]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gold/symtab.cc
* cli/cli-decode.h (CMD_ASYNC_OK): New define.
[thirdparty/binutils-gdb.git] / gold / symtab.cc
CommitLineData
14bfc3f5
ILT
1// symtab.cc -- the gold symbol table
2
e5756efb 3// Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
6cb15b7f
ILT
4// Written by Ian Lance Taylor <iant@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
14bfc3f5
ILT
23#include "gold.h"
24
04bf7072 25#include <cstring>
14bfc3f5 26#include <stdint.h>
04bf7072 27#include <algorithm>
70e654ba 28#include <set>
14bfc3f5
ILT
29#include <string>
30#include <utility>
a2b1aa12 31#include "demangle.h"
14bfc3f5
ILT
32
33#include "object.h"
70e654ba 34#include "dwarf_reader.h"
dbe717ef 35#include "dynobj.h"
75f65a3e 36#include "output.h"
61ba1cf9 37#include "target.h"
645f8123 38#include "workqueue.h"
14bfc3f5
ILT
39#include "symtab.h"
40
41namespace gold
42{
43
44// Class Symbol.
45
ead1e424
ILT
46// Initialize fields in Symbol. This initializes everything except u_
47// and source_.
14bfc3f5 48
14bfc3f5 49void
ead1e424
ILT
50Symbol::init_fields(const char* name, const char* version,
51 elfcpp::STT type, elfcpp::STB binding,
52 elfcpp::STV visibility, unsigned char nonvis)
14bfc3f5
ILT
53{
54 this->name_ = name;
55 this->version_ = version;
c06b7b0b
ILT
56 this->symtab_index_ = 0;
57 this->dynsym_index_ = 0;
0a65a3a7 58 this->got_offsets_.init();
f4151f89 59 this->plt_offset_ = 0;
ead1e424
ILT
60 this->type_ = type;
61 this->binding_ = binding;
62 this->visibility_ = visibility;
63 this->nonvis_ = nonvis;
64 this->is_target_special_ = false;
1564db8d
ILT
65 this->is_def_ = false;
66 this->is_forwarder_ = false;
aeddab66 67 this->has_alias_ = false;
c06b7b0b 68 this->needs_dynsym_entry_ = false;
008db82e 69 this->in_reg_ = false;
ead1e424 70 this->in_dyn_ = false;
f4151f89 71 this->has_plt_offset_ = false;
f6ce93d6 72 this->has_warning_ = false;
46fe1623 73 this->is_copied_from_dynobj_ = false;
55a93433 74 this->is_forced_local_ = false;
ead1e424
ILT
75}
76
a2b1aa12
ILT
77// Return the demangled version of the symbol's name, but only
78// if the --demangle flag was set.
79
80static std::string
81demangle(const char* name)
82{
086a1841 83 if (!parameters->options().do_demangle())
ff541f30
ILT
84 return name;
85
a2b1aa12
ILT
86 // cplus_demangle allocates memory for the result it returns,
87 // and returns NULL if the name is already demangled.
88 char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
89 if (demangled_name == NULL)
90 return name;
91
92 std::string retval(demangled_name);
93 free(demangled_name);
94 return retval;
95}
96
97std::string
98Symbol::demangled_name() const
99{
ff541f30 100 return demangle(this->name());
a2b1aa12
ILT
101}
102
ead1e424
ILT
103// Initialize the fields in the base class Symbol for SYM in OBJECT.
104
105template<int size, bool big_endian>
106void
107Symbol::init_base(const char* name, const char* version, Object* object,
108 const elfcpp::Sym<size, big_endian>& sym)
109{
110 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
111 sym.get_st_visibility(), sym.get_st_nonvis());
112 this->u_.from_object.object = object;
113 // FIXME: Handle SHN_XINDEX.
16649710 114 this->u_.from_object.shndx = sym.get_st_shndx();
ead1e424 115 this->source_ = FROM_OBJECT;
008db82e 116 this->in_reg_ = !object->is_dynamic();
1564db8d 117 this->in_dyn_ = object->is_dynamic();
14bfc3f5
ILT
118}
119
ead1e424
ILT
120// Initialize the fields in the base class Symbol for a symbol defined
121// in an Output_data.
122
123void
124Symbol::init_base(const char* name, Output_data* od, elfcpp::STT type,
125 elfcpp::STB binding, elfcpp::STV visibility,
126 unsigned char nonvis, bool offset_is_from_end)
127{
128 this->init_fields(name, NULL, type, binding, visibility, nonvis);
129 this->u_.in_output_data.output_data = od;
130 this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
131 this->source_ = IN_OUTPUT_DATA;
008db82e 132 this->in_reg_ = true;
ead1e424
ILT
133}
134
135// Initialize the fields in the base class Symbol for a symbol defined
136// in an Output_segment.
137
138void
139Symbol::init_base(const char* name, Output_segment* os, elfcpp::STT type,
140 elfcpp::STB binding, elfcpp::STV visibility,
141 unsigned char nonvis, Segment_offset_base offset_base)
142{
143 this->init_fields(name, NULL, type, binding, visibility, nonvis);
144 this->u_.in_output_segment.output_segment = os;
145 this->u_.in_output_segment.offset_base = offset_base;
146 this->source_ = IN_OUTPUT_SEGMENT;
008db82e 147 this->in_reg_ = true;
ead1e424
ILT
148}
149
150// Initialize the fields in the base class Symbol for a symbol defined
151// as a constant.
152
153void
154Symbol::init_base(const char* name, elfcpp::STT type,
155 elfcpp::STB binding, elfcpp::STV visibility,
156 unsigned char nonvis)
157{
158 this->init_fields(name, NULL, type, binding, visibility, nonvis);
159 this->source_ = CONSTANT;
008db82e 160 this->in_reg_ = true;
ead1e424
ILT
161}
162
c7912668
ILT
163// Allocate a common symbol in the base.
164
165void
166Symbol::allocate_base_common(Output_data* od)
167{
168 gold_assert(this->is_common());
169 this->source_ = IN_OUTPUT_DATA;
170 this->u_.in_output_data.output_data = od;
171 this->u_.in_output_data.offset_is_from_end = false;
172}
173
ead1e424 174// Initialize the fields in Sized_symbol for SYM in OBJECT.
14bfc3f5
ILT
175
176template<int size>
177template<bool big_endian>
178void
179Sized_symbol<size>::init(const char* name, const char* version, Object* object,
180 const elfcpp::Sym<size, big_endian>& sym)
181{
182 this->init_base(name, version, object, sym);
183 this->value_ = sym.get_st_value();
ead1e424
ILT
184 this->symsize_ = sym.get_st_size();
185}
186
187// Initialize the fields in Sized_symbol for a symbol defined in an
188// Output_data.
189
190template<int size>
191void
192Sized_symbol<size>::init(const char* name, Output_data* od,
193 Value_type value, Size_type symsize,
194 elfcpp::STT type, elfcpp::STB binding,
195 elfcpp::STV visibility, unsigned char nonvis,
196 bool offset_is_from_end)
197{
198 this->init_base(name, od, type, binding, visibility, nonvis,
199 offset_is_from_end);
200 this->value_ = value;
201 this->symsize_ = symsize;
202}
203
204// Initialize the fields in Sized_symbol for a symbol defined in an
205// Output_segment.
206
207template<int size>
208void
209Sized_symbol<size>::init(const char* name, Output_segment* os,
210 Value_type value, Size_type symsize,
211 elfcpp::STT type, elfcpp::STB binding,
212 elfcpp::STV visibility, unsigned char nonvis,
213 Segment_offset_base offset_base)
214{
215 this->init_base(name, os, type, binding, visibility, nonvis, offset_base);
216 this->value_ = value;
217 this->symsize_ = symsize;
218}
219
220// Initialize the fields in Sized_symbol for a symbol defined as a
221// constant.
222
223template<int size>
224void
225Sized_symbol<size>::init(const char* name, Value_type value, Size_type symsize,
226 elfcpp::STT type, elfcpp::STB binding,
227 elfcpp::STV visibility, unsigned char nonvis)
228{
229 this->init_base(name, type, binding, visibility, nonvis);
230 this->value_ = value;
231 this->symsize_ = symsize;
14bfc3f5
ILT
232}
233
c7912668
ILT
234// Allocate a common symbol.
235
236template<int size>
237void
238Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
239{
240 this->allocate_base_common(od);
241 this->value_ = value;
242}
243
436ca963
ILT
244// Return true if this symbol should be added to the dynamic symbol
245// table.
246
247inline bool
248Symbol::should_add_dynsym_entry() const
249{
250 // If the symbol is used by a dynamic relocation, we need to add it.
251 if (this->needs_dynsym_entry())
252 return true;
253
55a93433
ILT
254 // If the symbol was forced local in a version script, do not add it.
255 if (this->is_forced_local())
256 return false;
257
436ca963
ILT
258 // If exporting all symbols or building a shared library,
259 // and the symbol is defined in a regular object and is
260 // externally visible, we need to add it.
8851ecca 261 if ((parameters->options().export_dynamic() || parameters->options().shared())
436ca963
ILT
262 && !this->is_from_dynobj()
263 && this->is_externally_visible())
264 return true;
265
266 return false;
267}
268
b3b74ddc
ILT
269// Return true if the final value of this symbol is known at link
270// time.
271
272bool
273Symbol::final_value_is_known() const
274{
275 // If we are not generating an executable, then no final values are
276 // known, since they will change at runtime.
8851ecca 277 if (parameters->options().shared() || parameters->options().relocatable())
b3b74ddc
ILT
278 return false;
279
280 // If the symbol is not from an object file, then it is defined, and
281 // known.
282 if (this->source_ != FROM_OBJECT)
283 return true;
284
285 // If the symbol is from a dynamic object, then the final value is
286 // not known.
287 if (this->object()->is_dynamic())
288 return false;
289
290 // If the symbol is not undefined (it is defined or common), then
291 // the final value is known.
292 if (!this->is_undefined())
293 return true;
294
295 // If the symbol is undefined, then whether the final value is known
296 // depends on whether we are doing a static link. If we are doing a
297 // dynamic link, then the final value could be filled in at runtime.
298 // This could reasonably be the case for a weak undefined symbol.
299 return parameters->doing_static_link();
300}
301
77e65537 302// Return the output section where this symbol is defined.
a445fddf 303
77e65537
ILT
304Output_section*
305Symbol::output_section() const
a445fddf
ILT
306{
307 switch (this->source_)
308 {
309 case FROM_OBJECT:
77e65537
ILT
310 {
311 unsigned int shndx = this->u_.from_object.shndx;
312 if (shndx != elfcpp::SHN_UNDEF && shndx < elfcpp::SHN_LORESERVE)
313 {
314 gold_assert(!this->u_.from_object.object->is_dynamic());
315 Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
316 section_offset_type dummy;
317 return relobj->output_section(shndx, &dummy);
318 }
319 return NULL;
320 }
321
a445fddf 322 case IN_OUTPUT_DATA:
77e65537
ILT
323 return this->u_.in_output_data.output_data->output_section();
324
a445fddf 325 case IN_OUTPUT_SEGMENT:
a445fddf 326 case CONSTANT:
77e65537
ILT
327 return NULL;
328
329 default:
330 gold_unreachable();
331 }
332}
333
334// Set the symbol's output section. This is used for symbols defined
335// in scripts. This should only be called after the symbol table has
336// been finalized.
337
338void
339Symbol::set_output_section(Output_section* os)
340{
341 switch (this->source_)
342 {
343 case FROM_OBJECT:
344 case IN_OUTPUT_DATA:
345 gold_assert(this->output_section() == os);
346 break;
347 case CONSTANT:
348 this->source_ = IN_OUTPUT_DATA;
349 this->u_.in_output_data.output_data = os;
350 this->u_.in_output_data.offset_is_from_end = false;
351 break;
352 case IN_OUTPUT_SEGMENT:
a445fddf
ILT
353 default:
354 gold_unreachable();
355 }
356}
357
14bfc3f5
ILT
358// Class Symbol_table.
359
09124467
ILT
360Symbol_table::Symbol_table(unsigned int count,
361 const Version_script_info& version_script)
6d013333 362 : saw_undefined_(0), offset_(0), table_(count), namepool_(),
55a93433
ILT
363 forwarders_(), commons_(), forced_locals_(), warnings_(),
364 version_script_(version_script)
14bfc3f5 365{
6d013333 366 namepool_.reserve(count);
14bfc3f5
ILT
367}
368
369Symbol_table::~Symbol_table()
370{
371}
372
ad8f37d1 373// The hash function. The key values are Stringpool keys.
14bfc3f5 374
ad8f37d1 375inline size_t
14bfc3f5
ILT
376Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key& key) const
377{
f0641a0b 378 return key.first ^ key.second;
14bfc3f5
ILT
379}
380
ad8f37d1
ILT
381// The symbol table key equality function. This is called with
382// Stringpool keys.
14bfc3f5 383
ad8f37d1 384inline bool
14bfc3f5
ILT
385Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
386 const Symbol_table_key& k2) const
387{
388 return k1.first == k2.first && k1.second == k2.second;
389}
390
dd8670e5 391// Make TO a symbol which forwards to FROM.
14bfc3f5
ILT
392
393void
394Symbol_table::make_forwarder(Symbol* from, Symbol* to)
395{
a3ad94ed
ILT
396 gold_assert(from != to);
397 gold_assert(!from->is_forwarder() && !to->is_forwarder());
14bfc3f5
ILT
398 this->forwarders_[from] = to;
399 from->set_forwarder();
400}
401
61ba1cf9
ILT
402// Resolve the forwards from FROM, returning the real symbol.
403
14bfc3f5 404Symbol*
c06b7b0b 405Symbol_table::resolve_forwards(const Symbol* from) const
14bfc3f5 406{
a3ad94ed 407 gold_assert(from->is_forwarder());
c06b7b0b 408 Unordered_map<const Symbol*, Symbol*>::const_iterator p =
14bfc3f5 409 this->forwarders_.find(from);
a3ad94ed 410 gold_assert(p != this->forwarders_.end());
14bfc3f5
ILT
411 return p->second;
412}
413
61ba1cf9
ILT
414// Look up a symbol by name.
415
416Symbol*
417Symbol_table::lookup(const char* name, const char* version) const
418{
f0641a0b
ILT
419 Stringpool::Key name_key;
420 name = this->namepool_.find(name, &name_key);
61ba1cf9
ILT
421 if (name == NULL)
422 return NULL;
f0641a0b
ILT
423
424 Stringpool::Key version_key = 0;
61ba1cf9
ILT
425 if (version != NULL)
426 {
f0641a0b 427 version = this->namepool_.find(version, &version_key);
61ba1cf9
ILT
428 if (version == NULL)
429 return NULL;
430 }
431
f0641a0b 432 Symbol_table_key key(name_key, version_key);
61ba1cf9
ILT
433 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
434 if (p == this->table_.end())
435 return NULL;
436 return p->second;
437}
438
14bfc3f5
ILT
439// Resolve a Symbol with another Symbol. This is only used in the
440// unusual case where there are references to both an unversioned
441// symbol and a symbol with a version, and we then discover that that
1564db8d
ILT
442// version is the default version. Because this is unusual, we do
443// this the slow way, by converting back to an ELF symbol.
14bfc3f5 444
1564db8d 445template<int size, bool big_endian>
14bfc3f5 446void
14b31740 447Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from,
7d1a9ebb 448 const char* version)
14bfc3f5 449{
1564db8d
ILT
450 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
451 elfcpp::Sym_write<size, big_endian> esym(buf);
452 // We don't bother to set the st_name field.
453 esym.put_st_value(from->value());
454 esym.put_st_size(from->symsize());
455 esym.put_st_info(from->binding(), from->type());
ead1e424 456 esym.put_st_other(from->visibility(), from->nonvis());
16649710 457 esym.put_st_shndx(from->shndx());
70e654ba 458 this->resolve(to, esym.sym(), esym.sym(), from->object(), version);
1ebd95fd
ILT
459 if (from->in_reg())
460 to->set_in_reg();
461 if (from->in_dyn())
462 to->set_in_dyn();
14bfc3f5
ILT
463}
464
55a93433
ILT
465// Record that a symbol is forced to be local by a version script.
466
467void
468Symbol_table::force_local(Symbol* sym)
469{
470 if (!sym->is_defined() && !sym->is_common())
471 return;
472 if (sym->is_forced_local())
473 {
474 // We already got this one.
475 return;
476 }
477 sym->set_is_forced_local();
478 this->forced_locals_.push_back(sym);
479}
480
0864d551
ILT
481// Adjust NAME for wrapping, and update *NAME_KEY if necessary. This
482// is only called for undefined symbols, when at least one --wrap
483// option was used.
484
485const char*
486Symbol_table::wrap_symbol(Object* object, const char* name,
487 Stringpool::Key* name_key)
488{
489 // For some targets, we need to ignore a specific character when
490 // wrapping, and add it back later.
491 char prefix = '\0';
492 if (name[0] == object->target()->wrap_char())
493 {
494 prefix = name[0];
495 ++name;
496 }
497
498 if (parameters->options().is_wrap_symbol(name))
499 {
500 // Turn NAME into __wrap_NAME.
501 std::string s;
502 if (prefix != '\0')
503 s += prefix;
504 s += "__wrap_";
505 s += name;
506
507 // This will give us both the old and new name in NAMEPOOL_, but
508 // that is OK. Only the versions we need will wind up in the
509 // real string table in the output file.
510 return this->namepool_.add(s.c_str(), true, name_key);
511 }
512
513 const char* const real_prefix = "__real_";
514 const size_t real_prefix_length = strlen(real_prefix);
515 if (strncmp(name, real_prefix, real_prefix_length) == 0
516 && parameters->options().is_wrap_symbol(name + real_prefix_length))
517 {
518 // Turn __real_NAME into NAME.
519 std::string s;
520 if (prefix != '\0')
521 s += prefix;
522 s += name + real_prefix_length;
523 return this->namepool_.add(s.c_str(), true, name_key);
524 }
525
526 return name;
527}
528
14bfc3f5
ILT
529// Add one symbol from OBJECT to the symbol table. NAME is symbol
530// name and VERSION is the version; both are canonicalized. DEF is
531// whether this is the default version.
532
533// If DEF is true, then this is the definition of a default version of
534// a symbol. That means that any lookup of NAME/NULL and any lookup
535// of NAME/VERSION should always return the same symbol. This is
536// obvious for references, but in particular we want to do this for
537// definitions: overriding NAME/NULL should also override
538// NAME/VERSION. If we don't do that, it would be very hard to
539// override functions in a shared library which uses versioning.
540
541// We implement this by simply making both entries in the hash table
542// point to the same Symbol structure. That is easy enough if this is
543// the first time we see NAME/NULL or NAME/VERSION, but it is possible
544// that we have seen both already, in which case they will both have
545// independent entries in the symbol table. We can't simply change
546// the symbol table entry, because we have pointers to the entries
547// attached to the object files. So we mark the entry attached to the
548// object file as a forwarder, and record it in the forwarders_ map.
549// Note that entries in the hash table will never be marked as
550// forwarders.
70e654ba
ILT
551//
552// SYM and ORIG_SYM are almost always the same. ORIG_SYM is the
553// symbol exactly as it existed in the input file. SYM is usually
554// that as well, but can be modified, for instance if we determine
555// it's in a to-be-discarded section.
14bfc3f5
ILT
556
557template<int size, bool big_endian>
aeddab66 558Sized_symbol<size>*
f6ce93d6 559Symbol_table::add_from_object(Object* object,
14bfc3f5 560 const char *name,
f0641a0b
ILT
561 Stringpool::Key name_key,
562 const char *version,
563 Stringpool::Key version_key,
564 bool def,
70e654ba
ILT
565 const elfcpp::Sym<size, big_endian>& sym,
566 const elfcpp::Sym<size, big_endian>& orig_sym)
14bfc3f5 567{
0864d551
ILT
568 // For an undefined symbol, we may need to adjust the name using
569 // --wrap.
570 if (orig_sym.get_st_shndx() == elfcpp::SHN_UNDEF
571 && parameters->options().any_wrap_symbols())
572 {
573 const char* wrap_name = this->wrap_symbol(object, name, &name_key);
574 if (wrap_name != name)
575 {
576 // If we see a reference to malloc with version GLIBC_2.0,
577 // and we turn it into a reference to __wrap_malloc, then we
578 // discard the version number. Otherwise the user would be
579 // required to specify the correct version for
580 // __wrap_malloc.
581 version = NULL;
582 version_key = 0;
583 name = wrap_name;
584 }
585 }
586
14bfc3f5
ILT
587 Symbol* const snull = NULL;
588 std::pair<typename Symbol_table_type::iterator, bool> ins =
f0641a0b
ILT
589 this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
590 snull));
14bfc3f5
ILT
591
592 std::pair<typename Symbol_table_type::iterator, bool> insdef =
593 std::make_pair(this->table_.end(), false);
594 if (def)
595 {
f0641a0b
ILT
596 const Stringpool::Key vnull_key = 0;
597 insdef = this->table_.insert(std::make_pair(std::make_pair(name_key,
598 vnull_key),
14bfc3f5
ILT
599 snull));
600 }
601
602 // ins.first: an iterator, which is a pointer to a pair.
603 // ins.first->first: the key (a pair of name and version).
604 // ins.first->second: the value (Symbol*).
605 // ins.second: true if new entry was inserted, false if not.
606
1564db8d 607 Sized_symbol<size>* ret;
ead1e424
ILT
608 bool was_undefined;
609 bool was_common;
14bfc3f5
ILT
610 if (!ins.second)
611 {
612 // We already have an entry for NAME/VERSION.
7d1a9ebb 613 ret = this->get_sized_symbol<size>(ins.first->second);
a3ad94ed 614 gold_assert(ret != NULL);
ead1e424
ILT
615
616 was_undefined = ret->is_undefined();
617 was_common = ret->is_common();
618
70e654ba 619 this->resolve(ret, sym, orig_sym, object, version);
14bfc3f5
ILT
620
621 if (def)
622 {
623 if (insdef.second)
624 {
625 // This is the first time we have seen NAME/NULL. Make
626 // NAME/NULL point to NAME/VERSION.
627 insdef.first->second = ret;
628 }
99f8faca
ILT
629 else if (insdef.first->second != ret
630 && insdef.first->second->is_undefined())
14bfc3f5
ILT
631 {
632 // This is the unfortunate case where we already have
99f8faca
ILT
633 // entries for both NAME/VERSION and NAME/NULL. Note
634 // that we don't want to combine them if the existing
635 // symbol is going to override the new one. FIXME: We
636 // currently just test is_undefined, but this may not do
637 // the right thing if the existing symbol is from a
638 // shared library and the new one is from a regular
639 // object.
640
274e99f9 641 const Sized_symbol<size>* sym2;
7d1a9ebb
ILT
642 sym2 = this->get_sized_symbol<size>(insdef.first->second);
643 Symbol_table::resolve<size, big_endian>(ret, sym2, version);
14bfc3f5
ILT
644 this->make_forwarder(insdef.first->second, ret);
645 insdef.first->second = ret;
646 }
479f6503
ILT
647 else
648 def = false;
14bfc3f5
ILT
649 }
650 }
651 else
652 {
653 // This is the first time we have seen NAME/VERSION.
a3ad94ed 654 gold_assert(ins.first->second == NULL);
ead1e424 655
14bfc3f5
ILT
656 if (def && !insdef.second)
657 {
14b31740
ILT
658 // We already have an entry for NAME/NULL. If we override
659 // it, then change it to NAME/VERSION.
7d1a9ebb 660 ret = this->get_sized_symbol<size>(insdef.first->second);
18e6b24e
ILT
661
662 was_undefined = ret->is_undefined();
663 was_common = ret->is_common();
664
70e654ba 665 this->resolve(ret, sym, orig_sym, object, version);
14bfc3f5
ILT
666 ins.first->second = ret;
667 }
668 else
669 {
18e6b24e
ILT
670 was_undefined = false;
671 was_common = false;
672
f6ce93d6 673 Sized_target<size, big_endian>* target =
7d1a9ebb 674 object->sized_target<size, big_endian>();
1564db8d
ILT
675 if (!target->has_make_symbol())
676 ret = new Sized_symbol<size>();
677 else
14bfc3f5 678 {
1564db8d
ILT
679 ret = target->make_symbol();
680 if (ret == NULL)
14bfc3f5
ILT
681 {
682 // This means that we don't want a symbol table
683 // entry after all.
684 if (!def)
685 this->table_.erase(ins.first);
686 else
687 {
688 this->table_.erase(insdef.first);
689 // Inserting insdef invalidated ins.
f0641a0b
ILT
690 this->table_.erase(std::make_pair(name_key,
691 version_key));
14bfc3f5
ILT
692 }
693 return NULL;
694 }
695 }
14bfc3f5 696
1564db8d
ILT
697 ret->init(name, version, object, sym);
698
14bfc3f5
ILT
699 ins.first->second = ret;
700 if (def)
701 {
702 // This is the first time we have seen NAME/NULL. Point
703 // it at the new entry for NAME/VERSION.
a3ad94ed 704 gold_assert(insdef.second);
14bfc3f5
ILT
705 insdef.first->second = ret;
706 }
707 }
708 }
709
ead1e424
ILT
710 // Record every time we see a new undefined symbol, to speed up
711 // archive groups.
712 if (!was_undefined && ret->is_undefined())
713 ++this->saw_undefined_;
714
715 // Keep track of common symbols, to speed up common symbol
716 // allocation.
717 if (!was_common && ret->is_common())
718 this->commons_.push_back(ret);
719
be3e6201
ILT
720 if (def)
721 ret->set_is_default();
14bfc3f5
ILT
722 return ret;
723}
724
f6ce93d6 725// Add all the symbols in a relocatable object to the hash table.
14bfc3f5
ILT
726
727template<int size, bool big_endian>
728void
dbe717ef
ILT
729Symbol_table::add_from_relobj(
730 Sized_relobj<size, big_endian>* relobj,
f6ce93d6 731 const unsigned char* syms,
14bfc3f5
ILT
732 size_t count,
733 const char* sym_names,
734 size_t sym_name_size,
730cdc88 735 typename Sized_relobj<size, big_endian>::Symbols* sympointers)
14bfc3f5 736{
9025d29d 737 gold_assert(size == relobj->target()->get_size());
8851ecca 738 gold_assert(size == parameters->target().get_size());
14bfc3f5 739
a783673b
ILT
740 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
741
88dd47ac
ILT
742 const bool just_symbols = relobj->just_symbols();
743
f6ce93d6 744 const unsigned char* p = syms;
a783673b 745 for (size_t i = 0; i < count; ++i, p += sym_size)
14bfc3f5
ILT
746 {
747 elfcpp::Sym<size, big_endian> sym(p);
a783673b 748 elfcpp::Sym<size, big_endian>* psym = &sym;
14bfc3f5 749
a783673b 750 unsigned int st_name = psym->get_st_name();
14bfc3f5
ILT
751 if (st_name >= sym_name_size)
752 {
75f2446e
ILT
753 relobj->error(_("bad global symbol name offset %u at %zu"),
754 st_name, i);
755 continue;
14bfc3f5
ILT
756 }
757
dbe717ef
ILT
758 const char* name = sym_names + st_name;
759
a783673b
ILT
760 // A symbol defined in a section which we are not including must
761 // be treated as an undefined symbol.
762 unsigned char symbuf[sym_size];
763 elfcpp::Sym<size, big_endian> sym2(symbuf);
764 unsigned int st_shndx = psym->get_st_shndx();
765 if (st_shndx != elfcpp::SHN_UNDEF
766 && st_shndx < elfcpp::SHN_LORESERVE
dbe717ef 767 && !relobj->is_section_included(st_shndx))
a783673b
ILT
768 {
769 memcpy(symbuf, p, sym_size);
770 elfcpp::Sym_write<size, big_endian> sw(symbuf);
771 sw.put_st_shndx(elfcpp::SHN_UNDEF);
772 psym = &sym2;
773 }
774
14bfc3f5
ILT
775 // In an object file, an '@' in the name separates the symbol
776 // name from the version name. If there are two '@' characters,
777 // this is the default version.
778 const char* ver = strchr(name, '@');
09124467 779 int namelen = 0;
55a93433 780 // DEF: is the version default? LOCAL: is the symbol forced local?
09124467 781 bool def = false;
55a93433 782 bool local = false;
09124467
ILT
783
784 if (ver != NULL)
785 {
786 // The symbol name is of the form foo@VERSION or foo@@VERSION
787 namelen = ver - name;
788 ++ver;
789 if (*ver == '@')
790 {
791 def = true;
792 ++ver;
793 }
794 }
5871526f
ILT
795 // We don't want to assign a version to an undefined symbol,
796 // even if it is listed in the version script. FIXME: What
797 // about a common symbol?
798 else if (!version_script_.empty()
799 && psym->get_st_shndx() != elfcpp::SHN_UNDEF)
09124467
ILT
800 {
801 // The symbol name did not have a version, but
802 // the version script may assign a version anyway.
803 namelen = strlen(name);
804 def = true;
55a93433 805 // Check the global: entries from the version script.
09124467
ILT
806 const std::string& version =
807 version_script_.get_symbol_version(name);
808 if (!version.empty())
809 ver = version.c_str();
55a93433
ILT
810 // Check the local: entries from the version script
811 if (version_script_.symbol_is_local(name))
812 local = true;
09124467 813 }
14bfc3f5 814
88dd47ac
ILT
815 if (just_symbols)
816 {
817 if (psym != &sym2)
818 memcpy(symbuf, p, sym_size);
819 elfcpp::Sym_write<size, big_endian> sw(symbuf);
820 sw.put_st_shndx(elfcpp::SHN_ABS);
821 if (st_shndx != elfcpp::SHN_UNDEF
822 && st_shndx < elfcpp::SHN_LORESERVE)
823 {
824 // Symbol values in object files are section relative.
825 // This is normally what we want, but since here we are
826 // converting the symbol to absolute we need to add the
827 // section address. The section address in an object
828 // file is normally zero, but people can use a linker
829 // script to change it.
830 sw.put_st_value(sym2.get_st_value()
831 + relobj->section_address(st_shndx));
832 }
833 psym = &sym2;
834 }
835
aeddab66 836 Sized_symbol<size>* res;
14bfc3f5
ILT
837 if (ver == NULL)
838 {
f0641a0b 839 Stringpool::Key name_key;
cfd73a4e 840 name = this->namepool_.add(name, true, &name_key);
dbe717ef 841 res = this->add_from_object(relobj, name, name_key, NULL, 0,
70e654ba 842 false, *psym, sym);
55a93433
ILT
843 if (local)
844 this->force_local(res);
14bfc3f5
ILT
845 }
846 else
847 {
f0641a0b 848 Stringpool::Key name_key;
09124467 849 name = this->namepool_.add_with_length(name, namelen, true,
c0873094 850 &name_key);
f0641a0b 851 Stringpool::Key ver_key;
cfd73a4e 852 ver = this->namepool_.add(ver, true, &ver_key);
f0641a0b 853
dbe717ef 854 res = this->add_from_object(relobj, name, name_key, ver, ver_key,
70e654ba 855 def, *psym, sym);
14bfc3f5
ILT
856 }
857
730cdc88 858 (*sympointers)[i] = res;
14bfc3f5
ILT
859 }
860}
861
dbe717ef
ILT
862// Add all the symbols in a dynamic object to the hash table.
863
864template<int size, bool big_endian>
865void
866Symbol_table::add_from_dynobj(
867 Sized_dynobj<size, big_endian>* dynobj,
868 const unsigned char* syms,
869 size_t count,
870 const char* sym_names,
871 size_t sym_name_size,
872 const unsigned char* versym,
873 size_t versym_size,
874 const std::vector<const char*>* version_map)
875{
9025d29d 876 gold_assert(size == dynobj->target()->get_size());
8851ecca 877 gold_assert(size == parameters->target().get_size());
dbe717ef 878
88dd47ac
ILT
879 if (dynobj->just_symbols())
880 {
881 gold_error(_("--just-symbols does not make sense with a shared object"));
882 return;
883 }
884
dbe717ef
ILT
885 if (versym != NULL && versym_size / 2 < count)
886 {
75f2446e
ILT
887 dynobj->error(_("too few symbol versions"));
888 return;
dbe717ef
ILT
889 }
890
891 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
892
aeddab66
ILT
893 // We keep a list of all STT_OBJECT symbols, so that we can resolve
894 // weak aliases. This is necessary because if the dynamic object
895 // provides the same variable under two names, one of which is a
896 // weak definition, and the regular object refers to the weak
897 // definition, we have to put both the weak definition and the
898 // strong definition into the dynamic symbol table. Given a weak
899 // definition, the only way that we can find the corresponding
900 // strong definition, if any, is to search the symbol table.
901 std::vector<Sized_symbol<size>*> object_symbols;
902
dbe717ef
ILT
903 const unsigned char* p = syms;
904 const unsigned char* vs = versym;
905 for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
906 {
907 elfcpp::Sym<size, big_endian> sym(p);
908
65778909
ILT
909 // Ignore symbols with local binding or that have
910 // internal or hidden visibility.
911 if (sym.get_st_bind() == elfcpp::STB_LOCAL
912 || sym.get_st_visibility() == elfcpp::STV_INTERNAL
913 || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
dbe717ef
ILT
914 continue;
915
916 unsigned int st_name = sym.get_st_name();
917 if (st_name >= sym_name_size)
918 {
75f2446e
ILT
919 dynobj->error(_("bad symbol name offset %u at %zu"),
920 st_name, i);
921 continue;
dbe717ef
ILT
922 }
923
924 const char* name = sym_names + st_name;
925
aeddab66
ILT
926 Sized_symbol<size>* res;
927
dbe717ef
ILT
928 if (versym == NULL)
929 {
930 Stringpool::Key name_key;
cfd73a4e 931 name = this->namepool_.add(name, true, &name_key);
aeddab66 932 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
70e654ba 933 false, sym, sym);
dbe717ef 934 }
aeddab66
ILT
935 else
936 {
937 // Read the version information.
dbe717ef 938
aeddab66 939 unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
dbe717ef 940
aeddab66
ILT
941 bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
942 v &= elfcpp::VERSYM_VERSION;
dbe717ef 943
aeddab66
ILT
944 // The Sun documentation says that V can be VER_NDX_LOCAL,
945 // or VER_NDX_GLOBAL, or a version index. The meaning of
946 // VER_NDX_LOCAL is defined as "Symbol has local scope."
947 // The old GNU linker will happily generate VER_NDX_LOCAL
948 // for an undefined symbol. I don't know what the Sun
949 // linker will generate.
dbe717ef 950
aeddab66
ILT
951 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
952 && sym.get_st_shndx() != elfcpp::SHN_UNDEF)
953 {
954 // This symbol should not be visible outside the object.
955 continue;
956 }
64707334 957
aeddab66
ILT
958 // At this point we are definitely going to add this symbol.
959 Stringpool::Key name_key;
960 name = this->namepool_.add(name, true, &name_key);
dbe717ef 961
aeddab66
ILT
962 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
963 || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
964 {
965 // This symbol does not have a version.
966 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
70e654ba 967 false, sym, sym);
aeddab66
ILT
968 }
969 else
970 {
971 if (v >= version_map->size())
972 {
973 dynobj->error(_("versym for symbol %zu out of range: %u"),
974 i, v);
975 continue;
976 }
dbe717ef 977
aeddab66
ILT
978 const char* version = (*version_map)[v];
979 if (version == NULL)
980 {
981 dynobj->error(_("versym for symbol %zu has no name: %u"),
982 i, v);
983 continue;
984 }
dbe717ef 985
aeddab66
ILT
986 Stringpool::Key version_key;
987 version = this->namepool_.add(version, true, &version_key);
988
989 // If this is an absolute symbol, and the version name
990 // and symbol name are the same, then this is the
991 // version definition symbol. These symbols exist to
992 // support using -u to pull in particular versions. We
993 // do not want to record a version for them.
994 if (sym.get_st_shndx() == elfcpp::SHN_ABS
995 && name_key == version_key)
996 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
70e654ba 997 false, sym, sym);
aeddab66
ILT
998 else
999 {
1000 const bool def = (!hidden
1001 && (sym.get_st_shndx()
1002 != elfcpp::SHN_UNDEF));
1003 res = this->add_from_object(dynobj, name, name_key, version,
70e654ba 1004 version_key, def, sym, sym);
aeddab66
ILT
1005 }
1006 }
dbe717ef
ILT
1007 }
1008
99a37bfd 1009 // Note that it is possible that RES was overridden by an
a4bb589a 1010 // earlier object, in which case it can't be aliased here.
aeddab66 1011 if (sym.get_st_shndx() != elfcpp::SHN_UNDEF
99a37bfd
ILT
1012 && sym.get_st_type() == elfcpp::STT_OBJECT
1013 && res->source() == Symbol::FROM_OBJECT
1014 && res->object() == dynobj)
aeddab66
ILT
1015 object_symbols.push_back(res);
1016 }
1017
1018 this->record_weak_aliases(&object_symbols);
1019}
1020
1021// This is used to sort weak aliases. We sort them first by section
1022// index, then by offset, then by weak ahead of strong.
1023
1024template<int size>
1025class Weak_alias_sorter
1026{
1027 public:
1028 bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1029};
1030
1031template<int size>
1032bool
1033Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1034 const Sized_symbol<size>* s2) const
1035{
1036 if (s1->shndx() != s2->shndx())
1037 return s1->shndx() < s2->shndx();
1038 if (s1->value() != s2->value())
1039 return s1->value() < s2->value();
1040 if (s1->binding() != s2->binding())
1041 {
1042 if (s1->binding() == elfcpp::STB_WEAK)
1043 return true;
1044 if (s2->binding() == elfcpp::STB_WEAK)
1045 return false;
1046 }
1047 return std::string(s1->name()) < std::string(s2->name());
1048}
dbe717ef 1049
aeddab66
ILT
1050// SYMBOLS is a list of object symbols from a dynamic object. Look
1051// for any weak aliases, and record them so that if we add the weak
1052// alias to the dynamic symbol table, we also add the corresponding
1053// strong symbol.
dbe717ef 1054
aeddab66
ILT
1055template<int size>
1056void
1057Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1058{
1059 // Sort the vector by section index, then by offset, then by weak
1060 // ahead of strong.
1061 std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1062
1063 // Walk through the vector. For each weak definition, record
1064 // aliases.
1065 for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1066 symbols->begin();
1067 p != symbols->end();
1068 ++p)
1069 {
1070 if ((*p)->binding() != elfcpp::STB_WEAK)
1071 continue;
1072
1073 // Build a circular list of weak aliases. Each symbol points to
1074 // the next one in the circular list.
1075
1076 Sized_symbol<size>* from_sym = *p;
1077 typename std::vector<Sized_symbol<size>*>::const_iterator q;
1078 for (q = p + 1; q != symbols->end(); ++q)
dbe717ef 1079 {
aeddab66
ILT
1080 if ((*q)->shndx() != from_sym->shndx()
1081 || (*q)->value() != from_sym->value())
1082 break;
1083
1084 this->weak_aliases_[from_sym] = *q;
1085 from_sym->set_has_alias();
1086 from_sym = *q;
dbe717ef
ILT
1087 }
1088
aeddab66
ILT
1089 if (from_sym != *p)
1090 {
1091 this->weak_aliases_[from_sym] = *p;
1092 from_sym->set_has_alias();
1093 }
dbe717ef 1094
aeddab66 1095 p = q - 1;
dbe717ef
ILT
1096 }
1097}
1098
ead1e424
ILT
1099// Create and return a specially defined symbol. If ONLY_IF_REF is
1100// true, then only create the symbol if there is a reference to it.
86f2e683 1101// If this does not return NULL, it sets *POLDSYM to the existing
306d9ef0 1102// symbol if there is one. This canonicalizes *PNAME and *PVERSION.
ead1e424
ILT
1103
1104template<int size, bool big_endian>
1105Sized_symbol<size>*
9b07f471
ILT
1106Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1107 bool only_if_ref,
7d1a9ebb 1108 Sized_symbol<size>** poldsym)
ead1e424 1109{
ead1e424
ILT
1110 Symbol* oldsym;
1111 Sized_symbol<size>* sym;
86f2e683
ILT
1112 bool add_to_table = false;
1113 typename Symbol_table_type::iterator add_loc = this->table_.end();
ead1e424 1114
55a93433
ILT
1115 // If the caller didn't give us a version, see if we get one from
1116 // the version script.
1117 if (*pversion == NULL)
1118 {
1119 const std::string& v(this->version_script_.get_symbol_version(*pname));
1120 if (!v.empty())
1121 *pversion = v.c_str();
1122 }
1123
ead1e424
ILT
1124 if (only_if_ref)
1125 {
306d9ef0 1126 oldsym = this->lookup(*pname, *pversion);
f6ce93d6 1127 if (oldsym == NULL || !oldsym->is_undefined())
ead1e424 1128 return NULL;
306d9ef0
ILT
1129
1130 *pname = oldsym->name();
1131 *pversion = oldsym->version();
ead1e424
ILT
1132 }
1133 else
1134 {
14b31740 1135 // Canonicalize NAME and VERSION.
f0641a0b 1136 Stringpool::Key name_key;
cfd73a4e 1137 *pname = this->namepool_.add(*pname, true, &name_key);
ead1e424 1138
14b31740 1139 Stringpool::Key version_key = 0;
306d9ef0 1140 if (*pversion != NULL)
cfd73a4e 1141 *pversion = this->namepool_.add(*pversion, true, &version_key);
14b31740 1142
ead1e424 1143 Symbol* const snull = NULL;
ead1e424 1144 std::pair<typename Symbol_table_type::iterator, bool> ins =
14b31740
ILT
1145 this->table_.insert(std::make_pair(std::make_pair(name_key,
1146 version_key),
ead1e424
ILT
1147 snull));
1148
1149 if (!ins.second)
1150 {
14b31740 1151 // We already have a symbol table entry for NAME/VERSION.
ead1e424 1152 oldsym = ins.first->second;
a3ad94ed 1153 gold_assert(oldsym != NULL);
ead1e424
ILT
1154 }
1155 else
1156 {
1157 // We haven't seen this symbol before.
a3ad94ed 1158 gold_assert(ins.first->second == NULL);
86f2e683
ILT
1159 add_to_table = true;
1160 add_loc = ins.first;
ead1e424
ILT
1161 oldsym = NULL;
1162 }
1163 }
1164
8851ecca
ILT
1165 const Target& target = parameters->target();
1166 if (!target.has_make_symbol())
86f2e683
ILT
1167 sym = new Sized_symbol<size>();
1168 else
ead1e424 1169 {
8851ecca
ILT
1170 gold_assert(target.get_size() == size);
1171 gold_assert(target.is_big_endian() ? big_endian : !big_endian);
86f2e683
ILT
1172 typedef Sized_target<size, big_endian> My_target;
1173 const My_target* sized_target =
8851ecca 1174 static_cast<const My_target*>(&target);
86f2e683
ILT
1175 sym = sized_target->make_symbol();
1176 if (sym == NULL)
1177 return NULL;
1178 }
ead1e424 1179
86f2e683
ILT
1180 if (add_to_table)
1181 add_loc->second = sym;
1182 else
1183 gold_assert(oldsym != NULL);
ead1e424 1184
7d1a9ebb 1185 *poldsym = this->get_sized_symbol<size>(oldsym);
ead1e424
ILT
1186
1187 return sym;
1188}
1189
1190// Define a symbol based on an Output_data.
1191
14b31740 1192Symbol*
9b07f471
ILT
1193Symbol_table::define_in_output_data(const char* name,
1194 const char* version,
1195 Output_data* od,
1196 uint64_t value,
1197 uint64_t symsize,
1198 elfcpp::STT type,
1199 elfcpp::STB binding,
ead1e424
ILT
1200 elfcpp::STV visibility,
1201 unsigned char nonvis,
1202 bool offset_is_from_end,
1203 bool only_if_ref)
1204{
8851ecca 1205 if (parameters->target().get_size() == 32)
86f2e683
ILT
1206 {
1207#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
9b07f471 1208 return this->do_define_in_output_data<32>(name, version, od,
86f2e683
ILT
1209 value, symsize, type, binding,
1210 visibility, nonvis,
1211 offset_is_from_end,
1212 only_if_ref);
1213#else
1214 gold_unreachable();
1215#endif
1216 }
8851ecca 1217 else if (parameters->target().get_size() == 64)
86f2e683
ILT
1218 {
1219#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
9b07f471 1220 return this->do_define_in_output_data<64>(name, version, od,
86f2e683
ILT
1221 value, symsize, type, binding,
1222 visibility, nonvis,
1223 offset_is_from_end,
1224 only_if_ref);
1225#else
1226 gold_unreachable();
1227#endif
1228 }
ead1e424 1229 else
a3ad94ed 1230 gold_unreachable();
ead1e424
ILT
1231}
1232
1233// Define a symbol in an Output_data, sized version.
1234
1235template<int size>
14b31740 1236Sized_symbol<size>*
ead1e424 1237Symbol_table::do_define_in_output_data(
ead1e424 1238 const char* name,
14b31740 1239 const char* version,
ead1e424
ILT
1240 Output_data* od,
1241 typename elfcpp::Elf_types<size>::Elf_Addr value,
1242 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1243 elfcpp::STT type,
1244 elfcpp::STB binding,
1245 elfcpp::STV visibility,
1246 unsigned char nonvis,
1247 bool offset_is_from_end,
1248 bool only_if_ref)
1249{
1250 Sized_symbol<size>* sym;
86f2e683 1251 Sized_symbol<size>* oldsym;
ead1e424 1252
8851ecca 1253 if (parameters->target().is_big_endian())
193a53d9
ILT
1254 {
1255#if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
7d1a9ebb
ILT
1256 sym = this->define_special_symbol<size, true>(&name, &version,
1257 only_if_ref, &oldsym);
193a53d9
ILT
1258#else
1259 gold_unreachable();
1260#endif
1261 }
ead1e424 1262 else
193a53d9
ILT
1263 {
1264#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
7d1a9ebb
ILT
1265 sym = this->define_special_symbol<size, false>(&name, &version,
1266 only_if_ref, &oldsym);
193a53d9
ILT
1267#else
1268 gold_unreachable();
1269#endif
1270 }
ead1e424
ILT
1271
1272 if (sym == NULL)
14b31740 1273 return NULL;
ead1e424 1274
d4f5281b 1275 gold_assert(version == NULL || oldsym != NULL);
ead1e424
ILT
1276 sym->init(name, od, value, symsize, type, binding, visibility, nonvis,
1277 offset_is_from_end);
14b31740 1278
e5756efb 1279 if (oldsym == NULL)
55a93433
ILT
1280 {
1281 if (binding == elfcpp::STB_LOCAL
1282 || this->version_script_.symbol_is_local(name))
1283 this->force_local(sym);
1284 return sym;
1285 }
86f2e683 1286
e5756efb
ILT
1287 if (Symbol_table::should_override_with_special(oldsym))
1288 this->override_with_special(oldsym, sym);
1289 delete sym;
1290 return oldsym;
ead1e424
ILT
1291}
1292
1293// Define a symbol based on an Output_segment.
1294
14b31740 1295Symbol*
9b07f471 1296Symbol_table::define_in_output_segment(const char* name,
14b31740 1297 const char* version, Output_segment* os,
9b07f471
ILT
1298 uint64_t value,
1299 uint64_t symsize,
1300 elfcpp::STT type,
1301 elfcpp::STB binding,
ead1e424
ILT
1302 elfcpp::STV visibility,
1303 unsigned char nonvis,
1304 Symbol::Segment_offset_base offset_base,
1305 bool only_if_ref)
1306{
8851ecca 1307 if (parameters->target().get_size() == 32)
86f2e683
ILT
1308 {
1309#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
9b07f471 1310 return this->do_define_in_output_segment<32>(name, version, os,
86f2e683
ILT
1311 value, symsize, type,
1312 binding, visibility, nonvis,
1313 offset_base, only_if_ref);
1314#else
1315 gold_unreachable();
1316#endif
1317 }
8851ecca 1318 else if (parameters->target().get_size() == 64)
86f2e683
ILT
1319 {
1320#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
9b07f471 1321 return this->do_define_in_output_segment<64>(name, version, os,
86f2e683
ILT
1322 value, symsize, type,
1323 binding, visibility, nonvis,
1324 offset_base, only_if_ref);
1325#else
1326 gold_unreachable();
1327#endif
1328 }
ead1e424 1329 else
a3ad94ed 1330 gold_unreachable();
ead1e424
ILT
1331}
1332
1333// Define a symbol in an Output_segment, sized version.
1334
1335template<int size>
14b31740 1336Sized_symbol<size>*
ead1e424 1337Symbol_table::do_define_in_output_segment(
ead1e424 1338 const char* name,
14b31740 1339 const char* version,
ead1e424
ILT
1340 Output_segment* os,
1341 typename elfcpp::Elf_types<size>::Elf_Addr value,
1342 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1343 elfcpp::STT type,
1344 elfcpp::STB binding,
1345 elfcpp::STV visibility,
1346 unsigned char nonvis,
1347 Symbol::Segment_offset_base offset_base,
1348 bool only_if_ref)
1349{
1350 Sized_symbol<size>* sym;
86f2e683 1351 Sized_symbol<size>* oldsym;
ead1e424 1352
8851ecca 1353 if (parameters->target().is_big_endian())
9025d29d
ILT
1354 {
1355#if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
7d1a9ebb
ILT
1356 sym = this->define_special_symbol<size, true>(&name, &version,
1357 only_if_ref, &oldsym);
9025d29d
ILT
1358#else
1359 gold_unreachable();
1360#endif
1361 }
ead1e424 1362 else
9025d29d
ILT
1363 {
1364#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
7d1a9ebb
ILT
1365 sym = this->define_special_symbol<size, false>(&name, &version,
1366 only_if_ref, &oldsym);
9025d29d
ILT
1367#else
1368 gold_unreachable();
1369#endif
1370 }
ead1e424
ILT
1371
1372 if (sym == NULL)
14b31740 1373 return NULL;
ead1e424 1374
d4f5281b 1375 gold_assert(version == NULL || oldsym != NULL);
ead1e424
ILT
1376 sym->init(name, os, value, symsize, type, binding, visibility, nonvis,
1377 offset_base);
14b31740 1378
e5756efb 1379 if (oldsym == NULL)
55a93433
ILT
1380 {
1381 if (binding == elfcpp::STB_LOCAL
1382 || this->version_script_.symbol_is_local(name))
1383 this->force_local(sym);
1384 return sym;
1385 }
86f2e683 1386
e5756efb
ILT
1387 if (Symbol_table::should_override_with_special(oldsym))
1388 this->override_with_special(oldsym, sym);
1389 delete sym;
1390 return oldsym;
ead1e424
ILT
1391}
1392
1393// Define a special symbol with a constant value. It is a multiple
1394// definition error if this symbol is already defined.
1395
14b31740 1396Symbol*
9b07f471
ILT
1397Symbol_table::define_as_constant(const char* name,
1398 const char* version,
1399 uint64_t value,
1400 uint64_t symsize,
1401 elfcpp::STT type,
1402 elfcpp::STB binding,
1403 elfcpp::STV visibility,
1404 unsigned char nonvis,
caa9d5d9
ILT
1405 bool only_if_ref,
1406 bool force_override)
ead1e424 1407{
8851ecca 1408 if (parameters->target().get_size() == 32)
86f2e683
ILT
1409 {
1410#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
9b07f471 1411 return this->do_define_as_constant<32>(name, version, value,
86f2e683 1412 symsize, type, binding,
caa9d5d9
ILT
1413 visibility, nonvis, only_if_ref,
1414 force_override);
86f2e683
ILT
1415#else
1416 gold_unreachable();
1417#endif
1418 }
8851ecca 1419 else if (parameters->target().get_size() == 64)
86f2e683
ILT
1420 {
1421#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
9b07f471 1422 return this->do_define_as_constant<64>(name, version, value,
86f2e683 1423 symsize, type, binding,
caa9d5d9
ILT
1424 visibility, nonvis, only_if_ref,
1425 force_override);
86f2e683
ILT
1426#else
1427 gold_unreachable();
1428#endif
1429 }
ead1e424 1430 else
a3ad94ed 1431 gold_unreachable();
ead1e424
ILT
1432}
1433
1434// Define a symbol as a constant, sized version.
1435
1436template<int size>
14b31740 1437Sized_symbol<size>*
ead1e424 1438Symbol_table::do_define_as_constant(
ead1e424 1439 const char* name,
14b31740 1440 const char* version,
ead1e424
ILT
1441 typename elfcpp::Elf_types<size>::Elf_Addr value,
1442 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1443 elfcpp::STT type,
1444 elfcpp::STB binding,
1445 elfcpp::STV visibility,
1446 unsigned char nonvis,
caa9d5d9
ILT
1447 bool only_if_ref,
1448 bool force_override)
ead1e424
ILT
1449{
1450 Sized_symbol<size>* sym;
86f2e683 1451 Sized_symbol<size>* oldsym;
ead1e424 1452
8851ecca 1453 if (parameters->target().is_big_endian())
9025d29d
ILT
1454 {
1455#if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
7d1a9ebb
ILT
1456 sym = this->define_special_symbol<size, true>(&name, &version,
1457 only_if_ref, &oldsym);
9025d29d
ILT
1458#else
1459 gold_unreachable();
1460#endif
1461 }
ead1e424 1462 else
9025d29d
ILT
1463 {
1464#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
7d1a9ebb
ILT
1465 sym = this->define_special_symbol<size, false>(&name, &version,
1466 only_if_ref, &oldsym);
9025d29d
ILT
1467#else
1468 gold_unreachable();
1469#endif
1470 }
ead1e424
ILT
1471
1472 if (sym == NULL)
14b31740 1473 return NULL;
ead1e424 1474
09124467 1475 gold_assert(version == NULL || version == name || oldsym != NULL);
ead1e424 1476 sym->init(name, value, symsize, type, binding, visibility, nonvis);
14b31740 1477
e5756efb 1478 if (oldsym == NULL)
55a93433 1479 {
686c8caf
ILT
1480 // Version symbols are absolute symbols with name == version.
1481 // We don't want to force them to be local.
1482 if ((version == NULL
1483 || name != version
1484 || value != 0)
1485 && (binding == elfcpp::STB_LOCAL
1486 || this->version_script_.symbol_is_local(name)))
55a93433
ILT
1487 this->force_local(sym);
1488 return sym;
1489 }
86f2e683 1490
caa9d5d9 1491 if (force_override || Symbol_table::should_override_with_special(oldsym))
e5756efb
ILT
1492 this->override_with_special(oldsym, sym);
1493 delete sym;
1494 return oldsym;
ead1e424
ILT
1495}
1496
1497// Define a set of symbols in output sections.
1498
1499void
9b07f471 1500Symbol_table::define_symbols(const Layout* layout, int count,
a445fddf
ILT
1501 const Define_symbol_in_section* p,
1502 bool only_if_ref)
ead1e424
ILT
1503{
1504 for (int i = 0; i < count; ++i, ++p)
1505 {
1506 Output_section* os = layout->find_output_section(p->output_section);
1507 if (os != NULL)
9b07f471 1508 this->define_in_output_data(p->name, NULL, os, p->value,
14b31740
ILT
1509 p->size, p->type, p->binding,
1510 p->visibility, p->nonvis,
a445fddf
ILT
1511 p->offset_is_from_end,
1512 only_if_ref || p->only_if_ref);
ead1e424 1513 else
9b07f471 1514 this->define_as_constant(p->name, NULL, 0, p->size, p->type,
ead1e424 1515 p->binding, p->visibility, p->nonvis,
caa9d5d9
ILT
1516 only_if_ref || p->only_if_ref,
1517 false);
ead1e424
ILT
1518 }
1519}
1520
1521// Define a set of symbols in output segments.
1522
1523void
9b07f471 1524Symbol_table::define_symbols(const Layout* layout, int count,
a445fddf
ILT
1525 const Define_symbol_in_segment* p,
1526 bool only_if_ref)
ead1e424
ILT
1527{
1528 for (int i = 0; i < count; ++i, ++p)
1529 {
1530 Output_segment* os = layout->find_output_segment(p->segment_type,
1531 p->segment_flags_set,
1532 p->segment_flags_clear);
1533 if (os != NULL)
9b07f471 1534 this->define_in_output_segment(p->name, NULL, os, p->value,
14b31740
ILT
1535 p->size, p->type, p->binding,
1536 p->visibility, p->nonvis,
a445fddf
ILT
1537 p->offset_base,
1538 only_if_ref || p->only_if_ref);
ead1e424 1539 else
9b07f471 1540 this->define_as_constant(p->name, NULL, 0, p->size, p->type,
ead1e424 1541 p->binding, p->visibility, p->nonvis,
caa9d5d9
ILT
1542 only_if_ref || p->only_if_ref,
1543 false);
ead1e424
ILT
1544 }
1545}
1546
46fe1623
ILT
1547// Define CSYM using a COPY reloc. POSD is the Output_data where the
1548// symbol should be defined--typically a .dyn.bss section. VALUE is
1549// the offset within POSD.
1550
1551template<int size>
1552void
fe8718a4 1553Symbol_table::define_with_copy_reloc(
fe8718a4
ILT
1554 Sized_symbol<size>* csym,
1555 Output_data* posd,
1556 typename elfcpp::Elf_types<size>::Elf_Addr value)
46fe1623
ILT
1557{
1558 gold_assert(csym->is_from_dynobj());
1559 gold_assert(!csym->is_copied_from_dynobj());
1560 Object* object = csym->object();
1561 gold_assert(object->is_dynamic());
1562 Dynobj* dynobj = static_cast<Dynobj*>(object);
1563
1564 // Our copied variable has to override any variable in a shared
1565 // library.
1566 elfcpp::STB binding = csym->binding();
1567 if (binding == elfcpp::STB_WEAK)
1568 binding = elfcpp::STB_GLOBAL;
1569
9b07f471 1570 this->define_in_output_data(csym->name(), csym->version(),
46fe1623
ILT
1571 posd, value, csym->symsize(),
1572 csym->type(), binding,
1573 csym->visibility(), csym->nonvis(),
1574 false, false);
1575
1576 csym->set_is_copied_from_dynobj();
1577 csym->set_needs_dynsym_entry();
1578
1579 this->copied_symbol_dynobjs_[csym] = dynobj;
1580
1581 // We have now defined all aliases, but we have not entered them all
1582 // in the copied_symbol_dynobjs_ map.
1583 if (csym->has_alias())
1584 {
1585 Symbol* sym = csym;
1586 while (true)
1587 {
1588 sym = this->weak_aliases_[sym];
1589 if (sym == csym)
1590 break;
1591 gold_assert(sym->output_data() == posd);
1592
1593 sym->set_is_copied_from_dynobj();
1594 this->copied_symbol_dynobjs_[sym] = dynobj;
1595 }
1596 }
1597}
1598
1599// SYM is defined using a COPY reloc. Return the dynamic object where
1600// the original definition was found.
1601
1602Dynobj*
1603Symbol_table::get_copy_source(const Symbol* sym) const
1604{
1605 gold_assert(sym->is_copied_from_dynobj());
1606 Copied_symbol_dynobjs::const_iterator p =
1607 this->copied_symbol_dynobjs_.find(sym);
1608 gold_assert(p != this->copied_symbol_dynobjs_.end());
1609 return p->second;
1610}
1611
a3ad94ed
ILT
1612// Set the dynamic symbol indexes. INDEX is the index of the first
1613// global dynamic symbol. Pointers to the symbols are stored into the
1614// vector SYMS. The names are added to DYNPOOL. This returns an
1615// updated dynamic symbol index.
1616
1617unsigned int
9b07f471 1618Symbol_table::set_dynsym_indexes(unsigned int index,
a3ad94ed 1619 std::vector<Symbol*>* syms,
14b31740
ILT
1620 Stringpool* dynpool,
1621 Versions* versions)
a3ad94ed
ILT
1622{
1623 for (Symbol_table_type::iterator p = this->table_.begin();
1624 p != this->table_.end();
1625 ++p)
1626 {
1627 Symbol* sym = p->second;
16649710
ILT
1628
1629 // Note that SYM may already have a dynamic symbol index, since
1630 // some symbols appear more than once in the symbol table, with
1631 // and without a version.
1632
436ca963 1633 if (!sym->should_add_dynsym_entry())
16649710
ILT
1634 sym->set_dynsym_index(-1U);
1635 else if (!sym->has_dynsym_index())
a3ad94ed
ILT
1636 {
1637 sym->set_dynsym_index(index);
1638 ++index;
1639 syms->push_back(sym);
cfd73a4e 1640 dynpool->add(sym->name(), false, NULL);
14b31740
ILT
1641
1642 // Record any version information.
09124467
ILT
1643 if (sym->version() != NULL)
1644 versions->record_version(this, dynpool, sym);
a3ad94ed
ILT
1645 }
1646 }
1647
14b31740
ILT
1648 // Finish up the versions. In some cases this may add new dynamic
1649 // symbols.
9b07f471 1650 index = versions->finalize(this, index, syms);
14b31740 1651
a3ad94ed
ILT
1652 return index;
1653}
1654
c06b7b0b 1655// Set the final values for all the symbols. The index of the first
55a93433
ILT
1656// global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
1657// file offset OFF. Add their names to POOL. Return the new file
1658// offset. Update *PLOCAL_SYMCOUNT if necessary.
54dc6425 1659
75f65a3e 1660off_t
55a93433
ILT
1661Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
1662 size_t dyncount, Stringpool* pool,
1663 unsigned int *plocal_symcount)
54dc6425 1664{
f6ce93d6
ILT
1665 off_t ret;
1666
55a93433
ILT
1667 gold_assert(*plocal_symcount != 0);
1668 this->first_global_index_ = *plocal_symcount;
c06b7b0b 1669
16649710
ILT
1670 this->dynamic_offset_ = dynoff;
1671 this->first_dynamic_global_index_ = dyn_global_index;
1672 this->dynamic_count_ = dyncount;
1673
8851ecca 1674 if (parameters->target().get_size() == 32)
9025d29d
ILT
1675 {
1676#if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
55a93433 1677 ret = this->sized_finalize<32>(off, pool, plocal_symcount);
9025d29d
ILT
1678#else
1679 gold_unreachable();
1680#endif
1681 }
8851ecca 1682 else if (parameters->target().get_size() == 64)
9025d29d
ILT
1683 {
1684#if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
55a93433 1685 ret = this->sized_finalize<64>(off, pool, plocal_symcount);
9025d29d
ILT
1686#else
1687 gold_unreachable();
1688#endif
1689 }
61ba1cf9 1690 else
a3ad94ed 1691 gold_unreachable();
f6ce93d6
ILT
1692
1693 // Now that we have the final symbol table, we can reliably note
1694 // which symbols should get warnings.
cb295612 1695 this->warnings_.note_warnings(this);
f6ce93d6
ILT
1696
1697 return ret;
75f65a3e
ILT
1698}
1699
55a93433
ILT
1700// SYM is going into the symbol table at *PINDEX. Add the name to
1701// POOL, update *PINDEX and *POFF.
1702
1703template<int size>
1704void
1705Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
1706 unsigned int* pindex, off_t* poff)
1707{
1708 sym->set_symtab_index(*pindex);
1709 pool->add(sym->name(), false, NULL);
1710 ++*pindex;
1711 *poff += elfcpp::Elf_sizes<size>::sym_size;
1712}
1713
ead1e424
ILT
1714// Set the final value for all the symbols. This is called after
1715// Layout::finalize, so all the output sections have their final
1716// address.
75f65a3e
ILT
1717
1718template<int size>
1719off_t
55a93433
ILT
1720Symbol_table::sized_finalize(off_t off, Stringpool* pool,
1721 unsigned int* plocal_symcount)
75f65a3e 1722{
ead1e424 1723 off = align_address(off, size >> 3);
75f65a3e
ILT
1724 this->offset_ = off;
1725
55a93433
ILT
1726 unsigned int index = *plocal_symcount;
1727 const unsigned int orig_index = index;
c06b7b0b 1728
55a93433
ILT
1729 // First do all the symbols which have been forced to be local, as
1730 // they must appear before all global symbols.
1731 for (Forced_locals::iterator p = this->forced_locals_.begin();
1732 p != this->forced_locals_.end();
1733 ++p)
1734 {
1735 Symbol* sym = *p;
1736 gold_assert(sym->is_forced_local());
1737 if (this->sized_finalize_symbol<size>(sym))
1738 {
1739 this->add_to_final_symtab<size>(sym, pool, &index, &off);
1740 ++*plocal_symcount;
1741 }
1742 }
1743
1744 // Now do all the remaining symbols.
c06b7b0b
ILT
1745 for (Symbol_table_type::iterator p = this->table_.begin();
1746 p != this->table_.end();
1747 ++p)
54dc6425 1748 {
55a93433
ILT
1749 Symbol* sym = p->second;
1750 if (this->sized_finalize_symbol<size>(sym))
1751 this->add_to_final_symtab<size>(sym, pool, &index, &off);
1752 }
54dc6425 1753
55a93433 1754 this->output_count_ = index - orig_index;
a3ad94ed 1755
55a93433
ILT
1756 return off;
1757}
75f65a3e 1758
55a93433
ILT
1759// Finalize the symbol SYM. This returns true if the symbol should be
1760// added to the symbol table, false otherwise.
008db82e 1761
55a93433
ILT
1762template<int size>
1763bool
1764Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
1765{
1766 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
75f65a3e 1767
55a93433
ILT
1768 // The default version of a symbol may appear twice in the symbol
1769 // table. We only need to finalize it once.
1770 if (sym->has_symtab_index())
1771 return false;
ead1e424 1772
55a93433
ILT
1773 if (!sym->in_reg())
1774 {
1775 gold_assert(!sym->has_symtab_index());
1776 sym->set_symtab_index(-1U);
1777 gold_assert(sym->dynsym_index() == -1U);
1778 return false;
1779 }
ead1e424 1780
55a93433 1781 typename Sized_symbol<size>::Value_type value;
ead1e424 1782
55a93433
ILT
1783 switch (sym->source())
1784 {
1785 case Symbol::FROM_OBJECT:
1786 {
1787 unsigned int shndx = sym->shndx();
ead1e424 1788
55a93433
ILT
1789 // FIXME: We need some target specific support here.
1790 if (shndx >= elfcpp::SHN_LORESERVE
0dfbdef4
ILT
1791 && shndx != elfcpp::SHN_ABS
1792 && shndx != elfcpp::SHN_COMMON)
55a93433
ILT
1793 {
1794 gold_error(_("%s: unsupported symbol section 0x%x"),
1795 sym->demangled_name().c_str(), shndx);
1796 shndx = elfcpp::SHN_UNDEF;
ead1e424 1797 }
ead1e424 1798
55a93433
ILT
1799 Object* symobj = sym->object();
1800 if (symobj->is_dynamic())
ead1e424 1801 {
55a93433
ILT
1802 value = 0;
1803 shndx = elfcpp::SHN_UNDEF;
ead1e424 1804 }
55a93433
ILT
1805 else if (shndx == elfcpp::SHN_UNDEF)
1806 value = 0;
0dfbdef4 1807 else if (shndx == elfcpp::SHN_ABS || shndx == elfcpp::SHN_COMMON)
55a93433
ILT
1808 value = sym->value();
1809 else
ead1e424 1810 {
55a93433
ILT
1811 Relobj* relobj = static_cast<Relobj*>(symobj);
1812 section_offset_type secoff;
1813 Output_section* os = relobj->output_section(shndx, &secoff);
1814
1815 if (os == NULL)
ead1e424 1816 {
55a93433
ILT
1817 sym->set_symtab_index(-1U);
1818 gold_assert(sym->dynsym_index() == -1U);
1819 return false;
ead1e424 1820 }
55a93433
ILT
1821
1822 if (sym->type() == elfcpp::STT_TLS)
1823 value = sym->value() + os->tls_offset() + secoff;
1824 else
1825 value = sym->value() + os->address() + secoff;
ead1e424 1826 }
55a93433
ILT
1827 }
1828 break;
1829
1830 case Symbol::IN_OUTPUT_DATA:
1831 {
1832 Output_data* od = sym->output_data();
1833 value = sym->value() + od->address();
1834 if (sym->offset_is_from_end())
1835 value += od->data_size();
1836 }
1837 break;
1838
1839 case Symbol::IN_OUTPUT_SEGMENT:
1840 {
1841 Output_segment* os = sym->output_segment();
1842 value = sym->value() + os->vaddr();
1843 switch (sym->offset_base())
1844 {
1845 case Symbol::SEGMENT_START:
1846 break;
1847 case Symbol::SEGMENT_END:
1848 value += os->memsz();
1849 break;
1850 case Symbol::SEGMENT_BSS:
1851 value += os->filesz();
1852 break;
1853 default:
1854 gold_unreachable();
1855 }
1856 }
1857 break;
ead1e424 1858
55a93433
ILT
1859 case Symbol::CONSTANT:
1860 value = sym->value();
1861 break;
ead1e424 1862
55a93433
ILT
1863 default:
1864 gold_unreachable();
1865 }
ead1e424 1866
55a93433 1867 sym->set_value(value);
9e2dcb77 1868
8851ecca 1869 if (parameters->options().strip_all())
55a93433
ILT
1870 {
1871 sym->set_symtab_index(-1U);
1872 return false;
54dc6425 1873 }
75f65a3e 1874
55a93433 1875 return true;
54dc6425
ILT
1876}
1877
61ba1cf9
ILT
1878// Write out the global symbols.
1879
1880void
9a2d6984
ILT
1881Symbol_table::write_globals(const Input_objects* input_objects,
1882 const Stringpool* sympool,
16649710 1883 const Stringpool* dynpool, Output_file* of) const
61ba1cf9 1884{
8851ecca 1885 switch (parameters->size_and_endianness())
61ba1cf9 1886 {
9025d29d 1887#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
1888 case Parameters::TARGET_32_LITTLE:
1889 this->sized_write_globals<32, false>(input_objects, sympool,
1890 dynpool, of);
1891 break;
9025d29d 1892#endif
8851ecca
ILT
1893#ifdef HAVE_TARGET_32_BIG
1894 case Parameters::TARGET_32_BIG:
1895 this->sized_write_globals<32, true>(input_objects, sympool,
1896 dynpool, of);
1897 break;
9025d29d 1898#endif
9025d29d 1899#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
1900 case Parameters::TARGET_64_LITTLE:
1901 this->sized_write_globals<64, false>(input_objects, sympool,
1902 dynpool, of);
1903 break;
9025d29d 1904#endif
8851ecca
ILT
1905#ifdef HAVE_TARGET_64_BIG
1906 case Parameters::TARGET_64_BIG:
1907 this->sized_write_globals<64, true>(input_objects, sympool,
1908 dynpool, of);
1909 break;
1910#endif
1911 default:
1912 gold_unreachable();
61ba1cf9 1913 }
61ba1cf9
ILT
1914}
1915
1916// Write out the global symbols.
1917
1918template<int size, bool big_endian>
1919void
9a2d6984 1920Symbol_table::sized_write_globals(const Input_objects* input_objects,
61ba1cf9 1921 const Stringpool* sympool,
16649710 1922 const Stringpool* dynpool,
61ba1cf9
ILT
1923 Output_file* of) const
1924{
8851ecca 1925 const Target& target = parameters->target();
9a2d6984 1926
61ba1cf9 1927 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
55a93433
ILT
1928
1929 const unsigned int output_count = this->output_count_;
1930 const section_size_type oview_size = output_count * sym_size;
1931 const unsigned int first_global_index = this->first_global_index_;
5fe2a0f5
ILT
1932 unsigned char* psyms;
1933 if (this->offset_ == 0 || output_count == 0)
1934 psyms = NULL;
1935 else
1936 psyms = of->get_output_view(this->offset_, oview_size);
16649710 1937
55a93433
ILT
1938 const unsigned int dynamic_count = this->dynamic_count_;
1939 const section_size_type dynamic_size = dynamic_count * sym_size;
1940 const unsigned int first_dynamic_global_index =
1941 this->first_dynamic_global_index_;
16649710 1942 unsigned char* dynamic_view;
5fe2a0f5 1943 if (this->dynamic_offset_ == 0 || dynamic_count == 0)
16649710
ILT
1944 dynamic_view = NULL;
1945 else
1946 dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
c06b7b0b 1947
61ba1cf9
ILT
1948 for (Symbol_table_type::const_iterator p = this->table_.begin();
1949 p != this->table_.end();
1950 ++p)
1951 {
1952 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1953
9a2d6984
ILT
1954 // Possibly warn about unresolved symbols in shared libraries.
1955 this->warn_about_undefined_dynobj_symbol(input_objects, sym);
e2827e5f 1956
a3ad94ed 1957 unsigned int sym_index = sym->symtab_index();
16649710
ILT
1958 unsigned int dynsym_index;
1959 if (dynamic_view == NULL)
1960 dynsym_index = -1U;
1961 else
1962 dynsym_index = sym->dynsym_index();
1963
1964 if (sym_index == -1U && dynsym_index == -1U)
a3ad94ed
ILT
1965 {
1966 // This symbol is not included in the output file.
1967 continue;
1968 }
16649710 1969
ead1e424 1970 unsigned int shndx;
88dd47ac
ILT
1971 typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
1972 typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
ead1e424
ILT
1973 switch (sym->source())
1974 {
1975 case Symbol::FROM_OBJECT:
1976 {
16649710 1977 unsigned int in_shndx = sym->shndx();
ead1e424
ILT
1978
1979 // FIXME: We need some target specific support here.
16649710 1980 if (in_shndx >= elfcpp::SHN_LORESERVE
0dfbdef4
ILT
1981 && in_shndx != elfcpp::SHN_ABS
1982 && in_shndx != elfcpp::SHN_COMMON)
ead1e424 1983 {
75f2446e 1984 gold_error(_("%s: unsupported symbol section 0x%x"),
a2b1aa12 1985 sym->demangled_name().c_str(), in_shndx);
75f2446e 1986 shndx = in_shndx;
f6ce93d6 1987 }
ead1e424
ILT
1988 else
1989 {
75f2446e
ILT
1990 Object* symobj = sym->object();
1991 if (symobj->is_dynamic())
1992 {
1993 if (sym->needs_dynsym_value())
8851ecca 1994 dynsym_value = target.dynsym_value(sym);
75f2446e
ILT
1995 shndx = elfcpp::SHN_UNDEF;
1996 }
1997 else if (in_shndx == elfcpp::SHN_UNDEF
0dfbdef4
ILT
1998 || in_shndx == elfcpp::SHN_ABS
1999 || in_shndx == elfcpp::SHN_COMMON)
75f2446e
ILT
2000 shndx = in_shndx;
2001 else
2002 {
2003 Relobj* relobj = static_cast<Relobj*>(symobj);
8383303e 2004 section_offset_type secoff;
75f2446e
ILT
2005 Output_section* os = relobj->output_section(in_shndx,
2006 &secoff);
2007 gold_assert(os != NULL);
2008 shndx = os->out_shndx();
88dd47ac
ILT
2009
2010 // In object files symbol values are section
2011 // relative.
8851ecca 2012 if (parameters->options().relocatable())
88dd47ac 2013 sym_value -= os->address();
75f2446e 2014 }
ead1e424
ILT
2015 }
2016 }
2017 break;
2018
2019 case Symbol::IN_OUTPUT_DATA:
2020 shndx = sym->output_data()->out_shndx();
2021 break;
2022
2023 case Symbol::IN_OUTPUT_SEGMENT:
2024 shndx = elfcpp::SHN_ABS;
2025 break;
2026
2027 case Symbol::CONSTANT:
2028 shndx = elfcpp::SHN_ABS;
2029 break;
2030
2031 default:
a3ad94ed 2032 gold_unreachable();
ead1e424 2033 }
61ba1cf9 2034
16649710
ILT
2035 if (sym_index != -1U)
2036 {
55a93433
ILT
2037 sym_index -= first_global_index;
2038 gold_assert(sym_index < output_count);
2039 unsigned char* ps = psyms + (sym_index * sym_size);
7d1a9ebb
ILT
2040 this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
2041 sympool, ps);
16649710 2042 }
61ba1cf9 2043
16649710
ILT
2044 if (dynsym_index != -1U)
2045 {
2046 dynsym_index -= first_dynamic_global_index;
2047 gold_assert(dynsym_index < dynamic_count);
2048 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
7d1a9ebb
ILT
2049 this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
2050 dynpool, pd);
16649710 2051 }
61ba1cf9
ILT
2052 }
2053
c06b7b0b 2054 of->write_output_view(this->offset_, oview_size, psyms);
16649710
ILT
2055 if (dynamic_view != NULL)
2056 of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
2057}
2058
2059// Write out the symbol SYM, in section SHNDX, to P. POOL is the
2060// strtab holding the name.
2061
2062template<int size, bool big_endian>
2063void
ab5c9e90
ILT
2064Symbol_table::sized_write_symbol(
2065 Sized_symbol<size>* sym,
2066 typename elfcpp::Elf_types<size>::Elf_Addr value,
2067 unsigned int shndx,
2068 const Stringpool* pool,
7d1a9ebb 2069 unsigned char* p) const
16649710
ILT
2070{
2071 elfcpp::Sym_write<size, big_endian> osym(p);
2072 osym.put_st_name(pool->get_offset(sym->name()));
ab5c9e90 2073 osym.put_st_value(value);
16649710 2074 osym.put_st_size(sym->symsize());
55a93433
ILT
2075 // A version script may have overridden the default binding.
2076 if (sym->is_forced_local())
2077 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, sym->type()));
2078 else
2079 osym.put_st_info(elfcpp::elf_st_info(sym->binding(), sym->type()));
16649710
ILT
2080 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
2081 osym.put_st_shndx(shndx);
61ba1cf9
ILT
2082}
2083
9a2d6984
ILT
2084// Check for unresolved symbols in shared libraries. This is
2085// controlled by the --allow-shlib-undefined option.
2086
2087// We only warn about libraries for which we have seen all the
2088// DT_NEEDED entries. We don't try to track down DT_NEEDED entries
2089// which were not seen in this link. If we didn't see a DT_NEEDED
2090// entry, we aren't going to be able to reliably report whether the
2091// symbol is undefined.
2092
2093// We also don't warn about libraries found in the system library
2094// directory (the directory were we find libc.so); we assume that
2095// those libraries are OK. This heuristic avoids problems in
2096// GNU/Linux, in which -ldl can have undefined references satisfied by
2097// ld-linux.so.
2098
2099inline void
2100Symbol_table::warn_about_undefined_dynobj_symbol(
2101 const Input_objects* input_objects,
2102 Symbol* sym) const
2103{
2104 if (sym->source() == Symbol::FROM_OBJECT
2105 && sym->object()->is_dynamic()
2106 && sym->shndx() == elfcpp::SHN_UNDEF
2107 && sym->binding() != elfcpp::STB_WEAK
8851ecca
ILT
2108 && !parameters->options().allow_shlib_undefined()
2109 && !parameters->target().is_defined_by_abi(sym)
9a2d6984
ILT
2110 && !input_objects->found_in_system_library_directory(sym->object()))
2111 {
2112 // A very ugly cast.
2113 Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
2114 if (!dynobj->has_unknown_needed_entries())
2115 gold_error(_("%s: undefined reference to '%s'"),
a2b1aa12
ILT
2116 sym->object()->name().c_str(),
2117 sym->demangled_name().c_str());
9a2d6984
ILT
2118 }
2119}
2120
a3ad94ed
ILT
2121// Write out a section symbol. Return the update offset.
2122
2123void
9025d29d 2124Symbol_table::write_section_symbol(const Output_section *os,
a3ad94ed
ILT
2125 Output_file* of,
2126 off_t offset) const
2127{
8851ecca 2128 switch (parameters->size_and_endianness())
a3ad94ed 2129 {
9025d29d 2130#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
2131 case Parameters::TARGET_32_LITTLE:
2132 this->sized_write_section_symbol<32, false>(os, of, offset);
2133 break;
9025d29d 2134#endif
8851ecca
ILT
2135#ifdef HAVE_TARGET_32_BIG
2136 case Parameters::TARGET_32_BIG:
2137 this->sized_write_section_symbol<32, true>(os, of, offset);
2138 break;
9025d29d 2139#endif
9025d29d 2140#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
2141 case Parameters::TARGET_64_LITTLE:
2142 this->sized_write_section_symbol<64, false>(os, of, offset);
2143 break;
9025d29d 2144#endif
8851ecca
ILT
2145#ifdef HAVE_TARGET_64_BIG
2146 case Parameters::TARGET_64_BIG:
2147 this->sized_write_section_symbol<64, true>(os, of, offset);
2148 break;
2149#endif
2150 default:
2151 gold_unreachable();
a3ad94ed 2152 }
a3ad94ed
ILT
2153}
2154
2155// Write out a section symbol, specialized for size and endianness.
2156
2157template<int size, bool big_endian>
2158void
2159Symbol_table::sized_write_section_symbol(const Output_section* os,
2160 Output_file* of,
2161 off_t offset) const
2162{
2163 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2164
2165 unsigned char* pov = of->get_output_view(offset, sym_size);
2166
2167 elfcpp::Sym_write<size, big_endian> osym(pov);
2168 osym.put_st_name(0);
2169 osym.put_st_value(os->address());
2170 osym.put_st_size(0);
2171 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
2172 elfcpp::STT_SECTION));
2173 osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
2174 osym.put_st_shndx(os->out_shndx());
2175
2176 of->write_output_view(offset, sym_size, pov);
2177}
2178
abaa3995
ILT
2179// Print statistical information to stderr. This is used for --stats.
2180
2181void
2182Symbol_table::print_stats() const
2183{
2184#if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
2185 fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
2186 program_name, this->table_.size(), this->table_.bucket_count());
2187#else
2188 fprintf(stderr, _("%s: symbol table entries: %zu\n"),
2189 program_name, this->table_.size());
2190#endif
ad8f37d1 2191 this->namepool_.print_stats("symbol table stringpool");
abaa3995
ILT
2192}
2193
ff541f30
ILT
2194// We check for ODR violations by looking for symbols with the same
2195// name for which the debugging information reports that they were
2196// defined in different source locations. When comparing the source
2197// location, we consider instances with the same base filename and
2198// line number to be the same. This is because different object
2199// files/shared libraries can include the same header file using
2200// different paths, and we don't want to report an ODR violation in
2201// that case.
2202
2203// This struct is used to compare line information, as returned by
7bf1f802 2204// Dwarf_line_info::one_addr2line. It implements a < comparison
ff541f30
ILT
2205// operator used with std::set.
2206
2207struct Odr_violation_compare
2208{
2209 bool
2210 operator()(const std::string& s1, const std::string& s2) const
2211 {
2212 std::string::size_type pos1 = s1.rfind('/');
2213 std::string::size_type pos2 = s2.rfind('/');
2214 if (pos1 == std::string::npos
2215 || pos2 == std::string::npos)
2216 return s1 < s2;
2217 return s1.compare(pos1, std::string::npos,
2218 s2, pos2, std::string::npos) < 0;
2219 }
2220};
2221
70e654ba
ILT
2222// Check candidate_odr_violations_ to find symbols with the same name
2223// but apparently different definitions (different source-file/line-no).
2224
2225void
17a1d0a9
ILT
2226Symbol_table::detect_odr_violations(const Task* task,
2227 const char* output_file_name) const
70e654ba
ILT
2228{
2229 for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
2230 it != candidate_odr_violations_.end();
2231 ++it)
2232 {
2233 const char* symbol_name = it->first;
2234 // We use a sorted set so the output is deterministic.
ff541f30 2235 std::set<std::string, Odr_violation_compare> line_nums;
70e654ba 2236
b01c0a4a
ILT
2237 for (Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
2238 locs = it->second.begin();
2239 locs != it->second.end();
2240 ++locs)
70e654ba
ILT
2241 {
2242 // We need to lock the object in order to read it. This
17a1d0a9
ILT
2243 // means that we have to run in a singleton Task. If we
2244 // want to run this in a general Task for better
2245 // performance, we will need one Task for object, plus
2246 // appropriate locking to ensure that we don't conflict with
2247 // other uses of the object.
2248 Task_lock_obj<Object> tl(task, locs->object);
a55ce7fe
ILT
2249 std::string lineno = Dwarf_line_info::one_addr2line(
2250 locs->object, locs->shndx, locs->offset);
70e654ba
ILT
2251 if (!lineno.empty())
2252 line_nums.insert(lineno);
2253 }
2254
2255 if (line_nums.size() > 1)
2256 {
dd8670e5 2257 gold_warning(_("while linking %s: symbol '%s' defined in multiple "
78f15696 2258 "places (possible ODR violation):"),
a2b1aa12 2259 output_file_name, demangle(symbol_name).c_str());
70e654ba
ILT
2260 for (std::set<std::string>::const_iterator it2 = line_nums.begin();
2261 it2 != line_nums.end();
2262 ++it2)
2263 fprintf(stderr, " %s\n", it2->c_str());
2264 }
2265 }
2266}
2267
f6ce93d6
ILT
2268// Warnings functions.
2269
2270// Add a new warning.
2271
2272void
2273Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
cb295612 2274 const std::string& warning)
f6ce93d6
ILT
2275{
2276 name = symtab->canonicalize_name(name);
cb295612 2277 this->warnings_[name].set(obj, warning);
f6ce93d6
ILT
2278}
2279
2280// Look through the warnings and mark the symbols for which we should
2281// warn. This is called during Layout::finalize when we know the
2282// sources for all the symbols.
2283
2284void
cb295612 2285Warnings::note_warnings(Symbol_table* symtab)
f6ce93d6
ILT
2286{
2287 for (Warning_table::iterator p = this->warnings_.begin();
2288 p != this->warnings_.end();
2289 ++p)
2290 {
2291 Symbol* sym = symtab->lookup(p->first, NULL);
2292 if (sym != NULL
2293 && sym->source() == Symbol::FROM_OBJECT
2294 && sym->object() == p->second.object)
cb295612 2295 sym->set_has_warning();
f6ce93d6
ILT
2296 }
2297}
2298
2299// Issue a warning. This is called when we see a relocation against a
2300// symbol for which has a warning.
2301
75f2446e 2302template<int size, bool big_endian>
f6ce93d6 2303void
75f2446e
ILT
2304Warnings::issue_warning(const Symbol* sym,
2305 const Relocate_info<size, big_endian>* relinfo,
2306 size_t relnum, off_t reloffset) const
f6ce93d6 2307{
a3ad94ed 2308 gold_assert(sym->has_warning());
f6ce93d6 2309 Warning_table::const_iterator p = this->warnings_.find(sym->name());
a3ad94ed 2310 gold_assert(p != this->warnings_.end());
75f2446e
ILT
2311 gold_warning_at_location(relinfo, relnum, reloffset,
2312 "%s", p->second.text.c_str());
f6ce93d6
ILT
2313}
2314
14bfc3f5
ILT
2315// Instantiate the templates we need. We could use the configure
2316// script to restrict this to only the ones needed for implemented
2317// targets.
2318
c7912668
ILT
2319#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2320template
2321void
2322Sized_symbol<32>::allocate_common(Output_data*, Value_type);
2323#endif
2324
2325#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2326template
2327void
2328Sized_symbol<64>::allocate_common(Output_data*, Value_type);
2329#endif
2330
193a53d9 2331#ifdef HAVE_TARGET_32_LITTLE
14bfc3f5
ILT
2332template
2333void
193a53d9
ILT
2334Symbol_table::add_from_relobj<32, false>(
2335 Sized_relobj<32, false>* relobj,
f6ce93d6 2336 const unsigned char* syms,
14bfc3f5
ILT
2337 size_t count,
2338 const char* sym_names,
2339 size_t sym_name_size,
730cdc88 2340 Sized_relobj<32, true>::Symbols* sympointers);
193a53d9 2341#endif
14bfc3f5 2342
193a53d9 2343#ifdef HAVE_TARGET_32_BIG
14bfc3f5
ILT
2344template
2345void
193a53d9
ILT
2346Symbol_table::add_from_relobj<32, true>(
2347 Sized_relobj<32, true>* relobj,
f6ce93d6 2348 const unsigned char* syms,
14bfc3f5
ILT
2349 size_t count,
2350 const char* sym_names,
2351 size_t sym_name_size,
730cdc88 2352 Sized_relobj<32, false>::Symbols* sympointers);
193a53d9 2353#endif
14bfc3f5 2354
193a53d9 2355#ifdef HAVE_TARGET_64_LITTLE
14bfc3f5
ILT
2356template
2357void
193a53d9
ILT
2358Symbol_table::add_from_relobj<64, false>(
2359 Sized_relobj<64, false>* relobj,
f6ce93d6 2360 const unsigned char* syms,
14bfc3f5
ILT
2361 size_t count,
2362 const char* sym_names,
2363 size_t sym_name_size,
730cdc88 2364 Sized_relobj<64, true>::Symbols* sympointers);
193a53d9 2365#endif
14bfc3f5 2366
193a53d9 2367#ifdef HAVE_TARGET_64_BIG
14bfc3f5
ILT
2368template
2369void
193a53d9
ILT
2370Symbol_table::add_from_relobj<64, true>(
2371 Sized_relobj<64, true>* relobj,
f6ce93d6 2372 const unsigned char* syms,
14bfc3f5
ILT
2373 size_t count,
2374 const char* sym_names,
2375 size_t sym_name_size,
730cdc88 2376 Sized_relobj<64, false>::Symbols* sympointers);
193a53d9 2377#endif
14bfc3f5 2378
193a53d9 2379#ifdef HAVE_TARGET_32_LITTLE
dbe717ef
ILT
2380template
2381void
193a53d9
ILT
2382Symbol_table::add_from_dynobj<32, false>(
2383 Sized_dynobj<32, false>* dynobj,
dbe717ef
ILT
2384 const unsigned char* syms,
2385 size_t count,
2386 const char* sym_names,
2387 size_t sym_name_size,
2388 const unsigned char* versym,
2389 size_t versym_size,
2390 const std::vector<const char*>* version_map);
193a53d9 2391#endif
dbe717ef 2392
193a53d9 2393#ifdef HAVE_TARGET_32_BIG
dbe717ef
ILT
2394template
2395void
193a53d9
ILT
2396Symbol_table::add_from_dynobj<32, true>(
2397 Sized_dynobj<32, true>* dynobj,
dbe717ef
ILT
2398 const unsigned char* syms,
2399 size_t count,
2400 const char* sym_names,
2401 size_t sym_name_size,
2402 const unsigned char* versym,
2403 size_t versym_size,
2404 const std::vector<const char*>* version_map);
193a53d9 2405#endif
dbe717ef 2406
193a53d9 2407#ifdef HAVE_TARGET_64_LITTLE
dbe717ef
ILT
2408template
2409void
193a53d9
ILT
2410Symbol_table::add_from_dynobj<64, false>(
2411 Sized_dynobj<64, false>* dynobj,
dbe717ef
ILT
2412 const unsigned char* syms,
2413 size_t count,
2414 const char* sym_names,
2415 size_t sym_name_size,
2416 const unsigned char* versym,
2417 size_t versym_size,
2418 const std::vector<const char*>* version_map);
193a53d9 2419#endif
dbe717ef 2420
193a53d9 2421#ifdef HAVE_TARGET_64_BIG
dbe717ef
ILT
2422template
2423void
193a53d9
ILT
2424Symbol_table::add_from_dynobj<64, true>(
2425 Sized_dynobj<64, true>* dynobj,
dbe717ef
ILT
2426 const unsigned char* syms,
2427 size_t count,
2428 const char* sym_names,
2429 size_t sym_name_size,
2430 const unsigned char* versym,
2431 size_t versym_size,
2432 const std::vector<const char*>* version_map);
193a53d9 2433#endif
dbe717ef 2434
46fe1623
ILT
2435#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2436template
2437void
fe8718a4 2438Symbol_table::define_with_copy_reloc<32>(
fe8718a4
ILT
2439 Sized_symbol<32>* sym,
2440 Output_data* posd,
2441 elfcpp::Elf_types<32>::Elf_Addr value);
46fe1623
ILT
2442#endif
2443
2444#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2445template
2446void
fe8718a4 2447Symbol_table::define_with_copy_reloc<64>(
fe8718a4
ILT
2448 Sized_symbol<64>* sym,
2449 Output_data* posd,
2450 elfcpp::Elf_types<64>::Elf_Addr value);
46fe1623
ILT
2451#endif
2452
75f2446e
ILT
2453#ifdef HAVE_TARGET_32_LITTLE
2454template
2455void
2456Warnings::issue_warning<32, false>(const Symbol* sym,
2457 const Relocate_info<32, false>* relinfo,
2458 size_t relnum, off_t reloffset) const;
2459#endif
2460
2461#ifdef HAVE_TARGET_32_BIG
2462template
2463void
2464Warnings::issue_warning<32, true>(const Symbol* sym,
2465 const Relocate_info<32, true>* relinfo,
2466 size_t relnum, off_t reloffset) const;
2467#endif
2468
2469#ifdef HAVE_TARGET_64_LITTLE
2470template
2471void
2472Warnings::issue_warning<64, false>(const Symbol* sym,
2473 const Relocate_info<64, false>* relinfo,
2474 size_t relnum, off_t reloffset) const;
2475#endif
2476
2477#ifdef HAVE_TARGET_64_BIG
2478template
2479void
2480Warnings::issue_warning<64, true>(const Symbol* sym,
2481 const Relocate_info<64, true>* relinfo,
2482 size_t relnum, off_t reloffset) const;
2483#endif
2484
14bfc3f5 2485} // End namespace gold.