]> git.ipfire.org Git - thirdparty/gcc.git/blame - libgcc/libgcc2.c
Update copyright years.
[thirdparty/gcc.git] / libgcc / libgcc2.c
CommitLineData
203b91b9
RS
1/* More subroutines needed by GCC output code on some machines. */
2/* Compile this one with gcc. */
a945c346 3/* Copyright (C) 1989-2024 Free Software Foundation, Inc.
203b91b9 4
1322177d 5This file is part of GCC.
203b91b9 6
1322177d
LB
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
748086b7 9Software Foundation; either version 3, or (at your option) any later
1322177d 10version.
203b91b9 11
1322177d
LB
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
203b91b9 16
748086b7
JJ
17Under Section 7 of GPL version 3, you are granted additional
18permissions described in the GCC Runtime Library Exception, version
193.1, as published by the Free Software Foundation.
20
21You should have received a copy of the GNU General Public License and
22a copy of the GCC Runtime Library Exception along with this program;
23see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24<http://www.gnu.org/licenses/>. */
203b91b9 25
0dadecf6 26#include "tconfig.h"
2e39bdbe 27#include "tsystem.h"
4977bab6
ZW
28#include "coretypes.h"
29#include "tm.h"
852b75ed 30#include "libgcc_tm.h"
2467749d 31
53585c36
RH
32#ifdef HAVE_GAS_HIDDEN
33#define ATTRIBUTE_HIDDEN __attribute__ ((__visibility__ ("hidden")))
34#else
35#define ATTRIBUTE_HIDDEN
36#endif
37
b2a203c8
RS
38/* Work out the largest "word" size that we can deal with on this target. */
39#if MIN_UNITS_PER_WORD > 4
40# define LIBGCC2_MAX_UNITS_PER_WORD 8
41#elif (MIN_UNITS_PER_WORD > 2 \
4471aff6 42 || (MIN_UNITS_PER_WORD > 1 && __SIZEOF_LONG_LONG__ > 4))
b2a203c8
RS
43# define LIBGCC2_MAX_UNITS_PER_WORD 4
44#else
45# define LIBGCC2_MAX_UNITS_PER_WORD MIN_UNITS_PER_WORD
46#endif
47
48/* Work out what word size we are using for this compilation.
49 The value can be set on the command line. */
baffad1f 50#ifndef LIBGCC2_UNITS_PER_WORD
b2a203c8 51#define LIBGCC2_UNITS_PER_WORD LIBGCC2_MAX_UNITS_PER_WORD
baffad1f
RS
52#endif
53
b2a203c8 54#if LIBGCC2_UNITS_PER_WORD <= LIBGCC2_MAX_UNITS_PER_WORD
baffad1f 55
299b83b7 56#include "libgcc2.h"
203b91b9 57\f
d8088c6f
BS
58#ifdef DECLARE_LIBRARY_RENAMES
59 DECLARE_LIBRARY_RENAMES
60#endif
61
b68daef4 62#if defined (L_negdi2)
3d2adde6
CC
63DWtype
64__negdi2 (DWtype u)
65{
b982024e
KG
66 const DWunion uu = {.ll = u};
67 const DWunion w = { {.low = -uu.s.low,
68 .high = -uu.s.high - ((UWtype) -uu.s.low > 0) } };
3d2adde6
CC
69
70 return w.ll;
71}
72#endif
91ce572a
CC
73
74#ifdef L_addvsi3
66f77154 75Wtype
0aec6014 76__addvSI3 (Wtype a, Wtype b)
91ce572a 77{
ebc4cd54 78 Wtype w;
91ce572a 79
831f24a7 80 if (__builtin_add_overflow (a, b, &w))
91ce572a
CC
81 abort ();
82
83 return w;
23190837 84}
0aec6014
EB
85#ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
86SItype
87__addvsi3 (SItype a, SItype b)
88{
ebc4cd54 89 SItype w;
0aec6014 90
831f24a7 91 if (__builtin_add_overflow (a, b, &w))
0aec6014
EB
92 abort ();
93
94 return w;
95}
96#endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
3d2adde6 97#endif
91ce572a
CC
98\f
99#ifdef L_addvdi3
66f77154 100DWtype
0aec6014 101__addvDI3 (DWtype a, DWtype b)
91ce572a 102{
ebc4cd54 103 DWtype w;
91ce572a 104
831f24a7 105 if (__builtin_add_overflow (a, b, &w))
91ce572a
CC
106 abort ();
107
108 return w;
109}
110#endif
111\f
112#ifdef L_subvsi3
66f77154 113Wtype
0aec6014 114__subvSI3 (Wtype a, Wtype b)
91ce572a 115{
ebc4cd54 116 Wtype w;
91ce572a 117
831f24a7 118 if (__builtin_sub_overflow (a, b, &w))
91ce572a
CC
119 abort ();
120
121 return w;
91ce572a 122}
0aec6014
EB
123#ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
124SItype
125__subvsi3 (SItype a, SItype b)
126{
ebc4cd54 127 SItype w;
0aec6014 128
831f24a7 129 if (__builtin_sub_overflow (a, b, &w))
0aec6014
EB
130 abort ();
131
132 return w;
133}
134#endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
91ce572a
CC
135#endif
136\f
137#ifdef L_subvdi3
66f77154 138DWtype
0aec6014 139__subvDI3 (DWtype a, DWtype b)
91ce572a 140{
ebc4cd54 141 DWtype w;
91ce572a 142
831f24a7 143 if (__builtin_sub_overflow (a, b, &w))
91ce572a
CC
144 abort ();
145
146 return w;
91ce572a
CC
147}
148#endif
149\f
150#ifdef L_mulvsi3
66f77154 151Wtype
0aec6014 152__mulvSI3 (Wtype a, Wtype b)
91ce572a 153{
ebc4cd54 154 Wtype w;
91ce572a 155
831f24a7 156 if (__builtin_mul_overflow (a, b, &w))
91ce572a
CC
157 abort ();
158
159 return w;
160}
0aec6014 161#ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
0aec6014
EB
162SItype
163__mulvsi3 (SItype a, SItype b)
164{
ebc4cd54 165 SItype w;
0aec6014 166
831f24a7 167 if (__builtin_mul_overflow (a, b, &w))
0aec6014
EB
168 abort ();
169
170 return w;
171}
172#endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
91ce572a
CC
173#endif
174\f
175#ifdef L_negvsi2
66f77154 176Wtype
0aec6014 177__negvSI2 (Wtype a)
91ce572a 178{
ebc4cd54 179 Wtype w;
91ce572a 180
831f24a7 181 if (__builtin_sub_overflow (0, a, &w))
91ce572a
CC
182 abort ();
183
ebc4cd54 184 return w;
91ce572a 185}
0aec6014
EB
186#ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
187SItype
188__negvsi2 (SItype a)
189{
ebc4cd54 190 SItype w;
0aec6014 191
831f24a7 192 if (__builtin_sub_overflow (0, a, &w))
0aec6014
EB
193 abort ();
194
ebc4cd54 195 return w;
0aec6014
EB
196}
197#endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
91ce572a
CC
198#endif
199\f
200#ifdef L_negvdi2
66f77154 201DWtype
0aec6014 202__negvDI2 (DWtype a)
91ce572a 203{
ebc4cd54 204 DWtype w;
91ce572a 205
831f24a7 206 if (__builtin_sub_overflow (0, a, &w))
91ce572a
CC
207 abort ();
208
e11e816e 209 return w;
91ce572a
CC
210}
211#endif
212\f
213#ifdef L_absvsi2
66f77154 214Wtype
0aec6014 215__absvSI2 (Wtype a)
91ce572a 216{
4919ed71
SK
217 const Wtype v = 0 - (a < 0);
218 Wtype w;
0aec6014 219
4919ed71 220 if (__builtin_add_overflow (a, v, &w))
0aec6014 221 abort ();
0aec6014 222
4919ed71 223 return v ^ w;
0aec6014
EB
224}
225#ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
226SItype
227__absvsi2 (SItype a)
228{
4919ed71
SK
229 const SItype v = 0 - (a < 0);
230 SItype w;
91ce572a 231
4919ed71 232 if (__builtin_add_overflow (a, v, &w))
e11e816e 233 abort ();
91ce572a 234
4919ed71 235 return v ^ w;
91ce572a 236}
0aec6014 237#endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
91ce572a
CC
238#endif
239\f
240#ifdef L_absvdi2
66f77154 241DWtype
0aec6014 242__absvDI2 (DWtype a)
91ce572a 243{
4919ed71
SK
244 const DWtype v = 0 - (a < 0);
245 DWtype w;
91ce572a 246
4919ed71 247 if (__builtin_add_overflow (a, v, &w))
e11e816e 248 abort ();
91ce572a 249
4919ed71 250 return v ^ w;
91ce572a
CC
251}
252#endif
253\f
254#ifdef L_mulvdi3
66f77154 255DWtype
0aec6014 256__mulvDI3 (DWtype u, DWtype v)
91ce572a 257{
4c20b2e7
BH
258 /* The unchecked multiplication needs 3 Wtype x Wtype multiplications,
259 but the checked multiplication needs only two. */
b982024e
KG
260 const DWunion uu = {.ll = u};
261 const DWunion vv = {.ll = v};
91ce572a 262
4f2e0d5e 263 if (__builtin_expect (uu.s.high == uu.s.low >> (W_TYPE_SIZE - 1), 1))
4c20b2e7
BH
264 {
265 /* u fits in a single Wtype. */
4f2e0d5e 266 if (__builtin_expect (vv.s.high == vv.s.low >> (W_TYPE_SIZE - 1), 1))
4c20b2e7
BH
267 {
268 /* v fits in a single Wtype as well. */
269 /* A single multiplication. No overflow risk. */
270 return (DWtype) uu.s.low * (DWtype) vv.s.low;
271 }
272 else
273 {
274 /* Two multiplications. */
b982024e
KG
275 DWunion w0 = {.ll = (UDWtype) (UWtype) uu.s.low
276 * (UDWtype) (UWtype) vv.s.low};
277 DWunion w1 = {.ll = (UDWtype) (UWtype) uu.s.low
278 * (UDWtype) (UWtype) vv.s.high};
4c20b2e7 279
4c20b2e7
BH
280 if (vv.s.high < 0)
281 w1.s.high -= uu.s.low;
282 if (uu.s.low < 0)
283 w1.ll -= vv.ll;
284 w1.ll += (UWtype) w0.s.high;
4f2e0d5e 285 if (__builtin_expect (w1.s.high == w1.s.low >> (W_TYPE_SIZE - 1), 1))
4c20b2e7
BH
286 {
287 w0.s.high = w1.s.low;
288 return w0.ll;
289 }
290 }
291 }
292 else
293 {
4f2e0d5e 294 if (__builtin_expect (vv.s.high == vv.s.low >> (W_TYPE_SIZE - 1), 1))
4c20b2e7
BH
295 {
296 /* v fits into a single Wtype. */
297 /* Two multiplications. */
b982024e
KG
298 DWunion w0 = {.ll = (UDWtype) (UWtype) uu.s.low
299 * (UDWtype) (UWtype) vv.s.low};
300 DWunion w1 = {.ll = (UDWtype) (UWtype) uu.s.high
301 * (UDWtype) (UWtype) vv.s.low};
4c20b2e7 302
4c20b2e7
BH
303 if (uu.s.high < 0)
304 w1.s.high -= vv.s.low;
305 if (vv.s.low < 0)
306 w1.ll -= uu.ll;
307 w1.ll += (UWtype) w0.s.high;
4f2e0d5e 308 if (__builtin_expect (w1.s.high == w1.s.low >> (W_TYPE_SIZE - 1), 1))
4c20b2e7
BH
309 {
310 w0.s.high = w1.s.low;
311 return w0.ll;
312 }
313 }
314 else
315 {
316 /* A few sign checks and a single multiplication. */
317 if (uu.s.high >= 0)
318 {
319 if (vv.s.high >= 0)
320 {
321 if (uu.s.high == 0 && vv.s.high == 0)
322 {
b982024e
KG
323 const DWtype w = (UDWtype) (UWtype) uu.s.low
324 * (UDWtype) (UWtype) vv.s.low;
4c20b2e7
BH
325 if (__builtin_expect (w >= 0, 1))
326 return w;
327 }
328 }
329 else
330 {
331 if (uu.s.high == 0 && vv.s.high == (Wtype) -1)
332 {
b982024e
KG
333 DWunion ww = {.ll = (UDWtype) (UWtype) uu.s.low
334 * (UDWtype) (UWtype) vv.s.low};
4c20b2e7 335
4c20b2e7
BH
336 ww.s.high -= uu.s.low;
337 if (__builtin_expect (ww.s.high < 0, 1))
338 return ww.ll;
339 }
340 }
341 }
342 else
343 {
344 if (vv.s.high >= 0)
345 {
346 if (uu.s.high == (Wtype) -1 && vv.s.high == 0)
347 {
b982024e
KG
348 DWunion ww = {.ll = (UDWtype) (UWtype) uu.s.low
349 * (UDWtype) (UWtype) vv.s.low};
4c20b2e7 350
4c20b2e7
BH
351 ww.s.high -= vv.s.low;
352 if (__builtin_expect (ww.s.high < 0, 1))
353 return ww.ll;
354 }
355 }
356 else
357 {
e7176f75
JJ
358 if ((uu.s.high & vv.s.high) == (Wtype) -1
359 && (uu.s.low | vv.s.low) != 0)
4c20b2e7 360 {
b982024e
KG
361 DWunion ww = {.ll = (UDWtype) (UWtype) uu.s.low
362 * (UDWtype) (UWtype) vv.s.low};
4c20b2e7 363
4c20b2e7
BH
364 ww.s.high -= uu.s.low;
365 ww.s.high -= vv.s.low;
366 if (__builtin_expect (ww.s.high >= 0, 1))
367 return ww.ll;
368 }
369 }
370 }
371 }
372 }
91ce572a 373
4c20b2e7
BH
374 /* Overflow. */
375 abort ();
91ce572a
CC
376}
377#endif
378\f
203b91b9 379
3d042e77 380/* Unless shift functions are defined with full ANSI prototypes,
c7ff6e7a 381 parameter b will be promoted to int if shift_count_type is smaller than an int. */
203b91b9 382#ifdef L_lshrdi3
996ed075 383DWtype
c7ff6e7a 384__lshrdi3 (DWtype u, shift_count_type b)
203b91b9 385{
203b91b9
RS
386 if (b == 0)
387 return u;
388
b982024e 389 const DWunion uu = {.ll = u};
fdf3e18a 390 const shift_count_type bm = W_TYPE_SIZE - b;
b982024e 391 DWunion w;
203b91b9 392
203b91b9
RS
393 if (bm <= 0)
394 {
395 w.s.high = 0;
6da9c622 396 w.s.low = (UWtype) uu.s.high >> -bm;
203b91b9
RS
397 }
398 else
399 {
b982024e 400 const UWtype carries = (UWtype) uu.s.high << bm;
6da9c622
RK
401
402 w.s.high = (UWtype) uu.s.high >> b;
403 w.s.low = ((UWtype) uu.s.low >> b) | carries;
203b91b9
RS
404 }
405
406 return w.ll;
407}
408#endif
409
410#ifdef L_ashldi3
996ed075 411DWtype
c7ff6e7a 412__ashldi3 (DWtype u, shift_count_type b)
203b91b9 413{
203b91b9
RS
414 if (b == 0)
415 return u;
416
b982024e 417 const DWunion uu = {.ll = u};
fdf3e18a 418 const shift_count_type bm = W_TYPE_SIZE - b;
b982024e 419 DWunion w;
203b91b9 420
203b91b9
RS
421 if (bm <= 0)
422 {
423 w.s.low = 0;
6da9c622 424 w.s.high = (UWtype) uu.s.low << -bm;
203b91b9
RS
425 }
426 else
427 {
b982024e 428 const UWtype carries = (UWtype) uu.s.low >> bm;
6da9c622
RK
429
430 w.s.low = (UWtype) uu.s.low << b;
431 w.s.high = ((UWtype) uu.s.high << b) | carries;
203b91b9
RS
432 }
433
434 return w.ll;
435}
436#endif
437
438#ifdef L_ashrdi3
996ed075 439DWtype
c7ff6e7a 440__ashrdi3 (DWtype u, shift_count_type b)
203b91b9 441{
203b91b9
RS
442 if (b == 0)
443 return u;
444
b982024e 445 const DWunion uu = {.ll = u};
fdf3e18a 446 const shift_count_type bm = W_TYPE_SIZE - b;
b982024e 447 DWunion w;
203b91b9 448
203b91b9
RS
449 if (bm <= 0)
450 {
451 /* w.s.high = 1..1 or 0..0 */
fdf3e18a 452 w.s.high = uu.s.high >> (W_TYPE_SIZE - 1);
203b91b9
RS
453 w.s.low = uu.s.high >> -bm;
454 }
455 else
456 {
b982024e 457 const UWtype carries = (UWtype) uu.s.high << bm;
6da9c622 458
203b91b9 459 w.s.high = uu.s.high >> b;
6da9c622 460 w.s.low = ((UWtype) uu.s.low >> b) | carries;
203b91b9
RS
461 }
462
463 return w.ll;
464}
465#endif
466\f
167fa32c 467#ifdef L_bswapsi2
e4b6bec2
EC
468SItype
469__bswapsi2 (SItype u)
167fa32c 470{
a8ae2392
SK
471 return ((((u) & 0xff000000u) >> 24)
472 | (((u) & 0x00ff0000u) >> 8)
473 | (((u) & 0x0000ff00u) << 8)
474 | (((u) & 0x000000ffu) << 24));
167fa32c
EC
475}
476#endif
477#ifdef L_bswapdi2
e4b6bec2
EC
478DItype
479__bswapdi2 (DItype u)
167fa32c
EC
480{
481 return ((((u) & 0xff00000000000000ull) >> 56)
482 | (((u) & 0x00ff000000000000ull) >> 40)
483 | (((u) & 0x0000ff0000000000ull) >> 24)
484 | (((u) & 0x000000ff00000000ull) >> 8)
485 | (((u) & 0x00000000ff000000ull) << 8)
486 | (((u) & 0x0000000000ff0000ull) << 24)
487 | (((u) & 0x000000000000ff00ull) << 40)
488 | (((u) & 0x00000000000000ffull) << 56));
489}
490#endif
dfff898c
RH
491#ifdef L_ffssi2
492#undef int
dfff898c
RH
493int
494__ffsSI2 (UWtype u)
495{
496 UWtype count;
497
498 if (u == 0)
499 return 0;
500
501 count_trailing_zeros (count, u);
502 return count + 1;
503}
504#endif
505\f
aa66bd06 506#ifdef L_ffsdi2
dabb3f04 507#undef int
dabb3f04 508int
dfff898c 509__ffsDI2 (DWtype u)
aa66bd06 510{
b982024e 511 const DWunion uu = {.ll = u};
d6eacd48
RH
512 UWtype word, count, add;
513
d6eacd48
RH
514 if (uu.s.low != 0)
515 word = uu.s.low, add = 0;
516 else if (uu.s.high != 0)
fdf3e18a 517 word = uu.s.high, add = W_TYPE_SIZE;
d6eacd48
RH
518 else
519 return 0;
520
521 count_trailing_zeros (count, word);
522 return count + add + 1;
aa66bd06
RS
523}
524#endif
525\f
203b91b9 526#ifdef L_muldi3
996ed075
JJ
527DWtype
528__muldi3 (DWtype u, DWtype v)
203b91b9 529{
b982024e
KG
530 const DWunion uu = {.ll = u};
531 const DWunion vv = {.ll = v};
532 DWunion w = {.ll = __umulsidi3 (uu.s.low, vv.s.low)};
203b91b9 533
996ed075
JJ
534 w.s.high += ((UWtype) uu.s.low * (UWtype) vv.s.high
535 + (UWtype) uu.s.high * (UWtype) vv.s.low);
203b91b9
RS
536
537 return w.ll;
538}
539#endif
540\f
59798a0c
UW
541#if (defined (L_udivdi3) || defined (L_divdi3) || \
542 defined (L_umoddi3) || defined (L_moddi3))
f8eef883 543#if defined (sdiv_qrnnd)
59798a0c
UW
544#define L_udiv_w_sdiv
545#endif
f8eef883 546#endif
59798a0c 547
3904131a 548#ifdef L_udiv_w_sdiv
ce13d15f 549#if defined (sdiv_qrnnd)
59798a0c
UW
550#if (defined (L_udivdi3) || defined (L_divdi3) || \
551 defined (L_umoddi3) || defined (L_moddi3))
1ab9ba62 552static inline __attribute__ ((__always_inline__))
59798a0c 553#endif
996ed075
JJ
554UWtype
555__udiv_w_sdiv (UWtype *rp, UWtype a1, UWtype a0, UWtype d)
431b1ee0 556{
996ed075
JJ
557 UWtype q, r;
558 UWtype c0, c1, b1;
431b1ee0 559
996ed075 560 if ((Wtype) d >= 0)
431b1ee0 561 {
996ed075 562 if (a1 < d - a1 - (a0 >> (W_TYPE_SIZE - 1)))
431b1ee0 563 {
ea4b7848 564 /* Dividend, divisor, and quotient are nonnegative. */
431b1ee0
TG
565 sdiv_qrnnd (q, r, a1, a0, d);
566 }
567 else
568 {
ea4b7848 569 /* Compute c1*2^32 + c0 = a1*2^32 + a0 - 2^31*d. */
996ed075 570 sub_ddmmss (c1, c0, a1, a0, d >> 1, d << (W_TYPE_SIZE - 1));
ea4b7848 571 /* Divide (c1*2^32 + c0) by d. */
431b1ee0 572 sdiv_qrnnd (q, r, c1, c0, d);
ea4b7848 573 /* Add 2^31 to quotient. */
996ed075 574 q += (UWtype) 1 << (W_TYPE_SIZE - 1);
431b1ee0
TG
575 }
576 }
577 else
578 {
579 b1 = d >> 1; /* d/2, between 2^30 and 2^31 - 1 */
580 c1 = a1 >> 1; /* A/2 */
996ed075 581 c0 = (a1 << (W_TYPE_SIZE - 1)) + (a0 >> 1);
431b1ee0
TG
582
583 if (a1 < b1) /* A < 2^32*b1, so A/2 < 2^31*b1 */
584 {
585 sdiv_qrnnd (q, r, c1, c0, b1); /* (A/2) / (d/2) */
586
587 r = 2*r + (a0 & 1); /* Remainder from A/(2*b1) */
588 if ((d & 1) != 0)
589 {
590 if (r >= q)
591 r = r - q;
592 else if (q - r <= d)
593 {
594 r = r - q + d;
595 q--;
596 }
597 else
598 {
599 r = r - q + 2*d;
600 q -= 2;
601 }
602 }
603 }
604 else if (c1 < b1) /* So 2^31 <= (A/2)/b1 < 2^32 */
605 {
606 c1 = (b1 - 1) - c1;
607 c0 = ~c0; /* logical NOT */
608
609 sdiv_qrnnd (q, r, c1, c0, b1); /* (A/2) / (d/2) */
610
611 q = ~q; /* (A/2)/b1 */
612 r = (b1 - 1) - r;
613
614 r = 2*r + (a0 & 1); /* A/(2*b1) */
615
616 if ((d & 1) != 0)
617 {
618 if (r >= q)
619 r = r - q;
620 else if (q - r <= d)
621 {
622 r = r - q + d;
623 q--;
624 }
625 else
626 {
627 r = r - q + 2*d;
628 q -= 2;
629 }
630 }
631 }
632 else /* Implies c1 = b1 */
633 { /* Hence a1 = d - 1 = 2*b1 - 1 */
634 if (a0 >= -d)
635 {
636 q = -1;
637 r = a0 + d;
638 }
639 else
640 {
641 q = -2;
642 r = a0 + 2*d;
643 }
644 }
645 }
646
647 *rp = r;
648 return q;
649}
ce13d15f
RK
650#else
651/* If sdiv_qrnnd doesn't exist, define dummy __udiv_w_sdiv. */
996ed075
JJ
652UWtype
653__udiv_w_sdiv (UWtype *rp __attribute__ ((__unused__)),
654 UWtype a1 __attribute__ ((__unused__)),
655 UWtype a0 __attribute__ ((__unused__)),
656 UWtype d __attribute__ ((__unused__)))
081f5e7e
KG
657{
658 return 0;
659}
ce13d15f 660#endif
431b1ee0
TG
661#endif
662\f
536bfcd0 663#if (defined (L_udivdi3) || defined (L_divdi3) || \
18362447
UB
664 defined (L_umoddi3) || defined (L_moddi3) || \
665 defined (L_divmoddi4))
536bfcd0
RK
666#define L_udivmoddi4
667#endif
668
d6eacd48 669#ifdef L_clz
dcfae47c 670const UQItype __clz_tab[256] =
203b91b9
RS
671{
672 0,1,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
673 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
674 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
675 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
676 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
677 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
678 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
dcfae47c 679 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8
203b91b9 680};
d6eacd48 681#endif
2928cd7a
RH
682\f
683#ifdef L_clzsi2
dabb3f04 684#undef int
dabb3f04 685int
8275b011 686__clzSI2 (UWtype x)
2928cd7a 687{
53585c36 688 Wtype ret;
2928cd7a 689
8275b011 690 count_leading_zeros (ret, x);
53585c36
RH
691
692 return ret;
2928cd7a
RH
693}
694#endif
695\f
696#ifdef L_clzdi2
dabb3f04 697#undef int
dabb3f04 698int
8275b011 699__clzDI2 (UDWtype x)
2928cd7a 700{
b982024e 701 const DWunion uu = {.ll = x};
53585c36
RH
702 UWtype word;
703 Wtype ret, add;
704
8275b011
RH
705 if (uu.s.high)
706 word = uu.s.high, add = 0;
53585c36 707 else
8275b011 708 word = uu.s.low, add = W_TYPE_SIZE;
2928cd7a 709
53585c36
RH
710 count_leading_zeros (ret, word);
711 return ret + add;
2928cd7a
RH
712}
713#endif
714\f
715#ifdef L_ctzsi2
dabb3f04 716#undef int
dabb3f04 717int
8275b011 718__ctzSI2 (UWtype x)
2928cd7a 719{
53585c36 720 Wtype ret;
2928cd7a 721
53585c36 722 count_trailing_zeros (ret, x);
2928cd7a 723
53585c36 724 return ret;
2928cd7a
RH
725}
726#endif
727\f
728#ifdef L_ctzdi2
dabb3f04 729#undef int
dabb3f04 730int
8275b011 731__ctzDI2 (UDWtype x)
2928cd7a 732{
b982024e 733 const DWunion uu = {.ll = x};
53585c36
RH
734 UWtype word;
735 Wtype ret, add;
736
8275b011
RH
737 if (uu.s.low)
738 word = uu.s.low, add = 0;
53585c36 739 else
8275b011 740 word = uu.s.high, add = W_TYPE_SIZE;
2928cd7a 741
53585c36
RH
742 count_trailing_zeros (ret, word);
743 return ret + add;
2928cd7a
RH
744}
745#endif
3801c801
BS
746\f
747#ifdef L_clrsbsi2
748#undef int
749int
750__clrsbSI2 (Wtype x)
751{
752 Wtype ret;
2928cd7a 753
3801c801
BS
754 if (x < 0)
755 x = ~x;
756 if (x == 0)
757 return W_TYPE_SIZE - 1;
758 count_leading_zeros (ret, x);
759 return ret - 1;
760}
761#endif
762\f
763#ifdef L_clrsbdi2
764#undef int
765int
766__clrsbDI2 (DWtype x)
767{
768 const DWunion uu = {.ll = x};
769 UWtype word;
770 Wtype ret, add;
771
772 if (uu.s.high == 0)
773 word = uu.s.low, add = W_TYPE_SIZE;
774 else if (uu.s.high == -1)
775 word = ~uu.s.low, add = W_TYPE_SIZE;
776 else if (uu.s.high >= 0)
777 word = uu.s.high, add = 0;
778 else
779 word = ~uu.s.high, add = 0;
780
781 if (word == 0)
782 ret = W_TYPE_SIZE;
783 else
784 count_leading_zeros (ret, word);
785
786 return ret + add - 1;
787}
788#endif
789\f
2928cd7a 790#ifdef L_popcount_tab
dcfae47c 791const UQItype __popcount_tab[256] =
2928cd7a
RH
792{
793 0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,
794 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
795 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
796 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
797 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
798 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
799 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
dcfae47c 800 3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,4,5,5,6,5,6,6,7,5,6,6,7,6,7,7,8
2928cd7a
RH
801};
802#endif
803\f
4ea3d774 804#if defined(L_popcountsi2) || defined(L_popcountdi2)
a153644f
TS
805#define POPCOUNTCST2(x) (((UWtype) x << __CHAR_BIT__) | x)
806#define POPCOUNTCST4(x) (((UWtype) x << (2 * __CHAR_BIT__)) | x)
807#define POPCOUNTCST8(x) (((UWtype) x << (4 * __CHAR_BIT__)) | x)
808#if W_TYPE_SIZE == __CHAR_BIT__
4ea3d774 809#define POPCOUNTCST(x) x
a153644f 810#elif W_TYPE_SIZE == 2 * __CHAR_BIT__
4ea3d774 811#define POPCOUNTCST(x) POPCOUNTCST2 (x)
a153644f 812#elif W_TYPE_SIZE == 4 * __CHAR_BIT__
4ea3d774 813#define POPCOUNTCST(x) POPCOUNTCST4 (POPCOUNTCST2 (x))
a153644f 814#elif W_TYPE_SIZE == 8 * __CHAR_BIT__
4ea3d774
JJ
815#define POPCOUNTCST(x) POPCOUNTCST8 (POPCOUNTCST4 (POPCOUNTCST2 (x)))
816#endif
817#endif
818\f
2928cd7a 819#ifdef L_popcountsi2
dabb3f04 820#undef int
dabb3f04 821int
8275b011 822__popcountSI2 (UWtype x)
2928cd7a 823{
4ea3d774
JJ
824 /* Force table lookup on targets like AVR and RL78 which only
825 pretend they have LIBGCC2_UNITS_PER_WORD 4, but actually
826 have 1, and other small word targets. */
a153644f 827#if __SIZEOF_INT__ > 2 && defined (POPCOUNTCST) && __CHAR_BIT__ == 8
4ea3d774
JJ
828 x = x - ((x >> 1) & POPCOUNTCST (0x55));
829 x = (x & POPCOUNTCST (0x33)) + ((x >> 2) & POPCOUNTCST (0x33));
830 x = (x + (x >> 4)) & POPCOUNTCST (0x0F);
a153644f 831 return (x * POPCOUNTCST (0x01)) >> (W_TYPE_SIZE - __CHAR_BIT__);
4ea3d774 832#else
4000debb 833 int i, ret = 0;
8275b011
RH
834
835 for (i = 0; i < W_TYPE_SIZE; i += 8)
836 ret += __popcount_tab[(x >> i) & 0xff];
837
838 return ret;
4ea3d774 839#endif
2928cd7a
RH
840}
841#endif
842\f
843#ifdef L_popcountdi2
dabb3f04 844#undef int
dabb3f04 845int
8275b011 846__popcountDI2 (UDWtype x)
2928cd7a 847{
4ea3d774
JJ
848 /* Force table lookup on targets like AVR and RL78 which only
849 pretend they have LIBGCC2_UNITS_PER_WORD 4, but actually
850 have 1, and other small word targets. */
a153644f 851#if __SIZEOF_INT__ > 2 && defined (POPCOUNTCST) && __CHAR_BIT__ == 8
4ea3d774
JJ
852 const DWunion uu = {.ll = x};
853 UWtype x1 = uu.s.low, x2 = uu.s.high;
854 x1 = x1 - ((x1 >> 1) & POPCOUNTCST (0x55));
855 x2 = x2 - ((x2 >> 1) & POPCOUNTCST (0x55));
856 x1 = (x1 & POPCOUNTCST (0x33)) + ((x1 >> 2) & POPCOUNTCST (0x33));
857 x2 = (x2 & POPCOUNTCST (0x33)) + ((x2 >> 2) & POPCOUNTCST (0x33));
858 x1 = (x1 + (x1 >> 4)) & POPCOUNTCST (0x0F);
859 x2 = (x2 + (x2 >> 4)) & POPCOUNTCST (0x0F);
860 x1 += x2;
a153644f 861 return (x1 * POPCOUNTCST (0x01)) >> (W_TYPE_SIZE - __CHAR_BIT__);
4ea3d774 862#else
4000debb 863 int i, ret = 0;
8275b011
RH
864
865 for (i = 0; i < 2*W_TYPE_SIZE; i += 8)
866 ret += __popcount_tab[(x >> i) & 0xff];
867
868 return ret;
4ea3d774 869#endif
2928cd7a
RH
870}
871#endif
872\f
873#ifdef L_paritysi2
dabb3f04 874#undef int
dabb3f04 875int
8275b011 876__paritySI2 (UWtype x)
2928cd7a 877{
8275b011
RH
878#if W_TYPE_SIZE > 64
879# error "fill out the table"
880#endif
881#if W_TYPE_SIZE > 32
882 x ^= x >> 32;
883#endif
884#if W_TYPE_SIZE > 16
885 x ^= x >> 16;
886#endif
887 x ^= x >> 8;
888 x ^= x >> 4;
889 x &= 0xf;
890 return (0x6996 >> x) & 1;
2928cd7a
RH
891}
892#endif
893\f
894#ifdef L_paritydi2
dabb3f04 895#undef int
dabb3f04 896int
8275b011 897__parityDI2 (UDWtype x)
2928cd7a 898{
b982024e
KG
899 const DWunion uu = {.ll = x};
900 UWtype nx = uu.s.low ^ uu.s.high;
8275b011
RH
901
902#if W_TYPE_SIZE > 64
903# error "fill out the table"
904#endif
905#if W_TYPE_SIZE > 32
906 nx ^= nx >> 32;
907#endif
908#if W_TYPE_SIZE > 16
2928cd7a 909 nx ^= nx >> 16;
8275b011 910#endif
2928cd7a 911 nx ^= nx >> 8;
53585c36 912 nx ^= nx >> 4;
0c9ed856
RH
913 nx &= 0xf;
914 return (0x6996 >> nx) & 1;
2928cd7a
RH
915}
916#endif
d6eacd48
RH
917
918#ifdef L_udivmoddi4
30b8f78b
KV
919#ifdef TARGET_HAS_NO_HW_DIVIDE
920
921#if (defined (L_udivdi3) || defined (L_divdi3) || \
18362447
UB
922 defined (L_umoddi3) || defined (L_moddi3) || \
923 defined (L_divmoddi4))
30b8f78b
KV
924static inline __attribute__ ((__always_inline__))
925#endif
926UDWtype
927__udivmoddi4 (UDWtype n, UDWtype d, UDWtype *rp)
928{
929 UDWtype q = 0, r = n, y = d;
930 UWtype lz1, lz2, i, k;
931
932 /* Implements align divisor shift dividend method. This algorithm
933 aligns the divisor under the dividend and then perform number of
934 test-subtract iterations which shift the dividend left. Number of
935 iterations is k + 1 where k is the number of bit positions the
ebc4cd54 936 divisor must be shifted left to align it under the dividend.
30b8f78b
KV
937 quotient bits can be saved in the rightmost positions of the dividend
938 as it shifts left on each test-subtract iteration. */
939
940 if (y <= r)
941 {
942 lz1 = __builtin_clzll (d);
943 lz2 = __builtin_clzll (n);
944
945 k = lz1 - lz2;
946 y = (y << k);
947
ebc4cd54 948 /* Dividend can exceed 2 ^ (width - 1) - 1 but still be less than the
30b8f78b
KV
949 aligned divisor. Normal iteration can drops the high order bit
950 of the dividend. Therefore, first test-subtract iteration is a
951 special case, saving its quotient bit in a separate location and
952 not shifting the dividend. */
953 if (r >= y)
954 {
955 r = r - y;
956 q = (1ULL << k);
957 }
958
959 if (k > 0)
960 {
961 y = y >> 1;
962
963 /* k additional iterations where k regular test subtract shift
964 dividend iterations are done. */
965 i = k;
966 do
967 {
968 if (r >= y)
969 r = ((r - y) << 1) + 1;
970 else
971 r = (r << 1);
972 i = i - 1;
973 } while (i != 0);
974
975 /* First quotient bit is combined with the quotient bits resulting
976 from the k regular iterations. */
977 q = q + r;
978 r = r >> k;
979 q = q - (r << k);
980 }
981 }
982
983 if (rp)
984 *rp = r;
985 return q;
986}
987#else
203b91b9 988
536bfcd0 989#if (defined (L_udivdi3) || defined (L_divdi3) || \
18362447
UB
990 defined (L_umoddi3) || defined (L_moddi3) || \
991 defined (L_divmoddi4))
1ab9ba62 992static inline __attribute__ ((__always_inline__))
536bfcd0 993#endif
996ed075
JJ
994UDWtype
995__udivmoddi4 (UDWtype n, UDWtype d, UDWtype *rp)
203b91b9 996{
b982024e
KG
997 const DWunion nn = {.ll = n};
998 const DWunion dd = {.ll = d};
996ed075
JJ
999 DWunion rr;
1000 UWtype d0, d1, n0, n1, n2;
1001 UWtype q0, q1;
1002 UWtype b, bm;
203b91b9 1003
203b91b9
RS
1004 d0 = dd.s.low;
1005 d1 = dd.s.high;
1006 n0 = nn.s.low;
1007 n1 = nn.s.high;
1008
1009#if !UDIV_NEEDS_NORMALIZATION
1010 if (d1 == 0)
1011 {
1012 if (d0 > n1)
1013 {
1014 /* 0q = nn / 0D */
1015
1016 udiv_qrnnd (q0, n0, n1, n0, d0);
1017 q1 = 0;
1018
1019 /* Remainder in n0. */
1020 }
1021 else
1022 {
1023 /* qq = NN / 0d */
1024
1025 if (d0 == 0)
1026 d0 = 1 / d0; /* Divide intentionally by zero. */
1027
1028 udiv_qrnnd (q1, n1, 0, n1, d0);
1029 udiv_qrnnd (q0, n0, n1, n0, d0);
1030
1031 /* Remainder in n0. */
1032 }
1033
1034 if (rp != 0)
1035 {
1036 rr.s.low = n0;
1037 rr.s.high = 0;
1038 *rp = rr.ll;
1039 }
1040 }
1041
1042#else /* UDIV_NEEDS_NORMALIZATION */
1043
1044 if (d1 == 0)
1045 {
1046 if (d0 > n1)
1047 {
1048 /* 0q = nn / 0D */
1049
1050 count_leading_zeros (bm, d0);
1051
1052 if (bm != 0)
1053 {
1054 /* Normalize, i.e. make the most significant bit of the
1055 denominator set. */
1056
1057 d0 = d0 << bm;
996ed075 1058 n1 = (n1 << bm) | (n0 >> (W_TYPE_SIZE - bm));
203b91b9
RS
1059 n0 = n0 << bm;
1060 }
1061
1062 udiv_qrnnd (q0, n0, n1, n0, d0);
1063 q1 = 0;
1064
1065 /* Remainder in n0 >> bm. */
1066 }
1067 else
1068 {
1069 /* qq = NN / 0d */
1070
1071 if (d0 == 0)
1072 d0 = 1 / d0; /* Divide intentionally by zero. */
1073
1074 count_leading_zeros (bm, d0);
1075
1076 if (bm == 0)
1077 {
1078 /* From (n1 >= d0) /\ (the most significant bit of d0 is set),
1079 conclude (the most significant bit of n1 is set) /\ (the
1080 leading quotient digit q1 = 1).
1081
1082 This special case is necessary, not an optimization.
996ed075 1083 (Shifts counts of W_TYPE_SIZE are undefined.) */
203b91b9
RS
1084
1085 n1 -= d0;
1086 q1 = 1;
1087 }
1088 else
1089 {
1090 /* Normalize. */
1091
996ed075 1092 b = W_TYPE_SIZE - bm;
203b91b9
RS
1093
1094 d0 = d0 << bm;
1095 n2 = n1 >> b;
1096 n1 = (n1 << bm) | (n0 >> b);
1097 n0 = n0 << bm;
1098
1099 udiv_qrnnd (q1, n1, n2, n1, d0);
1100 }
1101
0f41302f 1102 /* n1 != d0... */
203b91b9
RS
1103
1104 udiv_qrnnd (q0, n0, n1, n0, d0);
1105
1106 /* Remainder in n0 >> bm. */
1107 }
1108
1109 if (rp != 0)
1110 {
1111 rr.s.low = n0 >> bm;
1112 rr.s.high = 0;
1113 *rp = rr.ll;
1114 }
1115 }
1116#endif /* UDIV_NEEDS_NORMALIZATION */
1117
1118 else
1119 {
1120 if (d1 > n1)
1121 {
1122 /* 00 = nn / DD */
1123
1124 q0 = 0;
1125 q1 = 0;
1126
1127 /* Remainder in n1n0. */
1128 if (rp != 0)
1129 {
1130 rr.s.low = n0;
1131 rr.s.high = n1;
1132 *rp = rr.ll;
1133 }
1134 }
1135 else
1136 {
1137 /* 0q = NN / dd */
1138
1139 count_leading_zeros (bm, d1);
1140 if (bm == 0)
1141 {
1142 /* From (n1 >= d1) /\ (the most significant bit of d1 is set),
1143 conclude (the most significant bit of n1 is set) /\ (the
1144 quotient digit q0 = 0 or 1).
1145
1146 This special case is necessary, not an optimization. */
1147
1148 /* The condition on the next line takes advantage of that
1149 n1 >= d1 (true due to program flow). */
1150 if (n1 > d1 || n0 >= d0)
1151 {
1152 q0 = 1;
1153 sub_ddmmss (n1, n0, n1, n0, d1, d0);
1154 }
1155 else
1156 q0 = 0;
1157
1158 q1 = 0;
1159
1160 if (rp != 0)
1161 {
1162 rr.s.low = n0;
1163 rr.s.high = n1;
1164 *rp = rr.ll;
1165 }
1166 }
1167 else
1168 {
996ed075 1169 UWtype m1, m0;
203b91b9
RS
1170 /* Normalize. */
1171
996ed075 1172 b = W_TYPE_SIZE - bm;
203b91b9
RS
1173
1174 d1 = (d1 << bm) | (d0 >> b);
1175 d0 = d0 << bm;
1176 n2 = n1 >> b;
1177 n1 = (n1 << bm) | (n0 >> b);
1178 n0 = n0 << bm;
1179
1180 udiv_qrnnd (q0, n1, n2, n1, d1);
1181 umul_ppmm (m1, m0, q0, d0);
1182
1183 if (m1 > n1 || (m1 == n1 && m0 > n0))
1184 {
1185 q0--;
1186 sub_ddmmss (m1, m0, m1, m0, d1, d0);
1187 }
1188
1189 q1 = 0;
1190
1191 /* Remainder in (n1n0 - m1m0) >> bm. */
1192 if (rp != 0)
1193 {
1194 sub_ddmmss (n1, n0, n1, n0, m1, m0);
1195 rr.s.low = (n1 << b) | (n0 >> bm);
1196 rr.s.high = n1 >> bm;
1197 *rp = rr.ll;
1198 }
1199 }
1200 }
1201 }
1202
b982024e 1203 const DWunion ww = {{.low = q0, .high = q1}};
203b91b9
RS
1204 return ww.ll;
1205}
1206#endif
30b8f78b 1207#endif
203b91b9
RS
1208
1209#ifdef L_divdi3
996ed075
JJ
1210DWtype
1211__divdi3 (DWtype u, DWtype v)
203b91b9 1212{
c7ff6e7a 1213 Wtype c = 0;
b982024e
KG
1214 DWunion uu = {.ll = u};
1215 DWunion vv = {.ll = v};
996ed075 1216 DWtype w;
203b91b9 1217
203b91b9
RS
1218 if (uu.s.high < 0)
1219 c = ~c,
b68daef4 1220 uu.ll = -uu.ll;
203b91b9
RS
1221 if (vv.s.high < 0)
1222 c = ~c,
b68daef4 1223 vv.ll = -vv.ll;
203b91b9 1224
996ed075 1225 w = __udivmoddi4 (uu.ll, vv.ll, (UDWtype *) 0);
203b91b9 1226 if (c)
b68daef4 1227 w = -w;
203b91b9
RS
1228
1229 return w;
1230}
1231#endif
1232
1233#ifdef L_moddi3
996ed075
JJ
1234DWtype
1235__moddi3 (DWtype u, DWtype v)
203b91b9 1236{
c7ff6e7a 1237 Wtype c = 0;
b982024e
KG
1238 DWunion uu = {.ll = u};
1239 DWunion vv = {.ll = v};
996ed075 1240 DWtype w;
203b91b9 1241
203b91b9
RS
1242 if (uu.s.high < 0)
1243 c = ~c,
b68daef4 1244 uu.ll = -uu.ll;
203b91b9 1245 if (vv.s.high < 0)
b68daef4 1246 vv.ll = -vv.ll;
203b91b9 1247
9c859be1 1248 (void) __udivmoddi4 (uu.ll, vv.ll, (UDWtype*)&w);
203b91b9 1249 if (c)
b68daef4 1250 w = -w;
203b91b9
RS
1251
1252 return w;
1253}
1254#endif
1255
18362447
UB
1256#ifdef L_divmoddi4
1257DWtype
1258__divmoddi4 (DWtype u, DWtype v, DWtype *rp)
1259{
1260 Wtype c1 = 0, c2 = 0;
1261 DWunion uu = {.ll = u};
1262 DWunion vv = {.ll = v};
1263 DWtype w;
1264 DWtype r;
1265
1266 if (uu.s.high < 0)
1267 c1 = ~c1, c2 = ~c2,
1268 uu.ll = -uu.ll;
1269 if (vv.s.high < 0)
1270 c1 = ~c1,
1271 vv.ll = -vv.ll;
1272
1273 w = __udivmoddi4 (uu.ll, vv.ll, (UDWtype*)&r);
1274 if (c1)
1275 w = -w;
1276 if (c2)
1277 r = -r;
1278
1279 *rp = r;
1280 return w;
1281}
1282#endif
1283
203b91b9 1284#ifdef L_umoddi3
996ed075
JJ
1285UDWtype
1286__umoddi3 (UDWtype u, UDWtype v)
203b91b9 1287{
996ed075 1288 UDWtype w;
203b91b9
RS
1289
1290 (void) __udivmoddi4 (u, v, &w);
1291
1292 return w;
1293}
1294#endif
1295
1296#ifdef L_udivdi3
996ed075
JJ
1297UDWtype
1298__udivdi3 (UDWtype n, UDWtype d)
203b91b9 1299{
996ed075 1300 return __udivmoddi4 (n, d, (UDWtype *) 0);
203b91b9
RS
1301}
1302#endif
1303\f
2ce182e2
JJ
1304#if (defined(__BITINT_MAXWIDTH__) \
1305 && (defined(L_mulbitint3) || defined(L_divmodbitint4)))
1306/* _BitInt support. */
1307
1308/* If *P is zero or sign extended (the latter only for PREC < 0) from
1309 some narrower _BitInt value, reduce precision. */
1310
1311static inline __attribute__((__always_inline__)) SItype
1312bitint_reduce_prec (const UWtype **p, SItype prec)
1313{
1314 UWtype mslimb;
1315 SItype i;
1316 if (prec < 0)
1317 {
1318#if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__
1319 i = 0;
1320#else
1321 i = ((USItype) -1 - prec) / W_TYPE_SIZE;
1322#endif
1323 mslimb = (*p)[i];
1324 if (mslimb & ((UWtype) 1 << (((USItype) -1 - prec) % W_TYPE_SIZE)))
1325 {
1326 SItype n = ((USItype) -prec) % W_TYPE_SIZE;
1327 if (n)
1328 {
1329 mslimb |= ((UWtype) -1 << (((USItype) -1 - prec) % W_TYPE_SIZE));
1330 if (mslimb == (UWtype) -1)
1331 {
1332 prec += n;
1333 if (prec >= -1)
1334 return -2;
1335#if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__
1336 ++p;
1337#else
1338 --i;
1339#endif
1340 mslimb = (*p)[i];
1341 n = 0;
1342 }
1343 }
1344 while (mslimb == (UWtype) -1)
1345 {
1346 prec += W_TYPE_SIZE;
1347 if (prec >= -1)
1348 return -2;
1349#if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__
1350 ++p;
1351#else
1352 --i;
1353#endif
1354 mslimb = (*p)[i];
1355 }
1356 if (n == 0)
1357 {
1358 if ((Wtype) mslimb >= 0)
1359 {
1360#if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__
1361 --p;
1362#endif
1363 return prec - 1;
1364 }
1365 }
1366 return prec;
1367 }
1368 else
1369 prec = -prec;
1370 }
1371 else
1372 {
1373#if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__
1374 i = 0;
1375#else
1376 i = ((USItype) prec - 1) / W_TYPE_SIZE;
1377#endif
1378 mslimb = (*p)[i];
1379 }
1380 SItype n = ((USItype) prec) % W_TYPE_SIZE;
1381 if (n)
1382 {
1383 mslimb &= ((UWtype) 1 << (((USItype) prec) % W_TYPE_SIZE)) - 1;
1384 if (mslimb == 0)
1385 {
1386 prec -= n;
1387 if (prec == 0)
1388 return 1;
1389#if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__
1390 ++p;
1391#else
1392 --i;
1393#endif
1394 mslimb = (*p)[i];
1395 }
1396 }
1397 while (mslimb == 0)
1398 {
1399 prec -= W_TYPE_SIZE;
1400 if (prec == 0)
1401 return 1;
1402#if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__
1403 ++p;
1404#else
1405 --i;
1406#endif
1407 mslimb = (*p)[i];
1408 }
1409 return prec;
1410}
1411
1412#if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__
1413# define BITINT_INC -1
1414# define BITINT_END(be, le) (be)
1415#else
1416# define BITINT_INC 1
1417# define BITINT_END(be, le) (le)
1418#endif
1419
1420#ifdef L_mulbitint3
1421/* D = S * L. */
1422
1423static UWtype
1424bitint_mul_1 (UWtype *d, const UWtype *s, UWtype l, SItype n)
1425{
1426 UWtype sv, hi, lo, c = 0;
1427 do
1428 {
1429 sv = *s;
1430 s += BITINT_INC;
1431 umul_ppmm (hi, lo, sv, l);
1432 c = __builtin_add_overflow (lo, c, &lo) + hi;
1433 *d = lo;
1434 d += BITINT_INC;
1435 }
1436 while (--n);
1437 return c;
1438}
1439
1440/* D += S * L. */
1441
1442static UWtype
1443bitint_addmul_1 (UWtype *d, const UWtype *s, UWtype l, SItype n)
1444{
1445 UWtype sv, hi, lo, c = 0;
1446 do
1447 {
1448 sv = *s;
1449 s += BITINT_INC;
1450 umul_ppmm (hi, lo, sv, l);
1451 hi += __builtin_add_overflow (lo, *d, &lo);
1452 c = __builtin_add_overflow (lo, c, &lo) + hi;
1453 *d = lo;
1454 d += BITINT_INC;
1455 }
1456 while (--n);
1457 return c;
1458}
1459
1460/* If XPREC is positive, it is precision in bits
1461 of an unsigned _BitInt operand (which has XPREC/W_TYPE_SIZE
1462 full limbs and if Xprec%W_TYPE_SIZE one partial limb.
1463 If Xprec is negative, -XPREC is precision in bits
1464 of a signed _BitInt operand. RETPREC should be always
1465 positive. */
1466
1467void
1468__mulbitint3 (UWtype *ret, SItype retprec,
1469 const UWtype *u, SItype uprec,
1470 const UWtype *v, SItype vprec)
1471{
1472 uprec = bitint_reduce_prec (&u, uprec);
1473 vprec = bitint_reduce_prec (&v, vprec);
1474 USItype auprec = uprec < 0 ? -uprec : uprec;
1475 USItype avprec = vprec < 0 ? -vprec : vprec;
1476
1477 /* Prefer non-negative U.
1478 Otherwise make sure V doesn't have higher precision than U. */
1479 if ((uprec < 0 && vprec >= 0)
1480 || (avprec > auprec && !(uprec >= 0 && vprec < 0)))
1481 {
1482 SItype p;
1483 const UWtype *t;
1484 p = uprec; uprec = vprec; vprec = p;
1485 p = auprec; auprec = avprec; avprec = p;
1486 t = u; u = v; v = t;
1487 }
1488
1489 USItype un = auprec / W_TYPE_SIZE;
1490 USItype un2 = (auprec + W_TYPE_SIZE - 1) / W_TYPE_SIZE;
1491 USItype vn = avprec / W_TYPE_SIZE;
1492 USItype vn2 = (avprec + W_TYPE_SIZE - 1) / W_TYPE_SIZE;
1493 USItype retn = ((USItype) retprec + W_TYPE_SIZE - 1) / W_TYPE_SIZE;
1494 USItype retidx, uidx, vidx;
1495 UWtype vv;
1496 /* Indexes of least significant limb. */
1497#if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__
1498 retidx = retn - 1;
1499 uidx = un2 - 1;
1500 vidx = vn2 - 1;
1501#else
1502 retidx = 0;
1503 uidx = 0;
1504 vidx = 0;
1505#endif
1506 if (__builtin_expect (auprec <= W_TYPE_SIZE, 0) && vprec < 0)
1507 {
1508 UWtype uu = u[uidx];
1509 if (__builtin_expect (auprec < W_TYPE_SIZE, 0))
1510 uu &= ((UWtype) 1 << (auprec % W_TYPE_SIZE)) - 1;
1511 if (uu == 0)
1512 {
1513 /* 0 * negative would be otherwise mishandled below, so
1514 handle it specially. */
1515 __builtin_memset (ret, 0, retn * sizeof (UWtype));
1516 return;
1517 }
1518 }
1519 vv = v[vidx];
1520 if (__builtin_expect (avprec < W_TYPE_SIZE, 0))
1521 {
1522 if (vprec > 0)
1523 vv &= ((UWtype) 1 << (avprec % W_TYPE_SIZE)) - 1;
1524 else
1525 vv |= (UWtype) -1 << (avprec % W_TYPE_SIZE);
1526 }
1527
1528 USItype n = un > retn ? retn : un;
1529 USItype n2 = n;
1530 USItype retidx2 = retidx + n * BITINT_INC;
1531 UWtype c = 0, uv = 0;
1532 if (n)
1533 c = bitint_mul_1 (ret + retidx, u + uidx, vv, n);
1534 if (retn > un && un2 != un)
1535 {
1536 UWtype hi, lo;
1537 uv = u[uidx + n * BITINT_INC];
1538 if (uprec > 0)
1539 uv &= ((UWtype) 1 << (auprec % W_TYPE_SIZE)) - 1;
1540 else
1541 uv |= (UWtype) -1 << (auprec % W_TYPE_SIZE);
1542 umul_ppmm (hi, lo, uv, vv);
1543 c = __builtin_add_overflow (lo, c, &lo) + hi;
1544 ret[retidx2] = lo;
1545 retidx2 += BITINT_INC;
1546 ++n2;
1547 }
1548 if (retn > un2)
1549 {
1550 if (uprec < 0)
1551 {
1552 while (n2 < retn)
1553 {
1554 if (n2 >= un2 + vn2)
1555 break;
1556 UWtype hi, lo;
1557 umul_ppmm (hi, lo, (UWtype) -1, vv);
1558 c = __builtin_add_overflow (lo, c, &lo) + hi;
1559 ret[retidx2] = lo;
1560 retidx2 += BITINT_INC;
1561 ++n2;
1562 }
1563 }
1564 else
1565 {
1566 ret[retidx2] = c;
1567 retidx2 += BITINT_INC;
1568 ++n2;
1569 }
1570 /* If RET has more limbs than U after precision reduction,
1571 fill in the remaining limbs. */
1572 while (n2 < retn)
1573 {
1574 if (n2 < un2 + vn2 || (uprec ^ vprec) >= 0)
1575 c = 0;
1576 else
1577 c = (UWtype) -1;
1578 ret[retidx2] = c;
1579 retidx2 += BITINT_INC;
1580 ++n2;
1581 }
1582 }
1583 /* N is now number of possibly non-zero limbs in RET (ignoring
1584 limbs above UN2 + VN2 which if any have been finalized already). */
1585 USItype end = vprec < 0 ? un2 + vn2 : vn2;
1586 if (retn > un2 + vn2) retn = un2 + vn2;
1587 if (end > retn) end = retn;
1588 for (USItype m = 1; m < end; ++m)
1589 {
1590 retidx += BITINT_INC;
1591 vidx += BITINT_INC;
1592 if (m < vn2)
1593 {
1594 vv = v[vidx];
1595 if (__builtin_expect (m == vn, 0))
1596 {
1597 if (vprec > 0)
1598 vv &= ((UWtype) 1 << (avprec % W_TYPE_SIZE)) - 1;
1599 else
1600 vv |= (UWtype) -1 << (avprec % W_TYPE_SIZE);
1601 }
1602 }
1603 else
1604 vv = (UWtype) -1;
1605 if (m + n > retn)
1606 n = retn - m;
1607 c = 0;
1608 if (n)
1609 c = bitint_addmul_1 (ret + retidx, u + uidx, vv, n);
1610 n2 = m + n;
1611 retidx2 = retidx + n * BITINT_INC;
1612 if (n2 < retn && un2 != un)
1613 {
1614 UWtype hi, lo;
1615 umul_ppmm (hi, lo, uv, vv);
1616 hi += __builtin_add_overflow (lo, ret[retidx2], &lo);
1617 c = __builtin_add_overflow (lo, c, &lo) + hi;
1618 ret[retidx2] = lo;
1619 retidx2 += BITINT_INC;
1620 ++n2;
1621 }
1622 if (uprec < 0)
1623 while (n2 < retn)
1624 {
1625 UWtype hi, lo;
1626 umul_ppmm (hi, lo, (UWtype) -1, vv);
1627 hi += __builtin_add_overflow (lo, ret[retidx2], &lo);
1628 c = __builtin_add_overflow (lo, c, &lo) + hi;
1629 ret[retidx2] = lo;
1630 retidx2 += BITINT_INC;
1631 ++n2;
1632 }
1633 else if (n2 < retn)
1634 {
1635 ret[retidx2] = c;
1636 retidx2 += BITINT_INC;
1637 }
1638 }
1639}
1640#endif
1641
1642#ifdef L_divmodbitint4
f6e0ec56
JJ
1643/* D = -S. */
1644
2ce182e2
JJ
1645static void
1646bitint_negate (UWtype *d, const UWtype *s, SItype n)
1647{
1648 UWtype c = 1;
1649 do
1650 {
1651 UWtype sv = *s, lo;
1652 s += BITINT_INC;
1653 c = __builtin_add_overflow (~sv, c, &lo);
1654 *d = lo;
1655 d += BITINT_INC;
1656 }
1657 while (--n);
1658}
1659
1660/* D -= S * L. */
1661
1662static UWtype
1663bitint_submul_1 (UWtype *d, const UWtype *s, UWtype l, SItype n)
1664{
1665 UWtype sv, hi, lo, c = 0;
1666 do
1667 {
1668 sv = *s;
1669 s += BITINT_INC;
1670 umul_ppmm (hi, lo, sv, l);
1671 hi += __builtin_sub_overflow (*d, lo, &lo);
1672 c = __builtin_sub_overflow (lo, c, &lo) + hi;
1673 *d = lo;
1674 d += BITINT_INC;
1675 }
1676 while (--n);
1677 return c;
1678}
1679
1680/* If XPREC is positive, it is precision in bits
1681 of an unsigned _BitInt operand (which has XPREC/W_TYPE_SIZE
1682 full limbs and if Xprec%W_TYPE_SIZE one partial limb.
1683 If Xprec is negative, -XPREC is precision in bits
1684 of a signed _BitInt operand. QPREC and RPREC should be
1685 always non-negative. If either Q or R is NULL (at least
1686 one should be non-NULL), then corresponding QPREC or RPREC
1687 should be 0. */
1688
1689void
1690__divmodbitint4 (UWtype *q, SItype qprec,
1691 UWtype *r, SItype rprec,
1692 const UWtype *u, SItype uprec,
1693 const UWtype *v, SItype vprec)
1694{
1695 uprec = bitint_reduce_prec (&u, uprec);
1696 vprec = bitint_reduce_prec (&v, vprec);
1697 USItype auprec = uprec < 0 ? -uprec : uprec;
1698 USItype avprec = vprec < 0 ? -vprec : vprec;
1699 USItype un = (auprec + W_TYPE_SIZE - 1) / W_TYPE_SIZE;
1700 USItype vn = (avprec + W_TYPE_SIZE - 1) / W_TYPE_SIZE;
1701 USItype qn = ((USItype) qprec + W_TYPE_SIZE - 1) / W_TYPE_SIZE;
1702 USItype rn = ((USItype) rprec + W_TYPE_SIZE - 1) / W_TYPE_SIZE;
1703 USItype up = auprec % W_TYPE_SIZE;
1704 USItype vp = avprec % W_TYPE_SIZE;
1705 if (__builtin_expect (un < vn, 0))
1706 {
1707 /* If abs(v) > abs(u), then q is 0 and r is u. */
1708 if (q)
1709 __builtin_memset (q, 0, qn * sizeof (UWtype));
1710 if (r == NULL)
1711 return;
1712#if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__
1713 r += rn - 1;
1714 u += un - 1;
1715#endif
1716 if (up)
1717 --un;
1718 if (rn < un)
1719 un = rn;
1720 for (rn -= un; un; --un)
1721 {
1722 *r = *u;
1723 r += BITINT_INC;
1724 u += BITINT_INC;
1725 }
1726 if (!rn)
1727 return;
1728 if (up)
1729 {
1730 if (uprec > 0)
1731 *r = *u & (((UWtype) 1 << up) - 1);
1732 else
1733 *r = *u | ((UWtype) -1 << up);
1734 r += BITINT_INC;
1735 if (!--rn)
1736 return;
1737 }
1738 UWtype c = uprec < 0 ? (UWtype) -1 : (UWtype) 0;
1739 for (; rn; --rn)
1740 {
1741 *r = c;
1742 r += BITINT_INC;
1743 }
1744 return;
1745 }
1746 USItype qn2 = un - vn + 1;
1747 if (qn >= qn2)
1748 qn2 = 0;
1749 USItype sz = un + 1 + vn + qn2;
1750 UWtype *buf = __builtin_alloca (sz * sizeof (UWtype));
1751 USItype uidx, vidx;
1752#if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__
1753 uidx = un - 1;
1754 vidx = vn - 1;
1755#else
1756 uidx = 0;
1757 vidx = 0;
1758#endif
1759 if (uprec < 0)
1760 bitint_negate (buf + BITINT_END (uidx + 1, 0), u + uidx, un);
1761 else
1762 __builtin_memcpy (buf + BITINT_END (1, 0), u, un * sizeof (UWtype));
1763 if (up)
1764 buf[BITINT_END (1, un - 1)] &= (((UWtype) 1 << up) - 1);
1765 if (vprec < 0)
1766 bitint_negate (buf + un + 1 + vidx, v + vidx, vn);
1767 else
1768 __builtin_memcpy (buf + un + 1, v, vn * sizeof (UWtype));
1769 if (vp)
1770 buf[un + 1 + BITINT_END (0, vn - 1)] &= (((UWtype) 1 << vp) - 1);
1771 UWtype *u2 = buf;
1772 UWtype *v2 = u2 + un + 1;
1773 UWtype *q2 = v2 + vn;
1774 if (!qn2)
1775 q2 = q + BITINT_END (qn - (un - vn + 1), 0);
1776
1777 /* Knuth's algorithm. See also ../gcc/wide-int.cc (divmod_internal_2). */
1778
1779#ifndef UDIV_NEEDS_NORMALIZATION
1780 /* Handle single limb divisor first. */
1781 if (vn == 1)
1782 {
1783 UWtype vv = v2[0];
1784 if (vv == 0)
1785 vv = 1 / vv; /* Divide intentionally by zero. */
1786 UWtype k = 0;
1787#if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__
1788 for (SItype i = 0; i <= un - 1; ++i)
1789#else
1790 for (SItype i = un - 1; i >= 0; --i)
1791#endif
1792 udiv_qrnnd (q2[i], k, k, u2[BITINT_END (i + 1, i)], vv);
1793 if (r != NULL)
1794 r[BITINT_END (rn - 1, 0)] = k;
1795 }
1796 else
1797#endif
1798 {
1799 SItype s;
1800#ifdef UDIV_NEEDS_NORMALIZATION
1801 if (vn == 1 && v2[0] == 0)
1802 s = 0;
1803 else
1804#endif
1805 if (sizeof (0U) == sizeof (UWtype))
1806 s = __builtin_clz (v2[BITINT_END (0, vn - 1)]);
1807 else if (sizeof (0UL) == sizeof (UWtype))
1808 s = __builtin_clzl (v2[BITINT_END (0, vn - 1)]);
1809 else
1810 s = __builtin_clzll (v2[BITINT_END (0, vn - 1)]);
1811 if (s)
1812 {
1813 /* Normalize by shifting v2 left so that it has msb set. */
1814 const SItype n = sizeof (UWtype) * __CHAR_BIT__;
1815#if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__
1816 for (SItype i = 0; i < vn - 1; ++i)
1817#else
1818 for (SItype i = vn - 1; i > 0; --i)
1819#endif
1820 v2[i] = (v2[i] << s) | (v2[i - BITINT_INC] >> (n - s));
1821 v2[vidx] = v2[vidx] << s;
1822 /* And shift u2 left by the same amount. */
1823 u2[BITINT_END (0, un)] = u2[BITINT_END (1, un - 1)] >> (n - s);
1824#if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__
1825 for (SItype i = 1; i < un; ++i)
1826#else
1827 for (SItype i = un - 1; i > 0; --i)
1828#endif
1829 u2[i] = (u2[i] << s) | (u2[i - BITINT_INC] >> (n - s));
1830 u2[BITINT_END (un, 0)] = u2[BITINT_END (un, 0)] << s;
1831 }
1832 else
1833 u2[BITINT_END (0, un)] = 0;
1834#ifdef UDIV_NEEDS_NORMALIZATION
1835 /* Handle single limb divisor first. */
1836 if (vn == 1)
1837 {
1838 UWtype vv = v2[0];
1839 if (vv == 0)
1840 vv = 1 / vv; /* Divide intentionally by zero. */
1841 UWtype k = u2[BITINT_END (0, un)];
1842#if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__
1843 for (SItype i = 0; i <= un - 1; ++i)
1844#else
1845 for (SItype i = un - 1; i >= 0; --i)
1846#endif
1847 udiv_qrnnd (q2[i], k, k, u2[BITINT_END (i + 1, i)], vv);
1848 if (r != NULL)
1849 r[BITINT_END (rn - 1, 0)] = k >> s;
1850 }
1851 else
1852#endif
1853 {
1854 UWtype vv1 = v2[BITINT_END (0, vn - 1)];
1855 UWtype vv0 = v2[BITINT_END (1, vn - 2)];
1856 /* Main loop. */
1857 for (SItype j = un - vn; j >= 0; --j)
1858 {
1859 /* Compute estimate in qhat. */
1860 UWtype uv1 = u2[BITINT_END (un - j - vn, j + vn)];
1861 UWtype uv0 = u2[BITINT_END (un - j - vn + 1, j + vn - 1)];
1862 UWtype qhat, rhat, hi, lo, c;
1863 if (uv1 >= vv1)
1864 {
1865 /* udiv_qrnnd doesn't support quotients which don't
1866 fit into UWtype, so subtract from uv1:uv0 vv1
1867 first. */
1868 uv1 -= vv1 + __builtin_sub_overflow (uv0, vv1, &uv0);
1869 udiv_qrnnd (qhat, rhat, uv1, uv0, vv1);
1870 if (!__builtin_add_overflow (rhat, vv1, &rhat))
1871 goto again;
1872 }
1873 else
1874 {
1875 udiv_qrnnd (qhat, rhat, uv1, uv0, vv1);
1876 again:
1877 umul_ppmm (hi, lo, qhat, vv0);
1878 if (hi > rhat
1879 || (hi == rhat
1880 && lo > u2[BITINT_END (un - j - vn + 2,
1881 j + vn - 2)]))
1882 {
1883 --qhat;
1884 if (!__builtin_add_overflow (rhat, vv1, &rhat))
1885 goto again;
1886 }
1887 }
1888
1889 c = bitint_submul_1 (u2 + BITINT_END (un - j, j),
1890 v2 + BITINT_END (vn - 1, 0), qhat, vn);
1891 u2[BITINT_END (un - j - vn, j + vn)] -= c;
1892 /* If we've subtracted too much, decrease qhat and
1893 and add back. */
1894 if ((Wtype) u2[BITINT_END (un - j - vn, j + vn)] < 0)
1895 {
1896 --qhat;
1897 c = 0;
1898 for (USItype i = 0; i < vn; ++i)
1899 {
1900 UWtype s = v2[BITINT_END (vn - 1 - i, i)];
1901 UWtype d = u2[BITINT_END (un - i - j, i + j)];
1902 UWtype c1 = __builtin_add_overflow (d, s, &d);
1903 UWtype c2 = __builtin_add_overflow (d, c, &d);
1904 c = c1 + c2;
1905 u2[BITINT_END (un - i - j, i + j)] = d;
1906 }
1907 u2[BITINT_END (un - j - vn, j + vn)] += c;
1908 }
1909 q2[BITINT_END (un - vn - j, j)] = qhat;
1910 }
1911 if (r != NULL)
1912 {
1913 if (s)
1914 {
1915 const SItype n = sizeof (UWtype) * __CHAR_BIT__;
1916 /* Unnormalize remainder. */
1917 USItype i;
1918 for (i = 0; i < vn && i < rn; ++i)
1919 r[BITINT_END (rn - 1 - i, i)]
1920 = ((u2[BITINT_END (un - i, i)] >> s)
1921 | (u2[BITINT_END (un - i - 1, i + 1)] << (n - s)));
1922 if (i < rn)
1923 r[BITINT_END (rn - vn, vn - 1)]
1924 = u2[BITINT_END (un - vn + 1, vn - 1)] >> s;
1925 }
1926 else if (rn > vn)
1927 __builtin_memcpy (&r[BITINT_END (rn - vn, 0)],
1928 &u2[BITINT_END (un + 1 - vn, 0)],
1929 vn * sizeof (UWtype));
1930 else
1931 __builtin_memcpy (&r[0], &u2[BITINT_END (un + 1 - rn, 0)],
1932 rn * sizeof (UWtype));
1933 }
1934 }
1935 }
1936 if (q != NULL)
1937 {
1938 if ((uprec < 0) ^ (vprec < 0))
1939 {
1940 /* Negative quotient. */
1941 USItype n;
1942 if (un - vn + 1 > qn)
1943 n = qn;
1944 else
1945 n = un - vn + 1;
1946 bitint_negate (q + BITINT_END (qn - 1, 0),
1947 q2 + BITINT_END (un - vn, 0), n);
1948 if (qn > n)
1949 __builtin_memset (q + BITINT_END (0, n), -1,
1950 (qn - n) * sizeof (UWtype));
1951 }
1952 else
1953 {
1954 /* Positive quotient. */
1955 if (qn2)
1956 __builtin_memcpy (q, q2 + BITINT_END (un - vn + 1 - qn, 0),
1957 qn * sizeof (UWtype));
1958 else if (qn > un - vn + 1)
1959 __builtin_memset (q + BITINT_END (0, un - vn + 1), 0,
1960 (qn - (un - vn + 1)) * sizeof (UWtype));
1961 }
1962 }
1963 if (r != NULL)
1964 {
1965 if (uprec < 0)
1966 {
1967 /* Negative remainder. */
1968 bitint_negate (r + BITINT_END (rn - 1, 0),
1969 r + BITINT_END (rn - 1, 0),
1970 rn > vn ? vn : rn);
1971 if (rn > vn)
1972 __builtin_memset (r + BITINT_END (0, vn), -1,
1973 (rn - vn) * sizeof (UWtype));
1974 }
1975 else
1976 {
1977 /* Positive remainder. */
1978 if (rn > vn)
1979 __builtin_memset (r + BITINT_END (0, vn), 0,
1980 (rn - vn) * sizeof (UWtype));
1981 }
1982 }
1983}
1984#endif
1985#endif
1986\f
203b91b9 1987#ifdef L_cmpdi2
c7ff6e7a 1988cmp_return_type
996ed075 1989__cmpdi2 (DWtype a, DWtype b)
203b91b9 1990{
ebc4cd54 1991 return (a > b) - (a < b) + 1;
203b91b9
RS
1992}
1993#endif
1994
1995#ifdef L_ucmpdi2
c7ff6e7a 1996cmp_return_type
ebc4cd54 1997__ucmpdi2 (UDWtype a, UDWtype b)
203b91b9 1998{
ebc4cd54 1999 return (a > b) - (a < b) + 1;
203b91b9
RS
2000}
2001#endif
2002\f
4e9db8b2 2003#if defined(L_fixunstfdi) && LIBGCC2_HAS_TF_MODE
f139f5fa 2004UDWtype
6da9c622 2005__fixunstfDI (TFtype a)
ab495388 2006{
ab495388
RS
2007 if (a < 0)
2008 return 0;
2009
2010 /* Compute high word of result, as a flonum. */
4f2e0d5e 2011 const TFtype b = (a / Wtype_MAXp1_F);
996ed075 2012 /* Convert that to fixed (but not to DWtype!),
ab495388 2013 and shift it into the high word. */
b982024e 2014 UDWtype v = (UWtype) b;
4f2e0d5e 2015 v <<= W_TYPE_SIZE;
ab495388
RS
2016 /* Remove high part from the TFtype, leaving the low part as flonum. */
2017 a -= (TFtype)v;
996ed075 2018 /* Convert that to fixed (but not to DWtype!) and add it in.
ab495388
RS
2019 Sometimes A comes out negative. This is significant, since
2020 A has more bits than a long int does. */
2021 if (a < 0)
996ed075 2022 v -= (UWtype) (- a);
ab495388 2023 else
996ed075 2024 v += (UWtype) a;
ab495388
RS
2025 return v;
2026}
2027#endif
2028
4e9db8b2 2029#if defined(L_fixtfdi) && LIBGCC2_HAS_TF_MODE
996ed075 2030DWtype
37ef1054 2031__fixtfdi (TFtype a)
ab495388
RS
2032{
2033 if (a < 0)
6da9c622
RK
2034 return - __fixunstfDI (-a);
2035 return __fixunstfDI (a);
ab495388
RS
2036}
2037#endif
2038
4e9db8b2 2039#if defined(L_fixunsxfdi) && LIBGCC2_HAS_XF_MODE
f139f5fa 2040UDWtype
6da9c622 2041__fixunsxfDI (XFtype a)
e0799b34 2042{
e0799b34
RS
2043 if (a < 0)
2044 return 0;
2045
2046 /* Compute high word of result, as a flonum. */
4f2e0d5e 2047 const XFtype b = (a / Wtype_MAXp1_F);
996ed075 2048 /* Convert that to fixed (but not to DWtype!),
e0799b34 2049 and shift it into the high word. */
b982024e 2050 UDWtype v = (UWtype) b;
4f2e0d5e 2051 v <<= W_TYPE_SIZE;
e0799b34
RS
2052 /* Remove high part from the XFtype, leaving the low part as flonum. */
2053 a -= (XFtype)v;
996ed075 2054 /* Convert that to fixed (but not to DWtype!) and add it in.
e0799b34
RS
2055 Sometimes A comes out negative. This is significant, since
2056 A has more bits than a long int does. */
2057 if (a < 0)
996ed075 2058 v -= (UWtype) (- a);
e0799b34 2059 else
996ed075 2060 v += (UWtype) a;
e0799b34
RS
2061 return v;
2062}
2063#endif
2064
4e9db8b2 2065#if defined(L_fixxfdi) && LIBGCC2_HAS_XF_MODE
996ed075 2066DWtype
37ef1054 2067__fixxfdi (XFtype a)
e0799b34
RS
2068{
2069 if (a < 0)
6da9c622
RK
2070 return - __fixunsxfDI (-a);
2071 return __fixunsxfDI (a);
e0799b34
RS
2072}
2073#endif
2074
4e9db8b2 2075#if defined(L_fixunsdfdi) && LIBGCC2_HAS_DF_MODE
f139f5fa 2076UDWtype
6da9c622 2077__fixunsdfDI (DFtype a)
203b91b9 2078{
4977bab6
ZW
2079 /* Get high part of result. The division here will just moves the radix
2080 point and will not cause any rounding. Then the conversion to integral
2081 type chops result as desired. */
4f2e0d5e 2082 const UWtype hi = a / Wtype_MAXp1_F;
203b91b9 2083
4977bab6
ZW
2084 /* Get low part of result. Convert `hi' to floating type and scale it back,
2085 then subtract this from the number being converted. This leaves the low
2086 part. Convert that to integral type. */
4f2e0d5e 2087 const UWtype lo = a - (DFtype) hi * Wtype_MAXp1_F;
4977bab6
ZW
2088
2089 /* Assemble result from the two parts. */
4f2e0d5e 2090 return ((UDWtype) hi << W_TYPE_SIZE) | lo;
203b91b9
RS
2091}
2092#endif
2093
4e9db8b2 2094#if defined(L_fixdfdi) && LIBGCC2_HAS_DF_MODE
996ed075 2095DWtype
37ef1054 2096__fixdfdi (DFtype a)
203b91b9
RS
2097{
2098 if (a < 0)
6da9c622
RK
2099 return - __fixunsdfDI (-a);
2100 return __fixunsdfDI (a);
203b91b9
RS
2101}
2102#endif
2103
cfa7bd9c 2104#if defined(L_fixunssfdi) && LIBGCC2_HAS_SF_MODE
f139f5fa 2105UDWtype
4f2e0d5e 2106__fixunssfDI (SFtype a)
203b91b9 2107{
4e9db8b2 2108#if LIBGCC2_HAS_DF_MODE
ab495388 2109 /* Convert the SFtype to a DFtype, because that is surely not going
203b91b9 2110 to lose any bits. Some day someone else can write a faster version
ab495388 2111 that avoids converting to DFtype, and verify it really works right. */
4f2e0d5e 2112 const DFtype dfa = a;
203b91b9 2113
4977bab6
ZW
2114 /* Get high part of result. The division here will just moves the radix
2115 point and will not cause any rounding. Then the conversion to integral
2116 type chops result as desired. */
4f2e0d5e 2117 const UWtype hi = dfa / Wtype_MAXp1_F;
203b91b9 2118
4977bab6
ZW
2119 /* Get low part of result. Convert `hi' to floating type and scale it back,
2120 then subtract this from the number being converted. This leaves the low
2121 part. Convert that to integral type. */
4f2e0d5e 2122 const UWtype lo = dfa - (DFtype) hi * Wtype_MAXp1_F;
4977bab6
ZW
2123
2124 /* Assemble result from the two parts. */
4f2e0d5e
RH
2125 return ((UDWtype) hi << W_TYPE_SIZE) | lo;
2126#elif FLT_MANT_DIG < W_TYPE_SIZE
2127 if (a < 1)
2128 return 0;
2129 if (a < Wtype_MAXp1_F)
2130 return (UWtype)a;
2131 if (a < Wtype_MAXp1_F * Wtype_MAXp1_F)
2132 {
2133 /* Since we know that there are fewer significant bits in the SFmode
2134 quantity than in a word, we know that we can convert out all the
2e681715 2135 significant bits in one step, and thus avoid losing bits. */
4f2e0d5e
RH
2136
2137 /* ??? This following loop essentially performs frexpf. If we could
2138 use the real libm function, or poke at the actual bits of the fp
2139 format, it would be significantly faster. */
2140
2141 UWtype shift = 0, counter;
2142 SFtype msb;
2143
2144 a /= Wtype_MAXp1_F;
2145 for (counter = W_TYPE_SIZE / 2; counter != 0; counter >>= 1)
2146 {
2147 SFtype counterf = (UWtype)1 << counter;
2148 if (a >= counterf)
2149 {
2150 shift |= counter;
2151 a /= counterf;
2152 }
2153 }
2154
2155 /* Rescale into the range of one word, extract the bits of that
2156 one word, and shift the result into position. */
2157 a *= Wtype_MAXp1_F;
2158 counter = a;
2159 return (DWtype)counter << shift;
2160 }
2161 return -1;
2162#else
2163# error
2164#endif
203b91b9
RS
2165}
2166#endif
2167
cfa7bd9c 2168#if defined(L_fixsfdi) && LIBGCC2_HAS_SF_MODE
996ed075 2169DWtype
ab495388 2170__fixsfdi (SFtype a)
203b91b9
RS
2171{
2172 if (a < 0)
6da9c622
RK
2173 return - __fixunssfDI (-a);
2174 return __fixunssfDI (a);
203b91b9
RS
2175}
2176#endif
2177
4e9db8b2 2178#if defined(L_floatdixf) && LIBGCC2_HAS_XF_MODE
e0799b34 2179XFtype
996ed075 2180__floatdixf (DWtype u)
e0799b34 2181{
66bb34c0 2182#if W_TYPE_SIZE > __LIBGCC_XF_MANT_DIG__
4a73d865
JM
2183# error
2184#endif
4f2e0d5e
RH
2185 XFtype d = (Wtype) (u >> W_TYPE_SIZE);
2186 d *= Wtype_MAXp1_F;
2187 d += (UWtype)u;
e5e809f4 2188 return d;
e0799b34
RS
2189}
2190#endif
2191
d7735880
JM
2192#if defined(L_floatundixf) && LIBGCC2_HAS_XF_MODE
2193XFtype
2194__floatundixf (UDWtype u)
2195{
66bb34c0 2196#if W_TYPE_SIZE > __LIBGCC_XF_MANT_DIG__
4a73d865
JM
2197# error
2198#endif
d7735880
JM
2199 XFtype d = (UWtype) (u >> W_TYPE_SIZE);
2200 d *= Wtype_MAXp1_F;
2201 d += (UWtype)u;
2202 return d;
2203}
2204#endif
2205
4e9db8b2 2206#if defined(L_floatditf) && LIBGCC2_HAS_TF_MODE
ab495388 2207TFtype
996ed075 2208__floatditf (DWtype u)
ab495388 2209{
66bb34c0 2210#if W_TYPE_SIZE > __LIBGCC_TF_MANT_DIG__
4a73d865
JM
2211# error
2212#endif
4f2e0d5e
RH
2213 TFtype d = (Wtype) (u >> W_TYPE_SIZE);
2214 d *= Wtype_MAXp1_F;
2215 d += (UWtype)u;
e5e809f4 2216 return d;
ab495388
RS
2217}
2218#endif
2219
d7735880
JM
2220#if defined(L_floatunditf) && LIBGCC2_HAS_TF_MODE
2221TFtype
2222__floatunditf (UDWtype u)
2223{
66bb34c0 2224#if W_TYPE_SIZE > __LIBGCC_TF_MANT_DIG__
4a73d865 2225# error
203b91b9 2226#endif
4a73d865 2227 TFtype d = (UWtype) (u >> W_TYPE_SIZE);
d7735880
JM
2228 d *= Wtype_MAXp1_F;
2229 d += (UWtype)u;
2230 return d;
2231}
2232#endif
2233
4a73d865
JM
2234#if (defined(L_floatdisf) && LIBGCC2_HAS_SF_MODE) \
2235 || (defined(L_floatdidf) && LIBGCC2_HAS_DF_MODE)
4f2e0d5e 2236#define DI_SIZE (W_TYPE_SIZE * 2)
b04c9063
AM
2237#define F_MODE_OK(SIZE) \
2238 (SIZE < DI_SIZE \
2239 && SIZE > (DI_SIZE - SIZE + FSSIZE) \
5fb54b91 2240 && !AVOID_FP_TYPE_CONVERSION(SIZE))
4a73d865
JM
2241#if defined(L_floatdisf)
2242#define FUNC __floatdisf
2243#define FSTYPE SFtype
66bb34c0 2244#define FSSIZE __LIBGCC_SF_MANT_DIG__
4a73d865
JM
2245#else
2246#define FUNC __floatdidf
2247#define FSTYPE DFtype
66bb34c0 2248#define FSSIZE __LIBGCC_DF_MANT_DIG__
4a73d865 2249#endif
203b91b9 2250
4a73d865
JM
2251FSTYPE
2252FUNC (DWtype u)
203b91b9 2253{
4a73d865 2254#if FSSIZE >= W_TYPE_SIZE
4f2e0d5e 2255 /* When the word size is small, we never get any rounding error. */
4a73d865 2256 FSTYPE f = (Wtype) (u >> W_TYPE_SIZE);
4f2e0d5e
RH
2257 f *= Wtype_MAXp1_F;
2258 f += (UWtype)u;
2259 return f;
66bb34c0
JM
2260#elif (LIBGCC2_HAS_DF_MODE && F_MODE_OK (__LIBGCC_DF_MANT_DIG__)) \
2261 || (LIBGCC2_HAS_XF_MODE && F_MODE_OK (__LIBGCC_XF_MANT_DIG__)) \
2262 || (LIBGCC2_HAS_TF_MODE && F_MODE_OK (__LIBGCC_TF_MANT_DIG__))
4a73d865 2263
66bb34c0
JM
2264#if (LIBGCC2_HAS_DF_MODE && F_MODE_OK (__LIBGCC_DF_MANT_DIG__))
2265# define FSIZE __LIBGCC_DF_MANT_DIG__
4a73d865 2266# define FTYPE DFtype
66bb34c0
JM
2267#elif (LIBGCC2_HAS_XF_MODE && F_MODE_OK (__LIBGCC_XF_MANT_DIG__))
2268# define FSIZE __LIBGCC_XF_MANT_DIG__
4a73d865 2269# define FTYPE XFtype
66bb34c0
JM
2270#elif (LIBGCC2_HAS_TF_MODE && F_MODE_OK (__LIBGCC_TF_MANT_DIG__))
2271# define FSIZE __LIBGCC_TF_MANT_DIG__
4a73d865 2272# define FTYPE TFtype
4f2e0d5e
RH
2273#else
2274# error
2275#endif
2276
4a73d865 2277#define REP_BIT ((UDWtype) 1 << (DI_SIZE - FSIZE))
4f2e0d5e 2278
d9e1ab8d 2279 /* Protect against double-rounding error.
4f2e0d5e
RH
2280 Represent any low-order bits, that might be truncated by a bit that
2281 won't be lost. The bit can go in anywhere below the rounding position
4a73d865
JM
2282 of the FSTYPE. A fixed mask and bit position handles all usual
2283 configurations. */
2284 if (! (- ((DWtype) 1 << FSIZE) < u
2285 && u < ((DWtype) 1 << FSIZE)))
d9e1ab8d 2286 {
4a73d865 2287 if ((UDWtype) u & (REP_BIT - 1))
d9e1ab8d 2288 {
4a73d865
JM
2289 u &= ~ (REP_BIT - 1);
2290 u |= REP_BIT;
d9e1ab8d
RK
2291 }
2292 }
203b91b9 2293
4a73d865
JM
2294 /* Do the calculation in a wider type so that we don't lose any of
2295 the precision of the high word while multiplying it. */
2296 FTYPE f = (Wtype) (u >> W_TYPE_SIZE);
4f2e0d5e
RH
2297 f *= Wtype_MAXp1_F;
2298 f += (UWtype)u;
4a73d865 2299 return (FSTYPE) f;
4f2e0d5e 2300#else
4a73d865
JM
2301#if FSSIZE >= W_TYPE_SIZE - 2
2302# error
2303#endif
2304 /* Finally, the word size is larger than the number of bits in the
2305 required FSTYPE, and we've got no suitable wider type. The only
2306 way to avoid double rounding is to special case the
2307 extraction. */
4f2e0d5e
RH
2308
2309 /* If there are no high bits set, fall back to one conversion. */
2310 if ((Wtype)u == u)
4a73d865 2311 return (FSTYPE)(Wtype)u;
4f2e0d5e
RH
2312
2313 /* Otherwise, find the power of two. */
2314 Wtype hi = u >> W_TYPE_SIZE;
2315 if (hi < 0)
1f6eac90 2316 hi = -(UWtype) hi;
4f2e0d5e
RH
2317
2318 UWtype count, shift;
5de3e2d8
BE
2319#if !defined (COUNT_LEADING_ZEROS_0) || COUNT_LEADING_ZEROS_0 != W_TYPE_SIZE
2320 if (hi == 0)
2321 count = W_TYPE_SIZE;
2322 else
2323#endif
4f2e0d5e
RH
2324 count_leading_zeros (count, hi);
2325
2326 /* No leading bits means u == minimum. */
2327 if (count == 0)
6395ba73 2328 return Wtype_MAXp1_F * (FSTYPE) (hi | ((UWtype) u != 0));
4f2e0d5e 2329
4a73d865 2330 shift = 1 + W_TYPE_SIZE - count;
4f2e0d5e
RH
2331
2332 /* Shift down the most significant bits. */
2333 hi = u >> shift;
2334
2335 /* If we lost any nonzero bits, set the lsb to ensure correct rounding. */
5fb54b91 2336 if ((UWtype)u << (W_TYPE_SIZE - shift))
4f2e0d5e
RH
2337 hi |= 1;
2338
2339 /* Convert the one word of data, and rescale. */
5fb54b91
RH
2340 FSTYPE f = hi, e;
2341 if (shift == W_TYPE_SIZE)
2342 e = Wtype_MAXp1_F;
2343 /* The following two cases could be merged if we knew that the target
2344 supported a native unsigned->float conversion. More often, we only
2345 have a signed conversion, and have to add extra fixup code. */
2346 else if (shift == W_TYPE_SIZE - 1)
2347 e = Wtype_MAXp1_F / 2;
2348 else
2349 e = (Wtype)1 << shift;
2350 return f * e;
4f2e0d5e 2351#endif
203b91b9
RS
2352}
2353#endif
2354
4a73d865
JM
2355#if (defined(L_floatundisf) && LIBGCC2_HAS_SF_MODE) \
2356 || (defined(L_floatundidf) && LIBGCC2_HAS_DF_MODE)
d7735880 2357#define DI_SIZE (W_TYPE_SIZE * 2)
b04c9063
AM
2358#define F_MODE_OK(SIZE) \
2359 (SIZE < DI_SIZE \
2360 && SIZE > (DI_SIZE - SIZE + FSSIZE) \
5fb54b91 2361 && !AVOID_FP_TYPE_CONVERSION(SIZE))
4a73d865
JM
2362#if defined(L_floatundisf)
2363#define FUNC __floatundisf
2364#define FSTYPE SFtype
66bb34c0 2365#define FSSIZE __LIBGCC_SF_MANT_DIG__
4a73d865
JM
2366#else
2367#define FUNC __floatundidf
2368#define FSTYPE DFtype
66bb34c0 2369#define FSSIZE __LIBGCC_DF_MANT_DIG__
4a73d865 2370#endif
d7735880 2371
4a73d865
JM
2372FSTYPE
2373FUNC (UDWtype u)
d7735880 2374{
4a73d865 2375#if FSSIZE >= W_TYPE_SIZE
d7735880 2376 /* When the word size is small, we never get any rounding error. */
4a73d865 2377 FSTYPE f = (UWtype) (u >> W_TYPE_SIZE);
d7735880
JM
2378 f *= Wtype_MAXp1_F;
2379 f += (UWtype)u;
2380 return f;
66bb34c0
JM
2381#elif (LIBGCC2_HAS_DF_MODE && F_MODE_OK (__LIBGCC_DF_MANT_DIG__)) \
2382 || (LIBGCC2_HAS_XF_MODE && F_MODE_OK (__LIBGCC_XF_MANT_DIG__)) \
2383 || (LIBGCC2_HAS_TF_MODE && F_MODE_OK (__LIBGCC_TF_MANT_DIG__))
4a73d865 2384
66bb34c0
JM
2385#if (LIBGCC2_HAS_DF_MODE && F_MODE_OK (__LIBGCC_DF_MANT_DIG__))
2386# define FSIZE __LIBGCC_DF_MANT_DIG__
4a73d865 2387# define FTYPE DFtype
66bb34c0
JM
2388#elif (LIBGCC2_HAS_XF_MODE && F_MODE_OK (__LIBGCC_XF_MANT_DIG__))
2389# define FSIZE __LIBGCC_XF_MANT_DIG__
4a73d865 2390# define FTYPE XFtype
66bb34c0
JM
2391#elif (LIBGCC2_HAS_TF_MODE && F_MODE_OK (__LIBGCC_TF_MANT_DIG__))
2392# define FSIZE __LIBGCC_TF_MANT_DIG__
4a73d865 2393# define FTYPE TFtype
d7735880
JM
2394#else
2395# error
2396#endif
2397
4a73d865 2398#define REP_BIT ((UDWtype) 1 << (DI_SIZE - FSIZE))
d7735880
JM
2399
2400 /* Protect against double-rounding error.
2401 Represent any low-order bits, that might be truncated by a bit that
2402 won't be lost. The bit can go in anywhere below the rounding position
4a73d865
JM
2403 of the FSTYPE. A fixed mask and bit position handles all usual
2404 configurations. */
2405 if (u >= ((UDWtype) 1 << FSIZE))
d7735880 2406 {
4a73d865 2407 if ((UDWtype) u & (REP_BIT - 1))
d7735880 2408 {
4a73d865
JM
2409 u &= ~ (REP_BIT - 1);
2410 u |= REP_BIT;
d7735880
JM
2411 }
2412 }
2413
4a73d865
JM
2414 /* Do the calculation in a wider type so that we don't lose any of
2415 the precision of the high word while multiplying it. */
2416 FTYPE f = (UWtype) (u >> W_TYPE_SIZE);
d7735880
JM
2417 f *= Wtype_MAXp1_F;
2418 f += (UWtype)u;
4a73d865 2419 return (FSTYPE) f;
d7735880 2420#else
4a73d865
JM
2421#if FSSIZE == W_TYPE_SIZE - 1
2422# error
2423#endif
2424 /* Finally, the word size is larger than the number of bits in the
2425 required FSTYPE, and we've got no suitable wider type. The only
2426 way to avoid double rounding is to special case the
2427 extraction. */
d7735880
JM
2428
2429 /* If there are no high bits set, fall back to one conversion. */
2430 if ((UWtype)u == u)
4a73d865 2431 return (FSTYPE)(UWtype)u;
d7735880
JM
2432
2433 /* Otherwise, find the power of two. */
2434 UWtype hi = u >> W_TYPE_SIZE;
2435
2436 UWtype count, shift;
2437 count_leading_zeros (count, hi);
2438
2439 shift = W_TYPE_SIZE - count;
2440
2441 /* Shift down the most significant bits. */
2442 hi = u >> shift;
2443
2444 /* If we lost any nonzero bits, set the lsb to ensure correct rounding. */
5fb54b91 2445 if ((UWtype)u << (W_TYPE_SIZE - shift))
d7735880
JM
2446 hi |= 1;
2447
2448 /* Convert the one word of data, and rescale. */
5fb54b91
RH
2449 FSTYPE f = hi, e;
2450 if (shift == W_TYPE_SIZE)
2451 e = Wtype_MAXp1_F;
2452 /* The following two cases could be merged if we knew that the target
2453 supported a native unsigned->float conversion. More often, we only
2454 have a signed conversion, and have to add extra fixup code. */
2455 else if (shift == W_TYPE_SIZE - 1)
2456 e = Wtype_MAXp1_F / 2;
2457 else
2458 e = (Wtype)1 << shift;
2459 return f * e;
d7735880
JM
2460#endif
2461}
2462#endif
2463
4e9db8b2 2464#if defined(L_fixunsxfsi) && LIBGCC2_HAS_XF_MODE
996ed075 2465UWtype
6da9c622 2466__fixunsxfSI (XFtype a)
e0799b34 2467{
5d0e6486
AO
2468 if (a >= - (DFtype) Wtype_MIN)
2469 return (Wtype) (a + Wtype_MIN) - Wtype_MIN;
996ed075 2470 return (Wtype) a;
e0799b34
RS
2471}
2472#endif
2473
4e9db8b2 2474#if defined(L_fixunsdfsi) && LIBGCC2_HAS_DF_MODE
996ed075 2475UWtype
6da9c622 2476__fixunsdfSI (DFtype a)
203b91b9 2477{
5d0e6486
AO
2478 if (a >= - (DFtype) Wtype_MIN)
2479 return (Wtype) (a + Wtype_MIN) - Wtype_MIN;
996ed075 2480 return (Wtype) a;
203b91b9
RS
2481}
2482#endif
2483
cfa7bd9c 2484#if defined(L_fixunssfsi) && LIBGCC2_HAS_SF_MODE
996ed075 2485UWtype
6da9c622 2486__fixunssfSI (SFtype a)
203b91b9 2487{
5d0e6486
AO
2488 if (a >= - (SFtype) Wtype_MIN)
2489 return (Wtype) (a + Wtype_MIN) - Wtype_MIN;
996ed075 2490 return (Wtype) a;
203b91b9 2491}
17684d46
RG
2492#endif
2493\f
2494/* Integer power helper used from __builtin_powi for non-constant
2495 exponents. */
2496
cfa7bd9c 2497#if (defined(L_powisf2) && LIBGCC2_HAS_SF_MODE) \
4e9db8b2
SE
2498 || (defined(L_powidf2) && LIBGCC2_HAS_DF_MODE) \
2499 || (defined(L_powixf2) && LIBGCC2_HAS_XF_MODE) \
2500 || (defined(L_powitf2) && LIBGCC2_HAS_TF_MODE)
17684d46
RG
2501# if defined(L_powisf2)
2502# define TYPE SFtype
2503# define NAME __powisf2
2504# elif defined(L_powidf2)
2505# define TYPE DFtype
2506# define NAME __powidf2
2507# elif defined(L_powixf2)
2508# define TYPE XFtype
2509# define NAME __powixf2
2510# elif defined(L_powitf2)
2511# define TYPE TFtype
2512# define NAME __powitf2
2513# endif
2514
0b8495ae
FJ
2515#undef int
2516#undef unsigned
17684d46 2517TYPE
0b8495ae 2518NAME (TYPE x, int m)
17684d46 2519{
35da095d 2520 unsigned int n = m < 0 ? -(unsigned int) m : (unsigned int) m;
17684d46
RG
2521 TYPE y = n % 2 ? x : 1;
2522 while (n >>= 1)
2523 {
2524 x = x * x;
2525 if (n % 2)
2526 y = y * x;
2527 }
2528 return m < 0 ? 1/y : y;
2529}
2530
203b91b9
RS
2531#endif
2532\f
0abcd6cc
JG
2533#if((defined(L_mulhc3) || defined(L_divhc3)) && LIBGCC2_HAS_HF_MODE) \
2534 || ((defined(L_mulsc3) || defined(L_divsc3)) && LIBGCC2_HAS_SF_MODE) \
4e9db8b2
SE
2535 || ((defined(L_muldc3) || defined(L_divdc3)) && LIBGCC2_HAS_DF_MODE) \
2536 || ((defined(L_mulxc3) || defined(L_divxc3)) && LIBGCC2_HAS_XF_MODE) \
2537 || ((defined(L_multc3) || defined(L_divtc3)) && LIBGCC2_HAS_TF_MODE)
7e7e470f
RH
2538
2539#undef float
2540#undef double
2541#undef long
2542
0abcd6cc
JG
2543#if defined(L_mulhc3) || defined(L_divhc3)
2544# define MTYPE HFtype
2545# define CTYPE HCtype
54f0224d 2546# define AMTYPE SFtype
0abcd6cc
JG
2547# define MODE hc
2548# define CEXT __LIBGCC_HF_FUNC_EXT__
2549# define NOTRUNC (!__LIBGCC_HF_EXCESS_PRECISION__)
2550#elif defined(L_mulsc3) || defined(L_divsc3)
7e7e470f
RH
2551# define MTYPE SFtype
2552# define CTYPE SCtype
54f0224d 2553# define AMTYPE DFtype
7e7e470f 2554# define MODE sc
dd69f047 2555# define CEXT __LIBGCC_SF_FUNC_EXT__
d758aeb5 2556# define NOTRUNC (!__LIBGCC_SF_EXCESS_PRECISION__)
54f0224d
PM
2557# define RBIG (__LIBGCC_SF_MAX__ / 2)
2558# define RMIN (__LIBGCC_SF_MIN__)
2559# define RMIN2 (__LIBGCC_SF_EPSILON__)
2560# define RMINSCAL (1 / __LIBGCC_SF_EPSILON__)
2561# define RMAX2 (RBIG * RMIN2)
7e7e470f
RH
2562#elif defined(L_muldc3) || defined(L_divdc3)
2563# define MTYPE DFtype
2564# define CTYPE DCtype
2565# define MODE dc
dd69f047 2566# define CEXT __LIBGCC_DF_FUNC_EXT__
d758aeb5 2567# define NOTRUNC (!__LIBGCC_DF_EXCESS_PRECISION__)
54f0224d
PM
2568# define RBIG (__LIBGCC_DF_MAX__ / 2)
2569# define RMIN (__LIBGCC_DF_MIN__)
2570# define RMIN2 (__LIBGCC_DF_EPSILON__)
2571# define RMINSCAL (1 / __LIBGCC_DF_EPSILON__)
2572# define RMAX2 (RBIG * RMIN2)
7e7e470f
RH
2573#elif defined(L_mulxc3) || defined(L_divxc3)
2574# define MTYPE XFtype
2575# define CTYPE XCtype
2576# define MODE xc
dd69f047 2577# define CEXT __LIBGCC_XF_FUNC_EXT__
d758aeb5 2578# define NOTRUNC (!__LIBGCC_XF_EXCESS_PRECISION__)
54f0224d
PM
2579# define RBIG (__LIBGCC_XF_MAX__ / 2)
2580# define RMIN (__LIBGCC_XF_MIN__)
2581# define RMIN2 (__LIBGCC_XF_EPSILON__)
2582# define RMINSCAL (1 / __LIBGCC_XF_EPSILON__)
2583# define RMAX2 (RBIG * RMIN2)
7e7e470f
RH
2584#elif defined(L_multc3) || defined(L_divtc3)
2585# define MTYPE TFtype
2586# define CTYPE TCtype
2587# define MODE tc
dd69f047 2588# define CEXT __LIBGCC_TF_FUNC_EXT__
d758aeb5 2589# define NOTRUNC (!__LIBGCC_TF_EXCESS_PRECISION__)
d9105685
PM
2590# if __LIBGCC_TF_MANT_DIG__ == 106
2591# define RBIG (__LIBGCC_DF_MAX__ / 2)
2592# define RMIN (__LIBGCC_DF_MIN__)
2593# define RMIN2 (__LIBGCC_DF_EPSILON__)
2594# define RMINSCAL (1 / __LIBGCC_DF_EPSILON__)
2595# else
2596# define RBIG (__LIBGCC_TF_MAX__ / 2)
2597# define RMIN (__LIBGCC_TF_MIN__)
2598# define RMIN2 (__LIBGCC_TF_EPSILON__)
2599# define RMINSCAL (1 / __LIBGCC_TF_EPSILON__)
2600# endif
54f0224d 2601# define RMAX2 (RBIG * RMIN2)
7e7e470f
RH
2602#else
2603# error
2604#endif
2605
2606#define CONCAT3(A,B,C) _CONCAT3(A,B,C)
2607#define _CONCAT3(A,B,C) A##B##C
2608
2609#define CONCAT2(A,B) _CONCAT2(A,B)
2610#define _CONCAT2(A,B) A##B
2611
af8096fc
UB
2612#define isnan(x) __builtin_isnan (x)
2613#define isfinite(x) __builtin_isfinite (x)
2614#define isinf(x) __builtin_isinf (x)
7e7e470f 2615
ca22d882 2616#define INFINITY CONCAT2(__builtin_huge_val, CEXT) ()
7e7e470f
RH
2617#define I 1i
2618
2619/* Helpers to make the following code slightly less gross. */
2620#define COPYSIGN CONCAT2(__builtin_copysign, CEXT)
2621#define FABS CONCAT2(__builtin_fabs, CEXT)
2622
2623/* Verify that MTYPE matches up with CEXT. */
2624extern void *compile_type_assert[sizeof(INFINITY) == sizeof(MTYPE) ? 1 : -1];
2625
2626/* Ensure that we've lost any extra precision. */
2627#if NOTRUNC
2628# define TRUNC(x)
2629#else
2630# define TRUNC(x) __asm__ ("" : "=m"(x) : "m"(x))
2631#endif
2632
0abcd6cc 2633#if defined(L_mulhc3) || defined(L_mulsc3) || defined(L_muldc3) \
7e7e470f
RH
2634 || defined(L_mulxc3) || defined(L_multc3)
2635
2636CTYPE
2637CONCAT3(__mul,MODE,3) (MTYPE a, MTYPE b, MTYPE c, MTYPE d)
2638{
2639 MTYPE ac, bd, ad, bc, x, y;
ddef83d2 2640 CTYPE res;
7e7e470f
RH
2641
2642 ac = a * c;
2643 bd = b * d;
2644 ad = a * d;
2645 bc = b * c;
2646
2647 TRUNC (ac);
2648 TRUNC (bd);
2649 TRUNC (ad);
2650 TRUNC (bc);
2651
2652 x = ac - bd;
2653 y = ad + bc;
2654
2655 if (isnan (x) && isnan (y))
2656 {
2657 /* Recover infinities that computed as NaN + iNaN. */
2658 _Bool recalc = 0;
2659 if (isinf (a) || isinf (b))
2660 {
2661 /* z is infinite. "Box" the infinity and change NaNs in
2662 the other factor to 0. */
2663 a = COPYSIGN (isinf (a) ? 1 : 0, a);
2664 b = COPYSIGN (isinf (b) ? 1 : 0, b);
2665 if (isnan (c)) c = COPYSIGN (0, c);
2666 if (isnan (d)) d = COPYSIGN (0, d);
2667 recalc = 1;
2668 }
2669 if (isinf (c) || isinf (d))
2670 {
2671 /* w is infinite. "Box" the infinity and change NaNs in
2672 the other factor to 0. */
2673 c = COPYSIGN (isinf (c) ? 1 : 0, c);
2674 d = COPYSIGN (isinf (d) ? 1 : 0, d);
2675 if (isnan (a)) a = COPYSIGN (0, a);
2676 if (isnan (b)) b = COPYSIGN (0, b);
2677 recalc = 1;
2678 }
2679 if (!recalc
2680 && (isinf (ac) || isinf (bd)
2681 || isinf (ad) || isinf (bc)))
2682 {
2683 /* Recover infinities from overflow by changing NaNs to 0. */
2684 if (isnan (a)) a = COPYSIGN (0, a);
2685 if (isnan (b)) b = COPYSIGN (0, b);
2686 if (isnan (c)) c = COPYSIGN (0, c);
2687 if (isnan (d)) d = COPYSIGN (0, d);
2688 recalc = 1;
2689 }
2690 if (recalc)
2691 {
2692 x = INFINITY * (a * c - b * d);
2693 y = INFINITY * (a * d + b * c);
2694 }
2695 }
2696
ddef83d2
RG
2697 __real__ res = x;
2698 __imag__ res = y;
2699 return res;
7e7e470f
RH
2700}
2701#endif /* complex multiply */
2702
0abcd6cc 2703#if defined(L_divhc3) || defined(L_divsc3) || defined(L_divdc3) \
7e7e470f
RH
2704 || defined(L_divxc3) || defined(L_divtc3)
2705
2706CTYPE
2707CONCAT3(__div,MODE,3) (MTYPE a, MTYPE b, MTYPE c, MTYPE d)
2708{
54f0224d
PM
2709#if defined(L_divhc3) \
2710 || (defined(L_divsc3) && defined(__LIBGCC_HAVE_HWDBL__) )
2711
2712 /* Half precision is handled with float precision.
2713 float is handled with double precision when double precision
2714 hardware is available.
2715 Due to the additional precision, the simple complex divide
2716 method (without Smith's method) is sufficient to get accurate
2717 answers and runs slightly faster than Smith's method. */
2718
2719 AMTYPE aa, bb, cc, dd;
2720 AMTYPE denom;
2721 MTYPE x, y;
2722 CTYPE res;
2723 aa = a;
2724 bb = b;
2725 cc = c;
2726 dd = d;
2727
2728 denom = (cc * cc) + (dd * dd);
2729 x = ((aa * cc) + (bb * dd)) / denom;
2730 y = ((bb * cc) - (aa * dd)) / denom;
2731
2732#else
7e7e470f 2733 MTYPE denom, ratio, x, y;
ddef83d2 2734 CTYPE res;
7e7e470f 2735
54f0224d
PM
2736 /* double, extended, long double have significant potential
2737 underflow/overflow errors that can be greatly reduced with
2738 a limited number of tests and adjustments. float is handled
2739 the same way when no HW double is available.
2740 */
2741
2742 /* Scale by max(c,d) to reduce chances of denominator overflowing. */
7e7e470f
RH
2743 if (FABS (c) < FABS (d))
2744 {
54f0224d
PM
2745 /* Prevent underflow when denominator is near max representable. */
2746 if (FABS (d) >= RBIG)
2747 {
2748 a = a / 2;
2749 b = b / 2;
2750 c = c / 2;
2751 d = d / 2;
2752 }
2753 /* Avoid overflow/underflow issues when c and d are small.
2754 Scaling up helps avoid some underflows.
2755 No new overflow possible since c&d < RMIN2. */
2756 if (FABS (d) < RMIN2)
2757 {
2758 a = a * RMINSCAL;
2759 b = b * RMINSCAL;
2760 c = c * RMINSCAL;
2761 d = d * RMINSCAL;
2762 }
2763 else
2764 {
2765 if (((FABS (a) < RMIN) && (FABS (b) < RMAX2) && (FABS (d) < RMAX2))
2766 || ((FABS (b) < RMIN) && (FABS (a) < RMAX2)
2767 && (FABS (d) < RMAX2)))
2768 {
2769 a = a * RMINSCAL;
2770 b = b * RMINSCAL;
2771 c = c * RMINSCAL;
2772 d = d * RMINSCAL;
2773 }
2774 }
7e7e470f
RH
2775 ratio = c / d;
2776 denom = (c * ratio) + d;
54f0224d
PM
2777 /* Choose alternate order of computation if ratio is subnormal. */
2778 if (FABS (ratio) > RMIN)
2779 {
2780 x = ((a * ratio) + b) / denom;
2781 y = ((b * ratio) - a) / denom;
2782 }
2783 else
2784 {
2785 x = ((c * (a / d)) + b) / denom;
2786 y = ((c * (b / d)) - a) / denom;
2787 }
7e7e470f
RH
2788 }
2789 else
2790 {
54f0224d
PM
2791 /* Prevent underflow when denominator is near max representable. */
2792 if (FABS (c) >= RBIG)
2793 {
2794 a = a / 2;
2795 b = b / 2;
2796 c = c / 2;
2797 d = d / 2;
2798 }
2799 /* Avoid overflow/underflow issues when both c and d are small.
2800 Scaling up helps avoid some underflows.
2801 No new overflow possible since both c&d are less than RMIN2. */
2802 if (FABS (c) < RMIN2)
2803 {
2804 a = a * RMINSCAL;
2805 b = b * RMINSCAL;
2806 c = c * RMINSCAL;
2807 d = d * RMINSCAL;
2808 }
2809 else
2810 {
2811 if (((FABS (a) < RMIN) && (FABS (b) < RMAX2) && (FABS (c) < RMAX2))
2812 || ((FABS (b) < RMIN) && (FABS (a) < RMAX2)
2813 && (FABS (c) < RMAX2)))
2814 {
2815 a = a * RMINSCAL;
2816 b = b * RMINSCAL;
2817 c = c * RMINSCAL;
2818 d = d * RMINSCAL;
2819 }
2820 }
7e7e470f
RH
2821 ratio = d / c;
2822 denom = (d * ratio) + c;
54f0224d
PM
2823 /* Choose alternate order of computation if ratio is subnormal. */
2824 if (FABS (ratio) > RMIN)
2825 {
2826 x = ((b * ratio) + a) / denom;
2827 y = (b - (a * ratio)) / denom;
2828 }
2829 else
2830 {
2831 x = (a + (d * (b / c))) / denom;
2832 y = (b - (d * (a / c))) / denom;
2833 }
7e7e470f 2834 }
54f0224d 2835#endif
7e7e470f 2836
54f0224d
PM
2837 /* Recover infinities and zeros that computed as NaN+iNaN; the only
2838 cases are nonzero/zero, infinite/finite, and finite/infinite. */
7e7e470f
RH
2839 if (isnan (x) && isnan (y))
2840 {
698ac934 2841 if (c == 0.0 && d == 0.0 && (!isnan (a) || !isnan (b)))
7e7e470f
RH
2842 {
2843 x = COPYSIGN (INFINITY, c) * a;
2844 y = COPYSIGN (INFINITY, c) * b;
2845 }
2846 else if ((isinf (a) || isinf (b)) && isfinite (c) && isfinite (d))
2847 {
2848 a = COPYSIGN (isinf (a) ? 1 : 0, a);
2849 b = COPYSIGN (isinf (b) ? 1 : 0, b);
2850 x = INFINITY * (a * c + b * d);
2851 y = INFINITY * (b * c - a * d);
2852 }
2853 else if ((isinf (c) || isinf (d)) && isfinite (a) && isfinite (b))
2854 {
2855 c = COPYSIGN (isinf (c) ? 1 : 0, c);
2856 d = COPYSIGN (isinf (d) ? 1 : 0, d);
2857 x = 0.0 * (a * c + b * d);
2858 y = 0.0 * (b * c - a * d);
2859 }
2860 }
2861
ddef83d2
RG
2862 __real__ res = x;
2863 __imag__ res = y;
2864 return res;
7e7e470f
RH
2865}
2866#endif /* complex divide */
2867
2868#endif /* all complex float routines */
2869\f
ab495388
RS
2870/* From here on down, the routines use normal data types. */
2871
2872#define SItype bogus_type
2873#define USItype bogus_type
2874#define DItype bogus_type
2875#define UDItype bogus_type
2876#define SFtype bogus_type
2877#define DFtype bogus_type
996ed075
JJ
2878#undef Wtype
2879#undef UWtype
2880#undef HWtype
2881#undef UHWtype
2882#undef DWtype
2883#undef UDWtype
ab495388
RS
2884
2885#undef char
2886#undef short
2887#undef int
2888#undef long
2889#undef unsigned
2890#undef float
2891#undef double
9bd23d2c
RS
2892\f
2893#ifdef L__gcc_bcmp
2894
2895/* Like bcmp except the sign is meaningful.
9faa82d8 2896 Result is negative if S1 is less than S2,
9bd23d2c
RS
2897 positive if S1 is greater, 0 if S1 and S2 are equal. */
2898
2899int
299b83b7 2900__gcc_bcmp (const unsigned char *s1, const unsigned char *s2, size_t size)
9bd23d2c
RS
2901{
2902 while (size > 0)
2903 {
b982024e 2904 const unsigned char c1 = *s1++, c2 = *s2++;
9bd23d2c
RS
2905 if (c1 != c2)
2906 return c1 - c2;
2907 size--;
2908 }
2909 return 0;
2910}
ab495388 2911
3fe68d0a
ZW
2912#endif
2913\f
2914/* __eprintf used to be used by GCC's private version of <assert.h>.
2915 We no longer provide that header, but this routine remains in libgcc.a
2916 for binary backward compatibility. Note that it is not included in
2917 the shared version of libgcc. */
2918#ifdef L_eprintf
2919#ifndef inhibit_libc
2920
2921#undef NULL /* Avoid errors if stdio.h and our stddef.h mismatch. */
2922#include <stdio.h>
2923
2924void
2925__eprintf (const char *string, const char *expression,
2926 unsigned int line, const char *filename)
2927{
2928 fprintf (stderr, string, expression, line, filename);
2929 fflush (stderr);
2930 abort ();
2931}
2932
2933#endif
203b91b9
RS
2934#endif
2935
203b91b9 2936\f
203b91b9
RS
2937#ifdef L_clear_cache
2938/* Clear part of an instruction cache. */
2939
203b91b9 2940void
a90b0cdd
MS
2941__clear_cache (void *beg __attribute__((__unused__)),
2942 void *end __attribute__((__unused__)))
203b91b9 2943{
23190837 2944#ifdef CLEAR_INSN_CACHE
a90b0cdd
MS
2945 /* Cast the void* pointers to char* as some implementations
2946 of the macro assume the pointers can be subtracted from
2947 one another. */
2948 CLEAR_INSN_CACHE ((char *) beg, (char *) end);
e1178973 2949#endif /* CLEAR_INSN_CACHE */
203b91b9
RS
2950}
2951
2952#endif /* L_clear_cache */
2953\f
2954#ifdef L_trampoline
2955
2956/* Jump to a trampoline, loading the static chain address. */
2957
cd985f66 2958#if defined(WINNT) && ! defined(__CYGWIN__)
902c7559 2959#define WIN32_LEAN_AND_MEAN
bf806a90 2960#include <windows.h>
0a38153f
KT
2961int getpagesize (void);
2962int mprotect (char *,int, int);
e3367a77 2963
94c1e7ac 2964int
3e7d8ef1 2965getpagesize (void)
f5ea9817
RK
2966{
2967#ifdef _ALPHA_
2968 return 8192;
2969#else
2970 return 4096;
2971#endif
2972}
2973
272e2587
RK
2974int
2975mprotect (char *addr, int len, int prot)
f5ea9817 2976{
234952b3 2977 DWORD np, op;
f5ea9817 2978
272e2587
RK
2979 if (prot == 7)
2980 np = 0x40;
2981 else if (prot == 5)
2982 np = 0x20;
2983 else if (prot == 4)
2984 np = 0x10;
2985 else if (prot == 3)
2986 np = 0x04;
2987 else if (prot == 1)
2988 np = 0x02;
2989 else if (prot == 0)
2990 np = 0x01;
234952b3
OS
2991 else
2992 return -1;
f5ea9817
RK
2993
2994 if (VirtualProtect (addr, len, np, &op))
2995 return 0;
2996 else
2997 return -1;
f5ea9817
RK
2998}
2999
cd985f66 3000#endif /* WINNT && ! __CYGWIN__ */
f5ea9817 3001
23190837
AJ
3002#ifdef TRANSFER_FROM_TRAMPOLINE
3003TRANSFER_FROM_TRAMPOLINE
203b91b9 3004#endif
203b91b9
RS
3005#endif /* L_trampoline */
3006\f
cae21ae8 3007#ifndef __CYGWIN__
203b91b9
RS
3008#ifdef L__main
3009
3010#include "gbl-ctors.h"
7abc66b1 3011
c06cff95
RS
3012/* Some systems use __main in a way incompatible with its use in gcc, in these
3013 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
3014 give the same symbol without quotes for an alternative entry point. You
0f41302f 3015 must define both, or neither. */
c06cff95
RS
3016#ifndef NAME__MAIN
3017#define NAME__MAIN "__main"
3018#define SYMBOL__MAIN __main
3019#endif
203b91b9 3020
53d68b9f
JM
3021#if defined (__LIBGCC_INIT_SECTION_ASM_OP__) \
3022 || defined (__LIBGCC_INIT_ARRAY_SECTION_ASM_OP__)
fe1fd353
JM
3023#undef HAS_INIT_SECTION
3024#define HAS_INIT_SECTION
3025#endif
3026
3027#if !defined (HAS_INIT_SECTION) || !defined (OBJECT_FORMAT_ELF)
31cf0144
JM
3028
3029/* Some ELF crosses use crtstuff.c to provide __CTOR_LIST__, but use this
72d1a48d
EB
3030 code to run constructors. In that case, we need to handle EH here, too.
3031 But MINGW32 is special because it handles CRTSTUFF and EH on its own. */
3032
3033#ifdef __MINGW32__
3034#undef __LIBGCC_EH_FRAME_SECTION_NAME__
3035#endif
31cf0144 3036
53d68b9f 3037#ifdef __LIBGCC_EH_FRAME_SECTION_NAME__
e4b776a6 3038#include "unwind-dw2-fde.h"
31cf0144
JM
3039extern unsigned char __EH_FRAME_BEGIN__[];
3040#endif
3041
203b91b9
RS
3042/* Run all the global destructors on exit from the program. */
3043
3044void
3e7d8ef1 3045__do_global_dtors (void)
203b91b9 3046{
89cf554b
RS
3047#ifdef DO_GLOBAL_DTORS_BODY
3048 DO_GLOBAL_DTORS_BODY;
3049#else
b40b9d93
MS
3050 static func_ptr *p = __DTOR_LIST__ + 1;
3051 while (*p)
3052 {
3053 p++;
3054 (*(p-1)) ();
3055 }
89cf554b 3056#endif
53d68b9f 3057#if defined (__LIBGCC_EH_FRAME_SECTION_NAME__) && !defined (HAS_INIT_SECTION)
a4ebb0e6
GRK
3058 {
3059 static int completed = 0;
3060 if (! completed)
3061 {
3062 completed = 1;
3063 __deregister_frame_info (__EH_FRAME_BEGIN__);
3064 }
3065 }
31cf0144 3066#endif
203b91b9 3067}
68d69835 3068#endif
203b91b9 3069
fe1fd353 3070#ifndef HAS_INIT_SECTION
203b91b9
RS
3071/* Run all the global constructors on entry to the program. */
3072
203b91b9 3073void
3e7d8ef1 3074__do_global_ctors (void)
203b91b9 3075{
53d68b9f 3076#ifdef __LIBGCC_EH_FRAME_SECTION_NAME__
31cf0144
JM
3077 {
3078 static struct object object;
3079 __register_frame_info (__EH_FRAME_BEGIN__, &object);
3080 }
3081#endif
203b91b9 3082 DO_GLOBAL_CTORS_BODY;
a218d5ba 3083 atexit (__do_global_dtors);
203b91b9 3084}
fe1fd353 3085#endif /* no HAS_INIT_SECTION */
203b91b9 3086
fe1fd353 3087#if !defined (HAS_INIT_SECTION) || defined (INVOKE__main)
203b91b9
RS
3088/* Subroutine called automatically by `main'.
3089 Compiling a global function named `main'
3090 produces an automatic call to this function at the beginning.
3091
3092 For many systems, this routine calls __do_global_ctors.
3093 For systems which support a .init section we use the .init section
3094 to run __do_global_ctors, so we need not do anything here. */
3095
4043d9c1 3096extern void SYMBOL__MAIN (void);
203b91b9 3097void
4043d9c1 3098SYMBOL__MAIN (void)
203b91b9
RS
3099{
3100 /* Support recursive calls to `main': run initializers just once. */
7e6f1890 3101 static int initialized;
203b91b9
RS
3102 if (! initialized)
3103 {
3104 initialized = 1;
3105 __do_global_ctors ();
3106 }
3107}
fe1fd353 3108#endif /* no HAS_INIT_SECTION or INVOKE__main */
203b91b9
RS
3109
3110#endif /* L__main */
cae21ae8 3111#endif /* __CYGWIN__ */
203b91b9 3112\f
ad38743d 3113#ifdef L_ctors
203b91b9
RS
3114
3115#include "gbl-ctors.h"
3116
3117/* Provide default definitions for the lists of constructors and
657be7af
JL
3118 destructors, so that we don't get linker errors. These symbols are
3119 intentionally bss symbols, so that gld and/or collect will provide
3120 the right values. */
203b91b9
RS
3121
3122/* We declare the lists here with two elements each,
657be7af
JL
3123 so that they are valid empty lists if no other definition is loaded.
3124
3125 If we are using the old "set" extensions to have the gnu linker
3126 collect ctors and dtors, then we __CTOR_LIST__ and __DTOR_LIST__
3127 must be in the bss/common section.
3128
3129 Long term no port should use those extensions. But many still do. */
1770511a 3130#if !defined(__LIBGCC_INIT_SECTION_ASM_OP__)
aa6ad1a6 3131#if defined (TARGET_ASM_CONSTRUCTOR) || defined (USE_COLLECT2)
d15d0264
RS
3132func_ptr __CTOR_LIST__[2] = {0, 0};
3133func_ptr __DTOR_LIST__[2] = {0, 0};
657be7af
JL
3134#else
3135func_ptr __CTOR_LIST__[2];
3136func_ptr __DTOR_LIST__[2];
3137#endif
1770511a 3138#endif /* no __LIBGCC_INIT_SECTION_ASM_OP__ */
ad38743d 3139#endif /* L_ctors */
baffad1f 3140#endif /* LIBGCC2_UNITS_PER_WORD <= MIN_UNITS_PER_WORD */