output.cc
CommitLineData
a2fb1b05
ILT
1// output.cc -- manage the output file for gold
2
6cb15b7f
ILT
3// Copyright 2006, 2007 Free Software Foundation, Inc.
4// Written by Ian Lance Taylor <iant@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
a2fb1b05
ILT
23#include "gold.h"
24
25#include <cstdlib>
61ba1cf9
ILT
26#include <cerrno>
27#include <fcntl.h>
28#include <unistd.h>
29#include <sys/mman.h>
4e9d8586 30#include <sys/stat.h>
75f65a3e 31#include <algorithm>
5ffcaa86 32#include "libiberty.h" // for unlink_if_ordinary()
a2fb1b05 33
7e1edb90 34#include "parameters.h"
a2fb1b05 35#include "object.h"
ead1e424
ILT
36#include "symtab.h"
37#include "reloc.h"
b8e6aad9 38#include "merge.h"
a2fb1b05
ILT
39#include "output.h"
40
c420411f
ILT
41// Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
42#ifndef MAP_ANONYMOUS
43# define MAP_ANONYMOUS MAP_ANON
44#endif
45
a2fb1b05
ILT
46namespace gold
47{
48
a3ad94ed
ILT
49// Output_data variables.
50
27bc2bce 51bool Output_data::allocated_sizes_are_fixed;
a3ad94ed 52
a2fb1b05
ILT
53// Output_data methods.
54
55Output_data::~Output_data()
56{
57}
58
730cdc88
ILT
59// Return the default alignment for the target size.
60
61uint64_t
62Output_data::default_alignment()
63{
64 return Output_data::default_alignment_for_size(parameters->get_size());
65}
66
75f65a3e
ILT
67// Return the default alignment for a size--32 or 64.
68
69uint64_t
730cdc88 70Output_data::default_alignment_for_size(int size)
75f65a3e
ILT
71{
72 if (size == 32)
73 return 4;
74 else if (size == 64)
75 return 8;
76 else
a3ad94ed 77 gold_unreachable();
75f65a3e
ILT
78}
79
75f65a3e
ILT
80// Output_section_header methods. This currently assumes that the
81// segment and section lists are complete at construction time.
82
83Output_section_headers::Output_section_headers(
16649710
ILT
84 const Layout* layout,
85 const Layout::Segment_list* segment_list,
86 const Layout::Section_list* unattached_section_list,
61ba1cf9 87 const Stringpool* secnamepool)
9025d29d 88 : layout_(layout),
75f65a3e 89 segment_list_(segment_list),
a3ad94ed 90 unattached_section_list_(unattached_section_list),
61ba1cf9 91 secnamepool_(secnamepool)
75f65a3e 92{
61ba1cf9
ILT
93 // Count all the sections. Start with 1 for the null section.
94 off_t count = 1;
16649710
ILT
95 for (Layout::Segment_list::const_iterator p = segment_list->begin();
96 p != segment_list->end();
75f65a3e 97 ++p)
ead1e424
ILT
98 if ((*p)->type() == elfcpp::PT_LOAD)
99 count += (*p)->output_section_count();
16649710 100 count += unattached_section_list->size();
75f65a3e 101
9025d29d 102 const int size = parameters->get_size();
75f65a3e
ILT
103 int shdr_size;
104 if (size == 32)
105 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
106 else if (size == 64)
107 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
108 else
a3ad94ed 109 gold_unreachable();
75f65a3e
ILT
110
111 this->set_data_size(count * shdr_size);
112}
113
61ba1cf9
ILT
114// Write out the section headers.
115
75f65a3e 116void
61ba1cf9 117Output_section_headers::do_write(Output_file* of)
a2fb1b05 118{
9025d29d 119 if (parameters->get_size() == 32)
61ba1cf9 120 {
9025d29d
ILT
121 if (parameters->is_big_endian())
122 {
123#ifdef HAVE_TARGET_32_BIG
124 this->do_sized_write<32, true>(of);
125#else
126 gold_unreachable();
127#endif
128 }
61ba1cf9 129 else
9025d29d
ILT
130 {
131#ifdef HAVE_TARGET_32_LITTLE
132 this->do_sized_write<32, false>(of);
133#else
134 gold_unreachable();
135#endif
136 }
61ba1cf9 137 }
9025d29d 138 else if (parameters->get_size() == 64)
61ba1cf9 139 {
9025d29d
ILT
140 if (parameters->is_big_endian())
141 {
142#ifdef HAVE_TARGET_64_BIG
143 this->do_sized_write<64, true>(of);
144#else
145 gold_unreachable();
146#endif
147 }
61ba1cf9 148 else
9025d29d
ILT
149 {
150#ifdef HAVE_TARGET_64_LITTLE
151 this->do_sized_write<64, false>(of);
152#else
153 gold_unreachable();
154#endif
155 }
61ba1cf9
ILT
156 }
157 else
a3ad94ed 158 gold_unreachable();
61ba1cf9
ILT
159}
160
161template<int size, bool big_endian>
162void
163Output_section_headers::do_sized_write(Output_file* of)
164{
165 off_t all_shdrs_size = this->data_size();
166 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
167
168 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
169 unsigned char* v = view;
170
171 {
172 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
173 oshdr.put_sh_name(0);
174 oshdr.put_sh_type(elfcpp::SHT_NULL);
175 oshdr.put_sh_flags(0);
176 oshdr.put_sh_addr(0);
177 oshdr.put_sh_offset(0);
178 oshdr.put_sh_size(0);
179 oshdr.put_sh_link(0);
180 oshdr.put_sh_info(0);
181 oshdr.put_sh_addralign(0);
182 oshdr.put_sh_entsize(0);
183 }
184
185 v += shdr_size;
186
ead1e424 187 unsigned shndx = 1;
16649710
ILT
188 for (Layout::Segment_list::const_iterator p = this->segment_list_->begin();
189 p != this->segment_list_->end();
61ba1cf9 190 ++p)
593f47df 191 v = (*p)->write_section_headers SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
16649710 192 this->layout_, this->secnamepool_, v, &shndx
ead1e424 193 SELECT_SIZE_ENDIAN(size, big_endian));
a3ad94ed 194 for (Layout::Section_list::const_iterator p =
16649710
ILT
195 this->unattached_section_list_->begin();
196 p != this->unattached_section_list_->end();
61ba1cf9
ILT
197 ++p)
198 {
a3ad94ed 199 gold_assert(shndx == (*p)->out_shndx());
61ba1cf9 200 elfcpp::Shdr_write<size, big_endian> oshdr(v);
16649710 201 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
61ba1cf9 202 v += shdr_size;
ead1e424 203 ++shndx;
61ba1cf9
ILT
204 }
205
206 of->write_output_view(this->offset(), all_shdrs_size, view);
a2fb1b05
ILT
207}
208
54dc6425
ILT
209// Output_segment_header methods.
210
61ba1cf9 211Output_segment_headers::Output_segment_headers(
61ba1cf9 212 const Layout::Segment_list& segment_list)
9025d29d 213 : segment_list_(segment_list)
61ba1cf9 214{
9025d29d 215 const int size = parameters->get_size();
61ba1cf9
ILT
216 int phdr_size;
217 if (size == 32)
218 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
219 else if (size == 64)
220 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
221 else
a3ad94ed 222 gold_unreachable();
61ba1cf9
ILT
223
224 this->set_data_size(segment_list.size() * phdr_size);
225}
226
54dc6425 227void
61ba1cf9 228Output_segment_headers::do_write(Output_file* of)
75f65a3e 229{
9025d29d 230 if (parameters->get_size() == 32)
61ba1cf9 231 {
9025d29d
ILT
232 if (parameters->is_big_endian())
233 {
234#ifdef HAVE_TARGET_32_BIG
235 this->do_sized_write<32, true>(of);
236#else
237 gold_unreachable();
238#endif
239 }
61ba1cf9 240 else
9025d29d
ILT
241 {
242#ifdef HAVE_TARGET_32_LITTLE
61ba1cf9 243 this->do_sized_write<32, false>(of);
9025d29d
ILT
244#else
245 gold_unreachable();
246#endif
247 }
61ba1cf9 248 }
9025d29d 249 else if (parameters->get_size() == 64)
61ba1cf9 250 {
9025d29d
ILT
251 if (parameters->is_big_endian())
252 {
253#ifdef HAVE_TARGET_64_BIG
254 this->do_sized_write<64, true>(of);
255#else
256 gold_unreachable();
257#endif
258 }
61ba1cf9 259 else
9025d29d
ILT
260 {
261#ifdef HAVE_TARGET_64_LITTLE
262 this->do_sized_write<64, false>(of);
263#else
264 gold_unreachable();
265#endif
266 }
61ba1cf9
ILT
267 }
268 else
a3ad94ed 269 gold_unreachable();
61ba1cf9
ILT
270}
271
272template<int size, bool big_endian>
273void
274Output_segment_headers::do_sized_write(Output_file* of)
275{
276 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
277 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
278 unsigned char* view = of->get_output_view(this->offset(),
279 all_phdrs_size);
280 unsigned char* v = view;
281 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
282 p != this->segment_list_.end();
283 ++p)
284 {
285 elfcpp::Phdr_write<size, big_endian> ophdr(v);
286 (*p)->write_header(&ophdr);
287 v += phdr_size;
288 }
289
290 of->write_output_view(this->offset(), all_phdrs_size, view);
75f65a3e
ILT
291}
292
293// Output_file_header methods.
294
9025d29d 295Output_file_header::Output_file_header(const Target* target,
75f65a3e
ILT
296 const Symbol_table* symtab,
297 const Output_segment_headers* osh)
9025d29d 298 : target_(target),
75f65a3e 299 symtab_(symtab),
61ba1cf9 300 segment_header_(osh),
75f65a3e
ILT
301 section_header_(NULL),
302 shstrtab_(NULL)
303{
9025d29d 304 const int size = parameters->get_size();
61ba1cf9
ILT
305 int ehdr_size;
306 if (size == 32)
307 ehdr_size = elfcpp::Elf_sizes<32>::ehdr_size;
308 else if (size == 64)
309 ehdr_size = elfcpp::Elf_sizes<64>::ehdr_size;
310 else
a3ad94ed 311 gold_unreachable();
61ba1cf9
ILT
312
313 this->set_data_size(ehdr_size);
75f65a3e
ILT
314}
315
316// Set the section table information for a file header.
317
318void
319Output_file_header::set_section_info(const Output_section_headers* shdrs,
320 const Output_section* shstrtab)
321{
322 this->section_header_ = shdrs;
323 this->shstrtab_ = shstrtab;
324}
325
326// Write out the file header.
327
328void
61ba1cf9 329Output_file_header::do_write(Output_file* of)
54dc6425 330{
27bc2bce
ILT
331 gold_assert(this->offset() == 0);
332
9025d29d 333 if (parameters->get_size() == 32)
61ba1cf9 334 {
9025d29d
ILT
335 if (parameters->is_big_endian())
336 {
337#ifdef HAVE_TARGET_32_BIG
338 this->do_sized_write<32, true>(of);
339#else
340 gold_unreachable();
341#endif
342 }
61ba1cf9 343 else
9025d29d
ILT
344 {
345#ifdef HAVE_TARGET_32_LITTLE
346 this->do_sized_write<32, false>(of);
347#else
348 gold_unreachable();
349#endif
350 }
61ba1cf9 351 }
9025d29d 352 else if (parameters->get_size() == 64)
61ba1cf9 353 {
9025d29d
ILT
354 if (parameters->is_big_endian())
355 {
356#ifdef HAVE_TARGET_64_BIG
357 this->do_sized_write<64, true>(of);
358#else
359 gold_unreachable();
360#endif
361 }
61ba1cf9 362 else
9025d29d
ILT
363 {
364#ifdef HAVE_TARGET_64_LITTLE
365 this->do_sized_write<64, false>(of);
366#else
367 gold_unreachable();
368#endif
369 }
61ba1cf9
ILT
370 }
371 else
a3ad94ed 372 gold_unreachable();
61ba1cf9
ILT
373}
374
375// Write out the file header with appropriate size and endianess.
376
377template<int size, bool big_endian>
378void
379Output_file_header::do_sized_write(Output_file* of)
380{
a3ad94ed 381 gold_assert(this->offset() == 0);
61ba1cf9
ILT
382
383 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
384 unsigned char* view = of->get_output_view(0, ehdr_size);
385 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
386
387 unsigned char e_ident[elfcpp::EI_NIDENT];
388 memset(e_ident, 0, elfcpp::EI_NIDENT);
389 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
390 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
391 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
392 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
393 if (size == 32)
394 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
395 else if (size == 64)
396 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
397 else
a3ad94ed 398 gold_unreachable();
61ba1cf9
ILT
399 e_ident[elfcpp::EI_DATA] = (big_endian
400 ? elfcpp::ELFDATA2MSB
401 : elfcpp::ELFDATA2LSB);
402 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
403 // FIXME: Some targets may need to set EI_OSABI and EI_ABIVERSION.
404 oehdr.put_e_ident(e_ident);
405
406 elfcpp::ET e_type;
7e1edb90 407 if (parameters->output_is_object())
61ba1cf9 408 e_type = elfcpp::ET_REL;
436ca963
ILT
409 else if (parameters->output_is_shared())
410 e_type = elfcpp::ET_DYN;
61ba1cf9
ILT
411 else
412 e_type = elfcpp::ET_EXEC;
413 oehdr.put_e_type(e_type);
414
415 oehdr.put_e_machine(this->target_->machine_code());
416 oehdr.put_e_version(elfcpp::EV_CURRENT);
417
ead1e424 418 // FIXME: Need to support -e, and target specific entry symbol.
61ba1cf9
ILT
419 Symbol* sym = this->symtab_->lookup("_start");
420 typename Sized_symbol<size>::Value_type v;
421 if (sym == NULL)
422 v = 0;
423 else
424 {
425 Sized_symbol<size>* ssym;
593f47df 426 ssym = this->symtab_->get_sized_symbol SELECT_SIZE_NAME(size) (
5482377d 427 sym SELECT_SIZE(size));
61ba1cf9
ILT
428 v = ssym->value();
429 }
430 oehdr.put_e_entry(v);
431
432 oehdr.put_e_phoff(this->segment_header_->offset());
433 oehdr.put_e_shoff(this->section_header_->offset());
434
435 // FIXME: The target needs to set the flags.
436 oehdr.put_e_flags(0);
437
438 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
439 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
440 oehdr.put_e_phnum(this->segment_header_->data_size()
441 / elfcpp::Elf_sizes<size>::phdr_size);
442 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
443 oehdr.put_e_shnum(this->section_header_->data_size()
444 / elfcpp::Elf_sizes<size>::shdr_size);
ead1e424 445 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
61ba1cf9
ILT
446
447 of->write_output_view(0, ehdr_size, view);
54dc6425
ILT
448}
449
dbe717ef
ILT
450// Output_data_const methods.
451
452void
a3ad94ed 453Output_data_const::do_write(Output_file* of)
dbe717ef 454{
a3ad94ed
ILT
455 of->write(this->offset(), this->data_.data(), this->data_.size());
456}
457
458// Output_data_const_buffer methods.
459
460void
461Output_data_const_buffer::do_write(Output_file* of)
462{
463 of->write(this->offset(), this->p_, this->data_size());
dbe717ef
ILT
464}
465
466// Output_section_data methods.
467
16649710
ILT
468// Record the output section, and set the entry size and such.
469
470void
471Output_section_data::set_output_section(Output_section* os)
472{
473 gold_assert(this->output_section_ == NULL);
474 this->output_section_ = os;
475 this->do_adjust_output_section(os);
476}
477
478// Return the section index of the output section.
479
dbe717ef
ILT
480unsigned int
481Output_section_data::do_out_shndx() const
482{
a3ad94ed 483 gold_assert(this->output_section_ != NULL);
dbe717ef
ILT
484 return this->output_section_->out_shndx();
485}
486
a3ad94ed
ILT
487// Output_data_strtab methods.
488
27bc2bce 489// Set the final data size.
a3ad94ed
ILT
490
491void
27bc2bce 492Output_data_strtab::set_final_data_size()
a3ad94ed
ILT
493{
494 this->strtab_->set_string_offsets();
495 this->set_data_size(this->strtab_->get_strtab_size());
496}
497
498// Write out a string table.
499
500void
501Output_data_strtab::do_write(Output_file* of)
502{
503 this->strtab_->write(of, this->offset());
504}
505
c06b7b0b
ILT
506// Output_reloc methods.
507
7bf1f802
ILT
508// A reloc against a global symbol.
509
510template<bool dynamic, int size, bool big_endian>
511Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
512 Symbol* gsym,
513 unsigned int type,
514 Output_data* od,
e8c846c3
ILT
515 Address address,
516 bool is_relative)
7bf1f802 517 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
e8c846c3 518 is_relative_(is_relative), shndx_(INVALID_CODE)
7bf1f802
ILT
519{
520 this->u1_.gsym = gsym;
521 this->u2_.od = od;
e8c846c3 522 if (dynamic && !is_relative)
7bf1f802
ILT
523 gsym->set_needs_dynsym_entry();
524}
525
526template<bool dynamic, int size, bool big_endian>
527Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
528 Symbol* gsym,
529 unsigned int type,
530 Relobj* relobj,
531 unsigned int shndx,
e8c846c3
ILT
532 Address address,
533 bool is_relative)
7bf1f802 534 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
e8c846c3 535 is_relative_(is_relative), shndx_(shndx)
7bf1f802
ILT
536{
537 gold_assert(shndx != INVALID_CODE);
538 this->u1_.gsym = gsym;
539 this->u2_.relobj = relobj;
e8c846c3 540 if (dynamic && !is_relative)
7bf1f802
ILT
541 gsym->set_needs_dynsym_entry();
542}
543
544// A reloc against a local symbol.
545
546template<bool dynamic, int size, bool big_endian>
547Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
548 Sized_relobj<size, big_endian>* relobj,
549 unsigned int local_sym_index,
550 unsigned int type,
551 Output_data* od,
e8c846c3
ILT
552 Address address,
553 bool is_relative)
7bf1f802 554 : address_(address), local_sym_index_(local_sym_index), type_(type),
e8c846c3 555 is_relative_(is_relative), shndx_(INVALID_CODE)
7bf1f802
ILT
556{
557 gold_assert(local_sym_index != GSYM_CODE
558 && local_sym_index != INVALID_CODE);
559 this->u1_.relobj = relobj;
560 this->u2_.od = od;
e8c846c3 561 if (dynamic && !is_relative)
7bf1f802
ILT
562 relobj->set_needs_output_dynsym_entry(local_sym_index);
563}
564
565template<bool dynamic, int size, bool big_endian>
566Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
567 Sized_relobj<size, big_endian>* relobj,
568 unsigned int local_sym_index,
569 unsigned int type,
570 unsigned int shndx,
e8c846c3
ILT
571 Address address,
572 bool is_relative)
7bf1f802 573 : address_(address), local_sym_index_(local_sym_index), type_(type),
e8c846c3 574 is_relative_(is_relative), shndx_(shndx)
7bf1f802
ILT
575{
576 gold_assert(local_sym_index != GSYM_CODE
577 && local_sym_index != INVALID_CODE);
578 gold_assert(shndx != INVALID_CODE);
579 this->u1_.relobj = relobj;
580 this->u2_.relobj = relobj;
e8c846c3 581 if (dynamic && !is_relative)
7bf1f802
ILT
582 relobj->set_needs_output_dynsym_entry(local_sym_index);
583}
584
585// A reloc against the STT_SECTION symbol of an output section.
586
587template<bool dynamic, int size, bool big_endian>
588Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
589 Output_section* os,
590 unsigned int type,
591 Output_data* od,
592 Address address)
593 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
e8c846c3 594 is_relative_(false), shndx_(INVALID_CODE)
7bf1f802
ILT
595{
596 this->u1_.os = os;
597 this->u2_.od = od;
598 if (dynamic)
599 os->set_needs_dynsym_index();
600}
601
602template<bool dynamic, int size, bool big_endian>
603Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
604 Output_section* os,
605 unsigned int type,
606 Relobj* relobj,
607 unsigned int shndx,
608 Address address)
609 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
e8c846c3 610 is_relative_(false), shndx_(shndx)
7bf1f802
ILT
611{
612 gold_assert(shndx != INVALID_CODE);
613 this->u1_.os = os;
614 this->u2_.relobj = relobj;
615 if (dynamic)
616 os->set_needs_dynsym_index();
617}
618
c06b7b0b
ILT
619// Get the symbol index of a relocation.
620
621template<bool dynamic, int size, bool big_endian>
622unsigned int
623Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
624 const
625{
626 unsigned int index;
627 switch (this->local_sym_index_)
628 {
629 case INVALID_CODE:
a3ad94ed 630 gold_unreachable();
c06b7b0b
ILT
631
632 case GSYM_CODE:
5a6f7e2d 633 if (this->u1_.gsym == NULL)
c06b7b0b
ILT
634 index = 0;
635 else if (dynamic)
5a6f7e2d 636 index = this->u1_.gsym->dynsym_index();
c06b7b0b 637 else
5a6f7e2d 638 index = this->u1_.gsym->symtab_index();
c06b7b0b
ILT
639 break;
640
641 case SECTION_CODE:
642 if (dynamic)
5a6f7e2d 643 index = this->u1_.os->dynsym_index();
c06b7b0b 644 else
5a6f7e2d 645 index = this->u1_.os->symtab_index();
c06b7b0b
ILT
646 break;
647
436ca963
ILT
648 case 0:
649 // Relocations without symbols use a symbol index of 0.
650 index = 0;
651 break;
652
c06b7b0b
ILT
653 default:
654 if (dynamic)
7bf1f802 655 index = this->u1_.relobj->dynsym_index(this->local_sym_index_);
c06b7b0b 656 else
5a6f7e2d 657 index = this->u1_.relobj->symtab_index(this->local_sym_index_);
c06b7b0b
ILT
658 break;
659 }
a3ad94ed 660 gold_assert(index != -1U);
c06b7b0b
ILT
661 return index;
662}
663
664// Write out the offset and info fields of a Rel or Rela relocation
665// entry.
666
667template<bool dynamic, int size, bool big_endian>
668template<typename Write_rel>
669void
670Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
671 Write_rel* wr) const
672{
a3ad94ed 673 Address address = this->address_;
5a6f7e2d
ILT
674 if (this->shndx_ != INVALID_CODE)
675 {
8383303e 676 section_offset_type off;
5a6f7e2d
ILT
677 Output_section* os = this->u2_.relobj->output_section(this->shndx_,
678 &off);
679 gold_assert(os != NULL);
730cdc88
ILT
680 if (off != -1)
681 address += os->address() + off;
682 else
683 {
684 address = os->output_address(this->u2_.relobj, this->shndx_,
685 address);
686 gold_assert(address != -1U);
687 }
5a6f7e2d
ILT
688 }
689 else if (this->u2_.od != NULL)
690 address += this->u2_.od->address();
a3ad94ed 691 wr->put_r_offset(address);
e8c846c3
ILT
692 unsigned int sym_index = this->is_relative_ ? 0 : this->get_symbol_index();
693 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
c06b7b0b
ILT
694}
695
696// Write out a Rel relocation.
697
698template<bool dynamic, int size, bool big_endian>
699void
700Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
701 unsigned char* pov) const
702{
703 elfcpp::Rel_write<size, big_endian> orel(pov);
704 this->write_rel(&orel);
705}
706
e8c846c3
ILT
707// Get the value of the symbol referred to by a Rel relocation.
708
709template<bool dynamic, int size, bool big_endian>
710typename elfcpp::Elf_types<size>::Elf_Addr
711Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value() const
712{
713 if (this->local_sym_index_ == GSYM_CODE)
714 {
715 const Sized_symbol<size>* sym;
716 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
717 return sym->value();
718 }
719 gold_assert(this->local_sym_index_ != SECTION_CODE
720 && this->local_sym_index_ != INVALID_CODE);
721 const Sized_relobj<size, big_endian>* relobj = this->u1_.relobj;
722 return relobj->local_symbol_value(this->local_sym_index_);
723}
724
c06b7b0b
ILT
725// Write out a Rela relocation.
726
727template<bool dynamic, int size, bool big_endian>
728void
729Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
730 unsigned char* pov) const
731{
732 elfcpp::Rela_write<size, big_endian> orel(pov);
733 this->rel_.write_rel(&orel);
e8c846c3
ILT
734 Addend addend = this->addend_;
735 if (rel_.is_relative())
736 addend += rel_.symbol_value();
737 orel.put_r_addend(addend);
c06b7b0b
ILT
738}
739
740// Output_data_reloc_base methods.
741
16649710
ILT
742// Adjust the output section.
743
744template<int sh_type, bool dynamic, int size, bool big_endian>
745void
746Output_data_reloc_base<sh_type, dynamic, size, big_endian>
747 ::do_adjust_output_section(Output_section* os)
748{
749 if (sh_type == elfcpp::SHT_REL)
750 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
751 else if (sh_type == elfcpp::SHT_RELA)
752 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
753 else
754 gold_unreachable();
755 if (dynamic)
756 os->set_should_link_to_dynsym();
757 else
758 os->set_should_link_to_symtab();
759}
760
c06b7b0b
ILT
761// Write out relocation data.
762
763template<int sh_type, bool dynamic, int size, bool big_endian>
764void
765Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
766 Output_file* of)
767{
768 const off_t off = this->offset();
769 const off_t oview_size = this->data_size();
770 unsigned char* const oview = of->get_output_view(off, oview_size);
771
772 unsigned char* pov = oview;
773 for (typename Relocs::const_iterator p = this->relocs_.begin();
774 p != this->relocs_.end();
775 ++p)
776 {
777 p->write(pov);
778 pov += reloc_size;
779 }
780
a3ad94ed 781 gold_assert(pov - oview == oview_size);
c06b7b0b
ILT
782
783 of->write_output_view(off, oview_size, oview);
784
785 // We no longer need the relocation entries.
786 this->relocs_.clear();
787}
788
dbe717ef 789// Output_data_got::Got_entry methods.
ead1e424
ILT
790
791// Write out the entry.
792
793template<int size, bool big_endian>
794void
7e1edb90 795Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
ead1e424
ILT
796{
797 Valtype val = 0;
798
799 switch (this->local_sym_index_)
800 {
801 case GSYM_CODE:
802 {
e8c846c3
ILT
803 // If the symbol is resolved locally, we need to write out the
804 // link-time value, which will be relocated dynamically by a
805 // RELATIVE relocation.
ead1e424 806 Symbol* gsym = this->u_.gsym;
e8c846c3
ILT
807 Sized_symbol<size>* sgsym;
808 // This cast is a bit ugly. We don't want to put a
809 // virtual method in Symbol, because we want Symbol to be
810 // as small as possible.
811 sgsym = static_cast<Sized_symbol<size>*>(gsym);
812 val = sgsym->value();
ead1e424
ILT
813 }
814 break;
815
816 case CONSTANT_CODE:
817 val = this->u_.constant;
818 break;
819
820 default:
e727fa71
ILT
821 val = this->u_.object->local_symbol_value(this->local_sym_index_);
822 break;
ead1e424
ILT
823 }
824
a3ad94ed 825 elfcpp::Swap<size, big_endian>::writeval(pov, val);
ead1e424
ILT
826}
827
dbe717ef 828// Output_data_got methods.
ead1e424 829
dbe717ef
ILT
830// Add an entry for a global symbol to the GOT. This returns true if
831// this is a new GOT entry, false if the symbol already had a GOT
832// entry.
833
834template<int size, bool big_endian>
835bool
836Output_data_got<size, big_endian>::add_global(Symbol* gsym)
ead1e424 837{
dbe717ef
ILT
838 if (gsym->has_got_offset())
839 return false;
ead1e424 840
dbe717ef
ILT
841 this->entries_.push_back(Got_entry(gsym));
842 this->set_got_size();
843 gsym->set_got_offset(this->last_got_offset());
844 return true;
845}
ead1e424 846
7bf1f802
ILT
847// Add an entry for a global symbol to the GOT, and add a dynamic
848// relocation of type R_TYPE for the GOT entry.
849template<int size, bool big_endian>
850void
851Output_data_got<size, big_endian>::add_global_with_rel(
852 Symbol* gsym,
853 Rel_dyn* rel_dyn,
854 unsigned int r_type)
855{
856 if (gsym->has_got_offset())
857 return;
858
859 this->entries_.push_back(Got_entry());
860 this->set_got_size();
861 unsigned int got_offset = this->last_got_offset();
862 gsym->set_got_offset(got_offset);
863 rel_dyn->add_global(gsym, r_type, this, got_offset);
864}
865
866template<int size, bool big_endian>
867void
868Output_data_got<size, big_endian>::add_global_with_rela(
869 Symbol* gsym,
870 Rela_dyn* rela_dyn,
871 unsigned int r_type)
872{
873 if (gsym->has_got_offset())
874 return;
875
876 this->entries_.push_back(Got_entry());
877 this->set_got_size();
878 unsigned int got_offset = this->last_got_offset();
879 gsym->set_got_offset(got_offset);
880 rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
881}
882
e727fa71
ILT
883// Add an entry for a local symbol to the GOT. This returns true if
884// this is a new GOT entry, false if the symbol already has a GOT
885// entry.
886
887template<int size, bool big_endian>
888bool
889Output_data_got<size, big_endian>::add_local(
890 Sized_relobj<size, big_endian>* object,
891 unsigned int symndx)
892{
893 if (object->local_has_got_offset(symndx))
894 return false;
07f397ab 895
e727fa71
ILT
896 this->entries_.push_back(Got_entry(object, symndx));
897 this->set_got_size();
898 object->set_local_got_offset(symndx, this->last_got_offset());
899 return true;
900}
901
7bf1f802
ILT
902// Add an entry for a local symbol to the GOT, and add a dynamic
903// relocation of type R_TYPE for the GOT entry.
904template<int size, bool big_endian>
905void
906Output_data_got<size, big_endian>::add_local_with_rel(
907 Sized_relobj<size, big_endian>* object,
908 unsigned int symndx,
909 Rel_dyn* rel_dyn,
910 unsigned int r_type)
911{
912 if (object->local_has_got_offset(symndx))
913 return;
914
915 this->entries_.push_back(Got_entry());
916 this->set_got_size();
917 unsigned int got_offset = this->last_got_offset();
918 object->set_local_got_offset(symndx, got_offset);
919 rel_dyn->add_local(object, symndx, r_type, this, got_offset);
920}
921
922template<int size, bool big_endian>
923void
924Output_data_got<size, big_endian>::add_local_with_rela(
925 Sized_relobj<size, big_endian>* object,
926 unsigned int symndx,
927 Rela_dyn* rela_dyn,
928 unsigned int r_type)
929{
930 if (object->local_has_got_offset(symndx))
931 return;
932
933 this->entries_.push_back(Got_entry());
934 this->set_got_size();
935 unsigned int got_offset = this->last_got_offset();
936 object->set_local_got_offset(symndx, got_offset);
937 rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
938}
939
07f397ab
ILT
940// Add an entry (or a pair of entries) for a global TLS symbol to the GOT.
941// In a pair of entries, the first value in the pair will be used for the
942// module index, and the second value will be used for the dtv-relative
943// offset. This returns true if this is a new GOT entry, false if the symbol
944// already has a GOT entry.
945
946template<int size, bool big_endian>
947bool
7bf1f802 948Output_data_got<size, big_endian>::add_global_tls(Symbol* gsym, bool need_pair)
07f397ab
ILT
949{
950 if (gsym->has_tls_got_offset(need_pair))
951 return false;
952
953 this->entries_.push_back(Got_entry(gsym));
954 gsym->set_tls_got_offset(this->last_got_offset(), need_pair);
955 if (need_pair)
956 this->entries_.push_back(Got_entry(gsym));
957 this->set_got_size();
958 return true;
959}
960
7bf1f802
ILT
961// Add an entry for a global TLS symbol to the GOT, and add a dynamic
962// relocation of type R_TYPE.
963template<int size, bool big_endian>
964void
965Output_data_got<size, big_endian>::add_global_tls_with_rel(
966 Symbol* gsym,
967 Rel_dyn* rel_dyn,
968 unsigned int r_type)
969{
970 if (gsym->has_tls_got_offset(false))
971 return;
972
973 this->entries_.push_back(Got_entry());
974 this->set_got_size();
975 unsigned int got_offset = this->last_got_offset();
976 gsym->set_tls_got_offset(got_offset, false);
977 rel_dyn->add_global(gsym, r_type, this, got_offset);
978}
979
980template<int size, bool big_endian>
981void
982Output_data_got<size, big_endian>::add_global_tls_with_rela(
983 Symbol* gsym,
984 Rela_dyn* rela_dyn,
985 unsigned int r_type)
986{
987 if (gsym->has_tls_got_offset(false))
988 return;
989
990 this->entries_.push_back(Got_entry());
991 this->set_got_size();
992 unsigned int got_offset = this->last_got_offset();
993 gsym->set_tls_got_offset(got_offset, false);
994 rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
995}
996
997// Add a pair of entries for a global TLS symbol to the GOT, and add
998// dynamic relocations of type MOD_R_TYPE and DTV_R_TYPE, respectively.
999template<int size, bool big_endian>
1000void
1001Output_data_got<size, big_endian>::add_global_tls_with_rel(
1002 Symbol* gsym,
1003 Rel_dyn* rel_dyn,
1004 unsigned int mod_r_type,
1005 unsigned int dtv_r_type)
1006{
1007 if (gsym->has_tls_got_offset(true))
1008 return;
1009
1010 this->entries_.push_back(Got_entry());
1011 unsigned int got_offset = this->last_got_offset();
1012 gsym->set_tls_got_offset(got_offset, true);
1013 rel_dyn->add_global(gsym, mod_r_type, this, got_offset);
1014
1015 this->entries_.push_back(Got_entry());
1016 this->set_got_size();
1017 got_offset = this->last_got_offset();
1018 rel_dyn->add_global(gsym, dtv_r_type, this, got_offset);
1019}
1020
1021template<int size, bool big_endian>
1022void
1023Output_data_got<size, big_endian>::add_global_tls_with_rela(
1024 Symbol* gsym,
1025 Rela_dyn* rela_dyn,
1026 unsigned int mod_r_type,
1027 unsigned int dtv_r_type)
1028{
1029 if (gsym->has_tls_got_offset(true))
1030 return;
1031
1032 this->entries_.push_back(Got_entry());
1033 unsigned int got_offset = this->last_got_offset();
1034 gsym->set_tls_got_offset(got_offset, true);
1035 rela_dyn->add_global(gsym, mod_r_type, this, got_offset, 0);
1036
1037 this->entries_.push_back(Got_entry());
1038 this->set_got_size();
1039 got_offset = this->last_got_offset();
1040 rela_dyn->add_global(gsym, dtv_r_type, this, got_offset, 0);
1041}
1042
07f397ab
ILT
1043// Add an entry (or a pair of entries) for a local TLS symbol to the GOT.
1044// In a pair of entries, the first value in the pair will be used for the
1045// module index, and the second value will be used for the dtv-relative
1046// offset. This returns true if this is a new GOT entry, false if the symbol
1047// already has a GOT entry.
1048
1049template<int size, bool big_endian>
1050bool
1051Output_data_got<size, big_endian>::add_local_tls(
1052 Sized_relobj<size, big_endian>* object,
1053 unsigned int symndx,
1054 bool need_pair)
1055{
1056 if (object->local_has_tls_got_offset(symndx, need_pair))
1057 return false;
1058
1059 this->entries_.push_back(Got_entry(object, symndx));
1060 object->set_local_tls_got_offset(symndx, this->last_got_offset(), need_pair);
1061 if (need_pair)
1062 this->entries_.push_back(Got_entry(object, symndx));
1063 this->set_got_size();
1064 return true;
1065}
1066
7bf1f802
ILT
1067// Add an entry (or pair of entries) for a local TLS symbol to the GOT,
1068// and add a dynamic relocation of type R_TYPE for the first GOT entry.
1069// Because this is a local symbol, the first GOT entry can be relocated
1070// relative to a section symbol, and the second GOT entry will have an
1071// dtv-relative value that can be computed at link time.
1072template<int size, bool big_endian>
1073void
1074Output_data_got<size, big_endian>::add_local_tls_with_rel(
1075 Sized_relobj<size, big_endian>* object,
1076 unsigned int symndx,
1077 unsigned int shndx,
1078 bool need_pair,
1079 Rel_dyn* rel_dyn,
1080 unsigned int r_type)
1081{
1082 if (object->local_has_tls_got_offset(symndx, need_pair))
1083 return;
1084
1085 this->entries_.push_back(Got_entry());
1086 unsigned int got_offset = this->last_got_offset();
1087 object->set_local_tls_got_offset(symndx, got_offset, need_pair);
8383303e 1088 section_offset_type off;
7bf1f802
ILT
1089 Output_section* os = object->output_section(shndx, &off);
1090 rel_dyn->add_output_section(os, r_type, this, got_offset);
1091
1092 // The second entry of the pair will be statically initialized
1093 // with the TLS offset of the symbol.
1094 if (need_pair)
1095 this->entries_.push_back(Got_entry(object, symndx));
1096
1097 this->set_got_size();
1098}
1099
1100template<int size, bool big_endian>
1101void
1102Output_data_got<size, big_endian>::add_local_tls_with_rela(
1103 Sized_relobj<size, big_endian>* object,
1104 unsigned int symndx,
1105 unsigned int shndx,
1106 bool need_pair,
1107 Rela_dyn* rela_dyn,
1108 unsigned int r_type)
1109{
1110 if (object->local_has_tls_got_offset(symndx, need_pair))
1111 return;
1112
1113 this->entries_.push_back(Got_entry());
1114 unsigned int got_offset = this->last_got_offset();
1115 object->set_local_tls_got_offset(symndx, got_offset, need_pair);
8383303e 1116 section_offset_type off;
7bf1f802
ILT
1117 Output_section* os = object->output_section(shndx, &off);
1118 rela_dyn->add_output_section(os, r_type, this, got_offset, 0);
1119
1120 // The second entry of the pair will be statically initialized
1121 // with the TLS offset of the symbol.
1122 if (need_pair)
1123 this->entries_.push_back(Got_entry(object, symndx));
1124
1125 this->set_got_size();
1126}
1127
ead1e424
ILT
1128// Write out the GOT.
1129
1130template<int size, bool big_endian>
1131void
dbe717ef 1132Output_data_got<size, big_endian>::do_write(Output_file* of)
ead1e424
ILT
1133{
1134 const int add = size / 8;
1135
1136 const off_t off = this->offset();
c06b7b0b 1137 const off_t oview_size = this->data_size();
ead1e424
ILT
1138 unsigned char* const oview = of->get_output_view(off, oview_size);
1139
1140 unsigned char* pov = oview;
1141 for (typename Got_entries::const_iterator p = this->entries_.begin();
1142 p != this->entries_.end();
1143 ++p)
1144 {
7e1edb90 1145 p->write(pov);
ead1e424
ILT
1146 pov += add;
1147 }
1148
a3ad94ed 1149 gold_assert(pov - oview == oview_size);
c06b7b0b 1150
ead1e424
ILT
1151 of->write_output_view(off, oview_size, oview);
1152
1153 // We no longer need the GOT entries.
1154 this->entries_.clear();
1155}
1156
a3ad94ed
ILT
1157// Output_data_dynamic::Dynamic_entry methods.
1158
1159// Write out the entry.
1160
1161template<int size, bool big_endian>
1162void
1163Output_data_dynamic::Dynamic_entry::write(
1164 unsigned char* pov,
1ddbd1e6
ILT
1165 const Stringpool* pool
1166 ACCEPT_SIZE_ENDIAN) const
a3ad94ed
ILT
1167{
1168 typename elfcpp::Elf_types<size>::Elf_WXword val;
1169 switch (this->classification_)
1170 {
1171 case DYNAMIC_NUMBER:
1172 val = this->u_.val;
1173 break;
1174
1175 case DYNAMIC_SECTION_ADDRESS:
16649710 1176 val = this->u_.od->address();
a3ad94ed
ILT
1177 break;
1178
1179 case DYNAMIC_SECTION_SIZE:
16649710 1180 val = this->u_.od->data_size();
a3ad94ed
ILT
1181 break;
1182
1183 case DYNAMIC_SYMBOL:
1184 {
16649710
ILT
1185 const Sized_symbol<size>* s =
1186 static_cast<const Sized_symbol<size>*>(this->u_.sym);
a3ad94ed
ILT
1187 val = s->value();
1188 }
1189 break;
1190
1191 case DYNAMIC_STRING:
1192 val = pool->get_offset(this->u_.str);
1193 break;
1194
1195 default:
1196 gold_unreachable();
1197 }
1198
1199 elfcpp::Dyn_write<size, big_endian> dw(pov);
1200 dw.put_d_tag(this->tag_);
1201 dw.put_d_val(val);
1202}
1203
1204// Output_data_dynamic methods.
1205
16649710
ILT
1206// Adjust the output section to set the entry size.
1207
1208void
1209Output_data_dynamic::do_adjust_output_section(Output_section* os)
1210{
9025d29d 1211 if (parameters->get_size() == 32)
16649710 1212 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
9025d29d 1213 else if (parameters->get_size() == 64)
16649710
ILT
1214 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1215 else
1216 gold_unreachable();
1217}
1218
a3ad94ed
ILT
1219// Set the final data size.
1220
1221void
27bc2bce 1222Output_data_dynamic::set_final_data_size()
a3ad94ed
ILT
1223{
1224 // Add the terminating entry.
1225 this->add_constant(elfcpp::DT_NULL, 0);
1226
1227 int dyn_size;
9025d29d 1228 if (parameters->get_size() == 32)
a3ad94ed 1229 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
9025d29d 1230 else if (parameters->get_size() == 64)
a3ad94ed
ILT
1231 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1232 else
1233 gold_unreachable();
1234 this->set_data_size(this->entries_.size() * dyn_size);
1235}
1236
1237// Write out the dynamic entries.
1238
1239void
1240Output_data_dynamic::do_write(Output_file* of)
1241{
9025d29d 1242 if (parameters->get_size() == 32)
a3ad94ed 1243 {
9025d29d
ILT
1244 if (parameters->is_big_endian())
1245 {
1246#ifdef HAVE_TARGET_32_BIG
1247 this->sized_write<32, true>(of);
1248#else
1249 gold_unreachable();
1250#endif
1251 }
a3ad94ed 1252 else
9025d29d
ILT
1253 {
1254#ifdef HAVE_TARGET_32_LITTLE
1255 this->sized_write<32, false>(of);
1256#else
1257 gold_unreachable();
1258#endif
1259 }
a3ad94ed 1260 }
9025d29d 1261 else if (parameters->get_size() == 64)
a3ad94ed 1262 {
9025d29d
ILT
1263 if (parameters->is_big_endian())
1264 {
1265#ifdef HAVE_TARGET_64_BIG
1266 this->sized_write<64, true>(of);
1267#else
1268 gold_unreachable();
1269#endif
1270 }
a3ad94ed 1271 else
9025d29d
ILT
1272 {
1273#ifdef HAVE_TARGET_64_LITTLE
1274 this->sized_write<64, false>(of);
1275#else
1276 gold_unreachable();
1277#endif
1278 }
a3ad94ed
ILT
1279 }
1280 else
1281 gold_unreachable();
1282}
1283
1284template<int size, bool big_endian>
1285void
1286Output_data_dynamic::sized_write(Output_file* of)
1287{
1288 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1289
1290 const off_t offset = this->offset();
1291 const off_t oview_size = this->data_size();
1292 unsigned char* const oview = of->get_output_view(offset, oview_size);
1293
1294 unsigned char* pov = oview;
1295 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1296 p != this->entries_.end();
1297 ++p)
1298 {
1ddbd1e6
ILT
1299 p->write SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
1300 pov, this->pool_ SELECT_SIZE_ENDIAN(size, big_endian));
a3ad94ed
ILT
1301 pov += dyn_size;
1302 }
1303
1304 gold_assert(pov - oview == oview_size);
1305
1306 of->write_output_view(offset, oview_size, oview);
1307
1308 // We no longer need the dynamic entries.
1309 this->entries_.clear();
1310}
1311
ead1e424
ILT
1312// Output_section::Input_section methods.
1313
1314// Return the data size. For an input section we store the size here.
1315// For an Output_section_data, we have to ask it for the size.
1316
1317off_t
1318Output_section::Input_section::data_size() const
1319{
1320 if (this->is_input_section())
b8e6aad9 1321 return this->u1_.data_size;
ead1e424 1322 else
b8e6aad9 1323 return this->u2_.posd->data_size();
ead1e424
ILT
1324}
1325
1326// Set the address and file offset.
1327
1328void
96803768
ILT
1329Output_section::Input_section::set_address_and_file_offset(
1330 uint64_t address,
1331 off_t file_offset,
1332 off_t section_file_offset)
ead1e424
ILT
1333{
1334 if (this->is_input_section())
96803768
ILT
1335 this->u2_.object->set_section_offset(this->shndx_,
1336 file_offset - section_file_offset);
ead1e424 1337 else
96803768
ILT
1338 this->u2_.posd->set_address_and_file_offset(address, file_offset);
1339}
1340
1341// Finalize the data size.
1342
1343void
1344Output_section::Input_section::finalize_data_size()
1345{
1346 if (!this->is_input_section())
1347 this->u2_.posd->finalize_data_size();
b8e6aad9
ILT
1348}
1349
730cdc88 1350// Try to turn an input offset into an output offset.
b8e6aad9
ILT
1351
1352bool
8383303e
ILT
1353Output_section::Input_section::output_offset(
1354 const Relobj* object,
1355 unsigned int shndx,
1356 section_offset_type offset,
1357 section_offset_type *poutput) const
b8e6aad9
ILT
1358{
1359 if (!this->is_input_section())
730cdc88 1360 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
b8e6aad9
ILT
1361 else
1362 {
730cdc88 1363 if (this->shndx_ != shndx || this->u2_.object != object)
b8e6aad9 1364 return false;
8383303e 1365 section_offset_type output_offset;
b8e6aad9
ILT
1366 Output_section* os = object->output_section(shndx, &output_offset);
1367 gold_assert(os != NULL);
730cdc88
ILT
1368 gold_assert(output_offset != -1);
1369 *poutput = output_offset + offset;
b8e6aad9
ILT
1370 return true;
1371 }
ead1e424
ILT
1372}
1373
1374// Write out the data. We don't have to do anything for an input
1375// section--they are handled via Object::relocate--but this is where
1376// we write out the data for an Output_section_data.
1377
1378void
1379Output_section::Input_section::write(Output_file* of)
1380{
1381 if (!this->is_input_section())
b8e6aad9 1382 this->u2_.posd->write(of);
ead1e424
ILT
1383}
1384
96803768
ILT
1385// Write the data to a buffer. As for write(), we don't have to do
1386// anything for an input section.
1387
1388void
1389Output_section::Input_section::write_to_buffer(unsigned char* buffer)
1390{
1391 if (!this->is_input_section())
1392 this->u2_.posd->write_to_buffer(buffer);
1393}
1394
a2fb1b05
ILT
1395// Output_section methods.
1396
1397// Construct an Output_section. NAME will point into a Stringpool.
1398
96803768 1399Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
b8e6aad9 1400 elfcpp::Elf_Xword flags)
96803768 1401 : name_(name),
a2fb1b05
ILT
1402 addralign_(0),
1403 entsize_(0),
16649710 1404 link_section_(NULL),
a2fb1b05 1405 link_(0),
16649710 1406 info_section_(NULL),
a2fb1b05
ILT
1407 info_(0),
1408 type_(type),
61ba1cf9 1409 flags_(flags),
91ea499d 1410 out_shndx_(-1U),
c06b7b0b
ILT
1411 symtab_index_(0),
1412 dynsym_index_(0),
ead1e424
ILT
1413 input_sections_(),
1414 first_input_offset_(0),
c51e6221 1415 fills_(),
96803768 1416 postprocessing_buffer_(NULL),
a3ad94ed 1417 needs_symtab_index_(false),
16649710
ILT
1418 needs_dynsym_index_(false),
1419 should_link_to_symtab_(false),
730cdc88 1420 should_link_to_dynsym_(false),
27bc2bce 1421 after_input_sections_(false),
7bf1f802
ILT
1422 requires_postprocessing_(false),
1423 tls_offset_(0)
a2fb1b05 1424{
27bc2bce
ILT
1425 // An unallocated section has no address. Forcing this means that
1426 // we don't need special treatment for symbols defined in debug
1427 // sections.
1428 if ((flags & elfcpp::SHF_ALLOC) == 0)
1429 this->set_address(0);
a2fb1b05
ILT
1430}
1431
54dc6425
ILT
1432Output_section::~Output_section()
1433{
1434}
1435
16649710
ILT
1436// Set the entry size.
1437
1438void
1439Output_section::set_entsize(uint64_t v)
1440{
1441 if (this->entsize_ == 0)
1442 this->entsize_ = v;
1443 else
1444 gold_assert(this->entsize_ == v);
1445}
1446
ead1e424 1447// Add the input section SHNDX, with header SHDR, named SECNAME, in
730cdc88
ILT
1448// OBJECT, to the Output_section. RELOC_SHNDX is the index of a
1449// relocation section which applies to this section, or 0 if none, or
1450// -1U if more than one. Return the offset of the input section
1451// within the output section. Return -1 if the input section will
1452// receive special handling. In the normal case we don't always keep
1453// track of input sections for an Output_section. Instead, each
1454// Object keeps track of the Output_section for each of its input
1455// sections.
a2fb1b05
ILT
1456
1457template<int size, bool big_endian>
1458off_t
730cdc88
ILT
1459Output_section::add_input_section(Sized_relobj<size, big_endian>* object,
1460 unsigned int shndx,
ead1e424 1461 const char* secname,
730cdc88
ILT
1462 const elfcpp::Shdr<size, big_endian>& shdr,
1463 unsigned int reloc_shndx)
a2fb1b05
ILT
1464{
1465 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
1466 if ((addralign & (addralign - 1)) != 0)
1467 {
75f2446e
ILT
1468 object->error(_("invalid alignment %lu for section \"%s\""),
1469 static_cast<unsigned long>(addralign), secname);
1470 addralign = 1;
a2fb1b05 1471 }
a2fb1b05
ILT
1472
1473 if (addralign > this->addralign_)
1474 this->addralign_ = addralign;
1475
44a43cf9 1476 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
4f833eee 1477 uint64_t entsize = shdr.get_sh_entsize();
44a43cf9
ILT
1478
1479 // .debug_str is a mergeable string section, but is not always so
1480 // marked by compilers. Mark manually here so we can optimize.
1481 if (strcmp(secname, ".debug_str") == 0)
4f833eee
ILT
1482 {
1483 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
1484 entsize = 1;
1485 }
44a43cf9 1486
b8e6aad9 1487 // If this is a SHF_MERGE section, we pass all the input sections to
730cdc88
ILT
1488 // a Output_data_merge. We don't try to handle relocations for such
1489 // a section.
44a43cf9 1490 if ((sh_flags & elfcpp::SHF_MERGE) != 0
730cdc88 1491 && reloc_shndx == 0)
b8e6aad9 1492 {
44a43cf9 1493 if (this->add_merge_input_section(object, shndx, sh_flags,
96803768 1494 entsize, addralign))
b8e6aad9
ILT
1495 {
1496 // Tell the relocation routines that they need to call the
730cdc88 1497 // output_offset method to determine the final address.
b8e6aad9
ILT
1498 return -1;
1499 }
1500 }
1501
27bc2bce 1502 off_t offset_in_section = this->current_data_size_for_child();
c51e6221
ILT
1503 off_t aligned_offset_in_section = align_address(offset_in_section,
1504 addralign);
1505
1506 if (aligned_offset_in_section > offset_in_section
44a43cf9 1507 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
c51e6221
ILT
1508 && object->target()->has_code_fill())
1509 {
1510 // We need to add some fill data. Using fill_list_ when
1511 // possible is an optimization, since we will often have fill
1512 // sections without input sections.
1513 off_t fill_len = aligned_offset_in_section - offset_in_section;
1514 if (this->input_sections_.empty())
1515 this->fills_.push_back(Fill(offset_in_section, fill_len));
1516 else
1517 {
1518 // FIXME: When relaxing, the size needs to adjust to
1519 // maintain a constant alignment.
1520 std::string fill_data(object->target()->code_fill(fill_len));
1521 Output_data_const* odc = new Output_data_const(fill_data, 1);
1522 this->input_sections_.push_back(Input_section(odc));
1523 }
1524 }
1525
27bc2bce
ILT
1526 this->set_current_data_size_for_child(aligned_offset_in_section
1527 + shdr.get_sh_size());
a2fb1b05 1528
ead1e424
ILT
1529 // We need to keep track of this section if we are already keeping
1530 // track of sections, or if we are relaxing. FIXME: Add test for
1531 // relaxing.
c51e6221 1532 if (!this->input_sections_.empty())
ead1e424
ILT
1533 this->input_sections_.push_back(Input_section(object, shndx,
1534 shdr.get_sh_size(),
1535 addralign));
54dc6425 1536
c51e6221 1537 return aligned_offset_in_section;
61ba1cf9
ILT
1538}
1539
ead1e424
ILT
1540// Add arbitrary data to an output section.
1541
1542void
1543Output_section::add_output_section_data(Output_section_data* posd)
1544{
b8e6aad9
ILT
1545 Input_section inp(posd);
1546 this->add_output_section_data(&inp);
1547}
1548
1549// Add arbitrary data to an output section by Input_section.
c06b7b0b 1550
b8e6aad9
ILT
1551void
1552Output_section::add_output_section_data(Input_section* inp)
1553{
ead1e424 1554 if (this->input_sections_.empty())
27bc2bce 1555 this->first_input_offset_ = this->current_data_size_for_child();
c06b7b0b 1556
b8e6aad9 1557 this->input_sections_.push_back(*inp);
c06b7b0b 1558
b8e6aad9 1559 uint64_t addralign = inp->addralign();
ead1e424
ILT
1560 if (addralign > this->addralign_)
1561 this->addralign_ = addralign;
c06b7b0b 1562
b8e6aad9
ILT
1563 inp->set_output_section(this);
1564}
1565
1566// Add a merge section to an output section.
1567
1568void
1569Output_section::add_output_merge_section(Output_section_data* posd,
1570 bool is_string, uint64_t entsize)
1571{
1572 Input_section inp(posd, is_string, entsize);
1573 this->add_output_section_data(&inp);
1574}
1575
1576// Add an input section to a SHF_MERGE section.
1577
1578bool
1579Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
1580 uint64_t flags, uint64_t entsize,
96803768 1581 uint64_t addralign)
b8e6aad9 1582{
87f95776
ILT
1583 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
1584
1585 // We only merge strings if the alignment is not more than the
1586 // character size. This could be handled, but it's unusual.
1587 if (is_string && addralign > entsize)
b8e6aad9
ILT
1588 return false;
1589
b8e6aad9
ILT
1590 Input_section_list::iterator p;
1591 for (p = this->input_sections_.begin();
1592 p != this->input_sections_.end();
1593 ++p)
87f95776 1594 if (p->is_merge_section(is_string, entsize, addralign))
9a0910c3
ILT
1595 {
1596 p->add_input_section(object, shndx);
1597 return true;
1598 }
b8e6aad9
ILT
1599
1600 // We handle the actual constant merging in Output_merge_data or
1601 // Output_merge_string_data.
9a0910c3
ILT
1602 Output_section_data* posd;
1603 if (!is_string)
1604 posd = new Output_merge_data(entsize, addralign);
b8e6aad9
ILT
1605 else
1606 {
9a0910c3
ILT
1607 switch (entsize)
1608 {
1609 case 1:
1610 posd = new Output_merge_string<char>(addralign);
1611 break;
1612 case 2:
1613 posd = new Output_merge_string<uint16_t>(addralign);
1614 break;
1615 case 4:
1616 posd = new Output_merge_string<uint32_t>(addralign);
1617 break;
1618 default:
1619 return false;
1620 }
b8e6aad9
ILT
1621 }
1622
9a0910c3
ILT
1623 this->add_output_merge_section(posd, is_string, entsize);
1624 posd->add_input_section(object, shndx);
1625
b8e6aad9
ILT
1626 return true;
1627}
1628
730cdc88
ILT
1629// Given an address OFFSET relative to the start of input section
1630// SHNDX in OBJECT, return whether this address is being included in
1631// the final link. This should only be called if SHNDX in OBJECT has
1632// a special mapping.
1633
1634bool
1635Output_section::is_input_address_mapped(const Relobj* object,
1636 unsigned int shndx,
1637 off_t offset) const
1638{
1639 gold_assert(object->is_section_specially_mapped(shndx));
1640
1641 for (Input_section_list::const_iterator p = this->input_sections_.begin();
1642 p != this->input_sections_.end();
1643 ++p)
1644 {
8383303e 1645 section_offset_type output_offset;
730cdc88
ILT
1646 if (p->output_offset(object, shndx, offset, &output_offset))
1647 return output_offset != -1;
1648 }
1649
1650 // By default we assume that the address is mapped. This should
1651 // only be called after we have passed all sections to Layout. At
1652 // that point we should know what we are discarding.
1653 return true;
1654}
1655
1656// Given an address OFFSET relative to the start of input section
1657// SHNDX in object OBJECT, return the output offset relative to the
1658// start of the section. This should only be called if SHNDX in
1659// OBJECT has a special mapping.
1660
8383303e 1661section_offset_type
730cdc88 1662Output_section::output_offset(const Relobj* object, unsigned int shndx,
8383303e 1663 section_offset_type offset) const
730cdc88
ILT
1664{
1665 gold_assert(object->is_section_specially_mapped(shndx));
1666 // This can only be called meaningfully when layout is complete.
1667 gold_assert(Output_data::is_layout_complete());
1668
1669 for (Input_section_list::const_iterator p = this->input_sections_.begin();
1670 p != this->input_sections_.end();
1671 ++p)
1672 {
8383303e 1673 section_offset_type output_offset;
730cdc88
ILT
1674 if (p->output_offset(object, shndx, offset, &output_offset))
1675 return output_offset;
1676 }
1677 gold_unreachable();
1678}
1679
b8e6aad9
ILT
1680// Return the output virtual address of OFFSET relative to the start
1681// of input section SHNDX in object OBJECT.
1682
1683uint64_t
1684Output_section::output_address(const Relobj* object, unsigned int shndx,
1685 off_t offset) const
1686{
730cdc88
ILT
1687 gold_assert(object->is_section_specially_mapped(shndx));
1688 // This can only be called meaningfully when layout is complete.
1689 gold_assert(Output_data::is_layout_complete());
1690
b8e6aad9
ILT
1691 uint64_t addr = this->address() + this->first_input_offset_;
1692 for (Input_section_list::const_iterator p = this->input_sections_.begin();
1693 p != this->input_sections_.end();
1694 ++p)
1695 {
1696 addr = align_address(addr, p->addralign());
8383303e 1697 section_offset_type output_offset;
730cdc88
ILT
1698 if (p->output_offset(object, shndx, offset, &output_offset))
1699 {
1700 if (output_offset == -1)
1701 return -1U;
1702 return addr + output_offset;
1703 }
b8e6aad9
ILT
1704 addr += p->data_size();
1705 }
1706
1707 // If we get here, it means that we don't know the mapping for this
1708 // input section. This might happen in principle if
1709 // add_input_section were called before add_output_section_data.
1710 // But it should never actually happen.
1711
1712 gold_unreachable();
ead1e424
ILT
1713}
1714
27bc2bce 1715// Set the data size of an Output_section. This is where we handle
ead1e424
ILT
1716// setting the addresses of any Output_section_data objects.
1717
1718void
27bc2bce 1719Output_section::set_final_data_size()
ead1e424
ILT
1720{
1721 if (this->input_sections_.empty())
27bc2bce
ILT
1722 {
1723 this->set_data_size(this->current_data_size_for_child());
1724 return;
1725 }
ead1e424 1726
27bc2bce
ILT
1727 uint64_t address = this->address();
1728 off_t startoff = this->offset();
ead1e424
ILT
1729 off_t off = startoff + this->first_input_offset_;
1730 for (Input_section_list::iterator p = this->input_sections_.begin();
1731 p != this->input_sections_.end();
1732 ++p)
1733 {
1734 off = align_address(off, p->addralign());
96803768
ILT
1735 p->set_address_and_file_offset(address + (off - startoff), off,
1736 startoff);
ead1e424
ILT
1737 off += p->data_size();
1738 }
1739
1740 this->set_data_size(off - startoff);
1741}
9a0910c3 1742
7bf1f802
ILT
1743// Set the TLS offset. Called only for SHT_TLS sections.
1744
1745void
1746Output_section::do_set_tls_offset(uint64_t tls_base)
1747{
1748 this->tls_offset_ = this->address() - tls_base;
1749}
1750
61ba1cf9
ILT
1751// Write the section header to *OSHDR.
1752
1753template<int size, bool big_endian>
1754void
16649710
ILT
1755Output_section::write_header(const Layout* layout,
1756 const Stringpool* secnamepool,
61ba1cf9
ILT
1757 elfcpp::Shdr_write<size, big_endian>* oshdr) const
1758{
1759 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
1760 oshdr->put_sh_type(this->type_);
1761 oshdr->put_sh_flags(this->flags_);
1762 oshdr->put_sh_addr(this->address());
1763 oshdr->put_sh_offset(this->offset());
1764 oshdr->put_sh_size(this->data_size());
16649710
ILT
1765 if (this->link_section_ != NULL)
1766 oshdr->put_sh_link(this->link_section_->out_shndx());
1767 else if (this->should_link_to_symtab_)
1768 oshdr->put_sh_link(layout->symtab_section()->out_shndx());
1769 else if (this->should_link_to_dynsym_)
1770 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
1771 else
1772 oshdr->put_sh_link(this->link_);
1773 if (this->info_section_ != NULL)
1774 oshdr->put_sh_info(this->info_section_->out_shndx());
1775 else
1776 oshdr->put_sh_info(this->info_);
61ba1cf9
ILT
1777 oshdr->put_sh_addralign(this->addralign_);
1778 oshdr->put_sh_entsize(this->entsize_);
a2fb1b05
ILT
1779}
1780
ead1e424
ILT
1781// Write out the data. For input sections the data is written out by
1782// Object::relocate, but we have to handle Output_section_data objects
1783// here.
1784
1785void
1786Output_section::do_write(Output_file* of)
1787{
96803768
ILT
1788 gold_assert(!this->requires_postprocessing());
1789
c51e6221
ILT
1790 off_t output_section_file_offset = this->offset();
1791 for (Fill_list::iterator p = this->fills_.begin();
1792 p != this->fills_.end();
1793 ++p)
1794 {
1795 std::string fill_data(of->target()->code_fill(p->length()));
1796 of->write(output_section_file_offset + p->section_offset(),
1797 fill_data.data(), fill_data.size());
1798 }
1799
ead1e424
ILT
1800 for (Input_section_list::iterator p = this->input_sections_.begin();
1801 p != this->input_sections_.end();
1802 ++p)
1803 p->write(of);
1804}
1805
96803768
ILT
1806// If a section requires postprocessing, create the buffer to use.
1807
1808void
1809Output_section::create_postprocessing_buffer()
1810{
1811 gold_assert(this->requires_postprocessing());
1812 gold_assert(this->postprocessing_buffer_ == NULL);
1813
1814 if (!this->input_sections_.empty())
1815 {
1816 off_t off = this->first_input_offset_;
1817 for (Input_section_list::iterator p = this->input_sections_.begin();
1818 p != this->input_sections_.end();
1819 ++p)
1820 {
1821 off = align_address(off, p->addralign());
1822 p->finalize_data_size();
1823 off += p->data_size();
1824 }
1825 this->set_current_data_size_for_child(off);
1826 }
1827
1828 off_t buffer_size = this->current_data_size_for_child();
1829 this->postprocessing_buffer_ = new unsigned char[buffer_size];
1830}
1831
1832// Write all the data of an Output_section into the postprocessing
1833// buffer. This is used for sections which require postprocessing,
1834// such as compression. Input sections are handled by
1835// Object::Relocate.
1836
1837void
1838Output_section::write_to_postprocessing_buffer()
1839{
1840 gold_assert(this->requires_postprocessing());
1841
1842 Target* target = parameters->target();
1843 unsigned char* buffer = this->postprocessing_buffer();
1844 for (Fill_list::iterator p = this->fills_.begin();
1845 p != this->fills_.end();
1846 ++p)
1847 {
1848 std::string fill_data(target->code_fill(p->length()));
1849 memcpy(buffer + p->section_offset(), fill_data.data(), fill_data.size());
1850 }
1851
1852 off_t off = this->first_input_offset_;
1853 for (Input_section_list::iterator p = this->input_sections_.begin();
1854 p != this->input_sections_.end();
1855 ++p)
1856 {
1857 off = align_address(off, p->addralign());
1858 p->write_to_buffer(buffer + off);
1859 off += p->data_size();
1860 }
1861}
1862
a2fb1b05
ILT
1863// Output segment methods.
1864
1865Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
54dc6425 1866 : output_data_(),
75f65a3e 1867 output_bss_(),
a2fb1b05
ILT
1868 vaddr_(0),
1869 paddr_(0),
1870 memsz_(0),
1871 align_(0),
1872 offset_(0),
1873 filesz_(0),
1874 type_(type),
ead1e424
ILT
1875 flags_(flags),
1876 is_align_known_(false)
a2fb1b05
ILT
1877{
1878}
1879
1880// Add an Output_section to an Output_segment.
1881
1882void
75f65a3e 1883Output_segment::add_output_section(Output_section* os,
dbe717ef
ILT
1884 elfcpp::Elf_Word seg_flags,
1885 bool front)
a2fb1b05 1886{
a3ad94ed
ILT
1887 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1888 gold_assert(!this->is_align_known_);
75f65a3e 1889
ead1e424 1890 // Update the segment flags.
75f65a3e 1891 this->flags_ |= seg_flags;
75f65a3e
ILT
1892
1893 Output_segment::Output_data_list* pdl;
1894 if (os->type() == elfcpp::SHT_NOBITS)
1895 pdl = &this->output_bss_;
1896 else
1897 pdl = &this->output_data_;
54dc6425 1898
a2fb1b05
ILT
1899 // So that PT_NOTE segments will work correctly, we need to ensure
1900 // that all SHT_NOTE sections are adjacent. This will normally
1901 // happen automatically, because all the SHT_NOTE input sections
1902 // will wind up in the same output section. However, it is possible
1903 // for multiple SHT_NOTE input sections to have different section
1904 // flags, and thus be in different output sections, but for the
1905 // different section flags to map into the same segment flags and
1906 // thus the same output segment.
54dc6425
ILT
1907
1908 // Note that while there may be many input sections in an output
1909 // section, there are normally only a few output sections in an
1910 // output segment. This loop is expected to be fast.
1911
61ba1cf9 1912 if (os->type() == elfcpp::SHT_NOTE && !pdl->empty())
a2fb1b05 1913 {
a3ad94ed 1914 Output_segment::Output_data_list::iterator p = pdl->end();
75f65a3e 1915 do
54dc6425 1916 {
75f65a3e 1917 --p;
54dc6425
ILT
1918 if ((*p)->is_section_type(elfcpp::SHT_NOTE))
1919 {
dbe717ef 1920 // We don't worry about the FRONT parameter.
54dc6425 1921 ++p;
75f65a3e 1922 pdl->insert(p, os);
54dc6425
ILT
1923 return;
1924 }
1925 }
75f65a3e 1926 while (p != pdl->begin());
54dc6425
ILT
1927 }
1928
1929 // Similarly, so that PT_TLS segments will work, we need to group
75f65a3e
ILT
1930 // SHF_TLS sections. An SHF_TLS/SHT_NOBITS section is a special
1931 // case: we group the SHF_TLS/SHT_NOBITS sections right after the
1932 // SHF_TLS/SHT_PROGBITS sections. This lets us set up PT_TLS
07f397ab
ILT
1933 // correctly. SHF_TLS sections get added to both a PT_LOAD segment
1934 // and the PT_TLS segment -- we do this grouping only for the
1935 // PT_LOAD segment.
1936 if (this->type_ != elfcpp::PT_TLS
1937 && (os->flags() & elfcpp::SHF_TLS) != 0
1938 && !this->output_data_.empty())
54dc6425 1939 {
75f65a3e
ILT
1940 pdl = &this->output_data_;
1941 bool nobits = os->type() == elfcpp::SHT_NOBITS;
ead1e424 1942 bool sawtls = false;
a3ad94ed 1943 Output_segment::Output_data_list::iterator p = pdl->end();
75f65a3e 1944 do
a2fb1b05 1945 {
75f65a3e 1946 --p;
ead1e424
ILT
1947 bool insert;
1948 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
1949 {
1950 sawtls = true;
1951 // Put a NOBITS section after the first TLS section.
1952 // But a PROGBITS section after the first TLS/PROGBITS
1953 // section.
1954 insert = nobits || !(*p)->is_section_type(elfcpp::SHT_NOBITS);
1955 }
1956 else
1957 {
1958 // If we've gone past the TLS sections, but we've seen a
1959 // TLS section, then we need to insert this section now.
1960 insert = sawtls;
1961 }
1962
1963 if (insert)
a2fb1b05 1964 {
dbe717ef 1965 // We don't worry about the FRONT parameter.
a2fb1b05 1966 ++p;
75f65a3e 1967 pdl->insert(p, os);
a2fb1b05
ILT
1968 return;
1969 }
1970 }
75f65a3e 1971 while (p != pdl->begin());
ead1e424 1972
dbe717ef
ILT
1973 // There are no TLS sections yet; put this one at the requested
1974 // location in the section list.
a2fb1b05
ILT
1975 }
1976
dbe717ef
ILT
1977 if (front)
1978 pdl->push_front(os);
1979 else
1980 pdl->push_back(os);
75f65a3e
ILT
1981}
1982
1983// Add an Output_data (which is not an Output_section) to the start of
1984// a segment.
1985
1986void
1987Output_segment::add_initial_output_data(Output_data* od)
1988{
a3ad94ed 1989 gold_assert(!this->is_align_known_);
75f65a3e
ILT
1990 this->output_data_.push_front(od);
1991}
1992
1993// Return the maximum alignment of the Output_data in Output_segment.
ead1e424 1994// Once we compute this, we prohibit new sections from being added.
75f65a3e
ILT
1995
1996uint64_t
ead1e424 1997Output_segment::addralign()
75f65a3e 1998{
ead1e424
ILT
1999 if (!this->is_align_known_)
2000 {
2001 uint64_t addralign;
2002
2003 addralign = Output_segment::maximum_alignment(&this->output_data_);
2004 if (addralign > this->align_)
2005 this->align_ = addralign;
2006
2007 addralign = Output_segment::maximum_alignment(&this->output_bss_);
2008 if (addralign > this->align_)
2009 this->align_ = addralign;
2010
2011 this->is_align_known_ = true;
2012 }
2013
75f65a3e
ILT
2014 return this->align_;
2015}
2016
ead1e424
ILT
2017// Return the maximum alignment of a list of Output_data.
2018
2019uint64_t
2020Output_segment::maximum_alignment(const Output_data_list* pdl)
2021{
2022 uint64_t ret = 0;
2023 for (Output_data_list::const_iterator p = pdl->begin();
2024 p != pdl->end();
2025 ++p)
2026 {
2027 uint64_t addralign = (*p)->addralign();
2028 if (addralign > ret)
2029 ret = addralign;
2030 }
2031 return ret;
2032}
2033
4f4c5f80
ILT
2034// Return the number of dynamic relocs applied to this segment.
2035
2036unsigned int
2037Output_segment::dynamic_reloc_count() const
2038{
2039 return (this->dynamic_reloc_count_list(&this->output_data_)
2040 + this->dynamic_reloc_count_list(&this->output_bss_));
2041}
2042
2043// Return the number of dynamic relocs applied to an Output_data_list.
2044
2045unsigned int
2046Output_segment::dynamic_reloc_count_list(const Output_data_list* pdl) const
2047{
2048 unsigned int count = 0;
2049 for (Output_data_list::const_iterator p = pdl->begin();
2050 p != pdl->end();
2051 ++p)
2052 count += (*p)->dynamic_reloc_count();
2053 return count;
2054}
2055
75f65a3e 2056// Set the section addresses for an Output_segment. ADDR is the
ead1e424
ILT
2057// address and *POFF is the file offset. Set the section indexes
2058// starting with *PSHNDX. Return the address of the immediately
2059// following segment. Update *POFF and *PSHNDX.
75f65a3e
ILT
2060
2061uint64_t
ead1e424
ILT
2062Output_segment::set_section_addresses(uint64_t addr, off_t* poff,
2063 unsigned int* pshndx)
75f65a3e 2064{
a3ad94ed 2065 gold_assert(this->type_ == elfcpp::PT_LOAD);
75f65a3e
ILT
2066
2067 this->vaddr_ = addr;
2068 this->paddr_ = addr;
2069
2070 off_t orig_off = *poff;
2071 this->offset_ = orig_off;
2072
ead1e424
ILT
2073 *poff = align_address(*poff, this->addralign());
2074
2075 addr = this->set_section_list_addresses(&this->output_data_, addr, poff,
2076 pshndx);
75f65a3e
ILT
2077 this->filesz_ = *poff - orig_off;
2078
2079 off_t off = *poff;
2080
61ba1cf9 2081 uint64_t ret = this->set_section_list_addresses(&this->output_bss_, addr,
ead1e424 2082 poff, pshndx);
75f65a3e
ILT
2083 this->memsz_ = *poff - orig_off;
2084
2085 // Ignore the file offset adjustments made by the BSS Output_data
2086 // objects.
2087 *poff = off;
61ba1cf9
ILT
2088
2089 return ret;
75f65a3e
ILT
2090}
2091
b8e6aad9
ILT
2092// Set the addresses and file offsets in a list of Output_data
2093// structures.
75f65a3e
ILT
2094
2095uint64_t
2096Output_segment::set_section_list_addresses(Output_data_list* pdl,
ead1e424
ILT
2097 uint64_t addr, off_t* poff,
2098 unsigned int* pshndx)
75f65a3e 2099{
ead1e424 2100 off_t startoff = *poff;
75f65a3e 2101
ead1e424 2102 off_t off = startoff;
75f65a3e
ILT
2103 for (Output_data_list::iterator p = pdl->begin();
2104 p != pdl->end();
2105 ++p)
2106 {
ead1e424 2107 off = align_address(off, (*p)->addralign());
27bc2bce 2108 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
ead1e424
ILT
2109
2110 // Unless this is a PT_TLS segment, we want to ignore the size
2111 // of a SHF_TLS/SHT_NOBITS section. Such a section does not
2112 // affect the size of a PT_LOAD segment.
2113 if (this->type_ == elfcpp::PT_TLS
2114 || !(*p)->is_section_flag_set(elfcpp::SHF_TLS)
2115 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
2116 off += (*p)->data_size();
75f65a3e 2117
ead1e424
ILT
2118 if ((*p)->is_section())
2119 {
2120 (*p)->set_out_shndx(*pshndx);
2121 ++*pshndx;
2122 }
75f65a3e
ILT
2123 }
2124
2125 *poff = off;
ead1e424 2126 return addr + (off - startoff);
75f65a3e
ILT
2127}
2128
2129// For a non-PT_LOAD segment, set the offset from the sections, if
2130// any.
2131
2132void
2133Output_segment::set_offset()
2134{
a3ad94ed 2135 gold_assert(this->type_ != elfcpp::PT_LOAD);
75f65a3e
ILT
2136
2137 if (this->output_data_.empty() && this->output_bss_.empty())
2138 {
2139 this->vaddr_ = 0;
2140 this->paddr_ = 0;
2141 this->memsz_ = 0;
2142 this->align_ = 0;
2143 this->offset_ = 0;
2144 this->filesz_ = 0;
2145 return;
2146 }
2147
2148 const Output_data* first;
2149 if (this->output_data_.empty())
2150 first = this->output_bss_.front();
2151 else
2152 first = this->output_data_.front();
2153 this->vaddr_ = first->address();
2154 this->paddr_ = this->vaddr_;
2155 this->offset_ = first->offset();
2156
2157 if (this->output_data_.empty())
2158 this->filesz_ = 0;
2159 else
2160 {
2161 const Output_data* last_data = this->output_data_.back();
2162 this->filesz_ = (last_data->address()
2163 + last_data->data_size()
2164 - this->vaddr_);
2165 }
2166
2167 const Output_data* last;
2168 if (this->output_bss_.empty())
2169 last = this->output_data_.back();
2170 else
2171 last = this->output_bss_.back();
2172 this->memsz_ = (last->address()
2173 + last->data_size()
2174 - this->vaddr_);
75f65a3e
ILT
2175}
2176
7bf1f802
ILT
2177// Set the TLS offsets of the sections in the PT_TLS segment.
2178
2179void
2180Output_segment::set_tls_offsets()
2181{
2182 gold_assert(this->type_ == elfcpp::PT_TLS);
2183
2184 for (Output_data_list::iterator p = this->output_data_.begin();
2185 p != this->output_data_.end();
2186 ++p)
2187 (*p)->set_tls_offset(this->vaddr_);
2188
2189 for (Output_data_list::iterator p = this->output_bss_.begin();
2190 p != this->output_bss_.end();
2191 ++p)
2192 (*p)->set_tls_offset(this->vaddr_);
2193}
2194
75f65a3e
ILT
2195// Return the number of Output_sections in an Output_segment.
2196
2197unsigned int
2198Output_segment::output_section_count() const
2199{
2200 return (this->output_section_count_list(&this->output_data_)
2201 + this->output_section_count_list(&this->output_bss_));
2202}
2203
2204// Return the number of Output_sections in an Output_data_list.
2205
2206unsigned int
2207Output_segment::output_section_count_list(const Output_data_list* pdl) const
2208{
2209 unsigned int count = 0;
2210 for (Output_data_list::const_iterator p = pdl->begin();
2211 p != pdl->end();
2212 ++p)
2213 {
2214 if ((*p)->is_section())
2215 ++count;
2216 }
2217 return count;
a2fb1b05
ILT
2218}
2219
61ba1cf9
ILT
2220// Write the segment data into *OPHDR.
2221
2222template<int size, bool big_endian>
2223void
ead1e424 2224Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
61ba1cf9
ILT
2225{
2226 ophdr->put_p_type(this->type_);
2227 ophdr->put_p_offset(this->offset_);
2228 ophdr->put_p_vaddr(this->vaddr_);
2229 ophdr->put_p_paddr(this->paddr_);
2230 ophdr->put_p_filesz(this->filesz_);
2231 ophdr->put_p_memsz(this->memsz_);
2232 ophdr->put_p_flags(this->flags_);
ead1e424 2233 ophdr->put_p_align(this->addralign());
61ba1cf9
ILT
2234}
2235
2236// Write the section headers into V.
2237
2238template<int size, bool big_endian>
2239unsigned char*
16649710
ILT
2240Output_segment::write_section_headers(const Layout* layout,
2241 const Stringpool* secnamepool,
ead1e424
ILT
2242 unsigned char* v,
2243 unsigned int *pshndx
5482377d
ILT
2244 ACCEPT_SIZE_ENDIAN) const
2245{
ead1e424
ILT
2246 // Every section that is attached to a segment must be attached to a
2247 // PT_LOAD segment, so we only write out section headers for PT_LOAD
2248 // segments.
2249 if (this->type_ != elfcpp::PT_LOAD)
2250 return v;
2251
593f47df
ILT
2252 v = this->write_section_headers_list
2253 SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
16649710 2254 layout, secnamepool, &this->output_data_, v, pshndx
593f47df
ILT
2255 SELECT_SIZE_ENDIAN(size, big_endian));
2256 v = this->write_section_headers_list
2257 SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
16649710 2258 layout, secnamepool, &this->output_bss_, v, pshndx
593f47df 2259 SELECT_SIZE_ENDIAN(size, big_endian));
61ba1cf9
ILT
2260 return v;
2261}
2262
2263template<int size, bool big_endian>
2264unsigned char*
16649710
ILT
2265Output_segment::write_section_headers_list(const Layout* layout,
2266 const Stringpool* secnamepool,
61ba1cf9 2267 const Output_data_list* pdl,
ead1e424
ILT
2268 unsigned char* v,
2269 unsigned int* pshndx
5482377d 2270 ACCEPT_SIZE_ENDIAN) const
61ba1cf9
ILT
2271{
2272 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2273 for (Output_data_list::const_iterator p = pdl->begin();
2274 p != pdl->end();
2275 ++p)
2276 {
2277 if ((*p)->is_section())
2278 {
5482377d 2279 const Output_section* ps = static_cast<const Output_section*>(*p);
a3ad94ed 2280 gold_assert(*pshndx == ps->out_shndx());
61ba1cf9 2281 elfcpp::Shdr_write<size, big_endian> oshdr(v);
16649710 2282 ps->write_header(layout, secnamepool, &oshdr);
61ba1cf9 2283 v += shdr_size;
ead1e424 2284 ++*pshndx;
61ba1cf9
ILT
2285 }
2286 }
2287 return v;
2288}
2289
a2fb1b05
ILT
2290// Output_file methods.
2291
c51e6221 2292Output_file::Output_file(const General_options& options, Target* target)
61ba1cf9 2293 : options_(options),
c51e6221 2294 target_(target),
61ba1cf9
ILT
2295 name_(options.output_file_name()),
2296 o_(-1),
2297 file_size_(0),
c420411f
ILT
2298 base_(NULL),
2299 map_is_anonymous_(false)
61ba1cf9
ILT
2300{
2301}
2302
2303// Open the output file.
2304
a2fb1b05 2305void
61ba1cf9 2306Output_file::open(off_t file_size)
a2fb1b05 2307{
61ba1cf9
ILT
2308 this->file_size_ = file_size;
2309
4e9d8586
ILT
2310 // Unlink the file first; otherwise the open() may fail if the file
2311 // is busy (e.g. it's an executable that's currently being executed).
2312 //
2313 // However, the linker may be part of a system where a zero-length
2314 // file is created for it to write to, with tight permissions (gcc
2315 // 2.95 did something like this). Unlinking the file would work
2316 // around those permission controls, so we only unlink if the file
2317 // has a non-zero size. We also unlink only regular files to avoid
2318 // trouble with directories/etc.
2319 //
2320 // If we fail, continue; this command is merely a best-effort attempt
2321 // to improve the odds for open().
2322
42a1b686
ILT
2323 // We let the name "-" mean "stdout"
2324 if (strcmp(this->name_, "-") == 0)
2325 this->o_ = STDOUT_FILENO;
2326 else
2327 {
2328 struct stat s;
2329 if (::stat(this->name_, &s) == 0 && s.st_size != 0)
2330 unlink_if_ordinary(this->name_);
2331
2332 int mode = parameters->output_is_object() ? 0666 : 0777;
2333 int o = ::open(this->name_, O_RDWR | O_CREAT | O_TRUNC, mode);
2334 if (o < 0)
2335 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
2336 this->o_ = o;
2337 }
61ba1cf9 2338
27bc2bce
ILT
2339 this->map();
2340}
2341
2342// Resize the output file.
2343
2344void
2345Output_file::resize(off_t file_size)
2346{
c420411f
ILT
2347 // If the mmap is mapping an anonymous memory buffer, this is easy:
2348 // just mremap to the new size. If it's mapping to a file, we want
2349 // to unmap to flush to the file, then remap after growing the file.
2350 if (this->map_is_anonymous_)
2351 {
2352 void* base = ::mremap(this->base_, this->file_size_, file_size,
2353 MREMAP_MAYMOVE);
2354 if (base == MAP_FAILED)
2355 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
2356 this->base_ = static_cast<unsigned char*>(base);
2357 this->file_size_ = file_size;
2358 }
2359 else
2360 {
2361 this->unmap();
2362 this->file_size_ = file_size;
2363 this->map();
2364 }
27bc2bce
ILT
2365}
2366
2367// Map the file into memory.
2368
2369void
2370Output_file::map()
2371{
c420411f 2372 const int o = this->o_;
61ba1cf9 2373
c420411f
ILT
2374 // If the output file is not a regular file, don't try to mmap it;
2375 // instead, we'll mmap a block of memory (an anonymous buffer), and
2376 // then later write the buffer to the file.
2377 void* base;
2378 struct stat statbuf;
42a1b686
ILT
2379 if (o == STDOUT_FILENO || o == STDERR_FILENO
2380 || ::fstat(o, &statbuf) != 0
c420411f
ILT
2381 || !S_ISREG(statbuf.st_mode))
2382 {
2383 this->map_is_anonymous_ = true;
2384 base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
2385 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2386 }
2387 else
2388 {
2389 // Write out one byte to make the file the right size.
2390 if (::lseek(o, this->file_size_ - 1, SEEK_SET) < 0)
2391 gold_fatal(_("%s: lseek: %s"), this->name_, strerror(errno));
2392 char b = 0;
2393 if (::write(o, &b, 1) != 1)
2394 gold_fatal(_("%s: write: %s"), this->name_, strerror(errno));
2395
2396 // Map the file into memory.
2397 this->map_is_anonymous_ = false;
2398 base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
2399 MAP_SHARED, o, 0);
2400 }
61ba1cf9 2401 if (base == MAP_FAILED)
75f2446e 2402 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
61ba1cf9
ILT
2403 this->base_ = static_cast<unsigned char*>(base);
2404}
2405
c420411f 2406// Unmap the file from memory.
61ba1cf9
ILT
2407
2408void
c420411f 2409Output_file::unmap()
61ba1cf9
ILT
2410{
2411 if (::munmap(this->base_, this->file_size_) < 0)
a0c4fb0a 2412 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
61ba1cf9 2413 this->base_ = NULL;
c420411f
ILT
2414}
2415
2416// Close the output file.
2417
2418void
2419Output_file::close()
2420{
2421 // If the map isn't file-backed, we need to write it now.
2422 if (this->map_is_anonymous_)
2423 {
2424 size_t bytes_to_write = this->file_size_;
2425 while (bytes_to_write > 0)
2426 {
2427 ssize_t bytes_written = ::write(this->o_, this->base_, bytes_to_write);
2428 if (bytes_written == 0)
2429 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
2430 else if (bytes_written < 0)
2431 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
2432 else
2433 bytes_to_write -= bytes_written;
2434 }
2435 }
2436 this->unmap();
61ba1cf9 2437
42a1b686
ILT
2438 // We don't close stdout or stderr
2439 if (this->o_ != STDOUT_FILENO && this->o_ != STDERR_FILENO)
2440 if (::close(this->o_) < 0)
2441 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
61ba1cf9 2442 this->o_ = -1;
a2fb1b05
ILT
2443}
2444
2445// Instantiate the templates we need. We could use the configure
2446// script to restrict this to only the ones for implemented targets.
2447
193a53d9 2448#ifdef HAVE_TARGET_32_LITTLE
a2fb1b05
ILT
2449template
2450off_t
2451Output_section::add_input_section<32, false>(
730cdc88 2452 Sized_relobj<32, false>* object,
ead1e424 2453 unsigned int shndx,
a2fb1b05 2454 const char* secname,
730cdc88
ILT
2455 const elfcpp::Shdr<32, false>& shdr,
2456 unsigned int reloc_shndx);
193a53d9 2457#endif
a2fb1b05 2458
193a53d9 2459#ifdef HAVE_TARGET_32_BIG
a2fb1b05
ILT
2460template
2461off_t
2462Output_section::add_input_section<32, true>(
730cdc88 2463 Sized_relobj<32, true>* object,
ead1e424 2464 unsigned int shndx,
a2fb1b05 2465 const char* secname,
730cdc88
ILT
2466 const elfcpp::Shdr<32, true>& shdr,
2467 unsigned int reloc_shndx);
193a53d9 2468#endif
a2fb1b05 2469
193a53d9 2470#ifdef HAVE_TARGET_64_LITTLE
a2fb1b05
ILT
2471template
2472off_t
2473Output_section::add_input_section<64, false>(
730cdc88 2474 Sized_relobj<64, false>* object,
ead1e424 2475 unsigned int shndx,
a2fb1b05 2476 const char* secname,
730cdc88
ILT
2477 const elfcpp::Shdr<64, false>& shdr,
2478 unsigned int reloc_shndx);
193a53d9 2479#endif
a2fb1b05 2480
193a53d9 2481#ifdef HAVE_TARGET_64_BIG
a2fb1b05
ILT
2482template
2483off_t
2484Output_section::add_input_section<64, true>(
730cdc88 2485 Sized_relobj<64, true>* object,
ead1e424 2486 unsigned int shndx,
a2fb1b05 2487 const char* secname,
730cdc88
ILT
2488 const elfcpp::Shdr<64, true>& shdr,
2489 unsigned int reloc_shndx);
193a53d9 2490#endif
a2fb1b05 2491
193a53d9 2492#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
2493template
2494class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
193a53d9 2495#endif
c06b7b0b 2496
193a53d9 2497#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
2498template
2499class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
193a53d9 2500#endif
c06b7b0b 2501
193a53d9 2502#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
2503template
2504class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
193a53d9 2505#endif
c06b7b0b 2506
193a53d9 2507#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
2508template
2509class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
193a53d9 2510#endif
c06b7b0b 2511
193a53d9 2512#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
2513template
2514class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
193a53d9 2515#endif
c06b7b0b 2516
193a53d9 2517#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
2518template
2519class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
193a53d9 2520#endif
c06b7b0b 2521
193a53d9 2522#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
2523template
2524class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
193a53d9 2525#endif
c06b7b0b 2526
193a53d9 2527#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
2528template
2529class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
193a53d9 2530#endif
c06b7b0b 2531
193a53d9 2532#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
2533template
2534class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
193a53d9 2535#endif
c06b7b0b 2536
193a53d9 2537#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
2538template
2539class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
193a53d9 2540#endif
c06b7b0b 2541
193a53d9 2542#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
2543template
2544class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
193a53d9 2545#endif
c06b7b0b 2546
193a53d9 2547#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
2548template
2549class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
193a53d9 2550#endif
c06b7b0b 2551
193a53d9 2552#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
2553template
2554class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
193a53d9 2555#endif
c06b7b0b 2556
193a53d9 2557#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
2558template
2559class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
193a53d9 2560#endif
c06b7b0b 2561
193a53d9 2562#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
2563template
2564class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
193a53d9 2565#endif
c06b7b0b 2566
193a53d9 2567#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
2568template
2569class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
193a53d9 2570#endif
c06b7b0b 2571
193a53d9 2572#ifdef HAVE_TARGET_32_LITTLE
ead1e424 2573template
dbe717ef 2574class Output_data_got<32, false>;
193a53d9 2575#endif
ead1e424 2576
193a53d9 2577#ifdef HAVE_TARGET_32_BIG
ead1e424 2578template
dbe717ef 2579class Output_data_got<32, true>;
193a53d9 2580#endif
ead1e424 2581
193a53d9 2582#ifdef HAVE_TARGET_64_LITTLE
ead1e424 2583template
dbe717ef 2584class Output_data_got<64, false>;
193a53d9 2585#endif
ead1e424 2586
193a53d9 2587#ifdef HAVE_TARGET_64_BIG
ead1e424 2588template
dbe717ef 2589class Output_data_got<64, true>;
193a53d9 2590#endif
ead1e424 2591
a2fb1b05 2592} // End namespace gold.