]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gold/symtab.cc
* config/tc-avr.c (mcu_types): Add atmega32m1.
[thirdparty/binutils-gdb.git] / gold / symtab.cc
CommitLineData
14bfc3f5
ILT
1// symtab.cc -- the gold symbol table
2
e5756efb 3// Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
6cb15b7f
ILT
4// Written by Ian Lance Taylor <iant@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
14bfc3f5
ILT
23#include "gold.h"
24
04bf7072 25#include <cstring>
14bfc3f5 26#include <stdint.h>
04bf7072 27#include <algorithm>
70e654ba 28#include <set>
14bfc3f5
ILT
29#include <string>
30#include <utility>
a2b1aa12 31#include "demangle.h"
14bfc3f5
ILT
32
33#include "object.h"
70e654ba 34#include "dwarf_reader.h"
dbe717ef 35#include "dynobj.h"
75f65a3e 36#include "output.h"
61ba1cf9 37#include "target.h"
645f8123 38#include "workqueue.h"
14bfc3f5
ILT
39#include "symtab.h"
40
41namespace gold
42{
43
44// Class Symbol.
45
ead1e424
ILT
46// Initialize fields in Symbol. This initializes everything except u_
47// and source_.
14bfc3f5 48
14bfc3f5 49void
ead1e424
ILT
50Symbol::init_fields(const char* name, const char* version,
51 elfcpp::STT type, elfcpp::STB binding,
52 elfcpp::STV visibility, unsigned char nonvis)
14bfc3f5
ILT
53{
54 this->name_ = name;
55 this->version_ = version;
c06b7b0b
ILT
56 this->symtab_index_ = 0;
57 this->dynsym_index_ = 0;
0a65a3a7 58 this->got_offsets_.init();
f4151f89 59 this->plt_offset_ = 0;
ead1e424
ILT
60 this->type_ = type;
61 this->binding_ = binding;
62 this->visibility_ = visibility;
63 this->nonvis_ = nonvis;
64 this->is_target_special_ = false;
1564db8d
ILT
65 this->is_def_ = false;
66 this->is_forwarder_ = false;
aeddab66 67 this->has_alias_ = false;
c06b7b0b 68 this->needs_dynsym_entry_ = false;
008db82e 69 this->in_reg_ = false;
ead1e424 70 this->in_dyn_ = false;
f4151f89 71 this->has_plt_offset_ = false;
f6ce93d6 72 this->has_warning_ = false;
46fe1623 73 this->is_copied_from_dynobj_ = false;
55a93433 74 this->is_forced_local_ = false;
ead1e424
ILT
75}
76
a2b1aa12
ILT
77// Return the demangled version of the symbol's name, but only
78// if the --demangle flag was set.
79
80static std::string
81demangle(const char* name)
82{
086a1841 83 if (!parameters->options().do_demangle())
ff541f30
ILT
84 return name;
85
a2b1aa12
ILT
86 // cplus_demangle allocates memory for the result it returns,
87 // and returns NULL if the name is already demangled.
88 char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
89 if (demangled_name == NULL)
90 return name;
91
92 std::string retval(demangled_name);
93 free(demangled_name);
94 return retval;
95}
96
97std::string
98Symbol::demangled_name() const
99{
ff541f30 100 return demangle(this->name());
a2b1aa12
ILT
101}
102
ead1e424
ILT
103// Initialize the fields in the base class Symbol for SYM in OBJECT.
104
105template<int size, bool big_endian>
106void
107Symbol::init_base(const char* name, const char* version, Object* object,
108 const elfcpp::Sym<size, big_endian>& sym)
109{
110 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
111 sym.get_st_visibility(), sym.get_st_nonvis());
112 this->u_.from_object.object = object;
113 // FIXME: Handle SHN_XINDEX.
16649710 114 this->u_.from_object.shndx = sym.get_st_shndx();
ead1e424 115 this->source_ = FROM_OBJECT;
008db82e 116 this->in_reg_ = !object->is_dynamic();
1564db8d 117 this->in_dyn_ = object->is_dynamic();
14bfc3f5
ILT
118}
119
ead1e424
ILT
120// Initialize the fields in the base class Symbol for a symbol defined
121// in an Output_data.
122
123void
124Symbol::init_base(const char* name, Output_data* od, elfcpp::STT type,
125 elfcpp::STB binding, elfcpp::STV visibility,
126 unsigned char nonvis, bool offset_is_from_end)
127{
128 this->init_fields(name, NULL, type, binding, visibility, nonvis);
129 this->u_.in_output_data.output_data = od;
130 this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
131 this->source_ = IN_OUTPUT_DATA;
008db82e 132 this->in_reg_ = true;
ead1e424
ILT
133}
134
135// Initialize the fields in the base class Symbol for a symbol defined
136// in an Output_segment.
137
138void
139Symbol::init_base(const char* name, Output_segment* os, elfcpp::STT type,
140 elfcpp::STB binding, elfcpp::STV visibility,
141 unsigned char nonvis, Segment_offset_base offset_base)
142{
143 this->init_fields(name, NULL, type, binding, visibility, nonvis);
144 this->u_.in_output_segment.output_segment = os;
145 this->u_.in_output_segment.offset_base = offset_base;
146 this->source_ = IN_OUTPUT_SEGMENT;
008db82e 147 this->in_reg_ = true;
ead1e424
ILT
148}
149
150// Initialize the fields in the base class Symbol for a symbol defined
151// as a constant.
152
153void
154Symbol::init_base(const char* name, elfcpp::STT type,
155 elfcpp::STB binding, elfcpp::STV visibility,
156 unsigned char nonvis)
157{
158 this->init_fields(name, NULL, type, binding, visibility, nonvis);
159 this->source_ = CONSTANT;
008db82e 160 this->in_reg_ = true;
ead1e424
ILT
161}
162
c7912668
ILT
163// Allocate a common symbol in the base.
164
165void
166Symbol::allocate_base_common(Output_data* od)
167{
168 gold_assert(this->is_common());
169 this->source_ = IN_OUTPUT_DATA;
170 this->u_.in_output_data.output_data = od;
171 this->u_.in_output_data.offset_is_from_end = false;
172}
173
ead1e424 174// Initialize the fields in Sized_symbol for SYM in OBJECT.
14bfc3f5
ILT
175
176template<int size>
177template<bool big_endian>
178void
179Sized_symbol<size>::init(const char* name, const char* version, Object* object,
180 const elfcpp::Sym<size, big_endian>& sym)
181{
182 this->init_base(name, version, object, sym);
183 this->value_ = sym.get_st_value();
ead1e424
ILT
184 this->symsize_ = sym.get_st_size();
185}
186
187// Initialize the fields in Sized_symbol for a symbol defined in an
188// Output_data.
189
190template<int size>
191void
192Sized_symbol<size>::init(const char* name, Output_data* od,
193 Value_type value, Size_type symsize,
194 elfcpp::STT type, elfcpp::STB binding,
195 elfcpp::STV visibility, unsigned char nonvis,
196 bool offset_is_from_end)
197{
198 this->init_base(name, od, type, binding, visibility, nonvis,
199 offset_is_from_end);
200 this->value_ = value;
201 this->symsize_ = symsize;
202}
203
204// Initialize the fields in Sized_symbol for a symbol defined in an
205// Output_segment.
206
207template<int size>
208void
209Sized_symbol<size>::init(const char* name, Output_segment* os,
210 Value_type value, Size_type symsize,
211 elfcpp::STT type, elfcpp::STB binding,
212 elfcpp::STV visibility, unsigned char nonvis,
213 Segment_offset_base offset_base)
214{
215 this->init_base(name, os, type, binding, visibility, nonvis, offset_base);
216 this->value_ = value;
217 this->symsize_ = symsize;
218}
219
220// Initialize the fields in Sized_symbol for a symbol defined as a
221// constant.
222
223template<int size>
224void
225Sized_symbol<size>::init(const char* name, Value_type value, Size_type symsize,
226 elfcpp::STT type, elfcpp::STB binding,
227 elfcpp::STV visibility, unsigned char nonvis)
228{
229 this->init_base(name, type, binding, visibility, nonvis);
230 this->value_ = value;
231 this->symsize_ = symsize;
14bfc3f5
ILT
232}
233
c7912668
ILT
234// Allocate a common symbol.
235
236template<int size>
237void
238Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
239{
240 this->allocate_base_common(od);
241 this->value_ = value;
242}
243
436ca963
ILT
244// Return true if this symbol should be added to the dynamic symbol
245// table.
246
247inline bool
248Symbol::should_add_dynsym_entry() const
249{
250 // If the symbol is used by a dynamic relocation, we need to add it.
251 if (this->needs_dynsym_entry())
252 return true;
253
55a93433
ILT
254 // If the symbol was forced local in a version script, do not add it.
255 if (this->is_forced_local())
256 return false;
257
436ca963
ILT
258 // If exporting all symbols or building a shared library,
259 // and the symbol is defined in a regular object and is
260 // externally visible, we need to add it.
8851ecca 261 if ((parameters->options().export_dynamic() || parameters->options().shared())
436ca963
ILT
262 && !this->is_from_dynobj()
263 && this->is_externally_visible())
264 return true;
265
266 return false;
267}
268
b3b74ddc
ILT
269// Return true if the final value of this symbol is known at link
270// time.
271
272bool
273Symbol::final_value_is_known() const
274{
275 // If we are not generating an executable, then no final values are
276 // known, since they will change at runtime.
8851ecca 277 if (parameters->options().shared() || parameters->options().relocatable())
b3b74ddc
ILT
278 return false;
279
280 // If the symbol is not from an object file, then it is defined, and
281 // known.
282 if (this->source_ != FROM_OBJECT)
283 return true;
284
285 // If the symbol is from a dynamic object, then the final value is
286 // not known.
287 if (this->object()->is_dynamic())
288 return false;
289
290 // If the symbol is not undefined (it is defined or common), then
291 // the final value is known.
292 if (!this->is_undefined())
293 return true;
294
295 // If the symbol is undefined, then whether the final value is known
296 // depends on whether we are doing a static link. If we are doing a
297 // dynamic link, then the final value could be filled in at runtime.
298 // This could reasonably be the case for a weak undefined symbol.
299 return parameters->doing_static_link();
300}
301
77e65537 302// Return the output section where this symbol is defined.
a445fddf 303
77e65537
ILT
304Output_section*
305Symbol::output_section() const
a445fddf
ILT
306{
307 switch (this->source_)
308 {
309 case FROM_OBJECT:
77e65537
ILT
310 {
311 unsigned int shndx = this->u_.from_object.shndx;
312 if (shndx != elfcpp::SHN_UNDEF && shndx < elfcpp::SHN_LORESERVE)
313 {
314 gold_assert(!this->u_.from_object.object->is_dynamic());
315 Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
316 section_offset_type dummy;
317 return relobj->output_section(shndx, &dummy);
318 }
319 return NULL;
320 }
321
a445fddf 322 case IN_OUTPUT_DATA:
77e65537
ILT
323 return this->u_.in_output_data.output_data->output_section();
324
a445fddf 325 case IN_OUTPUT_SEGMENT:
a445fddf 326 case CONSTANT:
77e65537
ILT
327 return NULL;
328
329 default:
330 gold_unreachable();
331 }
332}
333
334// Set the symbol's output section. This is used for symbols defined
335// in scripts. This should only be called after the symbol table has
336// been finalized.
337
338void
339Symbol::set_output_section(Output_section* os)
340{
341 switch (this->source_)
342 {
343 case FROM_OBJECT:
344 case IN_OUTPUT_DATA:
345 gold_assert(this->output_section() == os);
346 break;
347 case CONSTANT:
348 this->source_ = IN_OUTPUT_DATA;
349 this->u_.in_output_data.output_data = os;
350 this->u_.in_output_data.offset_is_from_end = false;
351 break;
352 case IN_OUTPUT_SEGMENT:
a445fddf
ILT
353 default:
354 gold_unreachable();
355 }
356}
357
14bfc3f5
ILT
358// Class Symbol_table.
359
09124467
ILT
360Symbol_table::Symbol_table(unsigned int count,
361 const Version_script_info& version_script)
6d013333 362 : saw_undefined_(0), offset_(0), table_(count), namepool_(),
55a93433
ILT
363 forwarders_(), commons_(), forced_locals_(), warnings_(),
364 version_script_(version_script)
14bfc3f5 365{
6d013333 366 namepool_.reserve(count);
14bfc3f5
ILT
367}
368
369Symbol_table::~Symbol_table()
370{
371}
372
ad8f37d1 373// The hash function. The key values are Stringpool keys.
14bfc3f5 374
ad8f37d1 375inline size_t
14bfc3f5
ILT
376Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key& key) const
377{
f0641a0b 378 return key.first ^ key.second;
14bfc3f5
ILT
379}
380
ad8f37d1
ILT
381// The symbol table key equality function. This is called with
382// Stringpool keys.
14bfc3f5 383
ad8f37d1 384inline bool
14bfc3f5
ILT
385Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
386 const Symbol_table_key& k2) const
387{
388 return k1.first == k2.first && k1.second == k2.second;
389}
390
dd8670e5 391// Make TO a symbol which forwards to FROM.
14bfc3f5
ILT
392
393void
394Symbol_table::make_forwarder(Symbol* from, Symbol* to)
395{
a3ad94ed
ILT
396 gold_assert(from != to);
397 gold_assert(!from->is_forwarder() && !to->is_forwarder());
14bfc3f5
ILT
398 this->forwarders_[from] = to;
399 from->set_forwarder();
400}
401
61ba1cf9
ILT
402// Resolve the forwards from FROM, returning the real symbol.
403
14bfc3f5 404Symbol*
c06b7b0b 405Symbol_table::resolve_forwards(const Symbol* from) const
14bfc3f5 406{
a3ad94ed 407 gold_assert(from->is_forwarder());
c06b7b0b 408 Unordered_map<const Symbol*, Symbol*>::const_iterator p =
14bfc3f5 409 this->forwarders_.find(from);
a3ad94ed 410 gold_assert(p != this->forwarders_.end());
14bfc3f5
ILT
411 return p->second;
412}
413
61ba1cf9
ILT
414// Look up a symbol by name.
415
416Symbol*
417Symbol_table::lookup(const char* name, const char* version) const
418{
f0641a0b
ILT
419 Stringpool::Key name_key;
420 name = this->namepool_.find(name, &name_key);
61ba1cf9
ILT
421 if (name == NULL)
422 return NULL;
f0641a0b
ILT
423
424 Stringpool::Key version_key = 0;
61ba1cf9
ILT
425 if (version != NULL)
426 {
f0641a0b 427 version = this->namepool_.find(version, &version_key);
61ba1cf9
ILT
428 if (version == NULL)
429 return NULL;
430 }
431
f0641a0b 432 Symbol_table_key key(name_key, version_key);
61ba1cf9
ILT
433 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
434 if (p == this->table_.end())
435 return NULL;
436 return p->second;
437}
438
14bfc3f5
ILT
439// Resolve a Symbol with another Symbol. This is only used in the
440// unusual case where there are references to both an unversioned
441// symbol and a symbol with a version, and we then discover that that
1564db8d
ILT
442// version is the default version. Because this is unusual, we do
443// this the slow way, by converting back to an ELF symbol.
14bfc3f5 444
1564db8d 445template<int size, bool big_endian>
14bfc3f5 446void
14b31740 447Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from,
7d1a9ebb 448 const char* version)
14bfc3f5 449{
1564db8d
ILT
450 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
451 elfcpp::Sym_write<size, big_endian> esym(buf);
452 // We don't bother to set the st_name field.
453 esym.put_st_value(from->value());
454 esym.put_st_size(from->symsize());
455 esym.put_st_info(from->binding(), from->type());
ead1e424 456 esym.put_st_other(from->visibility(), from->nonvis());
16649710 457 esym.put_st_shndx(from->shndx());
70e654ba 458 this->resolve(to, esym.sym(), esym.sym(), from->object(), version);
1ebd95fd
ILT
459 if (from->in_reg())
460 to->set_in_reg();
461 if (from->in_dyn())
462 to->set_in_dyn();
14bfc3f5
ILT
463}
464
55a93433
ILT
465// Record that a symbol is forced to be local by a version script.
466
467void
468Symbol_table::force_local(Symbol* sym)
469{
470 if (!sym->is_defined() && !sym->is_common())
471 return;
472 if (sym->is_forced_local())
473 {
474 // We already got this one.
475 return;
476 }
477 sym->set_is_forced_local();
478 this->forced_locals_.push_back(sym);
479}
480
14bfc3f5
ILT
481// Add one symbol from OBJECT to the symbol table. NAME is symbol
482// name and VERSION is the version; both are canonicalized. DEF is
483// whether this is the default version.
484
485// If DEF is true, then this is the definition of a default version of
486// a symbol. That means that any lookup of NAME/NULL and any lookup
487// of NAME/VERSION should always return the same symbol. This is
488// obvious for references, but in particular we want to do this for
489// definitions: overriding NAME/NULL should also override
490// NAME/VERSION. If we don't do that, it would be very hard to
491// override functions in a shared library which uses versioning.
492
493// We implement this by simply making both entries in the hash table
494// point to the same Symbol structure. That is easy enough if this is
495// the first time we see NAME/NULL or NAME/VERSION, but it is possible
496// that we have seen both already, in which case they will both have
497// independent entries in the symbol table. We can't simply change
498// the symbol table entry, because we have pointers to the entries
499// attached to the object files. So we mark the entry attached to the
500// object file as a forwarder, and record it in the forwarders_ map.
501// Note that entries in the hash table will never be marked as
502// forwarders.
70e654ba
ILT
503//
504// SYM and ORIG_SYM are almost always the same. ORIG_SYM is the
505// symbol exactly as it existed in the input file. SYM is usually
506// that as well, but can be modified, for instance if we determine
507// it's in a to-be-discarded section.
14bfc3f5
ILT
508
509template<int size, bool big_endian>
aeddab66 510Sized_symbol<size>*
f6ce93d6 511Symbol_table::add_from_object(Object* object,
14bfc3f5 512 const char *name,
f0641a0b
ILT
513 Stringpool::Key name_key,
514 const char *version,
515 Stringpool::Key version_key,
516 bool def,
70e654ba
ILT
517 const elfcpp::Sym<size, big_endian>& sym,
518 const elfcpp::Sym<size, big_endian>& orig_sym)
14bfc3f5
ILT
519{
520 Symbol* const snull = NULL;
521 std::pair<typename Symbol_table_type::iterator, bool> ins =
f0641a0b
ILT
522 this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
523 snull));
14bfc3f5
ILT
524
525 std::pair<typename Symbol_table_type::iterator, bool> insdef =
526 std::make_pair(this->table_.end(), false);
527 if (def)
528 {
f0641a0b
ILT
529 const Stringpool::Key vnull_key = 0;
530 insdef = this->table_.insert(std::make_pair(std::make_pair(name_key,
531 vnull_key),
14bfc3f5
ILT
532 snull));
533 }
534
535 // ins.first: an iterator, which is a pointer to a pair.
536 // ins.first->first: the key (a pair of name and version).
537 // ins.first->second: the value (Symbol*).
538 // ins.second: true if new entry was inserted, false if not.
539
1564db8d 540 Sized_symbol<size>* ret;
ead1e424
ILT
541 bool was_undefined;
542 bool was_common;
14bfc3f5
ILT
543 if (!ins.second)
544 {
545 // We already have an entry for NAME/VERSION.
7d1a9ebb 546 ret = this->get_sized_symbol<size>(ins.first->second);
a3ad94ed 547 gold_assert(ret != NULL);
ead1e424
ILT
548
549 was_undefined = ret->is_undefined();
550 was_common = ret->is_common();
551
70e654ba 552 this->resolve(ret, sym, orig_sym, object, version);
14bfc3f5
ILT
553
554 if (def)
555 {
556 if (insdef.second)
557 {
558 // This is the first time we have seen NAME/NULL. Make
559 // NAME/NULL point to NAME/VERSION.
560 insdef.first->second = ret;
561 }
99f8faca
ILT
562 else if (insdef.first->second != ret
563 && insdef.first->second->is_undefined())
14bfc3f5
ILT
564 {
565 // This is the unfortunate case where we already have
99f8faca
ILT
566 // entries for both NAME/VERSION and NAME/NULL. Note
567 // that we don't want to combine them if the existing
568 // symbol is going to override the new one. FIXME: We
569 // currently just test is_undefined, but this may not do
570 // the right thing if the existing symbol is from a
571 // shared library and the new one is from a regular
572 // object.
573
274e99f9 574 const Sized_symbol<size>* sym2;
7d1a9ebb
ILT
575 sym2 = this->get_sized_symbol<size>(insdef.first->second);
576 Symbol_table::resolve<size, big_endian>(ret, sym2, version);
14bfc3f5
ILT
577 this->make_forwarder(insdef.first->second, ret);
578 insdef.first->second = ret;
579 }
580 }
581 }
582 else
583 {
584 // This is the first time we have seen NAME/VERSION.
a3ad94ed 585 gold_assert(ins.first->second == NULL);
ead1e424
ILT
586
587 was_undefined = false;
588 was_common = false;
589
14bfc3f5
ILT
590 if (def && !insdef.second)
591 {
14b31740
ILT
592 // We already have an entry for NAME/NULL. If we override
593 // it, then change it to NAME/VERSION.
7d1a9ebb 594 ret = this->get_sized_symbol<size>(insdef.first->second);
70e654ba 595 this->resolve(ret, sym, orig_sym, object, version);
14bfc3f5
ILT
596 ins.first->second = ret;
597 }
598 else
599 {
f6ce93d6 600 Sized_target<size, big_endian>* target =
7d1a9ebb 601 object->sized_target<size, big_endian>();
1564db8d
ILT
602 if (!target->has_make_symbol())
603 ret = new Sized_symbol<size>();
604 else
14bfc3f5 605 {
1564db8d
ILT
606 ret = target->make_symbol();
607 if (ret == NULL)
14bfc3f5
ILT
608 {
609 // This means that we don't want a symbol table
610 // entry after all.
611 if (!def)
612 this->table_.erase(ins.first);
613 else
614 {
615 this->table_.erase(insdef.first);
616 // Inserting insdef invalidated ins.
f0641a0b
ILT
617 this->table_.erase(std::make_pair(name_key,
618 version_key));
14bfc3f5
ILT
619 }
620 return NULL;
621 }
622 }
14bfc3f5 623
1564db8d
ILT
624 ret->init(name, version, object, sym);
625
14bfc3f5
ILT
626 ins.first->second = ret;
627 if (def)
628 {
629 // This is the first time we have seen NAME/NULL. Point
630 // it at the new entry for NAME/VERSION.
a3ad94ed 631 gold_assert(insdef.second);
14bfc3f5
ILT
632 insdef.first->second = ret;
633 }
634 }
635 }
636
ead1e424
ILT
637 // Record every time we see a new undefined symbol, to speed up
638 // archive groups.
639 if (!was_undefined && ret->is_undefined())
640 ++this->saw_undefined_;
641
642 // Keep track of common symbols, to speed up common symbol
643 // allocation.
644 if (!was_common && ret->is_common())
645 this->commons_.push_back(ret);
646
be3e6201
ILT
647 if (def)
648 ret->set_is_default();
14bfc3f5
ILT
649 return ret;
650}
651
f6ce93d6 652// Add all the symbols in a relocatable object to the hash table.
14bfc3f5
ILT
653
654template<int size, bool big_endian>
655void
dbe717ef
ILT
656Symbol_table::add_from_relobj(
657 Sized_relobj<size, big_endian>* relobj,
f6ce93d6 658 const unsigned char* syms,
14bfc3f5
ILT
659 size_t count,
660 const char* sym_names,
661 size_t sym_name_size,
730cdc88 662 typename Sized_relobj<size, big_endian>::Symbols* sympointers)
14bfc3f5 663{
9025d29d 664 gold_assert(size == relobj->target()->get_size());
8851ecca 665 gold_assert(size == parameters->target().get_size());
14bfc3f5 666
a783673b
ILT
667 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
668
88dd47ac
ILT
669 const bool just_symbols = relobj->just_symbols();
670
f6ce93d6 671 const unsigned char* p = syms;
a783673b 672 for (size_t i = 0; i < count; ++i, p += sym_size)
14bfc3f5
ILT
673 {
674 elfcpp::Sym<size, big_endian> sym(p);
a783673b 675 elfcpp::Sym<size, big_endian>* psym = &sym;
14bfc3f5 676
a783673b 677 unsigned int st_name = psym->get_st_name();
14bfc3f5
ILT
678 if (st_name >= sym_name_size)
679 {
75f2446e
ILT
680 relobj->error(_("bad global symbol name offset %u at %zu"),
681 st_name, i);
682 continue;
14bfc3f5
ILT
683 }
684
dbe717ef
ILT
685 const char* name = sym_names + st_name;
686
a783673b
ILT
687 // A symbol defined in a section which we are not including must
688 // be treated as an undefined symbol.
689 unsigned char symbuf[sym_size];
690 elfcpp::Sym<size, big_endian> sym2(symbuf);
691 unsigned int st_shndx = psym->get_st_shndx();
692 if (st_shndx != elfcpp::SHN_UNDEF
693 && st_shndx < elfcpp::SHN_LORESERVE
dbe717ef 694 && !relobj->is_section_included(st_shndx))
a783673b
ILT
695 {
696 memcpy(symbuf, p, sym_size);
697 elfcpp::Sym_write<size, big_endian> sw(symbuf);
698 sw.put_st_shndx(elfcpp::SHN_UNDEF);
699 psym = &sym2;
700 }
701
14bfc3f5
ILT
702 // In an object file, an '@' in the name separates the symbol
703 // name from the version name. If there are two '@' characters,
704 // this is the default version.
705 const char* ver = strchr(name, '@');
09124467 706 int namelen = 0;
55a93433 707 // DEF: is the version default? LOCAL: is the symbol forced local?
09124467 708 bool def = false;
55a93433 709 bool local = false;
09124467
ILT
710
711 if (ver != NULL)
712 {
713 // The symbol name is of the form foo@VERSION or foo@@VERSION
714 namelen = ver - name;
715 ++ver;
716 if (*ver == '@')
717 {
718 def = true;
719 ++ver;
720 }
721 }
5871526f
ILT
722 // We don't want to assign a version to an undefined symbol,
723 // even if it is listed in the version script. FIXME: What
724 // about a common symbol?
725 else if (!version_script_.empty()
726 && psym->get_st_shndx() != elfcpp::SHN_UNDEF)
09124467
ILT
727 {
728 // The symbol name did not have a version, but
729 // the version script may assign a version anyway.
730 namelen = strlen(name);
731 def = true;
55a93433 732 // Check the global: entries from the version script.
09124467
ILT
733 const std::string& version =
734 version_script_.get_symbol_version(name);
735 if (!version.empty())
736 ver = version.c_str();
55a93433
ILT
737 // Check the local: entries from the version script
738 if (version_script_.symbol_is_local(name))
739 local = true;
09124467 740 }
14bfc3f5 741
88dd47ac
ILT
742 if (just_symbols)
743 {
744 if (psym != &sym2)
745 memcpy(symbuf, p, sym_size);
746 elfcpp::Sym_write<size, big_endian> sw(symbuf);
747 sw.put_st_shndx(elfcpp::SHN_ABS);
748 if (st_shndx != elfcpp::SHN_UNDEF
749 && st_shndx < elfcpp::SHN_LORESERVE)
750 {
751 // Symbol values in object files are section relative.
752 // This is normally what we want, but since here we are
753 // converting the symbol to absolute we need to add the
754 // section address. The section address in an object
755 // file is normally zero, but people can use a linker
756 // script to change it.
757 sw.put_st_value(sym2.get_st_value()
758 + relobj->section_address(st_shndx));
759 }
760 psym = &sym2;
761 }
762
aeddab66 763 Sized_symbol<size>* res;
14bfc3f5
ILT
764 if (ver == NULL)
765 {
f0641a0b 766 Stringpool::Key name_key;
cfd73a4e 767 name = this->namepool_.add(name, true, &name_key);
dbe717ef 768 res = this->add_from_object(relobj, name, name_key, NULL, 0,
70e654ba 769 false, *psym, sym);
55a93433
ILT
770 if (local)
771 this->force_local(res);
14bfc3f5
ILT
772 }
773 else
774 {
f0641a0b 775 Stringpool::Key name_key;
09124467 776 name = this->namepool_.add_with_length(name, namelen, true,
c0873094 777 &name_key);
f0641a0b 778 Stringpool::Key ver_key;
cfd73a4e 779 ver = this->namepool_.add(ver, true, &ver_key);
f0641a0b 780
dbe717ef 781 res = this->add_from_object(relobj, name, name_key, ver, ver_key,
70e654ba 782 def, *psym, sym);
14bfc3f5
ILT
783 }
784
730cdc88 785 (*sympointers)[i] = res;
14bfc3f5
ILT
786 }
787}
788
dbe717ef
ILT
789// Add all the symbols in a dynamic object to the hash table.
790
791template<int size, bool big_endian>
792void
793Symbol_table::add_from_dynobj(
794 Sized_dynobj<size, big_endian>* dynobj,
795 const unsigned char* syms,
796 size_t count,
797 const char* sym_names,
798 size_t sym_name_size,
799 const unsigned char* versym,
800 size_t versym_size,
801 const std::vector<const char*>* version_map)
802{
9025d29d 803 gold_assert(size == dynobj->target()->get_size());
8851ecca 804 gold_assert(size == parameters->target().get_size());
dbe717ef 805
88dd47ac
ILT
806 if (dynobj->just_symbols())
807 {
808 gold_error(_("--just-symbols does not make sense with a shared object"));
809 return;
810 }
811
dbe717ef
ILT
812 if (versym != NULL && versym_size / 2 < count)
813 {
75f2446e
ILT
814 dynobj->error(_("too few symbol versions"));
815 return;
dbe717ef
ILT
816 }
817
818 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
819
aeddab66
ILT
820 // We keep a list of all STT_OBJECT symbols, so that we can resolve
821 // weak aliases. This is necessary because if the dynamic object
822 // provides the same variable under two names, one of which is a
823 // weak definition, and the regular object refers to the weak
824 // definition, we have to put both the weak definition and the
825 // strong definition into the dynamic symbol table. Given a weak
826 // definition, the only way that we can find the corresponding
827 // strong definition, if any, is to search the symbol table.
828 std::vector<Sized_symbol<size>*> object_symbols;
829
dbe717ef
ILT
830 const unsigned char* p = syms;
831 const unsigned char* vs = versym;
832 for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
833 {
834 elfcpp::Sym<size, big_endian> sym(p);
835
65778909
ILT
836 // Ignore symbols with local binding or that have
837 // internal or hidden visibility.
838 if (sym.get_st_bind() == elfcpp::STB_LOCAL
839 || sym.get_st_visibility() == elfcpp::STV_INTERNAL
840 || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
dbe717ef
ILT
841 continue;
842
843 unsigned int st_name = sym.get_st_name();
844 if (st_name >= sym_name_size)
845 {
75f2446e
ILT
846 dynobj->error(_("bad symbol name offset %u at %zu"),
847 st_name, i);
848 continue;
dbe717ef
ILT
849 }
850
851 const char* name = sym_names + st_name;
852
aeddab66
ILT
853 Sized_symbol<size>* res;
854
dbe717ef
ILT
855 if (versym == NULL)
856 {
857 Stringpool::Key name_key;
cfd73a4e 858 name = this->namepool_.add(name, true, &name_key);
aeddab66 859 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
70e654ba 860 false, sym, sym);
dbe717ef 861 }
aeddab66
ILT
862 else
863 {
864 // Read the version information.
dbe717ef 865
aeddab66 866 unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
dbe717ef 867
aeddab66
ILT
868 bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
869 v &= elfcpp::VERSYM_VERSION;
dbe717ef 870
aeddab66
ILT
871 // The Sun documentation says that V can be VER_NDX_LOCAL,
872 // or VER_NDX_GLOBAL, or a version index. The meaning of
873 // VER_NDX_LOCAL is defined as "Symbol has local scope."
874 // The old GNU linker will happily generate VER_NDX_LOCAL
875 // for an undefined symbol. I don't know what the Sun
876 // linker will generate.
dbe717ef 877
aeddab66
ILT
878 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
879 && sym.get_st_shndx() != elfcpp::SHN_UNDEF)
880 {
881 // This symbol should not be visible outside the object.
882 continue;
883 }
64707334 884
aeddab66
ILT
885 // At this point we are definitely going to add this symbol.
886 Stringpool::Key name_key;
887 name = this->namepool_.add(name, true, &name_key);
dbe717ef 888
aeddab66
ILT
889 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
890 || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
891 {
892 // This symbol does not have a version.
893 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
70e654ba 894 false, sym, sym);
aeddab66
ILT
895 }
896 else
897 {
898 if (v >= version_map->size())
899 {
900 dynobj->error(_("versym for symbol %zu out of range: %u"),
901 i, v);
902 continue;
903 }
dbe717ef 904
aeddab66
ILT
905 const char* version = (*version_map)[v];
906 if (version == NULL)
907 {
908 dynobj->error(_("versym for symbol %zu has no name: %u"),
909 i, v);
910 continue;
911 }
dbe717ef 912
aeddab66
ILT
913 Stringpool::Key version_key;
914 version = this->namepool_.add(version, true, &version_key);
915
916 // If this is an absolute symbol, and the version name
917 // and symbol name are the same, then this is the
918 // version definition symbol. These symbols exist to
919 // support using -u to pull in particular versions. We
920 // do not want to record a version for them.
921 if (sym.get_st_shndx() == elfcpp::SHN_ABS
922 && name_key == version_key)
923 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
70e654ba 924 false, sym, sym);
aeddab66
ILT
925 else
926 {
927 const bool def = (!hidden
928 && (sym.get_st_shndx()
929 != elfcpp::SHN_UNDEF));
930 res = this->add_from_object(dynobj, name, name_key, version,
70e654ba 931 version_key, def, sym, sym);
aeddab66
ILT
932 }
933 }
dbe717ef
ILT
934 }
935
aeddab66
ILT
936 if (sym.get_st_shndx() != elfcpp::SHN_UNDEF
937 && sym.get_st_type() == elfcpp::STT_OBJECT)
938 object_symbols.push_back(res);
939 }
940
941 this->record_weak_aliases(&object_symbols);
942}
943
944// This is used to sort weak aliases. We sort them first by section
945// index, then by offset, then by weak ahead of strong.
946
947template<int size>
948class Weak_alias_sorter
949{
950 public:
951 bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
952};
953
954template<int size>
955bool
956Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
957 const Sized_symbol<size>* s2) const
958{
959 if (s1->shndx() != s2->shndx())
960 return s1->shndx() < s2->shndx();
961 if (s1->value() != s2->value())
962 return s1->value() < s2->value();
963 if (s1->binding() != s2->binding())
964 {
965 if (s1->binding() == elfcpp::STB_WEAK)
966 return true;
967 if (s2->binding() == elfcpp::STB_WEAK)
968 return false;
969 }
970 return std::string(s1->name()) < std::string(s2->name());
971}
dbe717ef 972
aeddab66
ILT
973// SYMBOLS is a list of object symbols from a dynamic object. Look
974// for any weak aliases, and record them so that if we add the weak
975// alias to the dynamic symbol table, we also add the corresponding
976// strong symbol.
dbe717ef 977
aeddab66
ILT
978template<int size>
979void
980Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
981{
982 // Sort the vector by section index, then by offset, then by weak
983 // ahead of strong.
984 std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
985
986 // Walk through the vector. For each weak definition, record
987 // aliases.
988 for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
989 symbols->begin();
990 p != symbols->end();
991 ++p)
992 {
993 if ((*p)->binding() != elfcpp::STB_WEAK)
994 continue;
995
996 // Build a circular list of weak aliases. Each symbol points to
997 // the next one in the circular list.
998
999 Sized_symbol<size>* from_sym = *p;
1000 typename std::vector<Sized_symbol<size>*>::const_iterator q;
1001 for (q = p + 1; q != symbols->end(); ++q)
dbe717ef 1002 {
aeddab66
ILT
1003 if ((*q)->shndx() != from_sym->shndx()
1004 || (*q)->value() != from_sym->value())
1005 break;
1006
1007 this->weak_aliases_[from_sym] = *q;
1008 from_sym->set_has_alias();
1009 from_sym = *q;
dbe717ef
ILT
1010 }
1011
aeddab66
ILT
1012 if (from_sym != *p)
1013 {
1014 this->weak_aliases_[from_sym] = *p;
1015 from_sym->set_has_alias();
1016 }
dbe717ef 1017
aeddab66 1018 p = q - 1;
dbe717ef
ILT
1019 }
1020}
1021
ead1e424
ILT
1022// Create and return a specially defined symbol. If ONLY_IF_REF is
1023// true, then only create the symbol if there is a reference to it.
86f2e683 1024// If this does not return NULL, it sets *POLDSYM to the existing
306d9ef0 1025// symbol if there is one. This canonicalizes *PNAME and *PVERSION.
ead1e424
ILT
1026
1027template<int size, bool big_endian>
1028Sized_symbol<size>*
9b07f471
ILT
1029Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1030 bool only_if_ref,
7d1a9ebb 1031 Sized_symbol<size>** poldsym)
ead1e424 1032{
ead1e424
ILT
1033 Symbol* oldsym;
1034 Sized_symbol<size>* sym;
86f2e683
ILT
1035 bool add_to_table = false;
1036 typename Symbol_table_type::iterator add_loc = this->table_.end();
ead1e424 1037
55a93433
ILT
1038 // If the caller didn't give us a version, see if we get one from
1039 // the version script.
1040 if (*pversion == NULL)
1041 {
1042 const std::string& v(this->version_script_.get_symbol_version(*pname));
1043 if (!v.empty())
1044 *pversion = v.c_str();
1045 }
1046
ead1e424
ILT
1047 if (only_if_ref)
1048 {
306d9ef0 1049 oldsym = this->lookup(*pname, *pversion);
f6ce93d6 1050 if (oldsym == NULL || !oldsym->is_undefined())
ead1e424 1051 return NULL;
306d9ef0
ILT
1052
1053 *pname = oldsym->name();
1054 *pversion = oldsym->version();
ead1e424
ILT
1055 }
1056 else
1057 {
14b31740 1058 // Canonicalize NAME and VERSION.
f0641a0b 1059 Stringpool::Key name_key;
cfd73a4e 1060 *pname = this->namepool_.add(*pname, true, &name_key);
ead1e424 1061
14b31740 1062 Stringpool::Key version_key = 0;
306d9ef0 1063 if (*pversion != NULL)
cfd73a4e 1064 *pversion = this->namepool_.add(*pversion, true, &version_key);
14b31740 1065
ead1e424 1066 Symbol* const snull = NULL;
ead1e424 1067 std::pair<typename Symbol_table_type::iterator, bool> ins =
14b31740
ILT
1068 this->table_.insert(std::make_pair(std::make_pair(name_key,
1069 version_key),
ead1e424
ILT
1070 snull));
1071
1072 if (!ins.second)
1073 {
14b31740 1074 // We already have a symbol table entry for NAME/VERSION.
ead1e424 1075 oldsym = ins.first->second;
a3ad94ed 1076 gold_assert(oldsym != NULL);
ead1e424
ILT
1077 }
1078 else
1079 {
1080 // We haven't seen this symbol before.
a3ad94ed 1081 gold_assert(ins.first->second == NULL);
86f2e683
ILT
1082 add_to_table = true;
1083 add_loc = ins.first;
ead1e424
ILT
1084 oldsym = NULL;
1085 }
1086 }
1087
8851ecca
ILT
1088 const Target& target = parameters->target();
1089 if (!target.has_make_symbol())
86f2e683
ILT
1090 sym = new Sized_symbol<size>();
1091 else
ead1e424 1092 {
8851ecca
ILT
1093 gold_assert(target.get_size() == size);
1094 gold_assert(target.is_big_endian() ? big_endian : !big_endian);
86f2e683
ILT
1095 typedef Sized_target<size, big_endian> My_target;
1096 const My_target* sized_target =
8851ecca 1097 static_cast<const My_target*>(&target);
86f2e683
ILT
1098 sym = sized_target->make_symbol();
1099 if (sym == NULL)
1100 return NULL;
1101 }
ead1e424 1102
86f2e683
ILT
1103 if (add_to_table)
1104 add_loc->second = sym;
1105 else
1106 gold_assert(oldsym != NULL);
ead1e424 1107
7d1a9ebb 1108 *poldsym = this->get_sized_symbol<size>(oldsym);
ead1e424
ILT
1109
1110 return sym;
1111}
1112
1113// Define a symbol based on an Output_data.
1114
14b31740 1115Symbol*
9b07f471
ILT
1116Symbol_table::define_in_output_data(const char* name,
1117 const char* version,
1118 Output_data* od,
1119 uint64_t value,
1120 uint64_t symsize,
1121 elfcpp::STT type,
1122 elfcpp::STB binding,
ead1e424
ILT
1123 elfcpp::STV visibility,
1124 unsigned char nonvis,
1125 bool offset_is_from_end,
1126 bool only_if_ref)
1127{
8851ecca 1128 if (parameters->target().get_size() == 32)
86f2e683
ILT
1129 {
1130#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
9b07f471 1131 return this->do_define_in_output_data<32>(name, version, od,
86f2e683
ILT
1132 value, symsize, type, binding,
1133 visibility, nonvis,
1134 offset_is_from_end,
1135 only_if_ref);
1136#else
1137 gold_unreachable();
1138#endif
1139 }
8851ecca 1140 else if (parameters->target().get_size() == 64)
86f2e683
ILT
1141 {
1142#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
9b07f471 1143 return this->do_define_in_output_data<64>(name, version, od,
86f2e683
ILT
1144 value, symsize, type, binding,
1145 visibility, nonvis,
1146 offset_is_from_end,
1147 only_if_ref);
1148#else
1149 gold_unreachable();
1150#endif
1151 }
ead1e424 1152 else
a3ad94ed 1153 gold_unreachable();
ead1e424
ILT
1154}
1155
1156// Define a symbol in an Output_data, sized version.
1157
1158template<int size>
14b31740 1159Sized_symbol<size>*
ead1e424 1160Symbol_table::do_define_in_output_data(
ead1e424 1161 const char* name,
14b31740 1162 const char* version,
ead1e424
ILT
1163 Output_data* od,
1164 typename elfcpp::Elf_types<size>::Elf_Addr value,
1165 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1166 elfcpp::STT type,
1167 elfcpp::STB binding,
1168 elfcpp::STV visibility,
1169 unsigned char nonvis,
1170 bool offset_is_from_end,
1171 bool only_if_ref)
1172{
1173 Sized_symbol<size>* sym;
86f2e683 1174 Sized_symbol<size>* oldsym;
ead1e424 1175
8851ecca 1176 if (parameters->target().is_big_endian())
193a53d9
ILT
1177 {
1178#if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
7d1a9ebb
ILT
1179 sym = this->define_special_symbol<size, true>(&name, &version,
1180 only_if_ref, &oldsym);
193a53d9
ILT
1181#else
1182 gold_unreachable();
1183#endif
1184 }
ead1e424 1185 else
193a53d9
ILT
1186 {
1187#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
7d1a9ebb
ILT
1188 sym = this->define_special_symbol<size, false>(&name, &version,
1189 only_if_ref, &oldsym);
193a53d9
ILT
1190#else
1191 gold_unreachable();
1192#endif
1193 }
ead1e424
ILT
1194
1195 if (sym == NULL)
14b31740 1196 return NULL;
ead1e424 1197
d4f5281b 1198 gold_assert(version == NULL || oldsym != NULL);
ead1e424
ILT
1199 sym->init(name, od, value, symsize, type, binding, visibility, nonvis,
1200 offset_is_from_end);
14b31740 1201
e5756efb 1202 if (oldsym == NULL)
55a93433
ILT
1203 {
1204 if (binding == elfcpp::STB_LOCAL
1205 || this->version_script_.symbol_is_local(name))
1206 this->force_local(sym);
1207 return sym;
1208 }
86f2e683 1209
e5756efb
ILT
1210 if (Symbol_table::should_override_with_special(oldsym))
1211 this->override_with_special(oldsym, sym);
1212 delete sym;
1213 return oldsym;
ead1e424
ILT
1214}
1215
1216// Define a symbol based on an Output_segment.
1217
14b31740 1218Symbol*
9b07f471 1219Symbol_table::define_in_output_segment(const char* name,
14b31740 1220 const char* version, Output_segment* os,
9b07f471
ILT
1221 uint64_t value,
1222 uint64_t symsize,
1223 elfcpp::STT type,
1224 elfcpp::STB binding,
ead1e424
ILT
1225 elfcpp::STV visibility,
1226 unsigned char nonvis,
1227 Symbol::Segment_offset_base offset_base,
1228 bool only_if_ref)
1229{
8851ecca 1230 if (parameters->target().get_size() == 32)
86f2e683
ILT
1231 {
1232#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
9b07f471 1233 return this->do_define_in_output_segment<32>(name, version, os,
86f2e683
ILT
1234 value, symsize, type,
1235 binding, visibility, nonvis,
1236 offset_base, only_if_ref);
1237#else
1238 gold_unreachable();
1239#endif
1240 }
8851ecca 1241 else if (parameters->target().get_size() == 64)
86f2e683
ILT
1242 {
1243#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
9b07f471 1244 return this->do_define_in_output_segment<64>(name, version, os,
86f2e683
ILT
1245 value, symsize, type,
1246 binding, visibility, nonvis,
1247 offset_base, only_if_ref);
1248#else
1249 gold_unreachable();
1250#endif
1251 }
ead1e424 1252 else
a3ad94ed 1253 gold_unreachable();
ead1e424
ILT
1254}
1255
1256// Define a symbol in an Output_segment, sized version.
1257
1258template<int size>
14b31740 1259Sized_symbol<size>*
ead1e424 1260Symbol_table::do_define_in_output_segment(
ead1e424 1261 const char* name,
14b31740 1262 const char* version,
ead1e424
ILT
1263 Output_segment* os,
1264 typename elfcpp::Elf_types<size>::Elf_Addr value,
1265 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1266 elfcpp::STT type,
1267 elfcpp::STB binding,
1268 elfcpp::STV visibility,
1269 unsigned char nonvis,
1270 Symbol::Segment_offset_base offset_base,
1271 bool only_if_ref)
1272{
1273 Sized_symbol<size>* sym;
86f2e683 1274 Sized_symbol<size>* oldsym;
ead1e424 1275
8851ecca 1276 if (parameters->target().is_big_endian())
9025d29d
ILT
1277 {
1278#if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
7d1a9ebb
ILT
1279 sym = this->define_special_symbol<size, true>(&name, &version,
1280 only_if_ref, &oldsym);
9025d29d
ILT
1281#else
1282 gold_unreachable();
1283#endif
1284 }
ead1e424 1285 else
9025d29d
ILT
1286 {
1287#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
7d1a9ebb
ILT
1288 sym = this->define_special_symbol<size, false>(&name, &version,
1289 only_if_ref, &oldsym);
9025d29d
ILT
1290#else
1291 gold_unreachable();
1292#endif
1293 }
ead1e424
ILT
1294
1295 if (sym == NULL)
14b31740 1296 return NULL;
ead1e424 1297
d4f5281b 1298 gold_assert(version == NULL || oldsym != NULL);
ead1e424
ILT
1299 sym->init(name, os, value, symsize, type, binding, visibility, nonvis,
1300 offset_base);
14b31740 1301
e5756efb 1302 if (oldsym == NULL)
55a93433
ILT
1303 {
1304 if (binding == elfcpp::STB_LOCAL
1305 || this->version_script_.symbol_is_local(name))
1306 this->force_local(sym);
1307 return sym;
1308 }
86f2e683 1309
e5756efb
ILT
1310 if (Symbol_table::should_override_with_special(oldsym))
1311 this->override_with_special(oldsym, sym);
1312 delete sym;
1313 return oldsym;
ead1e424
ILT
1314}
1315
1316// Define a special symbol with a constant value. It is a multiple
1317// definition error if this symbol is already defined.
1318
14b31740 1319Symbol*
9b07f471
ILT
1320Symbol_table::define_as_constant(const char* name,
1321 const char* version,
1322 uint64_t value,
1323 uint64_t symsize,
1324 elfcpp::STT type,
1325 elfcpp::STB binding,
1326 elfcpp::STV visibility,
1327 unsigned char nonvis,
caa9d5d9
ILT
1328 bool only_if_ref,
1329 bool force_override)
ead1e424 1330{
8851ecca 1331 if (parameters->target().get_size() == 32)
86f2e683
ILT
1332 {
1333#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
9b07f471 1334 return this->do_define_as_constant<32>(name, version, value,
86f2e683 1335 symsize, type, binding,
caa9d5d9
ILT
1336 visibility, nonvis, only_if_ref,
1337 force_override);
86f2e683
ILT
1338#else
1339 gold_unreachable();
1340#endif
1341 }
8851ecca 1342 else if (parameters->target().get_size() == 64)
86f2e683
ILT
1343 {
1344#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
9b07f471 1345 return this->do_define_as_constant<64>(name, version, value,
86f2e683 1346 symsize, type, binding,
caa9d5d9
ILT
1347 visibility, nonvis, only_if_ref,
1348 force_override);
86f2e683
ILT
1349#else
1350 gold_unreachable();
1351#endif
1352 }
ead1e424 1353 else
a3ad94ed 1354 gold_unreachable();
ead1e424
ILT
1355}
1356
1357// Define a symbol as a constant, sized version.
1358
1359template<int size>
14b31740 1360Sized_symbol<size>*
ead1e424 1361Symbol_table::do_define_as_constant(
ead1e424 1362 const char* name,
14b31740 1363 const char* version,
ead1e424
ILT
1364 typename elfcpp::Elf_types<size>::Elf_Addr value,
1365 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1366 elfcpp::STT type,
1367 elfcpp::STB binding,
1368 elfcpp::STV visibility,
1369 unsigned char nonvis,
caa9d5d9
ILT
1370 bool only_if_ref,
1371 bool force_override)
ead1e424
ILT
1372{
1373 Sized_symbol<size>* sym;
86f2e683 1374 Sized_symbol<size>* oldsym;
ead1e424 1375
8851ecca 1376 if (parameters->target().is_big_endian())
9025d29d
ILT
1377 {
1378#if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
7d1a9ebb
ILT
1379 sym = this->define_special_symbol<size, true>(&name, &version,
1380 only_if_ref, &oldsym);
9025d29d
ILT
1381#else
1382 gold_unreachable();
1383#endif
1384 }
ead1e424 1385 else
9025d29d
ILT
1386 {
1387#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
7d1a9ebb
ILT
1388 sym = this->define_special_symbol<size, false>(&name, &version,
1389 only_if_ref, &oldsym);
9025d29d
ILT
1390#else
1391 gold_unreachable();
1392#endif
1393 }
ead1e424
ILT
1394
1395 if (sym == NULL)
14b31740 1396 return NULL;
ead1e424 1397
09124467 1398 gold_assert(version == NULL || version == name || oldsym != NULL);
ead1e424 1399 sym->init(name, value, symsize, type, binding, visibility, nonvis);
14b31740 1400
e5756efb 1401 if (oldsym == NULL)
55a93433
ILT
1402 {
1403 if (binding == elfcpp::STB_LOCAL
1404 || this->version_script_.symbol_is_local(name))
1405 this->force_local(sym);
1406 return sym;
1407 }
86f2e683 1408
caa9d5d9 1409 if (force_override || Symbol_table::should_override_with_special(oldsym))
e5756efb
ILT
1410 this->override_with_special(oldsym, sym);
1411 delete sym;
1412 return oldsym;
ead1e424
ILT
1413}
1414
1415// Define a set of symbols in output sections.
1416
1417void
9b07f471 1418Symbol_table::define_symbols(const Layout* layout, int count,
a445fddf
ILT
1419 const Define_symbol_in_section* p,
1420 bool only_if_ref)
ead1e424
ILT
1421{
1422 for (int i = 0; i < count; ++i, ++p)
1423 {
1424 Output_section* os = layout->find_output_section(p->output_section);
1425 if (os != NULL)
9b07f471 1426 this->define_in_output_data(p->name, NULL, os, p->value,
14b31740
ILT
1427 p->size, p->type, p->binding,
1428 p->visibility, p->nonvis,
a445fddf
ILT
1429 p->offset_is_from_end,
1430 only_if_ref || p->only_if_ref);
ead1e424 1431 else
9b07f471 1432 this->define_as_constant(p->name, NULL, 0, p->size, p->type,
ead1e424 1433 p->binding, p->visibility, p->nonvis,
caa9d5d9
ILT
1434 only_if_ref || p->only_if_ref,
1435 false);
ead1e424
ILT
1436 }
1437}
1438
1439// Define a set of symbols in output segments.
1440
1441void
9b07f471 1442Symbol_table::define_symbols(const Layout* layout, int count,
a445fddf
ILT
1443 const Define_symbol_in_segment* p,
1444 bool only_if_ref)
ead1e424
ILT
1445{
1446 for (int i = 0; i < count; ++i, ++p)
1447 {
1448 Output_segment* os = layout->find_output_segment(p->segment_type,
1449 p->segment_flags_set,
1450 p->segment_flags_clear);
1451 if (os != NULL)
9b07f471 1452 this->define_in_output_segment(p->name, NULL, os, p->value,
14b31740
ILT
1453 p->size, p->type, p->binding,
1454 p->visibility, p->nonvis,
a445fddf
ILT
1455 p->offset_base,
1456 only_if_ref || p->only_if_ref);
ead1e424 1457 else
9b07f471 1458 this->define_as_constant(p->name, NULL, 0, p->size, p->type,
ead1e424 1459 p->binding, p->visibility, p->nonvis,
caa9d5d9
ILT
1460 only_if_ref || p->only_if_ref,
1461 false);
ead1e424
ILT
1462 }
1463}
1464
46fe1623
ILT
1465// Define CSYM using a COPY reloc. POSD is the Output_data where the
1466// symbol should be defined--typically a .dyn.bss section. VALUE is
1467// the offset within POSD.
1468
1469template<int size>
1470void
fe8718a4 1471Symbol_table::define_with_copy_reloc(
fe8718a4
ILT
1472 Sized_symbol<size>* csym,
1473 Output_data* posd,
1474 typename elfcpp::Elf_types<size>::Elf_Addr value)
46fe1623
ILT
1475{
1476 gold_assert(csym->is_from_dynobj());
1477 gold_assert(!csym->is_copied_from_dynobj());
1478 Object* object = csym->object();
1479 gold_assert(object->is_dynamic());
1480 Dynobj* dynobj = static_cast<Dynobj*>(object);
1481
1482 // Our copied variable has to override any variable in a shared
1483 // library.
1484 elfcpp::STB binding = csym->binding();
1485 if (binding == elfcpp::STB_WEAK)
1486 binding = elfcpp::STB_GLOBAL;
1487
9b07f471 1488 this->define_in_output_data(csym->name(), csym->version(),
46fe1623
ILT
1489 posd, value, csym->symsize(),
1490 csym->type(), binding,
1491 csym->visibility(), csym->nonvis(),
1492 false, false);
1493
1494 csym->set_is_copied_from_dynobj();
1495 csym->set_needs_dynsym_entry();
1496
1497 this->copied_symbol_dynobjs_[csym] = dynobj;
1498
1499 // We have now defined all aliases, but we have not entered them all
1500 // in the copied_symbol_dynobjs_ map.
1501 if (csym->has_alias())
1502 {
1503 Symbol* sym = csym;
1504 while (true)
1505 {
1506 sym = this->weak_aliases_[sym];
1507 if (sym == csym)
1508 break;
1509 gold_assert(sym->output_data() == posd);
1510
1511 sym->set_is_copied_from_dynobj();
1512 this->copied_symbol_dynobjs_[sym] = dynobj;
1513 }
1514 }
1515}
1516
1517// SYM is defined using a COPY reloc. Return the dynamic object where
1518// the original definition was found.
1519
1520Dynobj*
1521Symbol_table::get_copy_source(const Symbol* sym) const
1522{
1523 gold_assert(sym->is_copied_from_dynobj());
1524 Copied_symbol_dynobjs::const_iterator p =
1525 this->copied_symbol_dynobjs_.find(sym);
1526 gold_assert(p != this->copied_symbol_dynobjs_.end());
1527 return p->second;
1528}
1529
a3ad94ed
ILT
1530// Set the dynamic symbol indexes. INDEX is the index of the first
1531// global dynamic symbol. Pointers to the symbols are stored into the
1532// vector SYMS. The names are added to DYNPOOL. This returns an
1533// updated dynamic symbol index.
1534
1535unsigned int
9b07f471 1536Symbol_table::set_dynsym_indexes(unsigned int index,
a3ad94ed 1537 std::vector<Symbol*>* syms,
14b31740
ILT
1538 Stringpool* dynpool,
1539 Versions* versions)
a3ad94ed
ILT
1540{
1541 for (Symbol_table_type::iterator p = this->table_.begin();
1542 p != this->table_.end();
1543 ++p)
1544 {
1545 Symbol* sym = p->second;
16649710
ILT
1546
1547 // Note that SYM may already have a dynamic symbol index, since
1548 // some symbols appear more than once in the symbol table, with
1549 // and without a version.
1550
436ca963 1551 if (!sym->should_add_dynsym_entry())
16649710
ILT
1552 sym->set_dynsym_index(-1U);
1553 else if (!sym->has_dynsym_index())
a3ad94ed
ILT
1554 {
1555 sym->set_dynsym_index(index);
1556 ++index;
1557 syms->push_back(sym);
cfd73a4e 1558 dynpool->add(sym->name(), false, NULL);
14b31740
ILT
1559
1560 // Record any version information.
09124467
ILT
1561 if (sym->version() != NULL)
1562 versions->record_version(this, dynpool, sym);
a3ad94ed
ILT
1563 }
1564 }
1565
14b31740
ILT
1566 // Finish up the versions. In some cases this may add new dynamic
1567 // symbols.
9b07f471 1568 index = versions->finalize(this, index, syms);
14b31740 1569
a3ad94ed
ILT
1570 return index;
1571}
1572
c06b7b0b 1573// Set the final values for all the symbols. The index of the first
55a93433
ILT
1574// global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
1575// file offset OFF. Add their names to POOL. Return the new file
1576// offset. Update *PLOCAL_SYMCOUNT if necessary.
54dc6425 1577
75f65a3e 1578off_t
55a93433
ILT
1579Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
1580 size_t dyncount, Stringpool* pool,
1581 unsigned int *plocal_symcount)
54dc6425 1582{
f6ce93d6
ILT
1583 off_t ret;
1584
55a93433
ILT
1585 gold_assert(*plocal_symcount != 0);
1586 this->first_global_index_ = *plocal_symcount;
c06b7b0b 1587
16649710
ILT
1588 this->dynamic_offset_ = dynoff;
1589 this->first_dynamic_global_index_ = dyn_global_index;
1590 this->dynamic_count_ = dyncount;
1591
8851ecca 1592 if (parameters->target().get_size() == 32)
9025d29d
ILT
1593 {
1594#if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
55a93433 1595 ret = this->sized_finalize<32>(off, pool, plocal_symcount);
9025d29d
ILT
1596#else
1597 gold_unreachable();
1598#endif
1599 }
8851ecca 1600 else if (parameters->target().get_size() == 64)
9025d29d
ILT
1601 {
1602#if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
55a93433 1603 ret = this->sized_finalize<64>(off, pool, plocal_symcount);
9025d29d
ILT
1604#else
1605 gold_unreachable();
1606#endif
1607 }
61ba1cf9 1608 else
a3ad94ed 1609 gold_unreachable();
f6ce93d6
ILT
1610
1611 // Now that we have the final symbol table, we can reliably note
1612 // which symbols should get warnings.
cb295612 1613 this->warnings_.note_warnings(this);
f6ce93d6
ILT
1614
1615 return ret;
75f65a3e
ILT
1616}
1617
55a93433
ILT
1618// SYM is going into the symbol table at *PINDEX. Add the name to
1619// POOL, update *PINDEX and *POFF.
1620
1621template<int size>
1622void
1623Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
1624 unsigned int* pindex, off_t* poff)
1625{
1626 sym->set_symtab_index(*pindex);
1627 pool->add(sym->name(), false, NULL);
1628 ++*pindex;
1629 *poff += elfcpp::Elf_sizes<size>::sym_size;
1630}
1631
ead1e424
ILT
1632// Set the final value for all the symbols. This is called after
1633// Layout::finalize, so all the output sections have their final
1634// address.
75f65a3e
ILT
1635
1636template<int size>
1637off_t
55a93433
ILT
1638Symbol_table::sized_finalize(off_t off, Stringpool* pool,
1639 unsigned int* plocal_symcount)
75f65a3e 1640{
ead1e424 1641 off = align_address(off, size >> 3);
75f65a3e
ILT
1642 this->offset_ = off;
1643
55a93433
ILT
1644 unsigned int index = *plocal_symcount;
1645 const unsigned int orig_index = index;
c06b7b0b 1646
55a93433
ILT
1647 // First do all the symbols which have been forced to be local, as
1648 // they must appear before all global symbols.
1649 for (Forced_locals::iterator p = this->forced_locals_.begin();
1650 p != this->forced_locals_.end();
1651 ++p)
1652 {
1653 Symbol* sym = *p;
1654 gold_assert(sym->is_forced_local());
1655 if (this->sized_finalize_symbol<size>(sym))
1656 {
1657 this->add_to_final_symtab<size>(sym, pool, &index, &off);
1658 ++*plocal_symcount;
1659 }
1660 }
1661
1662 // Now do all the remaining symbols.
c06b7b0b
ILT
1663 for (Symbol_table_type::iterator p = this->table_.begin();
1664 p != this->table_.end();
1665 ++p)
54dc6425 1666 {
55a93433
ILT
1667 Symbol* sym = p->second;
1668 if (this->sized_finalize_symbol<size>(sym))
1669 this->add_to_final_symtab<size>(sym, pool, &index, &off);
1670 }
54dc6425 1671
55a93433 1672 this->output_count_ = index - orig_index;
a3ad94ed 1673
55a93433
ILT
1674 return off;
1675}
75f65a3e 1676
55a93433
ILT
1677// Finalize the symbol SYM. This returns true if the symbol should be
1678// added to the symbol table, false otherwise.
008db82e 1679
55a93433
ILT
1680template<int size>
1681bool
1682Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
1683{
1684 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
75f65a3e 1685
55a93433
ILT
1686 // The default version of a symbol may appear twice in the symbol
1687 // table. We only need to finalize it once.
1688 if (sym->has_symtab_index())
1689 return false;
ead1e424 1690
55a93433
ILT
1691 if (!sym->in_reg())
1692 {
1693 gold_assert(!sym->has_symtab_index());
1694 sym->set_symtab_index(-1U);
1695 gold_assert(sym->dynsym_index() == -1U);
1696 return false;
1697 }
ead1e424 1698
55a93433 1699 typename Sized_symbol<size>::Value_type value;
ead1e424 1700
55a93433
ILT
1701 switch (sym->source())
1702 {
1703 case Symbol::FROM_OBJECT:
1704 {
1705 unsigned int shndx = sym->shndx();
ead1e424 1706
55a93433
ILT
1707 // FIXME: We need some target specific support here.
1708 if (shndx >= elfcpp::SHN_LORESERVE
0dfbdef4
ILT
1709 && shndx != elfcpp::SHN_ABS
1710 && shndx != elfcpp::SHN_COMMON)
55a93433
ILT
1711 {
1712 gold_error(_("%s: unsupported symbol section 0x%x"),
1713 sym->demangled_name().c_str(), shndx);
1714 shndx = elfcpp::SHN_UNDEF;
ead1e424 1715 }
ead1e424 1716
55a93433
ILT
1717 Object* symobj = sym->object();
1718 if (symobj->is_dynamic())
ead1e424 1719 {
55a93433
ILT
1720 value = 0;
1721 shndx = elfcpp::SHN_UNDEF;
ead1e424 1722 }
55a93433
ILT
1723 else if (shndx == elfcpp::SHN_UNDEF)
1724 value = 0;
0dfbdef4 1725 else if (shndx == elfcpp::SHN_ABS || shndx == elfcpp::SHN_COMMON)
55a93433
ILT
1726 value = sym->value();
1727 else
ead1e424 1728 {
55a93433
ILT
1729 Relobj* relobj = static_cast<Relobj*>(symobj);
1730 section_offset_type secoff;
1731 Output_section* os = relobj->output_section(shndx, &secoff);
1732
1733 if (os == NULL)
ead1e424 1734 {
55a93433
ILT
1735 sym->set_symtab_index(-1U);
1736 gold_assert(sym->dynsym_index() == -1U);
1737 return false;
ead1e424 1738 }
55a93433
ILT
1739
1740 if (sym->type() == elfcpp::STT_TLS)
1741 value = sym->value() + os->tls_offset() + secoff;
1742 else
1743 value = sym->value() + os->address() + secoff;
ead1e424 1744 }
55a93433
ILT
1745 }
1746 break;
1747
1748 case Symbol::IN_OUTPUT_DATA:
1749 {
1750 Output_data* od = sym->output_data();
1751 value = sym->value() + od->address();
1752 if (sym->offset_is_from_end())
1753 value += od->data_size();
1754 }
1755 break;
1756
1757 case Symbol::IN_OUTPUT_SEGMENT:
1758 {
1759 Output_segment* os = sym->output_segment();
1760 value = sym->value() + os->vaddr();
1761 switch (sym->offset_base())
1762 {
1763 case Symbol::SEGMENT_START:
1764 break;
1765 case Symbol::SEGMENT_END:
1766 value += os->memsz();
1767 break;
1768 case Symbol::SEGMENT_BSS:
1769 value += os->filesz();
1770 break;
1771 default:
1772 gold_unreachable();
1773 }
1774 }
1775 break;
ead1e424 1776
55a93433
ILT
1777 case Symbol::CONSTANT:
1778 value = sym->value();
1779 break;
ead1e424 1780
55a93433
ILT
1781 default:
1782 gold_unreachable();
1783 }
ead1e424 1784
55a93433 1785 sym->set_value(value);
9e2dcb77 1786
8851ecca 1787 if (parameters->options().strip_all())
55a93433
ILT
1788 {
1789 sym->set_symtab_index(-1U);
1790 return false;
54dc6425 1791 }
75f65a3e 1792
55a93433 1793 return true;
54dc6425
ILT
1794}
1795
61ba1cf9
ILT
1796// Write out the global symbols.
1797
1798void
9a2d6984
ILT
1799Symbol_table::write_globals(const Input_objects* input_objects,
1800 const Stringpool* sympool,
16649710 1801 const Stringpool* dynpool, Output_file* of) const
61ba1cf9 1802{
8851ecca 1803 switch (parameters->size_and_endianness())
61ba1cf9 1804 {
9025d29d 1805#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
1806 case Parameters::TARGET_32_LITTLE:
1807 this->sized_write_globals<32, false>(input_objects, sympool,
1808 dynpool, of);
1809 break;
9025d29d 1810#endif
8851ecca
ILT
1811#ifdef HAVE_TARGET_32_BIG
1812 case Parameters::TARGET_32_BIG:
1813 this->sized_write_globals<32, true>(input_objects, sympool,
1814 dynpool, of);
1815 break;
9025d29d 1816#endif
9025d29d 1817#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
1818 case Parameters::TARGET_64_LITTLE:
1819 this->sized_write_globals<64, false>(input_objects, sympool,
1820 dynpool, of);
1821 break;
9025d29d 1822#endif
8851ecca
ILT
1823#ifdef HAVE_TARGET_64_BIG
1824 case Parameters::TARGET_64_BIG:
1825 this->sized_write_globals<64, true>(input_objects, sympool,
1826 dynpool, of);
1827 break;
1828#endif
1829 default:
1830 gold_unreachable();
61ba1cf9 1831 }
61ba1cf9
ILT
1832}
1833
1834// Write out the global symbols.
1835
1836template<int size, bool big_endian>
1837void
9a2d6984 1838Symbol_table::sized_write_globals(const Input_objects* input_objects,
61ba1cf9 1839 const Stringpool* sympool,
16649710 1840 const Stringpool* dynpool,
61ba1cf9
ILT
1841 Output_file* of) const
1842{
8851ecca 1843 const Target& target = parameters->target();
9a2d6984 1844
61ba1cf9 1845 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
55a93433
ILT
1846
1847 const unsigned int output_count = this->output_count_;
1848 const section_size_type oview_size = output_count * sym_size;
1849 const unsigned int first_global_index = this->first_global_index_;
5fe2a0f5
ILT
1850 unsigned char* psyms;
1851 if (this->offset_ == 0 || output_count == 0)
1852 psyms = NULL;
1853 else
1854 psyms = of->get_output_view(this->offset_, oview_size);
16649710 1855
55a93433
ILT
1856 const unsigned int dynamic_count = this->dynamic_count_;
1857 const section_size_type dynamic_size = dynamic_count * sym_size;
1858 const unsigned int first_dynamic_global_index =
1859 this->first_dynamic_global_index_;
16649710 1860 unsigned char* dynamic_view;
5fe2a0f5 1861 if (this->dynamic_offset_ == 0 || dynamic_count == 0)
16649710
ILT
1862 dynamic_view = NULL;
1863 else
1864 dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
c06b7b0b 1865
61ba1cf9
ILT
1866 for (Symbol_table_type::const_iterator p = this->table_.begin();
1867 p != this->table_.end();
1868 ++p)
1869 {
1870 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1871
9a2d6984
ILT
1872 // Possibly warn about unresolved symbols in shared libraries.
1873 this->warn_about_undefined_dynobj_symbol(input_objects, sym);
e2827e5f 1874
a3ad94ed 1875 unsigned int sym_index = sym->symtab_index();
16649710
ILT
1876 unsigned int dynsym_index;
1877 if (dynamic_view == NULL)
1878 dynsym_index = -1U;
1879 else
1880 dynsym_index = sym->dynsym_index();
1881
1882 if (sym_index == -1U && dynsym_index == -1U)
a3ad94ed
ILT
1883 {
1884 // This symbol is not included in the output file.
1885 continue;
1886 }
16649710 1887
ead1e424 1888 unsigned int shndx;
88dd47ac
ILT
1889 typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
1890 typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
ead1e424
ILT
1891 switch (sym->source())
1892 {
1893 case Symbol::FROM_OBJECT:
1894 {
16649710 1895 unsigned int in_shndx = sym->shndx();
ead1e424
ILT
1896
1897 // FIXME: We need some target specific support here.
16649710 1898 if (in_shndx >= elfcpp::SHN_LORESERVE
0dfbdef4
ILT
1899 && in_shndx != elfcpp::SHN_ABS
1900 && in_shndx != elfcpp::SHN_COMMON)
ead1e424 1901 {
75f2446e 1902 gold_error(_("%s: unsupported symbol section 0x%x"),
a2b1aa12 1903 sym->demangled_name().c_str(), in_shndx);
75f2446e 1904 shndx = in_shndx;
f6ce93d6 1905 }
ead1e424
ILT
1906 else
1907 {
75f2446e
ILT
1908 Object* symobj = sym->object();
1909 if (symobj->is_dynamic())
1910 {
1911 if (sym->needs_dynsym_value())
8851ecca 1912 dynsym_value = target.dynsym_value(sym);
75f2446e
ILT
1913 shndx = elfcpp::SHN_UNDEF;
1914 }
1915 else if (in_shndx == elfcpp::SHN_UNDEF
0dfbdef4
ILT
1916 || in_shndx == elfcpp::SHN_ABS
1917 || in_shndx == elfcpp::SHN_COMMON)
75f2446e
ILT
1918 shndx = in_shndx;
1919 else
1920 {
1921 Relobj* relobj = static_cast<Relobj*>(symobj);
8383303e 1922 section_offset_type secoff;
75f2446e
ILT
1923 Output_section* os = relobj->output_section(in_shndx,
1924 &secoff);
1925 gold_assert(os != NULL);
1926 shndx = os->out_shndx();
88dd47ac
ILT
1927
1928 // In object files symbol values are section
1929 // relative.
8851ecca 1930 if (parameters->options().relocatable())
88dd47ac 1931 sym_value -= os->address();
75f2446e 1932 }
ead1e424
ILT
1933 }
1934 }
1935 break;
1936
1937 case Symbol::IN_OUTPUT_DATA:
1938 shndx = sym->output_data()->out_shndx();
1939 break;
1940
1941 case Symbol::IN_OUTPUT_SEGMENT:
1942 shndx = elfcpp::SHN_ABS;
1943 break;
1944
1945 case Symbol::CONSTANT:
1946 shndx = elfcpp::SHN_ABS;
1947 break;
1948
1949 default:
a3ad94ed 1950 gold_unreachable();
ead1e424 1951 }
61ba1cf9 1952
16649710
ILT
1953 if (sym_index != -1U)
1954 {
55a93433
ILT
1955 sym_index -= first_global_index;
1956 gold_assert(sym_index < output_count);
1957 unsigned char* ps = psyms + (sym_index * sym_size);
7d1a9ebb
ILT
1958 this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
1959 sympool, ps);
16649710 1960 }
61ba1cf9 1961
16649710
ILT
1962 if (dynsym_index != -1U)
1963 {
1964 dynsym_index -= first_dynamic_global_index;
1965 gold_assert(dynsym_index < dynamic_count);
1966 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
7d1a9ebb
ILT
1967 this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
1968 dynpool, pd);
16649710 1969 }
61ba1cf9
ILT
1970 }
1971
c06b7b0b 1972 of->write_output_view(this->offset_, oview_size, psyms);
16649710
ILT
1973 if (dynamic_view != NULL)
1974 of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
1975}
1976
1977// Write out the symbol SYM, in section SHNDX, to P. POOL is the
1978// strtab holding the name.
1979
1980template<int size, bool big_endian>
1981void
ab5c9e90
ILT
1982Symbol_table::sized_write_symbol(
1983 Sized_symbol<size>* sym,
1984 typename elfcpp::Elf_types<size>::Elf_Addr value,
1985 unsigned int shndx,
1986 const Stringpool* pool,
7d1a9ebb 1987 unsigned char* p) const
16649710
ILT
1988{
1989 elfcpp::Sym_write<size, big_endian> osym(p);
1990 osym.put_st_name(pool->get_offset(sym->name()));
ab5c9e90 1991 osym.put_st_value(value);
16649710 1992 osym.put_st_size(sym->symsize());
55a93433
ILT
1993 // A version script may have overridden the default binding.
1994 if (sym->is_forced_local())
1995 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, sym->type()));
1996 else
1997 osym.put_st_info(elfcpp::elf_st_info(sym->binding(), sym->type()));
16649710
ILT
1998 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
1999 osym.put_st_shndx(shndx);
61ba1cf9
ILT
2000}
2001
9a2d6984
ILT
2002// Check for unresolved symbols in shared libraries. This is
2003// controlled by the --allow-shlib-undefined option.
2004
2005// We only warn about libraries for which we have seen all the
2006// DT_NEEDED entries. We don't try to track down DT_NEEDED entries
2007// which were not seen in this link. If we didn't see a DT_NEEDED
2008// entry, we aren't going to be able to reliably report whether the
2009// symbol is undefined.
2010
2011// We also don't warn about libraries found in the system library
2012// directory (the directory were we find libc.so); we assume that
2013// those libraries are OK. This heuristic avoids problems in
2014// GNU/Linux, in which -ldl can have undefined references satisfied by
2015// ld-linux.so.
2016
2017inline void
2018Symbol_table::warn_about_undefined_dynobj_symbol(
2019 const Input_objects* input_objects,
2020 Symbol* sym) const
2021{
2022 if (sym->source() == Symbol::FROM_OBJECT
2023 && sym->object()->is_dynamic()
2024 && sym->shndx() == elfcpp::SHN_UNDEF
2025 && sym->binding() != elfcpp::STB_WEAK
8851ecca
ILT
2026 && !parameters->options().allow_shlib_undefined()
2027 && !parameters->target().is_defined_by_abi(sym)
9a2d6984
ILT
2028 && !input_objects->found_in_system_library_directory(sym->object()))
2029 {
2030 // A very ugly cast.
2031 Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
2032 if (!dynobj->has_unknown_needed_entries())
2033 gold_error(_("%s: undefined reference to '%s'"),
a2b1aa12
ILT
2034 sym->object()->name().c_str(),
2035 sym->demangled_name().c_str());
9a2d6984
ILT
2036 }
2037}
2038
a3ad94ed
ILT
2039// Write out a section symbol. Return the update offset.
2040
2041void
9025d29d 2042Symbol_table::write_section_symbol(const Output_section *os,
a3ad94ed
ILT
2043 Output_file* of,
2044 off_t offset) const
2045{
8851ecca 2046 switch (parameters->size_and_endianness())
a3ad94ed 2047 {
9025d29d 2048#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
2049 case Parameters::TARGET_32_LITTLE:
2050 this->sized_write_section_symbol<32, false>(os, of, offset);
2051 break;
9025d29d 2052#endif
8851ecca
ILT
2053#ifdef HAVE_TARGET_32_BIG
2054 case Parameters::TARGET_32_BIG:
2055 this->sized_write_section_symbol<32, true>(os, of, offset);
2056 break;
9025d29d 2057#endif
9025d29d 2058#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
2059 case Parameters::TARGET_64_LITTLE:
2060 this->sized_write_section_symbol<64, false>(os, of, offset);
2061 break;
9025d29d 2062#endif
8851ecca
ILT
2063#ifdef HAVE_TARGET_64_BIG
2064 case Parameters::TARGET_64_BIG:
2065 this->sized_write_section_symbol<64, true>(os, of, offset);
2066 break;
2067#endif
2068 default:
2069 gold_unreachable();
a3ad94ed 2070 }
a3ad94ed
ILT
2071}
2072
2073// Write out a section symbol, specialized for size and endianness.
2074
2075template<int size, bool big_endian>
2076void
2077Symbol_table::sized_write_section_symbol(const Output_section* os,
2078 Output_file* of,
2079 off_t offset) const
2080{
2081 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2082
2083 unsigned char* pov = of->get_output_view(offset, sym_size);
2084
2085 elfcpp::Sym_write<size, big_endian> osym(pov);
2086 osym.put_st_name(0);
2087 osym.put_st_value(os->address());
2088 osym.put_st_size(0);
2089 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
2090 elfcpp::STT_SECTION));
2091 osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
2092 osym.put_st_shndx(os->out_shndx());
2093
2094 of->write_output_view(offset, sym_size, pov);
2095}
2096
abaa3995
ILT
2097// Print statistical information to stderr. This is used for --stats.
2098
2099void
2100Symbol_table::print_stats() const
2101{
2102#if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
2103 fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
2104 program_name, this->table_.size(), this->table_.bucket_count());
2105#else
2106 fprintf(stderr, _("%s: symbol table entries: %zu\n"),
2107 program_name, this->table_.size());
2108#endif
ad8f37d1 2109 this->namepool_.print_stats("symbol table stringpool");
abaa3995
ILT
2110}
2111
ff541f30
ILT
2112// We check for ODR violations by looking for symbols with the same
2113// name for which the debugging information reports that they were
2114// defined in different source locations. When comparing the source
2115// location, we consider instances with the same base filename and
2116// line number to be the same. This is because different object
2117// files/shared libraries can include the same header file using
2118// different paths, and we don't want to report an ODR violation in
2119// that case.
2120
2121// This struct is used to compare line information, as returned by
7bf1f802 2122// Dwarf_line_info::one_addr2line. It implements a < comparison
ff541f30
ILT
2123// operator used with std::set.
2124
2125struct Odr_violation_compare
2126{
2127 bool
2128 operator()(const std::string& s1, const std::string& s2) const
2129 {
2130 std::string::size_type pos1 = s1.rfind('/');
2131 std::string::size_type pos2 = s2.rfind('/');
2132 if (pos1 == std::string::npos
2133 || pos2 == std::string::npos)
2134 return s1 < s2;
2135 return s1.compare(pos1, std::string::npos,
2136 s2, pos2, std::string::npos) < 0;
2137 }
2138};
2139
70e654ba
ILT
2140// Check candidate_odr_violations_ to find symbols with the same name
2141// but apparently different definitions (different source-file/line-no).
2142
2143void
17a1d0a9
ILT
2144Symbol_table::detect_odr_violations(const Task* task,
2145 const char* output_file_name) const
70e654ba
ILT
2146{
2147 for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
2148 it != candidate_odr_violations_.end();
2149 ++it)
2150 {
2151 const char* symbol_name = it->first;
2152 // We use a sorted set so the output is deterministic.
ff541f30 2153 std::set<std::string, Odr_violation_compare> line_nums;
70e654ba 2154
b01c0a4a
ILT
2155 for (Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
2156 locs = it->second.begin();
2157 locs != it->second.end();
2158 ++locs)
70e654ba
ILT
2159 {
2160 // We need to lock the object in order to read it. This
17a1d0a9
ILT
2161 // means that we have to run in a singleton Task. If we
2162 // want to run this in a general Task for better
2163 // performance, we will need one Task for object, plus
2164 // appropriate locking to ensure that we don't conflict with
2165 // other uses of the object.
2166 Task_lock_obj<Object> tl(task, locs->object);
a55ce7fe
ILT
2167 std::string lineno = Dwarf_line_info::one_addr2line(
2168 locs->object, locs->shndx, locs->offset);
70e654ba
ILT
2169 if (!lineno.empty())
2170 line_nums.insert(lineno);
2171 }
2172
2173 if (line_nums.size() > 1)
2174 {
dd8670e5 2175 gold_warning(_("while linking %s: symbol '%s' defined in multiple "
78f15696 2176 "places (possible ODR violation):"),
a2b1aa12 2177 output_file_name, demangle(symbol_name).c_str());
70e654ba
ILT
2178 for (std::set<std::string>::const_iterator it2 = line_nums.begin();
2179 it2 != line_nums.end();
2180 ++it2)
2181 fprintf(stderr, " %s\n", it2->c_str());
2182 }
2183 }
2184}
2185
f6ce93d6
ILT
2186// Warnings functions.
2187
2188// Add a new warning.
2189
2190void
2191Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
cb295612 2192 const std::string& warning)
f6ce93d6
ILT
2193{
2194 name = symtab->canonicalize_name(name);
cb295612 2195 this->warnings_[name].set(obj, warning);
f6ce93d6
ILT
2196}
2197
2198// Look through the warnings and mark the symbols for which we should
2199// warn. This is called during Layout::finalize when we know the
2200// sources for all the symbols.
2201
2202void
cb295612 2203Warnings::note_warnings(Symbol_table* symtab)
f6ce93d6
ILT
2204{
2205 for (Warning_table::iterator p = this->warnings_.begin();
2206 p != this->warnings_.end();
2207 ++p)
2208 {
2209 Symbol* sym = symtab->lookup(p->first, NULL);
2210 if (sym != NULL
2211 && sym->source() == Symbol::FROM_OBJECT
2212 && sym->object() == p->second.object)
cb295612 2213 sym->set_has_warning();
f6ce93d6
ILT
2214 }
2215}
2216
2217// Issue a warning. This is called when we see a relocation against a
2218// symbol for which has a warning.
2219
75f2446e 2220template<int size, bool big_endian>
f6ce93d6 2221void
75f2446e
ILT
2222Warnings::issue_warning(const Symbol* sym,
2223 const Relocate_info<size, big_endian>* relinfo,
2224 size_t relnum, off_t reloffset) const
f6ce93d6 2225{
a3ad94ed 2226 gold_assert(sym->has_warning());
f6ce93d6 2227 Warning_table::const_iterator p = this->warnings_.find(sym->name());
a3ad94ed 2228 gold_assert(p != this->warnings_.end());
75f2446e
ILT
2229 gold_warning_at_location(relinfo, relnum, reloffset,
2230 "%s", p->second.text.c_str());
f6ce93d6
ILT
2231}
2232
14bfc3f5
ILT
2233// Instantiate the templates we need. We could use the configure
2234// script to restrict this to only the ones needed for implemented
2235// targets.
2236
c7912668
ILT
2237#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2238template
2239void
2240Sized_symbol<32>::allocate_common(Output_data*, Value_type);
2241#endif
2242
2243#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2244template
2245void
2246Sized_symbol<64>::allocate_common(Output_data*, Value_type);
2247#endif
2248
193a53d9 2249#ifdef HAVE_TARGET_32_LITTLE
14bfc3f5
ILT
2250template
2251void
193a53d9
ILT
2252Symbol_table::add_from_relobj<32, false>(
2253 Sized_relobj<32, false>* relobj,
f6ce93d6 2254 const unsigned char* syms,
14bfc3f5
ILT
2255 size_t count,
2256 const char* sym_names,
2257 size_t sym_name_size,
730cdc88 2258 Sized_relobj<32, true>::Symbols* sympointers);
193a53d9 2259#endif
14bfc3f5 2260
193a53d9 2261#ifdef HAVE_TARGET_32_BIG
14bfc3f5
ILT
2262template
2263void
193a53d9
ILT
2264Symbol_table::add_from_relobj<32, true>(
2265 Sized_relobj<32, true>* relobj,
f6ce93d6 2266 const unsigned char* syms,
14bfc3f5
ILT
2267 size_t count,
2268 const char* sym_names,
2269 size_t sym_name_size,
730cdc88 2270 Sized_relobj<32, false>::Symbols* sympointers);
193a53d9 2271#endif
14bfc3f5 2272
193a53d9 2273#ifdef HAVE_TARGET_64_LITTLE
14bfc3f5
ILT
2274template
2275void
193a53d9
ILT
2276Symbol_table::add_from_relobj<64, false>(
2277 Sized_relobj<64, false>* relobj,
f6ce93d6 2278 const unsigned char* syms,
14bfc3f5
ILT
2279 size_t count,
2280 const char* sym_names,
2281 size_t sym_name_size,
730cdc88 2282 Sized_relobj<64, true>::Symbols* sympointers);
193a53d9 2283#endif
14bfc3f5 2284
193a53d9 2285#ifdef HAVE_TARGET_64_BIG
14bfc3f5
ILT
2286template
2287void
193a53d9
ILT
2288Symbol_table::add_from_relobj<64, true>(
2289 Sized_relobj<64, true>* relobj,
f6ce93d6 2290 const unsigned char* syms,
14bfc3f5
ILT
2291 size_t count,
2292 const char* sym_names,
2293 size_t sym_name_size,
730cdc88 2294 Sized_relobj<64, false>::Symbols* sympointers);
193a53d9 2295#endif
14bfc3f5 2296
193a53d9 2297#ifdef HAVE_TARGET_32_LITTLE
dbe717ef
ILT
2298template
2299void
193a53d9
ILT
2300Symbol_table::add_from_dynobj<32, false>(
2301 Sized_dynobj<32, false>* dynobj,
dbe717ef
ILT
2302 const unsigned char* syms,
2303 size_t count,
2304 const char* sym_names,
2305 size_t sym_name_size,
2306 const unsigned char* versym,
2307 size_t versym_size,
2308 const std::vector<const char*>* version_map);
193a53d9 2309#endif
dbe717ef 2310
193a53d9 2311#ifdef HAVE_TARGET_32_BIG
dbe717ef
ILT
2312template
2313void
193a53d9
ILT
2314Symbol_table::add_from_dynobj<32, true>(
2315 Sized_dynobj<32, true>* dynobj,
dbe717ef
ILT
2316 const unsigned char* syms,
2317 size_t count,
2318 const char* sym_names,
2319 size_t sym_name_size,
2320 const unsigned char* versym,
2321 size_t versym_size,
2322 const std::vector<const char*>* version_map);
193a53d9 2323#endif
dbe717ef 2324
193a53d9 2325#ifdef HAVE_TARGET_64_LITTLE
dbe717ef
ILT
2326template
2327void
193a53d9
ILT
2328Symbol_table::add_from_dynobj<64, false>(
2329 Sized_dynobj<64, false>* dynobj,
dbe717ef
ILT
2330 const unsigned char* syms,
2331 size_t count,
2332 const char* sym_names,
2333 size_t sym_name_size,
2334 const unsigned char* versym,
2335 size_t versym_size,
2336 const std::vector<const char*>* version_map);
193a53d9 2337#endif
dbe717ef 2338
193a53d9 2339#ifdef HAVE_TARGET_64_BIG
dbe717ef
ILT
2340template
2341void
193a53d9
ILT
2342Symbol_table::add_from_dynobj<64, true>(
2343 Sized_dynobj<64, true>* dynobj,
dbe717ef
ILT
2344 const unsigned char* syms,
2345 size_t count,
2346 const char* sym_names,
2347 size_t sym_name_size,
2348 const unsigned char* versym,
2349 size_t versym_size,
2350 const std::vector<const char*>* version_map);
193a53d9 2351#endif
dbe717ef 2352
46fe1623
ILT
2353#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2354template
2355void
fe8718a4 2356Symbol_table::define_with_copy_reloc<32>(
fe8718a4
ILT
2357 Sized_symbol<32>* sym,
2358 Output_data* posd,
2359 elfcpp::Elf_types<32>::Elf_Addr value);
46fe1623
ILT
2360#endif
2361
2362#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2363template
2364void
fe8718a4 2365Symbol_table::define_with_copy_reloc<64>(
fe8718a4
ILT
2366 Sized_symbol<64>* sym,
2367 Output_data* posd,
2368 elfcpp::Elf_types<64>::Elf_Addr value);
46fe1623
ILT
2369#endif
2370
75f2446e
ILT
2371#ifdef HAVE_TARGET_32_LITTLE
2372template
2373void
2374Warnings::issue_warning<32, false>(const Symbol* sym,
2375 const Relocate_info<32, false>* relinfo,
2376 size_t relnum, off_t reloffset) const;
2377#endif
2378
2379#ifdef HAVE_TARGET_32_BIG
2380template
2381void
2382Warnings::issue_warning<32, true>(const Symbol* sym,
2383 const Relocate_info<32, true>* relinfo,
2384 size_t relnum, off_t reloffset) const;
2385#endif
2386
2387#ifdef HAVE_TARGET_64_LITTLE
2388template
2389void
2390Warnings::issue_warning<64, false>(const Symbol* sym,
2391 const Relocate_info<64, false>* relinfo,
2392 size_t relnum, off_t reloffset) const;
2393#endif
2394
2395#ifdef HAVE_TARGET_64_BIG
2396template
2397void
2398Warnings::issue_warning<64, true>(const Symbol* sym,
2399 const Relocate_info<64, true>* relinfo,
2400 size_t relnum, off_t reloffset) const;
2401#endif
2402
14bfc3f5 2403} // End namespace gold.