]> git.ipfire.org Git - thirdparty/qemu.git/blame - hw/intc/armv7m_nvic.c
Include migration/vmstate.h less
[thirdparty/qemu.git] / hw / intc / armv7m_nvic.c
CommitLineData
9ee6e8bb
PB
1/*
2 * ARM Nested Vectored Interrupt Controller
3 *
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
6 *
8e31bf38 7 * This code is licensed under the GPL.
9ee6e8bb
PB
8 *
9 * The ARMv7M System controller is fairly tightly tied in with the
10 * NVIC. Much of that is also implemented here.
11 */
12
8ef94f0b 13#include "qemu/osdep.h"
da34e65c 14#include "qapi/error.h"
33c11879 15#include "cpu.h"
83c9f4ca 16#include "hw/sysbus.h"
d6454270 17#include "migration/vmstate.h"
1de7afc9 18#include "qemu/timer.h"
d2db1de6 19#include "hw/intc/armv7m_nvic.h"
64552b6b 20#include "hw/irq.h"
da6d674e 21#include "target/arm/cpu.h"
29c483a5 22#include "exec/exec-all.h"
03dd024f 23#include "qemu/log.h"
0b8fa32f 24#include "qemu/module.h"
da6d674e
MD
25#include "trace.h"
26
27/* IRQ number counting:
28 *
29 * the num-irq property counts the number of external IRQ lines
30 *
31 * NVICState::num_irq counts the total number of exceptions
32 * (external IRQs, the 15 internal exceptions including reset,
33 * and one for the unused exception number 0).
34 *
35 * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines.
36 *
37 * NVIC_MAX_VECTORS is the highest permitted number of exceptions.
38 *
39 * Iterating through all exceptions should typically be done with
40 * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0.
41 *
42 * The external qemu_irq lines are the NVIC's external IRQ lines,
43 * so line 0 is exception 16.
44 *
45 * In the terminology of the architecture manual, "interrupts" are
46 * a subcategory of exception referring to the external interrupts
47 * (which are exception numbers NVIC_FIRST_IRQ and upward).
48 * For historical reasons QEMU tends to use "interrupt" and
49 * "exception" more or less interchangeably.
50 */
17906a16 51#define NVIC_FIRST_IRQ NVIC_INTERNAL_VECTORS
da6d674e
MD
52#define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ)
53
54/* Effective running priority of the CPU when no exception is active
55 * (higher than the highest possible priority value)
56 */
57#define NVIC_NOEXC_PRIO 0x100
ff96c64a
PM
58/* Maximum priority of non-secure exceptions when AIRCR.PRIS is set */
59#define NVIC_NS_PRIO_LIMIT 0x80
da6d674e 60
2a29ddee
PM
61static const uint8_t nvic_id[] = {
62 0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1
63};
64
da6d674e
MD
65static int nvic_pending_prio(NVICState *s)
66{
5255fcf8 67 /* return the group priority of the current pending interrupt,
da6d674e
MD
68 * or NVIC_NOEXC_PRIO if no interrupt is pending
69 */
5255fcf8 70 return s->vectpending_prio;
da6d674e
MD
71}
72
73/* Return the value of the ISCR RETTOBASE bit:
74 * 1 if there is exactly one active exception
75 * 0 if there is more than one active exception
76 * UNKNOWN if there are no active exceptions (we choose 1,
77 * which matches the choice Cortex-M3 is documented as making).
78 *
79 * NB: some versions of the documentation talk about this
80 * counting "active exceptions other than the one shown by IPSR";
81 * this is only different in the obscure corner case where guest
82 * code has manually deactivated an exception and is about
83 * to fail an exception-return integrity check. The definition
84 * above is the one from the v8M ARM ARM and is also in line
85 * with the behaviour documented for the Cortex-M3.
86 */
87static bool nvic_rettobase(NVICState *s)
88{
89 int irq, nhand = 0;
028b0da4 90 bool check_sec = arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
da6d674e
MD
91
92 for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) {
028b0da4
PM
93 if (s->vectors[irq].active ||
94 (check_sec && irq < NVIC_INTERNAL_VECTORS &&
95 s->sec_vectors[irq].active)) {
da6d674e
MD
96 nhand++;
97 if (nhand == 2) {
98 return 0;
99 }
100 }
101 }
102
103 return 1;
104}
105
106/* Return the value of the ISCR ISRPENDING bit:
107 * 1 if an external interrupt is pending
108 * 0 if no external interrupt is pending
109 */
110static bool nvic_isrpending(NVICState *s)
111{
112 int irq;
113
114 /* We can shortcut if the highest priority pending interrupt
115 * happens to be external or if there is nothing pending.
116 */
117 if (s->vectpending > NVIC_FIRST_IRQ) {
118 return true;
119 }
120 if (s->vectpending == 0) {
121 return false;
122 }
123
124 for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) {
125 if (s->vectors[irq].pending) {
126 return true;
127 }
128 }
129 return false;
130}
131
ff96c64a
PM
132static bool exc_is_banked(int exc)
133{
134 /* Return true if this is one of the limited set of exceptions which
135 * are banked (and thus have state in sec_vectors[])
136 */
137 return exc == ARMV7M_EXCP_HARD ||
138 exc == ARMV7M_EXCP_MEM ||
139 exc == ARMV7M_EXCP_USAGE ||
140 exc == ARMV7M_EXCP_SVC ||
141 exc == ARMV7M_EXCP_PENDSV ||
142 exc == ARMV7M_EXCP_SYSTICK;
143}
144
da6d674e
MD
145/* Return a mask word which clears the subpriority bits from
146 * a priority value for an M-profile exception, leaving only
147 * the group priority.
148 */
ff96c64a 149static inline uint32_t nvic_gprio_mask(NVICState *s, bool secure)
da6d674e 150{
ff96c64a
PM
151 return ~0U << (s->prigroup[secure] + 1);
152}
153
154static bool exc_targets_secure(NVICState *s, int exc)
155{
156 /* Return true if this non-banked exception targets Secure state. */
157 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
158 return false;
159 }
160
161 if (exc >= NVIC_FIRST_IRQ) {
162 return !s->itns[exc];
163 }
164
165 /* Function shouldn't be called for banked exceptions. */
166 assert(!exc_is_banked(exc));
167
168 switch (exc) {
169 case ARMV7M_EXCP_NMI:
170 case ARMV7M_EXCP_BUS:
171 return !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
172 case ARMV7M_EXCP_SECURE:
173 return true;
174 case ARMV7M_EXCP_DEBUG:
175 /* TODO: controlled by DEMCR.SDME, which we don't yet implement */
176 return false;
177 default:
178 /* reset, and reserved (unused) low exception numbers.
179 * We'll get called by code that loops through all the exception
180 * numbers, but it doesn't matter what we return here as these
181 * non-existent exceptions will never be pended or active.
182 */
183 return true;
184 }
185}
186
187static int exc_group_prio(NVICState *s, int rawprio, bool targets_secure)
188{
189 /* Return the group priority for this exception, given its raw
190 * (group-and-subgroup) priority value and whether it is targeting
191 * secure state or not.
192 */
193 if (rawprio < 0) {
194 return rawprio;
195 }
196 rawprio &= nvic_gprio_mask(s, targets_secure);
197 /* AIRCR.PRIS causes us to squash all NS priorities into the
198 * lower half of the total range
199 */
200 if (!targets_secure &&
201 (s->cpu->env.v7m.aircr & R_V7M_AIRCR_PRIS_MASK)) {
202 rawprio = (rawprio >> 1) + NVIC_NS_PRIO_LIMIT;
203 }
204 return rawprio;
205}
206
207/* Recompute vectpending and exception_prio for a CPU which implements
208 * the Security extension
209 */
210static void nvic_recompute_state_secure(NVICState *s)
211{
212 int i, bank;
213 int pend_prio = NVIC_NOEXC_PRIO;
214 int active_prio = NVIC_NOEXC_PRIO;
215 int pend_irq = 0;
216 bool pending_is_s_banked = false;
b01e2f02 217 int pend_subprio = 0;
ff96c64a
PM
218
219 /* R_CQRV: precedence is by:
220 * - lowest group priority; if both the same then
221 * - lowest subpriority; if both the same then
222 * - lowest exception number; if both the same (ie banked) then
223 * - secure exception takes precedence
224 * Compare pseudocode RawExecutionPriority.
225 * Annoyingly, now we have two prigroup values (for S and NS)
226 * we can't do the loop comparison on raw priority values.
227 */
228 for (i = 1; i < s->num_irq; i++) {
229 for (bank = M_REG_S; bank >= M_REG_NS; bank--) {
230 VecInfo *vec;
b01e2f02 231 int prio, subprio;
ff96c64a
PM
232 bool targets_secure;
233
234 if (bank == M_REG_S) {
235 if (!exc_is_banked(i)) {
236 continue;
237 }
238 vec = &s->sec_vectors[i];
239 targets_secure = true;
240 } else {
241 vec = &s->vectors[i];
242 targets_secure = !exc_is_banked(i) && exc_targets_secure(s, i);
243 }
244
245 prio = exc_group_prio(s, vec->prio, targets_secure);
b01e2f02
PM
246 subprio = vec->prio & ~nvic_gprio_mask(s, targets_secure);
247 if (vec->enabled && vec->pending &&
248 ((prio < pend_prio) ||
249 (prio == pend_prio && prio >= 0 && subprio < pend_subprio))) {
ff96c64a 250 pend_prio = prio;
b01e2f02 251 pend_subprio = subprio;
ff96c64a
PM
252 pend_irq = i;
253 pending_is_s_banked = (bank == M_REG_S);
254 }
255 if (vec->active && prio < active_prio) {
256 active_prio = prio;
257 }
258 }
259 }
260
261 s->vectpending_is_s_banked = pending_is_s_banked;
262 s->vectpending = pend_irq;
263 s->vectpending_prio = pend_prio;
264 s->exception_prio = active_prio;
265
266 trace_nvic_recompute_state_secure(s->vectpending,
267 s->vectpending_is_s_banked,
268 s->vectpending_prio,
269 s->exception_prio);
da6d674e
MD
270}
271
272/* Recompute vectpending and exception_prio */
273static void nvic_recompute_state(NVICState *s)
274{
275 int i;
276 int pend_prio = NVIC_NOEXC_PRIO;
277 int active_prio = NVIC_NOEXC_PRIO;
278 int pend_irq = 0;
279
ff96c64a
PM
280 /* In theory we could write one function that handled both
281 * the "security extension present" and "not present"; however
282 * the security related changes significantly complicate the
283 * recomputation just by themselves and mixing both cases together
284 * would be even worse, so we retain a separate non-secure-only
285 * version for CPUs which don't implement the security extension.
286 */
287 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
288 nvic_recompute_state_secure(s);
289 return;
290 }
291
da6d674e
MD
292 for (i = 1; i < s->num_irq; i++) {
293 VecInfo *vec = &s->vectors[i];
294
295 if (vec->enabled && vec->pending && vec->prio < pend_prio) {
296 pend_prio = vec->prio;
297 pend_irq = i;
298 }
299 if (vec->active && vec->prio < active_prio) {
300 active_prio = vec->prio;
301 }
302 }
303
22a9c26a 304 if (active_prio > 0) {
ff96c64a 305 active_prio &= nvic_gprio_mask(s, false);
22a9c26a
PM
306 }
307
5255fcf8 308 if (pend_prio > 0) {
ff96c64a 309 pend_prio &= nvic_gprio_mask(s, false);
5255fcf8
PM
310 }
311
da6d674e 312 s->vectpending = pend_irq;
5255fcf8 313 s->vectpending_prio = pend_prio;
22a9c26a 314 s->exception_prio = active_prio;
da6d674e 315
5255fcf8
PM
316 trace_nvic_recompute_state(s->vectpending,
317 s->vectpending_prio,
318 s->exception_prio);
da6d674e
MD
319}
320
321/* Return the current execution priority of the CPU
322 * (equivalent to the pseudocode ExecutionPriority function).
323 * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO.
324 */
325static inline int nvic_exec_prio(NVICState *s)
326{
327 CPUARMState *env = &s->cpu->env;
49c80c38 328 int running = NVIC_NOEXC_PRIO;
da6d674e 329
49c80c38
PM
330 if (env->v7m.basepri[M_REG_NS] > 0) {
331 running = exc_group_prio(s, env->v7m.basepri[M_REG_NS], M_REG_NS);
332 }
333
334 if (env->v7m.basepri[M_REG_S] > 0) {
335 int basepri = exc_group_prio(s, env->v7m.basepri[M_REG_S], M_REG_S);
336 if (running > basepri) {
337 running = basepri;
338 }
339 }
340
341 if (env->v7m.primask[M_REG_NS]) {
342 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
343 if (running > NVIC_NS_PRIO_LIMIT) {
344 running = NVIC_NS_PRIO_LIMIT;
345 }
346 } else {
347 running = 0;
348 }
349 }
350
351 if (env->v7m.primask[M_REG_S]) {
da6d674e 352 running = 0;
da6d674e 353 }
49c80c38
PM
354
355 if (env->v7m.faultmask[M_REG_NS]) {
356 if (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
357 running = -1;
358 } else {
359 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
360 if (running > NVIC_NS_PRIO_LIMIT) {
361 running = NVIC_NS_PRIO_LIMIT;
362 }
363 } else {
364 running = 0;
365 }
366 }
367 }
368
369 if (env->v7m.faultmask[M_REG_S]) {
370 running = (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) ? -3 : -1;
371 }
372
da6d674e
MD
373 /* consider priority of active handler */
374 return MIN(running, s->exception_prio);
375}
376
5d479199
PM
377bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
378{
379 /* Return true if the requested execution priority is negative
380 * for the specified security state, ie that security state
381 * has an active NMI or HardFault or has set its FAULTMASK.
382 * Note that this is not the same as whether the execution
383 * priority is actually negative (for instance AIRCR.PRIS may
384 * mean we don't allow FAULTMASK_NS to actually make the execution
385 * priority negative). Compare pseudocode IsReqExcPriNeg().
386 */
387 NVICState *s = opaque;
388
389 if (s->cpu->env.v7m.faultmask[secure]) {
390 return true;
391 }
392
393 if (secure ? s->sec_vectors[ARMV7M_EXCP_HARD].active :
394 s->vectors[ARMV7M_EXCP_HARD].active) {
395 return true;
396 }
397
398 if (s->vectors[ARMV7M_EXCP_NMI].active &&
399 exc_targets_secure(s, ARMV7M_EXCP_NMI) == secure) {
400 return true;
401 }
402
403 return false;
404}
405
7ecdaa4a
PM
406bool armv7m_nvic_can_take_pending_exception(void *opaque)
407{
408 NVICState *s = opaque;
409
410 return nvic_exec_prio(s) > nvic_pending_prio(s);
411}
412
42a6686b
PM
413int armv7m_nvic_raw_execution_priority(void *opaque)
414{
415 NVICState *s = opaque;
416
417 return s->exception_prio;
418}
419
e6a0d350
PM
420/* caller must call nvic_irq_update() after this.
421 * secure indicates the bank to use for banked exceptions (we assert if
422 * we are passed secure=true for a non-banked exception).
423 */
424static void set_prio(NVICState *s, unsigned irq, bool secure, uint8_t prio)
da6d674e
MD
425{
426 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
427 assert(irq < s->num_irq);
428
c4379b48
JS
429 prio &= MAKE_64BIT_MASK(8 - s->num_prio_bits, s->num_prio_bits);
430
e6a0d350
PM
431 if (secure) {
432 assert(exc_is_banked(irq));
433 s->sec_vectors[irq].prio = prio;
434 } else {
435 s->vectors[irq].prio = prio;
436 }
437
438 trace_nvic_set_prio(irq, secure, prio);
439}
440
441/* Return the current raw priority register value.
442 * secure indicates the bank to use for banked exceptions (we assert if
443 * we are passed secure=true for a non-banked exception).
444 */
445static int get_prio(NVICState *s, unsigned irq, bool secure)
446{
447 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
448 assert(irq < s->num_irq);
da6d674e 449
e6a0d350
PM
450 if (secure) {
451 assert(exc_is_banked(irq));
452 return s->sec_vectors[irq].prio;
453 } else {
454 return s->vectors[irq].prio;
455 }
da6d674e
MD
456}
457
458/* Recompute state and assert irq line accordingly.
459 * Must be called after changes to:
460 * vec->active, vec->enabled, vec->pending or vec->prio for any vector
461 * prigroup
462 */
463static void nvic_irq_update(NVICState *s)
464{
465 int lvl;
466 int pend_prio;
467
468 nvic_recompute_state(s);
469 pend_prio = nvic_pending_prio(s);
470
471 /* Raise NVIC output if this IRQ would be taken, except that we
472 * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which
473 * will be checked for in arm_v7m_cpu_exec_interrupt()); changes
474 * to those CPU registers don't cause us to recalculate the NVIC
475 * pending info.
476 */
477 lvl = (pend_prio < s->exception_prio);
478 trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl);
479 qemu_set_irq(s->excpout, lvl);
480}
481
2fb50a33
PM
482/**
483 * armv7m_nvic_clear_pending: mark the specified exception as not pending
484 * @opaque: the NVIC
485 * @irq: the exception number to mark as not pending
486 * @secure: false for non-banked exceptions or for the nonsecure
487 * version of a banked exception, true for the secure version of a banked
488 * exception.
489 *
490 * Marks the specified exception as not pending. Note that we will assert()
491 * if @secure is true and @irq does not specify one of the fixed set
492 * of architecturally banked exceptions.
493 */
494static void armv7m_nvic_clear_pending(void *opaque, int irq, bool secure)
da6d674e
MD
495{
496 NVICState *s = (NVICState *)opaque;
497 VecInfo *vec;
498
499 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
500
2fb50a33
PM
501 if (secure) {
502 assert(exc_is_banked(irq));
503 vec = &s->sec_vectors[irq];
504 } else {
505 vec = &s->vectors[irq];
506 }
507 trace_nvic_clear_pending(irq, secure, vec->enabled, vec->prio);
da6d674e
MD
508 if (vec->pending) {
509 vec->pending = 0;
510 nvic_irq_update(s);
511 }
512}
513
5ede82b8
PM
514static void do_armv7m_nvic_set_pending(void *opaque, int irq, bool secure,
515 bool derived)
9ee6e8bb 516{
5ede82b8
PM
517 /* Pend an exception, including possibly escalating it to HardFault.
518 *
519 * This function handles both "normal" pending of interrupts and
520 * exceptions, and also derived exceptions (ones which occur as
521 * a result of trying to take some other exception).
522 *
523 * If derived == true, the caller guarantees that we are part way through
524 * trying to take an exception (but have not yet called
525 * armv7m_nvic_acknowledge_irq() to make it active), and so:
526 * - s->vectpending is the "original exception" we were trying to take
527 * - irq is the "derived exception"
528 * - nvic_exec_prio(s) gives the priority before exception entry
529 * Here we handle the prioritization logic which the pseudocode puts
530 * in the DerivedLateArrival() function.
531 */
532
f797c075 533 NVICState *s = (NVICState *)opaque;
2fb50a33 534 bool banked = exc_is_banked(irq);
da6d674e 535 VecInfo *vec;
1a5182c0 536 bool targets_secure;
da6d674e
MD
537
538 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
2fb50a33 539 assert(!secure || banked);
da6d674e 540
2fb50a33 541 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
a73c98e1 542
1a5182c0
PM
543 targets_secure = banked ? secure : exc_targets_secure(s, irq);
544
545 trace_nvic_set_pending(irq, secure, targets_secure,
546 derived, vec->enabled, vec->prio);
5ede82b8
PM
547
548 if (derived) {
549 /* Derived exceptions are always synchronous. */
550 assert(irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV);
551
552 if (irq == ARMV7M_EXCP_DEBUG &&
553 exc_group_prio(s, vec->prio, secure) >= nvic_exec_prio(s)) {
554 /* DebugMonitorFault, but its priority is lower than the
555 * preempted exception priority: just ignore it.
556 */
557 return;
558 }
559
560 if (irq == ARMV7M_EXCP_HARD && vec->prio >= s->vectpending_prio) {
561 /* If this is a terminal exception (one which means we cannot
562 * take the original exception, like a failure to read its
563 * vector table entry), then we must take the derived exception.
564 * If the derived exception can't take priority over the
565 * original exception, then we go into Lockup.
566 *
567 * For QEMU, we rely on the fact that a derived exception is
568 * terminal if and only if it's reported to us as HardFault,
569 * which saves having to have an extra argument is_terminal
570 * that we'd only use in one place.
571 */
572 cpu_abort(&s->cpu->parent_obj,
573 "Lockup: can't take terminal derived exception "
574 "(original exception priority %d)\n",
575 s->vectpending_prio);
576 }
577 /* We now continue with the same code as for a normal pending
578 * exception, which will cause us to pend the derived exception.
579 * We'll then take either the original or the derived exception
580 * based on which is higher priority by the usual mechanism
581 * for selecting the highest priority pending interrupt.
582 */
583 }
a73c98e1
MD
584
585 if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) {
586 /* If a synchronous exception is pending then it may be
587 * escalated to HardFault if:
588 * * it is equal or lower priority to current execution
589 * * it is disabled
590 * (ie we need to take it immediately but we can't do so).
591 * Asynchronous exceptions (and interrupts) simply remain pending.
592 *
593 * For QEMU, we don't have any imprecise (asynchronous) faults,
594 * so we can assume that PREFETCH_ABORT and DATA_ABORT are always
595 * synchronous.
596 * Debug exceptions are awkward because only Debug exceptions
597 * resulting from the BKPT instruction should be escalated,
598 * but we don't currently implement any Debug exceptions other
599 * than those that result from BKPT, so we treat all debug exceptions
600 * as needing escalation.
601 *
602 * This all means we can identify whether to escalate based only on
603 * the exception number and don't (yet) need the caller to explicitly
604 * tell us whether this exception is synchronous or not.
605 */
606 int running = nvic_exec_prio(s);
607 bool escalate = false;
608
80ac2390 609 if (exc_group_prio(s, vec->prio, secure) >= running) {
a73c98e1
MD
610 trace_nvic_escalate_prio(irq, vec->prio, running);
611 escalate = true;
612 } else if (!vec->enabled) {
613 trace_nvic_escalate_disabled(irq);
614 escalate = true;
615 }
616
617 if (escalate) {
a73c98e1 618
94a34abe 619 /* We need to escalate this exception to a synchronous HardFault.
2fb50a33
PM
620 * If BFHFNMINS is set then we escalate to the banked HF for
621 * the target security state of the original exception; otherwise
622 * we take a Secure HardFault.
623 */
a73c98e1 624 irq = ARMV7M_EXCP_HARD;
2fb50a33 625 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) &&
1a5182c0 626 (targets_secure ||
2fb50a33
PM
627 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) {
628 vec = &s->sec_vectors[irq];
629 } else {
630 vec = &s->vectors[irq];
631 }
94a34abe
PM
632 if (running <= vec->prio) {
633 /* We want to escalate to HardFault but we can't take the
634 * synchronous HardFault at this point either. This is a
635 * Lockup condition due to a guest bug. We don't model
636 * Lockup, so report via cpu_abort() instead.
637 */
638 cpu_abort(&s->cpu->parent_obj,
639 "Lockup: can't escalate %d to HardFault "
640 "(current priority %d)\n", irq, running);
641 }
642
2fb50a33 643 /* HF may be banked but there is only one shared HFSR */
a73c98e1
MD
644 s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
645 }
646 }
647
da6d674e
MD
648 if (!vec->pending) {
649 vec->pending = 1;
650 nvic_irq_update(s);
651 }
9ee6e8bb
PB
652}
653
5ede82b8
PM
654void armv7m_nvic_set_pending(void *opaque, int irq, bool secure)
655{
656 do_armv7m_nvic_set_pending(opaque, irq, secure, false);
657}
658
659void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure)
660{
661 do_armv7m_nvic_set_pending(opaque, irq, secure, true);
662}
663
a99ba8ab
PM
664void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure)
665{
666 /*
667 * Pend an exception during lazy FP stacking. This differs
668 * from the usual exception pending because the logic for
669 * whether we should escalate depends on the saved context
670 * in the FPCCR register, not on the current state of the CPU/NVIC.
671 */
672 NVICState *s = (NVICState *)opaque;
673 bool banked = exc_is_banked(irq);
674 VecInfo *vec;
675 bool targets_secure;
676 bool escalate = false;
677 /*
678 * We will only look at bits in fpccr if this is a banked exception
679 * (in which case 'secure' tells us whether it is the S or NS version).
680 * All the bits for the non-banked exceptions are in fpccr_s.
681 */
682 uint32_t fpccr_s = s->cpu->env.v7m.fpccr[M_REG_S];
683 uint32_t fpccr = s->cpu->env.v7m.fpccr[secure];
684
685 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
686 assert(!secure || banked);
687
688 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
689
690 targets_secure = banked ? secure : exc_targets_secure(s, irq);
691
692 switch (irq) {
693 case ARMV7M_EXCP_DEBUG:
694 if (!(fpccr_s & R_V7M_FPCCR_MONRDY_MASK)) {
695 /* Ignore DebugMonitor exception */
696 return;
697 }
698 break;
699 case ARMV7M_EXCP_MEM:
700 escalate = !(fpccr & R_V7M_FPCCR_MMRDY_MASK);
701 break;
702 case ARMV7M_EXCP_USAGE:
703 escalate = !(fpccr & R_V7M_FPCCR_UFRDY_MASK);
704 break;
705 case ARMV7M_EXCP_BUS:
706 escalate = !(fpccr_s & R_V7M_FPCCR_BFRDY_MASK);
707 break;
708 case ARMV7M_EXCP_SECURE:
709 escalate = !(fpccr_s & R_V7M_FPCCR_SFRDY_MASK);
710 break;
711 default:
712 g_assert_not_reached();
713 }
714
715 if (escalate) {
716 /*
717 * Escalate to HardFault: faults that initially targeted Secure
718 * continue to do so, even if HF normally targets NonSecure.
719 */
720 irq = ARMV7M_EXCP_HARD;
721 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) &&
722 (targets_secure ||
723 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) {
724 vec = &s->sec_vectors[irq];
725 } else {
726 vec = &s->vectors[irq];
727 }
728 }
729
730 if (!vec->enabled ||
731 nvic_exec_prio(s) <= exc_group_prio(s, vec->prio, secure)) {
732 if (!(fpccr_s & R_V7M_FPCCR_HFRDY_MASK)) {
733 /*
734 * We want to escalate to HardFault but the context the
735 * FP state belongs to prevents the exception pre-empting.
736 */
737 cpu_abort(&s->cpu->parent_obj,
738 "Lockup: can't escalate to HardFault during "
739 "lazy FP register stacking\n");
740 }
741 }
742
743 if (escalate) {
744 s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
745 }
746 if (!vec->pending) {
747 vec->pending = 1;
748 /*
749 * We do not call nvic_irq_update(), because we know our caller
750 * is going to handle causing us to take the exception by
751 * raising EXCP_LAZYFP, so raising the IRQ line would be
752 * pointless extra work. We just need to recompute the
753 * priorities so that armv7m_nvic_can_take_pending_exception()
754 * returns the right answer.
755 */
756 nvic_recompute_state(s);
757 }
758}
759
9ee6e8bb 760/* Make pending IRQ active. */
6c948518 761void armv7m_nvic_acknowledge_irq(void *opaque)
9ee6e8bb 762{
f797c075 763 NVICState *s = (NVICState *)opaque;
da6d674e
MD
764 CPUARMState *env = &s->cpu->env;
765 const int pending = s->vectpending;
766 const int running = nvic_exec_prio(s);
da6d674e
MD
767 VecInfo *vec;
768
769 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
770
5cb18069
PM
771 if (s->vectpending_is_s_banked) {
772 vec = &s->sec_vectors[pending];
5cb18069
PM
773 } else {
774 vec = &s->vectors[pending];
5cb18069 775 }
da6d674e
MD
776
777 assert(vec->enabled);
778 assert(vec->pending);
779
5255fcf8 780 assert(s->vectpending_prio < running);
da6d674e 781
6c948518 782 trace_nvic_acknowledge_irq(pending, s->vectpending_prio);
da6d674e
MD
783
784 vec->active = 1;
785 vec->pending = 0;
786
de2db7ec 787 write_v7m_exception(env, s->vectpending);
da6d674e
MD
788
789 nvic_irq_update(s);
6c948518
PM
790}
791
792void armv7m_nvic_get_pending_irq_info(void *opaque,
793 int *pirq, bool *ptargets_secure)
794{
795 NVICState *s = (NVICState *)opaque;
796 const int pending = s->vectpending;
797 bool targets_secure;
798
799 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
800
801 if (s->vectpending_is_s_banked) {
802 targets_secure = true;
803 } else {
804 targets_secure = !exc_is_banked(pending) &&
805 exc_targets_secure(s, pending);
806 }
807
808 trace_nvic_get_pending_irq_info(pending, targets_secure);
5cb18069 809
6c948518
PM
810 *ptargets_secure = targets_secure;
811 *pirq = pending;
9ee6e8bb
PB
812}
813
5cb18069 814int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure)
9ee6e8bb 815{
f797c075 816 NVICState *s = (NVICState *)opaque;
077d7449 817 VecInfo *vec = NULL;
aa488fe3 818 int ret;
da6d674e
MD
819
820 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
821
077d7449
PM
822 /*
823 * For negative priorities, v8M will forcibly deactivate the appropriate
824 * NMI or HardFault regardless of what interrupt we're being asked to
825 * deactivate (compare the DeActivate() pseudocode). This is a guard
826 * against software returning from NMI or HardFault with a corrupted
827 * IPSR and leaving the CPU in a negative-priority state.
828 * v7M does not do this, but simply deactivates the requested interrupt.
829 */
830 if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
831 switch (armv7m_nvic_raw_execution_priority(s)) {
832 case -1:
833 if (s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
834 vec = &s->vectors[ARMV7M_EXCP_HARD];
835 } else {
836 vec = &s->sec_vectors[ARMV7M_EXCP_HARD];
837 }
838 break;
839 case -2:
840 vec = &s->vectors[ARMV7M_EXCP_NMI];
841 break;
842 case -3:
843 vec = &s->sec_vectors[ARMV7M_EXCP_HARD];
844 break;
845 default:
846 break;
847 }
848 }
849
850 if (!vec) {
851 if (secure && exc_is_banked(irq)) {
852 vec = &s->sec_vectors[irq];
853 } else {
854 vec = &s->vectors[irq];
855 }
5cb18069 856 }
da6d674e 857
5cb18069 858 trace_nvic_complete_irq(irq, secure);
da6d674e 859
aa488fe3
PM
860 if (!vec->active) {
861 /* Tell the caller this was an illegal exception return */
862 return -1;
863 }
864
be32116e
PM
865 /*
866 * If this is a configurable exception and it is currently
867 * targeting the opposite security state from the one we're trying
868 * to complete it for, this counts as an illegal exception return.
869 * We still need to deactivate whatever vector the logic above has
870 * selected, though, as it might not be the same as the one for the
871 * requested exception number.
872 */
873 if (!exc_is_banked(irq) && exc_targets_secure(s, irq) != secure) {
874 ret = -1;
875 } else {
876 ret = nvic_rettobase(s);
877 }
aa488fe3 878
da6d674e
MD
879 vec->active = 0;
880 if (vec->level) {
881 /* Re-pend the exception if it's still held high; only
882 * happens for extenal IRQs
883 */
884 assert(irq >= NVIC_FIRST_IRQ);
885 vec->pending = 1;
886 }
887
888 nvic_irq_update(s);
aa488fe3
PM
889
890 return ret;
da6d674e
MD
891}
892
b593c2b8
PM
893bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
894{
895 /*
896 * Return whether an exception is "ready", i.e. it is enabled and is
897 * configured at a priority which would allow it to interrupt the
898 * current execution priority.
899 *
900 * irq and secure have the same semantics as for armv7m_nvic_set_pending():
901 * for non-banked exceptions secure is always false; for banked exceptions
902 * it indicates which of the exceptions is required.
903 */
904 NVICState *s = (NVICState *)opaque;
905 bool banked = exc_is_banked(irq);
906 VecInfo *vec;
907 int running = nvic_exec_prio(s);
908
909 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
910 assert(!secure || banked);
911
912 /*
913 * HardFault is an odd special case: we always check against -1,
914 * even if we're secure and HardFault has priority -3; we never
915 * need to check for enabled state.
916 */
917 if (irq == ARMV7M_EXCP_HARD) {
918 return running > -1;
919 }
920
921 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
922
923 return vec->enabled &&
924 exc_group_prio(s, vec->prio, secure) < running;
925}
926
da6d674e
MD
927/* callback when external interrupt line is changed */
928static void set_irq_level(void *opaque, int n, int level)
929{
930 NVICState *s = opaque;
931 VecInfo *vec;
932
933 n += NVIC_FIRST_IRQ;
934
935 assert(n >= NVIC_FIRST_IRQ && n < s->num_irq);
936
937 trace_nvic_set_irq_level(n, level);
938
939 /* The pending status of an external interrupt is
940 * latched on rising edge and exception handler return.
941 *
942 * Pulsing the IRQ will always run the handler
943 * once, and the handler will re-run until the
944 * level is low when the handler completes.
945 */
946 vec = &s->vectors[n];
947 if (level != vec->level) {
948 vec->level = level;
949 if (level) {
2fb50a33 950 armv7m_nvic_set_pending(s, n, false);
da6d674e
MD
951 }
952 }
9ee6e8bb
PB
953}
954
514b4f36
PM
955/* callback when external NMI line is changed */
956static void nvic_nmi_trigger(void *opaque, int n, int level)
957{
958 NVICState *s = opaque;
959
960 trace_nvic_set_nmi_level(level);
961
962 /*
963 * The architecture doesn't specify whether NMI should share
964 * the normal-interrupt behaviour of being resampled on
965 * exception handler return. We choose not to, so just
966 * set NMI pending here and don't track the current level.
967 */
968 if (level) {
969 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false);
970 }
971}
972
45db7ba6 973static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs)
9ee6e8bb 974{
d713ea6c 975 ARMCPU *cpu = s->cpu;
9ee6e8bb 976 uint32_t val;
9ee6e8bb
PB
977
978 switch (offset) {
979 case 4: /* Interrupt Control Type. */
c4379b48
JS
980 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
981 goto bad_offset;
982 }
da6d674e 983 return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1;
ae7c5c85
PM
984 case 0xc: /* CPPWR */
985 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
986 goto bad_offset;
987 }
988 /* We make the IMPDEF choice that nothing can ever go into a
989 * non-retentive power state, which allows us to RAZ/WI this.
990 */
991 return 0;
e1be0a57
PM
992 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
993 {
cf5f7937 994 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
e1be0a57
PM
995 int i;
996
997 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
998 goto bad_offset;
999 }
1000 if (!attrs.secure) {
1001 return 0;
1002 }
1003 val = 0;
1004 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
1005 if (s->itns[startvec + i]) {
1006 val |= (1 << i);
1007 }
1008 }
1009 return val;
1010 }
9ee6e8bb 1011 case 0xd00: /* CPUID Base. */
e3da9921 1012 return cpu->midr;
3f1e0eb7 1013 case 0xd04: /* Interrupt Control State (ICSR) */
9ee6e8bb 1014 /* VECTACTIVE */
b06c262b 1015 val = cpu->env.v7m.exception;
9ee6e8bb 1016 /* VECTPENDING */
da6d674e
MD
1017 val |= (s->vectpending & 0xff) << 12;
1018 /* ISRPENDING - set if any external IRQ is pending */
1019 if (nvic_isrpending(s)) {
1020 val |= (1 << 22);
1021 }
1022 /* RETTOBASE - set if only one handler is active */
1023 if (nvic_rettobase(s)) {
1024 val |= (1 << 11);
9ee6e8bb 1025 }
3f1e0eb7
PM
1026 if (attrs.secure) {
1027 /* PENDSTSET */
1028 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].pending) {
1029 val |= (1 << 26);
1030 }
1031 /* PENDSVSET */
1032 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].pending) {
1033 val |= (1 << 28);
1034 }
1035 } else {
1036 /* PENDSTSET */
1037 if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) {
1038 val |= (1 << 26);
1039 }
1040 /* PENDSVSET */
1041 if (s->vectors[ARMV7M_EXCP_PENDSV].pending) {
1042 val |= (1 << 28);
1043 }
da6d674e 1044 }
9ee6e8bb 1045 /* NMIPENDSET */
4f2eff36
PM
1046 if ((attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))
1047 && s->vectors[ARMV7M_EXCP_NMI].pending) {
9ee6e8bb 1048 val |= (1 << 31);
da6d674e 1049 }
3f1e0eb7
PM
1050 /* ISRPREEMPT: RES0 when halting debug not implemented */
1051 /* STTNS: RES0 for the Main Extension */
9ee6e8bb
PB
1052 return val;
1053 case 0xd08: /* Vector Table Offset. */
45db7ba6 1054 return cpu->env.v7m.vecbase[attrs.secure];
3b2e9344
PM
1055 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
1056 val = 0xfa050000 | (s->prigroup[attrs.secure] << 8);
1057 if (attrs.secure) {
1058 /* s->aircr stores PRIS, BFHFNMINS, SYSRESETREQS */
1059 val |= cpu->env.v7m.aircr;
1060 } else {
1061 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1062 /* BFHFNMINS is R/O from NS; other bits are RAZ/WI. If
1063 * security isn't supported then BFHFNMINS is RAO (and
1064 * the bit in env.v7m.aircr is always set).
1065 */
1066 val |= cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK;
1067 }
1068 }
1069 return val;
9ee6e8bb 1070 case 0xd10: /* System Control. */
7c9140af
JS
1071 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1072 goto bad_offset;
1073 }
24ac0fb1 1074 return cpu->env.v7m.scr[attrs.secure];
9ee6e8bb 1075 case 0xd14: /* Configuration Control. */
9d40cd8a
PM
1076 /* The BFHFNMIGN bit is the only non-banked bit; we
1077 * keep it in the non-secure copy of the register.
1078 */
1079 val = cpu->env.v7m.ccr[attrs.secure];
1080 val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK;
1081 return val;
437d59c1 1082 case 0xd24: /* System Handler Control and State (SHCSR) */
22ab3460
JS
1083 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1084 goto bad_offset;
1085 }
9ee6e8bb 1086 val = 0;
437d59c1
PM
1087 if (attrs.secure) {
1088 if (s->sec_vectors[ARMV7M_EXCP_MEM].active) {
1089 val |= (1 << 0);
1090 }
1091 if (s->sec_vectors[ARMV7M_EXCP_HARD].active) {
1092 val |= (1 << 2);
1093 }
1094 if (s->sec_vectors[ARMV7M_EXCP_USAGE].active) {
1095 val |= (1 << 3);
1096 }
1097 if (s->sec_vectors[ARMV7M_EXCP_SVC].active) {
1098 val |= (1 << 7);
1099 }
1100 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].active) {
1101 val |= (1 << 10);
1102 }
1103 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].active) {
1104 val |= (1 << 11);
1105 }
1106 if (s->sec_vectors[ARMV7M_EXCP_USAGE].pending) {
1107 val |= (1 << 12);
1108 }
1109 if (s->sec_vectors[ARMV7M_EXCP_MEM].pending) {
1110 val |= (1 << 13);
1111 }
1112 if (s->sec_vectors[ARMV7M_EXCP_SVC].pending) {
1113 val |= (1 << 15);
1114 }
1115 if (s->sec_vectors[ARMV7M_EXCP_MEM].enabled) {
1116 val |= (1 << 16);
1117 }
1118 if (s->sec_vectors[ARMV7M_EXCP_USAGE].enabled) {
1119 val |= (1 << 18);
1120 }
1121 if (s->sec_vectors[ARMV7M_EXCP_HARD].pending) {
1122 val |= (1 << 21);
1123 }
1124 /* SecureFault is not banked but is always RAZ/WI to NS */
1125 if (s->vectors[ARMV7M_EXCP_SECURE].active) {
1126 val |= (1 << 4);
1127 }
1128 if (s->vectors[ARMV7M_EXCP_SECURE].enabled) {
1129 val |= (1 << 19);
1130 }
1131 if (s->vectors[ARMV7M_EXCP_SECURE].pending) {
1132 val |= (1 << 20);
1133 }
1134 } else {
1135 if (s->vectors[ARMV7M_EXCP_MEM].active) {
1136 val |= (1 << 0);
1137 }
1138 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1139 /* HARDFAULTACT, HARDFAULTPENDED not present in v7M */
1140 if (s->vectors[ARMV7M_EXCP_HARD].active) {
1141 val |= (1 << 2);
1142 }
1143 if (s->vectors[ARMV7M_EXCP_HARD].pending) {
1144 val |= (1 << 21);
1145 }
1146 }
1147 if (s->vectors[ARMV7M_EXCP_USAGE].active) {
1148 val |= (1 << 3);
1149 }
1150 if (s->vectors[ARMV7M_EXCP_SVC].active) {
1151 val |= (1 << 7);
1152 }
1153 if (s->vectors[ARMV7M_EXCP_PENDSV].active) {
1154 val |= (1 << 10);
1155 }
1156 if (s->vectors[ARMV7M_EXCP_SYSTICK].active) {
1157 val |= (1 << 11);
1158 }
1159 if (s->vectors[ARMV7M_EXCP_USAGE].pending) {
1160 val |= (1 << 12);
1161 }
1162 if (s->vectors[ARMV7M_EXCP_MEM].pending) {
1163 val |= (1 << 13);
1164 }
1165 if (s->vectors[ARMV7M_EXCP_SVC].pending) {
1166 val |= (1 << 15);
1167 }
1168 if (s->vectors[ARMV7M_EXCP_MEM].enabled) {
1169 val |= (1 << 16);
1170 }
1171 if (s->vectors[ARMV7M_EXCP_USAGE].enabled) {
1172 val |= (1 << 18);
1173 }
da6d674e 1174 }
437d59c1
PM
1175 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1176 if (s->vectors[ARMV7M_EXCP_BUS].active) {
1177 val |= (1 << 1);
1178 }
1179 if (s->vectors[ARMV7M_EXCP_BUS].pending) {
1180 val |= (1 << 14);
1181 }
1182 if (s->vectors[ARMV7M_EXCP_BUS].enabled) {
1183 val |= (1 << 17);
1184 }
1185 if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
1186 s->vectors[ARMV7M_EXCP_NMI].active) {
1187 /* NMIACT is not present in v7M */
1188 val |= (1 << 5);
1189 }
da6d674e 1190 }
437d59c1
PM
1191
1192 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
da6d674e
MD
1193 if (s->vectors[ARMV7M_EXCP_DEBUG].active) {
1194 val |= (1 << 8);
1195 }
9ee6e8bb 1196 return val;
9ee6e8bb 1197 case 0xd2c: /* Hard Fault Status. */
7c9140af
JS
1198 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1199 goto bad_offset;
1200 }
e6b33209 1201 return cpu->env.v7m.hfsr;
9ee6e8bb 1202 case 0xd30: /* Debug Fault Status. */
e6b33209
MD
1203 return cpu->env.v7m.dfsr;
1204 case 0xd34: /* MMFAR MemManage Fault Address */
7c9140af
JS
1205 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1206 goto bad_offset;
1207 }
c51a5cfc 1208 return cpu->env.v7m.mmfar[attrs.secure];
9ee6e8bb 1209 case 0xd38: /* Bus Fault Address. */
7c9140af
JS
1210 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1211 goto bad_offset;
1212 }
339327b6
PM
1213 if (!attrs.secure &&
1214 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1215 return 0;
1216 }
e6b33209 1217 return cpu->env.v7m.bfar;
9ee6e8bb
PB
1218 case 0xd3c: /* Aux Fault Status. */
1219 /* TODO: Implement fault status registers. */
e6b33209
MD
1220 qemu_log_mask(LOG_UNIMP,
1221 "Aux Fault status registers unimplemented\n");
e72e3ffc 1222 return 0;
9ee6e8bb 1223 case 0xd40: /* PFR0. */
5a53e2c1
PM
1224 return cpu->id_pfr0;
1225 case 0xd44: /* PFR1. */
1226 return cpu->id_pfr1;
9ee6e8bb 1227 case 0xd48: /* DFR0. */
5a53e2c1 1228 return cpu->id_dfr0;
9ee6e8bb 1229 case 0xd4c: /* AFR0. */
5a53e2c1 1230 return cpu->id_afr0;
9ee6e8bb 1231 case 0xd50: /* MMFR0. */
5a53e2c1 1232 return cpu->id_mmfr0;
9ee6e8bb 1233 case 0xd54: /* MMFR1. */
5a53e2c1 1234 return cpu->id_mmfr1;
9ee6e8bb 1235 case 0xd58: /* MMFR2. */
5a53e2c1 1236 return cpu->id_mmfr2;
9ee6e8bb 1237 case 0xd5c: /* MMFR3. */
5a53e2c1 1238 return cpu->id_mmfr3;
9ee6e8bb 1239 case 0xd60: /* ISAR0. */
47576b94 1240 return cpu->isar.id_isar0;
9ee6e8bb 1241 case 0xd64: /* ISAR1. */
47576b94 1242 return cpu->isar.id_isar1;
9ee6e8bb 1243 case 0xd68: /* ISAR2. */
47576b94 1244 return cpu->isar.id_isar2;
9ee6e8bb 1245 case 0xd6c: /* ISAR3. */
47576b94 1246 return cpu->isar.id_isar3;
9ee6e8bb 1247 case 0xd70: /* ISAR4. */
47576b94 1248 return cpu->isar.id_isar4;
5a53e2c1 1249 case 0xd74: /* ISAR5. */
47576b94 1250 return cpu->isar.id_isar5;
43bbce7f
PM
1251 case 0xd78: /* CLIDR */
1252 return cpu->clidr;
1253 case 0xd7c: /* CTR */
1254 return cpu->ctr;
1255 case 0xd80: /* CSSIDR */
1256 {
1257 int idx = cpu->env.v7m.csselr[attrs.secure] & R_V7M_CSSELR_INDEX_MASK;
1258 return cpu->ccsidr[idx];
1259 }
1260 case 0xd84: /* CSSELR */
1261 return cpu->env.v7m.csselr[attrs.secure];
d33abe82
PM
1262 case 0xd88: /* CPACR */
1263 if (!arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1264 return 0;
1265 }
1266 return cpu->env.v7m.cpacr[attrs.secure];
1267 case 0xd8c: /* NSACR */
1268 if (!attrs.secure || !arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1269 return 0;
1270 }
1271 return cpu->env.v7m.nsacr;
9ee6e8bb 1272 /* TODO: Implement debug registers. */
29c483a5
MD
1273 case 0xd90: /* MPU_TYPE */
1274 /* Unified MPU; if the MPU is not present this value is zero */
1275 return cpu->pmsav7_dregion << 8;
1276 break;
1277 case 0xd94: /* MPU_CTRL */
ecf5e8ea 1278 return cpu->env.v7m.mpu_ctrl[attrs.secure];
29c483a5 1279 case 0xd98: /* MPU_RNR */
1bc04a88 1280 return cpu->env.pmsav7.rnr[attrs.secure];
29c483a5
MD
1281 case 0xd9c: /* MPU_RBAR */
1282 case 0xda4: /* MPU_RBAR_A1 */
1283 case 0xdac: /* MPU_RBAR_A2 */
1284 case 0xdb4: /* MPU_RBAR_A3 */
1285 {
1bc04a88 1286 int region = cpu->env.pmsav7.rnr[attrs.secure];
29c483a5 1287
0e1a46bb
PM
1288 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1289 /* PMSAv8M handling of the aliases is different from v7M:
1290 * aliases A1, A2, A3 override the low two bits of the region
1291 * number in MPU_RNR, and there is no 'region' field in the
1292 * RBAR register.
1293 */
1294 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1295 if (aliasno) {
1296 region = deposit32(region, 0, 2, aliasno);
1297 }
1298 if (region >= cpu->pmsav7_dregion) {
1299 return 0;
1300 }
62c58ee0 1301 return cpu->env.pmsav8.rbar[attrs.secure][region];
0e1a46bb
PM
1302 }
1303
29c483a5
MD
1304 if (region >= cpu->pmsav7_dregion) {
1305 return 0;
1306 }
2b75ef01 1307 return (cpu->env.pmsav7.drbar[region] & ~0x1f) | (region & 0xf);
29c483a5 1308 }
0e1a46bb
PM
1309 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1310 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1311 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1312 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
29c483a5 1313 {
1bc04a88 1314 int region = cpu->env.pmsav7.rnr[attrs.secure];
29c483a5 1315
0e1a46bb
PM
1316 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1317 /* PMSAv8M handling of the aliases is different from v7M:
1318 * aliases A1, A2, A3 override the low two bits of the region
1319 * number in MPU_RNR.
1320 */
1321 int aliasno = (offset - 0xda0) / 8; /* 0..3 */
1322 if (aliasno) {
1323 region = deposit32(region, 0, 2, aliasno);
1324 }
1325 if (region >= cpu->pmsav7_dregion) {
1326 return 0;
1327 }
62c58ee0 1328 return cpu->env.pmsav8.rlar[attrs.secure][region];
0e1a46bb
PM
1329 }
1330
29c483a5
MD
1331 if (region >= cpu->pmsav7_dregion) {
1332 return 0;
1333 }
1334 return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) |
1335 (cpu->env.pmsav7.drsr[region] & 0xffff);
1336 }
0e1a46bb
PM
1337 case 0xdc0: /* MPU_MAIR0 */
1338 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1339 goto bad_offset;
1340 }
4125e6fe 1341 return cpu->env.pmsav8.mair0[attrs.secure];
0e1a46bb
PM
1342 case 0xdc4: /* MPU_MAIR1 */
1343 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1344 goto bad_offset;
1345 }
4125e6fe 1346 return cpu->env.pmsav8.mair1[attrs.secure];
9901c576
PM
1347 case 0xdd0: /* SAU_CTRL */
1348 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1349 goto bad_offset;
1350 }
1351 if (!attrs.secure) {
1352 return 0;
1353 }
1354 return cpu->env.sau.ctrl;
1355 case 0xdd4: /* SAU_TYPE */
1356 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1357 goto bad_offset;
1358 }
1359 if (!attrs.secure) {
1360 return 0;
1361 }
1362 return cpu->sau_sregion;
1363 case 0xdd8: /* SAU_RNR */
1364 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1365 goto bad_offset;
1366 }
1367 if (!attrs.secure) {
1368 return 0;
1369 }
1370 return cpu->env.sau.rnr;
1371 case 0xddc: /* SAU_RBAR */
1372 {
1373 int region = cpu->env.sau.rnr;
1374
1375 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1376 goto bad_offset;
1377 }
1378 if (!attrs.secure) {
1379 return 0;
1380 }
1381 if (region >= cpu->sau_sregion) {
1382 return 0;
1383 }
1384 return cpu->env.sau.rbar[region];
1385 }
1386 case 0xde0: /* SAU_RLAR */
1387 {
1388 int region = cpu->env.sau.rnr;
1389
1390 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1391 goto bad_offset;
1392 }
1393 if (!attrs.secure) {
1394 return 0;
1395 }
1396 if (region >= cpu->sau_sregion) {
1397 return 0;
1398 }
1399 return cpu->env.sau.rlar[region];
1400 }
bed079da
PM
1401 case 0xde4: /* SFSR */
1402 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1403 goto bad_offset;
1404 }
1405 if (!attrs.secure) {
1406 return 0;
1407 }
1408 return cpu->env.v7m.sfsr;
1409 case 0xde8: /* SFAR */
1410 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1411 goto bad_offset;
1412 }
1413 if (!attrs.secure) {
1414 return 0;
1415 }
1416 return cpu->env.v7m.sfar;
d33abe82
PM
1417 case 0xf34: /* FPCCR */
1418 if (!arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1419 return 0;
1420 }
1421 if (attrs.secure) {
1422 return cpu->env.v7m.fpccr[M_REG_S];
1423 } else {
1424 /*
1425 * NS can read LSPEN, CLRONRET and MONRDY. It can read
1426 * BFRDY and HFRDY if AIRCR.BFHFNMINS != 0;
1427 * other non-banked bits RAZ.
1428 * TODO: MONRDY should RAZ/WI if DEMCR.SDME is set.
1429 */
1430 uint32_t value = cpu->env.v7m.fpccr[M_REG_S];
1431 uint32_t mask = R_V7M_FPCCR_LSPEN_MASK |
1432 R_V7M_FPCCR_CLRONRET_MASK |
1433 R_V7M_FPCCR_MONRDY_MASK;
1434
1435 if (s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1436 mask |= R_V7M_FPCCR_BFRDY_MASK | R_V7M_FPCCR_HFRDY_MASK;
1437 }
1438
1439 value &= mask;
1440
1441 value |= cpu->env.v7m.fpccr[M_REG_NS];
1442 return value;
1443 }
1444 case 0xf38: /* FPCAR */
1445 if (!arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1446 return 0;
1447 }
1448 return cpu->env.v7m.fpcar[attrs.secure];
1449 case 0xf3c: /* FPDSCR */
1450 if (!arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1451 return 0;
1452 }
1453 return cpu->env.v7m.fpdscr[attrs.secure];
84d2e3e2
PM
1454 case 0xf40: /* MVFR0 */
1455 return cpu->isar.mvfr0;
1456 case 0xf44: /* MVFR1 */
1457 return cpu->isar.mvfr1;
1458 case 0xf48: /* MVFR2 */
1459 return cpu->isar.mvfr2;
9ee6e8bb 1460 default:
0e1a46bb 1461 bad_offset:
e72e3ffc
PM
1462 qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset);
1463 return 0;
9ee6e8bb
PB
1464 }
1465}
1466
45db7ba6
PM
1467static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value,
1468 MemTxAttrs attrs)
9ee6e8bb 1469{
d713ea6c 1470 ARMCPU *cpu = s->cpu;
ff68dacb 1471
9ee6e8bb 1472 switch (offset) {
ae7c5c85
PM
1473 case 0xc: /* CPPWR */
1474 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1475 goto bad_offset;
1476 }
1477 /* Make the IMPDEF choice to RAZ/WI this. */
1478 break;
e1be0a57
PM
1479 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
1480 {
cf5f7937 1481 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
e1be0a57
PM
1482 int i;
1483
1484 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1485 goto bad_offset;
1486 }
1487 if (!attrs.secure) {
1488 break;
1489 }
1490 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
1491 s->itns[startvec + i] = (value >> i) & 1;
1492 }
1493 nvic_irq_update(s);
1494 break;
1495 }
3f1e0eb7 1496 case 0xd04: /* Interrupt Control State (ICSR) */
4f2eff36 1497 if (attrs.secure || cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
3f1e0eb7
PM
1498 if (value & (1 << 31)) {
1499 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false);
1500 } else if (value & (1 << 30) &&
1501 arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1502 /* PENDNMICLR didn't exist in v7M */
1503 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_NMI, false);
1504 }
9ee6e8bb
PB
1505 }
1506 if (value & (1 << 28)) {
2fb50a33 1507 armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
9ee6e8bb 1508 } else if (value & (1 << 27)) {
2fb50a33 1509 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
9ee6e8bb
PB
1510 }
1511 if (value & (1 << 26)) {
2fb50a33 1512 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
9ee6e8bb 1513 } else if (value & (1 << 25)) {
2fb50a33 1514 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
9ee6e8bb
PB
1515 }
1516 break;
1517 case 0xd08: /* Vector Table Offset. */
45db7ba6 1518 cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80;
9ee6e8bb 1519 break;
3b2e9344
PM
1520 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
1521 if ((value >> R_V7M_AIRCR_VECTKEY_SHIFT) == 0x05fa) {
1522 if (value & R_V7M_AIRCR_SYSRESETREQ_MASK) {
1523 if (attrs.secure ||
1524 !(cpu->env.v7m.aircr & R_V7M_AIRCR_SYSRESETREQS_MASK)) {
1525 qemu_irq_pulse(s->sysresetreq);
1526 }
e192becd 1527 }
3b2e9344 1528 if (value & R_V7M_AIRCR_VECTCLRACTIVE_MASK) {
14790f73
MD
1529 qemu_log_mask(LOG_GUEST_ERROR,
1530 "Setting VECTCLRACTIVE when not in DEBUG mode "
1531 "is UNPREDICTABLE\n");
9ee6e8bb 1532 }
3b2e9344
PM
1533 if (value & R_V7M_AIRCR_VECTRESET_MASK) {
1534 /* NB: this bit is RES0 in v8M */
14790f73
MD
1535 qemu_log_mask(LOG_GUEST_ERROR,
1536 "Setting VECTRESET when not in DEBUG mode "
1537 "is UNPREDICTABLE\n");
9ee6e8bb 1538 }
c4379b48
JS
1539 if (arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1540 s->prigroup[attrs.secure] =
1541 extract32(value,
1542 R_V7M_AIRCR_PRIGROUP_SHIFT,
1543 R_V7M_AIRCR_PRIGROUP_LENGTH);
1544 }
3b2e9344
PM
1545 if (attrs.secure) {
1546 /* These bits are only writable by secure */
1547 cpu->env.v7m.aircr = value &
1548 (R_V7M_AIRCR_SYSRESETREQS_MASK |
1549 R_V7M_AIRCR_BFHFNMINS_MASK |
1550 R_V7M_AIRCR_PRIS_MASK);
7208b426
PM
1551 /* BFHFNMINS changes the priority of Secure HardFault, and
1552 * allows a pending Non-secure HardFault to preempt (which
1553 * we implement by marking it enabled).
1554 */
331f4bae
PM
1555 if (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1556 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -3;
7208b426 1557 s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
331f4bae
PM
1558 } else {
1559 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
7208b426 1560 s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
331f4bae 1561 }
3b2e9344 1562 }
da6d674e 1563 nvic_irq_update(s);
9ee6e8bb
PB
1564 }
1565 break;
1566 case 0xd10: /* System Control. */
7c9140af
JS
1567 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1568 goto bad_offset;
1569 }
24ac0fb1
PM
1570 /* We don't implement deep-sleep so these bits are RAZ/WI.
1571 * The other bits in the register are banked.
1572 * QEMU's implementation ignores SEVONPEND and SLEEPONEXIT, which
1573 * is architecturally permitted.
1574 */
1575 value &= ~(R_V7M_SCR_SLEEPDEEP_MASK | R_V7M_SCR_SLEEPDEEPS_MASK);
1576 cpu->env.v7m.scr[attrs.secure] = value;
e6b33209
MD
1577 break;
1578 case 0xd14: /* Configuration Control. */
22ab3460
JS
1579 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1580 goto bad_offset;
1581 }
1582
e6b33209
MD
1583 /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */
1584 value &= (R_V7M_CCR_STKALIGN_MASK |
1585 R_V7M_CCR_BFHFNMIGN_MASK |
1586 R_V7M_CCR_DIV_0_TRP_MASK |
1587 R_V7M_CCR_UNALIGN_TRP_MASK |
1588 R_V7M_CCR_USERSETMPEND_MASK |
1589 R_V7M_CCR_NONBASETHRDENA_MASK);
1590
9d40cd8a
PM
1591 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1592 /* v8M makes NONBASETHRDENA and STKALIGN be RES1 */
1593 value |= R_V7M_CCR_NONBASETHRDENA_MASK
1594 | R_V7M_CCR_STKALIGN_MASK;
1595 }
1596 if (attrs.secure) {
1597 /* the BFHFNMIGN bit is not banked; keep that in the NS copy */
1598 cpu->env.v7m.ccr[M_REG_NS] =
1599 (cpu->env.v7m.ccr[M_REG_NS] & ~R_V7M_CCR_BFHFNMIGN_MASK)
1600 | (value & R_V7M_CCR_BFHFNMIGN_MASK);
1601 value &= ~R_V7M_CCR_BFHFNMIGN_MASK;
1602 }
1603
1604 cpu->env.v7m.ccr[attrs.secure] = value;
e72e3ffc 1605 break;
437d59c1 1606 case 0xd24: /* System Handler Control and State (SHCSR) */
22ab3460
JS
1607 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1608 goto bad_offset;
1609 }
437d59c1
PM
1610 if (attrs.secure) {
1611 s->sec_vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1612 /* Secure HardFault active bit cannot be written */
1613 s->sec_vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1614 s->sec_vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1615 s->sec_vectors[ARMV7M_EXCP_PENDSV].active =
1616 (value & (1 << 10)) != 0;
1617 s->sec_vectors[ARMV7M_EXCP_SYSTICK].active =
1618 (value & (1 << 11)) != 0;
1619 s->sec_vectors[ARMV7M_EXCP_USAGE].pending =
1620 (value & (1 << 12)) != 0;
1621 s->sec_vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1622 s->sec_vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1623 s->sec_vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1624 s->sec_vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1625 s->sec_vectors[ARMV7M_EXCP_USAGE].enabled =
1626 (value & (1 << 18)) != 0;
04829ce3 1627 s->sec_vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
437d59c1
PM
1628 /* SecureFault not banked, but RAZ/WI to NS */
1629 s->vectors[ARMV7M_EXCP_SECURE].active = (value & (1 << 4)) != 0;
1630 s->vectors[ARMV7M_EXCP_SECURE].enabled = (value & (1 << 19)) != 0;
1631 s->vectors[ARMV7M_EXCP_SECURE].pending = (value & (1 << 20)) != 0;
1632 } else {
1633 s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1634 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1635 /* HARDFAULTPENDED is not present in v7M */
1636 s->vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
1637 }
1638 s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1639 s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1640 s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0;
1641 s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0;
1642 s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0;
1643 s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1644 s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1645 s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1646 s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0;
1647 }
1648 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1649 s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0;
1650 s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0;
1651 s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1652 }
1653 /* NMIACT can only be written if the write is of a zero, with
1654 * BFHFNMINS 1, and by the CPU in secure state via the NS alias.
1655 */
1656 if (!attrs.secure && cpu->env.v7m.secure &&
1657 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1658 (value & (1 << 5)) == 0) {
1659 s->vectors[ARMV7M_EXCP_NMI].active = 0;
1660 }
1661 /* HARDFAULTACT can only be written if the write is of a zero
1662 * to the non-secure HardFault state by the CPU in secure state.
1663 * The only case where we can be targeting the non-secure HF state
1664 * when in secure state is if this is a write via the NS alias
1665 * and BFHFNMINS is 1.
1666 */
1667 if (!attrs.secure && cpu->env.v7m.secure &&
1668 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1669 (value & (1 << 2)) == 0) {
1670 s->vectors[ARMV7M_EXCP_HARD].active = 0;
1671 }
1672
1673 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
5db53e35 1674 s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0;
da6d674e 1675 nvic_irq_update(s);
9ee6e8bb 1676 break;
9ee6e8bb 1677 case 0xd2c: /* Hard Fault Status. */
7c9140af
JS
1678 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1679 goto bad_offset;
1680 }
e6b33209
MD
1681 cpu->env.v7m.hfsr &= ~value; /* W1C */
1682 break;
9ee6e8bb 1683 case 0xd30: /* Debug Fault Status. */
e6b33209
MD
1684 cpu->env.v7m.dfsr &= ~value; /* W1C */
1685 break;
9ee6e8bb 1686 case 0xd34: /* Mem Manage Address. */
7c9140af
JS
1687 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1688 goto bad_offset;
1689 }
c51a5cfc 1690 cpu->env.v7m.mmfar[attrs.secure] = value;
e6b33209 1691 return;
9ee6e8bb 1692 case 0xd38: /* Bus Fault Address. */
7c9140af
JS
1693 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1694 goto bad_offset;
1695 }
339327b6
PM
1696 if (!attrs.secure &&
1697 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1698 return;
1699 }
e6b33209
MD
1700 cpu->env.v7m.bfar = value;
1701 return;
9ee6e8bb 1702 case 0xd3c: /* Aux Fault Status. */
e72e3ffc 1703 qemu_log_mask(LOG_UNIMP,
e6b33209 1704 "NVIC: Aux fault status registers unimplemented\n");
e72e3ffc 1705 break;
43bbce7f
PM
1706 case 0xd84: /* CSSELR */
1707 if (!arm_v7m_csselr_razwi(cpu)) {
1708 cpu->env.v7m.csselr[attrs.secure] = value & R_V7M_CSSELR_INDEX_MASK;
1709 }
1710 break;
d33abe82
PM
1711 case 0xd88: /* CPACR */
1712 if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1713 /* We implement only the Floating Point extension's CP10/CP11 */
1714 cpu->env.v7m.cpacr[attrs.secure] = value & (0xf << 20);
1715 }
1716 break;
1717 case 0xd8c: /* NSACR */
1718 if (attrs.secure && arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1719 /* We implement only the Floating Point extension's CP10/CP11 */
1720 cpu->env.v7m.nsacr = value & (3 << 10);
1721 }
1722 break;
29c483a5
MD
1723 case 0xd90: /* MPU_TYPE */
1724 return; /* RO */
1725 case 0xd94: /* MPU_CTRL */
1726 if ((value &
1727 (R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK))
1728 == R_V7M_MPU_CTRL_HFNMIENA_MASK) {
1729 qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is "
1730 "UNPREDICTABLE\n");
1731 }
ecf5e8ea
PM
1732 cpu->env.v7m.mpu_ctrl[attrs.secure]
1733 = value & (R_V7M_MPU_CTRL_ENABLE_MASK |
1734 R_V7M_MPU_CTRL_HFNMIENA_MASK |
1735 R_V7M_MPU_CTRL_PRIVDEFENA_MASK);
29c483a5
MD
1736 tlb_flush(CPU(cpu));
1737 break;
1738 case 0xd98: /* MPU_RNR */
1739 if (value >= cpu->pmsav7_dregion) {
1740 qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %"
1741 PRIu32 "/%" PRIu32 "\n",
1742 value, cpu->pmsav7_dregion);
1743 } else {
1bc04a88 1744 cpu->env.pmsav7.rnr[attrs.secure] = value;
29c483a5
MD
1745 }
1746 break;
1747 case 0xd9c: /* MPU_RBAR */
1748 case 0xda4: /* MPU_RBAR_A1 */
1749 case 0xdac: /* MPU_RBAR_A2 */
1750 case 0xdb4: /* MPU_RBAR_A3 */
1751 {
1752 int region;
1753
0e1a46bb
PM
1754 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1755 /* PMSAv8M handling of the aliases is different from v7M:
1756 * aliases A1, A2, A3 override the low two bits of the region
1757 * number in MPU_RNR, and there is no 'region' field in the
1758 * RBAR register.
1759 */
1760 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1761
1bc04a88 1762 region = cpu->env.pmsav7.rnr[attrs.secure];
0e1a46bb
PM
1763 if (aliasno) {
1764 region = deposit32(region, 0, 2, aliasno);
1765 }
1766 if (region >= cpu->pmsav7_dregion) {
1767 return;
1768 }
62c58ee0 1769 cpu->env.pmsav8.rbar[attrs.secure][region] = value;
0e1a46bb
PM
1770 tlb_flush(CPU(cpu));
1771 return;
1772 }
1773
29c483a5
MD
1774 if (value & (1 << 4)) {
1775 /* VALID bit means use the region number specified in this
1776 * value and also update MPU_RNR.REGION with that value.
1777 */
1778 region = extract32(value, 0, 4);
1779 if (region >= cpu->pmsav7_dregion) {
1780 qemu_log_mask(LOG_GUEST_ERROR,
1781 "MPU region out of range %u/%" PRIu32 "\n",
1782 region, cpu->pmsav7_dregion);
1783 return;
1784 }
1bc04a88 1785 cpu->env.pmsav7.rnr[attrs.secure] = region;
29c483a5 1786 } else {
1bc04a88 1787 region = cpu->env.pmsav7.rnr[attrs.secure];
29c483a5
MD
1788 }
1789
1790 if (region >= cpu->pmsav7_dregion) {
1791 return;
1792 }
1793
1794 cpu->env.pmsav7.drbar[region] = value & ~0x1f;
1795 tlb_flush(CPU(cpu));
1796 break;
1797 }
0e1a46bb
PM
1798 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1799 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1800 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1801 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
29c483a5 1802 {
1bc04a88 1803 int region = cpu->env.pmsav7.rnr[attrs.secure];
29c483a5 1804
0e1a46bb
PM
1805 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1806 /* PMSAv8M handling of the aliases is different from v7M:
1807 * aliases A1, A2, A3 override the low two bits of the region
1808 * number in MPU_RNR.
1809 */
1810 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1811
1bc04a88 1812 region = cpu->env.pmsav7.rnr[attrs.secure];
0e1a46bb
PM
1813 if (aliasno) {
1814 region = deposit32(region, 0, 2, aliasno);
1815 }
1816 if (region >= cpu->pmsav7_dregion) {
1817 return;
1818 }
62c58ee0 1819 cpu->env.pmsav8.rlar[attrs.secure][region] = value;
0e1a46bb
PM
1820 tlb_flush(CPU(cpu));
1821 return;
1822 }
1823
29c483a5
MD
1824 if (region >= cpu->pmsav7_dregion) {
1825 return;
1826 }
1827
1828 cpu->env.pmsav7.drsr[region] = value & 0xff3f;
1829 cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f;
1830 tlb_flush(CPU(cpu));
1831 break;
1832 }
0e1a46bb
PM
1833 case 0xdc0: /* MPU_MAIR0 */
1834 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1835 goto bad_offset;
1836 }
1837 if (cpu->pmsav7_dregion) {
1838 /* Register is RES0 if no MPU regions are implemented */
4125e6fe 1839 cpu->env.pmsav8.mair0[attrs.secure] = value;
0e1a46bb
PM
1840 }
1841 /* We don't need to do anything else because memory attributes
1842 * only affect cacheability, and we don't implement caching.
1843 */
1844 break;
1845 case 0xdc4: /* MPU_MAIR1 */
1846 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1847 goto bad_offset;
1848 }
1849 if (cpu->pmsav7_dregion) {
1850 /* Register is RES0 if no MPU regions are implemented */
4125e6fe 1851 cpu->env.pmsav8.mair1[attrs.secure] = value;
0e1a46bb
PM
1852 }
1853 /* We don't need to do anything else because memory attributes
1854 * only affect cacheability, and we don't implement caching.
1855 */
1856 break;
9901c576
PM
1857 case 0xdd0: /* SAU_CTRL */
1858 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1859 goto bad_offset;
1860 }
1861 if (!attrs.secure) {
1862 return;
1863 }
1864 cpu->env.sau.ctrl = value & 3;
a94bb9cd 1865 break;
9901c576
PM
1866 case 0xdd4: /* SAU_TYPE */
1867 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1868 goto bad_offset;
1869 }
1870 break;
1871 case 0xdd8: /* SAU_RNR */
1872 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1873 goto bad_offset;
1874 }
1875 if (!attrs.secure) {
1876 return;
1877 }
1878 if (value >= cpu->sau_sregion) {
1879 qemu_log_mask(LOG_GUEST_ERROR, "SAU region out of range %"
1880 PRIu32 "/%" PRIu32 "\n",
1881 value, cpu->sau_sregion);
1882 } else {
1883 cpu->env.sau.rnr = value;
1884 }
1885 break;
1886 case 0xddc: /* SAU_RBAR */
1887 {
1888 int region = cpu->env.sau.rnr;
1889
1890 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1891 goto bad_offset;
1892 }
1893 if (!attrs.secure) {
1894 return;
1895 }
1896 if (region >= cpu->sau_sregion) {
1897 return;
1898 }
1899 cpu->env.sau.rbar[region] = value & ~0x1f;
1900 tlb_flush(CPU(cpu));
1901 break;
1902 }
1903 case 0xde0: /* SAU_RLAR */
1904 {
1905 int region = cpu->env.sau.rnr;
1906
1907 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1908 goto bad_offset;
1909 }
1910 if (!attrs.secure) {
1911 return;
1912 }
1913 if (region >= cpu->sau_sregion) {
1914 return;
1915 }
1916 cpu->env.sau.rlar[region] = value & ~0x1c;
1917 tlb_flush(CPU(cpu));
1918 break;
1919 }
bed079da
PM
1920 case 0xde4: /* SFSR */
1921 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1922 goto bad_offset;
1923 }
1924 if (!attrs.secure) {
1925 return;
1926 }
1927 cpu->env.v7m.sfsr &= ~value; /* W1C */
1928 break;
1929 case 0xde8: /* SFAR */
1930 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1931 goto bad_offset;
1932 }
1933 if (!attrs.secure) {
1934 return;
1935 }
1936 cpu->env.v7m.sfsr = value;
1937 break;
2a29ddee 1938 case 0xf00: /* Software Triggered Interrupt Register */
da6d674e 1939 {
da6d674e 1940 int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ;
7c9140af
JS
1941
1942 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1943 goto bad_offset;
1944 }
1945
eb578a23 1946 if (excnum < s->num_irq) {
2fb50a33 1947 armv7m_nvic_set_pending(s, excnum, false);
2a29ddee
PM
1948 }
1949 break;
da6d674e 1950 }
d33abe82
PM
1951 case 0xf34: /* FPCCR */
1952 if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1953 /* Not all bits here are banked. */
1954 uint32_t fpccr_s;
1955
1956 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1957 /* Don't allow setting of bits not present in v7M */
1958 value &= (R_V7M_FPCCR_LSPACT_MASK |
1959 R_V7M_FPCCR_USER_MASK |
1960 R_V7M_FPCCR_THREAD_MASK |
1961 R_V7M_FPCCR_HFRDY_MASK |
1962 R_V7M_FPCCR_MMRDY_MASK |
1963 R_V7M_FPCCR_BFRDY_MASK |
1964 R_V7M_FPCCR_MONRDY_MASK |
1965 R_V7M_FPCCR_LSPEN_MASK |
1966 R_V7M_FPCCR_ASPEN_MASK);
1967 }
1968 value &= ~R_V7M_FPCCR_RES0_MASK;
1969
1970 if (!attrs.secure) {
1971 /* Some non-banked bits are configurably writable by NS */
1972 fpccr_s = cpu->env.v7m.fpccr[M_REG_S];
1973 if (!(fpccr_s & R_V7M_FPCCR_LSPENS_MASK)) {
1974 uint32_t lspen = FIELD_EX32(value, V7M_FPCCR, LSPEN);
1975 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, LSPEN, lspen);
1976 }
1977 if (!(fpccr_s & R_V7M_FPCCR_CLRONRETS_MASK)) {
1978 uint32_t cor = FIELD_EX32(value, V7M_FPCCR, CLRONRET);
1979 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, CLRONRET, cor);
1980 }
1981 if ((s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1982 uint32_t hfrdy = FIELD_EX32(value, V7M_FPCCR, HFRDY);
1983 uint32_t bfrdy = FIELD_EX32(value, V7M_FPCCR, BFRDY);
1984 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, HFRDY, hfrdy);
1985 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, BFRDY, bfrdy);
1986 }
1987 /* TODO MONRDY should RAZ/WI if DEMCR.SDME is set */
1988 {
1989 uint32_t monrdy = FIELD_EX32(value, V7M_FPCCR, MONRDY);
1990 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, MONRDY, monrdy);
1991 }
1992
1993 /*
1994 * All other non-banked bits are RAZ/WI from NS; write
1995 * just the banked bits to fpccr[M_REG_NS].
1996 */
1997 value &= R_V7M_FPCCR_BANKED_MASK;
1998 cpu->env.v7m.fpccr[M_REG_NS] = value;
1999 } else {
2000 fpccr_s = value;
2001 }
2002 cpu->env.v7m.fpccr[M_REG_S] = fpccr_s;
2003 }
2004 break;
2005 case 0xf38: /* FPCAR */
2006 if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
2007 value &= ~7;
2008 cpu->env.v7m.fpcar[attrs.secure] = value;
2009 }
2010 break;
2011 case 0xf3c: /* FPDSCR */
2012 if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
2013 value &= 0x07c00000;
2014 cpu->env.v7m.fpdscr[attrs.secure] = value;
2015 }
2016 break;
e8ab26c4
PM
2017 case 0xf50: /* ICIALLU */
2018 case 0xf58: /* ICIMVAU */
2019 case 0xf5c: /* DCIMVAC */
2020 case 0xf60: /* DCISW */
2021 case 0xf64: /* DCCMVAU */
2022 case 0xf68: /* DCCMVAC */
2023 case 0xf6c: /* DCCSW */
2024 case 0xf70: /* DCCIMVAC */
2025 case 0xf74: /* DCCISW */
2026 case 0xf78: /* BPIALL */
2027 /* Cache and branch predictor maintenance: for QEMU these always NOP */
2028 break;
9ee6e8bb 2029 default:
0e1a46bb 2030 bad_offset:
e72e3ffc
PM
2031 qemu_log_mask(LOG_GUEST_ERROR,
2032 "NVIC: Bad write offset 0x%x\n", offset);
9ee6e8bb
PB
2033 }
2034}
2035
9d40cd8a 2036static bool nvic_user_access_ok(NVICState *s, hwaddr offset, MemTxAttrs attrs)
eb578a23
PM
2037{
2038 /* Return true if unprivileged access to this register is permitted. */
2039 switch (offset) {
2040 case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */
9d40cd8a
PM
2041 /* For access via STIR_NS it is the NS CCR.USERSETMPEND that
2042 * controls access even though the CPU is in Secure state (I_QDKX).
2043 */
2044 return s->cpu->env.v7m.ccr[attrs.secure] & R_V7M_CCR_USERSETMPEND_MASK;
eb578a23
PM
2045 default:
2046 /* All other user accesses cause a BusFault unconditionally */
2047 return false;
2048 }
2049}
2050
e6a0d350
PM
2051static int shpr_bank(NVICState *s, int exc, MemTxAttrs attrs)
2052{
2053 /* Behaviour for the SHPR register field for this exception:
2054 * return M_REG_NS to use the nonsecure vector (including for
2055 * non-banked exceptions), M_REG_S for the secure version of
2056 * a banked exception, and -1 if this field should RAZ/WI.
2057 */
2058 switch (exc) {
2059 case ARMV7M_EXCP_MEM:
2060 case ARMV7M_EXCP_USAGE:
2061 case ARMV7M_EXCP_SVC:
2062 case ARMV7M_EXCP_PENDSV:
2063 case ARMV7M_EXCP_SYSTICK:
2064 /* Banked exceptions */
2065 return attrs.secure;
2066 case ARMV7M_EXCP_BUS:
2067 /* Not banked, RAZ/WI from nonsecure if BFHFNMINS is zero */
2068 if (!attrs.secure &&
2069 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
2070 return -1;
2071 }
2072 return M_REG_NS;
2073 case ARMV7M_EXCP_SECURE:
2074 /* Not banked, RAZ/WI from nonsecure */
2075 if (!attrs.secure) {
2076 return -1;
2077 }
2078 return M_REG_NS;
2079 case ARMV7M_EXCP_DEBUG:
2080 /* Not banked. TODO should RAZ/WI if DEMCR.SDME is set */
2081 return M_REG_NS;
2082 case 8 ... 10:
2083 case 13:
2084 /* RES0 */
2085 return -1;
2086 default:
2087 /* Not reachable due to decode of SHPR register addresses */
2088 g_assert_not_reached();
2089 }
2090}
2091
eb578a23
PM
2092static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr,
2093 uint64_t *data, unsigned size,
2094 MemTxAttrs attrs)
2a29ddee 2095{
f797c075 2096 NVICState *s = (NVICState *)opaque;
2a29ddee 2097 uint32_t offset = addr;
da6d674e 2098 unsigned i, startvec, end;
0e8153dd
AB
2099 uint32_t val;
2100
9d40cd8a 2101 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
eb578a23
PM
2102 /* Generate BusFault for unprivileged accesses */
2103 return MEMTX_ERROR;
2104 }
2105
0e8153dd 2106 switch (offset) {
da6d674e
MD
2107 /* reads of set and clear both return the status */
2108 case 0x100 ... 0x13f: /* NVIC Set enable */
2109 offset += 0x80;
2110 /* fall through */
2111 case 0x180 ... 0x1bf: /* NVIC Clear enable */
2112 val = 0;
12fbf1a1 2113 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; /* vector # */
da6d674e
MD
2114
2115 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
e1be0a57
PM
2116 if (s->vectors[startvec + i].enabled &&
2117 (attrs.secure || s->itns[startvec + i])) {
da6d674e
MD
2118 val |= (1 << i);
2119 }
2120 }
2121 break;
2122 case 0x200 ... 0x23f: /* NVIC Set pend */
2123 offset += 0x80;
2124 /* fall through */
2125 case 0x280 ... 0x2bf: /* NVIC Clear pend */
2126 val = 0;
12fbf1a1 2127 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
da6d674e 2128 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
e1be0a57
PM
2129 if (s->vectors[startvec + i].pending &&
2130 (attrs.secure || s->itns[startvec + i])) {
da6d674e
MD
2131 val |= (1 << i);
2132 }
2133 }
2134 break;
2135 case 0x300 ... 0x33f: /* NVIC Active */
2136 val = 0;
c4379b48
JS
2137
2138 if (!arm_feature(&s->cpu->env, ARM_FEATURE_V7)) {
2139 break;
2140 }
2141
12fbf1a1 2142 startvec = 8 * (offset - 0x300) + NVIC_FIRST_IRQ; /* vector # */
da6d674e
MD
2143
2144 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
e1be0a57
PM
2145 if (s->vectors[startvec + i].active &&
2146 (attrs.secure || s->itns[startvec + i])) {
da6d674e
MD
2147 val |= (1 << i);
2148 }
2149 }
2150 break;
2151 case 0x400 ... 0x5ef: /* NVIC Priority */
2152 val = 0;
2153 startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */
2154
2155 for (i = 0; i < size && startvec + i < s->num_irq; i++) {
e1be0a57
PM
2156 if (attrs.secure || s->itns[startvec + i]) {
2157 val |= s->vectors[startvec + i].prio << (8 * i);
2158 }
da6d674e
MD
2159 }
2160 break;
935fe442 2161 case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */
7c9140af
JS
2162 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2163 val = 0;
2164 break;
2165 }
2166 /* fall through */
2167 case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */
0e8153dd
AB
2168 val = 0;
2169 for (i = 0; i < size; i++) {
e6a0d350
PM
2170 unsigned hdlidx = (offset - 0xd14) + i;
2171 int sbank = shpr_bank(s, hdlidx, attrs);
2172
2173 if (sbank < 0) {
2174 continue;
2175 }
2176 val = deposit32(val, i * 8, 8, get_prio(s, hdlidx, sbank));
0e8153dd 2177 }
da6d674e 2178 break;
4b9774ef 2179 case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
7c9140af
JS
2180 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2181 val = 0;
2182 break;
2183 };
339327b6
PM
2184 /*
2185 * The BFSR bits [15:8] are shared between security states
2186 * and we store them in the NS copy. They are RAZ/WI for
2187 * NS code if AIRCR.BFHFNMINS is 0.
4b9774ef
PM
2188 */
2189 val = s->cpu->env.v7m.cfsr[attrs.secure];
339327b6
PM
2190 if (!attrs.secure &&
2191 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
2192 val &= ~R_V7M_CFSR_BFSR_MASK;
2193 } else {
2194 val |= s->cpu->env.v7m.cfsr[M_REG_NS] & R_V7M_CFSR_BFSR_MASK;
2195 }
4b9774ef
PM
2196 val = extract32(val, (offset - 0xd28) * 8, size * 8);
2197 break;
0e8153dd 2198 case 0xfe0 ... 0xfff: /* ID. */
2a29ddee 2199 if (offset & 3) {
da6d674e
MD
2200 val = 0;
2201 } else {
2202 val = nvic_id[(offset - 0xfe0) >> 2];
2203 }
2204 break;
2205 default:
2206 if (size == 4) {
45db7ba6 2207 val = nvic_readl(s, offset, attrs);
da6d674e
MD
2208 } else {
2209 qemu_log_mask(LOG_GUEST_ERROR,
2210 "NVIC: Bad read of size %d at offset 0x%x\n",
2211 size, offset);
2212 val = 0;
2a29ddee 2213 }
2a29ddee 2214 }
da6d674e
MD
2215
2216 trace_nvic_sysreg_read(addr, val, size);
eb578a23
PM
2217 *data = val;
2218 return MEMTX_OK;
2a29ddee
PM
2219}
2220
eb578a23
PM
2221static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr,
2222 uint64_t value, unsigned size,
2223 MemTxAttrs attrs)
2a29ddee 2224{
f797c075 2225 NVICState *s = (NVICState *)opaque;
2a29ddee 2226 uint32_t offset = addr;
da6d674e
MD
2227 unsigned i, startvec, end;
2228 unsigned setval = 0;
2229
2230 trace_nvic_sysreg_write(addr, value, size);
0e8153dd 2231
9d40cd8a 2232 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
eb578a23
PM
2233 /* Generate BusFault for unprivileged accesses */
2234 return MEMTX_ERROR;
2235 }
2236
0e8153dd 2237 switch (offset) {
da6d674e
MD
2238 case 0x100 ... 0x13f: /* NVIC Set enable */
2239 offset += 0x80;
2240 setval = 1;
2241 /* fall through */
2242 case 0x180 ... 0x1bf: /* NVIC Clear enable */
2243 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ;
2244
2245 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
e1be0a57
PM
2246 if (value & (1 << i) &&
2247 (attrs.secure || s->itns[startvec + i])) {
da6d674e
MD
2248 s->vectors[startvec + i].enabled = setval;
2249 }
2250 }
2251 nvic_irq_update(s);
eb578a23 2252 return MEMTX_OK;
da6d674e
MD
2253 case 0x200 ... 0x23f: /* NVIC Set pend */
2254 /* the special logic in armv7m_nvic_set_pending()
2255 * is not needed since IRQs are never escalated
2256 */
2257 offset += 0x80;
2258 setval = 1;
2259 /* fall through */
2260 case 0x280 ... 0x2bf: /* NVIC Clear pend */
2261 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
2262
2263 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
e1be0a57
PM
2264 if (value & (1 << i) &&
2265 (attrs.secure || s->itns[startvec + i])) {
da6d674e
MD
2266 s->vectors[startvec + i].pending = setval;
2267 }
2268 }
2269 nvic_irq_update(s);
eb578a23 2270 return MEMTX_OK;
da6d674e 2271 case 0x300 ... 0x33f: /* NVIC Active */
eb578a23 2272 return MEMTX_OK; /* R/O */
da6d674e 2273 case 0x400 ... 0x5ef: /* NVIC Priority */
12fbf1a1 2274 startvec = (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */
da6d674e
MD
2275
2276 for (i = 0; i < size && startvec + i < s->num_irq; i++) {
e1be0a57 2277 if (attrs.secure || s->itns[startvec + i]) {
e6a0d350 2278 set_prio(s, startvec + i, false, (value >> (i * 8)) & 0xff);
e1be0a57 2279 }
da6d674e
MD
2280 }
2281 nvic_irq_update(s);
eb578a23 2282 return MEMTX_OK;
935fe442 2283 case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */
7c9140af
JS
2284 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2285 return MEMTX_OK;
2286 }
2287 /* fall through */
2288 case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */
0e8153dd 2289 for (i = 0; i < size; i++) {
da6d674e 2290 unsigned hdlidx = (offset - 0xd14) + i;
e6a0d350
PM
2291 int newprio = extract32(value, i * 8, 8);
2292 int sbank = shpr_bank(s, hdlidx, attrs);
2293
2294 if (sbank < 0) {
2295 continue;
2296 }
2297 set_prio(s, hdlidx, sbank, newprio);
0e8153dd 2298 }
da6d674e 2299 nvic_irq_update(s);
eb578a23 2300 return MEMTX_OK;
4b9774ef 2301 case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
7c9140af
JS
2302 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2303 return MEMTX_OK;
2304 }
4b9774ef
PM
2305 /* All bits are W1C, so construct 32 bit value with 0s in
2306 * the parts not written by the access size
2307 */
2308 value <<= ((offset - 0xd28) * 8);
2309
339327b6
PM
2310 if (!attrs.secure &&
2311 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
2312 /* BFSR bits are RAZ/WI for NS if BFHFNMINS is set */
2313 value &= ~R_V7M_CFSR_BFSR_MASK;
2314 }
2315
4b9774ef
PM
2316 s->cpu->env.v7m.cfsr[attrs.secure] &= ~value;
2317 if (attrs.secure) {
2318 /* The BFSR bits [15:8] are shared between security states
2319 * and we store them in the NS copy.
2320 */
2321 s->cpu->env.v7m.cfsr[M_REG_NS] &= ~(value & R_V7M_CFSR_BFSR_MASK);
2322 }
2323 return MEMTX_OK;
0e8153dd 2324 }
2a29ddee 2325 if (size == 4) {
45db7ba6 2326 nvic_writel(s, offset, value, attrs);
eb578a23 2327 return MEMTX_OK;
2a29ddee 2328 }
e72e3ffc
PM
2329 qemu_log_mask(LOG_GUEST_ERROR,
2330 "NVIC: Bad write of size %d at offset 0x%x\n", size, offset);
eb578a23
PM
2331 /* This is UNPREDICTABLE; treat as RAZ/WI */
2332 return MEMTX_OK;
2a29ddee
PM
2333}
2334
2335static const MemoryRegionOps nvic_sysreg_ops = {
eb578a23
PM
2336 .read_with_attrs = nvic_sysreg_read,
2337 .write_with_attrs = nvic_sysreg_write,
2a29ddee
PM
2338 .endianness = DEVICE_NATIVE_ENDIAN,
2339};
2340
f104919d
PM
2341static MemTxResult nvic_sysreg_ns_write(void *opaque, hwaddr addr,
2342 uint64_t value, unsigned size,
2343 MemTxAttrs attrs)
2344{
62f01848
PM
2345 MemoryRegion *mr = opaque;
2346
f104919d
PM
2347 if (attrs.secure) {
2348 /* S accesses to the alias act like NS accesses to the real region */
2349 attrs.secure = 0;
62f01848 2350 return memory_region_dispatch_write(mr, addr, value, size, attrs);
f104919d
PM
2351 } else {
2352 /* NS attrs are RAZ/WI for privileged, and BusFault for user */
2353 if (attrs.user) {
2354 return MEMTX_ERROR;
2355 }
2356 return MEMTX_OK;
2357 }
2358}
2359
2360static MemTxResult nvic_sysreg_ns_read(void *opaque, hwaddr addr,
2361 uint64_t *data, unsigned size,
2362 MemTxAttrs attrs)
2363{
62f01848
PM
2364 MemoryRegion *mr = opaque;
2365
f104919d
PM
2366 if (attrs.secure) {
2367 /* S accesses to the alias act like NS accesses to the real region */
2368 attrs.secure = 0;
62f01848 2369 return memory_region_dispatch_read(mr, addr, data, size, attrs);
f104919d
PM
2370 } else {
2371 /* NS attrs are RAZ/WI for privileged, and BusFault for user */
2372 if (attrs.user) {
2373 return MEMTX_ERROR;
2374 }
2375 *data = 0;
2376 return MEMTX_OK;
2377 }
2378}
2379
2380static const MemoryRegionOps nvic_sysreg_ns_ops = {
2381 .read_with_attrs = nvic_sysreg_ns_read,
2382 .write_with_attrs = nvic_sysreg_ns_write,
2383 .endianness = DEVICE_NATIVE_ENDIAN,
2384};
2385
27f26bfe
PM
2386static MemTxResult nvic_systick_write(void *opaque, hwaddr addr,
2387 uint64_t value, unsigned size,
2388 MemTxAttrs attrs)
2389{
2390 NVICState *s = opaque;
2391 MemoryRegion *mr;
2392
2393 /* Direct the access to the correct systick */
2394 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
2395 return memory_region_dispatch_write(mr, addr, value, size, attrs);
2396}
2397
2398static MemTxResult nvic_systick_read(void *opaque, hwaddr addr,
2399 uint64_t *data, unsigned size,
2400 MemTxAttrs attrs)
2401{
2402 NVICState *s = opaque;
2403 MemoryRegion *mr;
2404
2405 /* Direct the access to the correct systick */
2406 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
2407 return memory_region_dispatch_read(mr, addr, data, size, attrs);
2408}
2409
2410static const MemoryRegionOps nvic_systick_ops = {
2411 .read_with_attrs = nvic_systick_read,
2412 .write_with_attrs = nvic_systick_write,
2413 .endianness = DEVICE_NATIVE_ENDIAN,
2414};
2415
da6d674e
MD
2416static int nvic_post_load(void *opaque, int version_id)
2417{
2418 NVICState *s = opaque;
2419 unsigned i;
331f4bae 2420 int resetprio;
da6d674e
MD
2421
2422 /* Check for out of range priority settings */
331f4bae
PM
2423 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
2424
2425 if (s->vectors[ARMV7M_EXCP_RESET].prio != resetprio ||
da6d674e
MD
2426 s->vectors[ARMV7M_EXCP_NMI].prio != -2 ||
2427 s->vectors[ARMV7M_EXCP_HARD].prio != -1) {
2428 return 1;
2429 }
2430 for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) {
2431 if (s->vectors[i].prio & ~0xff) {
2432 return 1;
2433 }
2434 }
2435
2436 nvic_recompute_state(s);
2437
2438 return 0;
2439}
2440
2441static const VMStateDescription vmstate_VecInfo = {
2442 .name = "armv7m_nvic_info",
2443 .version_id = 1,
2444 .minimum_version_id = 1,
2445 .fields = (VMStateField[]) {
2446 VMSTATE_INT16(prio, VecInfo),
2447 VMSTATE_UINT8(enabled, VecInfo),
2448 VMSTATE_UINT8(pending, VecInfo),
2449 VMSTATE_UINT8(active, VecInfo),
2450 VMSTATE_UINT8(level, VecInfo),
2451 VMSTATE_END_OF_LIST()
2452 }
2453};
2454
17906a16
PM
2455static bool nvic_security_needed(void *opaque)
2456{
2457 NVICState *s = opaque;
2458
2459 return arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
2460}
2461
2462static int nvic_security_post_load(void *opaque, int version_id)
2463{
2464 NVICState *s = opaque;
2465 int i;
2466
2467 /* Check for out of range priority settings */
331f4bae
PM
2468 if (s->sec_vectors[ARMV7M_EXCP_HARD].prio != -1
2469 && s->sec_vectors[ARMV7M_EXCP_HARD].prio != -3) {
2470 /* We can't cross-check against AIRCR.BFHFNMINS as we don't know
2471 * if the CPU state has been migrated yet; a mismatch won't
2472 * cause the emulation to blow up, though.
2473 */
17906a16
PM
2474 return 1;
2475 }
2476 for (i = ARMV7M_EXCP_MEM; i < ARRAY_SIZE(s->sec_vectors); i++) {
2477 if (s->sec_vectors[i].prio & ~0xff) {
2478 return 1;
2479 }
2480 }
2481 return 0;
2482}
2483
2484static const VMStateDescription vmstate_nvic_security = {
942566ff 2485 .name = "armv7m_nvic/m-security",
17906a16
PM
2486 .version_id = 1,
2487 .minimum_version_id = 1,
2488 .needed = nvic_security_needed,
2489 .post_load = &nvic_security_post_load,
2490 .fields = (VMStateField[]) {
2491 VMSTATE_STRUCT_ARRAY(sec_vectors, NVICState, NVIC_INTERNAL_VECTORS, 1,
2492 vmstate_VecInfo, VecInfo),
3b2e9344 2493 VMSTATE_UINT32(prigroup[M_REG_S], NVICState),
e1be0a57 2494 VMSTATE_BOOL_ARRAY(itns, NVICState, NVIC_MAX_VECTORS),
17906a16
PM
2495 VMSTATE_END_OF_LIST()
2496 }
2497};
2498
0797226c
JQ
2499static const VMStateDescription vmstate_nvic = {
2500 .name = "armv7m_nvic",
ff68dacb
PM
2501 .version_id = 4,
2502 .minimum_version_id = 4,
da6d674e 2503 .post_load = &nvic_post_load,
8f1e884b 2504 .fields = (VMStateField[]) {
da6d674e
MD
2505 VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1,
2506 vmstate_VecInfo, VecInfo),
3b2e9344 2507 VMSTATE_UINT32(prigroup[M_REG_NS], NVICState),
0797226c 2508 VMSTATE_END_OF_LIST()
17906a16
PM
2509 },
2510 .subsections = (const VMStateDescription*[]) {
2511 &vmstate_nvic_security,
2512 NULL
0797226c
JQ
2513 }
2514};
23e39294 2515
da6d674e
MD
2516static Property props_nvic[] = {
2517 /* Number of external IRQ lines (so excluding the 16 internal exceptions) */
2518 DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64),
2519 DEFINE_PROP_END_OF_LIST()
2520};
2521
aecff692
PM
2522static void armv7m_nvic_reset(DeviceState *dev)
2523{
331f4bae 2524 int resetprio;
f797c075 2525 NVICState *s = NVIC(dev);
da6d674e 2526
8ff26a33
PM
2527 memset(s->vectors, 0, sizeof(s->vectors));
2528 memset(s->sec_vectors, 0, sizeof(s->sec_vectors));
2529 s->prigroup[M_REG_NS] = 0;
2530 s->prigroup[M_REG_S] = 0;
2531
da6d674e 2532 s->vectors[ARMV7M_EXCP_NMI].enabled = 1;
da6d674e
MD
2533 /* MEM, BUS, and USAGE are enabled through
2534 * the System Handler Control register
b3387ede 2535 */
da6d674e 2536 s->vectors[ARMV7M_EXCP_SVC].enabled = 1;
da6d674e
MD
2537 s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
2538 s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
2539
a03ffaef
PM
2540 /* DebugMonitor is enabled via DEMCR.MON_EN */
2541 s->vectors[ARMV7M_EXCP_DEBUG].enabled = 0;
2542
331f4bae
PM
2543 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
2544 s->vectors[ARMV7M_EXCP_RESET].prio = resetprio;
da6d674e
MD
2545 s->vectors[ARMV7M_EXCP_NMI].prio = -2;
2546 s->vectors[ARMV7M_EXCP_HARD].prio = -1;
2547
17906a16
PM
2548 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2549 s->sec_vectors[ARMV7M_EXCP_HARD].enabled = 1;
2550 s->sec_vectors[ARMV7M_EXCP_SVC].enabled = 1;
2551 s->sec_vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
2552 s->sec_vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
2553
2554 /* AIRCR.BFHFNMINS resets to 0 so Secure HF is priority -1 (R_CMTC) */
2555 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
7208b426
PM
2556 /* If AIRCR.BFHFNMINS is 0 then NS HF is (effectively) disabled */
2557 s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
2558 } else {
2559 s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
17906a16
PM
2560 }
2561
da6d674e
MD
2562 /* Strictly speaking the reset handler should be enabled.
2563 * However, we don't simulate soft resets through the NVIC,
2564 * and the reset vector should never be pended.
2565 * So we leave it disabled to catch logic errors.
2566 */
2567
2568 s->exception_prio = NVIC_NOEXC_PRIO;
2569 s->vectpending = 0;
e93bc2ac 2570 s->vectpending_is_s_banked = false;
5255fcf8 2571 s->vectpending_prio = NVIC_NOEXC_PRIO;
e1be0a57
PM
2572
2573 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2574 memset(s->itns, 0, sizeof(s->itns));
2575 } else {
2576 /* This state is constant and not guest accessible in a non-security
2577 * NVIC; we set the bits to true to avoid having to do a feature
2578 * bit check in the NVIC enable/pend/etc register accessors.
2579 */
2580 int i;
2581
2582 for (i = NVIC_FIRST_IRQ; i < ARRAY_SIZE(s->itns); i++) {
2583 s->itns[i] = true;
2584 }
2585 }
ff68dacb 2586}
da6d674e 2587
ff68dacb
PM
2588static void nvic_systick_trigger(void *opaque, int n, int level)
2589{
2590 NVICState *s = opaque;
2591
2592 if (level) {
2593 /* SysTick just asked us to pend its exception.
2594 * (This is different from an external interrupt line's
2595 * behaviour.)
27f26bfe
PM
2596 * n == 0 : NonSecure systick
2597 * n == 1 : Secure systick
ff68dacb 2598 */
27f26bfe 2599 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, n);
ff68dacb 2600 }
aecff692
PM
2601}
2602
53111180 2603static void armv7m_nvic_realize(DeviceState *dev, Error **errp)
9ee6e8bb 2604{
f797c075 2605 NVICState *s = NVIC(dev);
ff68dacb 2606 Error *err = NULL;
f104919d 2607 int regionlen;
9ee6e8bb 2608
3693f217 2609 /* The armv7m container object will have set our CPU pointer */
95f87565
PM
2610 if (!s->cpu || !arm_feature(&s->cpu->env, ARM_FEATURE_M)) {
2611 error_setg(errp, "The NVIC can only be used with a Cortex-M CPU");
2612 return;
2613 }
da6d674e
MD
2614
2615 if (s->num_irq > NVIC_MAX_IRQ) {
2616 error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq);
53111180
PM
2617 return;
2618 }
da6d674e
MD
2619
2620 qdev_init_gpio_in(dev, set_irq_level, s->num_irq);
2621
2622 /* include space for internal exception vectors */
2623 s->num_irq += NVIC_FIRST_IRQ;
2624
c4379b48
JS
2625 s->num_prio_bits = arm_feature(&s->cpu->env, ARM_FEATURE_V7) ? 8 : 2;
2626
27f26bfe
PM
2627 object_property_set_bool(OBJECT(&s->systick[M_REG_NS]), true,
2628 "realized", &err);
ff68dacb
PM
2629 if (err != NULL) {
2630 error_propagate(errp, err);
2631 return;
2632 }
27f26bfe
PM
2633 sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), 0,
2634 qdev_get_gpio_in_named(dev, "systick-trigger",
2635 M_REG_NS));
2636
2637 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2638 /* We couldn't init the secure systick device in instance_init
2639 * as we didn't know then if the CPU had the security extensions;
2640 * so we have to do it here.
2641 */
23d1f360
PMD
2642 sysbus_init_child_obj(OBJECT(dev), "systick-reg-s",
2643 &s->systick[M_REG_S],
2644 sizeof(s->systick[M_REG_S]), TYPE_SYSTICK);
27f26bfe
PM
2645
2646 object_property_set_bool(OBJECT(&s->systick[M_REG_S]), true,
2647 "realized", &err);
2648 if (err != NULL) {
2649 error_propagate(errp, err);
2650 return;
2651 }
2652 sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_S]), 0,
2653 qdev_get_gpio_in_named(dev, "systick-trigger",
2654 M_REG_S));
2655 }
ff68dacb 2656
da6d674e
MD
2657 /* The NVIC and System Control Space (SCS) starts at 0xe000e000
2658 * and looks like this:
2659 * 0x004 - ICTR
ff68dacb 2660 * 0x010 - 0xff - systick
da6d674e
MD
2661 * 0x100..0x7ec - NVIC
2662 * 0x7f0..0xcff - Reserved
2663 * 0xd00..0xd3c - SCS registers
2664 * 0xd40..0xeff - Reserved or Not implemented
2665 * 0xf00 - STIR
f104919d
PM
2666 *
2667 * Some registers within this space are banked between security states.
2668 * In v8M there is a second range 0xe002e000..0xe002efff which is the
2669 * NonSecure alias SCS; secure accesses to this behave like NS accesses
2670 * to the main SCS range, and non-secure accesses (including when
2671 * the security extension is not implemented) are RAZ/WI.
2672 * Note that both the main SCS range and the alias range are defined
2673 * to be exempt from memory attribution (R_BLJT) and so the memory
2674 * transaction attribute always matches the current CPU security
2675 * state (attrs.secure == env->v7m.secure). In the nvic_sysreg_ns_ops
2676 * wrappers we change attrs.secure to indicate the NS access; so
2677 * generally code determining which banked register to use should
2678 * use attrs.secure; code determining actual behaviour of the system
2679 * should use env->v7m.secure.
2a29ddee 2680 */
f104919d
PM
2681 regionlen = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? 0x21000 : 0x1000;
2682 memory_region_init(&s->container, OBJECT(s), "nvic", regionlen);
2a29ddee
PM
2683 /* The system register region goes at the bottom of the priority
2684 * stack as it covers the whole page.
2685 */
1437c94b 2686 memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s,
2a29ddee
PM
2687 "nvic_sysregs", 0x1000);
2688 memory_region_add_subregion(&s->container, 0, &s->sysregmem);
27f26bfe
PM
2689
2690 memory_region_init_io(&s->systickmem, OBJECT(s),
2691 &nvic_systick_ops, s,
2692 "nvic_systick", 0xe0);
2693
ff68dacb 2694 memory_region_add_subregion_overlap(&s->container, 0x10,
27f26bfe 2695 &s->systickmem, 1);
da6d674e 2696
f104919d
PM
2697 if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
2698 memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s),
62f01848 2699 &nvic_sysreg_ns_ops, &s->sysregmem,
f104919d
PM
2700 "nvic_sysregs_ns", 0x1000);
2701 memory_region_add_subregion(&s->container, 0x20000, &s->sysreg_ns_mem);
27f26bfe
PM
2702 memory_region_init_io(&s->systick_ns_mem, OBJECT(s),
2703 &nvic_sysreg_ns_ops, &s->systickmem,
2704 "nvic_systick_ns", 0xe0);
2705 memory_region_add_subregion_overlap(&s->container, 0x20010,
2706 &s->systick_ns_mem, 1);
f104919d
PM
2707 }
2708
98957a94 2709 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->container);
9ee6e8bb 2710}
fe7e8758 2711
55e00a19
PM
2712static void armv7m_nvic_instance_init(Object *obj)
2713{
2714 /* We have a different default value for the num-irq property
2715 * than our superclass. This function runs after qdev init
2716 * has set the defaults from the Property array and before
2717 * any user-specified property setting, so just modify the
fae15286 2718 * value in the GICState struct.
55e00a19 2719 */
e192becd 2720 DeviceState *dev = DEVICE(obj);
f797c075 2721 NVICState *nvic = NVIC(obj);
da6d674e
MD
2722 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2723
955cbc6b
TH
2724 sysbus_init_child_obj(obj, "systick-reg-ns", &nvic->systick[M_REG_NS],
2725 sizeof(nvic->systick[M_REG_NS]), TYPE_SYSTICK);
27f26bfe
PM
2726 /* We can't initialize the secure systick here, as we don't know
2727 * yet if we need it.
2728 */
ff68dacb 2729
da6d674e 2730 sysbus_init_irq(sbd, &nvic->excpout);
e192becd 2731 qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1);
27f26bfe
PM
2732 qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger",
2733 M_REG_NUM_BANKS);
514b4f36 2734 qdev_init_gpio_in_named(dev, nvic_nmi_trigger, "NMI", 1);
55e00a19 2735}
39bffca2 2736
999e12bb
AL
2737static void armv7m_nvic_class_init(ObjectClass *klass, void *data)
2738{
39bffca2 2739 DeviceClass *dc = DEVICE_CLASS(klass);
999e12bb 2740
39bffca2 2741 dc->vmsd = &vmstate_nvic;
da6d674e 2742 dc->props = props_nvic;
aecff692 2743 dc->reset = armv7m_nvic_reset;
53111180 2744 dc->realize = armv7m_nvic_realize;
999e12bb
AL
2745}
2746
8c43a6f0 2747static const TypeInfo armv7m_nvic_info = {
1e8cae4d 2748 .name = TYPE_NVIC,
da6d674e 2749 .parent = TYPE_SYS_BUS_DEVICE,
55e00a19 2750 .instance_init = armv7m_nvic_instance_init,
f797c075 2751 .instance_size = sizeof(NVICState),
39bffca2 2752 .class_init = armv7m_nvic_class_init,
da6d674e 2753 .class_size = sizeof(SysBusDeviceClass),
a32134aa
ML
2754};
2755
83f7d43a 2756static void armv7m_nvic_register_types(void)
fe7e8758 2757{
39bffca2 2758 type_register_static(&armv7m_nvic_info);
fe7e8758
PB
2759}
2760
83f7d43a 2761type_init(armv7m_nvic_register_types)