]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gold/symtab.cc
missed from last commit
[thirdparty/binutils-gdb.git] / gold / symtab.cc
CommitLineData
14bfc3f5
ILT
1// symtab.cc -- the gold symbol table
2
e5756efb 3// Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
6cb15b7f
ILT
4// Written by Ian Lance Taylor <iant@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
14bfc3f5
ILT
23#include "gold.h"
24
04bf7072 25#include <cstring>
14bfc3f5 26#include <stdint.h>
04bf7072 27#include <algorithm>
70e654ba 28#include <set>
14bfc3f5
ILT
29#include <string>
30#include <utility>
a2b1aa12 31#include "demangle.h"
14bfc3f5
ILT
32
33#include "object.h"
70e654ba 34#include "dwarf_reader.h"
dbe717ef 35#include "dynobj.h"
75f65a3e 36#include "output.h"
61ba1cf9 37#include "target.h"
645f8123 38#include "workqueue.h"
14bfc3f5
ILT
39#include "symtab.h"
40
41namespace gold
42{
43
44// Class Symbol.
45
ead1e424
ILT
46// Initialize fields in Symbol. This initializes everything except u_
47// and source_.
14bfc3f5 48
14bfc3f5 49void
ead1e424
ILT
50Symbol::init_fields(const char* name, const char* version,
51 elfcpp::STT type, elfcpp::STB binding,
52 elfcpp::STV visibility, unsigned char nonvis)
14bfc3f5
ILT
53{
54 this->name_ = name;
55 this->version_ = version;
c06b7b0b
ILT
56 this->symtab_index_ = 0;
57 this->dynsym_index_ = 0;
0a65a3a7 58 this->got_offsets_.init();
f4151f89 59 this->plt_offset_ = 0;
ead1e424
ILT
60 this->type_ = type;
61 this->binding_ = binding;
62 this->visibility_ = visibility;
63 this->nonvis_ = nonvis;
64 this->is_target_special_ = false;
1564db8d
ILT
65 this->is_def_ = false;
66 this->is_forwarder_ = false;
aeddab66 67 this->has_alias_ = false;
c06b7b0b 68 this->needs_dynsym_entry_ = false;
008db82e 69 this->in_reg_ = false;
ead1e424 70 this->in_dyn_ = false;
f4151f89 71 this->has_plt_offset_ = false;
f6ce93d6 72 this->has_warning_ = false;
46fe1623 73 this->is_copied_from_dynobj_ = false;
55a93433 74 this->is_forced_local_ = false;
d491d34e 75 this->is_ordinary_shndx_ = false;
ead1e424
ILT
76}
77
a2b1aa12
ILT
78// Return the demangled version of the symbol's name, but only
79// if the --demangle flag was set.
80
81static std::string
82demangle(const char* name)
83{
086a1841 84 if (!parameters->options().do_demangle())
ff541f30
ILT
85 return name;
86
a2b1aa12
ILT
87 // cplus_demangle allocates memory for the result it returns,
88 // and returns NULL if the name is already demangled.
89 char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
90 if (demangled_name == NULL)
91 return name;
92
93 std::string retval(demangled_name);
94 free(demangled_name);
95 return retval;
96}
97
98std::string
99Symbol::demangled_name() const
100{
ff541f30 101 return demangle(this->name());
a2b1aa12
ILT
102}
103
ead1e424
ILT
104// Initialize the fields in the base class Symbol for SYM in OBJECT.
105
106template<int size, bool big_endian>
107void
108Symbol::init_base(const char* name, const char* version, Object* object,
d491d34e
ILT
109 const elfcpp::Sym<size, big_endian>& sym,
110 unsigned int st_shndx, bool is_ordinary)
ead1e424
ILT
111{
112 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
113 sym.get_st_visibility(), sym.get_st_nonvis());
114 this->u_.from_object.object = object;
d491d34e
ILT
115 this->u_.from_object.shndx = st_shndx;
116 this->is_ordinary_shndx_ = is_ordinary;
ead1e424 117 this->source_ = FROM_OBJECT;
008db82e 118 this->in_reg_ = !object->is_dynamic();
1564db8d 119 this->in_dyn_ = object->is_dynamic();
14bfc3f5
ILT
120}
121
ead1e424
ILT
122// Initialize the fields in the base class Symbol for a symbol defined
123// in an Output_data.
124
125void
126Symbol::init_base(const char* name, Output_data* od, elfcpp::STT type,
127 elfcpp::STB binding, elfcpp::STV visibility,
128 unsigned char nonvis, bool offset_is_from_end)
129{
130 this->init_fields(name, NULL, type, binding, visibility, nonvis);
131 this->u_.in_output_data.output_data = od;
132 this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
133 this->source_ = IN_OUTPUT_DATA;
008db82e 134 this->in_reg_ = true;
ead1e424
ILT
135}
136
137// Initialize the fields in the base class Symbol for a symbol defined
138// in an Output_segment.
139
140void
141Symbol::init_base(const char* name, Output_segment* os, elfcpp::STT type,
142 elfcpp::STB binding, elfcpp::STV visibility,
143 unsigned char nonvis, Segment_offset_base offset_base)
144{
145 this->init_fields(name, NULL, type, binding, visibility, nonvis);
146 this->u_.in_output_segment.output_segment = os;
147 this->u_.in_output_segment.offset_base = offset_base;
148 this->source_ = IN_OUTPUT_SEGMENT;
008db82e 149 this->in_reg_ = true;
ead1e424
ILT
150}
151
152// Initialize the fields in the base class Symbol for a symbol defined
153// as a constant.
154
155void
156Symbol::init_base(const char* name, elfcpp::STT type,
157 elfcpp::STB binding, elfcpp::STV visibility,
158 unsigned char nonvis)
159{
160 this->init_fields(name, NULL, type, binding, visibility, nonvis);
161 this->source_ = CONSTANT;
008db82e 162 this->in_reg_ = true;
ead1e424
ILT
163}
164
c7912668
ILT
165// Allocate a common symbol in the base.
166
167void
168Symbol::allocate_base_common(Output_data* od)
169{
170 gold_assert(this->is_common());
171 this->source_ = IN_OUTPUT_DATA;
172 this->u_.in_output_data.output_data = od;
173 this->u_.in_output_data.offset_is_from_end = false;
174}
175
ead1e424 176// Initialize the fields in Sized_symbol for SYM in OBJECT.
14bfc3f5
ILT
177
178template<int size>
179template<bool big_endian>
180void
181Sized_symbol<size>::init(const char* name, const char* version, Object* object,
d491d34e
ILT
182 const elfcpp::Sym<size, big_endian>& sym,
183 unsigned int st_shndx, bool is_ordinary)
14bfc3f5 184{
d491d34e 185 this->init_base(name, version, object, sym, st_shndx, is_ordinary);
14bfc3f5 186 this->value_ = sym.get_st_value();
ead1e424
ILT
187 this->symsize_ = sym.get_st_size();
188}
189
190// Initialize the fields in Sized_symbol for a symbol defined in an
191// Output_data.
192
193template<int size>
194void
195Sized_symbol<size>::init(const char* name, Output_data* od,
196 Value_type value, Size_type symsize,
197 elfcpp::STT type, elfcpp::STB binding,
198 elfcpp::STV visibility, unsigned char nonvis,
199 bool offset_is_from_end)
200{
201 this->init_base(name, od, type, binding, visibility, nonvis,
202 offset_is_from_end);
203 this->value_ = value;
204 this->symsize_ = symsize;
205}
206
207// Initialize the fields in Sized_symbol for a symbol defined in an
208// Output_segment.
209
210template<int size>
211void
212Sized_symbol<size>::init(const char* name, Output_segment* os,
213 Value_type value, Size_type symsize,
214 elfcpp::STT type, elfcpp::STB binding,
215 elfcpp::STV visibility, unsigned char nonvis,
216 Segment_offset_base offset_base)
217{
218 this->init_base(name, os, type, binding, visibility, nonvis, offset_base);
219 this->value_ = value;
220 this->symsize_ = symsize;
221}
222
223// Initialize the fields in Sized_symbol for a symbol defined as a
224// constant.
225
226template<int size>
227void
228Sized_symbol<size>::init(const char* name, Value_type value, Size_type symsize,
229 elfcpp::STT type, elfcpp::STB binding,
230 elfcpp::STV visibility, unsigned char nonvis)
231{
232 this->init_base(name, type, binding, visibility, nonvis);
233 this->value_ = value;
234 this->symsize_ = symsize;
14bfc3f5
ILT
235}
236
c7912668
ILT
237// Allocate a common symbol.
238
239template<int size>
240void
241Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
242{
243 this->allocate_base_common(od);
244 this->value_ = value;
245}
246
436ca963
ILT
247// Return true if this symbol should be added to the dynamic symbol
248// table.
249
250inline bool
251Symbol::should_add_dynsym_entry() const
252{
253 // If the symbol is used by a dynamic relocation, we need to add it.
254 if (this->needs_dynsym_entry())
255 return true;
256
55a93433
ILT
257 // If the symbol was forced local in a version script, do not add it.
258 if (this->is_forced_local())
259 return false;
260
436ca963
ILT
261 // If exporting all symbols or building a shared library,
262 // and the symbol is defined in a regular object and is
263 // externally visible, we need to add it.
8851ecca 264 if ((parameters->options().export_dynamic() || parameters->options().shared())
436ca963
ILT
265 && !this->is_from_dynobj()
266 && this->is_externally_visible())
267 return true;
268
269 return false;
270}
271
b3b74ddc
ILT
272// Return true if the final value of this symbol is known at link
273// time.
274
275bool
276Symbol::final_value_is_known() const
277{
278 // If we are not generating an executable, then no final values are
279 // known, since they will change at runtime.
8851ecca 280 if (parameters->options().shared() || parameters->options().relocatable())
b3b74ddc
ILT
281 return false;
282
283 // If the symbol is not from an object file, then it is defined, and
284 // known.
285 if (this->source_ != FROM_OBJECT)
286 return true;
287
288 // If the symbol is from a dynamic object, then the final value is
289 // not known.
290 if (this->object()->is_dynamic())
291 return false;
292
293 // If the symbol is not undefined (it is defined or common), then
294 // the final value is known.
295 if (!this->is_undefined())
296 return true;
297
298 // If the symbol is undefined, then whether the final value is known
299 // depends on whether we are doing a static link. If we are doing a
300 // dynamic link, then the final value could be filled in at runtime.
301 // This could reasonably be the case for a weak undefined symbol.
302 return parameters->doing_static_link();
303}
304
77e65537 305// Return the output section where this symbol is defined.
a445fddf 306
77e65537
ILT
307Output_section*
308Symbol::output_section() const
a445fddf
ILT
309{
310 switch (this->source_)
311 {
312 case FROM_OBJECT:
77e65537
ILT
313 {
314 unsigned int shndx = this->u_.from_object.shndx;
d491d34e 315 if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
77e65537
ILT
316 {
317 gold_assert(!this->u_.from_object.object->is_dynamic());
318 Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
319 section_offset_type dummy;
320 return relobj->output_section(shndx, &dummy);
321 }
322 return NULL;
323 }
324
a445fddf 325 case IN_OUTPUT_DATA:
77e65537
ILT
326 return this->u_.in_output_data.output_data->output_section();
327
a445fddf 328 case IN_OUTPUT_SEGMENT:
a445fddf 329 case CONSTANT:
77e65537
ILT
330 return NULL;
331
332 default:
333 gold_unreachable();
334 }
335}
336
337// Set the symbol's output section. This is used for symbols defined
338// in scripts. This should only be called after the symbol table has
339// been finalized.
340
341void
342Symbol::set_output_section(Output_section* os)
343{
344 switch (this->source_)
345 {
346 case FROM_OBJECT:
347 case IN_OUTPUT_DATA:
348 gold_assert(this->output_section() == os);
349 break;
350 case CONSTANT:
351 this->source_ = IN_OUTPUT_DATA;
352 this->u_.in_output_data.output_data = os;
353 this->u_.in_output_data.offset_is_from_end = false;
354 break;
355 case IN_OUTPUT_SEGMENT:
a445fddf
ILT
356 default:
357 gold_unreachable();
358 }
359}
360
14bfc3f5
ILT
361// Class Symbol_table.
362
09124467
ILT
363Symbol_table::Symbol_table(unsigned int count,
364 const Version_script_info& version_script)
6d013333 365 : saw_undefined_(0), offset_(0), table_(count), namepool_(),
155a0dd7 366 forwarders_(), commons_(), tls_commons_(), forced_locals_(), warnings_(),
55a93433 367 version_script_(version_script)
14bfc3f5 368{
6d013333 369 namepool_.reserve(count);
14bfc3f5
ILT
370}
371
372Symbol_table::~Symbol_table()
373{
374}
375
ad8f37d1 376// The hash function. The key values are Stringpool keys.
14bfc3f5 377
ad8f37d1 378inline size_t
14bfc3f5
ILT
379Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key& key) const
380{
f0641a0b 381 return key.first ^ key.second;
14bfc3f5
ILT
382}
383
ad8f37d1
ILT
384// The symbol table key equality function. This is called with
385// Stringpool keys.
14bfc3f5 386
ad8f37d1 387inline bool
14bfc3f5
ILT
388Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
389 const Symbol_table_key& k2) const
390{
391 return k1.first == k2.first && k1.second == k2.second;
392}
393
dd8670e5 394// Make TO a symbol which forwards to FROM.
14bfc3f5
ILT
395
396void
397Symbol_table::make_forwarder(Symbol* from, Symbol* to)
398{
a3ad94ed
ILT
399 gold_assert(from != to);
400 gold_assert(!from->is_forwarder() && !to->is_forwarder());
14bfc3f5
ILT
401 this->forwarders_[from] = to;
402 from->set_forwarder();
403}
404
61ba1cf9
ILT
405// Resolve the forwards from FROM, returning the real symbol.
406
14bfc3f5 407Symbol*
c06b7b0b 408Symbol_table::resolve_forwards(const Symbol* from) const
14bfc3f5 409{
a3ad94ed 410 gold_assert(from->is_forwarder());
c06b7b0b 411 Unordered_map<const Symbol*, Symbol*>::const_iterator p =
14bfc3f5 412 this->forwarders_.find(from);
a3ad94ed 413 gold_assert(p != this->forwarders_.end());
14bfc3f5
ILT
414 return p->second;
415}
416
61ba1cf9
ILT
417// Look up a symbol by name.
418
419Symbol*
420Symbol_table::lookup(const char* name, const char* version) const
421{
f0641a0b
ILT
422 Stringpool::Key name_key;
423 name = this->namepool_.find(name, &name_key);
61ba1cf9
ILT
424 if (name == NULL)
425 return NULL;
f0641a0b
ILT
426
427 Stringpool::Key version_key = 0;
61ba1cf9
ILT
428 if (version != NULL)
429 {
f0641a0b 430 version = this->namepool_.find(version, &version_key);
61ba1cf9
ILT
431 if (version == NULL)
432 return NULL;
433 }
434
f0641a0b 435 Symbol_table_key key(name_key, version_key);
61ba1cf9
ILT
436 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
437 if (p == this->table_.end())
438 return NULL;
439 return p->second;
440}
441
14bfc3f5
ILT
442// Resolve a Symbol with another Symbol. This is only used in the
443// unusual case where there are references to both an unversioned
444// symbol and a symbol with a version, and we then discover that that
1564db8d
ILT
445// version is the default version. Because this is unusual, we do
446// this the slow way, by converting back to an ELF symbol.
14bfc3f5 447
1564db8d 448template<int size, bool big_endian>
14bfc3f5 449void
14b31740 450Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from,
7d1a9ebb 451 const char* version)
14bfc3f5 452{
1564db8d
ILT
453 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
454 elfcpp::Sym_write<size, big_endian> esym(buf);
d491d34e 455 // We don't bother to set the st_name or the st_shndx field.
1564db8d
ILT
456 esym.put_st_value(from->value());
457 esym.put_st_size(from->symsize());
458 esym.put_st_info(from->binding(), from->type());
ead1e424 459 esym.put_st_other(from->visibility(), from->nonvis());
d491d34e
ILT
460 bool is_ordinary;
461 unsigned int shndx = from->shndx(&is_ordinary);
462 this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
463 version);
1ebd95fd
ILT
464 if (from->in_reg())
465 to->set_in_reg();
466 if (from->in_dyn())
467 to->set_in_dyn();
14bfc3f5
ILT
468}
469
55a93433
ILT
470// Record that a symbol is forced to be local by a version script.
471
472void
473Symbol_table::force_local(Symbol* sym)
474{
475 if (!sym->is_defined() && !sym->is_common())
476 return;
477 if (sym->is_forced_local())
478 {
479 // We already got this one.
480 return;
481 }
482 sym->set_is_forced_local();
483 this->forced_locals_.push_back(sym);
484}
485
0864d551
ILT
486// Adjust NAME for wrapping, and update *NAME_KEY if necessary. This
487// is only called for undefined symbols, when at least one --wrap
488// option was used.
489
490const char*
491Symbol_table::wrap_symbol(Object* object, const char* name,
492 Stringpool::Key* name_key)
493{
494 // For some targets, we need to ignore a specific character when
495 // wrapping, and add it back later.
496 char prefix = '\0';
497 if (name[0] == object->target()->wrap_char())
498 {
499 prefix = name[0];
500 ++name;
501 }
502
c5818ff1 503 if (parameters->options().is_wrap(name))
0864d551
ILT
504 {
505 // Turn NAME into __wrap_NAME.
506 std::string s;
507 if (prefix != '\0')
508 s += prefix;
509 s += "__wrap_";
510 s += name;
511
512 // This will give us both the old and new name in NAMEPOOL_, but
513 // that is OK. Only the versions we need will wind up in the
514 // real string table in the output file.
515 return this->namepool_.add(s.c_str(), true, name_key);
516 }
517
518 const char* const real_prefix = "__real_";
519 const size_t real_prefix_length = strlen(real_prefix);
520 if (strncmp(name, real_prefix, real_prefix_length) == 0
c5818ff1 521 && parameters->options().is_wrap(name + real_prefix_length))
0864d551
ILT
522 {
523 // Turn __real_NAME into NAME.
524 std::string s;
525 if (prefix != '\0')
526 s += prefix;
527 s += name + real_prefix_length;
528 return this->namepool_.add(s.c_str(), true, name_key);
529 }
530
531 return name;
532}
533
14bfc3f5
ILT
534// Add one symbol from OBJECT to the symbol table. NAME is symbol
535// name and VERSION is the version; both are canonicalized. DEF is
d491d34e
ILT
536// whether this is the default version. ST_SHNDX is the symbol's
537// section index; IS_ORDINARY is whether this is a normal section
538// rather than a special code.
14bfc3f5
ILT
539
540// If DEF is true, then this is the definition of a default version of
541// a symbol. That means that any lookup of NAME/NULL and any lookup
542// of NAME/VERSION should always return the same symbol. This is
543// obvious for references, but in particular we want to do this for
544// definitions: overriding NAME/NULL should also override
545// NAME/VERSION. If we don't do that, it would be very hard to
546// override functions in a shared library which uses versioning.
547
548// We implement this by simply making both entries in the hash table
549// point to the same Symbol structure. That is easy enough if this is
550// the first time we see NAME/NULL or NAME/VERSION, but it is possible
551// that we have seen both already, in which case they will both have
552// independent entries in the symbol table. We can't simply change
553// the symbol table entry, because we have pointers to the entries
554// attached to the object files. So we mark the entry attached to the
555// object file as a forwarder, and record it in the forwarders_ map.
556// Note that entries in the hash table will never be marked as
557// forwarders.
70e654ba 558//
d491d34e
ILT
559// ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
560// ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
561// for a special section code. ST_SHNDX may be modified if the symbol
562// is defined in a section being discarded.
14bfc3f5
ILT
563
564template<int size, bool big_endian>
aeddab66 565Sized_symbol<size>*
f6ce93d6 566Symbol_table::add_from_object(Object* object,
14bfc3f5 567 const char *name,
f0641a0b
ILT
568 Stringpool::Key name_key,
569 const char *version,
570 Stringpool::Key version_key,
571 bool def,
70e654ba 572 const elfcpp::Sym<size, big_endian>& sym,
d491d34e
ILT
573 unsigned int st_shndx,
574 bool is_ordinary,
575 unsigned int orig_st_shndx)
14bfc3f5 576{
c5818ff1
CC
577 // Print a message if this symbol is being traced.
578 if (parameters->options().is_trace_symbol(name))
579 {
d491d34e 580 if (orig_st_shndx == elfcpp::SHN_UNDEF)
c5818ff1
CC
581 gold_info(_("%s: reference to %s"), object->name().c_str(), name);
582 else
583 gold_info(_("%s: definition of %s"), object->name().c_str(), name);
584 }
585
0864d551
ILT
586 // For an undefined symbol, we may need to adjust the name using
587 // --wrap.
d491d34e 588 if (orig_st_shndx == elfcpp::SHN_UNDEF
c5818ff1 589 && parameters->options().any_wrap())
0864d551
ILT
590 {
591 const char* wrap_name = this->wrap_symbol(object, name, &name_key);
592 if (wrap_name != name)
593 {
594 // If we see a reference to malloc with version GLIBC_2.0,
595 // and we turn it into a reference to __wrap_malloc, then we
596 // discard the version number. Otherwise the user would be
597 // required to specify the correct version for
598 // __wrap_malloc.
599 version = NULL;
600 version_key = 0;
601 name = wrap_name;
602 }
603 }
604
14bfc3f5
ILT
605 Symbol* const snull = NULL;
606 std::pair<typename Symbol_table_type::iterator, bool> ins =
f0641a0b
ILT
607 this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
608 snull));
14bfc3f5
ILT
609
610 std::pair<typename Symbol_table_type::iterator, bool> insdef =
611 std::make_pair(this->table_.end(), false);
612 if (def)
613 {
f0641a0b
ILT
614 const Stringpool::Key vnull_key = 0;
615 insdef = this->table_.insert(std::make_pair(std::make_pair(name_key,
616 vnull_key),
14bfc3f5
ILT
617 snull));
618 }
619
620 // ins.first: an iterator, which is a pointer to a pair.
621 // ins.first->first: the key (a pair of name and version).
622 // ins.first->second: the value (Symbol*).
623 // ins.second: true if new entry was inserted, false if not.
624
1564db8d 625 Sized_symbol<size>* ret;
ead1e424
ILT
626 bool was_undefined;
627 bool was_common;
14bfc3f5
ILT
628 if (!ins.second)
629 {
630 // We already have an entry for NAME/VERSION.
7d1a9ebb 631 ret = this->get_sized_symbol<size>(ins.first->second);
a3ad94ed 632 gold_assert(ret != NULL);
ead1e424
ILT
633
634 was_undefined = ret->is_undefined();
635 was_common = ret->is_common();
636
d491d34e
ILT
637 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
638 version);
14bfc3f5
ILT
639
640 if (def)
641 {
642 if (insdef.second)
643 {
644 // This is the first time we have seen NAME/NULL. Make
645 // NAME/NULL point to NAME/VERSION.
646 insdef.first->second = ret;
647 }
99f8faca
ILT
648 else if (insdef.first->second != ret
649 && insdef.first->second->is_undefined())
14bfc3f5
ILT
650 {
651 // This is the unfortunate case where we already have
99f8faca
ILT
652 // entries for both NAME/VERSION and NAME/NULL. Note
653 // that we don't want to combine them if the existing
654 // symbol is going to override the new one. FIXME: We
655 // currently just test is_undefined, but this may not do
656 // the right thing if the existing symbol is from a
657 // shared library and the new one is from a regular
658 // object.
659
274e99f9 660 const Sized_symbol<size>* sym2;
7d1a9ebb
ILT
661 sym2 = this->get_sized_symbol<size>(insdef.first->second);
662 Symbol_table::resolve<size, big_endian>(ret, sym2, version);
14bfc3f5
ILT
663 this->make_forwarder(insdef.first->second, ret);
664 insdef.first->second = ret;
665 }
479f6503
ILT
666 else
667 def = false;
14bfc3f5
ILT
668 }
669 }
670 else
671 {
672 // This is the first time we have seen NAME/VERSION.
a3ad94ed 673 gold_assert(ins.first->second == NULL);
ead1e424 674
14bfc3f5
ILT
675 if (def && !insdef.second)
676 {
14b31740
ILT
677 // We already have an entry for NAME/NULL. If we override
678 // it, then change it to NAME/VERSION.
7d1a9ebb 679 ret = this->get_sized_symbol<size>(insdef.first->second);
18e6b24e
ILT
680
681 was_undefined = ret->is_undefined();
682 was_common = ret->is_common();
683
d491d34e
ILT
684 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
685 version);
14bfc3f5
ILT
686 ins.first->second = ret;
687 }
688 else
689 {
18e6b24e
ILT
690 was_undefined = false;
691 was_common = false;
692
f6ce93d6 693 Sized_target<size, big_endian>* target =
7d1a9ebb 694 object->sized_target<size, big_endian>();
1564db8d
ILT
695 if (!target->has_make_symbol())
696 ret = new Sized_symbol<size>();
697 else
14bfc3f5 698 {
1564db8d
ILT
699 ret = target->make_symbol();
700 if (ret == NULL)
14bfc3f5
ILT
701 {
702 // This means that we don't want a symbol table
703 // entry after all.
704 if (!def)
705 this->table_.erase(ins.first);
706 else
707 {
708 this->table_.erase(insdef.first);
709 // Inserting insdef invalidated ins.
f0641a0b
ILT
710 this->table_.erase(std::make_pair(name_key,
711 version_key));
14bfc3f5
ILT
712 }
713 return NULL;
714 }
715 }
14bfc3f5 716
d491d34e 717 ret->init(name, version, object, sym, st_shndx, is_ordinary);
1564db8d 718
14bfc3f5
ILT
719 ins.first->second = ret;
720 if (def)
721 {
722 // This is the first time we have seen NAME/NULL. Point
723 // it at the new entry for NAME/VERSION.
a3ad94ed 724 gold_assert(insdef.second);
14bfc3f5
ILT
725 insdef.first->second = ret;
726 }
727 }
728 }
729
ead1e424
ILT
730 // Record every time we see a new undefined symbol, to speed up
731 // archive groups.
732 if (!was_undefined && ret->is_undefined())
733 ++this->saw_undefined_;
734
735 // Keep track of common symbols, to speed up common symbol
736 // allocation.
737 if (!was_common && ret->is_common())
155a0dd7
ILT
738 {
739 if (ret->type() != elfcpp::STT_TLS)
740 this->commons_.push_back(ret);
741 else
742 this->tls_commons_.push_back(ret);
743 }
ead1e424 744
be3e6201
ILT
745 if (def)
746 ret->set_is_default();
14bfc3f5
ILT
747 return ret;
748}
749
f6ce93d6 750// Add all the symbols in a relocatable object to the hash table.
14bfc3f5
ILT
751
752template<int size, bool big_endian>
753void
dbe717ef
ILT
754Symbol_table::add_from_relobj(
755 Sized_relobj<size, big_endian>* relobj,
f6ce93d6 756 const unsigned char* syms,
14bfc3f5 757 size_t count,
d491d34e 758 size_t symndx_offset,
14bfc3f5
ILT
759 const char* sym_names,
760 size_t sym_name_size,
730cdc88 761 typename Sized_relobj<size, big_endian>::Symbols* sympointers)
14bfc3f5 762{
9025d29d 763 gold_assert(size == relobj->target()->get_size());
8851ecca 764 gold_assert(size == parameters->target().get_size());
14bfc3f5 765
a783673b
ILT
766 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
767
88dd47ac
ILT
768 const bool just_symbols = relobj->just_symbols();
769
f6ce93d6 770 const unsigned char* p = syms;
a783673b 771 for (size_t i = 0; i < count; ++i, p += sym_size)
14bfc3f5
ILT
772 {
773 elfcpp::Sym<size, big_endian> sym(p);
774
d491d34e 775 unsigned int st_name = sym.get_st_name();
14bfc3f5
ILT
776 if (st_name >= sym_name_size)
777 {
75f2446e
ILT
778 relobj->error(_("bad global symbol name offset %u at %zu"),
779 st_name, i);
780 continue;
14bfc3f5
ILT
781 }
782
dbe717ef
ILT
783 const char* name = sym_names + st_name;
784
d491d34e
ILT
785 bool is_ordinary;
786 unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
787 sym.get_st_shndx(),
788 &is_ordinary);
789 unsigned int orig_st_shndx = st_shndx;
790 if (!is_ordinary)
791 orig_st_shndx = elfcpp::SHN_UNDEF;
792
a783673b
ILT
793 // A symbol defined in a section which we are not including must
794 // be treated as an undefined symbol.
a783673b 795 if (st_shndx != elfcpp::SHN_UNDEF
d491d34e 796 && is_ordinary
dbe717ef 797 && !relobj->is_section_included(st_shndx))
d491d34e 798 st_shndx = elfcpp::SHN_UNDEF;
a783673b 799
14bfc3f5
ILT
800 // In an object file, an '@' in the name separates the symbol
801 // name from the version name. If there are two '@' characters,
802 // this is the default version.
803 const char* ver = strchr(name, '@');
09124467 804 int namelen = 0;
55a93433 805 // DEF: is the version default? LOCAL: is the symbol forced local?
09124467 806 bool def = false;
55a93433 807 bool local = false;
09124467
ILT
808
809 if (ver != NULL)
810 {
811 // The symbol name is of the form foo@VERSION or foo@@VERSION
812 namelen = ver - name;
813 ++ver;
814 if (*ver == '@')
815 {
816 def = true;
817 ++ver;
818 }
819 }
5871526f
ILT
820 // We don't want to assign a version to an undefined symbol,
821 // even if it is listed in the version script. FIXME: What
822 // about a common symbol?
823 else if (!version_script_.empty()
d491d34e 824 && st_shndx != elfcpp::SHN_UNDEF)
09124467
ILT
825 {
826 // The symbol name did not have a version, but
827 // the version script may assign a version anyway.
828 namelen = strlen(name);
829 def = true;
55a93433 830 // Check the global: entries from the version script.
09124467
ILT
831 const std::string& version =
832 version_script_.get_symbol_version(name);
833 if (!version.empty())
834 ver = version.c_str();
55a93433
ILT
835 // Check the local: entries from the version script
836 if (version_script_.symbol_is_local(name))
837 local = true;
09124467 838 }
14bfc3f5 839
d491d34e
ILT
840 elfcpp::Sym<size, big_endian>* psym = &sym;
841 unsigned char symbuf[sym_size];
842 elfcpp::Sym<size, big_endian> sym2(symbuf);
88dd47ac
ILT
843 if (just_symbols)
844 {
d491d34e 845 memcpy(symbuf, p, sym_size);
88dd47ac 846 elfcpp::Sym_write<size, big_endian> sw(symbuf);
d491d34e 847 if (orig_st_shndx != elfcpp::SHN_UNDEF && is_ordinary)
88dd47ac
ILT
848 {
849 // Symbol values in object files are section relative.
850 // This is normally what we want, but since here we are
851 // converting the symbol to absolute we need to add the
852 // section address. The section address in an object
853 // file is normally zero, but people can use a linker
854 // script to change it.
d491d34e
ILT
855 sw.put_st_value(sym.get_st_value()
856 + relobj->section_address(orig_st_shndx));
88dd47ac 857 }
d491d34e
ILT
858 st_shndx = elfcpp::SHN_ABS;
859 is_ordinary = false;
88dd47ac
ILT
860 psym = &sym2;
861 }
862
aeddab66 863 Sized_symbol<size>* res;
14bfc3f5
ILT
864 if (ver == NULL)
865 {
f0641a0b 866 Stringpool::Key name_key;
cfd73a4e 867 name = this->namepool_.add(name, true, &name_key);
dbe717ef 868 res = this->add_from_object(relobj, name, name_key, NULL, 0,
d491d34e
ILT
869 false, *psym, st_shndx, is_ordinary,
870 orig_st_shndx);
55a93433
ILT
871 if (local)
872 this->force_local(res);
14bfc3f5
ILT
873 }
874 else
875 {
f0641a0b 876 Stringpool::Key name_key;
09124467 877 name = this->namepool_.add_with_length(name, namelen, true,
c0873094 878 &name_key);
f0641a0b 879 Stringpool::Key ver_key;
cfd73a4e 880 ver = this->namepool_.add(ver, true, &ver_key);
f0641a0b 881
dbe717ef 882 res = this->add_from_object(relobj, name, name_key, ver, ver_key,
d491d34e
ILT
883 def, *psym, st_shndx, is_ordinary,
884 orig_st_shndx);
14bfc3f5
ILT
885 }
886
730cdc88 887 (*sympointers)[i] = res;
14bfc3f5
ILT
888 }
889}
890
dbe717ef
ILT
891// Add all the symbols in a dynamic object to the hash table.
892
893template<int size, bool big_endian>
894void
895Symbol_table::add_from_dynobj(
896 Sized_dynobj<size, big_endian>* dynobj,
897 const unsigned char* syms,
898 size_t count,
899 const char* sym_names,
900 size_t sym_name_size,
901 const unsigned char* versym,
902 size_t versym_size,
903 const std::vector<const char*>* version_map)
904{
9025d29d 905 gold_assert(size == dynobj->target()->get_size());
8851ecca 906 gold_assert(size == parameters->target().get_size());
dbe717ef 907
88dd47ac
ILT
908 if (dynobj->just_symbols())
909 {
910 gold_error(_("--just-symbols does not make sense with a shared object"));
911 return;
912 }
913
dbe717ef
ILT
914 if (versym != NULL && versym_size / 2 < count)
915 {
75f2446e
ILT
916 dynobj->error(_("too few symbol versions"));
917 return;
dbe717ef
ILT
918 }
919
920 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
921
aeddab66
ILT
922 // We keep a list of all STT_OBJECT symbols, so that we can resolve
923 // weak aliases. This is necessary because if the dynamic object
924 // provides the same variable under two names, one of which is a
925 // weak definition, and the regular object refers to the weak
926 // definition, we have to put both the weak definition and the
927 // strong definition into the dynamic symbol table. Given a weak
928 // definition, the only way that we can find the corresponding
929 // strong definition, if any, is to search the symbol table.
930 std::vector<Sized_symbol<size>*> object_symbols;
931
dbe717ef
ILT
932 const unsigned char* p = syms;
933 const unsigned char* vs = versym;
934 for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
935 {
936 elfcpp::Sym<size, big_endian> sym(p);
937
65778909
ILT
938 // Ignore symbols with local binding or that have
939 // internal or hidden visibility.
940 if (sym.get_st_bind() == elfcpp::STB_LOCAL
941 || sym.get_st_visibility() == elfcpp::STV_INTERNAL
942 || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
dbe717ef
ILT
943 continue;
944
8bdcdf2c
ILT
945 // A protected symbol in a shared library must be treated as a
946 // normal symbol when viewed from outside the shared library.
947 // Implement this by overriding the visibility here.
948 elfcpp::Sym<size, big_endian>* psym = &sym;
949 unsigned char symbuf[sym_size];
950 elfcpp::Sym<size, big_endian> sym2(symbuf);
951 if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
952 {
953 memcpy(symbuf, p, sym_size);
954 elfcpp::Sym_write<size, big_endian> sw(symbuf);
955 sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
956 psym = &sym2;
957 }
958
959 unsigned int st_name = psym->get_st_name();
dbe717ef
ILT
960 if (st_name >= sym_name_size)
961 {
75f2446e
ILT
962 dynobj->error(_("bad symbol name offset %u at %zu"),
963 st_name, i);
964 continue;
dbe717ef
ILT
965 }
966
967 const char* name = sym_names + st_name;
968
d491d34e 969 bool is_ordinary;
8bdcdf2c 970 unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
d491d34e
ILT
971 &is_ordinary);
972
aeddab66
ILT
973 Sized_symbol<size>* res;
974
dbe717ef
ILT
975 if (versym == NULL)
976 {
977 Stringpool::Key name_key;
cfd73a4e 978 name = this->namepool_.add(name, true, &name_key);
aeddab66 979 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
8bdcdf2c 980 false, *psym, st_shndx, is_ordinary,
d491d34e 981 st_shndx);
dbe717ef 982 }
aeddab66
ILT
983 else
984 {
985 // Read the version information.
dbe717ef 986
aeddab66 987 unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
dbe717ef 988
aeddab66
ILT
989 bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
990 v &= elfcpp::VERSYM_VERSION;
dbe717ef 991
aeddab66
ILT
992 // The Sun documentation says that V can be VER_NDX_LOCAL,
993 // or VER_NDX_GLOBAL, or a version index. The meaning of
994 // VER_NDX_LOCAL is defined as "Symbol has local scope."
995 // The old GNU linker will happily generate VER_NDX_LOCAL
996 // for an undefined symbol. I don't know what the Sun
997 // linker will generate.
dbe717ef 998
aeddab66 999 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
d491d34e 1000 && st_shndx != elfcpp::SHN_UNDEF)
aeddab66
ILT
1001 {
1002 // This symbol should not be visible outside the object.
1003 continue;
1004 }
64707334 1005
aeddab66
ILT
1006 // At this point we are definitely going to add this symbol.
1007 Stringpool::Key name_key;
1008 name = this->namepool_.add(name, true, &name_key);
dbe717ef 1009
aeddab66
ILT
1010 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1011 || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1012 {
1013 // This symbol does not have a version.
1014 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
8bdcdf2c 1015 false, *psym, st_shndx, is_ordinary,
d491d34e 1016 st_shndx);
aeddab66
ILT
1017 }
1018 else
1019 {
1020 if (v >= version_map->size())
1021 {
1022 dynobj->error(_("versym for symbol %zu out of range: %u"),
1023 i, v);
1024 continue;
1025 }
dbe717ef 1026
aeddab66
ILT
1027 const char* version = (*version_map)[v];
1028 if (version == NULL)
1029 {
1030 dynobj->error(_("versym for symbol %zu has no name: %u"),
1031 i, v);
1032 continue;
1033 }
dbe717ef 1034
aeddab66
ILT
1035 Stringpool::Key version_key;
1036 version = this->namepool_.add(version, true, &version_key);
1037
1038 // If this is an absolute symbol, and the version name
1039 // and symbol name are the same, then this is the
1040 // version definition symbol. These symbols exist to
1041 // support using -u to pull in particular versions. We
1042 // do not want to record a version for them.
d491d34e
ILT
1043 if (st_shndx == elfcpp::SHN_ABS
1044 && !is_ordinary
aeddab66
ILT
1045 && name_key == version_key)
1046 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
8bdcdf2c 1047 false, *psym, st_shndx, is_ordinary,
d491d34e 1048 st_shndx);
aeddab66
ILT
1049 else
1050 {
1051 const bool def = (!hidden
d491d34e 1052 && st_shndx != elfcpp::SHN_UNDEF);
aeddab66 1053 res = this->add_from_object(dynobj, name, name_key, version,
8bdcdf2c 1054 version_key, def, *psym, st_shndx,
d491d34e 1055 is_ordinary, st_shndx);
aeddab66
ILT
1056 }
1057 }
dbe717ef
ILT
1058 }
1059
99a37bfd 1060 // Note that it is possible that RES was overridden by an
a4bb589a 1061 // earlier object, in which case it can't be aliased here.
d491d34e
ILT
1062 if (st_shndx != elfcpp::SHN_UNDEF
1063 && is_ordinary
8bdcdf2c 1064 && psym->get_st_type() == elfcpp::STT_OBJECT
99a37bfd
ILT
1065 && res->source() == Symbol::FROM_OBJECT
1066 && res->object() == dynobj)
aeddab66
ILT
1067 object_symbols.push_back(res);
1068 }
1069
1070 this->record_weak_aliases(&object_symbols);
1071}
1072
1073// This is used to sort weak aliases. We sort them first by section
1074// index, then by offset, then by weak ahead of strong.
1075
1076template<int size>
1077class Weak_alias_sorter
1078{
1079 public:
1080 bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1081};
1082
1083template<int size>
1084bool
1085Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1086 const Sized_symbol<size>* s2) const
1087{
d491d34e
ILT
1088 bool is_ordinary;
1089 unsigned int s1_shndx = s1->shndx(&is_ordinary);
1090 gold_assert(is_ordinary);
1091 unsigned int s2_shndx = s2->shndx(&is_ordinary);
1092 gold_assert(is_ordinary);
1093 if (s1_shndx != s2_shndx)
1094 return s1_shndx < s2_shndx;
1095
aeddab66
ILT
1096 if (s1->value() != s2->value())
1097 return s1->value() < s2->value();
1098 if (s1->binding() != s2->binding())
1099 {
1100 if (s1->binding() == elfcpp::STB_WEAK)
1101 return true;
1102 if (s2->binding() == elfcpp::STB_WEAK)
1103 return false;
1104 }
1105 return std::string(s1->name()) < std::string(s2->name());
1106}
dbe717ef 1107
aeddab66
ILT
1108// SYMBOLS is a list of object symbols from a dynamic object. Look
1109// for any weak aliases, and record them so that if we add the weak
1110// alias to the dynamic symbol table, we also add the corresponding
1111// strong symbol.
dbe717ef 1112
aeddab66
ILT
1113template<int size>
1114void
1115Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1116{
1117 // Sort the vector by section index, then by offset, then by weak
1118 // ahead of strong.
1119 std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1120
1121 // Walk through the vector. For each weak definition, record
1122 // aliases.
1123 for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1124 symbols->begin();
1125 p != symbols->end();
1126 ++p)
1127 {
1128 if ((*p)->binding() != elfcpp::STB_WEAK)
1129 continue;
1130
1131 // Build a circular list of weak aliases. Each symbol points to
1132 // the next one in the circular list.
1133
1134 Sized_symbol<size>* from_sym = *p;
1135 typename std::vector<Sized_symbol<size>*>::const_iterator q;
1136 for (q = p + 1; q != symbols->end(); ++q)
dbe717ef 1137 {
d491d34e
ILT
1138 bool dummy;
1139 if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
aeddab66
ILT
1140 || (*q)->value() != from_sym->value())
1141 break;
1142
1143 this->weak_aliases_[from_sym] = *q;
1144 from_sym->set_has_alias();
1145 from_sym = *q;
dbe717ef
ILT
1146 }
1147
aeddab66
ILT
1148 if (from_sym != *p)
1149 {
1150 this->weak_aliases_[from_sym] = *p;
1151 from_sym->set_has_alias();
1152 }
dbe717ef 1153
aeddab66 1154 p = q - 1;
dbe717ef
ILT
1155 }
1156}
1157
ead1e424
ILT
1158// Create and return a specially defined symbol. If ONLY_IF_REF is
1159// true, then only create the symbol if there is a reference to it.
86f2e683 1160// If this does not return NULL, it sets *POLDSYM to the existing
306d9ef0 1161// symbol if there is one. This canonicalizes *PNAME and *PVERSION.
ead1e424
ILT
1162
1163template<int size, bool big_endian>
1164Sized_symbol<size>*
9b07f471
ILT
1165Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1166 bool only_if_ref,
7d1a9ebb 1167 Sized_symbol<size>** poldsym)
ead1e424 1168{
ead1e424
ILT
1169 Symbol* oldsym;
1170 Sized_symbol<size>* sym;
86f2e683
ILT
1171 bool add_to_table = false;
1172 typename Symbol_table_type::iterator add_loc = this->table_.end();
ead1e424 1173
55a93433
ILT
1174 // If the caller didn't give us a version, see if we get one from
1175 // the version script.
1176 if (*pversion == NULL)
1177 {
1178 const std::string& v(this->version_script_.get_symbol_version(*pname));
1179 if (!v.empty())
1180 *pversion = v.c_str();
1181 }
1182
ead1e424
ILT
1183 if (only_if_ref)
1184 {
306d9ef0 1185 oldsym = this->lookup(*pname, *pversion);
f6ce93d6 1186 if (oldsym == NULL || !oldsym->is_undefined())
ead1e424 1187 return NULL;
306d9ef0
ILT
1188
1189 *pname = oldsym->name();
1190 *pversion = oldsym->version();
ead1e424
ILT
1191 }
1192 else
1193 {
14b31740 1194 // Canonicalize NAME and VERSION.
f0641a0b 1195 Stringpool::Key name_key;
cfd73a4e 1196 *pname = this->namepool_.add(*pname, true, &name_key);
ead1e424 1197
14b31740 1198 Stringpool::Key version_key = 0;
306d9ef0 1199 if (*pversion != NULL)
cfd73a4e 1200 *pversion = this->namepool_.add(*pversion, true, &version_key);
14b31740 1201
ead1e424 1202 Symbol* const snull = NULL;
ead1e424 1203 std::pair<typename Symbol_table_type::iterator, bool> ins =
14b31740
ILT
1204 this->table_.insert(std::make_pair(std::make_pair(name_key,
1205 version_key),
ead1e424
ILT
1206 snull));
1207
1208 if (!ins.second)
1209 {
14b31740 1210 // We already have a symbol table entry for NAME/VERSION.
ead1e424 1211 oldsym = ins.first->second;
a3ad94ed 1212 gold_assert(oldsym != NULL);
ead1e424
ILT
1213 }
1214 else
1215 {
1216 // We haven't seen this symbol before.
a3ad94ed 1217 gold_assert(ins.first->second == NULL);
86f2e683
ILT
1218 add_to_table = true;
1219 add_loc = ins.first;
ead1e424
ILT
1220 oldsym = NULL;
1221 }
1222 }
1223
8851ecca
ILT
1224 const Target& target = parameters->target();
1225 if (!target.has_make_symbol())
86f2e683
ILT
1226 sym = new Sized_symbol<size>();
1227 else
ead1e424 1228 {
8851ecca
ILT
1229 gold_assert(target.get_size() == size);
1230 gold_assert(target.is_big_endian() ? big_endian : !big_endian);
86f2e683
ILT
1231 typedef Sized_target<size, big_endian> My_target;
1232 const My_target* sized_target =
8851ecca 1233 static_cast<const My_target*>(&target);
86f2e683
ILT
1234 sym = sized_target->make_symbol();
1235 if (sym == NULL)
1236 return NULL;
1237 }
ead1e424 1238
86f2e683
ILT
1239 if (add_to_table)
1240 add_loc->second = sym;
1241 else
1242 gold_assert(oldsym != NULL);
ead1e424 1243
7d1a9ebb 1244 *poldsym = this->get_sized_symbol<size>(oldsym);
ead1e424
ILT
1245
1246 return sym;
1247}
1248
1249// Define a symbol based on an Output_data.
1250
14b31740 1251Symbol*
9b07f471
ILT
1252Symbol_table::define_in_output_data(const char* name,
1253 const char* version,
1254 Output_data* od,
1255 uint64_t value,
1256 uint64_t symsize,
1257 elfcpp::STT type,
1258 elfcpp::STB binding,
ead1e424
ILT
1259 elfcpp::STV visibility,
1260 unsigned char nonvis,
1261 bool offset_is_from_end,
1262 bool only_if_ref)
1263{
8851ecca 1264 if (parameters->target().get_size() == 32)
86f2e683
ILT
1265 {
1266#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
9b07f471 1267 return this->do_define_in_output_data<32>(name, version, od,
86f2e683
ILT
1268 value, symsize, type, binding,
1269 visibility, nonvis,
1270 offset_is_from_end,
1271 only_if_ref);
1272#else
1273 gold_unreachable();
1274#endif
1275 }
8851ecca 1276 else if (parameters->target().get_size() == 64)
86f2e683
ILT
1277 {
1278#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
9b07f471 1279 return this->do_define_in_output_data<64>(name, version, od,
86f2e683
ILT
1280 value, symsize, type, binding,
1281 visibility, nonvis,
1282 offset_is_from_end,
1283 only_if_ref);
1284#else
1285 gold_unreachable();
1286#endif
1287 }
ead1e424 1288 else
a3ad94ed 1289 gold_unreachable();
ead1e424
ILT
1290}
1291
1292// Define a symbol in an Output_data, sized version.
1293
1294template<int size>
14b31740 1295Sized_symbol<size>*
ead1e424 1296Symbol_table::do_define_in_output_data(
ead1e424 1297 const char* name,
14b31740 1298 const char* version,
ead1e424
ILT
1299 Output_data* od,
1300 typename elfcpp::Elf_types<size>::Elf_Addr value,
1301 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1302 elfcpp::STT type,
1303 elfcpp::STB binding,
1304 elfcpp::STV visibility,
1305 unsigned char nonvis,
1306 bool offset_is_from_end,
1307 bool only_if_ref)
1308{
1309 Sized_symbol<size>* sym;
86f2e683 1310 Sized_symbol<size>* oldsym;
ead1e424 1311
8851ecca 1312 if (parameters->target().is_big_endian())
193a53d9
ILT
1313 {
1314#if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
7d1a9ebb
ILT
1315 sym = this->define_special_symbol<size, true>(&name, &version,
1316 only_if_ref, &oldsym);
193a53d9
ILT
1317#else
1318 gold_unreachable();
1319#endif
1320 }
ead1e424 1321 else
193a53d9
ILT
1322 {
1323#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
7d1a9ebb
ILT
1324 sym = this->define_special_symbol<size, false>(&name, &version,
1325 only_if_ref, &oldsym);
193a53d9
ILT
1326#else
1327 gold_unreachable();
1328#endif
1329 }
ead1e424
ILT
1330
1331 if (sym == NULL)
14b31740 1332 return NULL;
ead1e424 1333
d4f5281b 1334 gold_assert(version == NULL || oldsym != NULL);
ead1e424
ILT
1335 sym->init(name, od, value, symsize, type, binding, visibility, nonvis,
1336 offset_is_from_end);
14b31740 1337
e5756efb 1338 if (oldsym == NULL)
55a93433
ILT
1339 {
1340 if (binding == elfcpp::STB_LOCAL
1341 || this->version_script_.symbol_is_local(name))
1342 this->force_local(sym);
1343 return sym;
1344 }
86f2e683 1345
e5756efb
ILT
1346 if (Symbol_table::should_override_with_special(oldsym))
1347 this->override_with_special(oldsym, sym);
1348 delete sym;
1349 return oldsym;
ead1e424
ILT
1350}
1351
1352// Define a symbol based on an Output_segment.
1353
14b31740 1354Symbol*
9b07f471 1355Symbol_table::define_in_output_segment(const char* name,
14b31740 1356 const char* version, Output_segment* os,
9b07f471
ILT
1357 uint64_t value,
1358 uint64_t symsize,
1359 elfcpp::STT type,
1360 elfcpp::STB binding,
ead1e424
ILT
1361 elfcpp::STV visibility,
1362 unsigned char nonvis,
1363 Symbol::Segment_offset_base offset_base,
1364 bool only_if_ref)
1365{
8851ecca 1366 if (parameters->target().get_size() == 32)
86f2e683
ILT
1367 {
1368#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
9b07f471 1369 return this->do_define_in_output_segment<32>(name, version, os,
86f2e683
ILT
1370 value, symsize, type,
1371 binding, visibility, nonvis,
1372 offset_base, only_if_ref);
1373#else
1374 gold_unreachable();
1375#endif
1376 }
8851ecca 1377 else if (parameters->target().get_size() == 64)
86f2e683
ILT
1378 {
1379#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
9b07f471 1380 return this->do_define_in_output_segment<64>(name, version, os,
86f2e683
ILT
1381 value, symsize, type,
1382 binding, visibility, nonvis,
1383 offset_base, only_if_ref);
1384#else
1385 gold_unreachable();
1386#endif
1387 }
ead1e424 1388 else
a3ad94ed 1389 gold_unreachable();
ead1e424
ILT
1390}
1391
1392// Define a symbol in an Output_segment, sized version.
1393
1394template<int size>
14b31740 1395Sized_symbol<size>*
ead1e424 1396Symbol_table::do_define_in_output_segment(
ead1e424 1397 const char* name,
14b31740 1398 const char* version,
ead1e424
ILT
1399 Output_segment* os,
1400 typename elfcpp::Elf_types<size>::Elf_Addr value,
1401 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1402 elfcpp::STT type,
1403 elfcpp::STB binding,
1404 elfcpp::STV visibility,
1405 unsigned char nonvis,
1406 Symbol::Segment_offset_base offset_base,
1407 bool only_if_ref)
1408{
1409 Sized_symbol<size>* sym;
86f2e683 1410 Sized_symbol<size>* oldsym;
ead1e424 1411
8851ecca 1412 if (parameters->target().is_big_endian())
9025d29d
ILT
1413 {
1414#if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
7d1a9ebb
ILT
1415 sym = this->define_special_symbol<size, true>(&name, &version,
1416 only_if_ref, &oldsym);
9025d29d
ILT
1417#else
1418 gold_unreachable();
1419#endif
1420 }
ead1e424 1421 else
9025d29d
ILT
1422 {
1423#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
7d1a9ebb
ILT
1424 sym = this->define_special_symbol<size, false>(&name, &version,
1425 only_if_ref, &oldsym);
9025d29d
ILT
1426#else
1427 gold_unreachable();
1428#endif
1429 }
ead1e424
ILT
1430
1431 if (sym == NULL)
14b31740 1432 return NULL;
ead1e424 1433
d4f5281b 1434 gold_assert(version == NULL || oldsym != NULL);
ead1e424
ILT
1435 sym->init(name, os, value, symsize, type, binding, visibility, nonvis,
1436 offset_base);
14b31740 1437
e5756efb 1438 if (oldsym == NULL)
55a93433
ILT
1439 {
1440 if (binding == elfcpp::STB_LOCAL
1441 || this->version_script_.symbol_is_local(name))
1442 this->force_local(sym);
1443 return sym;
1444 }
86f2e683 1445
e5756efb
ILT
1446 if (Symbol_table::should_override_with_special(oldsym))
1447 this->override_with_special(oldsym, sym);
1448 delete sym;
1449 return oldsym;
ead1e424
ILT
1450}
1451
1452// Define a special symbol with a constant value. It is a multiple
1453// definition error if this symbol is already defined.
1454
14b31740 1455Symbol*
9b07f471
ILT
1456Symbol_table::define_as_constant(const char* name,
1457 const char* version,
1458 uint64_t value,
1459 uint64_t symsize,
1460 elfcpp::STT type,
1461 elfcpp::STB binding,
1462 elfcpp::STV visibility,
1463 unsigned char nonvis,
caa9d5d9
ILT
1464 bool only_if_ref,
1465 bool force_override)
ead1e424 1466{
8851ecca 1467 if (parameters->target().get_size() == 32)
86f2e683
ILT
1468 {
1469#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
9b07f471 1470 return this->do_define_as_constant<32>(name, version, value,
86f2e683 1471 symsize, type, binding,
caa9d5d9
ILT
1472 visibility, nonvis, only_if_ref,
1473 force_override);
86f2e683
ILT
1474#else
1475 gold_unreachable();
1476#endif
1477 }
8851ecca 1478 else if (parameters->target().get_size() == 64)
86f2e683
ILT
1479 {
1480#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
9b07f471 1481 return this->do_define_as_constant<64>(name, version, value,
86f2e683 1482 symsize, type, binding,
caa9d5d9
ILT
1483 visibility, nonvis, only_if_ref,
1484 force_override);
86f2e683
ILT
1485#else
1486 gold_unreachable();
1487#endif
1488 }
ead1e424 1489 else
a3ad94ed 1490 gold_unreachable();
ead1e424
ILT
1491}
1492
1493// Define a symbol as a constant, sized version.
1494
1495template<int size>
14b31740 1496Sized_symbol<size>*
ead1e424 1497Symbol_table::do_define_as_constant(
ead1e424 1498 const char* name,
14b31740 1499 const char* version,
ead1e424
ILT
1500 typename elfcpp::Elf_types<size>::Elf_Addr value,
1501 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1502 elfcpp::STT type,
1503 elfcpp::STB binding,
1504 elfcpp::STV visibility,
1505 unsigned char nonvis,
caa9d5d9
ILT
1506 bool only_if_ref,
1507 bool force_override)
ead1e424
ILT
1508{
1509 Sized_symbol<size>* sym;
86f2e683 1510 Sized_symbol<size>* oldsym;
ead1e424 1511
8851ecca 1512 if (parameters->target().is_big_endian())
9025d29d
ILT
1513 {
1514#if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
7d1a9ebb
ILT
1515 sym = this->define_special_symbol<size, true>(&name, &version,
1516 only_if_ref, &oldsym);
9025d29d
ILT
1517#else
1518 gold_unreachable();
1519#endif
1520 }
ead1e424 1521 else
9025d29d
ILT
1522 {
1523#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
7d1a9ebb
ILT
1524 sym = this->define_special_symbol<size, false>(&name, &version,
1525 only_if_ref, &oldsym);
9025d29d
ILT
1526#else
1527 gold_unreachable();
1528#endif
1529 }
ead1e424
ILT
1530
1531 if (sym == NULL)
14b31740 1532 return NULL;
ead1e424 1533
09124467 1534 gold_assert(version == NULL || version == name || oldsym != NULL);
ead1e424 1535 sym->init(name, value, symsize, type, binding, visibility, nonvis);
14b31740 1536
e5756efb 1537 if (oldsym == NULL)
55a93433 1538 {
686c8caf
ILT
1539 // Version symbols are absolute symbols with name == version.
1540 // We don't want to force them to be local.
1541 if ((version == NULL
1542 || name != version
1543 || value != 0)
1544 && (binding == elfcpp::STB_LOCAL
1545 || this->version_script_.symbol_is_local(name)))
55a93433
ILT
1546 this->force_local(sym);
1547 return sym;
1548 }
86f2e683 1549
caa9d5d9 1550 if (force_override || Symbol_table::should_override_with_special(oldsym))
e5756efb
ILT
1551 this->override_with_special(oldsym, sym);
1552 delete sym;
1553 return oldsym;
ead1e424
ILT
1554}
1555
1556// Define a set of symbols in output sections.
1557
1558void
9b07f471 1559Symbol_table::define_symbols(const Layout* layout, int count,
a445fddf
ILT
1560 const Define_symbol_in_section* p,
1561 bool only_if_ref)
ead1e424
ILT
1562{
1563 for (int i = 0; i < count; ++i, ++p)
1564 {
1565 Output_section* os = layout->find_output_section(p->output_section);
1566 if (os != NULL)
9b07f471 1567 this->define_in_output_data(p->name, NULL, os, p->value,
14b31740
ILT
1568 p->size, p->type, p->binding,
1569 p->visibility, p->nonvis,
a445fddf
ILT
1570 p->offset_is_from_end,
1571 only_if_ref || p->only_if_ref);
ead1e424 1572 else
9b07f471 1573 this->define_as_constant(p->name, NULL, 0, p->size, p->type,
ead1e424 1574 p->binding, p->visibility, p->nonvis,
caa9d5d9
ILT
1575 only_if_ref || p->only_if_ref,
1576 false);
ead1e424
ILT
1577 }
1578}
1579
1580// Define a set of symbols in output segments.
1581
1582void
9b07f471 1583Symbol_table::define_symbols(const Layout* layout, int count,
a445fddf
ILT
1584 const Define_symbol_in_segment* p,
1585 bool only_if_ref)
ead1e424
ILT
1586{
1587 for (int i = 0; i < count; ++i, ++p)
1588 {
1589 Output_segment* os = layout->find_output_segment(p->segment_type,
1590 p->segment_flags_set,
1591 p->segment_flags_clear);
1592 if (os != NULL)
9b07f471 1593 this->define_in_output_segment(p->name, NULL, os, p->value,
14b31740
ILT
1594 p->size, p->type, p->binding,
1595 p->visibility, p->nonvis,
a445fddf
ILT
1596 p->offset_base,
1597 only_if_ref || p->only_if_ref);
ead1e424 1598 else
9b07f471 1599 this->define_as_constant(p->name, NULL, 0, p->size, p->type,
ead1e424 1600 p->binding, p->visibility, p->nonvis,
caa9d5d9
ILT
1601 only_if_ref || p->only_if_ref,
1602 false);
ead1e424
ILT
1603 }
1604}
1605
46fe1623
ILT
1606// Define CSYM using a COPY reloc. POSD is the Output_data where the
1607// symbol should be defined--typically a .dyn.bss section. VALUE is
1608// the offset within POSD.
1609
1610template<int size>
1611void
fe8718a4 1612Symbol_table::define_with_copy_reloc(
fe8718a4
ILT
1613 Sized_symbol<size>* csym,
1614 Output_data* posd,
1615 typename elfcpp::Elf_types<size>::Elf_Addr value)
46fe1623
ILT
1616{
1617 gold_assert(csym->is_from_dynobj());
1618 gold_assert(!csym->is_copied_from_dynobj());
1619 Object* object = csym->object();
1620 gold_assert(object->is_dynamic());
1621 Dynobj* dynobj = static_cast<Dynobj*>(object);
1622
1623 // Our copied variable has to override any variable in a shared
1624 // library.
1625 elfcpp::STB binding = csym->binding();
1626 if (binding == elfcpp::STB_WEAK)
1627 binding = elfcpp::STB_GLOBAL;
1628
9b07f471 1629 this->define_in_output_data(csym->name(), csym->version(),
46fe1623
ILT
1630 posd, value, csym->symsize(),
1631 csym->type(), binding,
1632 csym->visibility(), csym->nonvis(),
1633 false, false);
1634
1635 csym->set_is_copied_from_dynobj();
1636 csym->set_needs_dynsym_entry();
1637
1638 this->copied_symbol_dynobjs_[csym] = dynobj;
1639
1640 // We have now defined all aliases, but we have not entered them all
1641 // in the copied_symbol_dynobjs_ map.
1642 if (csym->has_alias())
1643 {
1644 Symbol* sym = csym;
1645 while (true)
1646 {
1647 sym = this->weak_aliases_[sym];
1648 if (sym == csym)
1649 break;
1650 gold_assert(sym->output_data() == posd);
1651
1652 sym->set_is_copied_from_dynobj();
1653 this->copied_symbol_dynobjs_[sym] = dynobj;
1654 }
1655 }
1656}
1657
1658// SYM is defined using a COPY reloc. Return the dynamic object where
1659// the original definition was found.
1660
1661Dynobj*
1662Symbol_table::get_copy_source(const Symbol* sym) const
1663{
1664 gold_assert(sym->is_copied_from_dynobj());
1665 Copied_symbol_dynobjs::const_iterator p =
1666 this->copied_symbol_dynobjs_.find(sym);
1667 gold_assert(p != this->copied_symbol_dynobjs_.end());
1668 return p->second;
1669}
1670
a3ad94ed
ILT
1671// Set the dynamic symbol indexes. INDEX is the index of the first
1672// global dynamic symbol. Pointers to the symbols are stored into the
1673// vector SYMS. The names are added to DYNPOOL. This returns an
1674// updated dynamic symbol index.
1675
1676unsigned int
9b07f471 1677Symbol_table::set_dynsym_indexes(unsigned int index,
a3ad94ed 1678 std::vector<Symbol*>* syms,
14b31740
ILT
1679 Stringpool* dynpool,
1680 Versions* versions)
a3ad94ed
ILT
1681{
1682 for (Symbol_table_type::iterator p = this->table_.begin();
1683 p != this->table_.end();
1684 ++p)
1685 {
1686 Symbol* sym = p->second;
16649710
ILT
1687
1688 // Note that SYM may already have a dynamic symbol index, since
1689 // some symbols appear more than once in the symbol table, with
1690 // and without a version.
1691
436ca963 1692 if (!sym->should_add_dynsym_entry())
16649710
ILT
1693 sym->set_dynsym_index(-1U);
1694 else if (!sym->has_dynsym_index())
a3ad94ed
ILT
1695 {
1696 sym->set_dynsym_index(index);
1697 ++index;
1698 syms->push_back(sym);
cfd73a4e 1699 dynpool->add(sym->name(), false, NULL);
14b31740
ILT
1700
1701 // Record any version information.
09124467
ILT
1702 if (sym->version() != NULL)
1703 versions->record_version(this, dynpool, sym);
a3ad94ed
ILT
1704 }
1705 }
1706
14b31740
ILT
1707 // Finish up the versions. In some cases this may add new dynamic
1708 // symbols.
9b07f471 1709 index = versions->finalize(this, index, syms);
14b31740 1710
a3ad94ed
ILT
1711 return index;
1712}
1713
c06b7b0b 1714// Set the final values for all the symbols. The index of the first
55a93433
ILT
1715// global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
1716// file offset OFF. Add their names to POOL. Return the new file
1717// offset. Update *PLOCAL_SYMCOUNT if necessary.
54dc6425 1718
75f65a3e 1719off_t
55a93433
ILT
1720Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
1721 size_t dyncount, Stringpool* pool,
1722 unsigned int *plocal_symcount)
54dc6425 1723{
f6ce93d6
ILT
1724 off_t ret;
1725
55a93433
ILT
1726 gold_assert(*plocal_symcount != 0);
1727 this->first_global_index_ = *plocal_symcount;
c06b7b0b 1728
16649710
ILT
1729 this->dynamic_offset_ = dynoff;
1730 this->first_dynamic_global_index_ = dyn_global_index;
1731 this->dynamic_count_ = dyncount;
1732
8851ecca 1733 if (parameters->target().get_size() == 32)
9025d29d
ILT
1734 {
1735#if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
55a93433 1736 ret = this->sized_finalize<32>(off, pool, plocal_symcount);
9025d29d
ILT
1737#else
1738 gold_unreachable();
1739#endif
1740 }
8851ecca 1741 else if (parameters->target().get_size() == 64)
9025d29d
ILT
1742 {
1743#if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
55a93433 1744 ret = this->sized_finalize<64>(off, pool, plocal_symcount);
9025d29d
ILT
1745#else
1746 gold_unreachable();
1747#endif
1748 }
61ba1cf9 1749 else
a3ad94ed 1750 gold_unreachable();
f6ce93d6
ILT
1751
1752 // Now that we have the final symbol table, we can reliably note
1753 // which symbols should get warnings.
cb295612 1754 this->warnings_.note_warnings(this);
f6ce93d6
ILT
1755
1756 return ret;
75f65a3e
ILT
1757}
1758
55a93433
ILT
1759// SYM is going into the symbol table at *PINDEX. Add the name to
1760// POOL, update *PINDEX and *POFF.
1761
1762template<int size>
1763void
1764Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
1765 unsigned int* pindex, off_t* poff)
1766{
1767 sym->set_symtab_index(*pindex);
1768 pool->add(sym->name(), false, NULL);
1769 ++*pindex;
1770 *poff += elfcpp::Elf_sizes<size>::sym_size;
1771}
1772
ead1e424
ILT
1773// Set the final value for all the symbols. This is called after
1774// Layout::finalize, so all the output sections have their final
1775// address.
75f65a3e
ILT
1776
1777template<int size>
1778off_t
55a93433
ILT
1779Symbol_table::sized_finalize(off_t off, Stringpool* pool,
1780 unsigned int* plocal_symcount)
75f65a3e 1781{
ead1e424 1782 off = align_address(off, size >> 3);
75f65a3e
ILT
1783 this->offset_ = off;
1784
55a93433
ILT
1785 unsigned int index = *plocal_symcount;
1786 const unsigned int orig_index = index;
c06b7b0b 1787
55a93433
ILT
1788 // First do all the symbols which have been forced to be local, as
1789 // they must appear before all global symbols.
1790 for (Forced_locals::iterator p = this->forced_locals_.begin();
1791 p != this->forced_locals_.end();
1792 ++p)
1793 {
1794 Symbol* sym = *p;
1795 gold_assert(sym->is_forced_local());
1796 if (this->sized_finalize_symbol<size>(sym))
1797 {
1798 this->add_to_final_symtab<size>(sym, pool, &index, &off);
1799 ++*plocal_symcount;
1800 }
1801 }
1802
1803 // Now do all the remaining symbols.
c06b7b0b
ILT
1804 for (Symbol_table_type::iterator p = this->table_.begin();
1805 p != this->table_.end();
1806 ++p)
54dc6425 1807 {
55a93433
ILT
1808 Symbol* sym = p->second;
1809 if (this->sized_finalize_symbol<size>(sym))
1810 this->add_to_final_symtab<size>(sym, pool, &index, &off);
1811 }
54dc6425 1812
55a93433 1813 this->output_count_ = index - orig_index;
a3ad94ed 1814
55a93433
ILT
1815 return off;
1816}
75f65a3e 1817
55a93433
ILT
1818// Finalize the symbol SYM. This returns true if the symbol should be
1819// added to the symbol table, false otherwise.
008db82e 1820
55a93433
ILT
1821template<int size>
1822bool
1823Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
1824{
1825 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
75f65a3e 1826
55a93433
ILT
1827 // The default version of a symbol may appear twice in the symbol
1828 // table. We only need to finalize it once.
1829 if (sym->has_symtab_index())
1830 return false;
ead1e424 1831
55a93433
ILT
1832 if (!sym->in_reg())
1833 {
1834 gold_assert(!sym->has_symtab_index());
1835 sym->set_symtab_index(-1U);
1836 gold_assert(sym->dynsym_index() == -1U);
1837 return false;
1838 }
ead1e424 1839
55a93433 1840 typename Sized_symbol<size>::Value_type value;
ead1e424 1841
55a93433
ILT
1842 switch (sym->source())
1843 {
1844 case Symbol::FROM_OBJECT:
1845 {
d491d34e
ILT
1846 bool is_ordinary;
1847 unsigned int shndx = sym->shndx(&is_ordinary);
ead1e424 1848
55a93433 1849 // FIXME: We need some target specific support here.
d491d34e 1850 if (!is_ordinary
0dfbdef4
ILT
1851 && shndx != elfcpp::SHN_ABS
1852 && shndx != elfcpp::SHN_COMMON)
55a93433
ILT
1853 {
1854 gold_error(_("%s: unsupported symbol section 0x%x"),
1855 sym->demangled_name().c_str(), shndx);
1856 shndx = elfcpp::SHN_UNDEF;
ead1e424 1857 }
ead1e424 1858
55a93433
ILT
1859 Object* symobj = sym->object();
1860 if (symobj->is_dynamic())
ead1e424 1861 {
55a93433
ILT
1862 value = 0;
1863 shndx = elfcpp::SHN_UNDEF;
ead1e424 1864 }
55a93433
ILT
1865 else if (shndx == elfcpp::SHN_UNDEF)
1866 value = 0;
d491d34e
ILT
1867 else if (!is_ordinary
1868 && (shndx == elfcpp::SHN_ABS || shndx == elfcpp::SHN_COMMON))
55a93433
ILT
1869 value = sym->value();
1870 else
ead1e424 1871 {
55a93433
ILT
1872 Relobj* relobj = static_cast<Relobj*>(symobj);
1873 section_offset_type secoff;
1874 Output_section* os = relobj->output_section(shndx, &secoff);
1875
1876 if (os == NULL)
ead1e424 1877 {
55a93433
ILT
1878 sym->set_symtab_index(-1U);
1879 gold_assert(sym->dynsym_index() == -1U);
1880 return false;
ead1e424 1881 }
55a93433
ILT
1882
1883 if (sym->type() == elfcpp::STT_TLS)
1884 value = sym->value() + os->tls_offset() + secoff;
1885 else
1886 value = sym->value() + os->address() + secoff;
ead1e424 1887 }
55a93433
ILT
1888 }
1889 break;
1890
1891 case Symbol::IN_OUTPUT_DATA:
1892 {
1893 Output_data* od = sym->output_data();
155a0dd7
ILT
1894 value = sym->value();
1895 if (sym->type() != elfcpp::STT_TLS)
1896 value += od->address();
1897 else
1898 {
1899 Output_section* os = od->output_section();
1900 gold_assert(os != NULL);
1901 value += os->tls_offset() + (od->address() - os->address());
1902 }
55a93433
ILT
1903 if (sym->offset_is_from_end())
1904 value += od->data_size();
1905 }
1906 break;
1907
1908 case Symbol::IN_OUTPUT_SEGMENT:
1909 {
1910 Output_segment* os = sym->output_segment();
edfbb029
CC
1911 value = sym->value();
1912 if (sym->type() != elfcpp::STT_TLS)
1913 value += os->vaddr();
55a93433
ILT
1914 switch (sym->offset_base())
1915 {
1916 case Symbol::SEGMENT_START:
1917 break;
1918 case Symbol::SEGMENT_END:
1919 value += os->memsz();
1920 break;
1921 case Symbol::SEGMENT_BSS:
1922 value += os->filesz();
1923 break;
1924 default:
1925 gold_unreachable();
1926 }
1927 }
1928 break;
ead1e424 1929
55a93433
ILT
1930 case Symbol::CONSTANT:
1931 value = sym->value();
1932 break;
ead1e424 1933
55a93433
ILT
1934 default:
1935 gold_unreachable();
1936 }
ead1e424 1937
55a93433 1938 sym->set_value(value);
9e2dcb77 1939
8851ecca 1940 if (parameters->options().strip_all())
55a93433
ILT
1941 {
1942 sym->set_symtab_index(-1U);
1943 return false;
54dc6425 1944 }
75f65a3e 1945
55a93433 1946 return true;
54dc6425
ILT
1947}
1948
61ba1cf9
ILT
1949// Write out the global symbols.
1950
1951void
9a2d6984
ILT
1952Symbol_table::write_globals(const Input_objects* input_objects,
1953 const Stringpool* sympool,
d491d34e
ILT
1954 const Stringpool* dynpool,
1955 Output_symtab_xindex* symtab_xindex,
1956 Output_symtab_xindex* dynsym_xindex,
1957 Output_file* of) const
61ba1cf9 1958{
8851ecca 1959 switch (parameters->size_and_endianness())
61ba1cf9 1960 {
9025d29d 1961#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
1962 case Parameters::TARGET_32_LITTLE:
1963 this->sized_write_globals<32, false>(input_objects, sympool,
d491d34e
ILT
1964 dynpool, symtab_xindex,
1965 dynsym_xindex, of);
8851ecca 1966 break;
9025d29d 1967#endif
8851ecca
ILT
1968#ifdef HAVE_TARGET_32_BIG
1969 case Parameters::TARGET_32_BIG:
1970 this->sized_write_globals<32, true>(input_objects, sympool,
d491d34e
ILT
1971 dynpool, symtab_xindex,
1972 dynsym_xindex, of);
8851ecca 1973 break;
9025d29d 1974#endif
9025d29d 1975#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
1976 case Parameters::TARGET_64_LITTLE:
1977 this->sized_write_globals<64, false>(input_objects, sympool,
d491d34e
ILT
1978 dynpool, symtab_xindex,
1979 dynsym_xindex, of);
8851ecca 1980 break;
9025d29d 1981#endif
8851ecca
ILT
1982#ifdef HAVE_TARGET_64_BIG
1983 case Parameters::TARGET_64_BIG:
1984 this->sized_write_globals<64, true>(input_objects, sympool,
d491d34e
ILT
1985 dynpool, symtab_xindex,
1986 dynsym_xindex, of);
8851ecca
ILT
1987 break;
1988#endif
1989 default:
1990 gold_unreachable();
61ba1cf9 1991 }
61ba1cf9
ILT
1992}
1993
1994// Write out the global symbols.
1995
1996template<int size, bool big_endian>
1997void
9a2d6984 1998Symbol_table::sized_write_globals(const Input_objects* input_objects,
61ba1cf9 1999 const Stringpool* sympool,
16649710 2000 const Stringpool* dynpool,
d491d34e
ILT
2001 Output_symtab_xindex* symtab_xindex,
2002 Output_symtab_xindex* dynsym_xindex,
61ba1cf9
ILT
2003 Output_file* of) const
2004{
8851ecca 2005 const Target& target = parameters->target();
9a2d6984 2006
61ba1cf9 2007 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
55a93433
ILT
2008
2009 const unsigned int output_count = this->output_count_;
2010 const section_size_type oview_size = output_count * sym_size;
2011 const unsigned int first_global_index = this->first_global_index_;
5fe2a0f5
ILT
2012 unsigned char* psyms;
2013 if (this->offset_ == 0 || output_count == 0)
2014 psyms = NULL;
2015 else
2016 psyms = of->get_output_view(this->offset_, oview_size);
16649710 2017
55a93433
ILT
2018 const unsigned int dynamic_count = this->dynamic_count_;
2019 const section_size_type dynamic_size = dynamic_count * sym_size;
2020 const unsigned int first_dynamic_global_index =
2021 this->first_dynamic_global_index_;
16649710 2022 unsigned char* dynamic_view;
5fe2a0f5 2023 if (this->dynamic_offset_ == 0 || dynamic_count == 0)
16649710
ILT
2024 dynamic_view = NULL;
2025 else
2026 dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
c06b7b0b 2027
61ba1cf9
ILT
2028 for (Symbol_table_type::const_iterator p = this->table_.begin();
2029 p != this->table_.end();
2030 ++p)
2031 {
2032 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
2033
9a2d6984
ILT
2034 // Possibly warn about unresolved symbols in shared libraries.
2035 this->warn_about_undefined_dynobj_symbol(input_objects, sym);
e2827e5f 2036
a3ad94ed 2037 unsigned int sym_index = sym->symtab_index();
16649710
ILT
2038 unsigned int dynsym_index;
2039 if (dynamic_view == NULL)
2040 dynsym_index = -1U;
2041 else
2042 dynsym_index = sym->dynsym_index();
2043
2044 if (sym_index == -1U && dynsym_index == -1U)
a3ad94ed
ILT
2045 {
2046 // This symbol is not included in the output file.
2047 continue;
2048 }
16649710 2049
ead1e424 2050 unsigned int shndx;
88dd47ac
ILT
2051 typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
2052 typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
ead1e424
ILT
2053 switch (sym->source())
2054 {
2055 case Symbol::FROM_OBJECT:
2056 {
d491d34e
ILT
2057 bool is_ordinary;
2058 unsigned int in_shndx = sym->shndx(&is_ordinary);
ead1e424
ILT
2059
2060 // FIXME: We need some target specific support here.
d491d34e 2061 if (!is_ordinary
0dfbdef4
ILT
2062 && in_shndx != elfcpp::SHN_ABS
2063 && in_shndx != elfcpp::SHN_COMMON)
ead1e424 2064 {
75f2446e 2065 gold_error(_("%s: unsupported symbol section 0x%x"),
a2b1aa12 2066 sym->demangled_name().c_str(), in_shndx);
75f2446e 2067 shndx = in_shndx;
f6ce93d6 2068 }
ead1e424
ILT
2069 else
2070 {
75f2446e
ILT
2071 Object* symobj = sym->object();
2072 if (symobj->is_dynamic())
2073 {
2074 if (sym->needs_dynsym_value())
8851ecca 2075 dynsym_value = target.dynsym_value(sym);
75f2446e
ILT
2076 shndx = elfcpp::SHN_UNDEF;
2077 }
2078 else if (in_shndx == elfcpp::SHN_UNDEF
d491d34e
ILT
2079 || (!is_ordinary
2080 && (in_shndx == elfcpp::SHN_ABS
2081 || in_shndx == elfcpp::SHN_COMMON)))
75f2446e
ILT
2082 shndx = in_shndx;
2083 else
2084 {
2085 Relobj* relobj = static_cast<Relobj*>(symobj);
8383303e 2086 section_offset_type secoff;
75f2446e
ILT
2087 Output_section* os = relobj->output_section(in_shndx,
2088 &secoff);
2089 gold_assert(os != NULL);
2090 shndx = os->out_shndx();
88dd47ac 2091
d491d34e
ILT
2092 if (shndx >= elfcpp::SHN_LORESERVE)
2093 {
2094 if (sym_index != -1U)
2095 symtab_xindex->add(sym_index, shndx);
2096 if (dynsym_index != -1U)
2097 dynsym_xindex->add(dynsym_index, shndx);
2098 shndx = elfcpp::SHN_XINDEX;
2099 }
2100
88dd47ac
ILT
2101 // In object files symbol values are section
2102 // relative.
8851ecca 2103 if (parameters->options().relocatable())
88dd47ac 2104 sym_value -= os->address();
75f2446e 2105 }
ead1e424
ILT
2106 }
2107 }
2108 break;
2109
2110 case Symbol::IN_OUTPUT_DATA:
2111 shndx = sym->output_data()->out_shndx();
d491d34e
ILT
2112 if (shndx >= elfcpp::SHN_LORESERVE)
2113 {
2114 if (sym_index != -1U)
2115 symtab_xindex->add(sym_index, shndx);
2116 if (dynsym_index != -1U)
2117 dynsym_xindex->add(dynsym_index, shndx);
2118 shndx = elfcpp::SHN_XINDEX;
2119 }
ead1e424
ILT
2120 break;
2121
2122 case Symbol::IN_OUTPUT_SEGMENT:
2123 shndx = elfcpp::SHN_ABS;
2124 break;
2125
2126 case Symbol::CONSTANT:
2127 shndx = elfcpp::SHN_ABS;
2128 break;
2129
2130 default:
a3ad94ed 2131 gold_unreachable();
ead1e424 2132 }
61ba1cf9 2133
16649710
ILT
2134 if (sym_index != -1U)
2135 {
55a93433
ILT
2136 sym_index -= first_global_index;
2137 gold_assert(sym_index < output_count);
2138 unsigned char* ps = psyms + (sym_index * sym_size);
7d1a9ebb
ILT
2139 this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
2140 sympool, ps);
16649710 2141 }
61ba1cf9 2142
16649710
ILT
2143 if (dynsym_index != -1U)
2144 {
2145 dynsym_index -= first_dynamic_global_index;
2146 gold_assert(dynsym_index < dynamic_count);
2147 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
7d1a9ebb
ILT
2148 this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
2149 dynpool, pd);
16649710 2150 }
61ba1cf9
ILT
2151 }
2152
c06b7b0b 2153 of->write_output_view(this->offset_, oview_size, psyms);
16649710
ILT
2154 if (dynamic_view != NULL)
2155 of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
2156}
2157
2158// Write out the symbol SYM, in section SHNDX, to P. POOL is the
2159// strtab holding the name.
2160
2161template<int size, bool big_endian>
2162void
ab5c9e90
ILT
2163Symbol_table::sized_write_symbol(
2164 Sized_symbol<size>* sym,
2165 typename elfcpp::Elf_types<size>::Elf_Addr value,
2166 unsigned int shndx,
2167 const Stringpool* pool,
7d1a9ebb 2168 unsigned char* p) const
16649710
ILT
2169{
2170 elfcpp::Sym_write<size, big_endian> osym(p);
2171 osym.put_st_name(pool->get_offset(sym->name()));
ab5c9e90 2172 osym.put_st_value(value);
16649710 2173 osym.put_st_size(sym->symsize());
55a93433
ILT
2174 // A version script may have overridden the default binding.
2175 if (sym->is_forced_local())
2176 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, sym->type()));
2177 else
2178 osym.put_st_info(elfcpp::elf_st_info(sym->binding(), sym->type()));
16649710
ILT
2179 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
2180 osym.put_st_shndx(shndx);
61ba1cf9
ILT
2181}
2182
9a2d6984
ILT
2183// Check for unresolved symbols in shared libraries. This is
2184// controlled by the --allow-shlib-undefined option.
2185
2186// We only warn about libraries for which we have seen all the
2187// DT_NEEDED entries. We don't try to track down DT_NEEDED entries
2188// which were not seen in this link. If we didn't see a DT_NEEDED
2189// entry, we aren't going to be able to reliably report whether the
2190// symbol is undefined.
2191
2192// We also don't warn about libraries found in the system library
2193// directory (the directory were we find libc.so); we assume that
2194// those libraries are OK. This heuristic avoids problems in
2195// GNU/Linux, in which -ldl can have undefined references satisfied by
2196// ld-linux.so.
2197
2198inline void
2199Symbol_table::warn_about_undefined_dynobj_symbol(
2200 const Input_objects* input_objects,
2201 Symbol* sym) const
2202{
d491d34e 2203 bool dummy;
9a2d6984
ILT
2204 if (sym->source() == Symbol::FROM_OBJECT
2205 && sym->object()->is_dynamic()
d491d34e 2206 && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
9a2d6984 2207 && sym->binding() != elfcpp::STB_WEAK
8851ecca
ILT
2208 && !parameters->options().allow_shlib_undefined()
2209 && !parameters->target().is_defined_by_abi(sym)
9a2d6984
ILT
2210 && !input_objects->found_in_system_library_directory(sym->object()))
2211 {
2212 // A very ugly cast.
2213 Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
2214 if (!dynobj->has_unknown_needed_entries())
2215 gold_error(_("%s: undefined reference to '%s'"),
a2b1aa12
ILT
2216 sym->object()->name().c_str(),
2217 sym->demangled_name().c_str());
9a2d6984
ILT
2218 }
2219}
2220
a3ad94ed
ILT
2221// Write out a section symbol. Return the update offset.
2222
2223void
9025d29d 2224Symbol_table::write_section_symbol(const Output_section *os,
d491d34e 2225 Output_symtab_xindex* symtab_xindex,
a3ad94ed
ILT
2226 Output_file* of,
2227 off_t offset) const
2228{
8851ecca 2229 switch (parameters->size_and_endianness())
a3ad94ed 2230 {
9025d29d 2231#ifdef HAVE_TARGET_32_LITTLE
8851ecca 2232 case Parameters::TARGET_32_LITTLE:
d491d34e
ILT
2233 this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
2234 offset);
8851ecca 2235 break;
9025d29d 2236#endif
8851ecca
ILT
2237#ifdef HAVE_TARGET_32_BIG
2238 case Parameters::TARGET_32_BIG:
d491d34e
ILT
2239 this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
2240 offset);
8851ecca 2241 break;
9025d29d 2242#endif
9025d29d 2243#ifdef HAVE_TARGET_64_LITTLE
8851ecca 2244 case Parameters::TARGET_64_LITTLE:
d491d34e
ILT
2245 this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
2246 offset);
8851ecca 2247 break;
9025d29d 2248#endif
8851ecca
ILT
2249#ifdef HAVE_TARGET_64_BIG
2250 case Parameters::TARGET_64_BIG:
d491d34e
ILT
2251 this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
2252 offset);
8851ecca
ILT
2253 break;
2254#endif
2255 default:
2256 gold_unreachable();
a3ad94ed 2257 }
a3ad94ed
ILT
2258}
2259
2260// Write out a section symbol, specialized for size and endianness.
2261
2262template<int size, bool big_endian>
2263void
2264Symbol_table::sized_write_section_symbol(const Output_section* os,
d491d34e 2265 Output_symtab_xindex* symtab_xindex,
a3ad94ed
ILT
2266 Output_file* of,
2267 off_t offset) const
2268{
2269 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2270
2271 unsigned char* pov = of->get_output_view(offset, sym_size);
2272
2273 elfcpp::Sym_write<size, big_endian> osym(pov);
2274 osym.put_st_name(0);
2275 osym.put_st_value(os->address());
2276 osym.put_st_size(0);
2277 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
2278 elfcpp::STT_SECTION));
2279 osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
d491d34e
ILT
2280
2281 unsigned int shndx = os->out_shndx();
2282 if (shndx >= elfcpp::SHN_LORESERVE)
2283 {
2284 symtab_xindex->add(os->symtab_index(), shndx);
2285 shndx = elfcpp::SHN_XINDEX;
2286 }
2287 osym.put_st_shndx(shndx);
a3ad94ed
ILT
2288
2289 of->write_output_view(offset, sym_size, pov);
2290}
2291
abaa3995
ILT
2292// Print statistical information to stderr. This is used for --stats.
2293
2294void
2295Symbol_table::print_stats() const
2296{
2297#if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
2298 fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
2299 program_name, this->table_.size(), this->table_.bucket_count());
2300#else
2301 fprintf(stderr, _("%s: symbol table entries: %zu\n"),
2302 program_name, this->table_.size());
2303#endif
ad8f37d1 2304 this->namepool_.print_stats("symbol table stringpool");
abaa3995
ILT
2305}
2306
ff541f30
ILT
2307// We check for ODR violations by looking for symbols with the same
2308// name for which the debugging information reports that they were
2309// defined in different source locations. When comparing the source
2310// location, we consider instances with the same base filename and
2311// line number to be the same. This is because different object
2312// files/shared libraries can include the same header file using
2313// different paths, and we don't want to report an ODR violation in
2314// that case.
2315
2316// This struct is used to compare line information, as returned by
7bf1f802 2317// Dwarf_line_info::one_addr2line. It implements a < comparison
ff541f30
ILT
2318// operator used with std::set.
2319
2320struct Odr_violation_compare
2321{
2322 bool
2323 operator()(const std::string& s1, const std::string& s2) const
2324 {
2325 std::string::size_type pos1 = s1.rfind('/');
2326 std::string::size_type pos2 = s2.rfind('/');
2327 if (pos1 == std::string::npos
2328 || pos2 == std::string::npos)
2329 return s1 < s2;
2330 return s1.compare(pos1, std::string::npos,
2331 s2, pos2, std::string::npos) < 0;
2332 }
2333};
2334
70e654ba
ILT
2335// Check candidate_odr_violations_ to find symbols with the same name
2336// but apparently different definitions (different source-file/line-no).
2337
2338void
17a1d0a9
ILT
2339Symbol_table::detect_odr_violations(const Task* task,
2340 const char* output_file_name) const
70e654ba
ILT
2341{
2342 for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
2343 it != candidate_odr_violations_.end();
2344 ++it)
2345 {
2346 const char* symbol_name = it->first;
2347 // We use a sorted set so the output is deterministic.
ff541f30 2348 std::set<std::string, Odr_violation_compare> line_nums;
70e654ba 2349
b01c0a4a
ILT
2350 for (Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
2351 locs = it->second.begin();
2352 locs != it->second.end();
2353 ++locs)
70e654ba
ILT
2354 {
2355 // We need to lock the object in order to read it. This
17a1d0a9
ILT
2356 // means that we have to run in a singleton Task. If we
2357 // want to run this in a general Task for better
2358 // performance, we will need one Task for object, plus
2359 // appropriate locking to ensure that we don't conflict with
e4e5049b
CS
2360 // other uses of the object. Also note, one_addr2line is not
2361 // currently thread-safe.
17a1d0a9 2362 Task_lock_obj<Object> tl(task, locs->object);
e4e5049b 2363 // 16 is the size of the object-cache that one_addr2line should use.
a55ce7fe 2364 std::string lineno = Dwarf_line_info::one_addr2line(
e4e5049b 2365 locs->object, locs->shndx, locs->offset, 16);
70e654ba
ILT
2366 if (!lineno.empty())
2367 line_nums.insert(lineno);
2368 }
2369
2370 if (line_nums.size() > 1)
2371 {
dd8670e5 2372 gold_warning(_("while linking %s: symbol '%s' defined in multiple "
78f15696 2373 "places (possible ODR violation):"),
a2b1aa12 2374 output_file_name, demangle(symbol_name).c_str());
70e654ba
ILT
2375 for (std::set<std::string>::const_iterator it2 = line_nums.begin();
2376 it2 != line_nums.end();
2377 ++it2)
2378 fprintf(stderr, " %s\n", it2->c_str());
2379 }
2380 }
e4e5049b
CS
2381 // We only call one_addr2line() in this function, so we can clear its cache.
2382 Dwarf_line_info::clear_addr2line_cache();
70e654ba
ILT
2383}
2384
f6ce93d6
ILT
2385// Warnings functions.
2386
2387// Add a new warning.
2388
2389void
2390Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
cb295612 2391 const std::string& warning)
f6ce93d6
ILT
2392{
2393 name = symtab->canonicalize_name(name);
cb295612 2394 this->warnings_[name].set(obj, warning);
f6ce93d6
ILT
2395}
2396
2397// Look through the warnings and mark the symbols for which we should
2398// warn. This is called during Layout::finalize when we know the
2399// sources for all the symbols.
2400
2401void
cb295612 2402Warnings::note_warnings(Symbol_table* symtab)
f6ce93d6
ILT
2403{
2404 for (Warning_table::iterator p = this->warnings_.begin();
2405 p != this->warnings_.end();
2406 ++p)
2407 {
2408 Symbol* sym = symtab->lookup(p->first, NULL);
2409 if (sym != NULL
2410 && sym->source() == Symbol::FROM_OBJECT
2411 && sym->object() == p->second.object)
cb295612 2412 sym->set_has_warning();
f6ce93d6
ILT
2413 }
2414}
2415
2416// Issue a warning. This is called when we see a relocation against a
2417// symbol for which has a warning.
2418
75f2446e 2419template<int size, bool big_endian>
f6ce93d6 2420void
75f2446e
ILT
2421Warnings::issue_warning(const Symbol* sym,
2422 const Relocate_info<size, big_endian>* relinfo,
2423 size_t relnum, off_t reloffset) const
f6ce93d6 2424{
a3ad94ed 2425 gold_assert(sym->has_warning());
f6ce93d6 2426 Warning_table::const_iterator p = this->warnings_.find(sym->name());
a3ad94ed 2427 gold_assert(p != this->warnings_.end());
75f2446e
ILT
2428 gold_warning_at_location(relinfo, relnum, reloffset,
2429 "%s", p->second.text.c_str());
f6ce93d6
ILT
2430}
2431
14bfc3f5
ILT
2432// Instantiate the templates we need. We could use the configure
2433// script to restrict this to only the ones needed for implemented
2434// targets.
2435
c7912668
ILT
2436#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2437template
2438void
2439Sized_symbol<32>::allocate_common(Output_data*, Value_type);
2440#endif
2441
2442#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2443template
2444void
2445Sized_symbol<64>::allocate_common(Output_data*, Value_type);
2446#endif
2447
193a53d9 2448#ifdef HAVE_TARGET_32_LITTLE
14bfc3f5
ILT
2449template
2450void
193a53d9
ILT
2451Symbol_table::add_from_relobj<32, false>(
2452 Sized_relobj<32, false>* relobj,
f6ce93d6 2453 const unsigned char* syms,
14bfc3f5 2454 size_t count,
d491d34e 2455 size_t symndx_offset,
14bfc3f5
ILT
2456 const char* sym_names,
2457 size_t sym_name_size,
730cdc88 2458 Sized_relobj<32, true>::Symbols* sympointers);
193a53d9 2459#endif
14bfc3f5 2460
193a53d9 2461#ifdef HAVE_TARGET_32_BIG
14bfc3f5
ILT
2462template
2463void
193a53d9
ILT
2464Symbol_table::add_from_relobj<32, true>(
2465 Sized_relobj<32, true>* relobj,
f6ce93d6 2466 const unsigned char* syms,
14bfc3f5 2467 size_t count,
d491d34e 2468 size_t symndx_offset,
14bfc3f5
ILT
2469 const char* sym_names,
2470 size_t sym_name_size,
730cdc88 2471 Sized_relobj<32, false>::Symbols* sympointers);
193a53d9 2472#endif
14bfc3f5 2473
193a53d9 2474#ifdef HAVE_TARGET_64_LITTLE
14bfc3f5
ILT
2475template
2476void
193a53d9
ILT
2477Symbol_table::add_from_relobj<64, false>(
2478 Sized_relobj<64, false>* relobj,
f6ce93d6 2479 const unsigned char* syms,
14bfc3f5 2480 size_t count,
d491d34e 2481 size_t symndx_offset,
14bfc3f5
ILT
2482 const char* sym_names,
2483 size_t sym_name_size,
730cdc88 2484 Sized_relobj<64, true>::Symbols* sympointers);
193a53d9 2485#endif
14bfc3f5 2486
193a53d9 2487#ifdef HAVE_TARGET_64_BIG
14bfc3f5
ILT
2488template
2489void
193a53d9
ILT
2490Symbol_table::add_from_relobj<64, true>(
2491 Sized_relobj<64, true>* relobj,
f6ce93d6 2492 const unsigned char* syms,
14bfc3f5 2493 size_t count,
d491d34e 2494 size_t symndx_offset,
14bfc3f5
ILT
2495 const char* sym_names,
2496 size_t sym_name_size,
730cdc88 2497 Sized_relobj<64, false>::Symbols* sympointers);
193a53d9 2498#endif
14bfc3f5 2499
193a53d9 2500#ifdef HAVE_TARGET_32_LITTLE
dbe717ef
ILT
2501template
2502void
193a53d9
ILT
2503Symbol_table::add_from_dynobj<32, false>(
2504 Sized_dynobj<32, false>* dynobj,
dbe717ef
ILT
2505 const unsigned char* syms,
2506 size_t count,
2507 const char* sym_names,
2508 size_t sym_name_size,
2509 const unsigned char* versym,
2510 size_t versym_size,
2511 const std::vector<const char*>* version_map);
193a53d9 2512#endif
dbe717ef 2513
193a53d9 2514#ifdef HAVE_TARGET_32_BIG
dbe717ef
ILT
2515template
2516void
193a53d9
ILT
2517Symbol_table::add_from_dynobj<32, true>(
2518 Sized_dynobj<32, true>* dynobj,
dbe717ef
ILT
2519 const unsigned char* syms,
2520 size_t count,
2521 const char* sym_names,
2522 size_t sym_name_size,
2523 const unsigned char* versym,
2524 size_t versym_size,
2525 const std::vector<const char*>* version_map);
193a53d9 2526#endif
dbe717ef 2527
193a53d9 2528#ifdef HAVE_TARGET_64_LITTLE
dbe717ef
ILT
2529template
2530void
193a53d9
ILT
2531Symbol_table::add_from_dynobj<64, false>(
2532 Sized_dynobj<64, false>* dynobj,
dbe717ef
ILT
2533 const unsigned char* syms,
2534 size_t count,
2535 const char* sym_names,
2536 size_t sym_name_size,
2537 const unsigned char* versym,
2538 size_t versym_size,
2539 const std::vector<const char*>* version_map);
193a53d9 2540#endif
dbe717ef 2541
193a53d9 2542#ifdef HAVE_TARGET_64_BIG
dbe717ef
ILT
2543template
2544void
193a53d9
ILT
2545Symbol_table::add_from_dynobj<64, true>(
2546 Sized_dynobj<64, true>* dynobj,
dbe717ef
ILT
2547 const unsigned char* syms,
2548 size_t count,
2549 const char* sym_names,
2550 size_t sym_name_size,
2551 const unsigned char* versym,
2552 size_t versym_size,
2553 const std::vector<const char*>* version_map);
193a53d9 2554#endif
dbe717ef 2555
46fe1623
ILT
2556#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2557template
2558void
fe8718a4 2559Symbol_table::define_with_copy_reloc<32>(
fe8718a4
ILT
2560 Sized_symbol<32>* sym,
2561 Output_data* posd,
2562 elfcpp::Elf_types<32>::Elf_Addr value);
46fe1623
ILT
2563#endif
2564
2565#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2566template
2567void
fe8718a4 2568Symbol_table::define_with_copy_reloc<64>(
fe8718a4
ILT
2569 Sized_symbol<64>* sym,
2570 Output_data* posd,
2571 elfcpp::Elf_types<64>::Elf_Addr value);
46fe1623
ILT
2572#endif
2573
75f2446e
ILT
2574#ifdef HAVE_TARGET_32_LITTLE
2575template
2576void
2577Warnings::issue_warning<32, false>(const Symbol* sym,
2578 const Relocate_info<32, false>* relinfo,
2579 size_t relnum, off_t reloffset) const;
2580#endif
2581
2582#ifdef HAVE_TARGET_32_BIG
2583template
2584void
2585Warnings::issue_warning<32, true>(const Symbol* sym,
2586 const Relocate_info<32, true>* relinfo,
2587 size_t relnum, off_t reloffset) const;
2588#endif
2589
2590#ifdef HAVE_TARGET_64_LITTLE
2591template
2592void
2593Warnings::issue_warning<64, false>(const Symbol* sym,
2594 const Relocate_info<64, false>* relinfo,
2595 size_t relnum, off_t reloffset) const;
2596#endif
2597
2598#ifdef HAVE_TARGET_64_BIG
2599template
2600void
2601Warnings::issue_warning<64, true>(const Symbol* sym,
2602 const Relocate_info<64, true>* relinfo,
2603 size_t relnum, off_t reloffset) const;
2604#endif
2605
14bfc3f5 2606} // End namespace gold.