]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gold/output.cc
merge from gcc
[thirdparty/binutils-gdb.git] / gold / output.cc
CommitLineData
a2fb1b05
ILT
1// output.cc -- manage the output file for gold
2
e29e076a 3// Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
6cb15b7f
ILT
4// Written by Ian Lance Taylor <iant@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
a2fb1b05
ILT
23#include "gold.h"
24
25#include <cstdlib>
04bf7072 26#include <cstring>
61ba1cf9
ILT
27#include <cerrno>
28#include <fcntl.h>
29#include <unistd.h>
30#include <sys/mman.h>
4e9d8586 31#include <sys/stat.h>
75f65a3e 32#include <algorithm>
5ffcaa86 33#include "libiberty.h" // for unlink_if_ordinary()
a2fb1b05 34
7e1edb90 35#include "parameters.h"
a2fb1b05 36#include "object.h"
ead1e424
ILT
37#include "symtab.h"
38#include "reloc.h"
b8e6aad9 39#include "merge.h"
2a00e4fb 40#include "descriptors.h"
a2fb1b05
ILT
41#include "output.h"
42
c420411f
ILT
43// Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
44#ifndef MAP_ANONYMOUS
45# define MAP_ANONYMOUS MAP_ANON
46#endif
47
9201d894
ILT
48#ifndef HAVE_POSIX_FALLOCATE
49// A dummy, non general, version of posix_fallocate. Here we just set
50// the file size and hope that there is enough disk space. FIXME: We
51// could allocate disk space by walking block by block and writing a
52// zero byte into each block.
53static int
54posix_fallocate(int o, off_t offset, off_t len)
55{
56 return ftruncate(o, offset + len);
57}
58#endif // !defined(HAVE_POSIX_FALLOCATE)
59
a2fb1b05
ILT
60namespace gold
61{
62
a3ad94ed
ILT
63// Output_data variables.
64
27bc2bce 65bool Output_data::allocated_sizes_are_fixed;
a3ad94ed 66
a2fb1b05
ILT
67// Output_data methods.
68
69Output_data::~Output_data()
70{
71}
72
730cdc88
ILT
73// Return the default alignment for the target size.
74
75uint64_t
76Output_data::default_alignment()
77{
8851ecca
ILT
78 return Output_data::default_alignment_for_size(
79 parameters->target().get_size());
730cdc88
ILT
80}
81
75f65a3e
ILT
82// Return the default alignment for a size--32 or 64.
83
84uint64_t
730cdc88 85Output_data::default_alignment_for_size(int size)
75f65a3e
ILT
86{
87 if (size == 32)
88 return 4;
89 else if (size == 64)
90 return 8;
91 else
a3ad94ed 92 gold_unreachable();
75f65a3e
ILT
93}
94
75f65a3e
ILT
95// Output_section_header methods. This currently assumes that the
96// segment and section lists are complete at construction time.
97
98Output_section_headers::Output_section_headers(
16649710
ILT
99 const Layout* layout,
100 const Layout::Segment_list* segment_list,
6a74a719 101 const Layout::Section_list* section_list,
16649710 102 const Layout::Section_list* unattached_section_list,
d491d34e
ILT
103 const Stringpool* secnamepool,
104 const Output_section* shstrtab_section)
9025d29d 105 : layout_(layout),
75f65a3e 106 segment_list_(segment_list),
6a74a719 107 section_list_(section_list),
a3ad94ed 108 unattached_section_list_(unattached_section_list),
d491d34e
ILT
109 secnamepool_(secnamepool),
110 shstrtab_section_(shstrtab_section)
75f65a3e 111{
61ba1cf9
ILT
112 // Count all the sections. Start with 1 for the null section.
113 off_t count = 1;
8851ecca 114 if (!parameters->options().relocatable())
6a74a719
ILT
115 {
116 for (Layout::Segment_list::const_iterator p = segment_list->begin();
117 p != segment_list->end();
118 ++p)
119 if ((*p)->type() == elfcpp::PT_LOAD)
120 count += (*p)->output_section_count();
121 }
122 else
123 {
124 for (Layout::Section_list::const_iterator p = section_list->begin();
125 p != section_list->end();
126 ++p)
127 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
128 ++count;
129 }
16649710 130 count += unattached_section_list->size();
75f65a3e 131
8851ecca 132 const int size = parameters->target().get_size();
75f65a3e
ILT
133 int shdr_size;
134 if (size == 32)
135 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
136 else if (size == 64)
137 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
138 else
a3ad94ed 139 gold_unreachable();
75f65a3e
ILT
140
141 this->set_data_size(count * shdr_size);
142}
143
61ba1cf9
ILT
144// Write out the section headers.
145
75f65a3e 146void
61ba1cf9 147Output_section_headers::do_write(Output_file* of)
a2fb1b05 148{
8851ecca 149 switch (parameters->size_and_endianness())
61ba1cf9 150 {
9025d29d 151#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
152 case Parameters::TARGET_32_LITTLE:
153 this->do_sized_write<32, false>(of);
154 break;
9025d29d 155#endif
8851ecca
ILT
156#ifdef HAVE_TARGET_32_BIG
157 case Parameters::TARGET_32_BIG:
158 this->do_sized_write<32, true>(of);
159 break;
9025d29d 160#endif
9025d29d 161#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
162 case Parameters::TARGET_64_LITTLE:
163 this->do_sized_write<64, false>(of);
164 break;
9025d29d 165#endif
8851ecca
ILT
166#ifdef HAVE_TARGET_64_BIG
167 case Parameters::TARGET_64_BIG:
168 this->do_sized_write<64, true>(of);
169 break;
170#endif
171 default:
172 gold_unreachable();
61ba1cf9 173 }
61ba1cf9
ILT
174}
175
176template<int size, bool big_endian>
177void
178Output_section_headers::do_sized_write(Output_file* of)
179{
180 off_t all_shdrs_size = this->data_size();
181 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
182
183 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
184 unsigned char* v = view;
185
186 {
187 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
188 oshdr.put_sh_name(0);
189 oshdr.put_sh_type(elfcpp::SHT_NULL);
190 oshdr.put_sh_flags(0);
191 oshdr.put_sh_addr(0);
192 oshdr.put_sh_offset(0);
d491d34e
ILT
193
194 size_t section_count = (this->data_size()
195 / elfcpp::Elf_sizes<size>::shdr_size);
196 if (section_count < elfcpp::SHN_LORESERVE)
197 oshdr.put_sh_size(0);
198 else
199 oshdr.put_sh_size(section_count);
200
201 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
202 if (shstrndx < elfcpp::SHN_LORESERVE)
203 oshdr.put_sh_link(0);
204 else
205 oshdr.put_sh_link(shstrndx);
206
61ba1cf9
ILT
207 oshdr.put_sh_info(0);
208 oshdr.put_sh_addralign(0);
209 oshdr.put_sh_entsize(0);
210 }
211
212 v += shdr_size;
213
6a74a719 214 unsigned int shndx = 1;
8851ecca 215 if (!parameters->options().relocatable())
6a74a719
ILT
216 {
217 for (Layout::Segment_list::const_iterator p =
218 this->segment_list_->begin();
219 p != this->segment_list_->end();
220 ++p)
221 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
222 this->secnamepool_,
223 v,
224 &shndx);
225 }
226 else
227 {
228 for (Layout::Section_list::const_iterator p =
229 this->section_list_->begin();
230 p != this->section_list_->end();
231 ++p)
232 {
233 // We do unallocated sections below, except that group
234 // sections have to come first.
235 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
236 && (*p)->type() != elfcpp::SHT_GROUP)
237 continue;
238 gold_assert(shndx == (*p)->out_shndx());
239 elfcpp::Shdr_write<size, big_endian> oshdr(v);
240 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
241 v += shdr_size;
242 ++shndx;
243 }
244 }
245
a3ad94ed 246 for (Layout::Section_list::const_iterator p =
16649710
ILT
247 this->unattached_section_list_->begin();
248 p != this->unattached_section_list_->end();
61ba1cf9
ILT
249 ++p)
250 {
6a74a719
ILT
251 // For a relocatable link, we did unallocated group sections
252 // above, since they have to come first.
253 if ((*p)->type() == elfcpp::SHT_GROUP
8851ecca 254 && parameters->options().relocatable())
6a74a719 255 continue;
a3ad94ed 256 gold_assert(shndx == (*p)->out_shndx());
61ba1cf9 257 elfcpp::Shdr_write<size, big_endian> oshdr(v);
16649710 258 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
61ba1cf9 259 v += shdr_size;
ead1e424 260 ++shndx;
61ba1cf9
ILT
261 }
262
263 of->write_output_view(this->offset(), all_shdrs_size, view);
a2fb1b05
ILT
264}
265
54dc6425
ILT
266// Output_segment_header methods.
267
61ba1cf9 268Output_segment_headers::Output_segment_headers(
61ba1cf9 269 const Layout::Segment_list& segment_list)
9025d29d 270 : segment_list_(segment_list)
61ba1cf9 271{
8851ecca 272 const int size = parameters->target().get_size();
61ba1cf9
ILT
273 int phdr_size;
274 if (size == 32)
275 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
276 else if (size == 64)
277 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
278 else
a3ad94ed 279 gold_unreachable();
61ba1cf9
ILT
280
281 this->set_data_size(segment_list.size() * phdr_size);
282}
283
54dc6425 284void
61ba1cf9 285Output_segment_headers::do_write(Output_file* of)
75f65a3e 286{
8851ecca 287 switch (parameters->size_and_endianness())
61ba1cf9 288 {
9025d29d 289#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
290 case Parameters::TARGET_32_LITTLE:
291 this->do_sized_write<32, false>(of);
292 break;
9025d29d 293#endif
8851ecca
ILT
294#ifdef HAVE_TARGET_32_BIG
295 case Parameters::TARGET_32_BIG:
296 this->do_sized_write<32, true>(of);
297 break;
9025d29d 298#endif
9025d29d 299#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
300 case Parameters::TARGET_64_LITTLE:
301 this->do_sized_write<64, false>(of);
302 break;
9025d29d 303#endif
8851ecca
ILT
304#ifdef HAVE_TARGET_64_BIG
305 case Parameters::TARGET_64_BIG:
306 this->do_sized_write<64, true>(of);
307 break;
308#endif
309 default:
310 gold_unreachable();
61ba1cf9 311 }
61ba1cf9
ILT
312}
313
314template<int size, bool big_endian>
315void
316Output_segment_headers::do_sized_write(Output_file* of)
317{
318 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
319 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
a445fddf 320 gold_assert(all_phdrs_size == this->data_size());
61ba1cf9
ILT
321 unsigned char* view = of->get_output_view(this->offset(),
322 all_phdrs_size);
323 unsigned char* v = view;
324 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
325 p != this->segment_list_.end();
326 ++p)
327 {
328 elfcpp::Phdr_write<size, big_endian> ophdr(v);
329 (*p)->write_header(&ophdr);
330 v += phdr_size;
331 }
332
a445fddf
ILT
333 gold_assert(v - view == all_phdrs_size);
334
61ba1cf9 335 of->write_output_view(this->offset(), all_phdrs_size, view);
75f65a3e
ILT
336}
337
338// Output_file_header methods.
339
9025d29d 340Output_file_header::Output_file_header(const Target* target,
75f65a3e 341 const Symbol_table* symtab,
d391083d
ILT
342 const Output_segment_headers* osh,
343 const char* entry)
9025d29d 344 : target_(target),
75f65a3e 345 symtab_(symtab),
61ba1cf9 346 segment_header_(osh),
75f65a3e 347 section_header_(NULL),
d391083d
ILT
348 shstrtab_(NULL),
349 entry_(entry)
75f65a3e 350{
8851ecca 351 const int size = parameters->target().get_size();
61ba1cf9
ILT
352 int ehdr_size;
353 if (size == 32)
354 ehdr_size = elfcpp::Elf_sizes<32>::ehdr_size;
355 else if (size == 64)
356 ehdr_size = elfcpp::Elf_sizes<64>::ehdr_size;
357 else
a3ad94ed 358 gold_unreachable();
61ba1cf9
ILT
359
360 this->set_data_size(ehdr_size);
75f65a3e
ILT
361}
362
363// Set the section table information for a file header.
364
365void
366Output_file_header::set_section_info(const Output_section_headers* shdrs,
367 const Output_section* shstrtab)
368{
369 this->section_header_ = shdrs;
370 this->shstrtab_ = shstrtab;
371}
372
373// Write out the file header.
374
375void
61ba1cf9 376Output_file_header::do_write(Output_file* of)
54dc6425 377{
27bc2bce
ILT
378 gold_assert(this->offset() == 0);
379
8851ecca 380 switch (parameters->size_and_endianness())
61ba1cf9 381 {
9025d29d 382#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
383 case Parameters::TARGET_32_LITTLE:
384 this->do_sized_write<32, false>(of);
385 break;
9025d29d 386#endif
8851ecca
ILT
387#ifdef HAVE_TARGET_32_BIG
388 case Parameters::TARGET_32_BIG:
389 this->do_sized_write<32, true>(of);
390 break;
9025d29d 391#endif
9025d29d 392#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
393 case Parameters::TARGET_64_LITTLE:
394 this->do_sized_write<64, false>(of);
395 break;
9025d29d 396#endif
8851ecca
ILT
397#ifdef HAVE_TARGET_64_BIG
398 case Parameters::TARGET_64_BIG:
399 this->do_sized_write<64, true>(of);
400 break;
401#endif
402 default:
403 gold_unreachable();
61ba1cf9 404 }
61ba1cf9
ILT
405}
406
407// Write out the file header with appropriate size and endianess.
408
409template<int size, bool big_endian>
410void
411Output_file_header::do_sized_write(Output_file* of)
412{
a3ad94ed 413 gold_assert(this->offset() == 0);
61ba1cf9
ILT
414
415 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
416 unsigned char* view = of->get_output_view(0, ehdr_size);
417 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
418
419 unsigned char e_ident[elfcpp::EI_NIDENT];
420 memset(e_ident, 0, elfcpp::EI_NIDENT);
421 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
422 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
423 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
424 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
425 if (size == 32)
426 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
427 else if (size == 64)
428 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
429 else
a3ad94ed 430 gold_unreachable();
61ba1cf9
ILT
431 e_ident[elfcpp::EI_DATA] = (big_endian
432 ? elfcpp::ELFDATA2MSB
433 : elfcpp::ELFDATA2LSB);
434 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
61ba1cf9
ILT
435 oehdr.put_e_ident(e_ident);
436
437 elfcpp::ET e_type;
8851ecca 438 if (parameters->options().relocatable())
61ba1cf9 439 e_type = elfcpp::ET_REL;
8851ecca 440 else if (parameters->options().shared())
436ca963 441 e_type = elfcpp::ET_DYN;
61ba1cf9
ILT
442 else
443 e_type = elfcpp::ET_EXEC;
444 oehdr.put_e_type(e_type);
445
446 oehdr.put_e_machine(this->target_->machine_code());
447 oehdr.put_e_version(elfcpp::EV_CURRENT);
448
d391083d 449 oehdr.put_e_entry(this->entry<size>());
61ba1cf9 450
6a74a719
ILT
451 if (this->segment_header_ == NULL)
452 oehdr.put_e_phoff(0);
453 else
454 oehdr.put_e_phoff(this->segment_header_->offset());
455
61ba1cf9
ILT
456 oehdr.put_e_shoff(this->section_header_->offset());
457
458 // FIXME: The target needs to set the flags.
459 oehdr.put_e_flags(0);
460
461 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
6a74a719
ILT
462
463 if (this->segment_header_ == NULL)
464 {
465 oehdr.put_e_phentsize(0);
466 oehdr.put_e_phnum(0);
467 }
468 else
469 {
470 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
471 oehdr.put_e_phnum(this->segment_header_->data_size()
472 / elfcpp::Elf_sizes<size>::phdr_size);
473 }
474
61ba1cf9 475 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
d491d34e
ILT
476 size_t section_count = (this->section_header_->data_size()
477 / elfcpp::Elf_sizes<size>::shdr_size);
478
479 if (section_count < elfcpp::SHN_LORESERVE)
480 oehdr.put_e_shnum(this->section_header_->data_size()
481 / elfcpp::Elf_sizes<size>::shdr_size);
482 else
483 oehdr.put_e_shnum(0);
484
485 unsigned int shstrndx = this->shstrtab_->out_shndx();
486 if (shstrndx < elfcpp::SHN_LORESERVE)
487 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
488 else
489 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
61ba1cf9 490
36959681
ILT
491 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
492 // the e_ident field.
493 parameters->target().adjust_elf_header(view, ehdr_size);
494
61ba1cf9 495 of->write_output_view(0, ehdr_size, view);
54dc6425
ILT
496}
497
d391083d
ILT
498// Return the value to use for the entry address. THIS->ENTRY_ is the
499// symbol specified on the command line, if any.
500
501template<int size>
502typename elfcpp::Elf_types<size>::Elf_Addr
503Output_file_header::entry()
504{
505 const bool should_issue_warning = (this->entry_ != NULL
8851ecca
ILT
506 && !parameters->options().relocatable()
507 && !parameters->options().shared());
d391083d
ILT
508
509 // FIXME: Need to support target specific entry symbol.
510 const char* entry = this->entry_;
511 if (entry == NULL)
512 entry = "_start";
513
514 Symbol* sym = this->symtab_->lookup(entry);
515
516 typename Sized_symbol<size>::Value_type v;
517 if (sym != NULL)
518 {
519 Sized_symbol<size>* ssym;
520 ssym = this->symtab_->get_sized_symbol<size>(sym);
521 if (!ssym->is_defined() && should_issue_warning)
522 gold_warning("entry symbol '%s' exists but is not defined", entry);
523 v = ssym->value();
524 }
525 else
526 {
527 // We couldn't find the entry symbol. See if we can parse it as
528 // a number. This supports, e.g., -e 0x1000.
529 char* endptr;
530 v = strtoull(entry, &endptr, 0);
531 if (*endptr != '\0')
532 {
533 if (should_issue_warning)
534 gold_warning("cannot find entry symbol '%s'", entry);
535 v = 0;
536 }
537 }
538
539 return v;
540}
541
dbe717ef
ILT
542// Output_data_const methods.
543
544void
a3ad94ed 545Output_data_const::do_write(Output_file* of)
dbe717ef 546{
a3ad94ed
ILT
547 of->write(this->offset(), this->data_.data(), this->data_.size());
548}
549
550// Output_data_const_buffer methods.
551
552void
553Output_data_const_buffer::do_write(Output_file* of)
554{
555 of->write(this->offset(), this->p_, this->data_size());
dbe717ef
ILT
556}
557
558// Output_section_data methods.
559
16649710
ILT
560// Record the output section, and set the entry size and such.
561
562void
563Output_section_data::set_output_section(Output_section* os)
564{
565 gold_assert(this->output_section_ == NULL);
566 this->output_section_ = os;
567 this->do_adjust_output_section(os);
568}
569
570// Return the section index of the output section.
571
dbe717ef
ILT
572unsigned int
573Output_section_data::do_out_shndx() const
574{
a3ad94ed 575 gold_assert(this->output_section_ != NULL);
dbe717ef
ILT
576 return this->output_section_->out_shndx();
577}
578
759b1a24
ILT
579// Set the alignment, which means we may need to update the alignment
580// of the output section.
581
582void
583Output_section_data::set_addralign(uint64_t addralign)
584{
585 this->addralign_ = addralign;
586 if (this->output_section_ != NULL
587 && this->output_section_->addralign() < addralign)
588 this->output_section_->set_addralign(addralign);
589}
590
a3ad94ed
ILT
591// Output_data_strtab methods.
592
27bc2bce 593// Set the final data size.
a3ad94ed
ILT
594
595void
27bc2bce 596Output_data_strtab::set_final_data_size()
a3ad94ed
ILT
597{
598 this->strtab_->set_string_offsets();
599 this->set_data_size(this->strtab_->get_strtab_size());
600}
601
602// Write out a string table.
603
604void
605Output_data_strtab::do_write(Output_file* of)
606{
607 this->strtab_->write(of, this->offset());
608}
609
c06b7b0b
ILT
610// Output_reloc methods.
611
7bf1f802
ILT
612// A reloc against a global symbol.
613
614template<bool dynamic, int size, bool big_endian>
615Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
616 Symbol* gsym,
617 unsigned int type,
618 Output_data* od,
e8c846c3
ILT
619 Address address,
620 bool is_relative)
7bf1f802 621 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
dceae3c1 622 is_relative_(is_relative), is_section_symbol_(false), shndx_(INVALID_CODE)
7bf1f802 623{
dceae3c1
ILT
624 // this->type_ is a bitfield; make sure TYPE fits.
625 gold_assert(this->type_ == type);
7bf1f802
ILT
626 this->u1_.gsym = gsym;
627 this->u2_.od = od;
dceae3c1
ILT
628 if (dynamic)
629 this->set_needs_dynsym_index();
7bf1f802
ILT
630}
631
632template<bool dynamic, int size, bool big_endian>
633Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
634 Symbol* gsym,
635 unsigned int type,
ef9beddf 636 Sized_relobj<size, big_endian>* relobj,
7bf1f802 637 unsigned int shndx,
e8c846c3
ILT
638 Address address,
639 bool is_relative)
7bf1f802 640 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
dceae3c1 641 is_relative_(is_relative), is_section_symbol_(false), shndx_(shndx)
7bf1f802
ILT
642{
643 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
644 // this->type_ is a bitfield; make sure TYPE fits.
645 gold_assert(this->type_ == type);
7bf1f802
ILT
646 this->u1_.gsym = gsym;
647 this->u2_.relobj = relobj;
dceae3c1
ILT
648 if (dynamic)
649 this->set_needs_dynsym_index();
7bf1f802
ILT
650}
651
652// A reloc against a local symbol.
653
654template<bool dynamic, int size, bool big_endian>
655Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
656 Sized_relobj<size, big_endian>* relobj,
657 unsigned int local_sym_index,
658 unsigned int type,
659 Output_data* od,
e8c846c3 660 Address address,
dceae3c1
ILT
661 bool is_relative,
662 bool is_section_symbol)
7bf1f802 663 : address_(address), local_sym_index_(local_sym_index), type_(type),
dceae3c1
ILT
664 is_relative_(is_relative), is_section_symbol_(is_section_symbol),
665 shndx_(INVALID_CODE)
7bf1f802
ILT
666{
667 gold_assert(local_sym_index != GSYM_CODE
668 && local_sym_index != INVALID_CODE);
dceae3c1
ILT
669 // this->type_ is a bitfield; make sure TYPE fits.
670 gold_assert(this->type_ == type);
7bf1f802
ILT
671 this->u1_.relobj = relobj;
672 this->u2_.od = od;
dceae3c1
ILT
673 if (dynamic)
674 this->set_needs_dynsym_index();
7bf1f802
ILT
675}
676
677template<bool dynamic, int size, bool big_endian>
678Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
679 Sized_relobj<size, big_endian>* relobj,
680 unsigned int local_sym_index,
681 unsigned int type,
682 unsigned int shndx,
e8c846c3 683 Address address,
dceae3c1
ILT
684 bool is_relative,
685 bool is_section_symbol)
7bf1f802 686 : address_(address), local_sym_index_(local_sym_index), type_(type),
dceae3c1
ILT
687 is_relative_(is_relative), is_section_symbol_(is_section_symbol),
688 shndx_(shndx)
7bf1f802
ILT
689{
690 gold_assert(local_sym_index != GSYM_CODE
691 && local_sym_index != INVALID_CODE);
692 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
693 // this->type_ is a bitfield; make sure TYPE fits.
694 gold_assert(this->type_ == type);
7bf1f802
ILT
695 this->u1_.relobj = relobj;
696 this->u2_.relobj = relobj;
dceae3c1
ILT
697 if (dynamic)
698 this->set_needs_dynsym_index();
7bf1f802
ILT
699}
700
701// A reloc against the STT_SECTION symbol of an output section.
702
703template<bool dynamic, int size, bool big_endian>
704Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
705 Output_section* os,
706 unsigned int type,
707 Output_data* od,
708 Address address)
709 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
dceae3c1 710 is_relative_(false), is_section_symbol_(true), shndx_(INVALID_CODE)
7bf1f802 711{
dceae3c1
ILT
712 // this->type_ is a bitfield; make sure TYPE fits.
713 gold_assert(this->type_ == type);
7bf1f802
ILT
714 this->u1_.os = os;
715 this->u2_.od = od;
716 if (dynamic)
dceae3c1
ILT
717 this->set_needs_dynsym_index();
718 else
719 os->set_needs_symtab_index();
7bf1f802
ILT
720}
721
722template<bool dynamic, int size, bool big_endian>
723Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
724 Output_section* os,
725 unsigned int type,
ef9beddf 726 Sized_relobj<size, big_endian>* relobj,
7bf1f802
ILT
727 unsigned int shndx,
728 Address address)
729 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
dceae3c1 730 is_relative_(false), is_section_symbol_(true), shndx_(shndx)
7bf1f802
ILT
731{
732 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
733 // this->type_ is a bitfield; make sure TYPE fits.
734 gold_assert(this->type_ == type);
7bf1f802
ILT
735 this->u1_.os = os;
736 this->u2_.relobj = relobj;
737 if (dynamic)
dceae3c1
ILT
738 this->set_needs_dynsym_index();
739 else
740 os->set_needs_symtab_index();
741}
742
743// Record that we need a dynamic symbol index for this relocation.
744
745template<bool dynamic, int size, bool big_endian>
746void
747Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
748set_needs_dynsym_index()
749{
750 if (this->is_relative_)
751 return;
752 switch (this->local_sym_index_)
753 {
754 case INVALID_CODE:
755 gold_unreachable();
756
757 case GSYM_CODE:
758 this->u1_.gsym->set_needs_dynsym_entry();
759 break;
760
761 case SECTION_CODE:
762 this->u1_.os->set_needs_dynsym_index();
763 break;
764
765 case 0:
766 break;
767
768 default:
769 {
770 const unsigned int lsi = this->local_sym_index_;
771 if (!this->is_section_symbol_)
772 this->u1_.relobj->set_needs_output_dynsym_entry(lsi);
773 else
ef9beddf 774 this->u1_.relobj->output_section(lsi)->set_needs_dynsym_index();
dceae3c1
ILT
775 }
776 break;
777 }
7bf1f802
ILT
778}
779
c06b7b0b
ILT
780// Get the symbol index of a relocation.
781
782template<bool dynamic, int size, bool big_endian>
783unsigned int
784Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
785 const
786{
787 unsigned int index;
788 switch (this->local_sym_index_)
789 {
790 case INVALID_CODE:
a3ad94ed 791 gold_unreachable();
c06b7b0b
ILT
792
793 case GSYM_CODE:
5a6f7e2d 794 if (this->u1_.gsym == NULL)
c06b7b0b
ILT
795 index = 0;
796 else if (dynamic)
5a6f7e2d 797 index = this->u1_.gsym->dynsym_index();
c06b7b0b 798 else
5a6f7e2d 799 index = this->u1_.gsym->symtab_index();
c06b7b0b
ILT
800 break;
801
802 case SECTION_CODE:
803 if (dynamic)
5a6f7e2d 804 index = this->u1_.os->dynsym_index();
c06b7b0b 805 else
5a6f7e2d 806 index = this->u1_.os->symtab_index();
c06b7b0b
ILT
807 break;
808
436ca963
ILT
809 case 0:
810 // Relocations without symbols use a symbol index of 0.
811 index = 0;
812 break;
813
c06b7b0b 814 default:
dceae3c1
ILT
815 {
816 const unsigned int lsi = this->local_sym_index_;
817 if (!this->is_section_symbol_)
818 {
819 if (dynamic)
820 index = this->u1_.relobj->dynsym_index(lsi);
821 else
822 index = this->u1_.relobj->symtab_index(lsi);
823 }
824 else
825 {
ef9beddf 826 Output_section* os = this->u1_.relobj->output_section(lsi);
dceae3c1
ILT
827 gold_assert(os != NULL);
828 if (dynamic)
829 index = os->dynsym_index();
830 else
831 index = os->symtab_index();
832 }
833 }
c06b7b0b
ILT
834 break;
835 }
a3ad94ed 836 gold_assert(index != -1U);
c06b7b0b
ILT
837 return index;
838}
839
624f8810
ILT
840// For a local section symbol, get the address of the offset ADDEND
841// within the input section.
dceae3c1
ILT
842
843template<bool dynamic, int size, bool big_endian>
ef9beddf 844typename elfcpp::Elf_types<size>::Elf_Addr
dceae3c1 845Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
624f8810 846 local_section_offset(Addend addend) const
dceae3c1 847{
624f8810
ILT
848 gold_assert(this->local_sym_index_ != GSYM_CODE
849 && this->local_sym_index_ != SECTION_CODE
850 && this->local_sym_index_ != INVALID_CODE
851 && this->is_section_symbol_);
dceae3c1 852 const unsigned int lsi = this->local_sym_index_;
ef9beddf 853 Output_section* os = this->u1_.relobj->output_section(lsi);
624f8810 854 gold_assert(os != NULL);
ef9beddf 855 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
eff45813 856 if (offset != invalid_address)
624f8810
ILT
857 return offset + addend;
858 // This is a merge section.
859 offset = os->output_address(this->u1_.relobj, lsi, addend);
eff45813 860 gold_assert(offset != invalid_address);
dceae3c1
ILT
861 return offset;
862}
863
d98bc257 864// Get the output address of a relocation.
c06b7b0b
ILT
865
866template<bool dynamic, int size, bool big_endian>
a984ee1d 867typename elfcpp::Elf_types<size>::Elf_Addr
d98bc257 868Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
c06b7b0b 869{
a3ad94ed 870 Address address = this->address_;
5a6f7e2d
ILT
871 if (this->shndx_ != INVALID_CODE)
872 {
ef9beddf 873 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
5a6f7e2d 874 gold_assert(os != NULL);
ef9beddf 875 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
eff45813 876 if (off != invalid_address)
730cdc88
ILT
877 address += os->address() + off;
878 else
879 {
880 address = os->output_address(this->u2_.relobj, this->shndx_,
881 address);
eff45813 882 gold_assert(address != invalid_address);
730cdc88 883 }
5a6f7e2d
ILT
884 }
885 else if (this->u2_.od != NULL)
886 address += this->u2_.od->address();
d98bc257
ILT
887 return address;
888}
889
890// Write out the offset and info fields of a Rel or Rela relocation
891// entry.
892
893template<bool dynamic, int size, bool big_endian>
894template<typename Write_rel>
895void
896Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
897 Write_rel* wr) const
898{
899 wr->put_r_offset(this->get_address());
e8c846c3
ILT
900 unsigned int sym_index = this->is_relative_ ? 0 : this->get_symbol_index();
901 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
c06b7b0b
ILT
902}
903
904// Write out a Rel relocation.
905
906template<bool dynamic, int size, bool big_endian>
907void
908Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
909 unsigned char* pov) const
910{
911 elfcpp::Rel_write<size, big_endian> orel(pov);
912 this->write_rel(&orel);
913}
914
e8c846c3
ILT
915// Get the value of the symbol referred to by a Rel relocation.
916
917template<bool dynamic, int size, bool big_endian>
918typename elfcpp::Elf_types<size>::Elf_Addr
d1f003c6 919Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
624f8810 920 Addend addend) const
e8c846c3
ILT
921{
922 if (this->local_sym_index_ == GSYM_CODE)
923 {
924 const Sized_symbol<size>* sym;
925 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
d1f003c6 926 return sym->value() + addend;
e8c846c3
ILT
927 }
928 gold_assert(this->local_sym_index_ != SECTION_CODE
d1f003c6
ILT
929 && this->local_sym_index_ != INVALID_CODE
930 && !this->is_section_symbol_);
931 const unsigned int lsi = this->local_sym_index_;
932 const Symbol_value<size>* symval = this->u1_.relobj->local_symbol(lsi);
933 return symval->value(this->u1_.relobj, addend);
e8c846c3
ILT
934}
935
d98bc257
ILT
936// Reloc comparison. This function sorts the dynamic relocs for the
937// benefit of the dynamic linker. First we sort all relative relocs
938// to the front. Among relative relocs, we sort by output address.
939// Among non-relative relocs, we sort by symbol index, then by output
940// address.
941
942template<bool dynamic, int size, bool big_endian>
943int
944Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
945 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
946 const
947{
948 if (this->is_relative_)
949 {
950 if (!r2.is_relative_)
951 return -1;
952 // Otherwise sort by reloc address below.
953 }
954 else if (r2.is_relative_)
955 return 1;
956 else
957 {
958 unsigned int sym1 = this->get_symbol_index();
959 unsigned int sym2 = r2.get_symbol_index();
960 if (sym1 < sym2)
961 return -1;
962 else if (sym1 > sym2)
963 return 1;
964 // Otherwise sort by reloc address.
965 }
966
967 section_offset_type addr1 = this->get_address();
968 section_offset_type addr2 = r2.get_address();
969 if (addr1 < addr2)
970 return -1;
971 else if (addr1 > addr2)
972 return 1;
973
974 // Final tie breaker, in order to generate the same output on any
975 // host: reloc type.
976 unsigned int type1 = this->type_;
977 unsigned int type2 = r2.type_;
978 if (type1 < type2)
979 return -1;
980 else if (type1 > type2)
981 return 1;
982
983 // These relocs appear to be exactly the same.
984 return 0;
985}
986
c06b7b0b
ILT
987// Write out a Rela relocation.
988
989template<bool dynamic, int size, bool big_endian>
990void
991Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
992 unsigned char* pov) const
993{
994 elfcpp::Rela_write<size, big_endian> orel(pov);
995 this->rel_.write_rel(&orel);
e8c846c3 996 Addend addend = this->addend_;
dceae3c1 997 if (this->rel_.is_relative())
d1f003c6
ILT
998 addend = this->rel_.symbol_value(addend);
999 else if (this->rel_.is_local_section_symbol())
624f8810 1000 addend = this->rel_.local_section_offset(addend);
e8c846c3 1001 orel.put_r_addend(addend);
c06b7b0b
ILT
1002}
1003
1004// Output_data_reloc_base methods.
1005
16649710
ILT
1006// Adjust the output section.
1007
1008template<int sh_type, bool dynamic, int size, bool big_endian>
1009void
1010Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1011 ::do_adjust_output_section(Output_section* os)
1012{
1013 if (sh_type == elfcpp::SHT_REL)
1014 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1015 else if (sh_type == elfcpp::SHT_RELA)
1016 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1017 else
1018 gold_unreachable();
1019 if (dynamic)
1020 os->set_should_link_to_dynsym();
1021 else
1022 os->set_should_link_to_symtab();
1023}
1024
c06b7b0b
ILT
1025// Write out relocation data.
1026
1027template<int sh_type, bool dynamic, int size, bool big_endian>
1028void
1029Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1030 Output_file* of)
1031{
1032 const off_t off = this->offset();
1033 const off_t oview_size = this->data_size();
1034 unsigned char* const oview = of->get_output_view(off, oview_size);
1035
d98bc257
ILT
1036 if (this->sort_relocs_)
1037 {
1038 gold_assert(dynamic);
1039 std::sort(this->relocs_.begin(), this->relocs_.end(),
1040 Sort_relocs_comparison());
1041 }
1042
c06b7b0b
ILT
1043 unsigned char* pov = oview;
1044 for (typename Relocs::const_iterator p = this->relocs_.begin();
1045 p != this->relocs_.end();
1046 ++p)
1047 {
1048 p->write(pov);
1049 pov += reloc_size;
1050 }
1051
a3ad94ed 1052 gold_assert(pov - oview == oview_size);
c06b7b0b
ILT
1053
1054 of->write_output_view(off, oview_size, oview);
1055
1056 // We no longer need the relocation entries.
1057 this->relocs_.clear();
1058}
1059
6a74a719
ILT
1060// Class Output_relocatable_relocs.
1061
1062template<int sh_type, int size, bool big_endian>
1063void
1064Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1065{
1066 this->set_data_size(this->rr_->output_reloc_count()
1067 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1068}
1069
1070// class Output_data_group.
1071
1072template<int size, bool big_endian>
1073Output_data_group<size, big_endian>::Output_data_group(
1074 Sized_relobj<size, big_endian>* relobj,
1075 section_size_type entry_count,
8825ac63
ILT
1076 elfcpp::Elf_Word flags,
1077 std::vector<unsigned int>* input_shndxes)
6a74a719 1078 : Output_section_data(entry_count * 4, 4),
8825ac63
ILT
1079 relobj_(relobj),
1080 flags_(flags)
6a74a719 1081{
8825ac63 1082 this->input_shndxes_.swap(*input_shndxes);
6a74a719
ILT
1083}
1084
1085// Write out the section group, which means translating the section
1086// indexes to apply to the output file.
1087
1088template<int size, bool big_endian>
1089void
1090Output_data_group<size, big_endian>::do_write(Output_file* of)
1091{
1092 const off_t off = this->offset();
1093 const section_size_type oview_size =
1094 convert_to_section_size_type(this->data_size());
1095 unsigned char* const oview = of->get_output_view(off, oview_size);
1096
1097 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1098 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1099 ++contents;
1100
1101 for (std::vector<unsigned int>::const_iterator p =
8825ac63
ILT
1102 this->input_shndxes_.begin();
1103 p != this->input_shndxes_.end();
6a74a719
ILT
1104 ++p, ++contents)
1105 {
ef9beddf 1106 Output_section* os = this->relobj_->output_section(*p);
6a74a719
ILT
1107
1108 unsigned int output_shndx;
1109 if (os != NULL)
1110 output_shndx = os->out_shndx();
1111 else
1112 {
1113 this->relobj_->error(_("section group retained but "
1114 "group element discarded"));
1115 output_shndx = 0;
1116 }
1117
1118 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1119 }
1120
1121 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1122 gold_assert(wrote == oview_size);
1123
1124 of->write_output_view(off, oview_size, oview);
1125
1126 // We no longer need this information.
8825ac63 1127 this->input_shndxes_.clear();
6a74a719
ILT
1128}
1129
dbe717ef 1130// Output_data_got::Got_entry methods.
ead1e424
ILT
1131
1132// Write out the entry.
1133
1134template<int size, bool big_endian>
1135void
7e1edb90 1136Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
ead1e424
ILT
1137{
1138 Valtype val = 0;
1139
1140 switch (this->local_sym_index_)
1141 {
1142 case GSYM_CODE:
1143 {
e8c846c3
ILT
1144 // If the symbol is resolved locally, we need to write out the
1145 // link-time value, which will be relocated dynamically by a
1146 // RELATIVE relocation.
ead1e424 1147 Symbol* gsym = this->u_.gsym;
e8c846c3
ILT
1148 Sized_symbol<size>* sgsym;
1149 // This cast is a bit ugly. We don't want to put a
1150 // virtual method in Symbol, because we want Symbol to be
1151 // as small as possible.
1152 sgsym = static_cast<Sized_symbol<size>*>(gsym);
1153 val = sgsym->value();
ead1e424
ILT
1154 }
1155 break;
1156
1157 case CONSTANT_CODE:
1158 val = this->u_.constant;
1159 break;
1160
1161 default:
d1f003c6
ILT
1162 {
1163 const unsigned int lsi = this->local_sym_index_;
1164 const Symbol_value<size>* symval = this->u_.object->local_symbol(lsi);
1165 val = symval->value(this->u_.object, 0);
1166 }
e727fa71 1167 break;
ead1e424
ILT
1168 }
1169
a3ad94ed 1170 elfcpp::Swap<size, big_endian>::writeval(pov, val);
ead1e424
ILT
1171}
1172
dbe717ef 1173// Output_data_got methods.
ead1e424 1174
dbe717ef
ILT
1175// Add an entry for a global symbol to the GOT. This returns true if
1176// this is a new GOT entry, false if the symbol already had a GOT
1177// entry.
1178
1179template<int size, bool big_endian>
1180bool
0a65a3a7
CC
1181Output_data_got<size, big_endian>::add_global(
1182 Symbol* gsym,
1183 unsigned int got_type)
ead1e424 1184{
0a65a3a7 1185 if (gsym->has_got_offset(got_type))
dbe717ef 1186 return false;
ead1e424 1187
dbe717ef
ILT
1188 this->entries_.push_back(Got_entry(gsym));
1189 this->set_got_size();
0a65a3a7 1190 gsym->set_got_offset(got_type, this->last_got_offset());
dbe717ef
ILT
1191 return true;
1192}
ead1e424 1193
7bf1f802
ILT
1194// Add an entry for a global symbol to the GOT, and add a dynamic
1195// relocation of type R_TYPE for the GOT entry.
1196template<int size, bool big_endian>
1197void
1198Output_data_got<size, big_endian>::add_global_with_rel(
1199 Symbol* gsym,
0a65a3a7 1200 unsigned int got_type,
7bf1f802
ILT
1201 Rel_dyn* rel_dyn,
1202 unsigned int r_type)
1203{
0a65a3a7 1204 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1205 return;
1206
1207 this->entries_.push_back(Got_entry());
1208 this->set_got_size();
1209 unsigned int got_offset = this->last_got_offset();
0a65a3a7 1210 gsym->set_got_offset(got_type, got_offset);
7bf1f802
ILT
1211 rel_dyn->add_global(gsym, r_type, this, got_offset);
1212}
1213
1214template<int size, bool big_endian>
1215void
1216Output_data_got<size, big_endian>::add_global_with_rela(
1217 Symbol* gsym,
0a65a3a7 1218 unsigned int got_type,
7bf1f802
ILT
1219 Rela_dyn* rela_dyn,
1220 unsigned int r_type)
1221{
0a65a3a7 1222 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1223 return;
1224
1225 this->entries_.push_back(Got_entry());
1226 this->set_got_size();
1227 unsigned int got_offset = this->last_got_offset();
0a65a3a7 1228 gsym->set_got_offset(got_type, got_offset);
7bf1f802
ILT
1229 rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
1230}
1231
0a65a3a7
CC
1232// Add a pair of entries for a global symbol to the GOT, and add
1233// dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1234// If R_TYPE_2 == 0, add the second entry with no relocation.
7bf1f802
ILT
1235template<int size, bool big_endian>
1236void
0a65a3a7
CC
1237Output_data_got<size, big_endian>::add_global_pair_with_rel(
1238 Symbol* gsym,
1239 unsigned int got_type,
7bf1f802 1240 Rel_dyn* rel_dyn,
0a65a3a7
CC
1241 unsigned int r_type_1,
1242 unsigned int r_type_2)
7bf1f802 1243{
0a65a3a7 1244 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1245 return;
1246
1247 this->entries_.push_back(Got_entry());
7bf1f802 1248 unsigned int got_offset = this->last_got_offset();
0a65a3a7
CC
1249 gsym->set_got_offset(got_type, got_offset);
1250 rel_dyn->add_global(gsym, r_type_1, this, got_offset);
1251
1252 this->entries_.push_back(Got_entry());
1253 if (r_type_2 != 0)
1254 {
1255 got_offset = this->last_got_offset();
1256 rel_dyn->add_global(gsym, r_type_2, this, got_offset);
1257 }
1258
1259 this->set_got_size();
7bf1f802
ILT
1260}
1261
1262template<int size, bool big_endian>
1263void
0a65a3a7
CC
1264Output_data_got<size, big_endian>::add_global_pair_with_rela(
1265 Symbol* gsym,
1266 unsigned int got_type,
7bf1f802 1267 Rela_dyn* rela_dyn,
0a65a3a7
CC
1268 unsigned int r_type_1,
1269 unsigned int r_type_2)
7bf1f802 1270{
0a65a3a7 1271 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1272 return;
1273
1274 this->entries_.push_back(Got_entry());
7bf1f802 1275 unsigned int got_offset = this->last_got_offset();
0a65a3a7
CC
1276 gsym->set_got_offset(got_type, got_offset);
1277 rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
1278
1279 this->entries_.push_back(Got_entry());
1280 if (r_type_2 != 0)
1281 {
1282 got_offset = this->last_got_offset();
1283 rela_dyn->add_global(gsym, r_type_2, this, got_offset, 0);
1284 }
1285
1286 this->set_got_size();
7bf1f802
ILT
1287}
1288
0a65a3a7
CC
1289// Add an entry for a local symbol to the GOT. This returns true if
1290// this is a new GOT entry, false if the symbol already has a GOT
1291// entry.
07f397ab
ILT
1292
1293template<int size, bool big_endian>
1294bool
0a65a3a7
CC
1295Output_data_got<size, big_endian>::add_local(
1296 Sized_relobj<size, big_endian>* object,
1297 unsigned int symndx,
1298 unsigned int got_type)
07f397ab 1299{
0a65a3a7 1300 if (object->local_has_got_offset(symndx, got_type))
07f397ab
ILT
1301 return false;
1302
0a65a3a7 1303 this->entries_.push_back(Got_entry(object, symndx));
07f397ab 1304 this->set_got_size();
0a65a3a7 1305 object->set_local_got_offset(symndx, got_type, this->last_got_offset());
07f397ab
ILT
1306 return true;
1307}
1308
0a65a3a7
CC
1309// Add an entry for a local symbol to the GOT, and add a dynamic
1310// relocation of type R_TYPE for the GOT entry.
7bf1f802
ILT
1311template<int size, bool big_endian>
1312void
0a65a3a7
CC
1313Output_data_got<size, big_endian>::add_local_with_rel(
1314 Sized_relobj<size, big_endian>* object,
1315 unsigned int symndx,
1316 unsigned int got_type,
7bf1f802
ILT
1317 Rel_dyn* rel_dyn,
1318 unsigned int r_type)
1319{
0a65a3a7 1320 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1321 return;
1322
1323 this->entries_.push_back(Got_entry());
1324 this->set_got_size();
1325 unsigned int got_offset = this->last_got_offset();
0a65a3a7
CC
1326 object->set_local_got_offset(symndx, got_type, got_offset);
1327 rel_dyn->add_local(object, symndx, r_type, this, got_offset);
7bf1f802
ILT
1328}
1329
1330template<int size, bool big_endian>
1331void
0a65a3a7
CC
1332Output_data_got<size, big_endian>::add_local_with_rela(
1333 Sized_relobj<size, big_endian>* object,
1334 unsigned int symndx,
1335 unsigned int got_type,
7bf1f802
ILT
1336 Rela_dyn* rela_dyn,
1337 unsigned int r_type)
1338{
0a65a3a7 1339 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1340 return;
1341
1342 this->entries_.push_back(Got_entry());
1343 this->set_got_size();
1344 unsigned int got_offset = this->last_got_offset();
0a65a3a7
CC
1345 object->set_local_got_offset(symndx, got_type, got_offset);
1346 rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
07f397ab
ILT
1347}
1348
0a65a3a7
CC
1349// Add a pair of entries for a local symbol to the GOT, and add
1350// dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1351// If R_TYPE_2 == 0, add the second entry with no relocation.
7bf1f802
ILT
1352template<int size, bool big_endian>
1353void
0a65a3a7 1354Output_data_got<size, big_endian>::add_local_pair_with_rel(
7bf1f802
ILT
1355 Sized_relobj<size, big_endian>* object,
1356 unsigned int symndx,
1357 unsigned int shndx,
0a65a3a7 1358 unsigned int got_type,
7bf1f802 1359 Rel_dyn* rel_dyn,
0a65a3a7
CC
1360 unsigned int r_type_1,
1361 unsigned int r_type_2)
7bf1f802 1362{
0a65a3a7 1363 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1364 return;
1365
1366 this->entries_.push_back(Got_entry());
1367 unsigned int got_offset = this->last_got_offset();
0a65a3a7 1368 object->set_local_got_offset(symndx, got_type, got_offset);
ef9beddf 1369 Output_section* os = object->output_section(shndx);
0a65a3a7 1370 rel_dyn->add_output_section(os, r_type_1, this, got_offset);
7bf1f802 1371
0a65a3a7
CC
1372 this->entries_.push_back(Got_entry(object, symndx));
1373 if (r_type_2 != 0)
1374 {
1375 got_offset = this->last_got_offset();
1376 rel_dyn->add_output_section(os, r_type_2, this, got_offset);
1377 }
7bf1f802
ILT
1378
1379 this->set_got_size();
1380}
1381
1382template<int size, bool big_endian>
1383void
0a65a3a7 1384Output_data_got<size, big_endian>::add_local_pair_with_rela(
7bf1f802
ILT
1385 Sized_relobj<size, big_endian>* object,
1386 unsigned int symndx,
1387 unsigned int shndx,
0a65a3a7 1388 unsigned int got_type,
7bf1f802 1389 Rela_dyn* rela_dyn,
0a65a3a7
CC
1390 unsigned int r_type_1,
1391 unsigned int r_type_2)
7bf1f802 1392{
0a65a3a7 1393 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1394 return;
1395
1396 this->entries_.push_back(Got_entry());
1397 unsigned int got_offset = this->last_got_offset();
0a65a3a7 1398 object->set_local_got_offset(symndx, got_type, got_offset);
ef9beddf 1399 Output_section* os = object->output_section(shndx);
0a65a3a7 1400 rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
7bf1f802 1401
0a65a3a7
CC
1402 this->entries_.push_back(Got_entry(object, symndx));
1403 if (r_type_2 != 0)
1404 {
1405 got_offset = this->last_got_offset();
1406 rela_dyn->add_output_section(os, r_type_2, this, got_offset, 0);
1407 }
7bf1f802
ILT
1408
1409 this->set_got_size();
1410}
1411
ead1e424
ILT
1412// Write out the GOT.
1413
1414template<int size, bool big_endian>
1415void
dbe717ef 1416Output_data_got<size, big_endian>::do_write(Output_file* of)
ead1e424
ILT
1417{
1418 const int add = size / 8;
1419
1420 const off_t off = this->offset();
c06b7b0b 1421 const off_t oview_size = this->data_size();
ead1e424
ILT
1422 unsigned char* const oview = of->get_output_view(off, oview_size);
1423
1424 unsigned char* pov = oview;
1425 for (typename Got_entries::const_iterator p = this->entries_.begin();
1426 p != this->entries_.end();
1427 ++p)
1428 {
7e1edb90 1429 p->write(pov);
ead1e424
ILT
1430 pov += add;
1431 }
1432
a3ad94ed 1433 gold_assert(pov - oview == oview_size);
c06b7b0b 1434
ead1e424
ILT
1435 of->write_output_view(off, oview_size, oview);
1436
1437 // We no longer need the GOT entries.
1438 this->entries_.clear();
1439}
1440
a3ad94ed
ILT
1441// Output_data_dynamic::Dynamic_entry methods.
1442
1443// Write out the entry.
1444
1445template<int size, bool big_endian>
1446void
1447Output_data_dynamic::Dynamic_entry::write(
1448 unsigned char* pov,
7d1a9ebb 1449 const Stringpool* pool) const
a3ad94ed
ILT
1450{
1451 typename elfcpp::Elf_types<size>::Elf_WXword val;
c2b45e22 1452 switch (this->offset_)
a3ad94ed
ILT
1453 {
1454 case DYNAMIC_NUMBER:
1455 val = this->u_.val;
1456 break;
1457
a3ad94ed 1458 case DYNAMIC_SECTION_SIZE:
16649710 1459 val = this->u_.od->data_size();
a3ad94ed
ILT
1460 break;
1461
1462 case DYNAMIC_SYMBOL:
1463 {
16649710
ILT
1464 const Sized_symbol<size>* s =
1465 static_cast<const Sized_symbol<size>*>(this->u_.sym);
a3ad94ed
ILT
1466 val = s->value();
1467 }
1468 break;
1469
1470 case DYNAMIC_STRING:
1471 val = pool->get_offset(this->u_.str);
1472 break;
1473
1474 default:
c2b45e22
CC
1475 val = this->u_.od->address() + this->offset_;
1476 break;
a3ad94ed
ILT
1477 }
1478
1479 elfcpp::Dyn_write<size, big_endian> dw(pov);
1480 dw.put_d_tag(this->tag_);
1481 dw.put_d_val(val);
1482}
1483
1484// Output_data_dynamic methods.
1485
16649710
ILT
1486// Adjust the output section to set the entry size.
1487
1488void
1489Output_data_dynamic::do_adjust_output_section(Output_section* os)
1490{
8851ecca 1491 if (parameters->target().get_size() == 32)
16649710 1492 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
8851ecca 1493 else if (parameters->target().get_size() == 64)
16649710
ILT
1494 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1495 else
1496 gold_unreachable();
1497}
1498
a3ad94ed
ILT
1499// Set the final data size.
1500
1501void
27bc2bce 1502Output_data_dynamic::set_final_data_size()
a3ad94ed
ILT
1503{
1504 // Add the terminating entry.
1505 this->add_constant(elfcpp::DT_NULL, 0);
1506
1507 int dyn_size;
8851ecca 1508 if (parameters->target().get_size() == 32)
a3ad94ed 1509 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
8851ecca 1510 else if (parameters->target().get_size() == 64)
a3ad94ed
ILT
1511 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1512 else
1513 gold_unreachable();
1514 this->set_data_size(this->entries_.size() * dyn_size);
1515}
1516
1517// Write out the dynamic entries.
1518
1519void
1520Output_data_dynamic::do_write(Output_file* of)
1521{
8851ecca 1522 switch (parameters->size_and_endianness())
a3ad94ed 1523 {
9025d29d 1524#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
1525 case Parameters::TARGET_32_LITTLE:
1526 this->sized_write<32, false>(of);
1527 break;
9025d29d 1528#endif
8851ecca
ILT
1529#ifdef HAVE_TARGET_32_BIG
1530 case Parameters::TARGET_32_BIG:
1531 this->sized_write<32, true>(of);
1532 break;
9025d29d 1533#endif
9025d29d 1534#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
1535 case Parameters::TARGET_64_LITTLE:
1536 this->sized_write<64, false>(of);
1537 break;
9025d29d 1538#endif
8851ecca
ILT
1539#ifdef HAVE_TARGET_64_BIG
1540 case Parameters::TARGET_64_BIG:
1541 this->sized_write<64, true>(of);
1542 break;
1543#endif
1544 default:
1545 gold_unreachable();
a3ad94ed 1546 }
a3ad94ed
ILT
1547}
1548
1549template<int size, bool big_endian>
1550void
1551Output_data_dynamic::sized_write(Output_file* of)
1552{
1553 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1554
1555 const off_t offset = this->offset();
1556 const off_t oview_size = this->data_size();
1557 unsigned char* const oview = of->get_output_view(offset, oview_size);
1558
1559 unsigned char* pov = oview;
1560 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1561 p != this->entries_.end();
1562 ++p)
1563 {
7d1a9ebb 1564 p->write<size, big_endian>(pov, this->pool_);
a3ad94ed
ILT
1565 pov += dyn_size;
1566 }
1567
1568 gold_assert(pov - oview == oview_size);
1569
1570 of->write_output_view(offset, oview_size, oview);
1571
1572 // We no longer need the dynamic entries.
1573 this->entries_.clear();
1574}
1575
d491d34e
ILT
1576// Class Output_symtab_xindex.
1577
1578void
1579Output_symtab_xindex::do_write(Output_file* of)
1580{
1581 const off_t offset = this->offset();
1582 const off_t oview_size = this->data_size();
1583 unsigned char* const oview = of->get_output_view(offset, oview_size);
1584
1585 memset(oview, 0, oview_size);
1586
1587 if (parameters->target().is_big_endian())
1588 this->endian_do_write<true>(oview);
1589 else
1590 this->endian_do_write<false>(oview);
1591
1592 of->write_output_view(offset, oview_size, oview);
1593
1594 // We no longer need the data.
1595 this->entries_.clear();
1596}
1597
1598template<bool big_endian>
1599void
1600Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1601{
1602 for (Xindex_entries::const_iterator p = this->entries_.begin();
1603 p != this->entries_.end();
1604 ++p)
1605 elfcpp::Swap<32, big_endian>::writeval(oview + p->first * 4, p->second);
1606}
1607
ead1e424
ILT
1608// Output_section::Input_section methods.
1609
1610// Return the data size. For an input section we store the size here.
1611// For an Output_section_data, we have to ask it for the size.
1612
1613off_t
1614Output_section::Input_section::data_size() const
1615{
1616 if (this->is_input_section())
b8e6aad9 1617 return this->u1_.data_size;
ead1e424 1618 else
b8e6aad9 1619 return this->u2_.posd->data_size();
ead1e424
ILT
1620}
1621
1622// Set the address and file offset.
1623
1624void
96803768
ILT
1625Output_section::Input_section::set_address_and_file_offset(
1626 uint64_t address,
1627 off_t file_offset,
1628 off_t section_file_offset)
ead1e424
ILT
1629{
1630 if (this->is_input_section())
96803768
ILT
1631 this->u2_.object->set_section_offset(this->shndx_,
1632 file_offset - section_file_offset);
ead1e424 1633 else
96803768
ILT
1634 this->u2_.posd->set_address_and_file_offset(address, file_offset);
1635}
1636
a445fddf
ILT
1637// Reset the address and file offset.
1638
1639void
1640Output_section::Input_section::reset_address_and_file_offset()
1641{
1642 if (!this->is_input_section())
1643 this->u2_.posd->reset_address_and_file_offset();
1644}
1645
96803768
ILT
1646// Finalize the data size.
1647
1648void
1649Output_section::Input_section::finalize_data_size()
1650{
1651 if (!this->is_input_section())
1652 this->u2_.posd->finalize_data_size();
b8e6aad9
ILT
1653}
1654
1e983657
ILT
1655// Try to turn an input offset into an output offset. We want to
1656// return the output offset relative to the start of this
1657// Input_section in the output section.
b8e6aad9 1658
8f00aeb8 1659inline bool
8383303e
ILT
1660Output_section::Input_section::output_offset(
1661 const Relobj* object,
1662 unsigned int shndx,
1663 section_offset_type offset,
1664 section_offset_type *poutput) const
b8e6aad9
ILT
1665{
1666 if (!this->is_input_section())
730cdc88 1667 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
b8e6aad9
ILT
1668 else
1669 {
730cdc88 1670 if (this->shndx_ != shndx || this->u2_.object != object)
b8e6aad9 1671 return false;
1e983657 1672 *poutput = offset;
b8e6aad9
ILT
1673 return true;
1674 }
ead1e424
ILT
1675}
1676
a9a60db6
ILT
1677// Return whether this is the merge section for the input section
1678// SHNDX in OBJECT.
1679
1680inline bool
1681Output_section::Input_section::is_merge_section_for(const Relobj* object,
1682 unsigned int shndx) const
1683{
1684 if (this->is_input_section())
1685 return false;
1686 return this->u2_.posd->is_merge_section_for(object, shndx);
1687}
1688
ead1e424
ILT
1689// Write out the data. We don't have to do anything for an input
1690// section--they are handled via Object::relocate--but this is where
1691// we write out the data for an Output_section_data.
1692
1693void
1694Output_section::Input_section::write(Output_file* of)
1695{
1696 if (!this->is_input_section())
b8e6aad9 1697 this->u2_.posd->write(of);
ead1e424
ILT
1698}
1699
96803768
ILT
1700// Write the data to a buffer. As for write(), we don't have to do
1701// anything for an input section.
1702
1703void
1704Output_section::Input_section::write_to_buffer(unsigned char* buffer)
1705{
1706 if (!this->is_input_section())
1707 this->u2_.posd->write_to_buffer(buffer);
1708}
1709
7d9e3d98
ILT
1710// Print to a map file.
1711
1712void
1713Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
1714{
1715 switch (this->shndx_)
1716 {
1717 case OUTPUT_SECTION_CODE:
1718 case MERGE_DATA_SECTION_CODE:
1719 case MERGE_STRING_SECTION_CODE:
1720 this->u2_.posd->print_to_mapfile(mapfile);
1721 break;
1722
1723 default:
1724 mapfile->print_input_section(this->u2_.object, this->shndx_);
1725 break;
1726 }
1727}
1728
a2fb1b05
ILT
1729// Output_section methods.
1730
1731// Construct an Output_section. NAME will point into a Stringpool.
1732
96803768 1733Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
b8e6aad9 1734 elfcpp::Elf_Xword flags)
96803768 1735 : name_(name),
a2fb1b05
ILT
1736 addralign_(0),
1737 entsize_(0),
a445fddf 1738 load_address_(0),
16649710 1739 link_section_(NULL),
a2fb1b05 1740 link_(0),
16649710 1741 info_section_(NULL),
6a74a719 1742 info_symndx_(NULL),
a2fb1b05
ILT
1743 info_(0),
1744 type_(type),
61ba1cf9 1745 flags_(flags),
91ea499d 1746 out_shndx_(-1U),
c06b7b0b
ILT
1747 symtab_index_(0),
1748 dynsym_index_(0),
ead1e424
ILT
1749 input_sections_(),
1750 first_input_offset_(0),
c51e6221 1751 fills_(),
96803768 1752 postprocessing_buffer_(NULL),
a3ad94ed 1753 needs_symtab_index_(false),
16649710
ILT
1754 needs_dynsym_index_(false),
1755 should_link_to_symtab_(false),
730cdc88 1756 should_link_to_dynsym_(false),
27bc2bce 1757 after_input_sections_(false),
7bf1f802 1758 requires_postprocessing_(false),
a445fddf
ILT
1759 found_in_sections_clause_(false),
1760 has_load_address_(false),
755ab8af 1761 info_uses_section_index_(false),
2fd32231
ILT
1762 may_sort_attached_input_sections_(false),
1763 must_sort_attached_input_sections_(false),
1764 attached_input_sections_are_sorted_(false),
9f1d377b
ILT
1765 is_relro_(false),
1766 is_relro_local_(false),
8a5e3e08
ILT
1767 is_small_section_(false),
1768 is_large_section_(false),
7bf1f802 1769 tls_offset_(0)
a2fb1b05 1770{
27bc2bce
ILT
1771 // An unallocated section has no address. Forcing this means that
1772 // we don't need special treatment for symbols defined in debug
1773 // sections.
1774 if ((flags & elfcpp::SHF_ALLOC) == 0)
1775 this->set_address(0);
a2fb1b05
ILT
1776}
1777
54dc6425
ILT
1778Output_section::~Output_section()
1779{
1780}
1781
16649710
ILT
1782// Set the entry size.
1783
1784void
1785Output_section::set_entsize(uint64_t v)
1786{
1787 if (this->entsize_ == 0)
1788 this->entsize_ = v;
1789 else
1790 gold_assert(this->entsize_ == v);
1791}
1792
ead1e424 1793// Add the input section SHNDX, with header SHDR, named SECNAME, in
730cdc88
ILT
1794// OBJECT, to the Output_section. RELOC_SHNDX is the index of a
1795// relocation section which applies to this section, or 0 if none, or
1796// -1U if more than one. Return the offset of the input section
1797// within the output section. Return -1 if the input section will
1798// receive special handling. In the normal case we don't always keep
1799// track of input sections for an Output_section. Instead, each
1800// Object keeps track of the Output_section for each of its input
a445fddf
ILT
1801// sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
1802// track of input sections here; this is used when SECTIONS appears in
1803// a linker script.
a2fb1b05
ILT
1804
1805template<int size, bool big_endian>
1806off_t
730cdc88
ILT
1807Output_section::add_input_section(Sized_relobj<size, big_endian>* object,
1808 unsigned int shndx,
ead1e424 1809 const char* secname,
730cdc88 1810 const elfcpp::Shdr<size, big_endian>& shdr,
a445fddf
ILT
1811 unsigned int reloc_shndx,
1812 bool have_sections_script)
a2fb1b05
ILT
1813{
1814 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
1815 if ((addralign & (addralign - 1)) != 0)
1816 {
75f2446e
ILT
1817 object->error(_("invalid alignment %lu for section \"%s\""),
1818 static_cast<unsigned long>(addralign), secname);
1819 addralign = 1;
a2fb1b05 1820 }
a2fb1b05
ILT
1821
1822 if (addralign > this->addralign_)
1823 this->addralign_ = addralign;
1824
44a43cf9 1825 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
154e0e9a 1826 this->update_flags_for_input_section(sh_flags);
a445fddf 1827
4f833eee 1828 uint64_t entsize = shdr.get_sh_entsize();
44a43cf9
ILT
1829
1830 // .debug_str is a mergeable string section, but is not always so
1831 // marked by compilers. Mark manually here so we can optimize.
1832 if (strcmp(secname, ".debug_str") == 0)
4f833eee
ILT
1833 {
1834 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
1835 entsize = 1;
1836 }
44a43cf9 1837
b8e6aad9 1838 // If this is a SHF_MERGE section, we pass all the input sections to
730cdc88 1839 // a Output_data_merge. We don't try to handle relocations for such
e0b64032
ILT
1840 // a section. We don't try to handle empty merge sections--they
1841 // mess up the mappings, and are useless anyhow.
44a43cf9 1842 if ((sh_flags & elfcpp::SHF_MERGE) != 0
e0b64032
ILT
1843 && reloc_shndx == 0
1844 && shdr.get_sh_size() > 0)
b8e6aad9 1845 {
44a43cf9 1846 if (this->add_merge_input_section(object, shndx, sh_flags,
96803768 1847 entsize, addralign))
b8e6aad9
ILT
1848 {
1849 // Tell the relocation routines that they need to call the
730cdc88 1850 // output_offset method to determine the final address.
b8e6aad9
ILT
1851 return -1;
1852 }
1853 }
1854
27bc2bce 1855 off_t offset_in_section = this->current_data_size_for_child();
c51e6221
ILT
1856 off_t aligned_offset_in_section = align_address(offset_in_section,
1857 addralign);
1858
1859 if (aligned_offset_in_section > offset_in_section
a445fddf 1860 && !have_sections_script
44a43cf9 1861 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
c51e6221
ILT
1862 && object->target()->has_code_fill())
1863 {
1864 // We need to add some fill data. Using fill_list_ when
1865 // possible is an optimization, since we will often have fill
1866 // sections without input sections.
1867 off_t fill_len = aligned_offset_in_section - offset_in_section;
1868 if (this->input_sections_.empty())
1869 this->fills_.push_back(Fill(offset_in_section, fill_len));
1870 else
1871 {
1872 // FIXME: When relaxing, the size needs to adjust to
1873 // maintain a constant alignment.
1874 std::string fill_data(object->target()->code_fill(fill_len));
1875 Output_data_const* odc = new Output_data_const(fill_data, 1);
1876 this->input_sections_.push_back(Input_section(odc));
1877 }
1878 }
1879
27bc2bce
ILT
1880 this->set_current_data_size_for_child(aligned_offset_in_section
1881 + shdr.get_sh_size());
a2fb1b05 1882
ead1e424 1883 // We need to keep track of this section if we are already keeping
2fd32231
ILT
1884 // track of sections, or if we are relaxing. Also, if this is a
1885 // section which requires sorting, or which may require sorting in
1886 // the future, we keep track of the sections. FIXME: Add test for
ead1e424 1887 // relaxing.
2fd32231
ILT
1888 if (have_sections_script
1889 || !this->input_sections_.empty()
1890 || this->may_sort_attached_input_sections()
7d9e3d98
ILT
1891 || this->must_sort_attached_input_sections()
1892 || parameters->options().user_set_Map())
ead1e424
ILT
1893 this->input_sections_.push_back(Input_section(object, shndx,
1894 shdr.get_sh_size(),
1895 addralign));
54dc6425 1896
c51e6221 1897 return aligned_offset_in_section;
61ba1cf9
ILT
1898}
1899
ead1e424
ILT
1900// Add arbitrary data to an output section.
1901
1902void
1903Output_section::add_output_section_data(Output_section_data* posd)
1904{
b8e6aad9
ILT
1905 Input_section inp(posd);
1906 this->add_output_section_data(&inp);
a445fddf
ILT
1907
1908 if (posd->is_data_size_valid())
1909 {
1910 off_t offset_in_section = this->current_data_size_for_child();
1911 off_t aligned_offset_in_section = align_address(offset_in_section,
1912 posd->addralign());
1913 this->set_current_data_size_for_child(aligned_offset_in_section
1914 + posd->data_size());
1915 }
b8e6aad9
ILT
1916}
1917
1918// Add arbitrary data to an output section by Input_section.
c06b7b0b 1919
b8e6aad9
ILT
1920void
1921Output_section::add_output_section_data(Input_section* inp)
1922{
ead1e424 1923 if (this->input_sections_.empty())
27bc2bce 1924 this->first_input_offset_ = this->current_data_size_for_child();
c06b7b0b 1925
b8e6aad9 1926 this->input_sections_.push_back(*inp);
c06b7b0b 1927
b8e6aad9 1928 uint64_t addralign = inp->addralign();
ead1e424
ILT
1929 if (addralign > this->addralign_)
1930 this->addralign_ = addralign;
c06b7b0b 1931
b8e6aad9
ILT
1932 inp->set_output_section(this);
1933}
1934
1935// Add a merge section to an output section.
1936
1937void
1938Output_section::add_output_merge_section(Output_section_data* posd,
1939 bool is_string, uint64_t entsize)
1940{
1941 Input_section inp(posd, is_string, entsize);
1942 this->add_output_section_data(&inp);
1943}
1944
1945// Add an input section to a SHF_MERGE section.
1946
1947bool
1948Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
1949 uint64_t flags, uint64_t entsize,
96803768 1950 uint64_t addralign)
b8e6aad9 1951{
87f95776
ILT
1952 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
1953
1954 // We only merge strings if the alignment is not more than the
1955 // character size. This could be handled, but it's unusual.
1956 if (is_string && addralign > entsize)
b8e6aad9
ILT
1957 return false;
1958
b8e6aad9
ILT
1959 Input_section_list::iterator p;
1960 for (p = this->input_sections_.begin();
1961 p != this->input_sections_.end();
1962 ++p)
87f95776 1963 if (p->is_merge_section(is_string, entsize, addralign))
9a0910c3
ILT
1964 {
1965 p->add_input_section(object, shndx);
1966 return true;
1967 }
b8e6aad9
ILT
1968
1969 // We handle the actual constant merging in Output_merge_data or
1970 // Output_merge_string_data.
9a0910c3
ILT
1971 Output_section_data* posd;
1972 if (!is_string)
1973 posd = new Output_merge_data(entsize, addralign);
b8e6aad9
ILT
1974 else
1975 {
9a0910c3
ILT
1976 switch (entsize)
1977 {
1978 case 1:
1979 posd = new Output_merge_string<char>(addralign);
1980 break;
1981 case 2:
1982 posd = new Output_merge_string<uint16_t>(addralign);
1983 break;
1984 case 4:
1985 posd = new Output_merge_string<uint32_t>(addralign);
1986 break;
1987 default:
1988 return false;
1989 }
b8e6aad9
ILT
1990 }
1991
9a0910c3
ILT
1992 this->add_output_merge_section(posd, is_string, entsize);
1993 posd->add_input_section(object, shndx);
1994
b8e6aad9
ILT
1995 return true;
1996}
1997
9c547ec3
ILT
1998// Update the output section flags based on input section flags.
1999
2000void
2001Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2002{
2003 // If we created the section with SHF_ALLOC clear, we set the
2004 // address. If we are now setting the SHF_ALLOC flag, we need to
2005 // undo that.
2006 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2007 && (flags & elfcpp::SHF_ALLOC) != 0)
2008 this->mark_address_invalid();
2009
2010 this->flags_ |= (flags
2011 & (elfcpp::SHF_WRITE
2012 | elfcpp::SHF_ALLOC
2013 | elfcpp::SHF_EXECINSTR));
2014}
2015
730cdc88
ILT
2016// Given an address OFFSET relative to the start of input section
2017// SHNDX in OBJECT, return whether this address is being included in
2018// the final link. This should only be called if SHNDX in OBJECT has
2019// a special mapping.
2020
2021bool
2022Output_section::is_input_address_mapped(const Relobj* object,
2023 unsigned int shndx,
2024 off_t offset) const
2025{
730cdc88
ILT
2026 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2027 p != this->input_sections_.end();
2028 ++p)
2029 {
8383303e 2030 section_offset_type output_offset;
730cdc88
ILT
2031 if (p->output_offset(object, shndx, offset, &output_offset))
2032 return output_offset != -1;
2033 }
2034
2035 // By default we assume that the address is mapped. This should
2036 // only be called after we have passed all sections to Layout. At
2037 // that point we should know what we are discarding.
2038 return true;
2039}
2040
2041// Given an address OFFSET relative to the start of input section
2042// SHNDX in object OBJECT, return the output offset relative to the
1e983657
ILT
2043// start of the input section in the output section. This should only
2044// be called if SHNDX in OBJECT has a special mapping.
730cdc88 2045
8383303e 2046section_offset_type
730cdc88 2047Output_section::output_offset(const Relobj* object, unsigned int shndx,
8383303e 2048 section_offset_type offset) const
730cdc88 2049{
730cdc88
ILT
2050 // This can only be called meaningfully when layout is complete.
2051 gold_assert(Output_data::is_layout_complete());
2052
2053 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2054 p != this->input_sections_.end();
2055 ++p)
2056 {
8383303e 2057 section_offset_type output_offset;
730cdc88
ILT
2058 if (p->output_offset(object, shndx, offset, &output_offset))
2059 return output_offset;
2060 }
2061 gold_unreachable();
2062}
2063
b8e6aad9
ILT
2064// Return the output virtual address of OFFSET relative to the start
2065// of input section SHNDX in object OBJECT.
2066
2067uint64_t
2068Output_section::output_address(const Relobj* object, unsigned int shndx,
2069 off_t offset) const
2070{
2071 uint64_t addr = this->address() + this->first_input_offset_;
2072 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2073 p != this->input_sections_.end();
2074 ++p)
2075 {
2076 addr = align_address(addr, p->addralign());
8383303e 2077 section_offset_type output_offset;
730cdc88
ILT
2078 if (p->output_offset(object, shndx, offset, &output_offset))
2079 {
2080 if (output_offset == -1)
eff45813 2081 return -1ULL;
730cdc88
ILT
2082 return addr + output_offset;
2083 }
b8e6aad9
ILT
2084 addr += p->data_size();
2085 }
2086
2087 // If we get here, it means that we don't know the mapping for this
2088 // input section. This might happen in principle if
2089 // add_input_section were called before add_output_section_data.
2090 // But it should never actually happen.
2091
2092 gold_unreachable();
ead1e424
ILT
2093}
2094
e29e076a 2095// Find the output address of the start of the merged section for
a9a60db6
ILT
2096// input section SHNDX in object OBJECT.
2097
e29e076a
ILT
2098bool
2099Output_section::find_starting_output_address(const Relobj* object,
2100 unsigned int shndx,
2101 uint64_t* paddr) const
a9a60db6 2102{
a9a60db6
ILT
2103 uint64_t addr = this->address() + this->first_input_offset_;
2104 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2105 p != this->input_sections_.end();
2106 ++p)
2107 {
2108 addr = align_address(addr, p->addralign());
2109
2110 // It would be nice if we could use the existing output_offset
2111 // method to get the output offset of input offset 0.
2112 // Unfortunately we don't know for sure that input offset 0 is
2113 // mapped at all.
2114 if (p->is_merge_section_for(object, shndx))
e29e076a
ILT
2115 {
2116 *paddr = addr;
2117 return true;
2118 }
a9a60db6
ILT
2119
2120 addr += p->data_size();
2121 }
e29e076a
ILT
2122
2123 // We couldn't find a merge output section for this input section.
2124 return false;
a9a60db6
ILT
2125}
2126
27bc2bce 2127// Set the data size of an Output_section. This is where we handle
ead1e424
ILT
2128// setting the addresses of any Output_section_data objects.
2129
2130void
27bc2bce 2131Output_section::set_final_data_size()
ead1e424
ILT
2132{
2133 if (this->input_sections_.empty())
27bc2bce
ILT
2134 {
2135 this->set_data_size(this->current_data_size_for_child());
2136 return;
2137 }
ead1e424 2138
2fd32231
ILT
2139 if (this->must_sort_attached_input_sections())
2140 this->sort_attached_input_sections();
2141
27bc2bce
ILT
2142 uint64_t address = this->address();
2143 off_t startoff = this->offset();
ead1e424
ILT
2144 off_t off = startoff + this->first_input_offset_;
2145 for (Input_section_list::iterator p = this->input_sections_.begin();
2146 p != this->input_sections_.end();
2147 ++p)
2148 {
2149 off = align_address(off, p->addralign());
96803768
ILT
2150 p->set_address_and_file_offset(address + (off - startoff), off,
2151 startoff);
ead1e424
ILT
2152 off += p->data_size();
2153 }
2154
2155 this->set_data_size(off - startoff);
2156}
9a0910c3 2157
a445fddf
ILT
2158// Reset the address and file offset.
2159
2160void
2161Output_section::do_reset_address_and_file_offset()
2162{
2163 for (Input_section_list::iterator p = this->input_sections_.begin();
2164 p != this->input_sections_.end();
2165 ++p)
2166 p->reset_address_and_file_offset();
2167}
2168
7bf1f802
ILT
2169// Set the TLS offset. Called only for SHT_TLS sections.
2170
2171void
2172Output_section::do_set_tls_offset(uint64_t tls_base)
2173{
2174 this->tls_offset_ = this->address() - tls_base;
2175}
2176
2fd32231
ILT
2177// In a few cases we need to sort the input sections attached to an
2178// output section. This is used to implement the type of constructor
2179// priority ordering implemented by the GNU linker, in which the
2180// priority becomes part of the section name and the sections are
2181// sorted by name. We only do this for an output section if we see an
2182// attached input section matching ".ctor.*", ".dtor.*",
2183// ".init_array.*" or ".fini_array.*".
2184
2185class Output_section::Input_section_sort_entry
2186{
2187 public:
2188 Input_section_sort_entry()
2189 : input_section_(), index_(-1U), section_has_name_(false),
2190 section_name_()
2191 { }
2192
2193 Input_section_sort_entry(const Input_section& input_section,
2194 unsigned int index)
2195 : input_section_(input_section), index_(index),
2196 section_has_name_(input_section.is_input_section())
2197 {
2198 if (this->section_has_name_)
2199 {
2200 // This is only called single-threaded from Layout::finalize,
2201 // so it is OK to lock. Unfortunately we have no way to pass
2202 // in a Task token.
2203 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
2204 Object* obj = input_section.relobj();
2205 Task_lock_obj<Object> tl(dummy_task, obj);
2206
2207 // This is a slow operation, which should be cached in
2208 // Layout::layout if this becomes a speed problem.
2209 this->section_name_ = obj->section_name(input_section.shndx());
2210 }
2211 }
2212
2213 // Return the Input_section.
2214 const Input_section&
2215 input_section() const
2216 {
2217 gold_assert(this->index_ != -1U);
2218 return this->input_section_;
2219 }
2220
2221 // The index of this entry in the original list. This is used to
2222 // make the sort stable.
2223 unsigned int
2224 index() const
2225 {
2226 gold_assert(this->index_ != -1U);
2227 return this->index_;
2228 }
2229
2230 // Whether there is a section name.
2231 bool
2232 section_has_name() const
2233 { return this->section_has_name_; }
2234
2235 // The section name.
2236 const std::string&
2237 section_name() const
2238 {
2239 gold_assert(this->section_has_name_);
2240 return this->section_name_;
2241 }
2242
ab794b6b
ILT
2243 // Return true if the section name has a priority. This is assumed
2244 // to be true if it has a dot after the initial dot.
2fd32231 2245 bool
ab794b6b 2246 has_priority() const
2fd32231
ILT
2247 {
2248 gold_assert(this->section_has_name_);
ab794b6b 2249 return this->section_name_.find('.', 1);
2fd32231
ILT
2250 }
2251
ab794b6b
ILT
2252 // Return true if this an input file whose base name matches
2253 // FILE_NAME. The base name must have an extension of ".o", and
2254 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
2255 // This is to match crtbegin.o as well as crtbeginS.o without
2256 // getting confused by other possibilities. Overall matching the
2257 // file name this way is a dreadful hack, but the GNU linker does it
2258 // in order to better support gcc, and we need to be compatible.
2fd32231 2259 bool
ab794b6b 2260 match_file_name(const char* match_file_name) const
2fd32231 2261 {
2fd32231
ILT
2262 const std::string& file_name(this->input_section_.relobj()->name());
2263 const char* base_name = lbasename(file_name.c_str());
2264 size_t match_len = strlen(match_file_name);
2265 if (strncmp(base_name, match_file_name, match_len) != 0)
2266 return false;
2267 size_t base_len = strlen(base_name);
2268 if (base_len != match_len + 2 && base_len != match_len + 3)
2269 return false;
2270 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
2271 }
2272
2273 private:
2274 // The Input_section we are sorting.
2275 Input_section input_section_;
2276 // The index of this Input_section in the original list.
2277 unsigned int index_;
2278 // Whether this Input_section has a section name--it won't if this
2279 // is some random Output_section_data.
2280 bool section_has_name_;
2281 // The section name if there is one.
2282 std::string section_name_;
2283};
2284
2285// Return true if S1 should come before S2 in the output section.
2286
2287bool
2288Output_section::Input_section_sort_compare::operator()(
2289 const Output_section::Input_section_sort_entry& s1,
2290 const Output_section::Input_section_sort_entry& s2) const
2291{
ab794b6b
ILT
2292 // crtbegin.o must come first.
2293 bool s1_begin = s1.match_file_name("crtbegin");
2294 bool s2_begin = s2.match_file_name("crtbegin");
2fd32231
ILT
2295 if (s1_begin || s2_begin)
2296 {
2297 if (!s1_begin)
2298 return false;
2299 if (!s2_begin)
2300 return true;
2301 return s1.index() < s2.index();
2302 }
2303
ab794b6b
ILT
2304 // crtend.o must come last.
2305 bool s1_end = s1.match_file_name("crtend");
2306 bool s2_end = s2.match_file_name("crtend");
2fd32231
ILT
2307 if (s1_end || s2_end)
2308 {
2309 if (!s1_end)
2310 return true;
2311 if (!s2_end)
2312 return false;
2313 return s1.index() < s2.index();
2314 }
2315
ab794b6b
ILT
2316 // We sort all the sections with no names to the end.
2317 if (!s1.section_has_name() || !s2.section_has_name())
2318 {
2319 if (s1.section_has_name())
2320 return true;
2321 if (s2.section_has_name())
2322 return false;
2323 return s1.index() < s2.index();
2324 }
2fd32231 2325
ab794b6b
ILT
2326 // A section with a priority follows a section without a priority.
2327 // The GNU linker does this for all but .init_array sections; until
2328 // further notice we'll assume that that is an mistake.
2329 bool s1_has_priority = s1.has_priority();
2330 bool s2_has_priority = s2.has_priority();
2331 if (s1_has_priority && !s2_has_priority)
2fd32231 2332 return false;
ab794b6b 2333 if (!s1_has_priority && s2_has_priority)
2fd32231
ILT
2334 return true;
2335
2336 // Otherwise we sort by name.
2337 int compare = s1.section_name().compare(s2.section_name());
2338 if (compare != 0)
2339 return compare < 0;
2340
2341 // Otherwise we keep the input order.
2342 return s1.index() < s2.index();
2343}
2344
2345// Sort the input sections attached to an output section.
2346
2347void
2348Output_section::sort_attached_input_sections()
2349{
2350 if (this->attached_input_sections_are_sorted_)
2351 return;
2352
2353 // The only thing we know about an input section is the object and
2354 // the section index. We need the section name. Recomputing this
2355 // is slow but this is an unusual case. If this becomes a speed
2356 // problem we can cache the names as required in Layout::layout.
2357
2358 // We start by building a larger vector holding a copy of each
2359 // Input_section, plus its current index in the list and its name.
2360 std::vector<Input_section_sort_entry> sort_list;
2361
2362 unsigned int i = 0;
2363 for (Input_section_list::iterator p = this->input_sections_.begin();
2364 p != this->input_sections_.end();
2365 ++p, ++i)
2366 sort_list.push_back(Input_section_sort_entry(*p, i));
2367
2368 // Sort the input sections.
2369 std::sort(sort_list.begin(), sort_list.end(), Input_section_sort_compare());
2370
2371 // Copy the sorted input sections back to our list.
2372 this->input_sections_.clear();
2373 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
2374 p != sort_list.end();
2375 ++p)
2376 this->input_sections_.push_back(p->input_section());
2377
2378 // Remember that we sorted the input sections, since we might get
2379 // called again.
2380 this->attached_input_sections_are_sorted_ = true;
2381}
2382
61ba1cf9
ILT
2383// Write the section header to *OSHDR.
2384
2385template<int size, bool big_endian>
2386void
16649710
ILT
2387Output_section::write_header(const Layout* layout,
2388 const Stringpool* secnamepool,
61ba1cf9
ILT
2389 elfcpp::Shdr_write<size, big_endian>* oshdr) const
2390{
2391 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
2392 oshdr->put_sh_type(this->type_);
6a74a719
ILT
2393
2394 elfcpp::Elf_Xword flags = this->flags_;
755ab8af 2395 if (this->info_section_ != NULL && this->info_uses_section_index_)
6a74a719
ILT
2396 flags |= elfcpp::SHF_INFO_LINK;
2397 oshdr->put_sh_flags(flags);
2398
61ba1cf9
ILT
2399 oshdr->put_sh_addr(this->address());
2400 oshdr->put_sh_offset(this->offset());
2401 oshdr->put_sh_size(this->data_size());
16649710
ILT
2402 if (this->link_section_ != NULL)
2403 oshdr->put_sh_link(this->link_section_->out_shndx());
2404 else if (this->should_link_to_symtab_)
2405 oshdr->put_sh_link(layout->symtab_section()->out_shndx());
2406 else if (this->should_link_to_dynsym_)
2407 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
2408 else
2409 oshdr->put_sh_link(this->link_);
755ab8af
ILT
2410
2411 elfcpp::Elf_Word info;
16649710 2412 if (this->info_section_ != NULL)
755ab8af
ILT
2413 {
2414 if (this->info_uses_section_index_)
2415 info = this->info_section_->out_shndx();
2416 else
2417 info = this->info_section_->symtab_index();
2418 }
6a74a719 2419 else if (this->info_symndx_ != NULL)
755ab8af 2420 info = this->info_symndx_->symtab_index();
16649710 2421 else
755ab8af
ILT
2422 info = this->info_;
2423 oshdr->put_sh_info(info);
2424
61ba1cf9
ILT
2425 oshdr->put_sh_addralign(this->addralign_);
2426 oshdr->put_sh_entsize(this->entsize_);
a2fb1b05
ILT
2427}
2428
ead1e424
ILT
2429// Write out the data. For input sections the data is written out by
2430// Object::relocate, but we have to handle Output_section_data objects
2431// here.
2432
2433void
2434Output_section::do_write(Output_file* of)
2435{
96803768
ILT
2436 gold_assert(!this->requires_postprocessing());
2437
c51e6221
ILT
2438 off_t output_section_file_offset = this->offset();
2439 for (Fill_list::iterator p = this->fills_.begin();
2440 p != this->fills_.end();
2441 ++p)
2442 {
8851ecca 2443 std::string fill_data(parameters->target().code_fill(p->length()));
c51e6221 2444 of->write(output_section_file_offset + p->section_offset(),
a445fddf 2445 fill_data.data(), fill_data.size());
c51e6221
ILT
2446 }
2447
ead1e424
ILT
2448 for (Input_section_list::iterator p = this->input_sections_.begin();
2449 p != this->input_sections_.end();
2450 ++p)
2451 p->write(of);
2452}
2453
96803768
ILT
2454// If a section requires postprocessing, create the buffer to use.
2455
2456void
2457Output_section::create_postprocessing_buffer()
2458{
2459 gold_assert(this->requires_postprocessing());
1bedcac5
ILT
2460
2461 if (this->postprocessing_buffer_ != NULL)
2462 return;
96803768
ILT
2463
2464 if (!this->input_sections_.empty())
2465 {
2466 off_t off = this->first_input_offset_;
2467 for (Input_section_list::iterator p = this->input_sections_.begin();
2468 p != this->input_sections_.end();
2469 ++p)
2470 {
2471 off = align_address(off, p->addralign());
2472 p->finalize_data_size();
2473 off += p->data_size();
2474 }
2475 this->set_current_data_size_for_child(off);
2476 }
2477
2478 off_t buffer_size = this->current_data_size_for_child();
2479 this->postprocessing_buffer_ = new unsigned char[buffer_size];
2480}
2481
2482// Write all the data of an Output_section into the postprocessing
2483// buffer. This is used for sections which require postprocessing,
2484// such as compression. Input sections are handled by
2485// Object::Relocate.
2486
2487void
2488Output_section::write_to_postprocessing_buffer()
2489{
2490 gold_assert(this->requires_postprocessing());
2491
96803768
ILT
2492 unsigned char* buffer = this->postprocessing_buffer();
2493 for (Fill_list::iterator p = this->fills_.begin();
2494 p != this->fills_.end();
2495 ++p)
2496 {
8851ecca 2497 std::string fill_data(parameters->target().code_fill(p->length()));
a445fddf
ILT
2498 memcpy(buffer + p->section_offset(), fill_data.data(),
2499 fill_data.size());
96803768
ILT
2500 }
2501
2502 off_t off = this->first_input_offset_;
2503 for (Input_section_list::iterator p = this->input_sections_.begin();
2504 p != this->input_sections_.end();
2505 ++p)
2506 {
2507 off = align_address(off, p->addralign());
2508 p->write_to_buffer(buffer + off);
2509 off += p->data_size();
2510 }
2511}
2512
a445fddf
ILT
2513// Get the input sections for linker script processing. We leave
2514// behind the Output_section_data entries. Note that this may be
2515// slightly incorrect for merge sections. We will leave them behind,
2516// but it is possible that the script says that they should follow
2517// some other input sections, as in:
2518// .rodata { *(.rodata) *(.rodata.cst*) }
2519// For that matter, we don't handle this correctly:
2520// .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
2521// With luck this will never matter.
2522
2523uint64_t
2524Output_section::get_input_sections(
2525 uint64_t address,
2526 const std::string& fill,
2527 std::list<std::pair<Relobj*, unsigned int> >* input_sections)
2528{
2529 uint64_t orig_address = address;
2530
2531 address = align_address(address, this->addralign());
2532
2533 Input_section_list remaining;
2534 for (Input_section_list::iterator p = this->input_sections_.begin();
2535 p != this->input_sections_.end();
2536 ++p)
2537 {
2538 if (p->is_input_section())
2539 input_sections->push_back(std::make_pair(p->relobj(), p->shndx()));
2540 else
2541 {
2542 uint64_t aligned_address = align_address(address, p->addralign());
2543 if (aligned_address != address && !fill.empty())
2544 {
2545 section_size_type length =
2546 convert_to_section_size_type(aligned_address - address);
2547 std::string this_fill;
2548 this_fill.reserve(length);
2549 while (this_fill.length() + fill.length() <= length)
2550 this_fill += fill;
2551 if (this_fill.length() < length)
2552 this_fill.append(fill, 0, length - this_fill.length());
2553
2554 Output_section_data* posd = new Output_data_const(this_fill, 0);
2555 remaining.push_back(Input_section(posd));
2556 }
2557 address = aligned_address;
2558
2559 remaining.push_back(*p);
2560
2561 p->finalize_data_size();
2562 address += p->data_size();
2563 }
2564 }
2565
2566 this->input_sections_.swap(remaining);
2567 this->first_input_offset_ = 0;
2568
2569 uint64_t data_size = address - orig_address;
2570 this->set_current_data_size_for_child(data_size);
2571 return data_size;
2572}
2573
2574// Add an input section from a script.
2575
2576void
2577Output_section::add_input_section_for_script(Relobj* object,
2578 unsigned int shndx,
2579 off_t data_size,
2580 uint64_t addralign)
2581{
2582 if (addralign > this->addralign_)
2583 this->addralign_ = addralign;
2584
2585 off_t offset_in_section = this->current_data_size_for_child();
2586 off_t aligned_offset_in_section = align_address(offset_in_section,
2587 addralign);
2588
2589 this->set_current_data_size_for_child(aligned_offset_in_section
2590 + data_size);
2591
2592 this->input_sections_.push_back(Input_section(object, shndx,
2593 data_size, addralign));
2594}
2595
7d9e3d98
ILT
2596// Print to the map file.
2597
2598void
2599Output_section::do_print_to_mapfile(Mapfile* mapfile) const
2600{
2601 mapfile->print_output_section(this);
2602
2603 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2604 p != this->input_sections_.end();
2605 ++p)
2606 p->print_to_mapfile(mapfile);
2607}
2608
38c5e8b4
ILT
2609// Print stats for merge sections to stderr.
2610
2611void
2612Output_section::print_merge_stats()
2613{
2614 Input_section_list::iterator p;
2615 for (p = this->input_sections_.begin();
2616 p != this->input_sections_.end();
2617 ++p)
2618 p->print_merge_stats(this->name_);
2619}
2620
a2fb1b05
ILT
2621// Output segment methods.
2622
2623Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
54dc6425 2624 : output_data_(),
75f65a3e 2625 output_bss_(),
a2fb1b05
ILT
2626 vaddr_(0),
2627 paddr_(0),
2628 memsz_(0),
a445fddf
ILT
2629 max_align_(0),
2630 min_p_align_(0),
a2fb1b05
ILT
2631 offset_(0),
2632 filesz_(0),
2633 type_(type),
ead1e424 2634 flags_(flags),
a445fddf 2635 is_max_align_known_(false),
8a5e3e08
ILT
2636 are_addresses_set_(false),
2637 is_large_data_segment_(false)
a2fb1b05
ILT
2638{
2639}
2640
2641// Add an Output_section to an Output_segment.
2642
2643void
75f65a3e 2644Output_segment::add_output_section(Output_section* os,
01676dcd 2645 elfcpp::Elf_Word seg_flags)
a2fb1b05 2646{
a3ad94ed 2647 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
a445fddf 2648 gold_assert(!this->is_max_align_known_);
8a5e3e08 2649 gold_assert(os->is_large_data_section() == this->is_large_data_segment());
75f65a3e 2650
ead1e424 2651 // Update the segment flags.
75f65a3e 2652 this->flags_ |= seg_flags;
75f65a3e
ILT
2653
2654 Output_segment::Output_data_list* pdl;
2655 if (os->type() == elfcpp::SHT_NOBITS)
2656 pdl = &this->output_bss_;
2657 else
2658 pdl = &this->output_data_;
54dc6425 2659
a2fb1b05
ILT
2660 // So that PT_NOTE segments will work correctly, we need to ensure
2661 // that all SHT_NOTE sections are adjacent. This will normally
2662 // happen automatically, because all the SHT_NOTE input sections
2663 // will wind up in the same output section. However, it is possible
2664 // for multiple SHT_NOTE input sections to have different section
2665 // flags, and thus be in different output sections, but for the
2666 // different section flags to map into the same segment flags and
2667 // thus the same output segment.
54dc6425
ILT
2668
2669 // Note that while there may be many input sections in an output
2670 // section, there are normally only a few output sections in an
2671 // output segment. This loop is expected to be fast.
2672
61ba1cf9 2673 if (os->type() == elfcpp::SHT_NOTE && !pdl->empty())
a2fb1b05 2674 {
a3ad94ed 2675 Output_segment::Output_data_list::iterator p = pdl->end();
75f65a3e 2676 do
54dc6425 2677 {
75f65a3e 2678 --p;
54dc6425
ILT
2679 if ((*p)->is_section_type(elfcpp::SHT_NOTE))
2680 {
2681 ++p;
75f65a3e 2682 pdl->insert(p, os);
54dc6425
ILT
2683 return;
2684 }
2685 }
75f65a3e 2686 while (p != pdl->begin());
54dc6425
ILT
2687 }
2688
2689 // Similarly, so that PT_TLS segments will work, we need to group
75f65a3e
ILT
2690 // SHF_TLS sections. An SHF_TLS/SHT_NOBITS section is a special
2691 // case: we group the SHF_TLS/SHT_NOBITS sections right after the
2692 // SHF_TLS/SHT_PROGBITS sections. This lets us set up PT_TLS
07f397ab
ILT
2693 // correctly. SHF_TLS sections get added to both a PT_LOAD segment
2694 // and the PT_TLS segment -- we do this grouping only for the
2695 // PT_LOAD segment.
2696 if (this->type_ != elfcpp::PT_TLS
2d924fd9 2697 && (os->flags() & elfcpp::SHF_TLS) != 0)
54dc6425 2698 {
75f65a3e
ILT
2699 pdl = &this->output_data_;
2700 bool nobits = os->type() == elfcpp::SHT_NOBITS;
ead1e424 2701 bool sawtls = false;
a3ad94ed 2702 Output_segment::Output_data_list::iterator p = pdl->end();
75f65a3e 2703 do
a2fb1b05 2704 {
75f65a3e 2705 --p;
ead1e424
ILT
2706 bool insert;
2707 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
2708 {
2709 sawtls = true;
2710 // Put a NOBITS section after the first TLS section.
9f1d377b 2711 // Put a PROGBITS section after the first TLS/PROGBITS
ead1e424
ILT
2712 // section.
2713 insert = nobits || !(*p)->is_section_type(elfcpp::SHT_NOBITS);
2714 }
2715 else
2716 {
2717 // If we've gone past the TLS sections, but we've seen a
2718 // TLS section, then we need to insert this section now.
2719 insert = sawtls;
2720 }
2721
2722 if (insert)
a2fb1b05
ILT
2723 {
2724 ++p;
75f65a3e 2725 pdl->insert(p, os);
a2fb1b05
ILT
2726 return;
2727 }
2728 }
75f65a3e 2729 while (p != pdl->begin());
ead1e424 2730
dbe717ef
ILT
2731 // There are no TLS sections yet; put this one at the requested
2732 // location in the section list.
a2fb1b05
ILT
2733 }
2734
9f1d377b
ILT
2735 // For the PT_GNU_RELRO segment, we need to group relro sections,
2736 // and we need to put them before any non-relro sections. Also,
2737 // relro local sections go before relro non-local sections.
2738 if (parameters->options().relro() && os->is_relro())
2739 {
2740 gold_assert(pdl == &this->output_data_);
2741 Output_segment::Output_data_list::iterator p;
2742 for (p = pdl->begin(); p != pdl->end(); ++p)
2743 {
2744 if (!(*p)->is_section())
2745 break;
2746
2747 Output_section* pos = (*p)->output_section();
2748 if (!pos->is_relro()
2749 || (os->is_relro_local() && !pos->is_relro_local()))
2750 break;
2751 }
2752
2753 pdl->insert(p, os);
2754 return;
2755 }
2756
8a5e3e08
ILT
2757 // Small data sections go at the end of the list of data sections.
2758 // If OS is not small, and there are small sections, we have to
2759 // insert it before the first small section.
2760 if (os->type() != elfcpp::SHT_NOBITS
2761 && !os->is_small_section()
2762 && !pdl->empty()
2763 && pdl->back()->is_section()
2764 && pdl->back()->output_section()->is_small_section())
2765 {
2766 for (Output_segment::Output_data_list::iterator p = pdl->begin();
2767 p != pdl->end();
2768 ++p)
2769 {
2770 if ((*p)->is_section()
2771 && (*p)->output_section()->is_small_section())
2772 {
2773 pdl->insert(p, os);
2774 return;
2775 }
2776 }
2777 gold_unreachable();
2778 }
2779
2780 // A small BSS section goes at the start of the BSS sections, after
2781 // other small BSS sections.
2782 if (os->type() == elfcpp::SHT_NOBITS && os->is_small_section())
2783 {
2784 for (Output_segment::Output_data_list::iterator p = pdl->begin();
2785 p != pdl->end();
2786 ++p)
2787 {
2788 if (!(*p)->is_section()
2789 || !(*p)->output_section()->is_small_section())
2790 {
2791 pdl->insert(p, os);
2792 return;
2793 }
2794 }
2795 }
2796
2797 // A large BSS section goes at the end of the BSS sections, which
2798 // means that one that is not large must come before the first large
2799 // one.
2800 if (os->type() == elfcpp::SHT_NOBITS
2801 && !os->is_large_section()
2802 && !pdl->empty()
2803 && pdl->back()->is_section()
2804 && pdl->back()->output_section()->is_large_section())
2805 {
2806 for (Output_segment::Output_data_list::iterator p = pdl->begin();
2807 p != pdl->end();
2808 ++p)
2809 {
2810 if ((*p)->is_section()
2811 && (*p)->output_section()->is_large_section())
2812 {
2813 pdl->insert(p, os);
2814 return;
2815 }
2816 }
2817 gold_unreachable();
2818 }
2819
01676dcd 2820 pdl->push_back(os);
75f65a3e
ILT
2821}
2822
1650c4ff
ILT
2823// Remove an Output_section from this segment. It is an error if it
2824// is not present.
2825
2826void
2827Output_segment::remove_output_section(Output_section* os)
2828{
2829 // We only need this for SHT_PROGBITS.
2830 gold_assert(os->type() == elfcpp::SHT_PROGBITS);
2831 for (Output_data_list::iterator p = this->output_data_.begin();
2832 p != this->output_data_.end();
2833 ++p)
2834 {
2835 if (*p == os)
2836 {
2837 this->output_data_.erase(p);
2838 return;
2839 }
2840 }
2841 gold_unreachable();
2842}
2843
75f65a3e
ILT
2844// Add an Output_data (which is not an Output_section) to the start of
2845// a segment.
2846
2847void
2848Output_segment::add_initial_output_data(Output_data* od)
2849{
a445fddf 2850 gold_assert(!this->is_max_align_known_);
75f65a3e
ILT
2851 this->output_data_.push_front(od);
2852}
2853
9f1d377b
ILT
2854// Return whether the first data section is a relro section.
2855
2856bool
2857Output_segment::is_first_section_relro() const
2858{
2859 return (!this->output_data_.empty()
2860 && this->output_data_.front()->is_section()
2861 && this->output_data_.front()->output_section()->is_relro());
2862}
2863
75f65a3e 2864// Return the maximum alignment of the Output_data in Output_segment.
75f65a3e
ILT
2865
2866uint64_t
a445fddf 2867Output_segment::maximum_alignment()
75f65a3e 2868{
a445fddf 2869 if (!this->is_max_align_known_)
ead1e424
ILT
2870 {
2871 uint64_t addralign;
2872
a445fddf
ILT
2873 addralign = Output_segment::maximum_alignment_list(&this->output_data_);
2874 if (addralign > this->max_align_)
2875 this->max_align_ = addralign;
ead1e424 2876
a445fddf
ILT
2877 addralign = Output_segment::maximum_alignment_list(&this->output_bss_);
2878 if (addralign > this->max_align_)
2879 this->max_align_ = addralign;
ead1e424 2880
9f1d377b
ILT
2881 // If -z relro is in effect, and the first section in this
2882 // segment is a relro section, then the segment must be aligned
2883 // to at least the common page size. This ensures that the
2884 // PT_GNU_RELRO segment will start at a page boundary.
2d924fd9
ILT
2885 if (this->type_ == elfcpp::PT_LOAD
2886 && parameters->options().relro()
2887 && this->is_first_section_relro())
9f1d377b
ILT
2888 {
2889 addralign = parameters->target().common_pagesize();
2890 if (addralign > this->max_align_)
2891 this->max_align_ = addralign;
2892 }
2893
a445fddf 2894 this->is_max_align_known_ = true;
ead1e424
ILT
2895 }
2896
a445fddf 2897 return this->max_align_;
75f65a3e
ILT
2898}
2899
ead1e424
ILT
2900// Return the maximum alignment of a list of Output_data.
2901
2902uint64_t
a445fddf 2903Output_segment::maximum_alignment_list(const Output_data_list* pdl)
ead1e424
ILT
2904{
2905 uint64_t ret = 0;
2906 for (Output_data_list::const_iterator p = pdl->begin();
2907 p != pdl->end();
2908 ++p)
2909 {
2910 uint64_t addralign = (*p)->addralign();
2911 if (addralign > ret)
2912 ret = addralign;
2913 }
2914 return ret;
2915}
2916
4f4c5f80
ILT
2917// Return the number of dynamic relocs applied to this segment.
2918
2919unsigned int
2920Output_segment::dynamic_reloc_count() const
2921{
2922 return (this->dynamic_reloc_count_list(&this->output_data_)
2923 + this->dynamic_reloc_count_list(&this->output_bss_));
2924}
2925
2926// Return the number of dynamic relocs applied to an Output_data_list.
2927
2928unsigned int
2929Output_segment::dynamic_reloc_count_list(const Output_data_list* pdl) const
2930{
2931 unsigned int count = 0;
2932 for (Output_data_list::const_iterator p = pdl->begin();
2933 p != pdl->end();
2934 ++p)
2935 count += (*p)->dynamic_reloc_count();
2936 return count;
2937}
2938
a445fddf
ILT
2939// Set the section addresses for an Output_segment. If RESET is true,
2940// reset the addresses first. ADDR is the address and *POFF is the
2941// file offset. Set the section indexes starting with *PSHNDX.
2942// Return the address of the immediately following segment. Update
2943// *POFF and *PSHNDX.
75f65a3e
ILT
2944
2945uint64_t
96a2b4e4
ILT
2946Output_segment::set_section_addresses(const Layout* layout, bool reset,
2947 uint64_t addr, off_t* poff,
ead1e424 2948 unsigned int* pshndx)
75f65a3e 2949{
a3ad94ed 2950 gold_assert(this->type_ == elfcpp::PT_LOAD);
75f65a3e 2951
a445fddf
ILT
2952 if (!reset && this->are_addresses_set_)
2953 {
2954 gold_assert(this->paddr_ == addr);
2955 addr = this->vaddr_;
2956 }
2957 else
2958 {
2959 this->vaddr_ = addr;
2960 this->paddr_ = addr;
2961 this->are_addresses_set_ = true;
2962 }
75f65a3e 2963
96a2b4e4
ILT
2964 bool in_tls = false;
2965
9f1d377b
ILT
2966 bool in_relro = (parameters->options().relro()
2967 && this->is_first_section_relro());
2968
75f65a3e
ILT
2969 off_t orig_off = *poff;
2970 this->offset_ = orig_off;
2971
96a2b4e4 2972 addr = this->set_section_list_addresses(layout, reset, &this->output_data_,
9f1d377b
ILT
2973 addr, poff, pshndx, &in_tls,
2974 &in_relro);
75f65a3e
ILT
2975 this->filesz_ = *poff - orig_off;
2976
2977 off_t off = *poff;
2978
96a2b4e4
ILT
2979 uint64_t ret = this->set_section_list_addresses(layout, reset,
2980 &this->output_bss_,
2981 addr, poff, pshndx,
9f1d377b 2982 &in_tls, &in_relro);
96a2b4e4
ILT
2983
2984 // If the last section was a TLS section, align upward to the
2985 // alignment of the TLS segment, so that the overall size of the TLS
2986 // segment is aligned.
2987 if (in_tls)
2988 {
2989 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
2990 *poff = align_address(*poff, segment_align);
2991 }
2992
9f1d377b
ILT
2993 // If all the sections were relro sections, align upward to the
2994 // common page size.
2995 if (in_relro)
2996 {
2997 uint64_t page_align = parameters->target().common_pagesize();
2998 *poff = align_address(*poff, page_align);
2999 }
3000
75f65a3e
ILT
3001 this->memsz_ = *poff - orig_off;
3002
3003 // Ignore the file offset adjustments made by the BSS Output_data
3004 // objects.
3005 *poff = off;
61ba1cf9
ILT
3006
3007 return ret;
75f65a3e
ILT
3008}
3009
b8e6aad9
ILT
3010// Set the addresses and file offsets in a list of Output_data
3011// structures.
75f65a3e
ILT
3012
3013uint64_t
96a2b4e4
ILT
3014Output_segment::set_section_list_addresses(const Layout* layout, bool reset,
3015 Output_data_list* pdl,
ead1e424 3016 uint64_t addr, off_t* poff,
96a2b4e4 3017 unsigned int* pshndx,
9f1d377b 3018 bool* in_tls, bool* in_relro)
75f65a3e 3019{
ead1e424 3020 off_t startoff = *poff;
75f65a3e 3021
ead1e424 3022 off_t off = startoff;
75f65a3e
ILT
3023 for (Output_data_list::iterator p = pdl->begin();
3024 p != pdl->end();
3025 ++p)
3026 {
a445fddf
ILT
3027 if (reset)
3028 (*p)->reset_address_and_file_offset();
3029
3030 // When using a linker script the section will most likely
3031 // already have an address.
3032 if (!(*p)->is_address_valid())
3802b2dd 3033 {
96a2b4e4
ILT
3034 uint64_t align = (*p)->addralign();
3035
3036 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
3037 {
3038 // Give the first TLS section the alignment of the
3039 // entire TLS segment. Otherwise the TLS segment as a
3040 // whole may be misaligned.
3041 if (!*in_tls)
3042 {
3043 Output_segment* tls_segment = layout->tls_segment();
3044 gold_assert(tls_segment != NULL);
3045 uint64_t segment_align = tls_segment->maximum_alignment();
3046 gold_assert(segment_align >= align);
3047 align = segment_align;
3048
3049 *in_tls = true;
3050 }
3051 }
3052 else
3053 {
3054 // If this is the first section after the TLS segment,
3055 // align it to at least the alignment of the TLS
3056 // segment, so that the size of the overall TLS segment
3057 // is aligned.
3058 if (*in_tls)
3059 {
3060 uint64_t segment_align =
3061 layout->tls_segment()->maximum_alignment();
3062 if (segment_align > align)
3063 align = segment_align;
3064
3065 *in_tls = false;
3066 }
3067 }
3068
9f1d377b
ILT
3069 // If this is a non-relro section after a relro section,
3070 // align it to a common page boundary so that the dynamic
3071 // linker has a page to mark as read-only.
3072 if (*in_relro
3073 && (!(*p)->is_section()
3074 || !(*p)->output_section()->is_relro()))
3075 {
3076 uint64_t page_align = parameters->target().common_pagesize();
3077 if (page_align > align)
3078 align = page_align;
3079 *in_relro = false;
3080 }
3081
96a2b4e4 3082 off = align_address(off, align);
3802b2dd
ILT
3083 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
3084 }
a445fddf
ILT
3085 else
3086 {
3087 // The script may have inserted a skip forward, but it
3088 // better not have moved backward.
3802b2dd
ILT
3089 gold_assert((*p)->address() >= addr + (off - startoff));
3090 off += (*p)->address() - (addr + (off - startoff));
a445fddf
ILT
3091 (*p)->set_file_offset(off);
3092 (*p)->finalize_data_size();
3093 }
ead1e424 3094
96a2b4e4
ILT
3095 // We want to ignore the size of a SHF_TLS or SHT_NOBITS
3096 // section. Such a section does not affect the size of a
3097 // PT_LOAD segment.
3098 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
ead1e424
ILT
3099 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
3100 off += (*p)->data_size();
75f65a3e 3101
ead1e424
ILT
3102 if ((*p)->is_section())
3103 {
3104 (*p)->set_out_shndx(*pshndx);
3105 ++*pshndx;
3106 }
75f65a3e
ILT
3107 }
3108
3109 *poff = off;
ead1e424 3110 return addr + (off - startoff);
75f65a3e
ILT
3111}
3112
3113// For a non-PT_LOAD segment, set the offset from the sections, if
3114// any.
3115
3116void
3117Output_segment::set_offset()
3118{
a3ad94ed 3119 gold_assert(this->type_ != elfcpp::PT_LOAD);
75f65a3e 3120
a445fddf
ILT
3121 gold_assert(!this->are_addresses_set_);
3122
75f65a3e
ILT
3123 if (this->output_data_.empty() && this->output_bss_.empty())
3124 {
3125 this->vaddr_ = 0;
3126 this->paddr_ = 0;
a445fddf 3127 this->are_addresses_set_ = true;
75f65a3e 3128 this->memsz_ = 0;
a445fddf 3129 this->min_p_align_ = 0;
75f65a3e
ILT
3130 this->offset_ = 0;
3131 this->filesz_ = 0;
3132 return;
3133 }
3134
3135 const Output_data* first;
3136 if (this->output_data_.empty())
3137 first = this->output_bss_.front();
3138 else
3139 first = this->output_data_.front();
3140 this->vaddr_ = first->address();
a445fddf
ILT
3141 this->paddr_ = (first->has_load_address()
3142 ? first->load_address()
3143 : this->vaddr_);
3144 this->are_addresses_set_ = true;
75f65a3e
ILT
3145 this->offset_ = first->offset();
3146
3147 if (this->output_data_.empty())
3148 this->filesz_ = 0;
3149 else
3150 {
3151 const Output_data* last_data = this->output_data_.back();
3152 this->filesz_ = (last_data->address()
3153 + last_data->data_size()
3154 - this->vaddr_);
3155 }
3156
3157 const Output_data* last;
3158 if (this->output_bss_.empty())
3159 last = this->output_data_.back();
3160 else
3161 last = this->output_bss_.back();
3162 this->memsz_ = (last->address()
3163 + last->data_size()
3164 - this->vaddr_);
96a2b4e4
ILT
3165
3166 // If this is a TLS segment, align the memory size. The code in
3167 // set_section_list ensures that the section after the TLS segment
3168 // is aligned to give us room.
3169 if (this->type_ == elfcpp::PT_TLS)
3170 {
3171 uint64_t segment_align = this->maximum_alignment();
3172 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
3173 this->memsz_ = align_address(this->memsz_, segment_align);
3174 }
9f1d377b
ILT
3175
3176 // If this is a RELRO segment, align the memory size. The code in
3177 // set_section_list ensures that the section after the RELRO segment
3178 // is aligned to give us room.
3179 if (this->type_ == elfcpp::PT_GNU_RELRO)
3180 {
3181 uint64_t page_align = parameters->target().common_pagesize();
3182 gold_assert(this->vaddr_ == align_address(this->vaddr_, page_align));
3183 this->memsz_ = align_address(this->memsz_, page_align);
3184 }
75f65a3e
ILT
3185}
3186
7bf1f802
ILT
3187// Set the TLS offsets of the sections in the PT_TLS segment.
3188
3189void
3190Output_segment::set_tls_offsets()
3191{
3192 gold_assert(this->type_ == elfcpp::PT_TLS);
3193
3194 for (Output_data_list::iterator p = this->output_data_.begin();
3195 p != this->output_data_.end();
3196 ++p)
3197 (*p)->set_tls_offset(this->vaddr_);
3198
3199 for (Output_data_list::iterator p = this->output_bss_.begin();
3200 p != this->output_bss_.end();
3201 ++p)
3202 (*p)->set_tls_offset(this->vaddr_);
3203}
3204
a445fddf
ILT
3205// Return the address of the first section.
3206
3207uint64_t
3208Output_segment::first_section_load_address() const
3209{
3210 for (Output_data_list::const_iterator p = this->output_data_.begin();
3211 p != this->output_data_.end();
3212 ++p)
3213 if ((*p)->is_section())
3214 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
3215
3216 for (Output_data_list::const_iterator p = this->output_bss_.begin();
3217 p != this->output_bss_.end();
3218 ++p)
3219 if ((*p)->is_section())
3220 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
3221
3222 gold_unreachable();
3223}
3224
75f65a3e
ILT
3225// Return the number of Output_sections in an Output_segment.
3226
3227unsigned int
3228Output_segment::output_section_count() const
3229{
3230 return (this->output_section_count_list(&this->output_data_)
3231 + this->output_section_count_list(&this->output_bss_));
3232}
3233
3234// Return the number of Output_sections in an Output_data_list.
3235
3236unsigned int
3237Output_segment::output_section_count_list(const Output_data_list* pdl) const
3238{
3239 unsigned int count = 0;
3240 for (Output_data_list::const_iterator p = pdl->begin();
3241 p != pdl->end();
3242 ++p)
3243 {
3244 if ((*p)->is_section())
3245 ++count;
3246 }
3247 return count;
a2fb1b05
ILT
3248}
3249
1c4f3631
ILT
3250// Return the section attached to the list segment with the lowest
3251// load address. This is used when handling a PHDRS clause in a
3252// linker script.
3253
3254Output_section*
3255Output_segment::section_with_lowest_load_address() const
3256{
3257 Output_section* found = NULL;
3258 uint64_t found_lma = 0;
3259 this->lowest_load_address_in_list(&this->output_data_, &found, &found_lma);
3260
3261 Output_section* found_data = found;
3262 this->lowest_load_address_in_list(&this->output_bss_, &found, &found_lma);
3263 if (found != found_data && found_data != NULL)
3264 {
3265 gold_error(_("nobits section %s may not precede progbits section %s "
3266 "in same segment"),
3267 found->name(), found_data->name());
3268 return NULL;
3269 }
3270
3271 return found;
3272}
3273
3274// Look through a list for a section with a lower load address.
3275
3276void
3277Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
3278 Output_section** found,
3279 uint64_t* found_lma) const
3280{
3281 for (Output_data_list::const_iterator p = pdl->begin();
3282 p != pdl->end();
3283 ++p)
3284 {
3285 if (!(*p)->is_section())
3286 continue;
3287 Output_section* os = static_cast<Output_section*>(*p);
3288 uint64_t lma = (os->has_load_address()
3289 ? os->load_address()
3290 : os->address());
3291 if (*found == NULL || lma < *found_lma)
3292 {
3293 *found = os;
3294 *found_lma = lma;
3295 }
3296 }
3297}
3298
61ba1cf9
ILT
3299// Write the segment data into *OPHDR.
3300
3301template<int size, bool big_endian>
3302void
ead1e424 3303Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
61ba1cf9
ILT
3304{
3305 ophdr->put_p_type(this->type_);
3306 ophdr->put_p_offset(this->offset_);
3307 ophdr->put_p_vaddr(this->vaddr_);
3308 ophdr->put_p_paddr(this->paddr_);
3309 ophdr->put_p_filesz(this->filesz_);
3310 ophdr->put_p_memsz(this->memsz_);
3311 ophdr->put_p_flags(this->flags_);
a445fddf 3312 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
61ba1cf9
ILT
3313}
3314
3315// Write the section headers into V.
3316
3317template<int size, bool big_endian>
3318unsigned char*
16649710
ILT
3319Output_segment::write_section_headers(const Layout* layout,
3320 const Stringpool* secnamepool,
ead1e424 3321 unsigned char* v,
7d1a9ebb 3322 unsigned int *pshndx) const
5482377d 3323{
ead1e424
ILT
3324 // Every section that is attached to a segment must be attached to a
3325 // PT_LOAD segment, so we only write out section headers for PT_LOAD
3326 // segments.
3327 if (this->type_ != elfcpp::PT_LOAD)
3328 return v;
3329
7d1a9ebb
ILT
3330 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
3331 &this->output_data_,
3332 v, pshndx);
3333 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
3334 &this->output_bss_,
3335 v, pshndx);
61ba1cf9
ILT
3336 return v;
3337}
3338
3339template<int size, bool big_endian>
3340unsigned char*
16649710
ILT
3341Output_segment::write_section_headers_list(const Layout* layout,
3342 const Stringpool* secnamepool,
61ba1cf9 3343 const Output_data_list* pdl,
ead1e424 3344 unsigned char* v,
7d1a9ebb 3345 unsigned int* pshndx) const
61ba1cf9
ILT
3346{
3347 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
3348 for (Output_data_list::const_iterator p = pdl->begin();
3349 p != pdl->end();
3350 ++p)
3351 {
3352 if ((*p)->is_section())
3353 {
5482377d 3354 const Output_section* ps = static_cast<const Output_section*>(*p);
a3ad94ed 3355 gold_assert(*pshndx == ps->out_shndx());
61ba1cf9 3356 elfcpp::Shdr_write<size, big_endian> oshdr(v);
16649710 3357 ps->write_header(layout, secnamepool, &oshdr);
61ba1cf9 3358 v += shdr_size;
ead1e424 3359 ++*pshndx;
61ba1cf9
ILT
3360 }
3361 }
3362 return v;
3363}
3364
7d9e3d98
ILT
3365// Print the output sections to the map file.
3366
3367void
3368Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
3369{
3370 if (this->type() != elfcpp::PT_LOAD)
3371 return;
3372 this->print_section_list_to_mapfile(mapfile, &this->output_data_);
3373 this->print_section_list_to_mapfile(mapfile, &this->output_bss_);
3374}
3375
3376// Print an output section list to the map file.
3377
3378void
3379Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
3380 const Output_data_list* pdl) const
3381{
3382 for (Output_data_list::const_iterator p = pdl->begin();
3383 p != pdl->end();
3384 ++p)
3385 (*p)->print_to_mapfile(mapfile);
3386}
3387
a2fb1b05
ILT
3388// Output_file methods.
3389
14144f39
ILT
3390Output_file::Output_file(const char* name)
3391 : name_(name),
61ba1cf9
ILT
3392 o_(-1),
3393 file_size_(0),
c420411f 3394 base_(NULL),
516cb3d0
ILT
3395 map_is_anonymous_(false),
3396 is_temporary_(false)
61ba1cf9
ILT
3397{
3398}
3399
404c2abb
ILT
3400// Try to open an existing file. Returns false if the file doesn't
3401// exist, has a size of 0 or can't be mmapped.
3402
3403bool
3404Output_file::open_for_modification()
3405{
3406 // The name "-" means "stdout".
3407 if (strcmp(this->name_, "-") == 0)
3408 return false;
3409
3410 // Don't bother opening files with a size of zero.
3411 struct stat s;
3412 if (::stat(this->name_, &s) != 0 || s.st_size == 0)
3413 return false;
3414
3415 int o = open_descriptor(-1, this->name_, O_RDWR, 0);
3416 if (o < 0)
3417 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
3418 this->o_ = o;
3419 this->file_size_ = s.st_size;
3420
3421 // If the file can't be mmapped, copying the content to an anonymous
3422 // map will probably negate the performance benefits of incremental
3423 // linking. This could be helped by using views and loading only
3424 // the necessary parts, but this is not supported as of now.
3425 if (!this->map_no_anonymous())
3426 {
3427 release_descriptor(o, true);
3428 this->o_ = -1;
3429 this->file_size_ = 0;
3430 return false;
3431 }
3432
3433 return true;
3434}
3435
61ba1cf9
ILT
3436// Open the output file.
3437
a2fb1b05 3438void
61ba1cf9 3439Output_file::open(off_t file_size)
a2fb1b05 3440{
61ba1cf9
ILT
3441 this->file_size_ = file_size;
3442
4e9d8586
ILT
3443 // Unlink the file first; otherwise the open() may fail if the file
3444 // is busy (e.g. it's an executable that's currently being executed).
3445 //
3446 // However, the linker may be part of a system where a zero-length
3447 // file is created for it to write to, with tight permissions (gcc
3448 // 2.95 did something like this). Unlinking the file would work
3449 // around those permission controls, so we only unlink if the file
3450 // has a non-zero size. We also unlink only regular files to avoid
3451 // trouble with directories/etc.
3452 //
3453 // If we fail, continue; this command is merely a best-effort attempt
3454 // to improve the odds for open().
3455
42a1b686 3456 // We let the name "-" mean "stdout"
516cb3d0 3457 if (!this->is_temporary_)
42a1b686 3458 {
516cb3d0
ILT
3459 if (strcmp(this->name_, "-") == 0)
3460 this->o_ = STDOUT_FILENO;
3461 else
3462 {
3463 struct stat s;
3464 if (::stat(this->name_, &s) == 0 && s.st_size != 0)
3465 unlink_if_ordinary(this->name_);
3466
8851ecca 3467 int mode = parameters->options().relocatable() ? 0666 : 0777;
2a00e4fb
ILT
3468 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
3469 mode);
516cb3d0
ILT
3470 if (o < 0)
3471 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
3472 this->o_ = o;
3473 }
42a1b686 3474 }
61ba1cf9 3475
27bc2bce
ILT
3476 this->map();
3477}
3478
3479// Resize the output file.
3480
3481void
3482Output_file::resize(off_t file_size)
3483{
c420411f
ILT
3484 // If the mmap is mapping an anonymous memory buffer, this is easy:
3485 // just mremap to the new size. If it's mapping to a file, we want
3486 // to unmap to flush to the file, then remap after growing the file.
3487 if (this->map_is_anonymous_)
3488 {
3489 void* base = ::mremap(this->base_, this->file_size_, file_size,
3490 MREMAP_MAYMOVE);
3491 if (base == MAP_FAILED)
3492 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
3493 this->base_ = static_cast<unsigned char*>(base);
3494 this->file_size_ = file_size;
3495 }
3496 else
3497 {
3498 this->unmap();
3499 this->file_size_ = file_size;
3500 this->map();
3501 }
27bc2bce
ILT
3502}
3503
404c2abb
ILT
3504// Map an anonymous block of memory which will later be written to the
3505// file. Return whether the map succeeded.
26736d8e 3506
404c2abb 3507bool
26736d8e
ILT
3508Output_file::map_anonymous()
3509{
404c2abb
ILT
3510 void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
3511 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
3512 if (base != MAP_FAILED)
3513 {
3514 this->map_is_anonymous_ = true;
3515 this->base_ = static_cast<unsigned char*>(base);
3516 return true;
3517 }
3518 return false;
26736d8e
ILT
3519}
3520
404c2abb 3521// Map the file into memory. Return whether the mapping succeeded.
27bc2bce 3522
404c2abb
ILT
3523bool
3524Output_file::map_no_anonymous()
27bc2bce 3525{
c420411f 3526 const int o = this->o_;
61ba1cf9 3527
c420411f
ILT
3528 // If the output file is not a regular file, don't try to mmap it;
3529 // instead, we'll mmap a block of memory (an anonymous buffer), and
3530 // then later write the buffer to the file.
3531 void* base;
3532 struct stat statbuf;
42a1b686
ILT
3533 if (o == STDOUT_FILENO || o == STDERR_FILENO
3534 || ::fstat(o, &statbuf) != 0
516cb3d0
ILT
3535 || !S_ISREG(statbuf.st_mode)
3536 || this->is_temporary_)
404c2abb
ILT
3537 return false;
3538
3539 // Ensure that we have disk space available for the file. If we
3540 // don't do this, it is possible that we will call munmap, close,
3541 // and exit with dirty buffers still in the cache with no assigned
3542 // disk blocks. If the disk is out of space at that point, the
3543 // output file will wind up incomplete, but we will have already
3544 // exited. The alternative to fallocate would be to use fdatasync,
3545 // but that would be a more significant performance hit.
3546 if (::posix_fallocate(o, 0, this->file_size_) < 0)
3547 gold_fatal(_("%s: %s"), this->name_, strerror(errno));
3548
3549 // Map the file into memory.
3550 base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
3551 MAP_SHARED, o, 0);
3552
3553 // The mmap call might fail because of file system issues: the file
3554 // system might not support mmap at all, or it might not support
3555 // mmap with PROT_WRITE.
61ba1cf9 3556 if (base == MAP_FAILED)
404c2abb
ILT
3557 return false;
3558
3559 this->map_is_anonymous_ = false;
61ba1cf9 3560 this->base_ = static_cast<unsigned char*>(base);
404c2abb
ILT
3561 return true;
3562}
3563
3564// Map the file into memory.
3565
3566void
3567Output_file::map()
3568{
3569 if (this->map_no_anonymous())
3570 return;
3571
3572 // The mmap call might fail because of file system issues: the file
3573 // system might not support mmap at all, or it might not support
3574 // mmap with PROT_WRITE. I'm not sure which errno values we will
3575 // see in all cases, so if the mmap fails for any reason and we
3576 // don't care about file contents, try for an anonymous map.
3577 if (this->map_anonymous())
3578 return;
3579
3580 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
3581 this->name_, static_cast<unsigned long>(this->file_size_),
3582 strerror(errno));
61ba1cf9
ILT
3583}
3584
c420411f 3585// Unmap the file from memory.
61ba1cf9
ILT
3586
3587void
c420411f 3588Output_file::unmap()
61ba1cf9
ILT
3589{
3590 if (::munmap(this->base_, this->file_size_) < 0)
a0c4fb0a 3591 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
61ba1cf9 3592 this->base_ = NULL;
c420411f
ILT
3593}
3594
3595// Close the output file.
3596
3597void
3598Output_file::close()
3599{
3600 // If the map isn't file-backed, we need to write it now.
516cb3d0 3601 if (this->map_is_anonymous_ && !this->is_temporary_)
c420411f
ILT
3602 {
3603 size_t bytes_to_write = this->file_size_;
6d1e3092 3604 size_t offset = 0;
c420411f
ILT
3605 while (bytes_to_write > 0)
3606 {
6d1e3092
CD
3607 ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
3608 bytes_to_write);
c420411f
ILT
3609 if (bytes_written == 0)
3610 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
3611 else if (bytes_written < 0)
3612 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
3613 else
6d1e3092
CD
3614 {
3615 bytes_to_write -= bytes_written;
3616 offset += bytes_written;
3617 }
c420411f
ILT
3618 }
3619 }
3620 this->unmap();
61ba1cf9 3621
42a1b686 3622 // We don't close stdout or stderr
516cb3d0
ILT
3623 if (this->o_ != STDOUT_FILENO
3624 && this->o_ != STDERR_FILENO
3625 && !this->is_temporary_)
42a1b686
ILT
3626 if (::close(this->o_) < 0)
3627 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
61ba1cf9 3628 this->o_ = -1;
a2fb1b05
ILT
3629}
3630
3631// Instantiate the templates we need. We could use the configure
3632// script to restrict this to only the ones for implemented targets.
3633
193a53d9 3634#ifdef HAVE_TARGET_32_LITTLE
a2fb1b05
ILT
3635template
3636off_t
3637Output_section::add_input_section<32, false>(
730cdc88 3638 Sized_relobj<32, false>* object,
ead1e424 3639 unsigned int shndx,
a2fb1b05 3640 const char* secname,
730cdc88 3641 const elfcpp::Shdr<32, false>& shdr,
a445fddf
ILT
3642 unsigned int reloc_shndx,
3643 bool have_sections_script);
193a53d9 3644#endif
a2fb1b05 3645
193a53d9 3646#ifdef HAVE_TARGET_32_BIG
a2fb1b05
ILT
3647template
3648off_t
3649Output_section::add_input_section<32, true>(
730cdc88 3650 Sized_relobj<32, true>* object,
ead1e424 3651 unsigned int shndx,
a2fb1b05 3652 const char* secname,
730cdc88 3653 const elfcpp::Shdr<32, true>& shdr,
a445fddf
ILT
3654 unsigned int reloc_shndx,
3655 bool have_sections_script);
193a53d9 3656#endif
a2fb1b05 3657
193a53d9 3658#ifdef HAVE_TARGET_64_LITTLE
a2fb1b05
ILT
3659template
3660off_t
3661Output_section::add_input_section<64, false>(
730cdc88 3662 Sized_relobj<64, false>* object,
ead1e424 3663 unsigned int shndx,
a2fb1b05 3664 const char* secname,
730cdc88 3665 const elfcpp::Shdr<64, false>& shdr,
a445fddf
ILT
3666 unsigned int reloc_shndx,
3667 bool have_sections_script);
193a53d9 3668#endif
a2fb1b05 3669
193a53d9 3670#ifdef HAVE_TARGET_64_BIG
a2fb1b05
ILT
3671template
3672off_t
3673Output_section::add_input_section<64, true>(
730cdc88 3674 Sized_relobj<64, true>* object,
ead1e424 3675 unsigned int shndx,
a2fb1b05 3676 const char* secname,
730cdc88 3677 const elfcpp::Shdr<64, true>& shdr,
a445fddf
ILT
3678 unsigned int reloc_shndx,
3679 bool have_sections_script);
193a53d9 3680#endif
a2fb1b05 3681
bbbfea06
CC
3682#ifdef HAVE_TARGET_32_LITTLE
3683template
3684class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
3685#endif
3686
3687#ifdef HAVE_TARGET_32_BIG
3688template
3689class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
3690#endif
3691
3692#ifdef HAVE_TARGET_64_LITTLE
3693template
3694class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
3695#endif
3696
3697#ifdef HAVE_TARGET_64_BIG
3698template
3699class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
3700#endif
3701
3702#ifdef HAVE_TARGET_32_LITTLE
3703template
3704class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
3705#endif
3706
3707#ifdef HAVE_TARGET_32_BIG
3708template
3709class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
3710#endif
3711
3712#ifdef HAVE_TARGET_64_LITTLE
3713template
3714class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
3715#endif
3716
3717#ifdef HAVE_TARGET_64_BIG
3718template
3719class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
3720#endif
3721
3722#ifdef HAVE_TARGET_32_LITTLE
3723template
3724class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
3725#endif
3726
3727#ifdef HAVE_TARGET_32_BIG
3728template
3729class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
3730#endif
3731
3732#ifdef HAVE_TARGET_64_LITTLE
3733template
3734class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
3735#endif
3736
3737#ifdef HAVE_TARGET_64_BIG
3738template
3739class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
3740#endif
3741
3742#ifdef HAVE_TARGET_32_LITTLE
3743template
3744class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
3745#endif
3746
3747#ifdef HAVE_TARGET_32_BIG
3748template
3749class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
3750#endif
3751
3752#ifdef HAVE_TARGET_64_LITTLE
3753template
3754class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
3755#endif
3756
3757#ifdef HAVE_TARGET_64_BIG
3758template
3759class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
3760#endif
3761
193a53d9 3762#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
3763template
3764class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
193a53d9 3765#endif
c06b7b0b 3766
193a53d9 3767#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
3768template
3769class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
193a53d9 3770#endif
c06b7b0b 3771
193a53d9 3772#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
3773template
3774class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
193a53d9 3775#endif
c06b7b0b 3776
193a53d9 3777#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
3778template
3779class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
193a53d9 3780#endif
c06b7b0b 3781
193a53d9 3782#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
3783template
3784class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
193a53d9 3785#endif
c06b7b0b 3786
193a53d9 3787#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
3788template
3789class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
193a53d9 3790#endif
c06b7b0b 3791
193a53d9 3792#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
3793template
3794class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
193a53d9 3795#endif
c06b7b0b 3796
193a53d9 3797#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
3798template
3799class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
193a53d9 3800#endif
c06b7b0b 3801
193a53d9 3802#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
3803template
3804class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
193a53d9 3805#endif
c06b7b0b 3806
193a53d9 3807#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
3808template
3809class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
193a53d9 3810#endif
c06b7b0b 3811
193a53d9 3812#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
3813template
3814class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
193a53d9 3815#endif
c06b7b0b 3816
193a53d9 3817#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
3818template
3819class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
193a53d9 3820#endif
c06b7b0b 3821
193a53d9 3822#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
3823template
3824class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
193a53d9 3825#endif
c06b7b0b 3826
193a53d9 3827#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
3828template
3829class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
193a53d9 3830#endif
c06b7b0b 3831
193a53d9 3832#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
3833template
3834class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
193a53d9 3835#endif
c06b7b0b 3836
193a53d9 3837#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
3838template
3839class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
193a53d9 3840#endif
c06b7b0b 3841
6a74a719
ILT
3842#ifdef HAVE_TARGET_32_LITTLE
3843template
3844class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
3845#endif
3846
3847#ifdef HAVE_TARGET_32_BIG
3848template
3849class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
3850#endif
3851
3852#ifdef HAVE_TARGET_64_LITTLE
3853template
3854class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
3855#endif
3856
3857#ifdef HAVE_TARGET_64_BIG
3858template
3859class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
3860#endif
3861
3862#ifdef HAVE_TARGET_32_LITTLE
3863template
3864class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
3865#endif
3866
3867#ifdef HAVE_TARGET_32_BIG
3868template
3869class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
3870#endif
3871
3872#ifdef HAVE_TARGET_64_LITTLE
3873template
3874class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
3875#endif
3876
3877#ifdef HAVE_TARGET_64_BIG
3878template
3879class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
3880#endif
3881
3882#ifdef HAVE_TARGET_32_LITTLE
3883template
3884class Output_data_group<32, false>;
3885#endif
3886
3887#ifdef HAVE_TARGET_32_BIG
3888template
3889class Output_data_group<32, true>;
3890#endif
3891
3892#ifdef HAVE_TARGET_64_LITTLE
3893template
3894class Output_data_group<64, false>;
3895#endif
3896
3897#ifdef HAVE_TARGET_64_BIG
3898template
3899class Output_data_group<64, true>;
3900#endif
3901
193a53d9 3902#ifdef HAVE_TARGET_32_LITTLE
ead1e424 3903template
dbe717ef 3904class Output_data_got<32, false>;
193a53d9 3905#endif
ead1e424 3906
193a53d9 3907#ifdef HAVE_TARGET_32_BIG
ead1e424 3908template
dbe717ef 3909class Output_data_got<32, true>;
193a53d9 3910#endif
ead1e424 3911
193a53d9 3912#ifdef HAVE_TARGET_64_LITTLE
ead1e424 3913template
dbe717ef 3914class Output_data_got<64, false>;
193a53d9 3915#endif
ead1e424 3916
193a53d9 3917#ifdef HAVE_TARGET_64_BIG
ead1e424 3918template
dbe717ef 3919class Output_data_got<64, true>;
193a53d9 3920#endif
ead1e424 3921
a2fb1b05 3922} // End namespace gold.