]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gold/output.cc
daily update
[thirdparty/binutils-gdb.git] / gold / output.cc
CommitLineData
a2fb1b05
ILT
1// output.cc -- manage the output file for gold
2
88597d34 3// Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
6cb15b7f
ILT
4// Written by Ian Lance Taylor <iant@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
a2fb1b05
ILT
23#include "gold.h"
24
25#include <cstdlib>
04bf7072 26#include <cstring>
61ba1cf9
ILT
27#include <cerrno>
28#include <fcntl.h>
29#include <unistd.h>
4e9d8586 30#include <sys/stat.h>
75f65a3e 31#include <algorithm>
88597d34
ILT
32
33#ifdef HAVE_SYS_MMAN_H
34#include <sys/mman.h>
35#endif
36
6a89f575 37#include "libiberty.h"
a2fb1b05 38
8ea8cd50 39#include "dwarf.h"
7e1edb90 40#include "parameters.h"
a2fb1b05 41#include "object.h"
ead1e424
ILT
42#include "symtab.h"
43#include "reloc.h"
b8e6aad9 44#include "merge.h"
2a00e4fb 45#include "descriptors.h"
5393d741 46#include "layout.h"
a2fb1b05
ILT
47#include "output.h"
48
88597d34
ILT
49// For systems without mmap support.
50#ifndef HAVE_MMAP
51# define mmap gold_mmap
52# define munmap gold_munmap
53# define mremap gold_mremap
54# ifndef MAP_FAILED
55# define MAP_FAILED (reinterpret_cast<void*>(-1))
56# endif
57# ifndef PROT_READ
58# define PROT_READ 0
59# endif
60# ifndef PROT_WRITE
61# define PROT_WRITE 0
62# endif
63# ifndef MAP_PRIVATE
64# define MAP_PRIVATE 0
65# endif
66# ifndef MAP_ANONYMOUS
67# define MAP_ANONYMOUS 0
68# endif
69# ifndef MAP_SHARED
70# define MAP_SHARED 0
71# endif
72
73# ifndef ENOSYS
74# define ENOSYS EINVAL
75# endif
76
77static void *
78gold_mmap(void *, size_t, int, int, int, off_t)
79{
80 errno = ENOSYS;
81 return MAP_FAILED;
82}
83
84static int
85gold_munmap(void *, size_t)
86{
87 errno = ENOSYS;
88 return -1;
89}
90
91static void *
92gold_mremap(void *, size_t, size_t, int)
93{
94 errno = ENOSYS;
95 return MAP_FAILED;
96}
97
98#endif
99
100#if defined(HAVE_MMAP) && !defined(HAVE_MREMAP)
101# define mremap gold_mremap
102extern "C" void *gold_mremap(void *, size_t, size_t, int);
103#endif
104
c420411f
ILT
105// Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
106#ifndef MAP_ANONYMOUS
107# define MAP_ANONYMOUS MAP_ANON
108#endif
109
88597d34
ILT
110#ifndef MREMAP_MAYMOVE
111# define MREMAP_MAYMOVE 1
112#endif
113
d0a9ace3
ILT
114// Mingw does not have S_ISLNK.
115#ifndef S_ISLNK
116# define S_ISLNK(mode) 0
117#endif
118
a2fb1b05
ILT
119namespace gold
120{
121
7c0640fa
CC
122// A wrapper around posix_fallocate. If we don't have posix_fallocate,
123// or the --no-posix-fallocate option is set, we try the fallocate
124// system call directly. If that fails, we use ftruncate to set
125// the file size and hope that there is enough disk space.
126
127static int
128gold_fallocate(int o, off_t offset, off_t len)
129{
130#ifdef HAVE_POSIX_FALLOCATE
131 if (parameters->options().posix_fallocate())
132 return ::posix_fallocate(o, offset, len);
133#endif // defined(HAVE_POSIX_FALLOCATE)
134#ifdef HAVE_FALLOCATE
135 if (::fallocate(o, 0, offset, len) == 0)
136 return 0;
137#endif // defined(HAVE_FALLOCATE)
138 if (::ftruncate(o, offset + len) < 0)
139 return errno;
140 return 0;
141}
142
a3ad94ed
ILT
143// Output_data variables.
144
27bc2bce 145bool Output_data::allocated_sizes_are_fixed;
a3ad94ed 146
a2fb1b05
ILT
147// Output_data methods.
148
149Output_data::~Output_data()
150{
151}
152
730cdc88
ILT
153// Return the default alignment for the target size.
154
155uint64_t
156Output_data::default_alignment()
157{
8851ecca
ILT
158 return Output_data::default_alignment_for_size(
159 parameters->target().get_size());
730cdc88
ILT
160}
161
75f65a3e
ILT
162// Return the default alignment for a size--32 or 64.
163
164uint64_t
730cdc88 165Output_data::default_alignment_for_size(int size)
75f65a3e
ILT
166{
167 if (size == 32)
168 return 4;
169 else if (size == 64)
170 return 8;
171 else
a3ad94ed 172 gold_unreachable();
75f65a3e
ILT
173}
174
75f65a3e
ILT
175// Output_section_header methods. This currently assumes that the
176// segment and section lists are complete at construction time.
177
178Output_section_headers::Output_section_headers(
16649710
ILT
179 const Layout* layout,
180 const Layout::Segment_list* segment_list,
6a74a719 181 const Layout::Section_list* section_list,
16649710 182 const Layout::Section_list* unattached_section_list,
d491d34e
ILT
183 const Stringpool* secnamepool,
184 const Output_section* shstrtab_section)
9025d29d 185 : layout_(layout),
75f65a3e 186 segment_list_(segment_list),
6a74a719 187 section_list_(section_list),
a3ad94ed 188 unattached_section_list_(unattached_section_list),
d491d34e
ILT
189 secnamepool_(secnamepool),
190 shstrtab_section_(shstrtab_section)
20e6d0d6
DK
191{
192}
193
194// Compute the current data size.
195
196off_t
197Output_section_headers::do_size() const
75f65a3e 198{
61ba1cf9
ILT
199 // Count all the sections. Start with 1 for the null section.
200 off_t count = 1;
8851ecca 201 if (!parameters->options().relocatable())
6a74a719 202 {
20e6d0d6
DK
203 for (Layout::Segment_list::const_iterator p =
204 this->segment_list_->begin();
205 p != this->segment_list_->end();
6a74a719
ILT
206 ++p)
207 if ((*p)->type() == elfcpp::PT_LOAD)
208 count += (*p)->output_section_count();
209 }
210 else
211 {
20e6d0d6
DK
212 for (Layout::Section_list::const_iterator p =
213 this->section_list_->begin();
214 p != this->section_list_->end();
6a74a719
ILT
215 ++p)
216 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
217 ++count;
218 }
20e6d0d6 219 count += this->unattached_section_list_->size();
75f65a3e 220
8851ecca 221 const int size = parameters->target().get_size();
75f65a3e
ILT
222 int shdr_size;
223 if (size == 32)
224 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
225 else if (size == 64)
226 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
227 else
a3ad94ed 228 gold_unreachable();
75f65a3e 229
20e6d0d6 230 return count * shdr_size;
75f65a3e
ILT
231}
232
61ba1cf9
ILT
233// Write out the section headers.
234
75f65a3e 235void
61ba1cf9 236Output_section_headers::do_write(Output_file* of)
a2fb1b05 237{
8851ecca 238 switch (parameters->size_and_endianness())
61ba1cf9 239 {
9025d29d 240#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
241 case Parameters::TARGET_32_LITTLE:
242 this->do_sized_write<32, false>(of);
243 break;
9025d29d 244#endif
8851ecca
ILT
245#ifdef HAVE_TARGET_32_BIG
246 case Parameters::TARGET_32_BIG:
247 this->do_sized_write<32, true>(of);
248 break;
9025d29d 249#endif
9025d29d 250#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
251 case Parameters::TARGET_64_LITTLE:
252 this->do_sized_write<64, false>(of);
253 break;
9025d29d 254#endif
8851ecca
ILT
255#ifdef HAVE_TARGET_64_BIG
256 case Parameters::TARGET_64_BIG:
257 this->do_sized_write<64, true>(of);
258 break;
259#endif
260 default:
261 gold_unreachable();
61ba1cf9 262 }
61ba1cf9
ILT
263}
264
265template<int size, bool big_endian>
266void
267Output_section_headers::do_sized_write(Output_file* of)
268{
269 off_t all_shdrs_size = this->data_size();
270 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
271
272 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
273 unsigned char* v = view;
274
275 {
276 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
277 oshdr.put_sh_name(0);
278 oshdr.put_sh_type(elfcpp::SHT_NULL);
279 oshdr.put_sh_flags(0);
280 oshdr.put_sh_addr(0);
281 oshdr.put_sh_offset(0);
d491d34e
ILT
282
283 size_t section_count = (this->data_size()
284 / elfcpp::Elf_sizes<size>::shdr_size);
285 if (section_count < elfcpp::SHN_LORESERVE)
286 oshdr.put_sh_size(0);
287 else
288 oshdr.put_sh_size(section_count);
289
290 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
291 if (shstrndx < elfcpp::SHN_LORESERVE)
292 oshdr.put_sh_link(0);
293 else
294 oshdr.put_sh_link(shstrndx);
295
5696ab0b
ILT
296 size_t segment_count = this->segment_list_->size();
297 oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
298
61ba1cf9
ILT
299 oshdr.put_sh_addralign(0);
300 oshdr.put_sh_entsize(0);
301 }
302
303 v += shdr_size;
304
6a74a719 305 unsigned int shndx = 1;
8851ecca 306 if (!parameters->options().relocatable())
6a74a719
ILT
307 {
308 for (Layout::Segment_list::const_iterator p =
309 this->segment_list_->begin();
310 p != this->segment_list_->end();
311 ++p)
312 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
313 this->secnamepool_,
314 v,
315 &shndx);
316 }
317 else
318 {
319 for (Layout::Section_list::const_iterator p =
320 this->section_list_->begin();
321 p != this->section_list_->end();
322 ++p)
323 {
324 // We do unallocated sections below, except that group
325 // sections have to come first.
326 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
327 && (*p)->type() != elfcpp::SHT_GROUP)
328 continue;
329 gold_assert(shndx == (*p)->out_shndx());
330 elfcpp::Shdr_write<size, big_endian> oshdr(v);
331 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
332 v += shdr_size;
333 ++shndx;
334 }
335 }
336
a3ad94ed 337 for (Layout::Section_list::const_iterator p =
16649710
ILT
338 this->unattached_section_list_->begin();
339 p != this->unattached_section_list_->end();
61ba1cf9
ILT
340 ++p)
341 {
6a74a719
ILT
342 // For a relocatable link, we did unallocated group sections
343 // above, since they have to come first.
344 if ((*p)->type() == elfcpp::SHT_GROUP
8851ecca 345 && parameters->options().relocatable())
6a74a719 346 continue;
a3ad94ed 347 gold_assert(shndx == (*p)->out_shndx());
61ba1cf9 348 elfcpp::Shdr_write<size, big_endian> oshdr(v);
16649710 349 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
61ba1cf9 350 v += shdr_size;
ead1e424 351 ++shndx;
61ba1cf9
ILT
352 }
353
354 of->write_output_view(this->offset(), all_shdrs_size, view);
a2fb1b05
ILT
355}
356
54dc6425
ILT
357// Output_segment_header methods.
358
61ba1cf9 359Output_segment_headers::Output_segment_headers(
61ba1cf9 360 const Layout::Segment_list& segment_list)
9025d29d 361 : segment_list_(segment_list)
61ba1cf9 362{
cdc29364 363 this->set_current_data_size_for_child(this->do_size());
61ba1cf9
ILT
364}
365
54dc6425 366void
61ba1cf9 367Output_segment_headers::do_write(Output_file* of)
75f65a3e 368{
8851ecca 369 switch (parameters->size_and_endianness())
61ba1cf9 370 {
9025d29d 371#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
372 case Parameters::TARGET_32_LITTLE:
373 this->do_sized_write<32, false>(of);
374 break;
9025d29d 375#endif
8851ecca
ILT
376#ifdef HAVE_TARGET_32_BIG
377 case Parameters::TARGET_32_BIG:
378 this->do_sized_write<32, true>(of);
379 break;
9025d29d 380#endif
9025d29d 381#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
382 case Parameters::TARGET_64_LITTLE:
383 this->do_sized_write<64, false>(of);
384 break;
9025d29d 385#endif
8851ecca
ILT
386#ifdef HAVE_TARGET_64_BIG
387 case Parameters::TARGET_64_BIG:
388 this->do_sized_write<64, true>(of);
389 break;
390#endif
391 default:
392 gold_unreachable();
61ba1cf9 393 }
61ba1cf9
ILT
394}
395
396template<int size, bool big_endian>
397void
398Output_segment_headers::do_sized_write(Output_file* of)
399{
400 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
401 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
a445fddf 402 gold_assert(all_phdrs_size == this->data_size());
61ba1cf9
ILT
403 unsigned char* view = of->get_output_view(this->offset(),
404 all_phdrs_size);
405 unsigned char* v = view;
406 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
407 p != this->segment_list_.end();
408 ++p)
409 {
410 elfcpp::Phdr_write<size, big_endian> ophdr(v);
411 (*p)->write_header(&ophdr);
412 v += phdr_size;
413 }
414
a445fddf
ILT
415 gold_assert(v - view == all_phdrs_size);
416
61ba1cf9 417 of->write_output_view(this->offset(), all_phdrs_size, view);
75f65a3e
ILT
418}
419
20e6d0d6
DK
420off_t
421Output_segment_headers::do_size() const
422{
423 const int size = parameters->target().get_size();
424 int phdr_size;
425 if (size == 32)
426 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
427 else if (size == 64)
428 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
429 else
430 gold_unreachable();
431
432 return this->segment_list_.size() * phdr_size;
433}
434
75f65a3e
ILT
435// Output_file_header methods.
436
9025d29d 437Output_file_header::Output_file_header(const Target* target,
75f65a3e 438 const Symbol_table* symtab,
a10ae760 439 const Output_segment_headers* osh)
9025d29d 440 : target_(target),
75f65a3e 441 symtab_(symtab),
61ba1cf9 442 segment_header_(osh),
75f65a3e 443 section_header_(NULL),
a10ae760 444 shstrtab_(NULL)
75f65a3e 445{
20e6d0d6 446 this->set_data_size(this->do_size());
75f65a3e
ILT
447}
448
449// Set the section table information for a file header.
450
451void
452Output_file_header::set_section_info(const Output_section_headers* shdrs,
453 const Output_section* shstrtab)
454{
455 this->section_header_ = shdrs;
456 this->shstrtab_ = shstrtab;
457}
458
459// Write out the file header.
460
461void
61ba1cf9 462Output_file_header::do_write(Output_file* of)
54dc6425 463{
27bc2bce
ILT
464 gold_assert(this->offset() == 0);
465
8851ecca 466 switch (parameters->size_and_endianness())
61ba1cf9 467 {
9025d29d 468#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
469 case Parameters::TARGET_32_LITTLE:
470 this->do_sized_write<32, false>(of);
471 break;
9025d29d 472#endif
8851ecca
ILT
473#ifdef HAVE_TARGET_32_BIG
474 case Parameters::TARGET_32_BIG:
475 this->do_sized_write<32, true>(of);
476 break;
9025d29d 477#endif
9025d29d 478#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
479 case Parameters::TARGET_64_LITTLE:
480 this->do_sized_write<64, false>(of);
481 break;
9025d29d 482#endif
8851ecca
ILT
483#ifdef HAVE_TARGET_64_BIG
484 case Parameters::TARGET_64_BIG:
485 this->do_sized_write<64, true>(of);
486 break;
487#endif
488 default:
489 gold_unreachable();
61ba1cf9 490 }
61ba1cf9
ILT
491}
492
cc643b88 493// Write out the file header with appropriate size and endianness.
61ba1cf9
ILT
494
495template<int size, bool big_endian>
496void
497Output_file_header::do_sized_write(Output_file* of)
498{
a3ad94ed 499 gold_assert(this->offset() == 0);
61ba1cf9
ILT
500
501 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
502 unsigned char* view = of->get_output_view(0, ehdr_size);
503 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
504
505 unsigned char e_ident[elfcpp::EI_NIDENT];
506 memset(e_ident, 0, elfcpp::EI_NIDENT);
507 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
508 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
509 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
510 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
511 if (size == 32)
512 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
513 else if (size == 64)
514 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
515 else
a3ad94ed 516 gold_unreachable();
61ba1cf9
ILT
517 e_ident[elfcpp::EI_DATA] = (big_endian
518 ? elfcpp::ELFDATA2MSB
519 : elfcpp::ELFDATA2LSB);
520 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
61ba1cf9
ILT
521 oehdr.put_e_ident(e_ident);
522
523 elfcpp::ET e_type;
8851ecca 524 if (parameters->options().relocatable())
61ba1cf9 525 e_type = elfcpp::ET_REL;
374ad285 526 else if (parameters->options().output_is_position_independent())
436ca963 527 e_type = elfcpp::ET_DYN;
61ba1cf9
ILT
528 else
529 e_type = elfcpp::ET_EXEC;
530 oehdr.put_e_type(e_type);
531
532 oehdr.put_e_machine(this->target_->machine_code());
533 oehdr.put_e_version(elfcpp::EV_CURRENT);
534
d391083d 535 oehdr.put_e_entry(this->entry<size>());
61ba1cf9 536
6a74a719
ILT
537 if (this->segment_header_ == NULL)
538 oehdr.put_e_phoff(0);
539 else
540 oehdr.put_e_phoff(this->segment_header_->offset());
541
61ba1cf9 542 oehdr.put_e_shoff(this->section_header_->offset());
d5b40221 543 oehdr.put_e_flags(this->target_->processor_specific_flags());
61ba1cf9 544 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
6a74a719
ILT
545
546 if (this->segment_header_ == NULL)
547 {
548 oehdr.put_e_phentsize(0);
549 oehdr.put_e_phnum(0);
550 }
551 else
552 {
553 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
5696ab0b
ILT
554 size_t phnum = (this->segment_header_->data_size()
555 / elfcpp::Elf_sizes<size>::phdr_size);
556 if (phnum > elfcpp::PN_XNUM)
557 phnum = elfcpp::PN_XNUM;
558 oehdr.put_e_phnum(phnum);
6a74a719
ILT
559 }
560
61ba1cf9 561 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
d491d34e
ILT
562 size_t section_count = (this->section_header_->data_size()
563 / elfcpp::Elf_sizes<size>::shdr_size);
564
565 if (section_count < elfcpp::SHN_LORESERVE)
566 oehdr.put_e_shnum(this->section_header_->data_size()
567 / elfcpp::Elf_sizes<size>::shdr_size);
568 else
569 oehdr.put_e_shnum(0);
570
571 unsigned int shstrndx = this->shstrtab_->out_shndx();
572 if (shstrndx < elfcpp::SHN_LORESERVE)
573 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
574 else
575 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
61ba1cf9 576
36959681
ILT
577 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
578 // the e_ident field.
579 parameters->target().adjust_elf_header(view, ehdr_size);
580
61ba1cf9 581 of->write_output_view(0, ehdr_size, view);
54dc6425
ILT
582}
583
a10ae760 584// Return the value to use for the entry address.
d391083d
ILT
585
586template<int size>
587typename elfcpp::Elf_types<size>::Elf_Addr
588Output_file_header::entry()
589{
a10ae760 590 const bool should_issue_warning = (parameters->options().entry() != NULL
8851ecca
ILT
591 && !parameters->options().relocatable()
592 && !parameters->options().shared());
a10ae760 593 const char* entry = parameters->entry();
2ea97941 594 Symbol* sym = this->symtab_->lookup(entry);
d391083d
ILT
595
596 typename Sized_symbol<size>::Value_type v;
597 if (sym != NULL)
598 {
599 Sized_symbol<size>* ssym;
600 ssym = this->symtab_->get_sized_symbol<size>(sym);
601 if (!ssym->is_defined() && should_issue_warning)
2ea97941 602 gold_warning("entry symbol '%s' exists but is not defined", entry);
d391083d
ILT
603 v = ssym->value();
604 }
605 else
606 {
607 // We couldn't find the entry symbol. See if we can parse it as
608 // a number. This supports, e.g., -e 0x1000.
609 char* endptr;
2ea97941 610 v = strtoull(entry, &endptr, 0);
d391083d
ILT
611 if (*endptr != '\0')
612 {
613 if (should_issue_warning)
2ea97941 614 gold_warning("cannot find entry symbol '%s'", entry);
d391083d
ILT
615 v = 0;
616 }
617 }
618
619 return v;
620}
621
20e6d0d6
DK
622// Compute the current data size.
623
624off_t
625Output_file_header::do_size() const
626{
627 const int size = parameters->target().get_size();
628 if (size == 32)
629 return elfcpp::Elf_sizes<32>::ehdr_size;
630 else if (size == 64)
631 return elfcpp::Elf_sizes<64>::ehdr_size;
632 else
633 gold_unreachable();
634}
635
dbe717ef
ILT
636// Output_data_const methods.
637
638void
a3ad94ed 639Output_data_const::do_write(Output_file* of)
dbe717ef 640{
a3ad94ed
ILT
641 of->write(this->offset(), this->data_.data(), this->data_.size());
642}
643
644// Output_data_const_buffer methods.
645
646void
647Output_data_const_buffer::do_write(Output_file* of)
648{
649 of->write(this->offset(), this->p_, this->data_size());
dbe717ef
ILT
650}
651
652// Output_section_data methods.
653
16649710
ILT
654// Record the output section, and set the entry size and such.
655
656void
657Output_section_data::set_output_section(Output_section* os)
658{
659 gold_assert(this->output_section_ == NULL);
660 this->output_section_ = os;
661 this->do_adjust_output_section(os);
662}
663
664// Return the section index of the output section.
665
dbe717ef
ILT
666unsigned int
667Output_section_data::do_out_shndx() const
668{
a3ad94ed 669 gold_assert(this->output_section_ != NULL);
dbe717ef
ILT
670 return this->output_section_->out_shndx();
671}
672
759b1a24
ILT
673// Set the alignment, which means we may need to update the alignment
674// of the output section.
675
676void
2ea97941 677Output_section_data::set_addralign(uint64_t addralign)
759b1a24 678{
2ea97941 679 this->addralign_ = addralign;
759b1a24 680 if (this->output_section_ != NULL
2ea97941
ILT
681 && this->output_section_->addralign() < addralign)
682 this->output_section_->set_addralign(addralign);
759b1a24
ILT
683}
684
a3ad94ed
ILT
685// Output_data_strtab methods.
686
27bc2bce 687// Set the final data size.
a3ad94ed
ILT
688
689void
27bc2bce 690Output_data_strtab::set_final_data_size()
a3ad94ed
ILT
691{
692 this->strtab_->set_string_offsets();
693 this->set_data_size(this->strtab_->get_strtab_size());
694}
695
696// Write out a string table.
697
698void
699Output_data_strtab::do_write(Output_file* of)
700{
701 this->strtab_->write(of, this->offset());
702}
703
c06b7b0b
ILT
704// Output_reloc methods.
705
7bf1f802
ILT
706// A reloc against a global symbol.
707
708template<bool dynamic, int size, bool big_endian>
709Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
710 Symbol* gsym,
711 unsigned int type,
712 Output_data* od,
e8c846c3 713 Address address,
0da6fa6c 714 bool is_relative,
13cf9988
DM
715 bool is_symbolless,
716 bool use_plt_offset)
7bf1f802 717 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
0da6fa6c 718 is_relative_(is_relative), is_symbolless_(is_symbolless),
13cf9988 719 is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(INVALID_CODE)
7bf1f802 720{
dceae3c1
ILT
721 // this->type_ is a bitfield; make sure TYPE fits.
722 gold_assert(this->type_ == type);
7bf1f802
ILT
723 this->u1_.gsym = gsym;
724 this->u2_.od = od;
dceae3c1
ILT
725 if (dynamic)
726 this->set_needs_dynsym_index();
7bf1f802
ILT
727}
728
729template<bool dynamic, int size, bool big_endian>
730Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
731 Symbol* gsym,
732 unsigned int type,
ef9beddf 733 Sized_relobj<size, big_endian>* relobj,
7bf1f802 734 unsigned int shndx,
e8c846c3 735 Address address,
0da6fa6c 736 bool is_relative,
13cf9988
DM
737 bool is_symbolless,
738 bool use_plt_offset)
7bf1f802 739 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
0da6fa6c 740 is_relative_(is_relative), is_symbolless_(is_symbolless),
13cf9988 741 is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(shndx)
7bf1f802
ILT
742{
743 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
744 // this->type_ is a bitfield; make sure TYPE fits.
745 gold_assert(this->type_ == type);
7bf1f802
ILT
746 this->u1_.gsym = gsym;
747 this->u2_.relobj = relobj;
dceae3c1
ILT
748 if (dynamic)
749 this->set_needs_dynsym_index();
7bf1f802
ILT
750}
751
752// A reloc against a local symbol.
753
754template<bool dynamic, int size, bool big_endian>
755Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
756 Sized_relobj<size, big_endian>* relobj,
757 unsigned int local_sym_index,
758 unsigned int type,
759 Output_data* od,
e8c846c3 760 Address address,
2ea97941 761 bool is_relative,
0da6fa6c 762 bool is_symbolless,
397b129b
CC
763 bool is_section_symbol,
764 bool use_plt_offset)
7bf1f802 765 : address_(address), local_sym_index_(local_sym_index), type_(type),
0da6fa6c 766 is_relative_(is_relative), is_symbolless_(is_symbolless),
397b129b
CC
767 is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
768 shndx_(INVALID_CODE)
7bf1f802
ILT
769{
770 gold_assert(local_sym_index != GSYM_CODE
771 && local_sym_index != INVALID_CODE);
dceae3c1
ILT
772 // this->type_ is a bitfield; make sure TYPE fits.
773 gold_assert(this->type_ == type);
7bf1f802
ILT
774 this->u1_.relobj = relobj;
775 this->u2_.od = od;
dceae3c1
ILT
776 if (dynamic)
777 this->set_needs_dynsym_index();
7bf1f802
ILT
778}
779
780template<bool dynamic, int size, bool big_endian>
781Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
782 Sized_relobj<size, big_endian>* relobj,
783 unsigned int local_sym_index,
784 unsigned int type,
785 unsigned int shndx,
e8c846c3 786 Address address,
2ea97941 787 bool is_relative,
0da6fa6c 788 bool is_symbolless,
397b129b
CC
789 bool is_section_symbol,
790 bool use_plt_offset)
7bf1f802 791 : address_(address), local_sym_index_(local_sym_index), type_(type),
0da6fa6c 792 is_relative_(is_relative), is_symbolless_(is_symbolless),
397b129b
CC
793 is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
794 shndx_(shndx)
7bf1f802
ILT
795{
796 gold_assert(local_sym_index != GSYM_CODE
797 && local_sym_index != INVALID_CODE);
798 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
799 // this->type_ is a bitfield; make sure TYPE fits.
800 gold_assert(this->type_ == type);
7bf1f802
ILT
801 this->u1_.relobj = relobj;
802 this->u2_.relobj = relobj;
dceae3c1
ILT
803 if (dynamic)
804 this->set_needs_dynsym_index();
7bf1f802
ILT
805}
806
807// A reloc against the STT_SECTION symbol of an output section.
808
809template<bool dynamic, int size, bool big_endian>
810Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
811 Output_section* os,
812 unsigned int type,
813 Output_data* od,
703d02da
AM
814 Address address,
815 bool is_relative)
7bf1f802 816 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
703d02da 817 is_relative_(is_relative), is_symbolless_(is_relative),
397b129b 818 is_section_symbol_(true), use_plt_offset_(false), shndx_(INVALID_CODE)
7bf1f802 819{
dceae3c1
ILT
820 // this->type_ is a bitfield; make sure TYPE fits.
821 gold_assert(this->type_ == type);
7bf1f802
ILT
822 this->u1_.os = os;
823 this->u2_.od = od;
824 if (dynamic)
dceae3c1
ILT
825 this->set_needs_dynsym_index();
826 else
827 os->set_needs_symtab_index();
7bf1f802
ILT
828}
829
830template<bool dynamic, int size, bool big_endian>
831Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
832 Output_section* os,
833 unsigned int type,
ef9beddf 834 Sized_relobj<size, big_endian>* relobj,
7bf1f802 835 unsigned int shndx,
703d02da
AM
836 Address address,
837 bool is_relative)
7bf1f802 838 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
703d02da 839 is_relative_(is_relative), is_symbolless_(is_relative),
397b129b 840 is_section_symbol_(true), use_plt_offset_(false), shndx_(shndx)
7bf1f802
ILT
841{
842 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
843 // this->type_ is a bitfield; make sure TYPE fits.
844 gold_assert(this->type_ == type);
7bf1f802
ILT
845 this->u1_.os = os;
846 this->u2_.relobj = relobj;
847 if (dynamic)
dceae3c1
ILT
848 this->set_needs_dynsym_index();
849 else
850 os->set_needs_symtab_index();
851}
852
e291e7b9
ILT
853// An absolute relocation.
854
855template<bool dynamic, int size, bool big_endian>
856Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
857 unsigned int type,
858 Output_data* od,
859 Address address)
860 : address_(address), local_sym_index_(0), type_(type),
0da6fa6c 861 is_relative_(false), is_symbolless_(false),
397b129b 862 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
e291e7b9
ILT
863{
864 // this->type_ is a bitfield; make sure TYPE fits.
865 gold_assert(this->type_ == type);
866 this->u1_.relobj = NULL;
867 this->u2_.od = od;
868}
869
870template<bool dynamic, int size, bool big_endian>
871Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
872 unsigned int type,
873 Sized_relobj<size, big_endian>* relobj,
874 unsigned int shndx,
875 Address address)
876 : address_(address), local_sym_index_(0), type_(type),
0da6fa6c 877 is_relative_(false), is_symbolless_(false),
397b129b 878 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
e291e7b9
ILT
879{
880 gold_assert(shndx != INVALID_CODE);
881 // this->type_ is a bitfield; make sure TYPE fits.
882 gold_assert(this->type_ == type);
883 this->u1_.relobj = NULL;
884 this->u2_.relobj = relobj;
885}
886
887// A target specific relocation.
888
889template<bool dynamic, int size, bool big_endian>
890Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
891 unsigned int type,
892 void* arg,
893 Output_data* od,
894 Address address)
895 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
0da6fa6c 896 is_relative_(false), is_symbolless_(false),
397b129b 897 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
e291e7b9
ILT
898{
899 // this->type_ is a bitfield; make sure TYPE fits.
900 gold_assert(this->type_ == type);
901 this->u1_.arg = arg;
902 this->u2_.od = od;
903}
904
905template<bool dynamic, int size, bool big_endian>
906Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
907 unsigned int type,
908 void* arg,
909 Sized_relobj<size, big_endian>* relobj,
910 unsigned int shndx,
911 Address address)
912 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
0da6fa6c 913 is_relative_(false), is_symbolless_(false),
397b129b 914 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
e291e7b9
ILT
915{
916 gold_assert(shndx != INVALID_CODE);
917 // this->type_ is a bitfield; make sure TYPE fits.
918 gold_assert(this->type_ == type);
919 this->u1_.arg = arg;
920 this->u2_.relobj = relobj;
921}
922
dceae3c1
ILT
923// Record that we need a dynamic symbol index for this relocation.
924
925template<bool dynamic, int size, bool big_endian>
926void
927Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
928set_needs_dynsym_index()
929{
0da6fa6c 930 if (this->is_symbolless_)
dceae3c1
ILT
931 return;
932 switch (this->local_sym_index_)
933 {
934 case INVALID_CODE:
935 gold_unreachable();
936
937 case GSYM_CODE:
938 this->u1_.gsym->set_needs_dynsym_entry();
939 break;
940
941 case SECTION_CODE:
942 this->u1_.os->set_needs_dynsym_index();
943 break;
944
e291e7b9
ILT
945 case TARGET_CODE:
946 // The target must take care of this if necessary.
947 break;
948
dceae3c1
ILT
949 case 0:
950 break;
951
952 default:
953 {
954 const unsigned int lsi = this->local_sym_index_;
6fa2a40b
CC
955 Sized_relobj_file<size, big_endian>* relobj =
956 this->u1_.relobj->sized_relobj();
957 gold_assert(relobj != NULL);
dceae3c1 958 if (!this->is_section_symbol_)
6fa2a40b 959 relobj->set_needs_output_dynsym_entry(lsi);
dceae3c1 960 else
6fa2a40b 961 relobj->output_section(lsi)->set_needs_dynsym_index();
dceae3c1
ILT
962 }
963 break;
964 }
7bf1f802
ILT
965}
966
c06b7b0b
ILT
967// Get the symbol index of a relocation.
968
969template<bool dynamic, int size, bool big_endian>
970unsigned int
971Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
972 const
973{
974 unsigned int index;
0da6fa6c
DM
975 if (this->is_symbolless_)
976 return 0;
c06b7b0b
ILT
977 switch (this->local_sym_index_)
978 {
979 case INVALID_CODE:
a3ad94ed 980 gold_unreachable();
c06b7b0b
ILT
981
982 case GSYM_CODE:
5a6f7e2d 983 if (this->u1_.gsym == NULL)
c06b7b0b
ILT
984 index = 0;
985 else if (dynamic)
5a6f7e2d 986 index = this->u1_.gsym->dynsym_index();
c06b7b0b 987 else
5a6f7e2d 988 index = this->u1_.gsym->symtab_index();
c06b7b0b
ILT
989 break;
990
991 case SECTION_CODE:
992 if (dynamic)
5a6f7e2d 993 index = this->u1_.os->dynsym_index();
c06b7b0b 994 else
5a6f7e2d 995 index = this->u1_.os->symtab_index();
c06b7b0b
ILT
996 break;
997
e291e7b9
ILT
998 case TARGET_CODE:
999 index = parameters->target().reloc_symbol_index(this->u1_.arg,
1000 this->type_);
1001 break;
1002
436ca963
ILT
1003 case 0:
1004 // Relocations without symbols use a symbol index of 0.
1005 index = 0;
1006 break;
1007
c06b7b0b 1008 default:
dceae3c1
ILT
1009 {
1010 const unsigned int lsi = this->local_sym_index_;
6fa2a40b
CC
1011 Sized_relobj_file<size, big_endian>* relobj =
1012 this->u1_.relobj->sized_relobj();
1013 gold_assert(relobj != NULL);
dceae3c1
ILT
1014 if (!this->is_section_symbol_)
1015 {
1016 if (dynamic)
6fa2a40b 1017 index = relobj->dynsym_index(lsi);
dceae3c1 1018 else
6fa2a40b 1019 index = relobj->symtab_index(lsi);
dceae3c1
ILT
1020 }
1021 else
1022 {
6fa2a40b 1023 Output_section* os = relobj->output_section(lsi);
dceae3c1
ILT
1024 gold_assert(os != NULL);
1025 if (dynamic)
1026 index = os->dynsym_index();
1027 else
1028 index = os->symtab_index();
1029 }
1030 }
c06b7b0b
ILT
1031 break;
1032 }
a3ad94ed 1033 gold_assert(index != -1U);
c06b7b0b
ILT
1034 return index;
1035}
1036
624f8810
ILT
1037// For a local section symbol, get the address of the offset ADDEND
1038// within the input section.
dceae3c1
ILT
1039
1040template<bool dynamic, int size, bool big_endian>
ef9beddf 1041typename elfcpp::Elf_types<size>::Elf_Addr
dceae3c1 1042Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
624f8810 1043 local_section_offset(Addend addend) const
dceae3c1 1044{
624f8810
ILT
1045 gold_assert(this->local_sym_index_ != GSYM_CODE
1046 && this->local_sym_index_ != SECTION_CODE
e291e7b9 1047 && this->local_sym_index_ != TARGET_CODE
624f8810 1048 && this->local_sym_index_ != INVALID_CODE
e291e7b9 1049 && this->local_sym_index_ != 0
624f8810 1050 && this->is_section_symbol_);
dceae3c1 1051 const unsigned int lsi = this->local_sym_index_;
ef9beddf 1052 Output_section* os = this->u1_.relobj->output_section(lsi);
624f8810 1053 gold_assert(os != NULL);
ef9beddf 1054 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
eff45813 1055 if (offset != invalid_address)
624f8810
ILT
1056 return offset + addend;
1057 // This is a merge section.
6fa2a40b
CC
1058 Sized_relobj_file<size, big_endian>* relobj =
1059 this->u1_.relobj->sized_relobj();
1060 gold_assert(relobj != NULL);
1061 offset = os->output_address(relobj, lsi, addend);
eff45813 1062 gold_assert(offset != invalid_address);
dceae3c1
ILT
1063 return offset;
1064}
1065
d98bc257 1066// Get the output address of a relocation.
c06b7b0b
ILT
1067
1068template<bool dynamic, int size, bool big_endian>
a984ee1d 1069typename elfcpp::Elf_types<size>::Elf_Addr
d98bc257 1070Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
c06b7b0b 1071{
a3ad94ed 1072 Address address = this->address_;
5a6f7e2d
ILT
1073 if (this->shndx_ != INVALID_CODE)
1074 {
ef9beddf 1075 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
5a6f7e2d 1076 gold_assert(os != NULL);
ef9beddf 1077 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
eff45813 1078 if (off != invalid_address)
730cdc88
ILT
1079 address += os->address() + off;
1080 else
1081 {
6fa2a40b
CC
1082 Sized_relobj_file<size, big_endian>* relobj =
1083 this->u2_.relobj->sized_relobj();
1084 gold_assert(relobj != NULL);
1085 address = os->output_address(relobj, this->shndx_, address);
eff45813 1086 gold_assert(address != invalid_address);
730cdc88 1087 }
5a6f7e2d
ILT
1088 }
1089 else if (this->u2_.od != NULL)
1090 address += this->u2_.od->address();
d98bc257
ILT
1091 return address;
1092}
1093
1094// Write out the offset and info fields of a Rel or Rela relocation
1095// entry.
1096
1097template<bool dynamic, int size, bool big_endian>
1098template<typename Write_rel>
1099void
1100Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1101 Write_rel* wr) const
1102{
1103 wr->put_r_offset(this->get_address());
0da6fa6c 1104 unsigned int sym_index = this->get_symbol_index();
e8c846c3 1105 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
c06b7b0b
ILT
1106}
1107
1108// Write out a Rel relocation.
1109
1110template<bool dynamic, int size, bool big_endian>
1111void
1112Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1113 unsigned char* pov) const
1114{
1115 elfcpp::Rel_write<size, big_endian> orel(pov);
1116 this->write_rel(&orel);
1117}
1118
e8c846c3
ILT
1119// Get the value of the symbol referred to by a Rel relocation.
1120
1121template<bool dynamic, int size, bool big_endian>
1122typename elfcpp::Elf_types<size>::Elf_Addr
d1f003c6 1123Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
624f8810 1124 Addend addend) const
e8c846c3
ILT
1125{
1126 if (this->local_sym_index_ == GSYM_CODE)
1127 {
1128 const Sized_symbol<size>* sym;
1129 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
13cf9988
DM
1130 if (this->use_plt_offset_ && sym->has_plt_offset())
1131 {
1132 uint64_t plt_address =
1133 parameters->target().plt_address_for_global(sym);
1134 return plt_address + sym->plt_offset();
1135 }
1136 else
1137 return sym->value() + addend;
e8c846c3 1138 }
703d02da
AM
1139 if (this->local_sym_index_ == SECTION_CODE)
1140 {
1141 gold_assert(!this->use_plt_offset_);
1142 return this->u1_.os->address() + addend;
1143 }
1144 gold_assert(this->local_sym_index_ != TARGET_CODE
d1f003c6 1145 && this->local_sym_index_ != INVALID_CODE
e291e7b9 1146 && this->local_sym_index_ != 0
d1f003c6
ILT
1147 && !this->is_section_symbol_);
1148 const unsigned int lsi = this->local_sym_index_;
6fa2a40b
CC
1149 Sized_relobj_file<size, big_endian>* relobj =
1150 this->u1_.relobj->sized_relobj();
1151 gold_assert(relobj != NULL);
397b129b
CC
1152 if (this->use_plt_offset_)
1153 {
1154 uint64_t plt_address =
1155 parameters->target().plt_address_for_local(relobj, lsi);
1156 return plt_address + relobj->local_plt_offset(lsi);
1157 }
6fa2a40b
CC
1158 const Symbol_value<size>* symval = relobj->local_symbol(lsi);
1159 return symval->value(relobj, addend);
e8c846c3
ILT
1160}
1161
d98bc257
ILT
1162// Reloc comparison. This function sorts the dynamic relocs for the
1163// benefit of the dynamic linker. First we sort all relative relocs
1164// to the front. Among relative relocs, we sort by output address.
1165// Among non-relative relocs, we sort by symbol index, then by output
1166// address.
1167
1168template<bool dynamic, int size, bool big_endian>
1169int
1170Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1171 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1172 const
1173{
1174 if (this->is_relative_)
1175 {
1176 if (!r2.is_relative_)
1177 return -1;
1178 // Otherwise sort by reloc address below.
1179 }
1180 else if (r2.is_relative_)
1181 return 1;
1182 else
1183 {
1184 unsigned int sym1 = this->get_symbol_index();
1185 unsigned int sym2 = r2.get_symbol_index();
1186 if (sym1 < sym2)
1187 return -1;
1188 else if (sym1 > sym2)
1189 return 1;
1190 // Otherwise sort by reloc address.
1191 }
1192
1193 section_offset_type addr1 = this->get_address();
1194 section_offset_type addr2 = r2.get_address();
1195 if (addr1 < addr2)
1196 return -1;
1197 else if (addr1 > addr2)
1198 return 1;
1199
1200 // Final tie breaker, in order to generate the same output on any
1201 // host: reloc type.
1202 unsigned int type1 = this->type_;
1203 unsigned int type2 = r2.type_;
1204 if (type1 < type2)
1205 return -1;
1206 else if (type1 > type2)
1207 return 1;
1208
1209 // These relocs appear to be exactly the same.
1210 return 0;
1211}
1212
c06b7b0b
ILT
1213// Write out a Rela relocation.
1214
1215template<bool dynamic, int size, bool big_endian>
1216void
1217Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1218 unsigned char* pov) const
1219{
1220 elfcpp::Rela_write<size, big_endian> orel(pov);
1221 this->rel_.write_rel(&orel);
e8c846c3 1222 Addend addend = this->addend_;
e291e7b9
ILT
1223 if (this->rel_.is_target_specific())
1224 addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1225 this->rel_.type(), addend);
0da6fa6c 1226 else if (this->rel_.is_symbolless())
d1f003c6
ILT
1227 addend = this->rel_.symbol_value(addend);
1228 else if (this->rel_.is_local_section_symbol())
624f8810 1229 addend = this->rel_.local_section_offset(addend);
e8c846c3 1230 orel.put_r_addend(addend);
c06b7b0b
ILT
1231}
1232
1233// Output_data_reloc_base methods.
1234
16649710
ILT
1235// Adjust the output section.
1236
1237template<int sh_type, bool dynamic, int size, bool big_endian>
1238void
1239Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1240 ::do_adjust_output_section(Output_section* os)
1241{
1242 if (sh_type == elfcpp::SHT_REL)
1243 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1244 else if (sh_type == elfcpp::SHT_RELA)
1245 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1246 else
1247 gold_unreachable();
7223e9ca
ILT
1248
1249 // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
1250 // static link. The backends will generate a dynamic reloc section
1251 // to hold this. In that case we don't want to link to the dynsym
1252 // section, because there isn't one.
1253 if (!dynamic)
16649710 1254 os->set_should_link_to_symtab();
7223e9ca
ILT
1255 else if (parameters->doing_static_link())
1256 ;
1257 else
1258 os->set_should_link_to_dynsym();
16649710
ILT
1259}
1260
c06b7b0b
ILT
1261// Write out relocation data.
1262
1263template<int sh_type, bool dynamic, int size, bool big_endian>
1264void
1265Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1266 Output_file* of)
1267{
1268 const off_t off = this->offset();
1269 const off_t oview_size = this->data_size();
1270 unsigned char* const oview = of->get_output_view(off, oview_size);
1271
3a44184e 1272 if (this->sort_relocs())
d98bc257
ILT
1273 {
1274 gold_assert(dynamic);
1275 std::sort(this->relocs_.begin(), this->relocs_.end(),
1276 Sort_relocs_comparison());
1277 }
1278
c06b7b0b
ILT
1279 unsigned char* pov = oview;
1280 for (typename Relocs::const_iterator p = this->relocs_.begin();
1281 p != this->relocs_.end();
1282 ++p)
1283 {
1284 p->write(pov);
1285 pov += reloc_size;
1286 }
1287
a3ad94ed 1288 gold_assert(pov - oview == oview_size);
c06b7b0b
ILT
1289
1290 of->write_output_view(off, oview_size, oview);
1291
1292 // We no longer need the relocation entries.
1293 this->relocs_.clear();
1294}
1295
6a74a719
ILT
1296// Class Output_relocatable_relocs.
1297
1298template<int sh_type, int size, bool big_endian>
1299void
1300Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1301{
1302 this->set_data_size(this->rr_->output_reloc_count()
1303 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1304}
1305
1306// class Output_data_group.
1307
1308template<int size, bool big_endian>
1309Output_data_group<size, big_endian>::Output_data_group(
6fa2a40b 1310 Sized_relobj_file<size, big_endian>* relobj,
6a74a719 1311 section_size_type entry_count,
8825ac63
ILT
1312 elfcpp::Elf_Word flags,
1313 std::vector<unsigned int>* input_shndxes)
20e6d0d6 1314 : Output_section_data(entry_count * 4, 4, false),
8825ac63
ILT
1315 relobj_(relobj),
1316 flags_(flags)
6a74a719 1317{
8825ac63 1318 this->input_shndxes_.swap(*input_shndxes);
6a74a719
ILT
1319}
1320
1321// Write out the section group, which means translating the section
1322// indexes to apply to the output file.
1323
1324template<int size, bool big_endian>
1325void
1326Output_data_group<size, big_endian>::do_write(Output_file* of)
1327{
1328 const off_t off = this->offset();
1329 const section_size_type oview_size =
1330 convert_to_section_size_type(this->data_size());
1331 unsigned char* const oview = of->get_output_view(off, oview_size);
1332
1333 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1334 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1335 ++contents;
1336
1337 for (std::vector<unsigned int>::const_iterator p =
8825ac63
ILT
1338 this->input_shndxes_.begin();
1339 p != this->input_shndxes_.end();
6a74a719
ILT
1340 ++p, ++contents)
1341 {
ef9beddf 1342 Output_section* os = this->relobj_->output_section(*p);
6a74a719
ILT
1343
1344 unsigned int output_shndx;
1345 if (os != NULL)
1346 output_shndx = os->out_shndx();
1347 else
1348 {
1349 this->relobj_->error(_("section group retained but "
1350 "group element discarded"));
1351 output_shndx = 0;
1352 }
1353
1354 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1355 }
1356
1357 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1358 gold_assert(wrote == oview_size);
1359
1360 of->write_output_view(off, oview_size, oview);
1361
1362 // We no longer need this information.
8825ac63 1363 this->input_shndxes_.clear();
6a74a719
ILT
1364}
1365
dbe717ef 1366// Output_data_got::Got_entry methods.
ead1e424
ILT
1367
1368// Write out the entry.
1369
1370template<int size, bool big_endian>
1371void
7e1edb90 1372Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
ead1e424
ILT
1373{
1374 Valtype val = 0;
1375
1376 switch (this->local_sym_index_)
1377 {
1378 case GSYM_CODE:
1379 {
e8c846c3
ILT
1380 // If the symbol is resolved locally, we need to write out the
1381 // link-time value, which will be relocated dynamically by a
1382 // RELATIVE relocation.
ead1e424 1383 Symbol* gsym = this->u_.gsym;
7223e9ca 1384 if (this->use_plt_offset_ && gsym->has_plt_offset())
67181c72 1385 val = (parameters->target().plt_address_for_global(gsym)
7223e9ca
ILT
1386 + gsym->plt_offset());
1387 else
1388 {
1389 Sized_symbol<size>* sgsym;
1390 // This cast is a bit ugly. We don't want to put a
1391 // virtual method in Symbol, because we want Symbol to be
1392 // as small as possible.
1393 sgsym = static_cast<Sized_symbol<size>*>(gsym);
1394 val = sgsym->value();
1395 }
ead1e424
ILT
1396 }
1397 break;
1398
1399 case CONSTANT_CODE:
1400 val = this->u_.constant;
1401 break;
1402
4829d394
CC
1403 case RESERVED_CODE:
1404 // If we're doing an incremental update, don't touch this GOT entry.
1405 if (parameters->incremental_update())
1406 return;
1407 val = this->u_.constant;
1408 break;
1409
ead1e424 1410 default:
d1f003c6 1411 {
83896202 1412 const Relobj* object = this->u_.object;
d1f003c6 1413 const unsigned int lsi = this->local_sym_index_;
7223e9ca 1414 if (!this->use_plt_offset_)
83896202
ILT
1415 {
1416 uint64_t lval = object->local_symbol_value(lsi, 0);
1417 val = convert_types<Valtype, uint64_t>(lval);
1418 }
7223e9ca
ILT
1419 else
1420 {
67181c72
ILT
1421 uint64_t plt_address =
1422 parameters->target().plt_address_for_local(object, lsi);
1423 val = plt_address + object->local_plt_offset(lsi);
7223e9ca 1424 }
d1f003c6 1425 }
e727fa71 1426 break;
ead1e424
ILT
1427 }
1428
a3ad94ed 1429 elfcpp::Swap<size, big_endian>::writeval(pov, val);
ead1e424
ILT
1430}
1431
dbe717ef 1432// Output_data_got methods.
ead1e424 1433
dbe717ef
ILT
1434// Add an entry for a global symbol to the GOT. This returns true if
1435// this is a new GOT entry, false if the symbol already had a GOT
1436// entry.
1437
1438template<int size, bool big_endian>
1439bool
0a65a3a7
CC
1440Output_data_got<size, big_endian>::add_global(
1441 Symbol* gsym,
1442 unsigned int got_type)
ead1e424 1443{
0a65a3a7 1444 if (gsym->has_got_offset(got_type))
dbe717ef 1445 return false;
ead1e424 1446
4829d394
CC
1447 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, false));
1448 gsym->set_got_offset(got_type, got_offset);
7223e9ca
ILT
1449 return true;
1450}
1451
1452// Like add_global, but use the PLT offset.
1453
1454template<int size, bool big_endian>
1455bool
1456Output_data_got<size, big_endian>::add_global_plt(Symbol* gsym,
1457 unsigned int got_type)
1458{
1459 if (gsym->has_got_offset(got_type))
1460 return false;
1461
4829d394
CC
1462 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, true));
1463 gsym->set_got_offset(got_type, got_offset);
dbe717ef
ILT
1464 return true;
1465}
ead1e424 1466
7bf1f802
ILT
1467// Add an entry for a global symbol to the GOT, and add a dynamic
1468// relocation of type R_TYPE for the GOT entry.
7223e9ca 1469
7bf1f802
ILT
1470template<int size, bool big_endian>
1471void
1472Output_data_got<size, big_endian>::add_global_with_rel(
1473 Symbol* gsym,
0a65a3a7 1474 unsigned int got_type,
83896202 1475 Output_data_reloc_generic* rel_dyn,
7bf1f802
ILT
1476 unsigned int r_type)
1477{
0a65a3a7 1478 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1479 return;
1480
4829d394 1481 unsigned int got_offset = this->add_got_entry(Got_entry());
2ea97941 1482 gsym->set_got_offset(got_type, got_offset);
83896202 1483 rel_dyn->add_global_generic(gsym, r_type, this, got_offset, 0);
7bf1f802
ILT
1484}
1485
0a65a3a7
CC
1486// Add a pair of entries for a global symbol to the GOT, and add
1487// dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1488// If R_TYPE_2 == 0, add the second entry with no relocation.
7bf1f802
ILT
1489template<int size, bool big_endian>
1490void
0a65a3a7
CC
1491Output_data_got<size, big_endian>::add_global_pair_with_rel(
1492 Symbol* gsym,
1493 unsigned int got_type,
83896202 1494 Output_data_reloc_generic* rel_dyn,
0a65a3a7
CC
1495 unsigned int r_type_1,
1496 unsigned int r_type_2)
7bf1f802 1497{
0a65a3a7 1498 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1499 return;
1500
4829d394 1501 unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
2ea97941 1502 gsym->set_got_offset(got_type, got_offset);
83896202 1503 rel_dyn->add_global_generic(gsym, r_type_1, this, got_offset, 0);
0a65a3a7 1504
0a65a3a7 1505 if (r_type_2 != 0)
83896202
ILT
1506 rel_dyn->add_global_generic(gsym, r_type_2, this,
1507 got_offset + size / 8, 0);
7bf1f802
ILT
1508}
1509
0a65a3a7
CC
1510// Add an entry for a local symbol to the GOT. This returns true if
1511// this is a new GOT entry, false if the symbol already has a GOT
1512// entry.
07f397ab
ILT
1513
1514template<int size, bool big_endian>
1515bool
0a65a3a7 1516Output_data_got<size, big_endian>::add_local(
83896202 1517 Relobj* object,
0a65a3a7
CC
1518 unsigned int symndx,
1519 unsigned int got_type)
07f397ab 1520{
0a65a3a7 1521 if (object->local_has_got_offset(symndx, got_type))
07f397ab
ILT
1522 return false;
1523
4829d394
CC
1524 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1525 false));
1526 object->set_local_got_offset(symndx, got_type, got_offset);
7223e9ca
ILT
1527 return true;
1528}
1529
1530// Like add_local, but use the PLT offset.
1531
1532template<int size, bool big_endian>
1533bool
1534Output_data_got<size, big_endian>::add_local_plt(
83896202 1535 Relobj* object,
7223e9ca
ILT
1536 unsigned int symndx,
1537 unsigned int got_type)
1538{
1539 if (object->local_has_got_offset(symndx, got_type))
1540 return false;
1541
4829d394
CC
1542 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1543 true));
1544 object->set_local_got_offset(symndx, got_type, got_offset);
07f397ab
ILT
1545 return true;
1546}
1547
0a65a3a7
CC
1548// Add an entry for a local symbol to the GOT, and add a dynamic
1549// relocation of type R_TYPE for the GOT entry.
7223e9ca 1550
7bf1f802
ILT
1551template<int size, bool big_endian>
1552void
0a65a3a7 1553Output_data_got<size, big_endian>::add_local_with_rel(
83896202 1554 Relobj* object,
0a65a3a7
CC
1555 unsigned int symndx,
1556 unsigned int got_type,
83896202 1557 Output_data_reloc_generic* rel_dyn,
7bf1f802
ILT
1558 unsigned int r_type)
1559{
0a65a3a7 1560 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1561 return;
1562
4829d394 1563 unsigned int got_offset = this->add_got_entry(Got_entry());
2ea97941 1564 object->set_local_got_offset(symndx, got_type, got_offset);
83896202 1565 rel_dyn->add_local_generic(object, symndx, r_type, this, got_offset, 0);
07f397ab
ILT
1566}
1567
0a65a3a7
CC
1568// Add a pair of entries for a local symbol to the GOT, and add
1569// dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1570// If R_TYPE_2 == 0, add the second entry with no relocation.
7bf1f802
ILT
1571template<int size, bool big_endian>
1572void
0a65a3a7 1573Output_data_got<size, big_endian>::add_local_pair_with_rel(
83896202 1574 Relobj* object,
7bf1f802
ILT
1575 unsigned int symndx,
1576 unsigned int shndx,
0a65a3a7 1577 unsigned int got_type,
83896202 1578 Output_data_reloc_generic* rel_dyn,
0a65a3a7
CC
1579 unsigned int r_type_1,
1580 unsigned int r_type_2)
7bf1f802 1581{
0a65a3a7 1582 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1583 return;
1584
4829d394
CC
1585 unsigned int got_offset =
1586 this->add_got_entry_pair(Got_entry(),
1587 Got_entry(object, symndx, false));
2ea97941 1588 object->set_local_got_offset(symndx, got_type, got_offset);
ef9beddf 1589 Output_section* os = object->output_section(shndx);
83896202 1590 rel_dyn->add_output_section_generic(os, r_type_1, this, got_offset, 0);
7bf1f802 1591
0a65a3a7 1592 if (r_type_2 != 0)
83896202
ILT
1593 rel_dyn->add_output_section_generic(os, r_type_2, this,
1594 got_offset + size / 8, 0);
4829d394
CC
1595}
1596
1597// Reserve a slot in the GOT for a local symbol or the second slot of a pair.
1598
1599template<int size, bool big_endian>
1600void
6fa2a40b
CC
1601Output_data_got<size, big_endian>::reserve_local(
1602 unsigned int i,
83896202 1603 Relobj* object,
6fa2a40b
CC
1604 unsigned int sym_index,
1605 unsigned int got_type)
4829d394 1606{
dd74ae06 1607 this->do_reserve_slot(i);
6fa2a40b 1608 object->set_local_got_offset(sym_index, got_type, this->got_offset(i));
4829d394 1609}
7bf1f802 1610
4829d394
CC
1611// Reserve a slot in the GOT for a global symbol.
1612
1613template<int size, bool big_endian>
1614void
6fa2a40b 1615Output_data_got<size, big_endian>::reserve_global(
4829d394
CC
1616 unsigned int i,
1617 Symbol* gsym,
1618 unsigned int got_type)
1619{
dd74ae06 1620 this->do_reserve_slot(i);
4829d394 1621 gsym->set_got_offset(got_type, this->got_offset(i));
7bf1f802
ILT
1622}
1623
ead1e424
ILT
1624// Write out the GOT.
1625
1626template<int size, bool big_endian>
1627void
dbe717ef 1628Output_data_got<size, big_endian>::do_write(Output_file* of)
ead1e424
ILT
1629{
1630 const int add = size / 8;
1631
1632 const off_t off = this->offset();
c06b7b0b 1633 const off_t oview_size = this->data_size();
ead1e424
ILT
1634 unsigned char* const oview = of->get_output_view(off, oview_size);
1635
1636 unsigned char* pov = oview;
1637 for (typename Got_entries::const_iterator p = this->entries_.begin();
1638 p != this->entries_.end();
1639 ++p)
1640 {
7e1edb90 1641 p->write(pov);
ead1e424
ILT
1642 pov += add;
1643 }
1644
a3ad94ed 1645 gold_assert(pov - oview == oview_size);
c06b7b0b 1646
ead1e424
ILT
1647 of->write_output_view(off, oview_size, oview);
1648
1649 // We no longer need the GOT entries.
1650 this->entries_.clear();
1651}
1652
4829d394
CC
1653// Create a new GOT entry and return its offset.
1654
1655template<int size, bool big_endian>
1656unsigned int
1657Output_data_got<size, big_endian>::add_got_entry(Got_entry got_entry)
1658{
1659 if (!this->is_data_size_valid())
1660 {
1661 this->entries_.push_back(got_entry);
1662 this->set_got_size();
1663 return this->last_got_offset();
1664 }
1665 else
1666 {
1667 // For an incremental update, find an available slot.
1668 off_t got_offset = this->free_list_.allocate(size / 8, size / 8, 0);
1669 if (got_offset == -1)
e6455dfb
CC
1670 gold_fallback(_("out of patch space (GOT);"
1671 " relink with --incremental-full"));
4829d394
CC
1672 unsigned int got_index = got_offset / (size / 8);
1673 gold_assert(got_index < this->entries_.size());
1674 this->entries_[got_index] = got_entry;
1675 return static_cast<unsigned int>(got_offset);
1676 }
1677}
1678
1679// Create a pair of new GOT entries and return the offset of the first.
1680
1681template<int size, bool big_endian>
1682unsigned int
1683Output_data_got<size, big_endian>::add_got_entry_pair(Got_entry got_entry_1,
1684 Got_entry got_entry_2)
1685{
1686 if (!this->is_data_size_valid())
1687 {
1688 unsigned int got_offset;
1689 this->entries_.push_back(got_entry_1);
1690 got_offset = this->last_got_offset();
1691 this->entries_.push_back(got_entry_2);
1692 this->set_got_size();
1693 return got_offset;
1694 }
1695 else
1696 {
1697 // For an incremental update, find an available pair of slots.
1698 off_t got_offset = this->free_list_.allocate(2 * size / 8, size / 8, 0);
1699 if (got_offset == -1)
e6455dfb
CC
1700 gold_fallback(_("out of patch space (GOT);"
1701 " relink with --incremental-full"));
4829d394
CC
1702 unsigned int got_index = got_offset / (size / 8);
1703 gold_assert(got_index < this->entries_.size());
1704 this->entries_[got_index] = got_entry_1;
1705 this->entries_[got_index + 1] = got_entry_2;
1706 return static_cast<unsigned int>(got_offset);
1707 }
1708}
1709
cf43a2fe
AM
1710// Replace GOT entry I with a new value.
1711
1712template<int size, bool big_endian>
1713void
1714Output_data_got<size, big_endian>::replace_got_entry(
1715 unsigned int i,
1716 Got_entry got_entry)
1717{
1718 gold_assert(i < this->entries_.size());
1719 this->entries_[i] = got_entry;
1720}
1721
a3ad94ed
ILT
1722// Output_data_dynamic::Dynamic_entry methods.
1723
1724// Write out the entry.
1725
1726template<int size, bool big_endian>
1727void
1728Output_data_dynamic::Dynamic_entry::write(
1729 unsigned char* pov,
7d1a9ebb 1730 const Stringpool* pool) const
a3ad94ed
ILT
1731{
1732 typename elfcpp::Elf_types<size>::Elf_WXword val;
c2b45e22 1733 switch (this->offset_)
a3ad94ed
ILT
1734 {
1735 case DYNAMIC_NUMBER:
1736 val = this->u_.val;
1737 break;
1738
a3ad94ed 1739 case DYNAMIC_SECTION_SIZE:
16649710 1740 val = this->u_.od->data_size();
612a8d3d
DM
1741 if (this->od2 != NULL)
1742 val += this->od2->data_size();
a3ad94ed
ILT
1743 break;
1744
1745 case DYNAMIC_SYMBOL:
1746 {
16649710
ILT
1747 const Sized_symbol<size>* s =
1748 static_cast<const Sized_symbol<size>*>(this->u_.sym);
a3ad94ed
ILT
1749 val = s->value();
1750 }
1751 break;
1752
1753 case DYNAMIC_STRING:
1754 val = pool->get_offset(this->u_.str);
1755 break;
1756
1757 default:
c2b45e22
CC
1758 val = this->u_.od->address() + this->offset_;
1759 break;
a3ad94ed
ILT
1760 }
1761
1762 elfcpp::Dyn_write<size, big_endian> dw(pov);
1763 dw.put_d_tag(this->tag_);
1764 dw.put_d_val(val);
1765}
1766
1767// Output_data_dynamic methods.
1768
16649710
ILT
1769// Adjust the output section to set the entry size.
1770
1771void
1772Output_data_dynamic::do_adjust_output_section(Output_section* os)
1773{
8851ecca 1774 if (parameters->target().get_size() == 32)
16649710 1775 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
8851ecca 1776 else if (parameters->target().get_size() == 64)
16649710
ILT
1777 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1778 else
1779 gold_unreachable();
1780}
1781
a3ad94ed
ILT
1782// Set the final data size.
1783
1784void
27bc2bce 1785Output_data_dynamic::set_final_data_size()
a3ad94ed 1786{
20e6d0d6
DK
1787 // Add the terminating entry if it hasn't been added.
1788 // Because of relaxation, we can run this multiple times.
9e9e071b
ILT
1789 if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1790 {
1791 int extra = parameters->options().spare_dynamic_tags();
1792 for (int i = 0; i < extra; ++i)
1793 this->add_constant(elfcpp::DT_NULL, 0);
1794 this->add_constant(elfcpp::DT_NULL, 0);
1795 }
a3ad94ed
ILT
1796
1797 int dyn_size;
8851ecca 1798 if (parameters->target().get_size() == 32)
a3ad94ed 1799 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
8851ecca 1800 else if (parameters->target().get_size() == 64)
a3ad94ed
ILT
1801 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1802 else
1803 gold_unreachable();
1804 this->set_data_size(this->entries_.size() * dyn_size);
1805}
1806
1807// Write out the dynamic entries.
1808
1809void
1810Output_data_dynamic::do_write(Output_file* of)
1811{
8851ecca 1812 switch (parameters->size_and_endianness())
a3ad94ed 1813 {
9025d29d 1814#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
1815 case Parameters::TARGET_32_LITTLE:
1816 this->sized_write<32, false>(of);
1817 break;
9025d29d 1818#endif
8851ecca
ILT
1819#ifdef HAVE_TARGET_32_BIG
1820 case Parameters::TARGET_32_BIG:
1821 this->sized_write<32, true>(of);
1822 break;
9025d29d 1823#endif
9025d29d 1824#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
1825 case Parameters::TARGET_64_LITTLE:
1826 this->sized_write<64, false>(of);
1827 break;
9025d29d 1828#endif
8851ecca
ILT
1829#ifdef HAVE_TARGET_64_BIG
1830 case Parameters::TARGET_64_BIG:
1831 this->sized_write<64, true>(of);
1832 break;
1833#endif
1834 default:
1835 gold_unreachable();
a3ad94ed 1836 }
a3ad94ed
ILT
1837}
1838
1839template<int size, bool big_endian>
1840void
1841Output_data_dynamic::sized_write(Output_file* of)
1842{
1843 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1844
2ea97941 1845 const off_t offset = this->offset();
a3ad94ed 1846 const off_t oview_size = this->data_size();
2ea97941 1847 unsigned char* const oview = of->get_output_view(offset, oview_size);
a3ad94ed
ILT
1848
1849 unsigned char* pov = oview;
1850 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1851 p != this->entries_.end();
1852 ++p)
1853 {
7d1a9ebb 1854 p->write<size, big_endian>(pov, this->pool_);
a3ad94ed
ILT
1855 pov += dyn_size;
1856 }
1857
1858 gold_assert(pov - oview == oview_size);
1859
2ea97941 1860 of->write_output_view(offset, oview_size, oview);
a3ad94ed
ILT
1861
1862 // We no longer need the dynamic entries.
1863 this->entries_.clear();
1864}
1865
d491d34e
ILT
1866// Class Output_symtab_xindex.
1867
1868void
1869Output_symtab_xindex::do_write(Output_file* of)
1870{
2ea97941 1871 const off_t offset = this->offset();
d491d34e 1872 const off_t oview_size = this->data_size();
2ea97941 1873 unsigned char* const oview = of->get_output_view(offset, oview_size);
d491d34e
ILT
1874
1875 memset(oview, 0, oview_size);
1876
1877 if (parameters->target().is_big_endian())
1878 this->endian_do_write<true>(oview);
1879 else
1880 this->endian_do_write<false>(oview);
1881
2ea97941 1882 of->write_output_view(offset, oview_size, oview);
d491d34e
ILT
1883
1884 // We no longer need the data.
1885 this->entries_.clear();
1886}
1887
1888template<bool big_endian>
1889void
1890Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1891{
1892 for (Xindex_entries::const_iterator p = this->entries_.begin();
1893 p != this->entries_.end();
1894 ++p)
20e6d0d6
DK
1895 {
1896 unsigned int symndx = p->first;
1897 gold_assert(symndx * 4 < this->data_size());
1898 elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1899 }
d491d34e
ILT
1900}
1901
8ea8cd50
CC
1902// Output_fill_debug_info methods.
1903
1904// Return the minimum size needed for a dummy compilation unit header.
1905
1906size_t
1907Output_fill_debug_info::do_minimum_hole_size() const
1908{
1909 // Compile unit header fields: unit_length, version, debug_abbrev_offset,
1910 // address_size.
1911 const size_t len = 4 + 2 + 4 + 1;
1912 // For type units, add type_signature, type_offset.
1913 if (this->is_debug_types_)
1914 return len + 8 + 4;
1915 return len;
1916}
1917
1918// Write a dummy compilation unit header to fill a hole in the
1919// .debug_info or .debug_types section.
1920
1921void
1922Output_fill_debug_info::do_write(Output_file* of, off_t off, size_t len) const
1923{
66570254
CC
1924 gold_debug(DEBUG_INCREMENTAL, "fill_debug_info(%08lx, %08lx)",
1925 static_cast<long>(off), static_cast<long>(len));
8ea8cd50
CC
1926
1927 gold_assert(len >= this->do_minimum_hole_size());
1928
1929 unsigned char* const oview = of->get_output_view(off, len);
1930 unsigned char* pov = oview;
1931
1932 // Write header fields: unit_length, version, debug_abbrev_offset,
1933 // address_size.
1934 if (this->is_big_endian())
1935 {
24c6c55a
DM
1936 elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
1937 elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
1938 elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, 0);
8ea8cd50
CC
1939 }
1940 else
1941 {
24c6c55a
DM
1942 elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
1943 elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
1944 elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, 0);
8ea8cd50
CC
1945 }
1946 pov += 4 + 2 + 4;
1947 *pov++ = 4;
1948
1949 // For type units, the additional header fields -- type_signature,
1950 // type_offset -- can be filled with zeroes.
1951
1952 // Fill the remainder of the free space with zeroes. The first
1953 // zero should tell the consumer there are no DIEs to read in this
1954 // compilation unit.
1955 if (pov < oview + len)
1956 memset(pov, 0, oview + len - pov);
1957
1958 of->write_output_view(off, len, oview);
1959}
1960
1961// Output_fill_debug_line methods.
1962
1963// Return the minimum size needed for a dummy line number program header.
1964
1965size_t
1966Output_fill_debug_line::do_minimum_hole_size() const
1967{
1968 // Line number program header fields: unit_length, version, header_length,
1969 // minimum_instruction_length, default_is_stmt, line_base, line_range,
1970 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
1971 const size_t len = 4 + 2 + 4 + this->header_length;
1972 return len;
1973}
1974
1975// Write a dummy line number program header to fill a hole in the
1976// .debug_line section.
1977
1978void
1979Output_fill_debug_line::do_write(Output_file* of, off_t off, size_t len) const
1980{
66570254
CC
1981 gold_debug(DEBUG_INCREMENTAL, "fill_debug_line(%08lx, %08lx)",
1982 static_cast<long>(off), static_cast<long>(len));
8ea8cd50
CC
1983
1984 gold_assert(len >= this->do_minimum_hole_size());
1985
1986 unsigned char* const oview = of->get_output_view(off, len);
1987 unsigned char* pov = oview;
1988
1989 // Write header fields: unit_length, version, header_length,
1990 // minimum_instruction_length, default_is_stmt, line_base, line_range,
1991 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
1992 // We set the header_length field to cover the entire hole, so the
1993 // line number program is empty.
1994 if (this->is_big_endian())
1995 {
24c6c55a
DM
1996 elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
1997 elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
1998 elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, len - (4 + 2 + 4));
8ea8cd50
CC
1999 }
2000 else
2001 {
24c6c55a
DM
2002 elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
2003 elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
2004 elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, len - (4 + 2 + 4));
8ea8cd50
CC
2005 }
2006 pov += 4 + 2 + 4;
2007 *pov++ = 1; // minimum_instruction_length
2008 *pov++ = 0; // default_is_stmt
2009 *pov++ = 0; // line_base
2010 *pov++ = 5; // line_range
2011 *pov++ = 13; // opcode_base
2012 *pov++ = 0; // standard_opcode_lengths[1]
2013 *pov++ = 1; // standard_opcode_lengths[2]
2014 *pov++ = 1; // standard_opcode_lengths[3]
2015 *pov++ = 1; // standard_opcode_lengths[4]
2016 *pov++ = 1; // standard_opcode_lengths[5]
2017 *pov++ = 0; // standard_opcode_lengths[6]
2018 *pov++ = 0; // standard_opcode_lengths[7]
2019 *pov++ = 0; // standard_opcode_lengths[8]
2020 *pov++ = 1; // standard_opcode_lengths[9]
2021 *pov++ = 0; // standard_opcode_lengths[10]
2022 *pov++ = 0; // standard_opcode_lengths[11]
2023 *pov++ = 1; // standard_opcode_lengths[12]
2024 *pov++ = 0; // include_directories (empty)
2025 *pov++ = 0; // filenames (empty)
2026
2027 // Some consumers don't check the header_length field, and simply
2028 // start reading the line number program immediately following the
2029 // header. For those consumers, we fill the remainder of the free
2030 // space with DW_LNS_set_basic_block opcodes. These are effectively
2031 // no-ops: the resulting line table program will not create any rows.
2032 if (pov < oview + len)
2033 memset(pov, elfcpp::DW_LNS_set_basic_block, oview + len - pov);
2034
2035 of->write_output_view(off, len, oview);
2036}
2037
ead1e424
ILT
2038// Output_section::Input_section methods.
2039
cdc29364
CC
2040// Return the current data size. For an input section we store the size here.
2041// For an Output_section_data, we have to ask it for the size.
2042
2043off_t
2044Output_section::Input_section::current_data_size() const
2045{
2046 if (this->is_input_section())
2047 return this->u1_.data_size;
2048 else
2049 {
2050 this->u2_.posd->pre_finalize_data_size();
2051 return this->u2_.posd->current_data_size();
2052 }
2053}
2054
ead1e424
ILT
2055// Return the data size. For an input section we store the size here.
2056// For an Output_section_data, we have to ask it for the size.
2057
2058off_t
2059Output_section::Input_section::data_size() const
2060{
2061 if (this->is_input_section())
b8e6aad9 2062 return this->u1_.data_size;
ead1e424 2063 else
b8e6aad9 2064 return this->u2_.posd->data_size();
ead1e424
ILT
2065}
2066
0439c796
DK
2067// Return the object for an input section.
2068
2069Relobj*
2070Output_section::Input_section::relobj() const
2071{
2072 if (this->is_input_section())
2073 return this->u2_.object;
2074 else if (this->is_merge_section())
2075 {
2076 gold_assert(this->u2_.pomb->first_relobj() != NULL);
2077 return this->u2_.pomb->first_relobj();
2078 }
2079 else if (this->is_relaxed_input_section())
2080 return this->u2_.poris->relobj();
2081 else
2082 gold_unreachable();
2083}
2084
2085// Return the input section index for an input section.
2086
2087unsigned int
2088Output_section::Input_section::shndx() const
2089{
2090 if (this->is_input_section())
2091 return this->shndx_;
2092 else if (this->is_merge_section())
2093 {
2094 gold_assert(this->u2_.pomb->first_relobj() != NULL);
2095 return this->u2_.pomb->first_shndx();
2096 }
2097 else if (this->is_relaxed_input_section())
2098 return this->u2_.poris->shndx();
2099 else
2100 gold_unreachable();
2101}
2102
ead1e424
ILT
2103// Set the address and file offset.
2104
2105void
96803768
ILT
2106Output_section::Input_section::set_address_and_file_offset(
2107 uint64_t address,
2108 off_t file_offset,
2109 off_t section_file_offset)
ead1e424
ILT
2110{
2111 if (this->is_input_section())
96803768
ILT
2112 this->u2_.object->set_section_offset(this->shndx_,
2113 file_offset - section_file_offset);
ead1e424 2114 else
96803768
ILT
2115 this->u2_.posd->set_address_and_file_offset(address, file_offset);
2116}
2117
a445fddf
ILT
2118// Reset the address and file offset.
2119
2120void
2121Output_section::Input_section::reset_address_and_file_offset()
2122{
2123 if (!this->is_input_section())
2124 this->u2_.posd->reset_address_and_file_offset();
2125}
2126
96803768
ILT
2127// Finalize the data size.
2128
2129void
2130Output_section::Input_section::finalize_data_size()
2131{
2132 if (!this->is_input_section())
2133 this->u2_.posd->finalize_data_size();
b8e6aad9
ILT
2134}
2135
1e983657
ILT
2136// Try to turn an input offset into an output offset. We want to
2137// return the output offset relative to the start of this
2138// Input_section in the output section.
b8e6aad9 2139
8f00aeb8 2140inline bool
8383303e
ILT
2141Output_section::Input_section::output_offset(
2142 const Relobj* object,
2ea97941
ILT
2143 unsigned int shndx,
2144 section_offset_type offset,
ca09d69a 2145 section_offset_type* poutput) const
b8e6aad9
ILT
2146{
2147 if (!this->is_input_section())
2ea97941 2148 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
b8e6aad9
ILT
2149 else
2150 {
2ea97941 2151 if (this->shndx_ != shndx || this->u2_.object != object)
b8e6aad9 2152 return false;
2ea97941 2153 *poutput = offset;
b8e6aad9
ILT
2154 return true;
2155 }
ead1e424
ILT
2156}
2157
a9a60db6
ILT
2158// Return whether this is the merge section for the input section
2159// SHNDX in OBJECT.
2160
2161inline bool
2162Output_section::Input_section::is_merge_section_for(const Relobj* object,
2ea97941 2163 unsigned int shndx) const
a9a60db6
ILT
2164{
2165 if (this->is_input_section())
2166 return false;
2ea97941 2167 return this->u2_.posd->is_merge_section_for(object, shndx);
a9a60db6
ILT
2168}
2169
ead1e424
ILT
2170// Write out the data. We don't have to do anything for an input
2171// section--they are handled via Object::relocate--but this is where
2172// we write out the data for an Output_section_data.
2173
2174void
2175Output_section::Input_section::write(Output_file* of)
2176{
2177 if (!this->is_input_section())
b8e6aad9 2178 this->u2_.posd->write(of);
ead1e424
ILT
2179}
2180
96803768
ILT
2181// Write the data to a buffer. As for write(), we don't have to do
2182// anything for an input section.
2183
2184void
2185Output_section::Input_section::write_to_buffer(unsigned char* buffer)
2186{
2187 if (!this->is_input_section())
2188 this->u2_.posd->write_to_buffer(buffer);
2189}
2190
7d9e3d98
ILT
2191// Print to a map file.
2192
2193void
2194Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
2195{
2196 switch (this->shndx_)
2197 {
2198 case OUTPUT_SECTION_CODE:
2199 case MERGE_DATA_SECTION_CODE:
2200 case MERGE_STRING_SECTION_CODE:
2201 this->u2_.posd->print_to_mapfile(mapfile);
2202 break;
2203
20e6d0d6
DK
2204 case RELAXED_INPUT_SECTION_CODE:
2205 {
2206 Output_relaxed_input_section* relaxed_section =
2207 this->relaxed_input_section();
2208 mapfile->print_input_section(relaxed_section->relobj(),
2209 relaxed_section->shndx());
2210 }
2211 break;
7d9e3d98
ILT
2212 default:
2213 mapfile->print_input_section(this->u2_.object, this->shndx_);
2214 break;
2215 }
2216}
2217
a2fb1b05
ILT
2218// Output_section methods.
2219
2220// Construct an Output_section. NAME will point into a Stringpool.
2221
2ea97941
ILT
2222Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
2223 elfcpp::Elf_Xword flags)
2224 : name_(name),
a2fb1b05
ILT
2225 addralign_(0),
2226 entsize_(0),
a445fddf 2227 load_address_(0),
16649710 2228 link_section_(NULL),
a2fb1b05 2229 link_(0),
16649710 2230 info_section_(NULL),
6a74a719 2231 info_symndx_(NULL),
a2fb1b05 2232 info_(0),
2ea97941
ILT
2233 type_(type),
2234 flags_(flags),
22f0da72 2235 order_(ORDER_INVALID),
91ea499d 2236 out_shndx_(-1U),
c06b7b0b
ILT
2237 symtab_index_(0),
2238 dynsym_index_(0),
ead1e424
ILT
2239 input_sections_(),
2240 first_input_offset_(0),
c51e6221 2241 fills_(),
96803768 2242 postprocessing_buffer_(NULL),
a3ad94ed 2243 needs_symtab_index_(false),
16649710
ILT
2244 needs_dynsym_index_(false),
2245 should_link_to_symtab_(false),
730cdc88 2246 should_link_to_dynsym_(false),
27bc2bce 2247 after_input_sections_(false),
7bf1f802 2248 requires_postprocessing_(false),
a445fddf
ILT
2249 found_in_sections_clause_(false),
2250 has_load_address_(false),
755ab8af 2251 info_uses_section_index_(false),
6e9ba2ca 2252 input_section_order_specified_(false),
2fd32231
ILT
2253 may_sort_attached_input_sections_(false),
2254 must_sort_attached_input_sections_(false),
2255 attached_input_sections_are_sorted_(false),
9f1d377b 2256 is_relro_(false),
8a5e3e08
ILT
2257 is_small_section_(false),
2258 is_large_section_(false),
f5c870d2 2259 generate_code_fills_at_write_(false),
e8cd95c7 2260 is_entsize_zero_(false),
8923b24c 2261 section_offsets_need_adjustment_(false),
1e5d2fb1 2262 is_noload_(false),
131687b4 2263 always_keeps_input_sections_(false),
cdc29364 2264 has_fixed_layout_(false),
9fbd3822 2265 is_patch_space_allowed_(false),
16164a6b 2266 is_unique_segment_(false),
20e6d0d6 2267 tls_offset_(0),
16164a6b
ST
2268 extra_segment_flags_(0),
2269 segment_alignment_(0),
c0a62865 2270 checkpoint_(NULL),
cdc29364 2271 lookup_maps_(new Output_section_lookup_maps),
9fbd3822 2272 free_list_(),
8ea8cd50 2273 free_space_fill_(NULL),
9fbd3822 2274 patch_space_(0)
a2fb1b05 2275{
27bc2bce
ILT
2276 // An unallocated section has no address. Forcing this means that
2277 // we don't need special treatment for symbols defined in debug
2278 // sections.
2ea97941 2279 if ((flags & elfcpp::SHF_ALLOC) == 0)
27bc2bce 2280 this->set_address(0);
a2fb1b05
ILT
2281}
2282
54dc6425
ILT
2283Output_section::~Output_section()
2284{
20e6d0d6 2285 delete this->checkpoint_;
54dc6425
ILT
2286}
2287
16649710
ILT
2288// Set the entry size.
2289
2290void
2291Output_section::set_entsize(uint64_t v)
2292{
e8cd95c7
ILT
2293 if (this->is_entsize_zero_)
2294 ;
2295 else if (this->entsize_ == 0)
16649710 2296 this->entsize_ = v;
e8cd95c7
ILT
2297 else if (this->entsize_ != v)
2298 {
2299 this->entsize_ = 0;
2300 this->is_entsize_zero_ = 1;
2301 }
16649710
ILT
2302}
2303
ead1e424 2304// Add the input section SHNDX, with header SHDR, named SECNAME, in
730cdc88
ILT
2305// OBJECT, to the Output_section. RELOC_SHNDX is the index of a
2306// relocation section which applies to this section, or 0 if none, or
2307// -1U if more than one. Return the offset of the input section
2308// within the output section. Return -1 if the input section will
2309// receive special handling. In the normal case we don't always keep
2310// track of input sections for an Output_section. Instead, each
2311// Object keeps track of the Output_section for each of its input
a445fddf
ILT
2312// sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
2313// track of input sections here; this is used when SECTIONS appears in
2314// a linker script.
a2fb1b05
ILT
2315
2316template<int size, bool big_endian>
2317off_t
6e9ba2ca 2318Output_section::add_input_section(Layout* layout,
6fa2a40b 2319 Sized_relobj_file<size, big_endian>* object,
2ea97941 2320 unsigned int shndx,
ead1e424 2321 const char* secname,
730cdc88 2322 const elfcpp::Shdr<size, big_endian>& shdr,
a445fddf
ILT
2323 unsigned int reloc_shndx,
2324 bool have_sections_script)
a2fb1b05 2325{
2ea97941
ILT
2326 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2327 if ((addralign & (addralign - 1)) != 0)
a2fb1b05 2328 {
75f2446e 2329 object->error(_("invalid alignment %lu for section \"%s\""),
2ea97941
ILT
2330 static_cast<unsigned long>(addralign), secname);
2331 addralign = 1;
a2fb1b05 2332 }
a2fb1b05 2333
2ea97941
ILT
2334 if (addralign > this->addralign_)
2335 this->addralign_ = addralign;
a2fb1b05 2336
44a43cf9 2337 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2ea97941 2338 uint64_t entsize = shdr.get_sh_entsize();
44a43cf9
ILT
2339
2340 // .debug_str is a mergeable string section, but is not always so
2341 // marked by compilers. Mark manually here so we can optimize.
2342 if (strcmp(secname, ".debug_str") == 0)
4f833eee
ILT
2343 {
2344 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2ea97941 2345 entsize = 1;
4f833eee 2346 }
44a43cf9 2347
e8cd95c7
ILT
2348 this->update_flags_for_input_section(sh_flags);
2349 this->set_entsize(entsize);
2350
b8e6aad9 2351 // If this is a SHF_MERGE section, we pass all the input sections to
730cdc88 2352 // a Output_data_merge. We don't try to handle relocations for such
e0b64032
ILT
2353 // a section. We don't try to handle empty merge sections--they
2354 // mess up the mappings, and are useless anyhow.
cdc29364 2355 // FIXME: Need to handle merge sections during incremental update.
44a43cf9 2356 if ((sh_flags & elfcpp::SHF_MERGE) != 0
e0b64032 2357 && reloc_shndx == 0
cdc29364
CC
2358 && shdr.get_sh_size() > 0
2359 && !parameters->incremental())
b8e6aad9 2360 {
0439c796
DK
2361 // Keep information about merged input sections for rebuilding fast
2362 // lookup maps if we have sections-script or we do relaxation.
131687b4
DK
2363 bool keeps_input_sections = (this->always_keeps_input_sections_
2364 || have_sections_script
2365 || parameters->target().may_relax());
2366
0439c796
DK
2367 if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2368 addralign, keeps_input_sections))
b8e6aad9
ILT
2369 {
2370 // Tell the relocation routines that they need to call the
730cdc88 2371 // output_offset method to determine the final address.
b8e6aad9
ILT
2372 return -1;
2373 }
2374 }
2375
cdc29364
CC
2376 section_size_type input_section_size = shdr.get_sh_size();
2377 section_size_type uncompressed_size;
2378 if (object->section_is_compressed(shndx, &uncompressed_size))
2379 input_section_size = uncompressed_size;
2380
2381 off_t offset_in_section;
2382 off_t aligned_offset_in_section;
2383 if (this->has_fixed_layout())
2384 {
2385 // For incremental updates, find a chunk of unused space in the section.
2386 offset_in_section = this->free_list_.allocate(input_section_size,
2387 addralign, 0);
2388 if (offset_in_section == -1)
9fbd3822
CC
2389 gold_fallback(_("out of patch space in section %s; "
2390 "relink with --incremental-full"),
2391 this->name());
cdc29364
CC
2392 aligned_offset_in_section = offset_in_section;
2393 }
2394 else
2395 {
2396 offset_in_section = this->current_data_size_for_child();
2397 aligned_offset_in_section = align_address(offset_in_section,
2398 addralign);
2399 this->set_current_data_size_for_child(aligned_offset_in_section
2400 + input_section_size);
2401 }
c51e6221 2402
c0a62865
DK
2403 // Determine if we want to delay code-fill generation until the output
2404 // section is written. When the target is relaxing, we want to delay fill
4cf7a849
ST
2405 // generating to avoid adjusting them during relaxation. Also, if we are
2406 // sorting input sections we must delay fill generation.
c0a62865
DK
2407 if (!this->generate_code_fills_at_write_
2408 && !have_sections_script
2409 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2410 && parameters->target().has_code_fill()
4cf7a849 2411 && (parameters->target().may_relax()
e9552f7e 2412 || layout->is_section_ordering_specified()))
c0a62865
DK
2413 {
2414 gold_assert(this->fills_.empty());
2415 this->generate_code_fills_at_write_ = true;
2416 }
2417
c51e6221 2418 if (aligned_offset_in_section > offset_in_section
c0a62865 2419 && !this->generate_code_fills_at_write_
a445fddf 2420 && !have_sections_script
44a43cf9 2421 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
029ba973 2422 && parameters->target().has_code_fill())
c51e6221
ILT
2423 {
2424 // We need to add some fill data. Using fill_list_ when
2425 // possible is an optimization, since we will often have fill
2426 // sections without input sections.
2427 off_t fill_len = aligned_offset_in_section - offset_in_section;
2428 if (this->input_sections_.empty())
2429 this->fills_.push_back(Fill(offset_in_section, fill_len));
2430 else
2431 {
029ba973 2432 std::string fill_data(parameters->target().code_fill(fill_len));
c51e6221
ILT
2433 Output_data_const* odc = new Output_data_const(fill_data, 1);
2434 this->input_sections_.push_back(Input_section(odc));
2435 }
2436 }
2437
ead1e424 2438 // We need to keep track of this section if we are already keeping
2fd32231
ILT
2439 // track of sections, or if we are relaxing. Also, if this is a
2440 // section which requires sorting, or which may require sorting in
6e9ba2ca
ST
2441 // the future, we keep track of the sections. If the
2442 // --section-ordering-file option is used to specify the order of
2443 // sections, we need to keep track of sections.
131687b4
DK
2444 if (this->always_keeps_input_sections_
2445 || have_sections_script
2fd32231
ILT
2446 || !this->input_sections_.empty()
2447 || this->may_sort_attached_input_sections()
7d9e3d98 2448 || this->must_sort_attached_input_sections()
20e6d0d6 2449 || parameters->options().user_set_Map()
6e9ba2ca 2450 || parameters->target().may_relax()
e9552f7e 2451 || layout->is_section_ordering_specified())
6e9ba2ca 2452 {
6fc6ea19 2453 Input_section isecn(object, shndx, input_section_size, addralign);
f0558624
ST
2454 /* If section ordering is requested by specifying a ordering file,
2455 using --section-ordering-file, match the section name with
2456 a pattern. */
2457 if (parameters->options().section_ordering_file())
6e9ba2ca
ST
2458 {
2459 unsigned int section_order_index =
2460 layout->find_section_order_index(std::string(secname));
2461 if (section_order_index != 0)
2462 {
2463 isecn.set_section_order_index(section_order_index);
2464 this->set_input_section_order_specified();
2465 }
2466 }
cdc29364
CC
2467 if (this->has_fixed_layout())
2468 {
2469 // For incremental updates, finalize the address and offset now.
2470 uint64_t addr = this->address();
2471 isecn.set_address_and_file_offset(addr + aligned_offset_in_section,
2472 aligned_offset_in_section,
2473 this->offset());
2474 }
6e9ba2ca
ST
2475 this->input_sections_.push_back(isecn);
2476 }
54dc6425 2477
c51e6221 2478 return aligned_offset_in_section;
61ba1cf9
ILT
2479}
2480
ead1e424
ILT
2481// Add arbitrary data to an output section.
2482
2483void
2484Output_section::add_output_section_data(Output_section_data* posd)
2485{
b8e6aad9
ILT
2486 Input_section inp(posd);
2487 this->add_output_section_data(&inp);
a445fddf
ILT
2488
2489 if (posd->is_data_size_valid())
2490 {
cdc29364
CC
2491 off_t offset_in_section;
2492 if (this->has_fixed_layout())
2493 {
2494 // For incremental updates, find a chunk of unused space.
2495 offset_in_section = this->free_list_.allocate(posd->data_size(),
2496 posd->addralign(), 0);
2497 if (offset_in_section == -1)
9fbd3822
CC
2498 gold_fallback(_("out of patch space in section %s; "
2499 "relink with --incremental-full"),
2500 this->name());
cdc29364
CC
2501 // Finalize the address and offset now.
2502 uint64_t addr = this->address();
2503 off_t offset = this->offset();
2504 posd->set_address_and_file_offset(addr + offset_in_section,
2505 offset + offset_in_section);
2506 }
2507 else
2508 {
2509 offset_in_section = this->current_data_size_for_child();
2510 off_t aligned_offset_in_section = align_address(offset_in_section,
2511 posd->addralign());
2512 this->set_current_data_size_for_child(aligned_offset_in_section
2513 + posd->data_size());
2514 }
2515 }
2516 else if (this->has_fixed_layout())
2517 {
2518 // For incremental updates, arrange for the data to have a fixed layout.
2519 // This will mean that additions to the data must be allocated from
2520 // free space within the containing output section.
2521 uint64_t addr = this->address();
2522 posd->set_address(addr);
2523 posd->set_file_offset(0);
4829d394
CC
2524 // FIXME: This should eventually be unreachable.
2525 // gold_unreachable();
a445fddf 2526 }
b8e6aad9
ILT
2527}
2528
c0a62865
DK
2529// Add a relaxed input section.
2530
2531void
d06fb4d1
DK
2532Output_section::add_relaxed_input_section(Layout* layout,
2533 Output_relaxed_input_section* poris,
2534 const std::string& name)
c0a62865
DK
2535{
2536 Input_section inp(poris);
d06fb4d1
DK
2537
2538 // If the --section-ordering-file option is used to specify the order of
2539 // sections, we need to keep track of sections.
e9552f7e 2540 if (layout->is_section_ordering_specified())
d06fb4d1
DK
2541 {
2542 unsigned int section_order_index =
2543 layout->find_section_order_index(name);
2544 if (section_order_index != 0)
2545 {
2546 inp.set_section_order_index(section_order_index);
2547 this->set_input_section_order_specified();
2548 }
2549 }
2550
c0a62865 2551 this->add_output_section_data(&inp);
0439c796
DK
2552 if (this->lookup_maps_->is_valid())
2553 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2554 poris->shndx(), poris);
c0a62865
DK
2555
2556 // For a relaxed section, we use the current data size. Linker scripts
2557 // get all the input sections, including relaxed one from an output
2558 // section and add them back to them same output section to compute the
2559 // output section size. If we do not account for sizes of relaxed input
2560 // sections, an output section would be incorrectly sized.
2561 off_t offset_in_section = this->current_data_size_for_child();
2562 off_t aligned_offset_in_section = align_address(offset_in_section,
2563 poris->addralign());
2564 this->set_current_data_size_for_child(aligned_offset_in_section
2565 + poris->current_data_size());
2566}
2567
b8e6aad9 2568// Add arbitrary data to an output section by Input_section.
c06b7b0b 2569
b8e6aad9
ILT
2570void
2571Output_section::add_output_section_data(Input_section* inp)
2572{
ead1e424 2573 if (this->input_sections_.empty())
27bc2bce 2574 this->first_input_offset_ = this->current_data_size_for_child();
c06b7b0b 2575
b8e6aad9 2576 this->input_sections_.push_back(*inp);
c06b7b0b 2577
2ea97941
ILT
2578 uint64_t addralign = inp->addralign();
2579 if (addralign > this->addralign_)
2580 this->addralign_ = addralign;
c06b7b0b 2581
b8e6aad9
ILT
2582 inp->set_output_section(this);
2583}
2584
2585// Add a merge section to an output section.
2586
2587void
2588Output_section::add_output_merge_section(Output_section_data* posd,
2ea97941 2589 bool is_string, uint64_t entsize)
b8e6aad9 2590{
2ea97941 2591 Input_section inp(posd, is_string, entsize);
b8e6aad9
ILT
2592 this->add_output_section_data(&inp);
2593}
2594
2595// Add an input section to a SHF_MERGE section.
2596
2597bool
2ea97941
ILT
2598Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2599 uint64_t flags, uint64_t entsize,
0439c796
DK
2600 uint64_t addralign,
2601 bool keeps_input_sections)
b8e6aad9 2602{
2ea97941 2603 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
87f95776
ILT
2604
2605 // We only merge strings if the alignment is not more than the
2606 // character size. This could be handled, but it's unusual.
2ea97941 2607 if (is_string && addralign > entsize)
b8e6aad9
ILT
2608 return false;
2609
20e6d0d6
DK
2610 // We cannot restore merged input section states.
2611 gold_assert(this->checkpoint_ == NULL);
2612
c0a62865 2613 // Look up merge sections by required properties.
0439c796
DK
2614 // Currently, we only invalidate the lookup maps in script processing
2615 // and relaxation. We should not have done either when we reach here.
2616 // So we assume that the lookup maps are valid to simply code.
2617 gold_assert(this->lookup_maps_->is_valid());
2ea97941 2618 Merge_section_properties msp(is_string, entsize, addralign);
0439c796
DK
2619 Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2620 bool is_new = false;
2621 if (pomb != NULL)
c0a62865 2622 {
6bf924b0
DK
2623 gold_assert(pomb->is_string() == is_string
2624 && pomb->entsize() == entsize
2625 && pomb->addralign() == addralign);
c0a62865 2626 }
b8e6aad9
ILT
2627 else
2628 {
6bf924b0
DK
2629 // Create a new Output_merge_data or Output_merge_string_data.
2630 if (!is_string)
2631 pomb = new Output_merge_data(entsize, addralign);
2632 else
9a0910c3 2633 {
6bf924b0
DK
2634 switch (entsize)
2635 {
2636 case 1:
2637 pomb = new Output_merge_string<char>(addralign);
2638 break;
2639 case 2:
2640 pomb = new Output_merge_string<uint16_t>(addralign);
2641 break;
2642 case 4:
2643 pomb = new Output_merge_string<uint32_t>(addralign);
2644 break;
2645 default:
2646 return false;
2647 }
9a0910c3 2648 }
0439c796
DK
2649 // If we need to do script processing or relaxation, we need to keep
2650 // the original input sections to rebuild the fast lookup maps.
2651 if (keeps_input_sections)
2652 pomb->set_keeps_input_sections();
2653 is_new = true;
b8e6aad9
ILT
2654 }
2655
6bf924b0
DK
2656 if (pomb->add_input_section(object, shndx))
2657 {
0439c796
DK
2658 // Add new merge section to this output section and link merge
2659 // section properties to new merge section in map.
2660 if (is_new)
2661 {
2662 this->add_output_merge_section(pomb, is_string, entsize);
2663 this->lookup_maps_->add_merge_section(msp, pomb);
2664 }
2665
6bf924b0
DK
2666 // Add input section to new merge section and link input section to new
2667 // merge section in map.
0439c796 2668 this->lookup_maps_->add_merge_input_section(object, shndx, pomb);
6bf924b0
DK
2669 return true;
2670 }
2671 else
0439c796
DK
2672 {
2673 // If add_input_section failed, delete new merge section to avoid
2674 // exporting empty merge sections in Output_section::get_input_section.
2675 if (is_new)
2676 delete pomb;
2677 return false;
2678 }
b8e6aad9
ILT
2679}
2680
c0a62865 2681// Build a relaxation map to speed up relaxation of existing input sections.
2ea97941 2682// Look up to the first LIMIT elements in INPUT_SECTIONS.
c0a62865 2683
20e6d0d6 2684void
c0a62865 2685Output_section::build_relaxation_map(
2ea97941 2686 const Input_section_list& input_sections,
c0a62865
DK
2687 size_t limit,
2688 Relaxation_map* relaxation_map) const
20e6d0d6 2689{
c0a62865
DK
2690 for (size_t i = 0; i < limit; ++i)
2691 {
2ea97941 2692 const Input_section& is(input_sections[i]);
c0a62865
DK
2693 if (is.is_input_section() || is.is_relaxed_input_section())
2694 {
5ac169d4
DK
2695 Section_id sid(is.relobj(), is.shndx());
2696 (*relaxation_map)[sid] = i;
c0a62865
DK
2697 }
2698 }
2699}
2700
2701// Convert regular input sections in INPUT_SECTIONS into relaxed input
5ac169d4
DK
2702// sections in RELAXED_SECTIONS. MAP is a prebuilt map from section id
2703// indices of INPUT_SECTIONS.
20e6d0d6 2704
c0a62865
DK
2705void
2706Output_section::convert_input_sections_in_list_to_relaxed_sections(
2707 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2708 const Relaxation_map& map,
2ea97941 2709 Input_section_list* input_sections)
c0a62865
DK
2710{
2711 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2712 {
2713 Output_relaxed_input_section* poris = relaxed_sections[i];
5ac169d4
DK
2714 Section_id sid(poris->relobj(), poris->shndx());
2715 Relaxation_map::const_iterator p = map.find(sid);
c0a62865 2716 gold_assert(p != map.end());
2ea97941 2717 gold_assert((*input_sections)[p->second].is_input_section());
d06fb4d1
DK
2718
2719 // Remember section order index of original input section
2720 // if it is set. Copy it to the relaxed input section.
2721 unsigned int soi =
2722 (*input_sections)[p->second].section_order_index();
2ea97941 2723 (*input_sections)[p->second] = Input_section(poris);
d06fb4d1 2724 (*input_sections)[p->second].set_section_order_index(soi);
c0a62865
DK
2725 }
2726}
2727
2728// Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2729// is a vector of pointers to Output_relaxed_input_section or its derived
2730// classes. The relaxed sections must correspond to existing input sections.
2731
2732void
2733Output_section::convert_input_sections_to_relaxed_sections(
2734 const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2735{
029ba973 2736 gold_assert(parameters->target().may_relax());
20e6d0d6 2737
c0a62865
DK
2738 // We want to make sure that restore_states does not undo the effect of
2739 // this. If there is no checkpoint active, just search the current
2740 // input section list and replace the sections there. If there is
2741 // a checkpoint, also replace the sections there.
2742
2743 // By default, we look at the whole list.
2744 size_t limit = this->input_sections_.size();
2745
2746 if (this->checkpoint_ != NULL)
20e6d0d6 2747 {
c0a62865
DK
2748 // Replace input sections with relaxed input section in the saved
2749 // copy of the input section list.
2750 if (this->checkpoint_->input_sections_saved())
20e6d0d6 2751 {
c0a62865
DK
2752 Relaxation_map map;
2753 this->build_relaxation_map(
2754 *(this->checkpoint_->input_sections()),
2755 this->checkpoint_->input_sections()->size(),
2756 &map);
2757 this->convert_input_sections_in_list_to_relaxed_sections(
2758 relaxed_sections,
2759 map,
2760 this->checkpoint_->input_sections());
2761 }
2762 else
2763 {
2764 // We have not copied the input section list yet. Instead, just
2765 // look at the portion that would be saved.
2766 limit = this->checkpoint_->input_sections_size();
20e6d0d6 2767 }
20e6d0d6 2768 }
c0a62865
DK
2769
2770 // Convert input sections in input_section_list.
2771 Relaxation_map map;
2772 this->build_relaxation_map(this->input_sections_, limit, &map);
2773 this->convert_input_sections_in_list_to_relaxed_sections(
2774 relaxed_sections,
2775 map,
2776 &this->input_sections_);
41263c05
DK
2777
2778 // Update fast look-up map.
0439c796 2779 if (this->lookup_maps_->is_valid())
41263c05
DK
2780 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2781 {
2782 Output_relaxed_input_section* poris = relaxed_sections[i];
0439c796
DK
2783 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2784 poris->shndx(), poris);
41263c05 2785 }
20e6d0d6
DK
2786}
2787
9c547ec3
ILT
2788// Update the output section flags based on input section flags.
2789
2790void
2ea97941 2791Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
9c547ec3
ILT
2792{
2793 // If we created the section with SHF_ALLOC clear, we set the
2794 // address. If we are now setting the SHF_ALLOC flag, we need to
2795 // undo that.
2796 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2ea97941 2797 && (flags & elfcpp::SHF_ALLOC) != 0)
9c547ec3
ILT
2798 this->mark_address_invalid();
2799
2ea97941 2800 this->flags_ |= (flags
9c547ec3
ILT
2801 & (elfcpp::SHF_WRITE
2802 | elfcpp::SHF_ALLOC
2803 | elfcpp::SHF_EXECINSTR));
e8cd95c7
ILT
2804
2805 if ((flags & elfcpp::SHF_MERGE) == 0)
2806 this->flags_ &=~ elfcpp::SHF_MERGE;
2807 else
2808 {
2809 if (this->current_data_size_for_child() == 0)
2810 this->flags_ |= elfcpp::SHF_MERGE;
2811 }
2812
2813 if ((flags & elfcpp::SHF_STRINGS) == 0)
2814 this->flags_ &=~ elfcpp::SHF_STRINGS;
2815 else
2816 {
2817 if (this->current_data_size_for_child() == 0)
2818 this->flags_ |= elfcpp::SHF_STRINGS;
2819 }
9c547ec3
ILT
2820}
2821
2ea97941 2822// Find the merge section into which an input section with index SHNDX in
c0a62865
DK
2823// OBJECT has been added. Return NULL if none found.
2824
2825Output_section_data*
2826Output_section::find_merge_section(const Relobj* object,
2ea97941 2827 unsigned int shndx) const
c0a62865 2828{
0439c796
DK
2829 if (!this->lookup_maps_->is_valid())
2830 this->build_lookup_maps();
2831 return this->lookup_maps_->find_merge_section(object, shndx);
2832}
2833
2834// Build the lookup maps for merge and relaxed sections. This is needs
2835// to be declared as a const methods so that it is callable with a const
2836// Output_section pointer. The method only updates states of the maps.
2837
2838void
2839Output_section::build_lookup_maps() const
2840{
2841 this->lookup_maps_->clear();
2842 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2843 p != this->input_sections_.end();
2844 ++p)
c0a62865 2845 {
0439c796
DK
2846 if (p->is_merge_section())
2847 {
2848 Output_merge_base* pomb = p->output_merge_base();
2849 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
2850 pomb->addralign());
2851 this->lookup_maps_->add_merge_section(msp, pomb);
2852 for (Output_merge_base::Input_sections::const_iterator is =
2853 pomb->input_sections_begin();
2854 is != pomb->input_sections_end();
2855 ++is)
2856 {
2857 const Const_section_id& csid = *is;
2858 this->lookup_maps_->add_merge_input_section(csid.first,
2859 csid.second, pomb);
2860 }
2861
2862 }
2863 else if (p->is_relaxed_input_section())
2864 {
2865 Output_relaxed_input_section* poris = p->relaxed_input_section();
2866 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2867 poris->shndx(), poris);
2868 }
c0a62865 2869 }
c0a62865
DK
2870}
2871
2872// Find an relaxed input section corresponding to an input section
2ea97941 2873// in OBJECT with index SHNDX.
c0a62865 2874
d6344fb5 2875const Output_relaxed_input_section*
c0a62865 2876Output_section::find_relaxed_input_section(const Relobj* object,
2ea97941 2877 unsigned int shndx) const
c0a62865 2878{
0439c796
DK
2879 if (!this->lookup_maps_->is_valid())
2880 this->build_lookup_maps();
2881 return this->lookup_maps_->find_relaxed_input_section(object, shndx);
c0a62865
DK
2882}
2883
2ea97941
ILT
2884// Given an address OFFSET relative to the start of input section
2885// SHNDX in OBJECT, return whether this address is being included in
2886// the final link. This should only be called if SHNDX in OBJECT has
730cdc88
ILT
2887// a special mapping.
2888
2889bool
2890Output_section::is_input_address_mapped(const Relobj* object,
2ea97941
ILT
2891 unsigned int shndx,
2892 off_t offset) const
730cdc88 2893{
c0a62865 2894 // Look at the Output_section_data_maps first.
2ea97941 2895 const Output_section_data* posd = this->find_merge_section(object, shndx);
c0a62865 2896 if (posd == NULL)
2ea97941 2897 posd = this->find_relaxed_input_section(object, shndx);
c0a62865
DK
2898
2899 if (posd != NULL)
2900 {
2ea97941
ILT
2901 section_offset_type output_offset;
2902 bool found = posd->output_offset(object, shndx, offset, &output_offset);
c0a62865 2903 gold_assert(found);
2ea97941 2904 return output_offset != -1;
c0a62865
DK
2905 }
2906
2907 // Fall back to the slow look-up.
730cdc88
ILT
2908 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2909 p != this->input_sections_.end();
2910 ++p)
2911 {
2ea97941
ILT
2912 section_offset_type output_offset;
2913 if (p->output_offset(object, shndx, offset, &output_offset))
2914 return output_offset != -1;
730cdc88
ILT
2915 }
2916
2917 // By default we assume that the address is mapped. This should
2918 // only be called after we have passed all sections to Layout. At
2919 // that point we should know what we are discarding.
2920 return true;
2921}
2922
2ea97941
ILT
2923// Given an address OFFSET relative to the start of input section
2924// SHNDX in object OBJECT, return the output offset relative to the
1e983657 2925// start of the input section in the output section. This should only
2ea97941 2926// be called if SHNDX in OBJECT has a special mapping.
730cdc88 2927
8383303e 2928section_offset_type
2ea97941
ILT
2929Output_section::output_offset(const Relobj* object, unsigned int shndx,
2930 section_offset_type offset) const
730cdc88 2931{
c0a62865
DK
2932 // This can only be called meaningfully when we know the data size
2933 // of this.
2934 gold_assert(this->is_data_size_valid());
730cdc88 2935
c0a62865 2936 // Look at the Output_section_data_maps first.
2ea97941 2937 const Output_section_data* posd = this->find_merge_section(object, shndx);
c0a62865 2938 if (posd == NULL)
2ea97941 2939 posd = this->find_relaxed_input_section(object, shndx);
c0a62865
DK
2940 if (posd != NULL)
2941 {
2ea97941
ILT
2942 section_offset_type output_offset;
2943 bool found = posd->output_offset(object, shndx, offset, &output_offset);
c0a62865 2944 gold_assert(found);
2ea97941 2945 return output_offset;
c0a62865
DK
2946 }
2947
2948 // Fall back to the slow look-up.
730cdc88
ILT
2949 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2950 p != this->input_sections_.end();
2951 ++p)
2952 {
2ea97941
ILT
2953 section_offset_type output_offset;
2954 if (p->output_offset(object, shndx, offset, &output_offset))
2955 return output_offset;
730cdc88
ILT
2956 }
2957 gold_unreachable();
2958}
2959
2ea97941
ILT
2960// Return the output virtual address of OFFSET relative to the start
2961// of input section SHNDX in object OBJECT.
b8e6aad9
ILT
2962
2963uint64_t
2ea97941
ILT
2964Output_section::output_address(const Relobj* object, unsigned int shndx,
2965 off_t offset) const
b8e6aad9
ILT
2966{
2967 uint64_t addr = this->address() + this->first_input_offset_;
c0a62865
DK
2968
2969 // Look at the Output_section_data_maps first.
2ea97941 2970 const Output_section_data* posd = this->find_merge_section(object, shndx);
c0a62865 2971 if (posd == NULL)
2ea97941 2972 posd = this->find_relaxed_input_section(object, shndx);
c0a62865
DK
2973 if (posd != NULL && posd->is_address_valid())
2974 {
2ea97941
ILT
2975 section_offset_type output_offset;
2976 bool found = posd->output_offset(object, shndx, offset, &output_offset);
c0a62865 2977 gold_assert(found);
2ea97941 2978 return posd->address() + output_offset;
c0a62865
DK
2979 }
2980
2981 // Fall back to the slow look-up.
b8e6aad9
ILT
2982 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2983 p != this->input_sections_.end();
2984 ++p)
2985 {
2986 addr = align_address(addr, p->addralign());
2ea97941
ILT
2987 section_offset_type output_offset;
2988 if (p->output_offset(object, shndx, offset, &output_offset))
730cdc88 2989 {
2ea97941 2990 if (output_offset == -1)
eff45813 2991 return -1ULL;
2ea97941 2992 return addr + output_offset;
730cdc88 2993 }
b8e6aad9
ILT
2994 addr += p->data_size();
2995 }
2996
2997 // If we get here, it means that we don't know the mapping for this
2998 // input section. This might happen in principle if
2999 // add_input_section were called before add_output_section_data.
3000 // But it should never actually happen.
3001
3002 gold_unreachable();
ead1e424
ILT
3003}
3004
e29e076a 3005// Find the output address of the start of the merged section for
2ea97941 3006// input section SHNDX in object OBJECT.
a9a60db6 3007
e29e076a
ILT
3008bool
3009Output_section::find_starting_output_address(const Relobj* object,
2ea97941 3010 unsigned int shndx,
e29e076a 3011 uint64_t* paddr) const
a9a60db6 3012{
c0a62865
DK
3013 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
3014 // Looking up the merge section map does not always work as we sometimes
3015 // find a merge section without its address set.
a9a60db6
ILT
3016 uint64_t addr = this->address() + this->first_input_offset_;
3017 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3018 p != this->input_sections_.end();
3019 ++p)
3020 {
3021 addr = align_address(addr, p->addralign());
3022
3023 // It would be nice if we could use the existing output_offset
3024 // method to get the output offset of input offset 0.
3025 // Unfortunately we don't know for sure that input offset 0 is
3026 // mapped at all.
2ea97941 3027 if (p->is_merge_section_for(object, shndx))
e29e076a
ILT
3028 {
3029 *paddr = addr;
3030 return true;
3031 }
a9a60db6
ILT
3032
3033 addr += p->data_size();
3034 }
e29e076a
ILT
3035
3036 // We couldn't find a merge output section for this input section.
3037 return false;
a9a60db6
ILT
3038}
3039
cdc29364
CC
3040// Update the data size of an Output_section.
3041
3042void
3043Output_section::update_data_size()
3044{
3045 if (this->input_sections_.empty())
3046 return;
3047
3048 if (this->must_sort_attached_input_sections()
3049 || this->input_section_order_specified())
3050 this->sort_attached_input_sections();
3051
3052 off_t off = this->first_input_offset_;
3053 for (Input_section_list::iterator p = this->input_sections_.begin();
3054 p != this->input_sections_.end();
3055 ++p)
3056 {
3057 off = align_address(off, p->addralign());
3058 off += p->current_data_size();
3059 }
3060
3061 this->set_current_data_size_for_child(off);
3062}
3063
27bc2bce 3064// Set the data size of an Output_section. This is where we handle
ead1e424
ILT
3065// setting the addresses of any Output_section_data objects.
3066
3067void
27bc2bce 3068Output_section::set_final_data_size()
ead1e424 3069{
9fbd3822
CC
3070 off_t data_size;
3071
ead1e424 3072 if (this->input_sections_.empty())
9fbd3822
CC
3073 data_size = this->current_data_size_for_child();
3074 else
27bc2bce 3075 {
9fbd3822
CC
3076 if (this->must_sort_attached_input_sections()
3077 || this->input_section_order_specified())
3078 this->sort_attached_input_sections();
ead1e424 3079
9fbd3822
CC
3080 uint64_t address = this->address();
3081 off_t startoff = this->offset();
3082 off_t off = startoff + this->first_input_offset_;
3083 for (Input_section_list::iterator p = this->input_sections_.begin();
3084 p != this->input_sections_.end();
3085 ++p)
3086 {
3087 off = align_address(off, p->addralign());
3088 p->set_address_and_file_offset(address + (off - startoff), off,
3089 startoff);
3090 off += p->data_size();
3091 }
3092 data_size = off - startoff;
3093 }
2fd32231 3094
9fbd3822
CC
3095 // For full incremental links, we want to allocate some patch space
3096 // in most sections for subsequent incremental updates.
3097 if (this->is_patch_space_allowed_ && parameters->incremental_full())
ead1e424 3098 {
9fbd3822 3099 double pct = parameters->options().incremental_patch();
8ea8cd50
CC
3100 size_t extra = static_cast<size_t>(data_size * pct);
3101 if (this->free_space_fill_ != NULL
3102 && this->free_space_fill_->minimum_hole_size() > extra)
3103 extra = this->free_space_fill_->minimum_hole_size();
9fbd3822
CC
3104 off_t new_size = align_address(data_size + extra, this->addralign());
3105 this->patch_space_ = new_size - data_size;
3106 gold_debug(DEBUG_INCREMENTAL,
3107 "set_final_data_size: %08lx + %08lx: section %s",
3108 static_cast<long>(data_size),
3109 static_cast<long>(this->patch_space_),
3110 this->name());
3111 data_size = new_size;
ead1e424
ILT
3112 }
3113
9fbd3822 3114 this->set_data_size(data_size);
ead1e424 3115}
9a0910c3 3116
a445fddf
ILT
3117// Reset the address and file offset.
3118
3119void
3120Output_section::do_reset_address_and_file_offset()
3121{
20e6d0d6
DK
3122 // An unallocated section has no address. Forcing this means that
3123 // we don't need special treatment for symbols defined in debug
1e5d2fb1
DK
3124 // sections. We do the same in the constructor. This does not
3125 // apply to NOLOAD sections though.
3126 if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
20e6d0d6
DK
3127 this->set_address(0);
3128
a445fddf
ILT
3129 for (Input_section_list::iterator p = this->input_sections_.begin();
3130 p != this->input_sections_.end();
3131 ++p)
3132 p->reset_address_and_file_offset();
9fbd3822
CC
3133
3134 // Remove any patch space that was added in set_final_data_size.
3135 if (this->patch_space_ > 0)
3136 {
3137 this->set_current_data_size_for_child(this->current_data_size_for_child()
3138 - this->patch_space_);
3139 this->patch_space_ = 0;
3140 }
a445fddf 3141}
9fbd3822 3142
20e6d0d6
DK
3143// Return true if address and file offset have the values after reset.
3144
3145bool
3146Output_section::do_address_and_file_offset_have_reset_values() const
3147{
3148 if (this->is_offset_valid())
3149 return false;
3150
3151 // An unallocated section has address 0 after its construction or a reset.
3152 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
3153 return this->is_address_valid() && this->address() == 0;
3154 else
3155 return !this->is_address_valid();
3156}
a445fddf 3157
7bf1f802
ILT
3158// Set the TLS offset. Called only for SHT_TLS sections.
3159
3160void
3161Output_section::do_set_tls_offset(uint64_t tls_base)
3162{
3163 this->tls_offset_ = this->address() - tls_base;
3164}
3165
2fd32231
ILT
3166// In a few cases we need to sort the input sections attached to an
3167// output section. This is used to implement the type of constructor
3168// priority ordering implemented by the GNU linker, in which the
3169// priority becomes part of the section name and the sections are
3170// sorted by name. We only do this for an output section if we see an
5393d741 3171// attached input section matching ".ctors.*", ".dtors.*",
2fd32231
ILT
3172// ".init_array.*" or ".fini_array.*".
3173
3174class Output_section::Input_section_sort_entry
3175{
3176 public:
3177 Input_section_sort_entry()
3178 : input_section_(), index_(-1U), section_has_name_(false),
3179 section_name_()
3180 { }
3181
2ea97941 3182 Input_section_sort_entry(const Input_section& input_section,
6e9ba2ca
ST
3183 unsigned int index,
3184 bool must_sort_attached_input_sections)
2ea97941
ILT
3185 : input_section_(input_section), index_(index),
3186 section_has_name_(input_section.is_input_section()
3187 || input_section.is_relaxed_input_section())
2fd32231 3188 {
6e9ba2ca
ST
3189 if (this->section_has_name_
3190 && must_sort_attached_input_sections)
2fd32231
ILT
3191 {
3192 // This is only called single-threaded from Layout::finalize,
3193 // so it is OK to lock. Unfortunately we have no way to pass
3194 // in a Task token.
3195 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
2ea97941
ILT
3196 Object* obj = (input_section.is_input_section()
3197 ? input_section.relobj()
3198 : input_section.relaxed_input_section()->relobj());
2fd32231
ILT
3199 Task_lock_obj<Object> tl(dummy_task, obj);
3200
3201 // This is a slow operation, which should be cached in
3202 // Layout::layout if this becomes a speed problem.
2ea97941 3203 this->section_name_ = obj->section_name(input_section.shndx());
2fd32231
ILT
3204 }
3205 }
3206
3207 // Return the Input_section.
3208 const Input_section&
3209 input_section() const
3210 {
3211 gold_assert(this->index_ != -1U);
3212 return this->input_section_;
3213 }
3214
3215 // The index of this entry in the original list. This is used to
3216 // make the sort stable.
3217 unsigned int
3218 index() const
3219 {
3220 gold_assert(this->index_ != -1U);
3221 return this->index_;
3222 }
3223
3224 // Whether there is a section name.
3225 bool
3226 section_has_name() const
3227 { return this->section_has_name_; }
3228
3229 // The section name.
3230 const std::string&
3231 section_name() const
3232 {
3233 gold_assert(this->section_has_name_);
3234 return this->section_name_;
3235 }
3236
ab794b6b
ILT
3237 // Return true if the section name has a priority. This is assumed
3238 // to be true if it has a dot after the initial dot.
2fd32231 3239 bool
ab794b6b 3240 has_priority() const
2fd32231
ILT
3241 {
3242 gold_assert(this->section_has_name_);
2a0ff005 3243 return this->section_name_.find('.', 1) != std::string::npos;
2fd32231
ILT
3244 }
3245
5393d741
ILT
3246 // Return the priority. Believe it or not, gcc encodes the priority
3247 // differently for .ctors/.dtors and .init_array/.fini_array
3248 // sections.
3249 unsigned int
3250 get_priority() const
3251 {
3252 gold_assert(this->section_has_name_);
3253 bool is_ctors;
3254 if (is_prefix_of(".ctors.", this->section_name_.c_str())
3255 || is_prefix_of(".dtors.", this->section_name_.c_str()))
3256 is_ctors = true;
3257 else if (is_prefix_of(".init_array.", this->section_name_.c_str())
3258 || is_prefix_of(".fini_array.", this->section_name_.c_str()))
3259 is_ctors = false;
3260 else
3261 return 0;
3262 char* end;
3263 unsigned long prio = strtoul((this->section_name_.c_str()
3264 + (is_ctors ? 7 : 12)),
3265 &end, 10);
3266 if (*end != '\0')
3267 return 0;
3268 else if (is_ctors)
3269 return 65535 - prio;
3270 else
3271 return prio;
3272 }
3273
ab794b6b
ILT
3274 // Return true if this an input file whose base name matches
3275 // FILE_NAME. The base name must have an extension of ".o", and
3276 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
3277 // This is to match crtbegin.o as well as crtbeginS.o without
3278 // getting confused by other possibilities. Overall matching the
3279 // file name this way is a dreadful hack, but the GNU linker does it
3280 // in order to better support gcc, and we need to be compatible.
2fd32231 3281 bool
5393d741
ILT
3282 match_file_name(const char* file_name) const
3283 { return Layout::match_file_name(this->input_section_.relobj(), file_name); }
2fd32231 3284
8fe2a369
ST
3285 // Returns 1 if THIS should appear before S in section order, -1 if S
3286 // appears before THIS and 0 if they are not comparable.
6e9ba2ca
ST
3287 int
3288 compare_section_ordering(const Input_section_sort_entry& s) const
3289 {
8fe2a369
ST
3290 unsigned int this_secn_index = this->input_section_.section_order_index();
3291 unsigned int s_secn_index = s.input_section().section_order_index();
3292 if (this_secn_index > 0 && s_secn_index > 0)
3293 {
3294 if (this_secn_index < s_secn_index)
3295 return 1;
3296 else if (this_secn_index > s_secn_index)
3297 return -1;
3298 }
3299 return 0;
6e9ba2ca
ST
3300 }
3301
2fd32231
ILT
3302 private:
3303 // The Input_section we are sorting.
3304 Input_section input_section_;
3305 // The index of this Input_section in the original list.
3306 unsigned int index_;
3307 // Whether this Input_section has a section name--it won't if this
3308 // is some random Output_section_data.
3309 bool section_has_name_;
3310 // The section name if there is one.
3311 std::string section_name_;
3312};
3313
3314// Return true if S1 should come before S2 in the output section.
3315
3316bool
3317Output_section::Input_section_sort_compare::operator()(
3318 const Output_section::Input_section_sort_entry& s1,
3319 const Output_section::Input_section_sort_entry& s2) const
3320{
ab794b6b
ILT
3321 // crtbegin.o must come first.
3322 bool s1_begin = s1.match_file_name("crtbegin");
3323 bool s2_begin = s2.match_file_name("crtbegin");
2fd32231
ILT
3324 if (s1_begin || s2_begin)
3325 {
3326 if (!s1_begin)
3327 return false;
3328 if (!s2_begin)
3329 return true;
3330 return s1.index() < s2.index();
3331 }
3332
ab794b6b
ILT
3333 // crtend.o must come last.
3334 bool s1_end = s1.match_file_name("crtend");
3335 bool s2_end = s2.match_file_name("crtend");
2fd32231
ILT
3336 if (s1_end || s2_end)
3337 {
3338 if (!s1_end)
3339 return true;
3340 if (!s2_end)
3341 return false;
3342 return s1.index() < s2.index();
3343 }
3344
ab794b6b
ILT
3345 // We sort all the sections with no names to the end.
3346 if (!s1.section_has_name() || !s2.section_has_name())
3347 {
3348 if (s1.section_has_name())
3349 return true;
3350 if (s2.section_has_name())
3351 return false;
3352 return s1.index() < s2.index();
3353 }
2fd32231 3354
ab794b6b 3355 // A section with a priority follows a section without a priority.
ab794b6b
ILT
3356 bool s1_has_priority = s1.has_priority();
3357 bool s2_has_priority = s2.has_priority();
3358 if (s1_has_priority && !s2_has_priority)
2fd32231 3359 return false;
ab794b6b 3360 if (!s1_has_priority && s2_has_priority)
2fd32231
ILT
3361 return true;
3362
6e9ba2ca
ST
3363 // Check if a section order exists for these sections through a section
3364 // ordering file. If sequence_num is 0, an order does not exist.
3365 int sequence_num = s1.compare_section_ordering(s2);
3366 if (sequence_num != 0)
3367 return sequence_num == 1;
3368
2fd32231
ILT
3369 // Otherwise we sort by name.
3370 int compare = s1.section_name().compare(s2.section_name());
3371 if (compare != 0)
3372 return compare < 0;
3373
3374 // Otherwise we keep the input order.
3375 return s1.index() < s2.index();
3376}
3377
2a0ff005
DK
3378// Return true if S1 should come before S2 in an .init_array or .fini_array
3379// output section.
3380
3381bool
3382Output_section::Input_section_sort_init_fini_compare::operator()(
3383 const Output_section::Input_section_sort_entry& s1,
3384 const Output_section::Input_section_sort_entry& s2) const
3385{
3386 // We sort all the sections with no names to the end.
3387 if (!s1.section_has_name() || !s2.section_has_name())
3388 {
3389 if (s1.section_has_name())
3390 return true;
3391 if (s2.section_has_name())
3392 return false;
3393 return s1.index() < s2.index();
3394 }
3395
3396 // A section without a priority follows a section with a priority.
3397 // This is the reverse of .ctors and .dtors sections.
3398 bool s1_has_priority = s1.has_priority();
3399 bool s2_has_priority = s2.has_priority();
3400 if (s1_has_priority && !s2_has_priority)
3401 return true;
3402 if (!s1_has_priority && s2_has_priority)
3403 return false;
3404
5393d741
ILT
3405 // .ctors and .dtors sections without priority come after
3406 // .init_array and .fini_array sections without priority.
3407 if (!s1_has_priority
3408 && (s1.section_name() == ".ctors" || s1.section_name() == ".dtors")
3409 && s1.section_name() != s2.section_name())
3410 return false;
3411 if (!s2_has_priority
3412 && (s2.section_name() == ".ctors" || s2.section_name() == ".dtors")
3413 && s2.section_name() != s1.section_name())
3414 return true;
3415
3416 // Sort by priority if we can.
3417 if (s1_has_priority)
3418 {
3419 unsigned int s1_prio = s1.get_priority();
3420 unsigned int s2_prio = s2.get_priority();
3421 if (s1_prio < s2_prio)
3422 return true;
3423 else if (s1_prio > s2_prio)
3424 return false;
3425 }
3426
6e9ba2ca
ST
3427 // Check if a section order exists for these sections through a section
3428 // ordering file. If sequence_num is 0, an order does not exist.
3429 int sequence_num = s1.compare_section_ordering(s2);
3430 if (sequence_num != 0)
3431 return sequence_num == 1;
3432
2a0ff005
DK
3433 // Otherwise we sort by name.
3434 int compare = s1.section_name().compare(s2.section_name());
3435 if (compare != 0)
3436 return compare < 0;
3437
3438 // Otherwise we keep the input order.
3439 return s1.index() < s2.index();
3440}
3441
8fe2a369
ST
3442// Return true if S1 should come before S2. Sections that do not match
3443// any pattern in the section ordering file are placed ahead of the sections
3444// that match some pattern.
3445
6e9ba2ca
ST
3446bool
3447Output_section::Input_section_sort_section_order_index_compare::operator()(
3448 const Output_section::Input_section_sort_entry& s1,
3449 const Output_section::Input_section_sort_entry& s2) const
3450{
8fe2a369
ST
3451 unsigned int s1_secn_index = s1.input_section().section_order_index();
3452 unsigned int s2_secn_index = s2.input_section().section_order_index();
6e9ba2ca 3453
8fe2a369
ST
3454 // Keep input order if section ordering cannot determine order.
3455 if (s1_secn_index == s2_secn_index)
3456 return s1.index() < s2.index();
3457
3458 return s1_secn_index < s2_secn_index;
6e9ba2ca
ST
3459}
3460
e9552f7e
ST
3461// This updates the section order index of input sections according to the
3462// the order specified in the mapping from Section id to order index.
3463
3464void
3465Output_section::update_section_layout(
f0558624 3466 const Section_layout_order* order_map)
e9552f7e
ST
3467{
3468 for (Input_section_list::iterator p = this->input_sections_.begin();
3469 p != this->input_sections_.end();
3470 ++p)
3471 {
3472 if (p->is_input_section()
3473 || p->is_relaxed_input_section())
3474 {
3475 Object* obj = (p->is_input_section()
3476 ? p->relobj()
3477 : p->relaxed_input_section()->relobj());
3478 unsigned int shndx = p->shndx();
3479 Section_layout_order::const_iterator it
f0558624
ST
3480 = order_map->find(Section_id(obj, shndx));
3481 if (it == order_map->end())
e9552f7e
ST
3482 continue;
3483 unsigned int section_order_index = it->second;
3484 if (section_order_index != 0)
3485 {
3486 p->set_section_order_index(section_order_index);
3487 this->set_input_section_order_specified();
3488 }
3489 }
3490 }
3491}
3492
2fd32231
ILT
3493// Sort the input sections attached to an output section.
3494
3495void
3496Output_section::sort_attached_input_sections()
3497{
3498 if (this->attached_input_sections_are_sorted_)
3499 return;
3500
20e6d0d6
DK
3501 if (this->checkpoint_ != NULL
3502 && !this->checkpoint_->input_sections_saved())
3503 this->checkpoint_->save_input_sections();
3504
2fd32231
ILT
3505 // The only thing we know about an input section is the object and
3506 // the section index. We need the section name. Recomputing this
3507 // is slow but this is an unusual case. If this becomes a speed
3508 // problem we can cache the names as required in Layout::layout.
3509
3510 // We start by building a larger vector holding a copy of each
3511 // Input_section, plus its current index in the list and its name.
3512 std::vector<Input_section_sort_entry> sort_list;
3513
3514 unsigned int i = 0;
3515 for (Input_section_list::iterator p = this->input_sections_.begin();
3516 p != this->input_sections_.end();
3517 ++p, ++i)
6e9ba2ca
ST
3518 sort_list.push_back(Input_section_sort_entry(*p, i,
3519 this->must_sort_attached_input_sections()));
2fd32231
ILT
3520
3521 // Sort the input sections.
6e9ba2ca
ST
3522 if (this->must_sort_attached_input_sections())
3523 {
3524 if (this->type() == elfcpp::SHT_PREINIT_ARRAY
3525 || this->type() == elfcpp::SHT_INIT_ARRAY
3526 || this->type() == elfcpp::SHT_FINI_ARRAY)
3527 std::sort(sort_list.begin(), sort_list.end(),
3528 Input_section_sort_init_fini_compare());
3529 else
3530 std::sort(sort_list.begin(), sort_list.end(),
3531 Input_section_sort_compare());
3532 }
2a0ff005 3533 else
6e9ba2ca 3534 {
e9552f7e 3535 gold_assert(this->input_section_order_specified());
6e9ba2ca
ST
3536 std::sort(sort_list.begin(), sort_list.end(),
3537 Input_section_sort_section_order_index_compare());
3538 }
2fd32231
ILT
3539
3540 // Copy the sorted input sections back to our list.
3541 this->input_sections_.clear();
3542 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
3543 p != sort_list.end();
3544 ++p)
3545 this->input_sections_.push_back(p->input_section());
6e9ba2ca 3546 sort_list.clear();
2fd32231
ILT
3547
3548 // Remember that we sorted the input sections, since we might get
3549 // called again.
3550 this->attached_input_sections_are_sorted_ = true;
3551}
3552
61ba1cf9
ILT
3553// Write the section header to *OSHDR.
3554
3555template<int size, bool big_endian>
3556void
16649710
ILT
3557Output_section::write_header(const Layout* layout,
3558 const Stringpool* secnamepool,
61ba1cf9
ILT
3559 elfcpp::Shdr_write<size, big_endian>* oshdr) const
3560{
3561 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
3562 oshdr->put_sh_type(this->type_);
6a74a719 3563
2ea97941 3564 elfcpp::Elf_Xword flags = this->flags_;
755ab8af 3565 if (this->info_section_ != NULL && this->info_uses_section_index_)
2ea97941
ILT
3566 flags |= elfcpp::SHF_INFO_LINK;
3567 oshdr->put_sh_flags(flags);
6a74a719 3568
61ba1cf9
ILT
3569 oshdr->put_sh_addr(this->address());
3570 oshdr->put_sh_offset(this->offset());
3571 oshdr->put_sh_size(this->data_size());
16649710
ILT
3572 if (this->link_section_ != NULL)
3573 oshdr->put_sh_link(this->link_section_->out_shndx());
3574 else if (this->should_link_to_symtab_)
886f533a 3575 oshdr->put_sh_link(layout->symtab_section_shndx());
16649710
ILT
3576 else if (this->should_link_to_dynsym_)
3577 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
3578 else
3579 oshdr->put_sh_link(this->link_);
755ab8af 3580
2ea97941 3581 elfcpp::Elf_Word info;
16649710 3582 if (this->info_section_ != NULL)
755ab8af
ILT
3583 {
3584 if (this->info_uses_section_index_)
2ea97941 3585 info = this->info_section_->out_shndx();
755ab8af 3586 else
2ea97941 3587 info = this->info_section_->symtab_index();
755ab8af 3588 }
6a74a719 3589 else if (this->info_symndx_ != NULL)
2ea97941 3590 info = this->info_symndx_->symtab_index();
16649710 3591 else
2ea97941
ILT
3592 info = this->info_;
3593 oshdr->put_sh_info(info);
755ab8af 3594
61ba1cf9
ILT
3595 oshdr->put_sh_addralign(this->addralign_);
3596 oshdr->put_sh_entsize(this->entsize_);
a2fb1b05
ILT
3597}
3598
ead1e424
ILT
3599// Write out the data. For input sections the data is written out by
3600// Object::relocate, but we have to handle Output_section_data objects
3601// here.
3602
3603void
3604Output_section::do_write(Output_file* of)
3605{
96803768
ILT
3606 gold_assert(!this->requires_postprocessing());
3607
c0a62865
DK
3608 // If the target performs relaxation, we delay filler generation until now.
3609 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3610
c51e6221
ILT
3611 off_t output_section_file_offset = this->offset();
3612 for (Fill_list::iterator p = this->fills_.begin();
3613 p != this->fills_.end();
3614 ++p)
3615 {
8851ecca 3616 std::string fill_data(parameters->target().code_fill(p->length()));
c51e6221 3617 of->write(output_section_file_offset + p->section_offset(),
a445fddf 3618 fill_data.data(), fill_data.size());
c51e6221
ILT
3619 }
3620
c0a62865 3621 off_t off = this->offset() + this->first_input_offset_;
ead1e424
ILT
3622 for (Input_section_list::iterator p = this->input_sections_.begin();
3623 p != this->input_sections_.end();
3624 ++p)
c0a62865
DK
3625 {
3626 off_t aligned_off = align_address(off, p->addralign());
3627 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3628 {
3629 size_t fill_len = aligned_off - off;
3630 std::string fill_data(parameters->target().code_fill(fill_len));
3631 of->write(off, fill_data.data(), fill_data.size());
3632 }
3633
3634 p->write(of);
3635 off = aligned_off + p->data_size();
3636 }
8ea8cd50
CC
3637
3638 // For incremental links, fill in unused chunks in debug sections
3639 // with dummy compilation unit headers.
3640 if (this->free_space_fill_ != NULL)
3641 {
3642 for (Free_list::Const_iterator p = this->free_list_.begin();
3643 p != this->free_list_.end();
3644 ++p)
3645 {
3646 off_t off = p->start_;
3647 size_t len = p->end_ - off;
3648 this->free_space_fill_->write(of, this->offset() + off, len);
3649 }
3650 if (this->patch_space_ > 0)
3651 {
3652 off_t off = this->current_data_size_for_child() - this->patch_space_;
3653 this->free_space_fill_->write(of, this->offset() + off,
3654 this->patch_space_);
3655 }
3656 }
ead1e424
ILT
3657}
3658
96803768
ILT
3659// If a section requires postprocessing, create the buffer to use.
3660
3661void
3662Output_section::create_postprocessing_buffer()
3663{
3664 gold_assert(this->requires_postprocessing());
1bedcac5
ILT
3665
3666 if (this->postprocessing_buffer_ != NULL)
3667 return;
96803768
ILT
3668
3669 if (!this->input_sections_.empty())
3670 {
3671 off_t off = this->first_input_offset_;
3672 for (Input_section_list::iterator p = this->input_sections_.begin();
3673 p != this->input_sections_.end();
3674 ++p)
3675 {
3676 off = align_address(off, p->addralign());
3677 p->finalize_data_size();
3678 off += p->data_size();
3679 }
3680 this->set_current_data_size_for_child(off);
3681 }
3682
3683 off_t buffer_size = this->current_data_size_for_child();
3684 this->postprocessing_buffer_ = new unsigned char[buffer_size];
3685}
3686
3687// Write all the data of an Output_section into the postprocessing
3688// buffer. This is used for sections which require postprocessing,
3689// such as compression. Input sections are handled by
3690// Object::Relocate.
3691
3692void
3693Output_section::write_to_postprocessing_buffer()
3694{
3695 gold_assert(this->requires_postprocessing());
3696
c0a62865
DK
3697 // If the target performs relaxation, we delay filler generation until now.
3698 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3699
96803768
ILT
3700 unsigned char* buffer = this->postprocessing_buffer();
3701 for (Fill_list::iterator p = this->fills_.begin();
3702 p != this->fills_.end();
3703 ++p)
3704 {
8851ecca 3705 std::string fill_data(parameters->target().code_fill(p->length()));
a445fddf
ILT
3706 memcpy(buffer + p->section_offset(), fill_data.data(),
3707 fill_data.size());
96803768
ILT
3708 }
3709
3710 off_t off = this->first_input_offset_;
3711 for (Input_section_list::iterator p = this->input_sections_.begin();
3712 p != this->input_sections_.end();
3713 ++p)
3714 {
c0a62865
DK
3715 off_t aligned_off = align_address(off, p->addralign());
3716 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3717 {
3718 size_t fill_len = aligned_off - off;
3719 std::string fill_data(parameters->target().code_fill(fill_len));
3720 memcpy(buffer + off, fill_data.data(), fill_data.size());
3721 }
3722
3723 p->write_to_buffer(buffer + aligned_off);
3724 off = aligned_off + p->data_size();
96803768
ILT
3725 }
3726}
3727
a445fddf
ILT
3728// Get the input sections for linker script processing. We leave
3729// behind the Output_section_data entries. Note that this may be
3730// slightly incorrect for merge sections. We will leave them behind,
3731// but it is possible that the script says that they should follow
3732// some other input sections, as in:
3733// .rodata { *(.rodata) *(.rodata.cst*) }
3734// For that matter, we don't handle this correctly:
3735// .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3736// With luck this will never matter.
3737
3738uint64_t
3739Output_section::get_input_sections(
2ea97941 3740 uint64_t address,
a445fddf 3741 const std::string& fill,
6625d24e 3742 std::list<Input_section>* input_sections)
a445fddf 3743{
20e6d0d6
DK
3744 if (this->checkpoint_ != NULL
3745 && !this->checkpoint_->input_sections_saved())
3746 this->checkpoint_->save_input_sections();
3747
0439c796
DK
3748 // Invalidate fast look-up maps.
3749 this->lookup_maps_->invalidate();
c0a62865 3750
2ea97941 3751 uint64_t orig_address = address;
a445fddf 3752
2ea97941 3753 address = align_address(address, this->addralign());
a445fddf
ILT
3754
3755 Input_section_list remaining;
3756 for (Input_section_list::iterator p = this->input_sections_.begin();
3757 p != this->input_sections_.end();
3758 ++p)
3759 {
0439c796
DK
3760 if (p->is_input_section()
3761 || p->is_relaxed_input_section()
3762 || p->is_merge_section())
6625d24e 3763 input_sections->push_back(*p);
a445fddf
ILT
3764 else
3765 {
2ea97941
ILT
3766 uint64_t aligned_address = align_address(address, p->addralign());
3767 if (aligned_address != address && !fill.empty())
a445fddf
ILT
3768 {
3769 section_size_type length =
2ea97941 3770 convert_to_section_size_type(aligned_address - address);
a445fddf
ILT
3771 std::string this_fill;
3772 this_fill.reserve(length);
3773 while (this_fill.length() + fill.length() <= length)
3774 this_fill += fill;
3775 if (this_fill.length() < length)
3776 this_fill.append(fill, 0, length - this_fill.length());
3777
3778 Output_section_data* posd = new Output_data_const(this_fill, 0);
3779 remaining.push_back(Input_section(posd));
3780 }
2ea97941 3781 address = aligned_address;
a445fddf
ILT
3782
3783 remaining.push_back(*p);
3784
3785 p->finalize_data_size();
2ea97941 3786 address += p->data_size();
a445fddf
ILT
3787 }
3788 }
3789
3790 this->input_sections_.swap(remaining);
3791 this->first_input_offset_ = 0;
3792
2ea97941
ILT
3793 uint64_t data_size = address - orig_address;
3794 this->set_current_data_size_for_child(data_size);
3795 return data_size;
a445fddf
ILT
3796}
3797
6625d24e
DK
3798// Add a script input section. SIS is an Output_section::Input_section,
3799// which can be either a plain input section or a special input section like
3800// a relaxed input section. For a special input section, its size must be
3801// finalized.
a445fddf
ILT
3802
3803void
6625d24e 3804Output_section::add_script_input_section(const Input_section& sis)
a445fddf 3805{
6625d24e
DK
3806 uint64_t data_size = sis.data_size();
3807 uint64_t addralign = sis.addralign();
2ea97941
ILT
3808 if (addralign > this->addralign_)
3809 this->addralign_ = addralign;
a445fddf
ILT
3810
3811 off_t offset_in_section = this->current_data_size_for_child();
3812 off_t aligned_offset_in_section = align_address(offset_in_section,
2ea97941 3813 addralign);
a445fddf
ILT
3814
3815 this->set_current_data_size_for_child(aligned_offset_in_section
2ea97941 3816 + data_size);
a445fddf 3817
6625d24e 3818 this->input_sections_.push_back(sis);
0439c796
DK
3819
3820 // Update fast lookup maps if necessary.
3821 if (this->lookup_maps_->is_valid())
3822 {
3823 if (sis.is_merge_section())
3824 {
3825 Output_merge_base* pomb = sis.output_merge_base();
3826 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
3827 pomb->addralign());
3828 this->lookup_maps_->add_merge_section(msp, pomb);
3829 for (Output_merge_base::Input_sections::const_iterator p =
3830 pomb->input_sections_begin();
3831 p != pomb->input_sections_end();
3832 ++p)
3833 this->lookup_maps_->add_merge_input_section(p->first, p->second,
3834 pomb);
3835 }
3836 else if (sis.is_relaxed_input_section())
3837 {
3838 Output_relaxed_input_section* poris = sis.relaxed_input_section();
3839 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3840 poris->shndx(), poris);
3841 }
3842 }
20e6d0d6
DK
3843}
3844
8923b24c 3845// Save states for relaxation.
20e6d0d6
DK
3846
3847void
3848Output_section::save_states()
3849{
3850 gold_assert(this->checkpoint_ == NULL);
3851 Checkpoint_output_section* checkpoint =
3852 new Checkpoint_output_section(this->addralign_, this->flags_,
3853 this->input_sections_,
3854 this->first_input_offset_,
3855 this->attached_input_sections_are_sorted_);
3856 this->checkpoint_ = checkpoint;
3857 gold_assert(this->fills_.empty());
3858}
3859
8923b24c
DK
3860void
3861Output_section::discard_states()
3862{
3863 gold_assert(this->checkpoint_ != NULL);
3864 delete this->checkpoint_;
3865 this->checkpoint_ = NULL;
3866 gold_assert(this->fills_.empty());
3867
0439c796
DK
3868 // Simply invalidate the fast lookup maps since we do not keep
3869 // track of them.
3870 this->lookup_maps_->invalidate();
8923b24c
DK
3871}
3872
20e6d0d6
DK
3873void
3874Output_section::restore_states()
3875{
3876 gold_assert(this->checkpoint_ != NULL);
3877 Checkpoint_output_section* checkpoint = this->checkpoint_;
3878
3879 this->addralign_ = checkpoint->addralign();
3880 this->flags_ = checkpoint->flags();
3881 this->first_input_offset_ = checkpoint->first_input_offset();
3882
3883 if (!checkpoint->input_sections_saved())
3884 {
3885 // If we have not copied the input sections, just resize it.
3886 size_t old_size = checkpoint->input_sections_size();
3887 gold_assert(this->input_sections_.size() >= old_size);
3888 this->input_sections_.resize(old_size);
3889 }
3890 else
3891 {
3892 // We need to copy the whole list. This is not efficient for
3893 // extremely large output with hundreads of thousands of input
3894 // objects. We may need to re-think how we should pass sections
3895 // to scripts.
c0a62865 3896 this->input_sections_ = *checkpoint->input_sections();
20e6d0d6
DK
3897 }
3898
3899 this->attached_input_sections_are_sorted_ =
3900 checkpoint->attached_input_sections_are_sorted();
c0a62865 3901
0439c796
DK
3902 // Simply invalidate the fast lookup maps since we do not keep
3903 // track of them.
3904 this->lookup_maps_->invalidate();
a445fddf
ILT
3905}
3906
8923b24c
DK
3907// Update the section offsets of input sections in this. This is required if
3908// relaxation causes some input sections to change sizes.
3909
3910void
3911Output_section::adjust_section_offsets()
3912{
3913 if (!this->section_offsets_need_adjustment_)
3914 return;
3915
3916 off_t off = 0;
3917 for (Input_section_list::iterator p = this->input_sections_.begin();
3918 p != this->input_sections_.end();
3919 ++p)
3920 {
3921 off = align_address(off, p->addralign());
3922 if (p->is_input_section())
3923 p->relobj()->set_section_offset(p->shndx(), off);
3924 off += p->data_size();
3925 }
3926
3927 this->section_offsets_need_adjustment_ = false;
3928}
3929
7d9e3d98
ILT
3930// Print to the map file.
3931
3932void
3933Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3934{
3935 mapfile->print_output_section(this);
3936
3937 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3938 p != this->input_sections_.end();
3939 ++p)
3940 p->print_to_mapfile(mapfile);
3941}
3942
38c5e8b4
ILT
3943// Print stats for merge sections to stderr.
3944
3945void
3946Output_section::print_merge_stats()
3947{
3948 Input_section_list::iterator p;
3949 for (p = this->input_sections_.begin();
3950 p != this->input_sections_.end();
3951 ++p)
3952 p->print_merge_stats(this->name_);
3953}
3954
cdc29364
CC
3955// Set a fixed layout for the section. Used for incremental update links.
3956
3957void
3958Output_section::set_fixed_layout(uint64_t sh_addr, off_t sh_offset,
3959 off_t sh_size, uint64_t sh_addralign)
3960{
3961 this->addralign_ = sh_addralign;
3962 this->set_current_data_size(sh_size);
3963 if ((this->flags_ & elfcpp::SHF_ALLOC) != 0)
3964 this->set_address(sh_addr);
3965 this->set_file_offset(sh_offset);
3966 this->finalize_data_size();
3967 this->free_list_.init(sh_size, false);
3968 this->has_fixed_layout_ = true;
3969}
3970
3971// Reserve space within the fixed layout for the section. Used for
3972// incremental update links.
5146f448 3973
cdc29364
CC
3974void
3975Output_section::reserve(uint64_t sh_offset, uint64_t sh_size)
3976{
3977 this->free_list_.remove(sh_offset, sh_offset + sh_size);
3978}
3979
5146f448
CC
3980// Allocate space from the free list for the section. Used for
3981// incremental update links.
3982
3983off_t
3984Output_section::allocate(off_t len, uint64_t addralign)
3985{
3986 return this->free_list_.allocate(len, addralign, 0);
3987}
3988
a2fb1b05
ILT
3989// Output segment methods.
3990
2ea97941 3991Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
22f0da72 3992 : vaddr_(0),
a2fb1b05
ILT
3993 paddr_(0),
3994 memsz_(0),
a445fddf
ILT
3995 max_align_(0),
3996 min_p_align_(0),
a2fb1b05
ILT
3997 offset_(0),
3998 filesz_(0),
2ea97941
ILT
3999 type_(type),
4000 flags_(flags),
a445fddf 4001 is_max_align_known_(false),
8a5e3e08 4002 are_addresses_set_(false),
16164a6b
ST
4003 is_large_data_segment_(false),
4004 is_unique_segment_(false)
a2fb1b05 4005{
bb321bb1
ILT
4006 // The ELF ABI specifies that a PT_TLS segment always has PF_R as
4007 // the flags.
4008 if (type == elfcpp::PT_TLS)
4009 this->flags_ = elfcpp::PF_R;
a2fb1b05
ILT
4010}
4011
22f0da72 4012// Add an Output_section to a PT_LOAD Output_segment.
a2fb1b05
ILT
4013
4014void
22f0da72
ILT
4015Output_segment::add_output_section_to_load(Layout* layout,
4016 Output_section* os,
4017 elfcpp::Elf_Word seg_flags)
a2fb1b05 4018{
22f0da72 4019 gold_assert(this->type() == elfcpp::PT_LOAD);
a3ad94ed 4020 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
a445fddf 4021 gold_assert(!this->is_max_align_known_);
8a5e3e08 4022 gold_assert(os->is_large_data_section() == this->is_large_data_segment());
75f65a3e 4023
a192ba05 4024 this->update_flags_for_output_section(seg_flags);
75f65a3e 4025
22f0da72
ILT
4026 // We don't want to change the ordering if we have a linker script
4027 // with a SECTIONS clause.
4028 Output_section_order order = os->order();
4029 if (layout->script_options()->saw_sections_clause())
4030 order = static_cast<Output_section_order>(0);
75f65a3e 4031 else
22f0da72 4032 gold_assert(order != ORDER_INVALID);
54dc6425 4033
22f0da72
ILT
4034 this->output_lists_[order].push_back(os);
4035}
9f1d377b 4036
22f0da72 4037// Add an Output_section to a non-PT_LOAD Output_segment.
1a2dff53 4038
22f0da72
ILT
4039void
4040Output_segment::add_output_section_to_nonload(Output_section* os,
4041 elfcpp::Elf_Word seg_flags)
4042{
4043 gold_assert(this->type() != elfcpp::PT_LOAD);
4044 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4045 gold_assert(!this->is_max_align_known_);
1a2dff53 4046
22f0da72 4047 this->update_flags_for_output_section(seg_flags);
9f1d377b 4048
22f0da72
ILT
4049 this->output_lists_[0].push_back(os);
4050}
8a5e3e08 4051
22f0da72
ILT
4052// Remove an Output_section from this segment. It is an error if it
4053// is not present.
8a5e3e08 4054
22f0da72
ILT
4055void
4056Output_segment::remove_output_section(Output_section* os)
4057{
4058 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
8a5e3e08 4059 {
22f0da72
ILT
4060 Output_data_list* pdl = &this->output_lists_[i];
4061 for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p)
8a5e3e08 4062 {
22f0da72 4063 if (*p == os)
8a5e3e08 4064 {
22f0da72 4065 pdl->erase(p);
8a5e3e08
ILT
4066 return;
4067 }
4068 }
f5c870d2 4069 }
1650c4ff
ILT
4070 gold_unreachable();
4071}
4072
a192ba05
ILT
4073// Add an Output_data (which need not be an Output_section) to the
4074// start of a segment.
75f65a3e
ILT
4075
4076void
4077Output_segment::add_initial_output_data(Output_data* od)
4078{
a445fddf 4079 gold_assert(!this->is_max_align_known_);
22f0da72
ILT
4080 Output_data_list::iterator p = this->output_lists_[0].begin();
4081 this->output_lists_[0].insert(p, od);
4082}
4083
4084// Return true if this segment has any sections which hold actual
4085// data, rather than being a BSS section.
4086
4087bool
4088Output_segment::has_any_data_sections() const
4089{
4090 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4091 {
4092 const Output_data_list* pdl = &this->output_lists_[i];
4093 for (Output_data_list::const_iterator p = pdl->begin();
4094 p != pdl->end();
4095 ++p)
4096 {
4097 if (!(*p)->is_section())
4098 return true;
4099 if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS)
4100 return true;
4101 }
4102 }
4103 return false;
75f65a3e
ILT
4104}
4105
5bc2f5be
CC
4106// Return whether the first data section (not counting TLS sections)
4107// is a relro section.
9f1d377b
ILT
4108
4109bool
4110Output_segment::is_first_section_relro() const
4111{
22f0da72
ILT
4112 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4113 {
5bc2f5be
CC
4114 if (i == static_cast<int>(ORDER_TLS_DATA)
4115 || i == static_cast<int>(ORDER_TLS_BSS))
4116 continue;
22f0da72
ILT
4117 const Output_data_list* pdl = &this->output_lists_[i];
4118 if (!pdl->empty())
4119 {
4120 Output_data* p = pdl->front();
4121 return p->is_section() && p->output_section()->is_relro();
4122 }
4123 }
4124 return false;
9f1d377b
ILT
4125}
4126
75f65a3e 4127// Return the maximum alignment of the Output_data in Output_segment.
75f65a3e
ILT
4128
4129uint64_t
a445fddf 4130Output_segment::maximum_alignment()
75f65a3e 4131{
a445fddf 4132 if (!this->is_max_align_known_)
ead1e424 4133 {
22f0da72
ILT
4134 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4135 {
4136 const Output_data_list* pdl = &this->output_lists_[i];
4137 uint64_t addralign = Output_segment::maximum_alignment_list(pdl);
4138 if (addralign > this->max_align_)
4139 this->max_align_ = addralign;
4140 }
a445fddf 4141 this->is_max_align_known_ = true;
ead1e424
ILT
4142 }
4143
a445fddf 4144 return this->max_align_;
75f65a3e
ILT
4145}
4146
ead1e424
ILT
4147// Return the maximum alignment of a list of Output_data.
4148
4149uint64_t
a445fddf 4150Output_segment::maximum_alignment_list(const Output_data_list* pdl)
ead1e424
ILT
4151{
4152 uint64_t ret = 0;
4153 for (Output_data_list::const_iterator p = pdl->begin();
4154 p != pdl->end();
4155 ++p)
4156 {
2ea97941
ILT
4157 uint64_t addralign = (*p)->addralign();
4158 if (addralign > ret)
4159 ret = addralign;
ead1e424
ILT
4160 }
4161 return ret;
4162}
4163
22f0da72 4164// Return whether this segment has any dynamic relocs.
4f4c5f80 4165
22f0da72
ILT
4166bool
4167Output_segment::has_dynamic_reloc() const
4f4c5f80 4168{
22f0da72
ILT
4169 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4170 if (this->has_dynamic_reloc_list(&this->output_lists_[i]))
4171 return true;
4172 return false;
4f4c5f80
ILT
4173}
4174
22f0da72 4175// Return whether this Output_data_list has any dynamic relocs.
4f4c5f80 4176
22f0da72
ILT
4177bool
4178Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const
4f4c5f80 4179{
4f4c5f80
ILT
4180 for (Output_data_list::const_iterator p = pdl->begin();
4181 p != pdl->end();
4182 ++p)
22f0da72
ILT
4183 if ((*p)->has_dynamic_reloc())
4184 return true;
4185 return false;
4f4c5f80
ILT
4186}
4187
a445fddf
ILT
4188// Set the section addresses for an Output_segment. If RESET is true,
4189// reset the addresses first. ADDR is the address and *POFF is the
4190// file offset. Set the section indexes starting with *PSHNDX.
5bc2f5be
CC
4191// INCREASE_RELRO is the size of the portion of the first non-relro
4192// section that should be included in the PT_GNU_RELRO segment.
4193// If this segment has relro sections, and has been aligned for
4194// that purpose, set *HAS_RELRO to TRUE. Return the address of
4195// the immediately following segment. Update *HAS_RELRO, *POFF,
4196// and *PSHNDX.
75f65a3e
ILT
4197
4198uint64_t
cdc29364 4199Output_segment::set_section_addresses(Layout* layout, bool reset,
1a2dff53 4200 uint64_t addr,
fd064a5b 4201 unsigned int* increase_relro,
fc497986 4202 bool* has_relro,
1a2dff53 4203 off_t* poff,
ead1e424 4204 unsigned int* pshndx)
75f65a3e 4205{
a3ad94ed 4206 gold_assert(this->type_ == elfcpp::PT_LOAD);
75f65a3e 4207
fc497986 4208 uint64_t last_relro_pad = 0;
1a2dff53
ILT
4209 off_t orig_off = *poff;
4210
5bc2f5be
CC
4211 bool in_tls = false;
4212
1a2dff53
ILT
4213 // If we have relro sections, we need to pad forward now so that the
4214 // relro sections plus INCREASE_RELRO end on a common page boundary.
4215 if (parameters->options().relro()
4216 && this->is_first_section_relro()
4217 && (!this->are_addresses_set_ || reset))
4218 {
4219 uint64_t relro_size = 0;
4220 off_t off = *poff;
fc497986 4221 uint64_t max_align = 0;
5bc2f5be 4222 for (int i = 0; i <= static_cast<int>(ORDER_RELRO_LAST); ++i)
1a2dff53 4223 {
22f0da72
ILT
4224 Output_data_list* pdl = &this->output_lists_[i];
4225 Output_data_list::iterator p;
4226 for (p = pdl->begin(); p != pdl->end(); ++p)
1a2dff53 4227 {
22f0da72
ILT
4228 if (!(*p)->is_section())
4229 break;
fc497986
CC
4230 uint64_t align = (*p)->addralign();
4231 if (align > max_align)
4232 max_align = align;
5bc2f5be
CC
4233 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4234 in_tls = true;
4235 else if (in_tls)
4236 {
4237 // Align the first non-TLS section to the alignment
4238 // of the TLS segment.
4239 align = max_align;
4240 in_tls = false;
4241 }
fc497986 4242 relro_size = align_address(relro_size, align);
5bc2f5be
CC
4243 // Ignore the size of the .tbss section.
4244 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS)
4245 && (*p)->is_section_type(elfcpp::SHT_NOBITS))
4246 continue;
22f0da72
ILT
4247 if ((*p)->is_address_valid())
4248 relro_size += (*p)->data_size();
4249 else
4250 {
4251 // FIXME: This could be faster.
4252 (*p)->set_address_and_file_offset(addr + relro_size,
4253 off + relro_size);
4254 relro_size += (*p)->data_size();
4255 (*p)->reset_address_and_file_offset();
4256 }
1a2dff53 4257 }
22f0da72
ILT
4258 if (p != pdl->end())
4259 break;
1a2dff53 4260 }
fd064a5b 4261 relro_size += *increase_relro;
fc497986
CC
4262 // Pad the total relro size to a multiple of the maximum
4263 // section alignment seen.
4264 uint64_t aligned_size = align_address(relro_size, max_align);
4265 // Note the amount of padding added after the last relro section.
4266 last_relro_pad = aligned_size - relro_size;
fc497986 4267 *has_relro = true;
1a2dff53
ILT
4268
4269 uint64_t page_align = parameters->target().common_pagesize();
4270
4271 // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
fc497986 4272 uint64_t desired_align = page_align - (aligned_size % page_align);
1a2dff53
ILT
4273 if (desired_align < *poff % page_align)
4274 *poff += page_align - *poff % page_align;
4275 *poff += desired_align - *poff % page_align;
4276 addr += *poff - orig_off;
4277 orig_off = *poff;
4278 }
4279
a445fddf
ILT
4280 if (!reset && this->are_addresses_set_)
4281 {
4282 gold_assert(this->paddr_ == addr);
4283 addr = this->vaddr_;
4284 }
4285 else
4286 {
4287 this->vaddr_ = addr;
4288 this->paddr_ = addr;
4289 this->are_addresses_set_ = true;
4290 }
75f65a3e 4291
5bc2f5be 4292 in_tls = false;
96a2b4e4 4293
75f65a3e
ILT
4294 this->offset_ = orig_off;
4295
22f0da72
ILT
4296 off_t off = 0;
4297 uint64_t ret;
4298 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4299 {
fc497986
CC
4300 if (i == static_cast<int>(ORDER_RELRO_LAST))
4301 {
4302 *poff += last_relro_pad;
4303 addr += last_relro_pad;
fd064a5b
CC
4304 if (this->output_lists_[i].empty())
4305 {
4306 // If there is nothing in the ORDER_RELRO_LAST list,
4307 // the padding will occur at the end of the relro
4308 // segment, and we need to add it to *INCREASE_RELRO.
4309 *increase_relro += last_relro_pad;
4310 }
fc497986 4311 }
5bc2f5be
CC
4312 addr = this->set_section_list_addresses(layout, reset,
4313 &this->output_lists_[i],
4314 addr, poff, pshndx, &in_tls);
22f0da72
ILT
4315 if (i < static_cast<int>(ORDER_SMALL_BSS))
4316 {
4317 this->filesz_ = *poff - orig_off;
4318 off = *poff;
4319 }
75f65a3e 4320
22f0da72
ILT
4321 ret = addr;
4322 }
96a2b4e4
ILT
4323
4324 // If the last section was a TLS section, align upward to the
4325 // alignment of the TLS segment, so that the overall size of the TLS
4326 // segment is aligned.
4327 if (in_tls)
4328 {
4329 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
4330 *poff = align_address(*poff, segment_align);
4331 }
4332
75f65a3e
ILT
4333 this->memsz_ = *poff - orig_off;
4334
4335 // Ignore the file offset adjustments made by the BSS Output_data
4336 // objects.
4337 *poff = off;
61ba1cf9
ILT
4338
4339 return ret;
75f65a3e
ILT
4340}
4341
b8e6aad9
ILT
4342// Set the addresses and file offsets in a list of Output_data
4343// structures.
75f65a3e
ILT
4344
4345uint64_t
cdc29364 4346Output_segment::set_section_list_addresses(Layout* layout, bool reset,
96a2b4e4 4347 Output_data_list* pdl,
ead1e424 4348 uint64_t addr, off_t* poff,
96a2b4e4 4349 unsigned int* pshndx,
1a2dff53 4350 bool* in_tls)
75f65a3e 4351{
ead1e424 4352 off_t startoff = *poff;
cdc29364
CC
4353 // For incremental updates, we may allocate non-fixed sections from
4354 // free space in the file. This keeps track of the high-water mark.
4355 off_t maxoff = startoff;
75f65a3e 4356
ead1e424 4357 off_t off = startoff;
75f65a3e
ILT
4358 for (Output_data_list::iterator p = pdl->begin();
4359 p != pdl->end();
4360 ++p)
4361 {
a445fddf
ILT
4362 if (reset)
4363 (*p)->reset_address_and_file_offset();
4364
cdc29364
CC
4365 // When doing an incremental update or when using a linker script,
4366 // the section will most likely already have an address.
a445fddf 4367 if (!(*p)->is_address_valid())
3802b2dd 4368 {
96a2b4e4
ILT
4369 uint64_t align = (*p)->addralign();
4370
4371 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4372 {
4373 // Give the first TLS section the alignment of the
4374 // entire TLS segment. Otherwise the TLS segment as a
4375 // whole may be misaligned.
4376 if (!*in_tls)
4377 {
4378 Output_segment* tls_segment = layout->tls_segment();
4379 gold_assert(tls_segment != NULL);
4380 uint64_t segment_align = tls_segment->maximum_alignment();
4381 gold_assert(segment_align >= align);
4382 align = segment_align;
4383
4384 *in_tls = true;
4385 }
4386 }
4387 else
4388 {
4389 // If this is the first section after the TLS segment,
4390 // align it to at least the alignment of the TLS
4391 // segment, so that the size of the overall TLS segment
4392 // is aligned.
4393 if (*in_tls)
4394 {
4395 uint64_t segment_align =
4396 layout->tls_segment()->maximum_alignment();
4397 if (segment_align > align)
4398 align = segment_align;
4399
4400 *in_tls = false;
4401 }
4402 }
4403
fb0e076f 4404 if (!parameters->incremental_update())
cdc29364
CC
4405 {
4406 off = align_address(off, align);
4407 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4408 }
4409 else
4410 {
4411 // Incremental update: allocate file space from free list.
4412 (*p)->pre_finalize_data_size();
4413 off_t current_size = (*p)->current_data_size();
4414 off = layout->allocate(current_size, align, startoff);
4415 if (off == -1)
4416 {
4417 gold_assert((*p)->output_section() != NULL);
e6455dfb
CC
4418 gold_fallback(_("out of patch space for section %s; "
4419 "relink with --incremental-full"),
4420 (*p)->output_section()->name());
cdc29364
CC
4421 }
4422 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4423 if ((*p)->data_size() > current_size)
4424 {
4425 gold_assert((*p)->output_section() != NULL);
e6455dfb
CC
4426 gold_fallback(_("%s: section changed size; "
4427 "relink with --incremental-full"),
4428 (*p)->output_section()->name());
cdc29364
CC
4429 }
4430 }
3802b2dd 4431 }
cdc29364
CC
4432 else if (parameters->incremental_update())
4433 {
4434 // For incremental updates, use the fixed offset for the
4435 // high-water mark computation.
4436 off = (*p)->offset();
4437 }
a445fddf
ILT
4438 else
4439 {
4440 // The script may have inserted a skip forward, but it
4441 // better not have moved backward.
661be1e2
ILT
4442 if ((*p)->address() >= addr + (off - startoff))
4443 off += (*p)->address() - (addr + (off - startoff));
4444 else
4445 {
4446 if (!layout->script_options()->saw_sections_clause())
4447 gold_unreachable();
4448 else
4449 {
4450 Output_section* os = (*p)->output_section();
64b1ae37
DK
4451
4452 // Cast to unsigned long long to avoid format warnings.
4453 unsigned long long previous_dot =
4454 static_cast<unsigned long long>(addr + (off - startoff));
4455 unsigned long long dot =
4456 static_cast<unsigned long long>((*p)->address());
4457
661be1e2
ILT
4458 if (os == NULL)
4459 gold_error(_("dot moves backward in linker script "
64b1ae37 4460 "from 0x%llx to 0x%llx"), previous_dot, dot);
661be1e2
ILT
4461 else
4462 gold_error(_("address of section '%s' moves backward "
4463 "from 0x%llx to 0x%llx"),
64b1ae37 4464 os->name(), previous_dot, dot);
661be1e2
ILT
4465 }
4466 }
a445fddf
ILT
4467 (*p)->set_file_offset(off);
4468 (*p)->finalize_data_size();
4469 }
ead1e424 4470
9fbd3822
CC
4471 if (parameters->incremental_update())
4472 gold_debug(DEBUG_INCREMENTAL,
4473 "set_section_list_addresses: %08lx %08lx %s",
4474 static_cast<long>(off),
4475 static_cast<long>((*p)->data_size()),
4476 ((*p)->output_section() != NULL
4477 ? (*p)->output_section()->name() : "(special)"));
4478
4479 // We want to ignore the size of a SHF_TLS SHT_NOBITS
96a2b4e4
ILT
4480 // section. Such a section does not affect the size of a
4481 // PT_LOAD segment.
4482 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
ead1e424
ILT
4483 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
4484 off += (*p)->data_size();
75f65a3e 4485
cdc29364
CC
4486 if (off > maxoff)
4487 maxoff = off;
4488
ead1e424
ILT
4489 if ((*p)->is_section())
4490 {
4491 (*p)->set_out_shndx(*pshndx);
4492 ++*pshndx;
4493 }
75f65a3e
ILT
4494 }
4495
cdc29364
CC
4496 *poff = maxoff;
4497 return addr + (maxoff - startoff);
75f65a3e
ILT
4498}
4499
4500// For a non-PT_LOAD segment, set the offset from the sections, if
1a2dff53 4501// any. Add INCREASE to the file size and the memory size.
75f65a3e
ILT
4502
4503void
1a2dff53 4504Output_segment::set_offset(unsigned int increase)
75f65a3e 4505{
a3ad94ed 4506 gold_assert(this->type_ != elfcpp::PT_LOAD);
75f65a3e 4507
a445fddf
ILT
4508 gold_assert(!this->are_addresses_set_);
4509
22f0da72
ILT
4510 // A non-load section only uses output_lists_[0].
4511
4512 Output_data_list* pdl = &this->output_lists_[0];
4513
4514 if (pdl->empty())
75f65a3e 4515 {
1a2dff53 4516 gold_assert(increase == 0);
75f65a3e
ILT
4517 this->vaddr_ = 0;
4518 this->paddr_ = 0;
a445fddf 4519 this->are_addresses_set_ = true;
75f65a3e 4520 this->memsz_ = 0;
a445fddf 4521 this->min_p_align_ = 0;
75f65a3e
ILT
4522 this->offset_ = 0;
4523 this->filesz_ = 0;
4524 return;
4525 }
4526
22f0da72 4527 // Find the first and last section by address.
5f1ab67a
ILT
4528 const Output_data* first = NULL;
4529 const Output_data* last_data = NULL;
4530 const Output_data* last_bss = NULL;
22f0da72
ILT
4531 for (Output_data_list::const_iterator p = pdl->begin();
4532 p != pdl->end();
4533 ++p)
4534 {
4535 if (first == NULL
4536 || (*p)->address() < first->address()
4537 || ((*p)->address() == first->address()
4538 && (*p)->data_size() < first->data_size()))
4539 first = *p;
4540 const Output_data** plast;
4541 if ((*p)->is_section()
4542 && (*p)->output_section()->type() == elfcpp::SHT_NOBITS)
4543 plast = &last_bss;
4544 else
4545 plast = &last_data;
4546 if (*plast == NULL
4547 || (*p)->address() > (*plast)->address()
4548 || ((*p)->address() == (*plast)->address()
4549 && (*p)->data_size() > (*plast)->data_size()))
4550 *plast = *p;
4551 }
5f1ab67a 4552
75f65a3e 4553 this->vaddr_ = first->address();
a445fddf
ILT
4554 this->paddr_ = (first->has_load_address()
4555 ? first->load_address()
4556 : this->vaddr_);
4557 this->are_addresses_set_ = true;
75f65a3e
ILT
4558 this->offset_ = first->offset();
4559
22f0da72 4560 if (last_data == NULL)
75f65a3e
ILT
4561 this->filesz_ = 0;
4562 else
5f1ab67a
ILT
4563 this->filesz_ = (last_data->address()
4564 + last_data->data_size()
4565 - this->vaddr_);
75f65a3e 4566
5f1ab67a 4567 const Output_data* last = last_bss != NULL ? last_bss : last_data;
75f65a3e
ILT
4568 this->memsz_ = (last->address()
4569 + last->data_size()
4570 - this->vaddr_);
96a2b4e4 4571
1a2dff53
ILT
4572 this->filesz_ += increase;
4573 this->memsz_ += increase;
4574
fd064a5b
CC
4575 // If this is a RELRO segment, verify that the segment ends at a
4576 // page boundary.
4577 if (this->type_ == elfcpp::PT_GNU_RELRO)
4578 {
4579 uint64_t page_align = parameters->target().common_pagesize();
4580 uint64_t segment_end = this->vaddr_ + this->memsz_;
cdc29364
CC
4581 if (parameters->incremental_update())
4582 {
4583 // The INCREASE_RELRO calculation is bypassed for an incremental
4584 // update, so we need to adjust the segment size manually here.
4585 segment_end = align_address(segment_end, page_align);
4586 this->memsz_ = segment_end - this->vaddr_;
4587 }
4588 else
4589 gold_assert(segment_end == align_address(segment_end, page_align));
fd064a5b
CC
4590 }
4591
96a2b4e4
ILT
4592 // If this is a TLS segment, align the memory size. The code in
4593 // set_section_list ensures that the section after the TLS segment
4594 // is aligned to give us room.
4595 if (this->type_ == elfcpp::PT_TLS)
4596 {
4597 uint64_t segment_align = this->maximum_alignment();
4598 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
4599 this->memsz_ = align_address(this->memsz_, segment_align);
4600 }
75f65a3e
ILT
4601}
4602
7bf1f802
ILT
4603// Set the TLS offsets of the sections in the PT_TLS segment.
4604
4605void
4606Output_segment::set_tls_offsets()
4607{
4608 gold_assert(this->type_ == elfcpp::PT_TLS);
4609
22f0da72
ILT
4610 for (Output_data_list::iterator p = this->output_lists_[0].begin();
4611 p != this->output_lists_[0].end();
7bf1f802
ILT
4612 ++p)
4613 (*p)->set_tls_offset(this->vaddr_);
4614}
4615
22f0da72 4616// Return the load address of the first section.
a445fddf
ILT
4617
4618uint64_t
4619Output_segment::first_section_load_address() const
4620{
22f0da72
ILT
4621 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4622 {
4623 const Output_data_list* pdl = &this->output_lists_[i];
4624 for (Output_data_list::const_iterator p = pdl->begin();
4625 p != pdl->end();
4626 ++p)
4627 {
4628 if ((*p)->is_section())
4629 return ((*p)->has_load_address()
4630 ? (*p)->load_address()
4631 : (*p)->address());
4632 }
4633 }
a445fddf
ILT
4634 gold_unreachable();
4635}
4636
75f65a3e
ILT
4637// Return the number of Output_sections in an Output_segment.
4638
4639unsigned int
4640Output_segment::output_section_count() const
4641{
22f0da72
ILT
4642 unsigned int ret = 0;
4643 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4644 ret += this->output_section_count_list(&this->output_lists_[i]);
4645 return ret;
75f65a3e
ILT
4646}
4647
4648// Return the number of Output_sections in an Output_data_list.
4649
4650unsigned int
4651Output_segment::output_section_count_list(const Output_data_list* pdl) const
4652{
4653 unsigned int count = 0;
4654 for (Output_data_list::const_iterator p = pdl->begin();
4655 p != pdl->end();
4656 ++p)
4657 {
4658 if ((*p)->is_section())
4659 ++count;
4660 }
4661 return count;
a2fb1b05
ILT
4662}
4663
1c4f3631
ILT
4664// Return the section attached to the list segment with the lowest
4665// load address. This is used when handling a PHDRS clause in a
4666// linker script.
4667
4668Output_section*
4669Output_segment::section_with_lowest_load_address() const
4670{
4671 Output_section* found = NULL;
4672 uint64_t found_lma = 0;
22f0da72
ILT
4673 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4674 this->lowest_load_address_in_list(&this->output_lists_[i], &found,
4675 &found_lma);
1c4f3631
ILT
4676 return found;
4677}
4678
4679// Look through a list for a section with a lower load address.
4680
4681void
4682Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4683 Output_section** found,
4684 uint64_t* found_lma) const
4685{
4686 for (Output_data_list::const_iterator p = pdl->begin();
4687 p != pdl->end();
4688 ++p)
4689 {
4690 if (!(*p)->is_section())
4691 continue;
4692 Output_section* os = static_cast<Output_section*>(*p);
4693 uint64_t lma = (os->has_load_address()
4694 ? os->load_address()
4695 : os->address());
4696 if (*found == NULL || lma < *found_lma)
4697 {
4698 *found = os;
4699 *found_lma = lma;
4700 }
4701 }
4702}
4703
61ba1cf9
ILT
4704// Write the segment data into *OPHDR.
4705
4706template<int size, bool big_endian>
4707void
ead1e424 4708Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
61ba1cf9
ILT
4709{
4710 ophdr->put_p_type(this->type_);
4711 ophdr->put_p_offset(this->offset_);
4712 ophdr->put_p_vaddr(this->vaddr_);
4713 ophdr->put_p_paddr(this->paddr_);
4714 ophdr->put_p_filesz(this->filesz_);
4715 ophdr->put_p_memsz(this->memsz_);
4716 ophdr->put_p_flags(this->flags_);
a445fddf 4717 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
61ba1cf9
ILT
4718}
4719
4720// Write the section headers into V.
4721
4722template<int size, bool big_endian>
4723unsigned char*
16649710
ILT
4724Output_segment::write_section_headers(const Layout* layout,
4725 const Stringpool* secnamepool,
ead1e424 4726 unsigned char* v,
ca09d69a 4727 unsigned int* pshndx) const
5482377d 4728{
ead1e424
ILT
4729 // Every section that is attached to a segment must be attached to a
4730 // PT_LOAD segment, so we only write out section headers for PT_LOAD
4731 // segments.
4732 if (this->type_ != elfcpp::PT_LOAD)
4733 return v;
4734
22f0da72
ILT
4735 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4736 {
4737 const Output_data_list* pdl = &this->output_lists_[i];
4738 v = this->write_section_headers_list<size, big_endian>(layout,
4739 secnamepool,
4740 pdl,
4741 v, pshndx);
4742 }
4743
61ba1cf9
ILT
4744 return v;
4745}
4746
4747template<int size, bool big_endian>
4748unsigned char*
16649710
ILT
4749Output_segment::write_section_headers_list(const Layout* layout,
4750 const Stringpool* secnamepool,
61ba1cf9 4751 const Output_data_list* pdl,
ead1e424 4752 unsigned char* v,
7d1a9ebb 4753 unsigned int* pshndx) const
61ba1cf9
ILT
4754{
4755 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4756 for (Output_data_list::const_iterator p = pdl->begin();
4757 p != pdl->end();
4758 ++p)
4759 {
4760 if ((*p)->is_section())
4761 {
5482377d 4762 const Output_section* ps = static_cast<const Output_section*>(*p);
a3ad94ed 4763 gold_assert(*pshndx == ps->out_shndx());
61ba1cf9 4764 elfcpp::Shdr_write<size, big_endian> oshdr(v);
16649710 4765 ps->write_header(layout, secnamepool, &oshdr);
61ba1cf9 4766 v += shdr_size;
ead1e424 4767 ++*pshndx;
61ba1cf9
ILT
4768 }
4769 }
4770 return v;
4771}
4772
7d9e3d98
ILT
4773// Print the output sections to the map file.
4774
4775void
4776Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4777{
4778 if (this->type() != elfcpp::PT_LOAD)
4779 return;
22f0da72
ILT
4780 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4781 this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]);
7d9e3d98
ILT
4782}
4783
4784// Print an output section list to the map file.
4785
4786void
4787Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4788 const Output_data_list* pdl) const
4789{
4790 for (Output_data_list::const_iterator p = pdl->begin();
4791 p != pdl->end();
4792 ++p)
4793 (*p)->print_to_mapfile(mapfile);
4794}
4795
a2fb1b05
ILT
4796// Output_file methods.
4797
14144f39
ILT
4798Output_file::Output_file(const char* name)
4799 : name_(name),
61ba1cf9
ILT
4800 o_(-1),
4801 file_size_(0),
c420411f 4802 base_(NULL),
516cb3d0 4803 map_is_anonymous_(false),
88597d34 4804 map_is_allocated_(false),
516cb3d0 4805 is_temporary_(false)
61ba1cf9
ILT
4806{
4807}
4808
404c2abb 4809// Try to open an existing file. Returns false if the file doesn't
aa92d6ed
CC
4810// exist, has a size of 0 or can't be mmapped. If BASE_NAME is not
4811// NULL, open that file as the base for incremental linking, and
4812// copy its contents to the new output file. This routine can
4813// be called for incremental updates, in which case WRITABLE should
4814// be true, or by the incremental-dump utility, in which case
4815// WRITABLE should be false.
404c2abb
ILT
4816
4817bool
aa92d6ed 4818Output_file::open_base_file(const char* base_name, bool writable)
404c2abb
ILT
4819{
4820 // The name "-" means "stdout".
4821 if (strcmp(this->name_, "-") == 0)
4822 return false;
4823
aa92d6ed
CC
4824 bool use_base_file = base_name != NULL;
4825 if (!use_base_file)
4826 base_name = this->name_;
4827 else if (strcmp(base_name, this->name_) == 0)
4828 gold_fatal(_("%s: incremental base and output file name are the same"),
4829 base_name);
4830
404c2abb
ILT
4831 // Don't bother opening files with a size of zero.
4832 struct stat s;
aa92d6ed
CC
4833 if (::stat(base_name, &s) != 0)
4834 {
4835 gold_info(_("%s: stat: %s"), base_name, strerror(errno));
4836 return false;
4837 }
4838 if (s.st_size == 0)
4839 {
4840 gold_info(_("%s: incremental base file is empty"), base_name);
4841 return false;
4842 }
4843
4844 // If we're using a base file, we want to open it read-only.
4845 if (use_base_file)
4846 writable = false;
404c2abb 4847
aa92d6ed
CC
4848 int oflags = writable ? O_RDWR : O_RDONLY;
4849 int o = open_descriptor(-1, base_name, oflags, 0);
404c2abb 4850 if (o < 0)
aa92d6ed
CC
4851 {
4852 gold_info(_("%s: open: %s"), base_name, strerror(errno));
4853 return false;
4854 }
4855
4856 // If the base file and the output file are different, open a
4857 // new output file and read the contents from the base file into
4858 // the newly-mapped region.
4859 if (use_base_file)
4860 {
4861 this->open(s.st_size);
dfb45471
CC
4862 ssize_t bytes_to_read = s.st_size;
4863 unsigned char* p = this->base_;
4864 while (bytes_to_read > 0)
4865 {
4866 ssize_t len = ::read(o, p, bytes_to_read);
4867 if (len < 0)
4868 {
4869 gold_info(_("%s: read failed: %s"), base_name, strerror(errno));
4870 return false;
4871 }
4872 if (len == 0)
4873 {
4874 gold_info(_("%s: file too short: read only %lld of %lld bytes"),
4875 base_name,
4876 static_cast<long long>(s.st_size - bytes_to_read),
4877 static_cast<long long>(s.st_size));
4878 return false;
4879 }
4880 p += len;
4881 bytes_to_read -= len;
4882 }
aa92d6ed
CC
4883 ::close(o);
4884 return true;
4885 }
4886
404c2abb
ILT
4887 this->o_ = o;
4888 this->file_size_ = s.st_size;
4889
aa92d6ed 4890 if (!this->map_no_anonymous(writable))
404c2abb
ILT
4891 {
4892 release_descriptor(o, true);
4893 this->o_ = -1;
4894 this->file_size_ = 0;
4895 return false;
4896 }
4897
4898 return true;
4899}
4900
61ba1cf9
ILT
4901// Open the output file.
4902
a2fb1b05 4903void
61ba1cf9 4904Output_file::open(off_t file_size)
a2fb1b05 4905{
61ba1cf9
ILT
4906 this->file_size_ = file_size;
4907
4e9d8586
ILT
4908 // Unlink the file first; otherwise the open() may fail if the file
4909 // is busy (e.g. it's an executable that's currently being executed).
4910 //
4911 // However, the linker may be part of a system where a zero-length
4912 // file is created for it to write to, with tight permissions (gcc
4913 // 2.95 did something like this). Unlinking the file would work
4914 // around those permission controls, so we only unlink if the file
4915 // has a non-zero size. We also unlink only regular files to avoid
4916 // trouble with directories/etc.
4917 //
4918 // If we fail, continue; this command is merely a best-effort attempt
4919 // to improve the odds for open().
4920
42a1b686 4921 // We let the name "-" mean "stdout"
516cb3d0 4922 if (!this->is_temporary_)
42a1b686 4923 {
516cb3d0
ILT
4924 if (strcmp(this->name_, "-") == 0)
4925 this->o_ = STDOUT_FILENO;
4926 else
4927 {
4928 struct stat s;
6a89f575
CC
4929 if (::stat(this->name_, &s) == 0
4930 && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
4931 {
4932 if (s.st_size != 0)
4933 ::unlink(this->name_);
4934 else if (!parameters->options().relocatable())
4935 {
4936 // If we don't unlink the existing file, add execute
4937 // permission where read permissions already exist
4938 // and where the umask permits.
4939 int mask = ::umask(0);
4940 ::umask(mask);
4941 s.st_mode |= (s.st_mode & 0444) >> 2;
4942 ::chmod(this->name_, s.st_mode & ~mask);
4943 }
4944 }
516cb3d0 4945
8851ecca 4946 int mode = parameters->options().relocatable() ? 0666 : 0777;
2a00e4fb
ILT
4947 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
4948 mode);
516cb3d0
ILT
4949 if (o < 0)
4950 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4951 this->o_ = o;
4952 }
42a1b686 4953 }
61ba1cf9 4954
27bc2bce
ILT
4955 this->map();
4956}
4957
4958// Resize the output file.
4959
4960void
4961Output_file::resize(off_t file_size)
4962{
c420411f
ILT
4963 // If the mmap is mapping an anonymous memory buffer, this is easy:
4964 // just mremap to the new size. If it's mapping to a file, we want
4965 // to unmap to flush to the file, then remap after growing the file.
4966 if (this->map_is_anonymous_)
4967 {
88597d34
ILT
4968 void* base;
4969 if (!this->map_is_allocated_)
4970 {
4971 base = ::mremap(this->base_, this->file_size_, file_size,
4972 MREMAP_MAYMOVE);
4973 if (base == MAP_FAILED)
4974 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
4975 }
4976 else
4977 {
4978 base = realloc(this->base_, file_size);
4979 if (base == NULL)
4980 gold_nomem();
4981 if (file_size > this->file_size_)
4982 memset(static_cast<char*>(base) + this->file_size_, 0,
4983 file_size - this->file_size_);
4984 }
c420411f
ILT
4985 this->base_ = static_cast<unsigned char*>(base);
4986 this->file_size_ = file_size;
4987 }
4988 else
4989 {
4990 this->unmap();
4991 this->file_size_ = file_size;
aa92d6ed 4992 if (!this->map_no_anonymous(true))
fdcac5af 4993 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
c420411f 4994 }
27bc2bce
ILT
4995}
4996
404c2abb
ILT
4997// Map an anonymous block of memory which will later be written to the
4998// file. Return whether the map succeeded.
26736d8e 4999
404c2abb 5000bool
26736d8e
ILT
5001Output_file::map_anonymous()
5002{
404c2abb
ILT
5003 void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
5004 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
88597d34 5005 if (base == MAP_FAILED)
404c2abb 5006 {
88597d34
ILT
5007 base = malloc(this->file_size_);
5008 if (base == NULL)
5009 return false;
5010 memset(base, 0, this->file_size_);
5011 this->map_is_allocated_ = true;
404c2abb 5012 }
88597d34
ILT
5013 this->base_ = static_cast<unsigned char*>(base);
5014 this->map_is_anonymous_ = true;
5015 return true;
26736d8e
ILT
5016}
5017
404c2abb 5018// Map the file into memory. Return whether the mapping succeeded.
aa92d6ed 5019// If WRITABLE is true, map with write access.
27bc2bce 5020
404c2abb 5021bool
aa92d6ed 5022Output_file::map_no_anonymous(bool writable)
27bc2bce 5023{
c420411f 5024 const int o = this->o_;
61ba1cf9 5025
c420411f
ILT
5026 // If the output file is not a regular file, don't try to mmap it;
5027 // instead, we'll mmap a block of memory (an anonymous buffer), and
5028 // then later write the buffer to the file.
5029 void* base;
5030 struct stat statbuf;
42a1b686
ILT
5031 if (o == STDOUT_FILENO || o == STDERR_FILENO
5032 || ::fstat(o, &statbuf) != 0
516cb3d0
ILT
5033 || !S_ISREG(statbuf.st_mode)
5034 || this->is_temporary_)
404c2abb
ILT
5035 return false;
5036
5037 // Ensure that we have disk space available for the file. If we
5038 // don't do this, it is possible that we will call munmap, close,
5039 // and exit with dirty buffers still in the cache with no assigned
5040 // disk blocks. If the disk is out of space at that point, the
5041 // output file will wind up incomplete, but we will have already
5042 // exited. The alternative to fallocate would be to use fdatasync,
5043 // but that would be a more significant performance hit.
bab9090f
CC
5044 if (writable)
5045 {
7c0640fa 5046 int err = gold_fallocate(o, 0, this->file_size_);
bab9090f
CC
5047 if (err != 0)
5048 gold_fatal(_("%s: %s"), this->name_, strerror(err));
5049 }
404c2abb
ILT
5050
5051 // Map the file into memory.
aa92d6ed
CC
5052 int prot = PROT_READ;
5053 if (writable)
5054 prot |= PROT_WRITE;
5055 base = ::mmap(NULL, this->file_size_, prot, MAP_SHARED, o, 0);
404c2abb
ILT
5056
5057 // The mmap call might fail because of file system issues: the file
5058 // system might not support mmap at all, or it might not support
5059 // mmap with PROT_WRITE.
61ba1cf9 5060 if (base == MAP_FAILED)
404c2abb
ILT
5061 return false;
5062
5063 this->map_is_anonymous_ = false;
61ba1cf9 5064 this->base_ = static_cast<unsigned char*>(base);
404c2abb
ILT
5065 return true;
5066}
5067
5068// Map the file into memory.
5069
5070void
5071Output_file::map()
5072{
7c0640fa
CC
5073 if (parameters->options().mmap_output_file()
5074 && this->map_no_anonymous(true))
404c2abb
ILT
5075 return;
5076
5077 // The mmap call might fail because of file system issues: the file
5078 // system might not support mmap at all, or it might not support
5079 // mmap with PROT_WRITE. I'm not sure which errno values we will
5080 // see in all cases, so if the mmap fails for any reason and we
5081 // don't care about file contents, try for an anonymous map.
5082 if (this->map_anonymous())
5083 return;
5084
5085 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
5086 this->name_, static_cast<unsigned long>(this->file_size_),
5087 strerror(errno));
61ba1cf9
ILT
5088}
5089
c420411f 5090// Unmap the file from memory.
61ba1cf9
ILT
5091
5092void
c420411f 5093Output_file::unmap()
61ba1cf9 5094{
88597d34
ILT
5095 if (this->map_is_anonymous_)
5096 {
5097 // We've already written out the data, so there is no reason to
5098 // waste time unmapping or freeing the memory.
5099 }
5100 else
5101 {
5102 if (::munmap(this->base_, this->file_size_) < 0)
5103 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
5104 }
61ba1cf9 5105 this->base_ = NULL;
c420411f
ILT
5106}
5107
5108// Close the output file.
5109
5110void
5111Output_file::close()
5112{
5113 // If the map isn't file-backed, we need to write it now.
516cb3d0 5114 if (this->map_is_anonymous_ && !this->is_temporary_)
c420411f
ILT
5115 {
5116 size_t bytes_to_write = this->file_size_;
6d1e3092 5117 size_t offset = 0;
c420411f
ILT
5118 while (bytes_to_write > 0)
5119 {
6d1e3092
CD
5120 ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
5121 bytes_to_write);
c420411f
ILT
5122 if (bytes_written == 0)
5123 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
5124 else if (bytes_written < 0)
5125 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
5126 else
6d1e3092
CD
5127 {
5128 bytes_to_write -= bytes_written;
5129 offset += bytes_written;
5130 }
c420411f
ILT
5131 }
5132 }
5133 this->unmap();
61ba1cf9 5134
42a1b686 5135 // We don't close stdout or stderr
516cb3d0
ILT
5136 if (this->o_ != STDOUT_FILENO
5137 && this->o_ != STDERR_FILENO
5138 && !this->is_temporary_)
42a1b686
ILT
5139 if (::close(this->o_) < 0)
5140 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
61ba1cf9 5141 this->o_ = -1;
a2fb1b05
ILT
5142}
5143
5144// Instantiate the templates we need. We could use the configure
5145// script to restrict this to only the ones for implemented targets.
5146
193a53d9 5147#ifdef HAVE_TARGET_32_LITTLE
a2fb1b05
ILT
5148template
5149off_t
5150Output_section::add_input_section<32, false>(
6e9ba2ca 5151 Layout* layout,
6fa2a40b 5152 Sized_relobj_file<32, false>* object,
2ea97941 5153 unsigned int shndx,
a2fb1b05 5154 const char* secname,
730cdc88 5155 const elfcpp::Shdr<32, false>& shdr,
a445fddf
ILT
5156 unsigned int reloc_shndx,
5157 bool have_sections_script);
193a53d9 5158#endif
a2fb1b05 5159
193a53d9 5160#ifdef HAVE_TARGET_32_BIG
a2fb1b05
ILT
5161template
5162off_t
5163Output_section::add_input_section<32, true>(
6e9ba2ca 5164 Layout* layout,
6fa2a40b 5165 Sized_relobj_file<32, true>* object,
2ea97941 5166 unsigned int shndx,
a2fb1b05 5167 const char* secname,
730cdc88 5168 const elfcpp::Shdr<32, true>& shdr,
a445fddf
ILT
5169 unsigned int reloc_shndx,
5170 bool have_sections_script);
193a53d9 5171#endif
a2fb1b05 5172
193a53d9 5173#ifdef HAVE_TARGET_64_LITTLE
a2fb1b05
ILT
5174template
5175off_t
5176Output_section::add_input_section<64, false>(
6e9ba2ca 5177 Layout* layout,
6fa2a40b 5178 Sized_relobj_file<64, false>* object,
2ea97941 5179 unsigned int shndx,
a2fb1b05 5180 const char* secname,
730cdc88 5181 const elfcpp::Shdr<64, false>& shdr,
a445fddf
ILT
5182 unsigned int reloc_shndx,
5183 bool have_sections_script);
193a53d9 5184#endif
a2fb1b05 5185
193a53d9 5186#ifdef HAVE_TARGET_64_BIG
a2fb1b05
ILT
5187template
5188off_t
5189Output_section::add_input_section<64, true>(
6e9ba2ca 5190 Layout* layout,
6fa2a40b 5191 Sized_relobj_file<64, true>* object,
2ea97941 5192 unsigned int shndx,
a2fb1b05 5193 const char* secname,
730cdc88 5194 const elfcpp::Shdr<64, true>& shdr,
a445fddf
ILT
5195 unsigned int reloc_shndx,
5196 bool have_sections_script);
193a53d9 5197#endif
a2fb1b05 5198
bbbfea06
CC
5199#ifdef HAVE_TARGET_32_LITTLE
5200template
5201class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
5202#endif
5203
5204#ifdef HAVE_TARGET_32_BIG
5205template
5206class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
5207#endif
5208
5209#ifdef HAVE_TARGET_64_LITTLE
5210template
5211class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
5212#endif
5213
5214#ifdef HAVE_TARGET_64_BIG
5215template
5216class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
5217#endif
5218
5219#ifdef HAVE_TARGET_32_LITTLE
5220template
5221class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
5222#endif
5223
5224#ifdef HAVE_TARGET_32_BIG
5225template
5226class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
5227#endif
5228
5229#ifdef HAVE_TARGET_64_LITTLE
5230template
5231class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
5232#endif
5233
5234#ifdef HAVE_TARGET_64_BIG
5235template
5236class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
5237#endif
5238
5239#ifdef HAVE_TARGET_32_LITTLE
5240template
5241class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
5242#endif
5243
5244#ifdef HAVE_TARGET_32_BIG
5245template
5246class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
5247#endif
5248
5249#ifdef HAVE_TARGET_64_LITTLE
5250template
5251class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
5252#endif
5253
5254#ifdef HAVE_TARGET_64_BIG
5255template
5256class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
5257#endif
5258
5259#ifdef HAVE_TARGET_32_LITTLE
5260template
5261class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
5262#endif
5263
5264#ifdef HAVE_TARGET_32_BIG
5265template
5266class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
5267#endif
5268
5269#ifdef HAVE_TARGET_64_LITTLE
5270template
5271class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
5272#endif
5273
5274#ifdef HAVE_TARGET_64_BIG
5275template
5276class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
5277#endif
5278
193a53d9 5279#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
5280template
5281class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
193a53d9 5282#endif
c06b7b0b 5283
193a53d9 5284#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
5285template
5286class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
193a53d9 5287#endif
c06b7b0b 5288
193a53d9 5289#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
5290template
5291class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
193a53d9 5292#endif
c06b7b0b 5293
193a53d9 5294#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
5295template
5296class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
193a53d9 5297#endif
c06b7b0b 5298
193a53d9 5299#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
5300template
5301class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
193a53d9 5302#endif
c06b7b0b 5303
193a53d9 5304#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
5305template
5306class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
193a53d9 5307#endif
c06b7b0b 5308
193a53d9 5309#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
5310template
5311class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
193a53d9 5312#endif
c06b7b0b 5313
193a53d9 5314#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
5315template
5316class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
193a53d9 5317#endif
c06b7b0b 5318
193a53d9 5319#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
5320template
5321class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
193a53d9 5322#endif
c06b7b0b 5323
193a53d9 5324#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
5325template
5326class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
193a53d9 5327#endif
c06b7b0b 5328
193a53d9 5329#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
5330template
5331class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
193a53d9 5332#endif
c06b7b0b 5333
193a53d9 5334#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
5335template
5336class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
193a53d9 5337#endif
c06b7b0b 5338
193a53d9 5339#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
5340template
5341class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
193a53d9 5342#endif
c06b7b0b 5343
193a53d9 5344#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
5345template
5346class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
193a53d9 5347#endif
c06b7b0b 5348
193a53d9 5349#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
5350template
5351class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
193a53d9 5352#endif
c06b7b0b 5353
193a53d9 5354#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
5355template
5356class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
193a53d9 5357#endif
c06b7b0b 5358
6a74a719
ILT
5359#ifdef HAVE_TARGET_32_LITTLE
5360template
5361class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
5362#endif
5363
5364#ifdef HAVE_TARGET_32_BIG
5365template
5366class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
5367#endif
5368
5369#ifdef HAVE_TARGET_64_LITTLE
5370template
5371class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
5372#endif
5373
5374#ifdef HAVE_TARGET_64_BIG
5375template
5376class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
5377#endif
5378
5379#ifdef HAVE_TARGET_32_LITTLE
5380template
5381class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
5382#endif
5383
5384#ifdef HAVE_TARGET_32_BIG
5385template
5386class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
5387#endif
5388
5389#ifdef HAVE_TARGET_64_LITTLE
5390template
5391class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
5392#endif
5393
5394#ifdef HAVE_TARGET_64_BIG
5395template
5396class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
5397#endif
5398
5399#ifdef HAVE_TARGET_32_LITTLE
5400template
5401class Output_data_group<32, false>;
5402#endif
5403
5404#ifdef HAVE_TARGET_32_BIG
5405template
5406class Output_data_group<32, true>;
5407#endif
5408
5409#ifdef HAVE_TARGET_64_LITTLE
5410template
5411class Output_data_group<64, false>;
5412#endif
5413
5414#ifdef HAVE_TARGET_64_BIG
5415template
5416class Output_data_group<64, true>;
5417#endif
5418
193a53d9 5419#ifdef HAVE_TARGET_32_LITTLE
ead1e424 5420template
dbe717ef 5421class Output_data_got<32, false>;
193a53d9 5422#endif
ead1e424 5423
193a53d9 5424#ifdef HAVE_TARGET_32_BIG
ead1e424 5425template
dbe717ef 5426class Output_data_got<32, true>;
193a53d9 5427#endif
ead1e424 5428
193a53d9 5429#ifdef HAVE_TARGET_64_LITTLE
ead1e424 5430template
dbe717ef 5431class Output_data_got<64, false>;
193a53d9 5432#endif
ead1e424 5433
193a53d9 5434#ifdef HAVE_TARGET_64_BIG
ead1e424 5435template
dbe717ef 5436class Output_data_got<64, true>;
193a53d9 5437#endif
ead1e424 5438
a2fb1b05 5439} // End namespace gold.