]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gold/symtab.cc
* errors.cc (Errors::undefined_symbol): Mention symbol version if
[thirdparty/binutils-gdb.git] / gold / symtab.cc
CommitLineData
14bfc3f5
ILT
1// symtab.cc -- the gold symbol table
2
e5756efb 3// Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
6cb15b7f
ILT
4// Written by Ian Lance Taylor <iant@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
14bfc3f5
ILT
23#include "gold.h"
24
04bf7072 25#include <cstring>
14bfc3f5 26#include <stdint.h>
04bf7072 27#include <algorithm>
70e654ba 28#include <set>
14bfc3f5
ILT
29#include <string>
30#include <utility>
a2b1aa12 31#include "demangle.h"
14bfc3f5
ILT
32
33#include "object.h"
70e654ba 34#include "dwarf_reader.h"
dbe717ef 35#include "dynobj.h"
75f65a3e 36#include "output.h"
61ba1cf9 37#include "target.h"
645f8123 38#include "workqueue.h"
14bfc3f5
ILT
39#include "symtab.h"
40
41namespace gold
42{
43
44// Class Symbol.
45
ead1e424
ILT
46// Initialize fields in Symbol. This initializes everything except u_
47// and source_.
14bfc3f5 48
14bfc3f5 49void
ead1e424
ILT
50Symbol::init_fields(const char* name, const char* version,
51 elfcpp::STT type, elfcpp::STB binding,
52 elfcpp::STV visibility, unsigned char nonvis)
14bfc3f5
ILT
53{
54 this->name_ = name;
55 this->version_ = version;
c06b7b0b
ILT
56 this->symtab_index_ = 0;
57 this->dynsym_index_ = 0;
0a65a3a7 58 this->got_offsets_.init();
f4151f89 59 this->plt_offset_ = 0;
ead1e424
ILT
60 this->type_ = type;
61 this->binding_ = binding;
62 this->visibility_ = visibility;
63 this->nonvis_ = nonvis;
64 this->is_target_special_ = false;
1564db8d
ILT
65 this->is_def_ = false;
66 this->is_forwarder_ = false;
aeddab66 67 this->has_alias_ = false;
c06b7b0b 68 this->needs_dynsym_entry_ = false;
008db82e 69 this->in_reg_ = false;
ead1e424 70 this->in_dyn_ = false;
f4151f89 71 this->has_plt_offset_ = false;
f6ce93d6 72 this->has_warning_ = false;
46fe1623 73 this->is_copied_from_dynobj_ = false;
55a93433 74 this->is_forced_local_ = false;
ead1e424
ILT
75}
76
a2b1aa12
ILT
77// Return the demangled version of the symbol's name, but only
78// if the --demangle flag was set.
79
80static std::string
81demangle(const char* name)
82{
086a1841 83 if (!parameters->options().do_demangle())
ff541f30
ILT
84 return name;
85
a2b1aa12
ILT
86 // cplus_demangle allocates memory for the result it returns,
87 // and returns NULL if the name is already demangled.
88 char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
89 if (demangled_name == NULL)
90 return name;
91
92 std::string retval(demangled_name);
93 free(demangled_name);
94 return retval;
95}
96
97std::string
98Symbol::demangled_name() const
99{
ff541f30 100 return demangle(this->name());
a2b1aa12
ILT
101}
102
ead1e424
ILT
103// Initialize the fields in the base class Symbol for SYM in OBJECT.
104
105template<int size, bool big_endian>
106void
107Symbol::init_base(const char* name, const char* version, Object* object,
108 const elfcpp::Sym<size, big_endian>& sym)
109{
110 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
111 sym.get_st_visibility(), sym.get_st_nonvis());
112 this->u_.from_object.object = object;
113 // FIXME: Handle SHN_XINDEX.
16649710 114 this->u_.from_object.shndx = sym.get_st_shndx();
ead1e424 115 this->source_ = FROM_OBJECT;
008db82e 116 this->in_reg_ = !object->is_dynamic();
1564db8d 117 this->in_dyn_ = object->is_dynamic();
14bfc3f5
ILT
118}
119
ead1e424
ILT
120// Initialize the fields in the base class Symbol for a symbol defined
121// in an Output_data.
122
123void
124Symbol::init_base(const char* name, Output_data* od, elfcpp::STT type,
125 elfcpp::STB binding, elfcpp::STV visibility,
126 unsigned char nonvis, bool offset_is_from_end)
127{
128 this->init_fields(name, NULL, type, binding, visibility, nonvis);
129 this->u_.in_output_data.output_data = od;
130 this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
131 this->source_ = IN_OUTPUT_DATA;
008db82e 132 this->in_reg_ = true;
ead1e424
ILT
133}
134
135// Initialize the fields in the base class Symbol for a symbol defined
136// in an Output_segment.
137
138void
139Symbol::init_base(const char* name, Output_segment* os, elfcpp::STT type,
140 elfcpp::STB binding, elfcpp::STV visibility,
141 unsigned char nonvis, Segment_offset_base offset_base)
142{
143 this->init_fields(name, NULL, type, binding, visibility, nonvis);
144 this->u_.in_output_segment.output_segment = os;
145 this->u_.in_output_segment.offset_base = offset_base;
146 this->source_ = IN_OUTPUT_SEGMENT;
008db82e 147 this->in_reg_ = true;
ead1e424
ILT
148}
149
150// Initialize the fields in the base class Symbol for a symbol defined
151// as a constant.
152
153void
154Symbol::init_base(const char* name, elfcpp::STT type,
155 elfcpp::STB binding, elfcpp::STV visibility,
156 unsigned char nonvis)
157{
158 this->init_fields(name, NULL, type, binding, visibility, nonvis);
159 this->source_ = CONSTANT;
008db82e 160 this->in_reg_ = true;
ead1e424
ILT
161}
162
c7912668
ILT
163// Allocate a common symbol in the base.
164
165void
166Symbol::allocate_base_common(Output_data* od)
167{
168 gold_assert(this->is_common());
169 this->source_ = IN_OUTPUT_DATA;
170 this->u_.in_output_data.output_data = od;
171 this->u_.in_output_data.offset_is_from_end = false;
172}
173
ead1e424 174// Initialize the fields in Sized_symbol for SYM in OBJECT.
14bfc3f5
ILT
175
176template<int size>
177template<bool big_endian>
178void
179Sized_symbol<size>::init(const char* name, const char* version, Object* object,
180 const elfcpp::Sym<size, big_endian>& sym)
181{
182 this->init_base(name, version, object, sym);
183 this->value_ = sym.get_st_value();
ead1e424
ILT
184 this->symsize_ = sym.get_st_size();
185}
186
187// Initialize the fields in Sized_symbol for a symbol defined in an
188// Output_data.
189
190template<int size>
191void
192Sized_symbol<size>::init(const char* name, Output_data* od,
193 Value_type value, Size_type symsize,
194 elfcpp::STT type, elfcpp::STB binding,
195 elfcpp::STV visibility, unsigned char nonvis,
196 bool offset_is_from_end)
197{
198 this->init_base(name, od, type, binding, visibility, nonvis,
199 offset_is_from_end);
200 this->value_ = value;
201 this->symsize_ = symsize;
202}
203
204// Initialize the fields in Sized_symbol for a symbol defined in an
205// Output_segment.
206
207template<int size>
208void
209Sized_symbol<size>::init(const char* name, Output_segment* os,
210 Value_type value, Size_type symsize,
211 elfcpp::STT type, elfcpp::STB binding,
212 elfcpp::STV visibility, unsigned char nonvis,
213 Segment_offset_base offset_base)
214{
215 this->init_base(name, os, type, binding, visibility, nonvis, offset_base);
216 this->value_ = value;
217 this->symsize_ = symsize;
218}
219
220// Initialize the fields in Sized_symbol for a symbol defined as a
221// constant.
222
223template<int size>
224void
225Sized_symbol<size>::init(const char* name, Value_type value, Size_type symsize,
226 elfcpp::STT type, elfcpp::STB binding,
227 elfcpp::STV visibility, unsigned char nonvis)
228{
229 this->init_base(name, type, binding, visibility, nonvis);
230 this->value_ = value;
231 this->symsize_ = symsize;
14bfc3f5
ILT
232}
233
c7912668
ILT
234// Allocate a common symbol.
235
236template<int size>
237void
238Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
239{
240 this->allocate_base_common(od);
241 this->value_ = value;
242}
243
436ca963
ILT
244// Return true if this symbol should be added to the dynamic symbol
245// table.
246
247inline bool
248Symbol::should_add_dynsym_entry() const
249{
250 // If the symbol is used by a dynamic relocation, we need to add it.
251 if (this->needs_dynsym_entry())
252 return true;
253
55a93433
ILT
254 // If the symbol was forced local in a version script, do not add it.
255 if (this->is_forced_local())
256 return false;
257
436ca963
ILT
258 // If exporting all symbols or building a shared library,
259 // and the symbol is defined in a regular object and is
260 // externally visible, we need to add it.
8851ecca 261 if ((parameters->options().export_dynamic() || parameters->options().shared())
436ca963
ILT
262 && !this->is_from_dynobj()
263 && this->is_externally_visible())
264 return true;
265
266 return false;
267}
268
b3b74ddc
ILT
269// Return true if the final value of this symbol is known at link
270// time.
271
272bool
273Symbol::final_value_is_known() const
274{
275 // If we are not generating an executable, then no final values are
276 // known, since they will change at runtime.
8851ecca 277 if (parameters->options().shared() || parameters->options().relocatable())
b3b74ddc
ILT
278 return false;
279
280 // If the symbol is not from an object file, then it is defined, and
281 // known.
282 if (this->source_ != FROM_OBJECT)
283 return true;
284
285 // If the symbol is from a dynamic object, then the final value is
286 // not known.
287 if (this->object()->is_dynamic())
288 return false;
289
290 // If the symbol is not undefined (it is defined or common), then
291 // the final value is known.
292 if (!this->is_undefined())
293 return true;
294
295 // If the symbol is undefined, then whether the final value is known
296 // depends on whether we are doing a static link. If we are doing a
297 // dynamic link, then the final value could be filled in at runtime.
298 // This could reasonably be the case for a weak undefined symbol.
299 return parameters->doing_static_link();
300}
301
77e65537 302// Return the output section where this symbol is defined.
a445fddf 303
77e65537
ILT
304Output_section*
305Symbol::output_section() const
a445fddf
ILT
306{
307 switch (this->source_)
308 {
309 case FROM_OBJECT:
77e65537
ILT
310 {
311 unsigned int shndx = this->u_.from_object.shndx;
312 if (shndx != elfcpp::SHN_UNDEF && shndx < elfcpp::SHN_LORESERVE)
313 {
314 gold_assert(!this->u_.from_object.object->is_dynamic());
315 Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
316 section_offset_type dummy;
317 return relobj->output_section(shndx, &dummy);
318 }
319 return NULL;
320 }
321
a445fddf 322 case IN_OUTPUT_DATA:
77e65537
ILT
323 return this->u_.in_output_data.output_data->output_section();
324
a445fddf 325 case IN_OUTPUT_SEGMENT:
a445fddf 326 case CONSTANT:
77e65537
ILT
327 return NULL;
328
329 default:
330 gold_unreachable();
331 }
332}
333
334// Set the symbol's output section. This is used for symbols defined
335// in scripts. This should only be called after the symbol table has
336// been finalized.
337
338void
339Symbol::set_output_section(Output_section* os)
340{
341 switch (this->source_)
342 {
343 case FROM_OBJECT:
344 case IN_OUTPUT_DATA:
345 gold_assert(this->output_section() == os);
346 break;
347 case CONSTANT:
348 this->source_ = IN_OUTPUT_DATA;
349 this->u_.in_output_data.output_data = os;
350 this->u_.in_output_data.offset_is_from_end = false;
351 break;
352 case IN_OUTPUT_SEGMENT:
a445fddf
ILT
353 default:
354 gold_unreachable();
355 }
356}
357
14bfc3f5
ILT
358// Class Symbol_table.
359
09124467
ILT
360Symbol_table::Symbol_table(unsigned int count,
361 const Version_script_info& version_script)
6d013333 362 : saw_undefined_(0), offset_(0), table_(count), namepool_(),
55a93433
ILT
363 forwarders_(), commons_(), forced_locals_(), warnings_(),
364 version_script_(version_script)
14bfc3f5 365{
6d013333 366 namepool_.reserve(count);
14bfc3f5
ILT
367}
368
369Symbol_table::~Symbol_table()
370{
371}
372
ad8f37d1 373// The hash function. The key values are Stringpool keys.
14bfc3f5 374
ad8f37d1 375inline size_t
14bfc3f5
ILT
376Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key& key) const
377{
f0641a0b 378 return key.first ^ key.second;
14bfc3f5
ILT
379}
380
ad8f37d1
ILT
381// The symbol table key equality function. This is called with
382// Stringpool keys.
14bfc3f5 383
ad8f37d1 384inline bool
14bfc3f5
ILT
385Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
386 const Symbol_table_key& k2) const
387{
388 return k1.first == k2.first && k1.second == k2.second;
389}
390
dd8670e5 391// Make TO a symbol which forwards to FROM.
14bfc3f5
ILT
392
393void
394Symbol_table::make_forwarder(Symbol* from, Symbol* to)
395{
a3ad94ed
ILT
396 gold_assert(from != to);
397 gold_assert(!from->is_forwarder() && !to->is_forwarder());
14bfc3f5
ILT
398 this->forwarders_[from] = to;
399 from->set_forwarder();
400}
401
61ba1cf9
ILT
402// Resolve the forwards from FROM, returning the real symbol.
403
14bfc3f5 404Symbol*
c06b7b0b 405Symbol_table::resolve_forwards(const Symbol* from) const
14bfc3f5 406{
a3ad94ed 407 gold_assert(from->is_forwarder());
c06b7b0b 408 Unordered_map<const Symbol*, Symbol*>::const_iterator p =
14bfc3f5 409 this->forwarders_.find(from);
a3ad94ed 410 gold_assert(p != this->forwarders_.end());
14bfc3f5
ILT
411 return p->second;
412}
413
61ba1cf9
ILT
414// Look up a symbol by name.
415
416Symbol*
417Symbol_table::lookup(const char* name, const char* version) const
418{
f0641a0b
ILT
419 Stringpool::Key name_key;
420 name = this->namepool_.find(name, &name_key);
61ba1cf9
ILT
421 if (name == NULL)
422 return NULL;
f0641a0b
ILT
423
424 Stringpool::Key version_key = 0;
61ba1cf9
ILT
425 if (version != NULL)
426 {
f0641a0b 427 version = this->namepool_.find(version, &version_key);
61ba1cf9
ILT
428 if (version == NULL)
429 return NULL;
430 }
431
f0641a0b 432 Symbol_table_key key(name_key, version_key);
61ba1cf9
ILT
433 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
434 if (p == this->table_.end())
435 return NULL;
436 return p->second;
437}
438
14bfc3f5
ILT
439// Resolve a Symbol with another Symbol. This is only used in the
440// unusual case where there are references to both an unversioned
441// symbol and a symbol with a version, and we then discover that that
1564db8d
ILT
442// version is the default version. Because this is unusual, we do
443// this the slow way, by converting back to an ELF symbol.
14bfc3f5 444
1564db8d 445template<int size, bool big_endian>
14bfc3f5 446void
14b31740 447Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from,
7d1a9ebb 448 const char* version)
14bfc3f5 449{
1564db8d
ILT
450 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
451 elfcpp::Sym_write<size, big_endian> esym(buf);
452 // We don't bother to set the st_name field.
453 esym.put_st_value(from->value());
454 esym.put_st_size(from->symsize());
455 esym.put_st_info(from->binding(), from->type());
ead1e424 456 esym.put_st_other(from->visibility(), from->nonvis());
16649710 457 esym.put_st_shndx(from->shndx());
70e654ba 458 this->resolve(to, esym.sym(), esym.sym(), from->object(), version);
1ebd95fd
ILT
459 if (from->in_reg())
460 to->set_in_reg();
461 if (from->in_dyn())
462 to->set_in_dyn();
14bfc3f5
ILT
463}
464
55a93433
ILT
465// Record that a symbol is forced to be local by a version script.
466
467void
468Symbol_table::force_local(Symbol* sym)
469{
470 if (!sym->is_defined() && !sym->is_common())
471 return;
472 if (sym->is_forced_local())
473 {
474 // We already got this one.
475 return;
476 }
477 sym->set_is_forced_local();
478 this->forced_locals_.push_back(sym);
479}
480
14bfc3f5
ILT
481// Add one symbol from OBJECT to the symbol table. NAME is symbol
482// name and VERSION is the version; both are canonicalized. DEF is
483// whether this is the default version.
484
485// If DEF is true, then this is the definition of a default version of
486// a symbol. That means that any lookup of NAME/NULL and any lookup
487// of NAME/VERSION should always return the same symbol. This is
488// obvious for references, but in particular we want to do this for
489// definitions: overriding NAME/NULL should also override
490// NAME/VERSION. If we don't do that, it would be very hard to
491// override functions in a shared library which uses versioning.
492
493// We implement this by simply making both entries in the hash table
494// point to the same Symbol structure. That is easy enough if this is
495// the first time we see NAME/NULL or NAME/VERSION, but it is possible
496// that we have seen both already, in which case they will both have
497// independent entries in the symbol table. We can't simply change
498// the symbol table entry, because we have pointers to the entries
499// attached to the object files. So we mark the entry attached to the
500// object file as a forwarder, and record it in the forwarders_ map.
501// Note that entries in the hash table will never be marked as
502// forwarders.
70e654ba
ILT
503//
504// SYM and ORIG_SYM are almost always the same. ORIG_SYM is the
505// symbol exactly as it existed in the input file. SYM is usually
506// that as well, but can be modified, for instance if we determine
507// it's in a to-be-discarded section.
14bfc3f5
ILT
508
509template<int size, bool big_endian>
aeddab66 510Sized_symbol<size>*
f6ce93d6 511Symbol_table::add_from_object(Object* object,
14bfc3f5 512 const char *name,
f0641a0b
ILT
513 Stringpool::Key name_key,
514 const char *version,
515 Stringpool::Key version_key,
516 bool def,
70e654ba
ILT
517 const elfcpp::Sym<size, big_endian>& sym,
518 const elfcpp::Sym<size, big_endian>& orig_sym)
14bfc3f5
ILT
519{
520 Symbol* const snull = NULL;
521 std::pair<typename Symbol_table_type::iterator, bool> ins =
f0641a0b
ILT
522 this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
523 snull));
14bfc3f5
ILT
524
525 std::pair<typename Symbol_table_type::iterator, bool> insdef =
526 std::make_pair(this->table_.end(), false);
527 if (def)
528 {
f0641a0b
ILT
529 const Stringpool::Key vnull_key = 0;
530 insdef = this->table_.insert(std::make_pair(std::make_pair(name_key,
531 vnull_key),
14bfc3f5
ILT
532 snull));
533 }
534
535 // ins.first: an iterator, which is a pointer to a pair.
536 // ins.first->first: the key (a pair of name and version).
537 // ins.first->second: the value (Symbol*).
538 // ins.second: true if new entry was inserted, false if not.
539
1564db8d 540 Sized_symbol<size>* ret;
ead1e424
ILT
541 bool was_undefined;
542 bool was_common;
14bfc3f5
ILT
543 if (!ins.second)
544 {
545 // We already have an entry for NAME/VERSION.
7d1a9ebb 546 ret = this->get_sized_symbol<size>(ins.first->second);
a3ad94ed 547 gold_assert(ret != NULL);
ead1e424
ILT
548
549 was_undefined = ret->is_undefined();
550 was_common = ret->is_common();
551
70e654ba 552 this->resolve(ret, sym, orig_sym, object, version);
14bfc3f5
ILT
553
554 if (def)
555 {
556 if (insdef.second)
557 {
558 // This is the first time we have seen NAME/NULL. Make
559 // NAME/NULL point to NAME/VERSION.
560 insdef.first->second = ret;
561 }
99f8faca
ILT
562 else if (insdef.first->second != ret
563 && insdef.first->second->is_undefined())
14bfc3f5
ILT
564 {
565 // This is the unfortunate case where we already have
99f8faca
ILT
566 // entries for both NAME/VERSION and NAME/NULL. Note
567 // that we don't want to combine them if the existing
568 // symbol is going to override the new one. FIXME: We
569 // currently just test is_undefined, but this may not do
570 // the right thing if the existing symbol is from a
571 // shared library and the new one is from a regular
572 // object.
573
274e99f9 574 const Sized_symbol<size>* sym2;
7d1a9ebb
ILT
575 sym2 = this->get_sized_symbol<size>(insdef.first->second);
576 Symbol_table::resolve<size, big_endian>(ret, sym2, version);
14bfc3f5
ILT
577 this->make_forwarder(insdef.first->second, ret);
578 insdef.first->second = ret;
579 }
479f6503
ILT
580 else
581 def = false;
14bfc3f5
ILT
582 }
583 }
584 else
585 {
586 // This is the first time we have seen NAME/VERSION.
a3ad94ed 587 gold_assert(ins.first->second == NULL);
ead1e424 588
14bfc3f5
ILT
589 if (def && !insdef.second)
590 {
14b31740
ILT
591 // We already have an entry for NAME/NULL. If we override
592 // it, then change it to NAME/VERSION.
7d1a9ebb 593 ret = this->get_sized_symbol<size>(insdef.first->second);
18e6b24e
ILT
594
595 was_undefined = ret->is_undefined();
596 was_common = ret->is_common();
597
70e654ba 598 this->resolve(ret, sym, orig_sym, object, version);
14bfc3f5
ILT
599 ins.first->second = ret;
600 }
601 else
602 {
18e6b24e
ILT
603 was_undefined = false;
604 was_common = false;
605
f6ce93d6 606 Sized_target<size, big_endian>* target =
7d1a9ebb 607 object->sized_target<size, big_endian>();
1564db8d
ILT
608 if (!target->has_make_symbol())
609 ret = new Sized_symbol<size>();
610 else
14bfc3f5 611 {
1564db8d
ILT
612 ret = target->make_symbol();
613 if (ret == NULL)
14bfc3f5
ILT
614 {
615 // This means that we don't want a symbol table
616 // entry after all.
617 if (!def)
618 this->table_.erase(ins.first);
619 else
620 {
621 this->table_.erase(insdef.first);
622 // Inserting insdef invalidated ins.
f0641a0b
ILT
623 this->table_.erase(std::make_pair(name_key,
624 version_key));
14bfc3f5
ILT
625 }
626 return NULL;
627 }
628 }
14bfc3f5 629
1564db8d
ILT
630 ret->init(name, version, object, sym);
631
14bfc3f5
ILT
632 ins.first->second = ret;
633 if (def)
634 {
635 // This is the first time we have seen NAME/NULL. Point
636 // it at the new entry for NAME/VERSION.
a3ad94ed 637 gold_assert(insdef.second);
14bfc3f5
ILT
638 insdef.first->second = ret;
639 }
640 }
641 }
642
ead1e424
ILT
643 // Record every time we see a new undefined symbol, to speed up
644 // archive groups.
645 if (!was_undefined && ret->is_undefined())
646 ++this->saw_undefined_;
647
648 // Keep track of common symbols, to speed up common symbol
649 // allocation.
650 if (!was_common && ret->is_common())
651 this->commons_.push_back(ret);
652
be3e6201
ILT
653 if (def)
654 ret->set_is_default();
14bfc3f5
ILT
655 return ret;
656}
657
f6ce93d6 658// Add all the symbols in a relocatable object to the hash table.
14bfc3f5
ILT
659
660template<int size, bool big_endian>
661void
dbe717ef
ILT
662Symbol_table::add_from_relobj(
663 Sized_relobj<size, big_endian>* relobj,
f6ce93d6 664 const unsigned char* syms,
14bfc3f5
ILT
665 size_t count,
666 const char* sym_names,
667 size_t sym_name_size,
730cdc88 668 typename Sized_relobj<size, big_endian>::Symbols* sympointers)
14bfc3f5 669{
9025d29d 670 gold_assert(size == relobj->target()->get_size());
8851ecca 671 gold_assert(size == parameters->target().get_size());
14bfc3f5 672
a783673b
ILT
673 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
674
88dd47ac
ILT
675 const bool just_symbols = relobj->just_symbols();
676
f6ce93d6 677 const unsigned char* p = syms;
a783673b 678 for (size_t i = 0; i < count; ++i, p += sym_size)
14bfc3f5
ILT
679 {
680 elfcpp::Sym<size, big_endian> sym(p);
a783673b 681 elfcpp::Sym<size, big_endian>* psym = &sym;
14bfc3f5 682
a783673b 683 unsigned int st_name = psym->get_st_name();
14bfc3f5
ILT
684 if (st_name >= sym_name_size)
685 {
75f2446e
ILT
686 relobj->error(_("bad global symbol name offset %u at %zu"),
687 st_name, i);
688 continue;
14bfc3f5
ILT
689 }
690
dbe717ef
ILT
691 const char* name = sym_names + st_name;
692
a783673b
ILT
693 // A symbol defined in a section which we are not including must
694 // be treated as an undefined symbol.
695 unsigned char symbuf[sym_size];
696 elfcpp::Sym<size, big_endian> sym2(symbuf);
697 unsigned int st_shndx = psym->get_st_shndx();
698 if (st_shndx != elfcpp::SHN_UNDEF
699 && st_shndx < elfcpp::SHN_LORESERVE
dbe717ef 700 && !relobj->is_section_included(st_shndx))
a783673b
ILT
701 {
702 memcpy(symbuf, p, sym_size);
703 elfcpp::Sym_write<size, big_endian> sw(symbuf);
704 sw.put_st_shndx(elfcpp::SHN_UNDEF);
705 psym = &sym2;
706 }
707
14bfc3f5
ILT
708 // In an object file, an '@' in the name separates the symbol
709 // name from the version name. If there are two '@' characters,
710 // this is the default version.
711 const char* ver = strchr(name, '@');
09124467 712 int namelen = 0;
55a93433 713 // DEF: is the version default? LOCAL: is the symbol forced local?
09124467 714 bool def = false;
55a93433 715 bool local = false;
09124467
ILT
716
717 if (ver != NULL)
718 {
719 // The symbol name is of the form foo@VERSION or foo@@VERSION
720 namelen = ver - name;
721 ++ver;
722 if (*ver == '@')
723 {
724 def = true;
725 ++ver;
726 }
727 }
5871526f
ILT
728 // We don't want to assign a version to an undefined symbol,
729 // even if it is listed in the version script. FIXME: What
730 // about a common symbol?
731 else if (!version_script_.empty()
732 && psym->get_st_shndx() != elfcpp::SHN_UNDEF)
09124467
ILT
733 {
734 // The symbol name did not have a version, but
735 // the version script may assign a version anyway.
736 namelen = strlen(name);
737 def = true;
55a93433 738 // Check the global: entries from the version script.
09124467
ILT
739 const std::string& version =
740 version_script_.get_symbol_version(name);
741 if (!version.empty())
742 ver = version.c_str();
55a93433
ILT
743 // Check the local: entries from the version script
744 if (version_script_.symbol_is_local(name))
745 local = true;
09124467 746 }
14bfc3f5 747
88dd47ac
ILT
748 if (just_symbols)
749 {
750 if (psym != &sym2)
751 memcpy(symbuf, p, sym_size);
752 elfcpp::Sym_write<size, big_endian> sw(symbuf);
753 sw.put_st_shndx(elfcpp::SHN_ABS);
754 if (st_shndx != elfcpp::SHN_UNDEF
755 && st_shndx < elfcpp::SHN_LORESERVE)
756 {
757 // Symbol values in object files are section relative.
758 // This is normally what we want, but since here we are
759 // converting the symbol to absolute we need to add the
760 // section address. The section address in an object
761 // file is normally zero, but people can use a linker
762 // script to change it.
763 sw.put_st_value(sym2.get_st_value()
764 + relobj->section_address(st_shndx));
765 }
766 psym = &sym2;
767 }
768
aeddab66 769 Sized_symbol<size>* res;
14bfc3f5
ILT
770 if (ver == NULL)
771 {
f0641a0b 772 Stringpool::Key name_key;
cfd73a4e 773 name = this->namepool_.add(name, true, &name_key);
dbe717ef 774 res = this->add_from_object(relobj, name, name_key, NULL, 0,
70e654ba 775 false, *psym, sym);
55a93433
ILT
776 if (local)
777 this->force_local(res);
14bfc3f5
ILT
778 }
779 else
780 {
f0641a0b 781 Stringpool::Key name_key;
09124467 782 name = this->namepool_.add_with_length(name, namelen, true,
c0873094 783 &name_key);
f0641a0b 784 Stringpool::Key ver_key;
cfd73a4e 785 ver = this->namepool_.add(ver, true, &ver_key);
f0641a0b 786
dbe717ef 787 res = this->add_from_object(relobj, name, name_key, ver, ver_key,
70e654ba 788 def, *psym, sym);
14bfc3f5
ILT
789 }
790
730cdc88 791 (*sympointers)[i] = res;
14bfc3f5
ILT
792 }
793}
794
dbe717ef
ILT
795// Add all the symbols in a dynamic object to the hash table.
796
797template<int size, bool big_endian>
798void
799Symbol_table::add_from_dynobj(
800 Sized_dynobj<size, big_endian>* dynobj,
801 const unsigned char* syms,
802 size_t count,
803 const char* sym_names,
804 size_t sym_name_size,
805 const unsigned char* versym,
806 size_t versym_size,
807 const std::vector<const char*>* version_map)
808{
9025d29d 809 gold_assert(size == dynobj->target()->get_size());
8851ecca 810 gold_assert(size == parameters->target().get_size());
dbe717ef 811
88dd47ac
ILT
812 if (dynobj->just_symbols())
813 {
814 gold_error(_("--just-symbols does not make sense with a shared object"));
815 return;
816 }
817
dbe717ef
ILT
818 if (versym != NULL && versym_size / 2 < count)
819 {
75f2446e
ILT
820 dynobj->error(_("too few symbol versions"));
821 return;
dbe717ef
ILT
822 }
823
824 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
825
aeddab66
ILT
826 // We keep a list of all STT_OBJECT symbols, so that we can resolve
827 // weak aliases. This is necessary because if the dynamic object
828 // provides the same variable under two names, one of which is a
829 // weak definition, and the regular object refers to the weak
830 // definition, we have to put both the weak definition and the
831 // strong definition into the dynamic symbol table. Given a weak
832 // definition, the only way that we can find the corresponding
833 // strong definition, if any, is to search the symbol table.
834 std::vector<Sized_symbol<size>*> object_symbols;
835
dbe717ef
ILT
836 const unsigned char* p = syms;
837 const unsigned char* vs = versym;
838 for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
839 {
840 elfcpp::Sym<size, big_endian> sym(p);
841
65778909
ILT
842 // Ignore symbols with local binding or that have
843 // internal or hidden visibility.
844 if (sym.get_st_bind() == elfcpp::STB_LOCAL
845 || sym.get_st_visibility() == elfcpp::STV_INTERNAL
846 || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
dbe717ef
ILT
847 continue;
848
849 unsigned int st_name = sym.get_st_name();
850 if (st_name >= sym_name_size)
851 {
75f2446e
ILT
852 dynobj->error(_("bad symbol name offset %u at %zu"),
853 st_name, i);
854 continue;
dbe717ef
ILT
855 }
856
857 const char* name = sym_names + st_name;
858
aeddab66
ILT
859 Sized_symbol<size>* res;
860
dbe717ef
ILT
861 if (versym == NULL)
862 {
863 Stringpool::Key name_key;
cfd73a4e 864 name = this->namepool_.add(name, true, &name_key);
aeddab66 865 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
70e654ba 866 false, sym, sym);
dbe717ef 867 }
aeddab66
ILT
868 else
869 {
870 // Read the version information.
dbe717ef 871
aeddab66 872 unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
dbe717ef 873
aeddab66
ILT
874 bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
875 v &= elfcpp::VERSYM_VERSION;
dbe717ef 876
aeddab66
ILT
877 // The Sun documentation says that V can be VER_NDX_LOCAL,
878 // or VER_NDX_GLOBAL, or a version index. The meaning of
879 // VER_NDX_LOCAL is defined as "Symbol has local scope."
880 // The old GNU linker will happily generate VER_NDX_LOCAL
881 // for an undefined symbol. I don't know what the Sun
882 // linker will generate.
dbe717ef 883
aeddab66
ILT
884 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
885 && sym.get_st_shndx() != elfcpp::SHN_UNDEF)
886 {
887 // This symbol should not be visible outside the object.
888 continue;
889 }
64707334 890
aeddab66
ILT
891 // At this point we are definitely going to add this symbol.
892 Stringpool::Key name_key;
893 name = this->namepool_.add(name, true, &name_key);
dbe717ef 894
aeddab66
ILT
895 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
896 || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
897 {
898 // This symbol does not have a version.
899 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
70e654ba 900 false, sym, sym);
aeddab66
ILT
901 }
902 else
903 {
904 if (v >= version_map->size())
905 {
906 dynobj->error(_("versym for symbol %zu out of range: %u"),
907 i, v);
908 continue;
909 }
dbe717ef 910
aeddab66
ILT
911 const char* version = (*version_map)[v];
912 if (version == NULL)
913 {
914 dynobj->error(_("versym for symbol %zu has no name: %u"),
915 i, v);
916 continue;
917 }
dbe717ef 918
aeddab66
ILT
919 Stringpool::Key version_key;
920 version = this->namepool_.add(version, true, &version_key);
921
922 // If this is an absolute symbol, and the version name
923 // and symbol name are the same, then this is the
924 // version definition symbol. These symbols exist to
925 // support using -u to pull in particular versions. We
926 // do not want to record a version for them.
927 if (sym.get_st_shndx() == elfcpp::SHN_ABS
928 && name_key == version_key)
929 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
70e654ba 930 false, sym, sym);
aeddab66
ILT
931 else
932 {
933 const bool def = (!hidden
934 && (sym.get_st_shndx()
935 != elfcpp::SHN_UNDEF));
936 res = this->add_from_object(dynobj, name, name_key, version,
70e654ba 937 version_key, def, sym, sym);
aeddab66
ILT
938 }
939 }
dbe717ef
ILT
940 }
941
aeddab66
ILT
942 if (sym.get_st_shndx() != elfcpp::SHN_UNDEF
943 && sym.get_st_type() == elfcpp::STT_OBJECT)
944 object_symbols.push_back(res);
945 }
946
947 this->record_weak_aliases(&object_symbols);
948}
949
950// This is used to sort weak aliases. We sort them first by section
951// index, then by offset, then by weak ahead of strong.
952
953template<int size>
954class Weak_alias_sorter
955{
956 public:
957 bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
958};
959
960template<int size>
961bool
962Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
963 const Sized_symbol<size>* s2) const
964{
965 if (s1->shndx() != s2->shndx())
966 return s1->shndx() < s2->shndx();
967 if (s1->value() != s2->value())
968 return s1->value() < s2->value();
969 if (s1->binding() != s2->binding())
970 {
971 if (s1->binding() == elfcpp::STB_WEAK)
972 return true;
973 if (s2->binding() == elfcpp::STB_WEAK)
974 return false;
975 }
976 return std::string(s1->name()) < std::string(s2->name());
977}
dbe717ef 978
aeddab66
ILT
979// SYMBOLS is a list of object symbols from a dynamic object. Look
980// for any weak aliases, and record them so that if we add the weak
981// alias to the dynamic symbol table, we also add the corresponding
982// strong symbol.
dbe717ef 983
aeddab66
ILT
984template<int size>
985void
986Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
987{
988 // Sort the vector by section index, then by offset, then by weak
989 // ahead of strong.
990 std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
991
992 // Walk through the vector. For each weak definition, record
993 // aliases.
994 for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
995 symbols->begin();
996 p != symbols->end();
997 ++p)
998 {
999 if ((*p)->binding() != elfcpp::STB_WEAK)
1000 continue;
1001
1002 // Build a circular list of weak aliases. Each symbol points to
1003 // the next one in the circular list.
1004
1005 Sized_symbol<size>* from_sym = *p;
1006 typename std::vector<Sized_symbol<size>*>::const_iterator q;
1007 for (q = p + 1; q != symbols->end(); ++q)
dbe717ef 1008 {
aeddab66
ILT
1009 if ((*q)->shndx() != from_sym->shndx()
1010 || (*q)->value() != from_sym->value())
1011 break;
1012
1013 this->weak_aliases_[from_sym] = *q;
1014 from_sym->set_has_alias();
1015 from_sym = *q;
dbe717ef
ILT
1016 }
1017
aeddab66
ILT
1018 if (from_sym != *p)
1019 {
1020 this->weak_aliases_[from_sym] = *p;
1021 from_sym->set_has_alias();
1022 }
dbe717ef 1023
aeddab66 1024 p = q - 1;
dbe717ef
ILT
1025 }
1026}
1027
ead1e424
ILT
1028// Create and return a specially defined symbol. If ONLY_IF_REF is
1029// true, then only create the symbol if there is a reference to it.
86f2e683 1030// If this does not return NULL, it sets *POLDSYM to the existing
306d9ef0 1031// symbol if there is one. This canonicalizes *PNAME and *PVERSION.
ead1e424
ILT
1032
1033template<int size, bool big_endian>
1034Sized_symbol<size>*
9b07f471
ILT
1035Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1036 bool only_if_ref,
7d1a9ebb 1037 Sized_symbol<size>** poldsym)
ead1e424 1038{
ead1e424
ILT
1039 Symbol* oldsym;
1040 Sized_symbol<size>* sym;
86f2e683
ILT
1041 bool add_to_table = false;
1042 typename Symbol_table_type::iterator add_loc = this->table_.end();
ead1e424 1043
55a93433
ILT
1044 // If the caller didn't give us a version, see if we get one from
1045 // the version script.
1046 if (*pversion == NULL)
1047 {
1048 const std::string& v(this->version_script_.get_symbol_version(*pname));
1049 if (!v.empty())
1050 *pversion = v.c_str();
1051 }
1052
ead1e424
ILT
1053 if (only_if_ref)
1054 {
306d9ef0 1055 oldsym = this->lookup(*pname, *pversion);
f6ce93d6 1056 if (oldsym == NULL || !oldsym->is_undefined())
ead1e424 1057 return NULL;
306d9ef0
ILT
1058
1059 *pname = oldsym->name();
1060 *pversion = oldsym->version();
ead1e424
ILT
1061 }
1062 else
1063 {
14b31740 1064 // Canonicalize NAME and VERSION.
f0641a0b 1065 Stringpool::Key name_key;
cfd73a4e 1066 *pname = this->namepool_.add(*pname, true, &name_key);
ead1e424 1067
14b31740 1068 Stringpool::Key version_key = 0;
306d9ef0 1069 if (*pversion != NULL)
cfd73a4e 1070 *pversion = this->namepool_.add(*pversion, true, &version_key);
14b31740 1071
ead1e424 1072 Symbol* const snull = NULL;
ead1e424 1073 std::pair<typename Symbol_table_type::iterator, bool> ins =
14b31740
ILT
1074 this->table_.insert(std::make_pair(std::make_pair(name_key,
1075 version_key),
ead1e424
ILT
1076 snull));
1077
1078 if (!ins.second)
1079 {
14b31740 1080 // We already have a symbol table entry for NAME/VERSION.
ead1e424 1081 oldsym = ins.first->second;
a3ad94ed 1082 gold_assert(oldsym != NULL);
ead1e424
ILT
1083 }
1084 else
1085 {
1086 // We haven't seen this symbol before.
a3ad94ed 1087 gold_assert(ins.first->second == NULL);
86f2e683
ILT
1088 add_to_table = true;
1089 add_loc = ins.first;
ead1e424
ILT
1090 oldsym = NULL;
1091 }
1092 }
1093
8851ecca
ILT
1094 const Target& target = parameters->target();
1095 if (!target.has_make_symbol())
86f2e683
ILT
1096 sym = new Sized_symbol<size>();
1097 else
ead1e424 1098 {
8851ecca
ILT
1099 gold_assert(target.get_size() == size);
1100 gold_assert(target.is_big_endian() ? big_endian : !big_endian);
86f2e683
ILT
1101 typedef Sized_target<size, big_endian> My_target;
1102 const My_target* sized_target =
8851ecca 1103 static_cast<const My_target*>(&target);
86f2e683
ILT
1104 sym = sized_target->make_symbol();
1105 if (sym == NULL)
1106 return NULL;
1107 }
ead1e424 1108
86f2e683
ILT
1109 if (add_to_table)
1110 add_loc->second = sym;
1111 else
1112 gold_assert(oldsym != NULL);
ead1e424 1113
7d1a9ebb 1114 *poldsym = this->get_sized_symbol<size>(oldsym);
ead1e424
ILT
1115
1116 return sym;
1117}
1118
1119// Define a symbol based on an Output_data.
1120
14b31740 1121Symbol*
9b07f471
ILT
1122Symbol_table::define_in_output_data(const char* name,
1123 const char* version,
1124 Output_data* od,
1125 uint64_t value,
1126 uint64_t symsize,
1127 elfcpp::STT type,
1128 elfcpp::STB binding,
ead1e424
ILT
1129 elfcpp::STV visibility,
1130 unsigned char nonvis,
1131 bool offset_is_from_end,
1132 bool only_if_ref)
1133{
8851ecca 1134 if (parameters->target().get_size() == 32)
86f2e683
ILT
1135 {
1136#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
9b07f471 1137 return this->do_define_in_output_data<32>(name, version, od,
86f2e683
ILT
1138 value, symsize, type, binding,
1139 visibility, nonvis,
1140 offset_is_from_end,
1141 only_if_ref);
1142#else
1143 gold_unreachable();
1144#endif
1145 }
8851ecca 1146 else if (parameters->target().get_size() == 64)
86f2e683
ILT
1147 {
1148#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
9b07f471 1149 return this->do_define_in_output_data<64>(name, version, od,
86f2e683
ILT
1150 value, symsize, type, binding,
1151 visibility, nonvis,
1152 offset_is_from_end,
1153 only_if_ref);
1154#else
1155 gold_unreachable();
1156#endif
1157 }
ead1e424 1158 else
a3ad94ed 1159 gold_unreachable();
ead1e424
ILT
1160}
1161
1162// Define a symbol in an Output_data, sized version.
1163
1164template<int size>
14b31740 1165Sized_symbol<size>*
ead1e424 1166Symbol_table::do_define_in_output_data(
ead1e424 1167 const char* name,
14b31740 1168 const char* version,
ead1e424
ILT
1169 Output_data* od,
1170 typename elfcpp::Elf_types<size>::Elf_Addr value,
1171 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1172 elfcpp::STT type,
1173 elfcpp::STB binding,
1174 elfcpp::STV visibility,
1175 unsigned char nonvis,
1176 bool offset_is_from_end,
1177 bool only_if_ref)
1178{
1179 Sized_symbol<size>* sym;
86f2e683 1180 Sized_symbol<size>* oldsym;
ead1e424 1181
8851ecca 1182 if (parameters->target().is_big_endian())
193a53d9
ILT
1183 {
1184#if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
7d1a9ebb
ILT
1185 sym = this->define_special_symbol<size, true>(&name, &version,
1186 only_if_ref, &oldsym);
193a53d9
ILT
1187#else
1188 gold_unreachable();
1189#endif
1190 }
ead1e424 1191 else
193a53d9
ILT
1192 {
1193#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
7d1a9ebb
ILT
1194 sym = this->define_special_symbol<size, false>(&name, &version,
1195 only_if_ref, &oldsym);
193a53d9
ILT
1196#else
1197 gold_unreachable();
1198#endif
1199 }
ead1e424
ILT
1200
1201 if (sym == NULL)
14b31740 1202 return NULL;
ead1e424 1203
d4f5281b 1204 gold_assert(version == NULL || oldsym != NULL);
ead1e424
ILT
1205 sym->init(name, od, value, symsize, type, binding, visibility, nonvis,
1206 offset_is_from_end);
14b31740 1207
e5756efb 1208 if (oldsym == NULL)
55a93433
ILT
1209 {
1210 if (binding == elfcpp::STB_LOCAL
1211 || this->version_script_.symbol_is_local(name))
1212 this->force_local(sym);
1213 return sym;
1214 }
86f2e683 1215
e5756efb
ILT
1216 if (Symbol_table::should_override_with_special(oldsym))
1217 this->override_with_special(oldsym, sym);
1218 delete sym;
1219 return oldsym;
ead1e424
ILT
1220}
1221
1222// Define a symbol based on an Output_segment.
1223
14b31740 1224Symbol*
9b07f471 1225Symbol_table::define_in_output_segment(const char* name,
14b31740 1226 const char* version, Output_segment* os,
9b07f471
ILT
1227 uint64_t value,
1228 uint64_t symsize,
1229 elfcpp::STT type,
1230 elfcpp::STB binding,
ead1e424
ILT
1231 elfcpp::STV visibility,
1232 unsigned char nonvis,
1233 Symbol::Segment_offset_base offset_base,
1234 bool only_if_ref)
1235{
8851ecca 1236 if (parameters->target().get_size() == 32)
86f2e683
ILT
1237 {
1238#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
9b07f471 1239 return this->do_define_in_output_segment<32>(name, version, os,
86f2e683
ILT
1240 value, symsize, type,
1241 binding, visibility, nonvis,
1242 offset_base, only_if_ref);
1243#else
1244 gold_unreachable();
1245#endif
1246 }
8851ecca 1247 else if (parameters->target().get_size() == 64)
86f2e683
ILT
1248 {
1249#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
9b07f471 1250 return this->do_define_in_output_segment<64>(name, version, os,
86f2e683
ILT
1251 value, symsize, type,
1252 binding, visibility, nonvis,
1253 offset_base, only_if_ref);
1254#else
1255 gold_unreachable();
1256#endif
1257 }
ead1e424 1258 else
a3ad94ed 1259 gold_unreachable();
ead1e424
ILT
1260}
1261
1262// Define a symbol in an Output_segment, sized version.
1263
1264template<int size>
14b31740 1265Sized_symbol<size>*
ead1e424 1266Symbol_table::do_define_in_output_segment(
ead1e424 1267 const char* name,
14b31740 1268 const char* version,
ead1e424
ILT
1269 Output_segment* os,
1270 typename elfcpp::Elf_types<size>::Elf_Addr value,
1271 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1272 elfcpp::STT type,
1273 elfcpp::STB binding,
1274 elfcpp::STV visibility,
1275 unsigned char nonvis,
1276 Symbol::Segment_offset_base offset_base,
1277 bool only_if_ref)
1278{
1279 Sized_symbol<size>* sym;
86f2e683 1280 Sized_symbol<size>* oldsym;
ead1e424 1281
8851ecca 1282 if (parameters->target().is_big_endian())
9025d29d
ILT
1283 {
1284#if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
7d1a9ebb
ILT
1285 sym = this->define_special_symbol<size, true>(&name, &version,
1286 only_if_ref, &oldsym);
9025d29d
ILT
1287#else
1288 gold_unreachable();
1289#endif
1290 }
ead1e424 1291 else
9025d29d
ILT
1292 {
1293#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
7d1a9ebb
ILT
1294 sym = this->define_special_symbol<size, false>(&name, &version,
1295 only_if_ref, &oldsym);
9025d29d
ILT
1296#else
1297 gold_unreachable();
1298#endif
1299 }
ead1e424
ILT
1300
1301 if (sym == NULL)
14b31740 1302 return NULL;
ead1e424 1303
d4f5281b 1304 gold_assert(version == NULL || oldsym != NULL);
ead1e424
ILT
1305 sym->init(name, os, value, symsize, type, binding, visibility, nonvis,
1306 offset_base);
14b31740 1307
e5756efb 1308 if (oldsym == NULL)
55a93433
ILT
1309 {
1310 if (binding == elfcpp::STB_LOCAL
1311 || this->version_script_.symbol_is_local(name))
1312 this->force_local(sym);
1313 return sym;
1314 }
86f2e683 1315
e5756efb
ILT
1316 if (Symbol_table::should_override_with_special(oldsym))
1317 this->override_with_special(oldsym, sym);
1318 delete sym;
1319 return oldsym;
ead1e424
ILT
1320}
1321
1322// Define a special symbol with a constant value. It is a multiple
1323// definition error if this symbol is already defined.
1324
14b31740 1325Symbol*
9b07f471
ILT
1326Symbol_table::define_as_constant(const char* name,
1327 const char* version,
1328 uint64_t value,
1329 uint64_t symsize,
1330 elfcpp::STT type,
1331 elfcpp::STB binding,
1332 elfcpp::STV visibility,
1333 unsigned char nonvis,
caa9d5d9
ILT
1334 bool only_if_ref,
1335 bool force_override)
ead1e424 1336{
8851ecca 1337 if (parameters->target().get_size() == 32)
86f2e683
ILT
1338 {
1339#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
9b07f471 1340 return this->do_define_as_constant<32>(name, version, value,
86f2e683 1341 symsize, type, binding,
caa9d5d9
ILT
1342 visibility, nonvis, only_if_ref,
1343 force_override);
86f2e683
ILT
1344#else
1345 gold_unreachable();
1346#endif
1347 }
8851ecca 1348 else if (parameters->target().get_size() == 64)
86f2e683
ILT
1349 {
1350#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
9b07f471 1351 return this->do_define_as_constant<64>(name, version, value,
86f2e683 1352 symsize, type, binding,
caa9d5d9
ILT
1353 visibility, nonvis, only_if_ref,
1354 force_override);
86f2e683
ILT
1355#else
1356 gold_unreachable();
1357#endif
1358 }
ead1e424 1359 else
a3ad94ed 1360 gold_unreachable();
ead1e424
ILT
1361}
1362
1363// Define a symbol as a constant, sized version.
1364
1365template<int size>
14b31740 1366Sized_symbol<size>*
ead1e424 1367Symbol_table::do_define_as_constant(
ead1e424 1368 const char* name,
14b31740 1369 const char* version,
ead1e424
ILT
1370 typename elfcpp::Elf_types<size>::Elf_Addr value,
1371 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1372 elfcpp::STT type,
1373 elfcpp::STB binding,
1374 elfcpp::STV visibility,
1375 unsigned char nonvis,
caa9d5d9
ILT
1376 bool only_if_ref,
1377 bool force_override)
ead1e424
ILT
1378{
1379 Sized_symbol<size>* sym;
86f2e683 1380 Sized_symbol<size>* oldsym;
ead1e424 1381
8851ecca 1382 if (parameters->target().is_big_endian())
9025d29d
ILT
1383 {
1384#if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
7d1a9ebb
ILT
1385 sym = this->define_special_symbol<size, true>(&name, &version,
1386 only_if_ref, &oldsym);
9025d29d
ILT
1387#else
1388 gold_unreachable();
1389#endif
1390 }
ead1e424 1391 else
9025d29d
ILT
1392 {
1393#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
7d1a9ebb
ILT
1394 sym = this->define_special_symbol<size, false>(&name, &version,
1395 only_if_ref, &oldsym);
9025d29d
ILT
1396#else
1397 gold_unreachable();
1398#endif
1399 }
ead1e424
ILT
1400
1401 if (sym == NULL)
14b31740 1402 return NULL;
ead1e424 1403
09124467 1404 gold_assert(version == NULL || version == name || oldsym != NULL);
ead1e424 1405 sym->init(name, value, symsize, type, binding, visibility, nonvis);
14b31740 1406
e5756efb 1407 if (oldsym == NULL)
55a93433 1408 {
686c8caf
ILT
1409 // Version symbols are absolute symbols with name == version.
1410 // We don't want to force them to be local.
1411 if ((version == NULL
1412 || name != version
1413 || value != 0)
1414 && (binding == elfcpp::STB_LOCAL
1415 || this->version_script_.symbol_is_local(name)))
55a93433
ILT
1416 this->force_local(sym);
1417 return sym;
1418 }
86f2e683 1419
caa9d5d9 1420 if (force_override || Symbol_table::should_override_with_special(oldsym))
e5756efb
ILT
1421 this->override_with_special(oldsym, sym);
1422 delete sym;
1423 return oldsym;
ead1e424
ILT
1424}
1425
1426// Define a set of symbols in output sections.
1427
1428void
9b07f471 1429Symbol_table::define_symbols(const Layout* layout, int count,
a445fddf
ILT
1430 const Define_symbol_in_section* p,
1431 bool only_if_ref)
ead1e424
ILT
1432{
1433 for (int i = 0; i < count; ++i, ++p)
1434 {
1435 Output_section* os = layout->find_output_section(p->output_section);
1436 if (os != NULL)
9b07f471 1437 this->define_in_output_data(p->name, NULL, os, p->value,
14b31740
ILT
1438 p->size, p->type, p->binding,
1439 p->visibility, p->nonvis,
a445fddf
ILT
1440 p->offset_is_from_end,
1441 only_if_ref || p->only_if_ref);
ead1e424 1442 else
9b07f471 1443 this->define_as_constant(p->name, NULL, 0, p->size, p->type,
ead1e424 1444 p->binding, p->visibility, p->nonvis,
caa9d5d9
ILT
1445 only_if_ref || p->only_if_ref,
1446 false);
ead1e424
ILT
1447 }
1448}
1449
1450// Define a set of symbols in output segments.
1451
1452void
9b07f471 1453Symbol_table::define_symbols(const Layout* layout, int count,
a445fddf
ILT
1454 const Define_symbol_in_segment* p,
1455 bool only_if_ref)
ead1e424
ILT
1456{
1457 for (int i = 0; i < count; ++i, ++p)
1458 {
1459 Output_segment* os = layout->find_output_segment(p->segment_type,
1460 p->segment_flags_set,
1461 p->segment_flags_clear);
1462 if (os != NULL)
9b07f471 1463 this->define_in_output_segment(p->name, NULL, os, p->value,
14b31740
ILT
1464 p->size, p->type, p->binding,
1465 p->visibility, p->nonvis,
a445fddf
ILT
1466 p->offset_base,
1467 only_if_ref || p->only_if_ref);
ead1e424 1468 else
9b07f471 1469 this->define_as_constant(p->name, NULL, 0, p->size, p->type,
ead1e424 1470 p->binding, p->visibility, p->nonvis,
caa9d5d9
ILT
1471 only_if_ref || p->only_if_ref,
1472 false);
ead1e424
ILT
1473 }
1474}
1475
46fe1623
ILT
1476// Define CSYM using a COPY reloc. POSD is the Output_data where the
1477// symbol should be defined--typically a .dyn.bss section. VALUE is
1478// the offset within POSD.
1479
1480template<int size>
1481void
fe8718a4 1482Symbol_table::define_with_copy_reloc(
fe8718a4
ILT
1483 Sized_symbol<size>* csym,
1484 Output_data* posd,
1485 typename elfcpp::Elf_types<size>::Elf_Addr value)
46fe1623
ILT
1486{
1487 gold_assert(csym->is_from_dynobj());
1488 gold_assert(!csym->is_copied_from_dynobj());
1489 Object* object = csym->object();
1490 gold_assert(object->is_dynamic());
1491 Dynobj* dynobj = static_cast<Dynobj*>(object);
1492
1493 // Our copied variable has to override any variable in a shared
1494 // library.
1495 elfcpp::STB binding = csym->binding();
1496 if (binding == elfcpp::STB_WEAK)
1497 binding = elfcpp::STB_GLOBAL;
1498
9b07f471 1499 this->define_in_output_data(csym->name(), csym->version(),
46fe1623
ILT
1500 posd, value, csym->symsize(),
1501 csym->type(), binding,
1502 csym->visibility(), csym->nonvis(),
1503 false, false);
1504
1505 csym->set_is_copied_from_dynobj();
1506 csym->set_needs_dynsym_entry();
1507
1508 this->copied_symbol_dynobjs_[csym] = dynobj;
1509
1510 // We have now defined all aliases, but we have not entered them all
1511 // in the copied_symbol_dynobjs_ map.
1512 if (csym->has_alias())
1513 {
1514 Symbol* sym = csym;
1515 while (true)
1516 {
1517 sym = this->weak_aliases_[sym];
1518 if (sym == csym)
1519 break;
1520 gold_assert(sym->output_data() == posd);
1521
1522 sym->set_is_copied_from_dynobj();
1523 this->copied_symbol_dynobjs_[sym] = dynobj;
1524 }
1525 }
1526}
1527
1528// SYM is defined using a COPY reloc. Return the dynamic object where
1529// the original definition was found.
1530
1531Dynobj*
1532Symbol_table::get_copy_source(const Symbol* sym) const
1533{
1534 gold_assert(sym->is_copied_from_dynobj());
1535 Copied_symbol_dynobjs::const_iterator p =
1536 this->copied_symbol_dynobjs_.find(sym);
1537 gold_assert(p != this->copied_symbol_dynobjs_.end());
1538 return p->second;
1539}
1540
a3ad94ed
ILT
1541// Set the dynamic symbol indexes. INDEX is the index of the first
1542// global dynamic symbol. Pointers to the symbols are stored into the
1543// vector SYMS. The names are added to DYNPOOL. This returns an
1544// updated dynamic symbol index.
1545
1546unsigned int
9b07f471 1547Symbol_table::set_dynsym_indexes(unsigned int index,
a3ad94ed 1548 std::vector<Symbol*>* syms,
14b31740
ILT
1549 Stringpool* dynpool,
1550 Versions* versions)
a3ad94ed
ILT
1551{
1552 for (Symbol_table_type::iterator p = this->table_.begin();
1553 p != this->table_.end();
1554 ++p)
1555 {
1556 Symbol* sym = p->second;
16649710
ILT
1557
1558 // Note that SYM may already have a dynamic symbol index, since
1559 // some symbols appear more than once in the symbol table, with
1560 // and without a version.
1561
436ca963 1562 if (!sym->should_add_dynsym_entry())
16649710
ILT
1563 sym->set_dynsym_index(-1U);
1564 else if (!sym->has_dynsym_index())
a3ad94ed
ILT
1565 {
1566 sym->set_dynsym_index(index);
1567 ++index;
1568 syms->push_back(sym);
cfd73a4e 1569 dynpool->add(sym->name(), false, NULL);
14b31740
ILT
1570
1571 // Record any version information.
09124467
ILT
1572 if (sym->version() != NULL)
1573 versions->record_version(this, dynpool, sym);
a3ad94ed
ILT
1574 }
1575 }
1576
14b31740
ILT
1577 // Finish up the versions. In some cases this may add new dynamic
1578 // symbols.
9b07f471 1579 index = versions->finalize(this, index, syms);
14b31740 1580
a3ad94ed
ILT
1581 return index;
1582}
1583
c06b7b0b 1584// Set the final values for all the symbols. The index of the first
55a93433
ILT
1585// global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
1586// file offset OFF. Add their names to POOL. Return the new file
1587// offset. Update *PLOCAL_SYMCOUNT if necessary.
54dc6425 1588
75f65a3e 1589off_t
55a93433
ILT
1590Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
1591 size_t dyncount, Stringpool* pool,
1592 unsigned int *plocal_symcount)
54dc6425 1593{
f6ce93d6
ILT
1594 off_t ret;
1595
55a93433
ILT
1596 gold_assert(*plocal_symcount != 0);
1597 this->first_global_index_ = *plocal_symcount;
c06b7b0b 1598
16649710
ILT
1599 this->dynamic_offset_ = dynoff;
1600 this->first_dynamic_global_index_ = dyn_global_index;
1601 this->dynamic_count_ = dyncount;
1602
8851ecca 1603 if (parameters->target().get_size() == 32)
9025d29d
ILT
1604 {
1605#if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
55a93433 1606 ret = this->sized_finalize<32>(off, pool, plocal_symcount);
9025d29d
ILT
1607#else
1608 gold_unreachable();
1609#endif
1610 }
8851ecca 1611 else if (parameters->target().get_size() == 64)
9025d29d
ILT
1612 {
1613#if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
55a93433 1614 ret = this->sized_finalize<64>(off, pool, plocal_symcount);
9025d29d
ILT
1615#else
1616 gold_unreachable();
1617#endif
1618 }
61ba1cf9 1619 else
a3ad94ed 1620 gold_unreachable();
f6ce93d6
ILT
1621
1622 // Now that we have the final symbol table, we can reliably note
1623 // which symbols should get warnings.
cb295612 1624 this->warnings_.note_warnings(this);
f6ce93d6
ILT
1625
1626 return ret;
75f65a3e
ILT
1627}
1628
55a93433
ILT
1629// SYM is going into the symbol table at *PINDEX. Add the name to
1630// POOL, update *PINDEX and *POFF.
1631
1632template<int size>
1633void
1634Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
1635 unsigned int* pindex, off_t* poff)
1636{
1637 sym->set_symtab_index(*pindex);
1638 pool->add(sym->name(), false, NULL);
1639 ++*pindex;
1640 *poff += elfcpp::Elf_sizes<size>::sym_size;
1641}
1642
ead1e424
ILT
1643// Set the final value for all the symbols. This is called after
1644// Layout::finalize, so all the output sections have their final
1645// address.
75f65a3e
ILT
1646
1647template<int size>
1648off_t
55a93433
ILT
1649Symbol_table::sized_finalize(off_t off, Stringpool* pool,
1650 unsigned int* plocal_symcount)
75f65a3e 1651{
ead1e424 1652 off = align_address(off, size >> 3);
75f65a3e
ILT
1653 this->offset_ = off;
1654
55a93433
ILT
1655 unsigned int index = *plocal_symcount;
1656 const unsigned int orig_index = index;
c06b7b0b 1657
55a93433
ILT
1658 // First do all the symbols which have been forced to be local, as
1659 // they must appear before all global symbols.
1660 for (Forced_locals::iterator p = this->forced_locals_.begin();
1661 p != this->forced_locals_.end();
1662 ++p)
1663 {
1664 Symbol* sym = *p;
1665 gold_assert(sym->is_forced_local());
1666 if (this->sized_finalize_symbol<size>(sym))
1667 {
1668 this->add_to_final_symtab<size>(sym, pool, &index, &off);
1669 ++*plocal_symcount;
1670 }
1671 }
1672
1673 // Now do all the remaining symbols.
c06b7b0b
ILT
1674 for (Symbol_table_type::iterator p = this->table_.begin();
1675 p != this->table_.end();
1676 ++p)
54dc6425 1677 {
55a93433
ILT
1678 Symbol* sym = p->second;
1679 if (this->sized_finalize_symbol<size>(sym))
1680 this->add_to_final_symtab<size>(sym, pool, &index, &off);
1681 }
54dc6425 1682
55a93433 1683 this->output_count_ = index - orig_index;
a3ad94ed 1684
55a93433
ILT
1685 return off;
1686}
75f65a3e 1687
55a93433
ILT
1688// Finalize the symbol SYM. This returns true if the symbol should be
1689// added to the symbol table, false otherwise.
008db82e 1690
55a93433
ILT
1691template<int size>
1692bool
1693Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
1694{
1695 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
75f65a3e 1696
55a93433
ILT
1697 // The default version of a symbol may appear twice in the symbol
1698 // table. We only need to finalize it once.
1699 if (sym->has_symtab_index())
1700 return false;
ead1e424 1701
55a93433
ILT
1702 if (!sym->in_reg())
1703 {
1704 gold_assert(!sym->has_symtab_index());
1705 sym->set_symtab_index(-1U);
1706 gold_assert(sym->dynsym_index() == -1U);
1707 return false;
1708 }
ead1e424 1709
55a93433 1710 typename Sized_symbol<size>::Value_type value;
ead1e424 1711
55a93433
ILT
1712 switch (sym->source())
1713 {
1714 case Symbol::FROM_OBJECT:
1715 {
1716 unsigned int shndx = sym->shndx();
ead1e424 1717
55a93433
ILT
1718 // FIXME: We need some target specific support here.
1719 if (shndx >= elfcpp::SHN_LORESERVE
0dfbdef4
ILT
1720 && shndx != elfcpp::SHN_ABS
1721 && shndx != elfcpp::SHN_COMMON)
55a93433
ILT
1722 {
1723 gold_error(_("%s: unsupported symbol section 0x%x"),
1724 sym->demangled_name().c_str(), shndx);
1725 shndx = elfcpp::SHN_UNDEF;
ead1e424 1726 }
ead1e424 1727
55a93433
ILT
1728 Object* symobj = sym->object();
1729 if (symobj->is_dynamic())
ead1e424 1730 {
55a93433
ILT
1731 value = 0;
1732 shndx = elfcpp::SHN_UNDEF;
ead1e424 1733 }
55a93433
ILT
1734 else if (shndx == elfcpp::SHN_UNDEF)
1735 value = 0;
0dfbdef4 1736 else if (shndx == elfcpp::SHN_ABS || shndx == elfcpp::SHN_COMMON)
55a93433
ILT
1737 value = sym->value();
1738 else
ead1e424 1739 {
55a93433
ILT
1740 Relobj* relobj = static_cast<Relobj*>(symobj);
1741 section_offset_type secoff;
1742 Output_section* os = relobj->output_section(shndx, &secoff);
1743
1744 if (os == NULL)
ead1e424 1745 {
55a93433
ILT
1746 sym->set_symtab_index(-1U);
1747 gold_assert(sym->dynsym_index() == -1U);
1748 return false;
ead1e424 1749 }
55a93433
ILT
1750
1751 if (sym->type() == elfcpp::STT_TLS)
1752 value = sym->value() + os->tls_offset() + secoff;
1753 else
1754 value = sym->value() + os->address() + secoff;
ead1e424 1755 }
55a93433
ILT
1756 }
1757 break;
1758
1759 case Symbol::IN_OUTPUT_DATA:
1760 {
1761 Output_data* od = sym->output_data();
1762 value = sym->value() + od->address();
1763 if (sym->offset_is_from_end())
1764 value += od->data_size();
1765 }
1766 break;
1767
1768 case Symbol::IN_OUTPUT_SEGMENT:
1769 {
1770 Output_segment* os = sym->output_segment();
1771 value = sym->value() + os->vaddr();
1772 switch (sym->offset_base())
1773 {
1774 case Symbol::SEGMENT_START:
1775 break;
1776 case Symbol::SEGMENT_END:
1777 value += os->memsz();
1778 break;
1779 case Symbol::SEGMENT_BSS:
1780 value += os->filesz();
1781 break;
1782 default:
1783 gold_unreachable();
1784 }
1785 }
1786 break;
ead1e424 1787
55a93433
ILT
1788 case Symbol::CONSTANT:
1789 value = sym->value();
1790 break;
ead1e424 1791
55a93433
ILT
1792 default:
1793 gold_unreachable();
1794 }
ead1e424 1795
55a93433 1796 sym->set_value(value);
9e2dcb77 1797
8851ecca 1798 if (parameters->options().strip_all())
55a93433
ILT
1799 {
1800 sym->set_symtab_index(-1U);
1801 return false;
54dc6425 1802 }
75f65a3e 1803
55a93433 1804 return true;
54dc6425
ILT
1805}
1806
61ba1cf9
ILT
1807// Write out the global symbols.
1808
1809void
9a2d6984
ILT
1810Symbol_table::write_globals(const Input_objects* input_objects,
1811 const Stringpool* sympool,
16649710 1812 const Stringpool* dynpool, Output_file* of) const
61ba1cf9 1813{
8851ecca 1814 switch (parameters->size_and_endianness())
61ba1cf9 1815 {
9025d29d 1816#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
1817 case Parameters::TARGET_32_LITTLE:
1818 this->sized_write_globals<32, false>(input_objects, sympool,
1819 dynpool, of);
1820 break;
9025d29d 1821#endif
8851ecca
ILT
1822#ifdef HAVE_TARGET_32_BIG
1823 case Parameters::TARGET_32_BIG:
1824 this->sized_write_globals<32, true>(input_objects, sympool,
1825 dynpool, of);
1826 break;
9025d29d 1827#endif
9025d29d 1828#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
1829 case Parameters::TARGET_64_LITTLE:
1830 this->sized_write_globals<64, false>(input_objects, sympool,
1831 dynpool, of);
1832 break;
9025d29d 1833#endif
8851ecca
ILT
1834#ifdef HAVE_TARGET_64_BIG
1835 case Parameters::TARGET_64_BIG:
1836 this->sized_write_globals<64, true>(input_objects, sympool,
1837 dynpool, of);
1838 break;
1839#endif
1840 default:
1841 gold_unreachable();
61ba1cf9 1842 }
61ba1cf9
ILT
1843}
1844
1845// Write out the global symbols.
1846
1847template<int size, bool big_endian>
1848void
9a2d6984 1849Symbol_table::sized_write_globals(const Input_objects* input_objects,
61ba1cf9 1850 const Stringpool* sympool,
16649710 1851 const Stringpool* dynpool,
61ba1cf9
ILT
1852 Output_file* of) const
1853{
8851ecca 1854 const Target& target = parameters->target();
9a2d6984 1855
61ba1cf9 1856 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
55a93433
ILT
1857
1858 const unsigned int output_count = this->output_count_;
1859 const section_size_type oview_size = output_count * sym_size;
1860 const unsigned int first_global_index = this->first_global_index_;
5fe2a0f5
ILT
1861 unsigned char* psyms;
1862 if (this->offset_ == 0 || output_count == 0)
1863 psyms = NULL;
1864 else
1865 psyms = of->get_output_view(this->offset_, oview_size);
16649710 1866
55a93433
ILT
1867 const unsigned int dynamic_count = this->dynamic_count_;
1868 const section_size_type dynamic_size = dynamic_count * sym_size;
1869 const unsigned int first_dynamic_global_index =
1870 this->first_dynamic_global_index_;
16649710 1871 unsigned char* dynamic_view;
5fe2a0f5 1872 if (this->dynamic_offset_ == 0 || dynamic_count == 0)
16649710
ILT
1873 dynamic_view = NULL;
1874 else
1875 dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
c06b7b0b 1876
61ba1cf9
ILT
1877 for (Symbol_table_type::const_iterator p = this->table_.begin();
1878 p != this->table_.end();
1879 ++p)
1880 {
1881 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1882
9a2d6984
ILT
1883 // Possibly warn about unresolved symbols in shared libraries.
1884 this->warn_about_undefined_dynobj_symbol(input_objects, sym);
e2827e5f 1885
a3ad94ed 1886 unsigned int sym_index = sym->symtab_index();
16649710
ILT
1887 unsigned int dynsym_index;
1888 if (dynamic_view == NULL)
1889 dynsym_index = -1U;
1890 else
1891 dynsym_index = sym->dynsym_index();
1892
1893 if (sym_index == -1U && dynsym_index == -1U)
a3ad94ed
ILT
1894 {
1895 // This symbol is not included in the output file.
1896 continue;
1897 }
16649710 1898
ead1e424 1899 unsigned int shndx;
88dd47ac
ILT
1900 typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
1901 typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
ead1e424
ILT
1902 switch (sym->source())
1903 {
1904 case Symbol::FROM_OBJECT:
1905 {
16649710 1906 unsigned int in_shndx = sym->shndx();
ead1e424
ILT
1907
1908 // FIXME: We need some target specific support here.
16649710 1909 if (in_shndx >= elfcpp::SHN_LORESERVE
0dfbdef4
ILT
1910 && in_shndx != elfcpp::SHN_ABS
1911 && in_shndx != elfcpp::SHN_COMMON)
ead1e424 1912 {
75f2446e 1913 gold_error(_("%s: unsupported symbol section 0x%x"),
a2b1aa12 1914 sym->demangled_name().c_str(), in_shndx);
75f2446e 1915 shndx = in_shndx;
f6ce93d6 1916 }
ead1e424
ILT
1917 else
1918 {
75f2446e
ILT
1919 Object* symobj = sym->object();
1920 if (symobj->is_dynamic())
1921 {
1922 if (sym->needs_dynsym_value())
8851ecca 1923 dynsym_value = target.dynsym_value(sym);
75f2446e
ILT
1924 shndx = elfcpp::SHN_UNDEF;
1925 }
1926 else if (in_shndx == elfcpp::SHN_UNDEF
0dfbdef4
ILT
1927 || in_shndx == elfcpp::SHN_ABS
1928 || in_shndx == elfcpp::SHN_COMMON)
75f2446e
ILT
1929 shndx = in_shndx;
1930 else
1931 {
1932 Relobj* relobj = static_cast<Relobj*>(symobj);
8383303e 1933 section_offset_type secoff;
75f2446e
ILT
1934 Output_section* os = relobj->output_section(in_shndx,
1935 &secoff);
1936 gold_assert(os != NULL);
1937 shndx = os->out_shndx();
88dd47ac
ILT
1938
1939 // In object files symbol values are section
1940 // relative.
8851ecca 1941 if (parameters->options().relocatable())
88dd47ac 1942 sym_value -= os->address();
75f2446e 1943 }
ead1e424
ILT
1944 }
1945 }
1946 break;
1947
1948 case Symbol::IN_OUTPUT_DATA:
1949 shndx = sym->output_data()->out_shndx();
1950 break;
1951
1952 case Symbol::IN_OUTPUT_SEGMENT:
1953 shndx = elfcpp::SHN_ABS;
1954 break;
1955
1956 case Symbol::CONSTANT:
1957 shndx = elfcpp::SHN_ABS;
1958 break;
1959
1960 default:
a3ad94ed 1961 gold_unreachable();
ead1e424 1962 }
61ba1cf9 1963
16649710
ILT
1964 if (sym_index != -1U)
1965 {
55a93433
ILT
1966 sym_index -= first_global_index;
1967 gold_assert(sym_index < output_count);
1968 unsigned char* ps = psyms + (sym_index * sym_size);
7d1a9ebb
ILT
1969 this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
1970 sympool, ps);
16649710 1971 }
61ba1cf9 1972
16649710
ILT
1973 if (dynsym_index != -1U)
1974 {
1975 dynsym_index -= first_dynamic_global_index;
1976 gold_assert(dynsym_index < dynamic_count);
1977 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
7d1a9ebb
ILT
1978 this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
1979 dynpool, pd);
16649710 1980 }
61ba1cf9
ILT
1981 }
1982
c06b7b0b 1983 of->write_output_view(this->offset_, oview_size, psyms);
16649710
ILT
1984 if (dynamic_view != NULL)
1985 of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
1986}
1987
1988// Write out the symbol SYM, in section SHNDX, to P. POOL is the
1989// strtab holding the name.
1990
1991template<int size, bool big_endian>
1992void
ab5c9e90
ILT
1993Symbol_table::sized_write_symbol(
1994 Sized_symbol<size>* sym,
1995 typename elfcpp::Elf_types<size>::Elf_Addr value,
1996 unsigned int shndx,
1997 const Stringpool* pool,
7d1a9ebb 1998 unsigned char* p) const
16649710
ILT
1999{
2000 elfcpp::Sym_write<size, big_endian> osym(p);
2001 osym.put_st_name(pool->get_offset(sym->name()));
ab5c9e90 2002 osym.put_st_value(value);
16649710 2003 osym.put_st_size(sym->symsize());
55a93433
ILT
2004 // A version script may have overridden the default binding.
2005 if (sym->is_forced_local())
2006 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, sym->type()));
2007 else
2008 osym.put_st_info(elfcpp::elf_st_info(sym->binding(), sym->type()));
16649710
ILT
2009 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
2010 osym.put_st_shndx(shndx);
61ba1cf9
ILT
2011}
2012
9a2d6984
ILT
2013// Check for unresolved symbols in shared libraries. This is
2014// controlled by the --allow-shlib-undefined option.
2015
2016// We only warn about libraries for which we have seen all the
2017// DT_NEEDED entries. We don't try to track down DT_NEEDED entries
2018// which were not seen in this link. If we didn't see a DT_NEEDED
2019// entry, we aren't going to be able to reliably report whether the
2020// symbol is undefined.
2021
2022// We also don't warn about libraries found in the system library
2023// directory (the directory were we find libc.so); we assume that
2024// those libraries are OK. This heuristic avoids problems in
2025// GNU/Linux, in which -ldl can have undefined references satisfied by
2026// ld-linux.so.
2027
2028inline void
2029Symbol_table::warn_about_undefined_dynobj_symbol(
2030 const Input_objects* input_objects,
2031 Symbol* sym) const
2032{
2033 if (sym->source() == Symbol::FROM_OBJECT
2034 && sym->object()->is_dynamic()
2035 && sym->shndx() == elfcpp::SHN_UNDEF
2036 && sym->binding() != elfcpp::STB_WEAK
8851ecca
ILT
2037 && !parameters->options().allow_shlib_undefined()
2038 && !parameters->target().is_defined_by_abi(sym)
9a2d6984
ILT
2039 && !input_objects->found_in_system_library_directory(sym->object()))
2040 {
2041 // A very ugly cast.
2042 Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
2043 if (!dynobj->has_unknown_needed_entries())
2044 gold_error(_("%s: undefined reference to '%s'"),
a2b1aa12
ILT
2045 sym->object()->name().c_str(),
2046 sym->demangled_name().c_str());
9a2d6984
ILT
2047 }
2048}
2049
a3ad94ed
ILT
2050// Write out a section symbol. Return the update offset.
2051
2052void
9025d29d 2053Symbol_table::write_section_symbol(const Output_section *os,
a3ad94ed
ILT
2054 Output_file* of,
2055 off_t offset) const
2056{
8851ecca 2057 switch (parameters->size_and_endianness())
a3ad94ed 2058 {
9025d29d 2059#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
2060 case Parameters::TARGET_32_LITTLE:
2061 this->sized_write_section_symbol<32, false>(os, of, offset);
2062 break;
9025d29d 2063#endif
8851ecca
ILT
2064#ifdef HAVE_TARGET_32_BIG
2065 case Parameters::TARGET_32_BIG:
2066 this->sized_write_section_symbol<32, true>(os, of, offset);
2067 break;
9025d29d 2068#endif
9025d29d 2069#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
2070 case Parameters::TARGET_64_LITTLE:
2071 this->sized_write_section_symbol<64, false>(os, of, offset);
2072 break;
9025d29d 2073#endif
8851ecca
ILT
2074#ifdef HAVE_TARGET_64_BIG
2075 case Parameters::TARGET_64_BIG:
2076 this->sized_write_section_symbol<64, true>(os, of, offset);
2077 break;
2078#endif
2079 default:
2080 gold_unreachable();
a3ad94ed 2081 }
a3ad94ed
ILT
2082}
2083
2084// Write out a section symbol, specialized for size and endianness.
2085
2086template<int size, bool big_endian>
2087void
2088Symbol_table::sized_write_section_symbol(const Output_section* os,
2089 Output_file* of,
2090 off_t offset) const
2091{
2092 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2093
2094 unsigned char* pov = of->get_output_view(offset, sym_size);
2095
2096 elfcpp::Sym_write<size, big_endian> osym(pov);
2097 osym.put_st_name(0);
2098 osym.put_st_value(os->address());
2099 osym.put_st_size(0);
2100 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
2101 elfcpp::STT_SECTION));
2102 osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
2103 osym.put_st_shndx(os->out_shndx());
2104
2105 of->write_output_view(offset, sym_size, pov);
2106}
2107
abaa3995
ILT
2108// Print statistical information to stderr. This is used for --stats.
2109
2110void
2111Symbol_table::print_stats() const
2112{
2113#if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
2114 fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
2115 program_name, this->table_.size(), this->table_.bucket_count());
2116#else
2117 fprintf(stderr, _("%s: symbol table entries: %zu\n"),
2118 program_name, this->table_.size());
2119#endif
ad8f37d1 2120 this->namepool_.print_stats("symbol table stringpool");
abaa3995
ILT
2121}
2122
ff541f30
ILT
2123// We check for ODR violations by looking for symbols with the same
2124// name for which the debugging information reports that they were
2125// defined in different source locations. When comparing the source
2126// location, we consider instances with the same base filename and
2127// line number to be the same. This is because different object
2128// files/shared libraries can include the same header file using
2129// different paths, and we don't want to report an ODR violation in
2130// that case.
2131
2132// This struct is used to compare line information, as returned by
7bf1f802 2133// Dwarf_line_info::one_addr2line. It implements a < comparison
ff541f30
ILT
2134// operator used with std::set.
2135
2136struct Odr_violation_compare
2137{
2138 bool
2139 operator()(const std::string& s1, const std::string& s2) const
2140 {
2141 std::string::size_type pos1 = s1.rfind('/');
2142 std::string::size_type pos2 = s2.rfind('/');
2143 if (pos1 == std::string::npos
2144 || pos2 == std::string::npos)
2145 return s1 < s2;
2146 return s1.compare(pos1, std::string::npos,
2147 s2, pos2, std::string::npos) < 0;
2148 }
2149};
2150
70e654ba
ILT
2151// Check candidate_odr_violations_ to find symbols with the same name
2152// but apparently different definitions (different source-file/line-no).
2153
2154void
17a1d0a9
ILT
2155Symbol_table::detect_odr_violations(const Task* task,
2156 const char* output_file_name) const
70e654ba
ILT
2157{
2158 for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
2159 it != candidate_odr_violations_.end();
2160 ++it)
2161 {
2162 const char* symbol_name = it->first;
2163 // We use a sorted set so the output is deterministic.
ff541f30 2164 std::set<std::string, Odr_violation_compare> line_nums;
70e654ba 2165
b01c0a4a
ILT
2166 for (Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
2167 locs = it->second.begin();
2168 locs != it->second.end();
2169 ++locs)
70e654ba
ILT
2170 {
2171 // We need to lock the object in order to read it. This
17a1d0a9
ILT
2172 // means that we have to run in a singleton Task. If we
2173 // want to run this in a general Task for better
2174 // performance, we will need one Task for object, plus
2175 // appropriate locking to ensure that we don't conflict with
2176 // other uses of the object.
2177 Task_lock_obj<Object> tl(task, locs->object);
a55ce7fe
ILT
2178 std::string lineno = Dwarf_line_info::one_addr2line(
2179 locs->object, locs->shndx, locs->offset);
70e654ba
ILT
2180 if (!lineno.empty())
2181 line_nums.insert(lineno);
2182 }
2183
2184 if (line_nums.size() > 1)
2185 {
dd8670e5 2186 gold_warning(_("while linking %s: symbol '%s' defined in multiple "
78f15696 2187 "places (possible ODR violation):"),
a2b1aa12 2188 output_file_name, demangle(symbol_name).c_str());
70e654ba
ILT
2189 for (std::set<std::string>::const_iterator it2 = line_nums.begin();
2190 it2 != line_nums.end();
2191 ++it2)
2192 fprintf(stderr, " %s\n", it2->c_str());
2193 }
2194 }
2195}
2196
f6ce93d6
ILT
2197// Warnings functions.
2198
2199// Add a new warning.
2200
2201void
2202Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
cb295612 2203 const std::string& warning)
f6ce93d6
ILT
2204{
2205 name = symtab->canonicalize_name(name);
cb295612 2206 this->warnings_[name].set(obj, warning);
f6ce93d6
ILT
2207}
2208
2209// Look through the warnings and mark the symbols for which we should
2210// warn. This is called during Layout::finalize when we know the
2211// sources for all the symbols.
2212
2213void
cb295612 2214Warnings::note_warnings(Symbol_table* symtab)
f6ce93d6
ILT
2215{
2216 for (Warning_table::iterator p = this->warnings_.begin();
2217 p != this->warnings_.end();
2218 ++p)
2219 {
2220 Symbol* sym = symtab->lookup(p->first, NULL);
2221 if (sym != NULL
2222 && sym->source() == Symbol::FROM_OBJECT
2223 && sym->object() == p->second.object)
cb295612 2224 sym->set_has_warning();
f6ce93d6
ILT
2225 }
2226}
2227
2228// Issue a warning. This is called when we see a relocation against a
2229// symbol for which has a warning.
2230
75f2446e 2231template<int size, bool big_endian>
f6ce93d6 2232void
75f2446e
ILT
2233Warnings::issue_warning(const Symbol* sym,
2234 const Relocate_info<size, big_endian>* relinfo,
2235 size_t relnum, off_t reloffset) const
f6ce93d6 2236{
a3ad94ed 2237 gold_assert(sym->has_warning());
f6ce93d6 2238 Warning_table::const_iterator p = this->warnings_.find(sym->name());
a3ad94ed 2239 gold_assert(p != this->warnings_.end());
75f2446e
ILT
2240 gold_warning_at_location(relinfo, relnum, reloffset,
2241 "%s", p->second.text.c_str());
f6ce93d6
ILT
2242}
2243
14bfc3f5
ILT
2244// Instantiate the templates we need. We could use the configure
2245// script to restrict this to only the ones needed for implemented
2246// targets.
2247
c7912668
ILT
2248#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2249template
2250void
2251Sized_symbol<32>::allocate_common(Output_data*, Value_type);
2252#endif
2253
2254#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2255template
2256void
2257Sized_symbol<64>::allocate_common(Output_data*, Value_type);
2258#endif
2259
193a53d9 2260#ifdef HAVE_TARGET_32_LITTLE
14bfc3f5
ILT
2261template
2262void
193a53d9
ILT
2263Symbol_table::add_from_relobj<32, false>(
2264 Sized_relobj<32, false>* relobj,
f6ce93d6 2265 const unsigned char* syms,
14bfc3f5
ILT
2266 size_t count,
2267 const char* sym_names,
2268 size_t sym_name_size,
730cdc88 2269 Sized_relobj<32, true>::Symbols* sympointers);
193a53d9 2270#endif
14bfc3f5 2271
193a53d9 2272#ifdef HAVE_TARGET_32_BIG
14bfc3f5
ILT
2273template
2274void
193a53d9
ILT
2275Symbol_table::add_from_relobj<32, true>(
2276 Sized_relobj<32, true>* relobj,
f6ce93d6 2277 const unsigned char* syms,
14bfc3f5
ILT
2278 size_t count,
2279 const char* sym_names,
2280 size_t sym_name_size,
730cdc88 2281 Sized_relobj<32, false>::Symbols* sympointers);
193a53d9 2282#endif
14bfc3f5 2283
193a53d9 2284#ifdef HAVE_TARGET_64_LITTLE
14bfc3f5
ILT
2285template
2286void
193a53d9
ILT
2287Symbol_table::add_from_relobj<64, false>(
2288 Sized_relobj<64, false>* relobj,
f6ce93d6 2289 const unsigned char* syms,
14bfc3f5
ILT
2290 size_t count,
2291 const char* sym_names,
2292 size_t sym_name_size,
730cdc88 2293 Sized_relobj<64, true>::Symbols* sympointers);
193a53d9 2294#endif
14bfc3f5 2295
193a53d9 2296#ifdef HAVE_TARGET_64_BIG
14bfc3f5
ILT
2297template
2298void
193a53d9
ILT
2299Symbol_table::add_from_relobj<64, true>(
2300 Sized_relobj<64, true>* relobj,
f6ce93d6 2301 const unsigned char* syms,
14bfc3f5
ILT
2302 size_t count,
2303 const char* sym_names,
2304 size_t sym_name_size,
730cdc88 2305 Sized_relobj<64, false>::Symbols* sympointers);
193a53d9 2306#endif
14bfc3f5 2307
193a53d9 2308#ifdef HAVE_TARGET_32_LITTLE
dbe717ef
ILT
2309template
2310void
193a53d9
ILT
2311Symbol_table::add_from_dynobj<32, false>(
2312 Sized_dynobj<32, false>* dynobj,
dbe717ef
ILT
2313 const unsigned char* syms,
2314 size_t count,
2315 const char* sym_names,
2316 size_t sym_name_size,
2317 const unsigned char* versym,
2318 size_t versym_size,
2319 const std::vector<const char*>* version_map);
193a53d9 2320#endif
dbe717ef 2321
193a53d9 2322#ifdef HAVE_TARGET_32_BIG
dbe717ef
ILT
2323template
2324void
193a53d9
ILT
2325Symbol_table::add_from_dynobj<32, true>(
2326 Sized_dynobj<32, true>* dynobj,
dbe717ef
ILT
2327 const unsigned char* syms,
2328 size_t count,
2329 const char* sym_names,
2330 size_t sym_name_size,
2331 const unsigned char* versym,
2332 size_t versym_size,
2333 const std::vector<const char*>* version_map);
193a53d9 2334#endif
dbe717ef 2335
193a53d9 2336#ifdef HAVE_TARGET_64_LITTLE
dbe717ef
ILT
2337template
2338void
193a53d9
ILT
2339Symbol_table::add_from_dynobj<64, false>(
2340 Sized_dynobj<64, false>* dynobj,
dbe717ef
ILT
2341 const unsigned char* syms,
2342 size_t count,
2343 const char* sym_names,
2344 size_t sym_name_size,
2345 const unsigned char* versym,
2346 size_t versym_size,
2347 const std::vector<const char*>* version_map);
193a53d9 2348#endif
dbe717ef 2349
193a53d9 2350#ifdef HAVE_TARGET_64_BIG
dbe717ef
ILT
2351template
2352void
193a53d9
ILT
2353Symbol_table::add_from_dynobj<64, true>(
2354 Sized_dynobj<64, true>* dynobj,
dbe717ef
ILT
2355 const unsigned char* syms,
2356 size_t count,
2357 const char* sym_names,
2358 size_t sym_name_size,
2359 const unsigned char* versym,
2360 size_t versym_size,
2361 const std::vector<const char*>* version_map);
193a53d9 2362#endif
dbe717ef 2363
46fe1623
ILT
2364#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2365template
2366void
fe8718a4 2367Symbol_table::define_with_copy_reloc<32>(
fe8718a4
ILT
2368 Sized_symbol<32>* sym,
2369 Output_data* posd,
2370 elfcpp::Elf_types<32>::Elf_Addr value);
46fe1623
ILT
2371#endif
2372
2373#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2374template
2375void
fe8718a4 2376Symbol_table::define_with_copy_reloc<64>(
fe8718a4
ILT
2377 Sized_symbol<64>* sym,
2378 Output_data* posd,
2379 elfcpp::Elf_types<64>::Elf_Addr value);
46fe1623
ILT
2380#endif
2381
75f2446e
ILT
2382#ifdef HAVE_TARGET_32_LITTLE
2383template
2384void
2385Warnings::issue_warning<32, false>(const Symbol* sym,
2386 const Relocate_info<32, false>* relinfo,
2387 size_t relnum, off_t reloffset) const;
2388#endif
2389
2390#ifdef HAVE_TARGET_32_BIG
2391template
2392void
2393Warnings::issue_warning<32, true>(const Symbol* sym,
2394 const Relocate_info<32, true>* relinfo,
2395 size_t relnum, off_t reloffset) const;
2396#endif
2397
2398#ifdef HAVE_TARGET_64_LITTLE
2399template
2400void
2401Warnings::issue_warning<64, false>(const Symbol* sym,
2402 const Relocate_info<64, false>* relinfo,
2403 size_t relnum, off_t reloffset) const;
2404#endif
2405
2406#ifdef HAVE_TARGET_64_BIG
2407template
2408void
2409Warnings::issue_warning<64, true>(const Symbol* sym,
2410 const Relocate_info<64, true>* relinfo,
2411 size_t relnum, off_t reloffset) const;
2412#endif
2413
14bfc3f5 2414} // End namespace gold.