]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - libiberty/hashtab.c
Correct ChangeLog entry
[thirdparty/binutils-gdb.git] / libiberty / hashtab.c
CommitLineData
e2eaf477 1/* An expandable hash tables datatype.
bb6a587d
DD
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004
3 Free Software Foundation, Inc.
e2eaf477
ILT
4 Contributed by Vladimir Makarov (vmakarov@cygnus.com).
5
6This file is part of the libiberty library.
7Libiberty is free software; you can redistribute it and/or
8modify it under the terms of the GNU Library General Public
9License as published by the Free Software Foundation; either
10version 2 of the License, or (at your option) any later version.
11
12Libiberty is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15Library General Public License for more details.
16
17You should have received a copy of the GNU Library General Public
18License along with libiberty; see the file COPYING.LIB. If
979c05d3
NC
19not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor,
20Boston, MA 02110-1301, USA. */
e2eaf477
ILT
21
22/* This package implements basic hash table functionality. It is possible
23 to search for an entry, create an entry and destroy an entry.
24
25 Elements in the table are generic pointers.
26
27 The size of the table is not fixed; if the occupancy of the table
28 grows too high the hash table will be expanded.
29
30 The abstract data implementation is based on generalized Algorithm D
31 from Knuth's book "The art of computer programming". Hash table is
32 expanded by creation of new hash table and transferring elements from
33 the old table to the new table. */
34
35#ifdef HAVE_CONFIG_H
36#include "config.h"
37#endif
38
39#include <sys/types.h>
40
41#ifdef HAVE_STDLIB_H
42#include <stdlib.h>
43#endif
5c82d20a
ZW
44#ifdef HAVE_STRING_H
45#include <string.h>
46#endif
5f73c378
DD
47#ifdef HAVE_MALLOC_H
48#include <malloc.h>
49#endif
bb6a587d
DD
50#ifdef HAVE_LIMITS_H
51#include <limits.h>
52#endif
53#ifdef HAVE_STDINT_H
54#include <stdint.h>
55#endif
5f73c378 56
e2eaf477
ILT
57#include <stdio.h>
58
59#include "libiberty.h"
bb6a587d 60#include "ansidecl.h"
e2eaf477
ILT
61#include "hashtab.h"
62
bb6a587d
DD
63#ifndef CHAR_BIT
64#define CHAR_BIT 8
65#endif
66
e2eaf477
ILT
67/* This macro defines reserved value for empty table entry. */
68
e0f3df8f 69#define EMPTY_ENTRY ((PTR) 0)
e2eaf477
ILT
70
71/* This macro defines reserved value for table entry which contained
72 a deleted element. */
73
e0f3df8f 74#define DELETED_ENTRY ((PTR) 1)
e2eaf477 75
49b1fae4
DD
76static unsigned int higher_prime_index (unsigned long);
77static hashval_t htab_mod_1 (hashval_t, hashval_t, hashval_t, int);
78static hashval_t htab_mod (hashval_t, htab_t);
79static hashval_t htab_mod_m2 (hashval_t, htab_t);
80static hashval_t hash_pointer (const void *);
81static int eq_pointer (const void *, const void *);
82static int htab_expand (htab_t);
83static PTR *find_empty_slot_for_expand (htab_t, hashval_t);
eb383413
L
84
85/* At some point, we could make these be NULL, and modify the
86 hash-table routines to handle NULL specially; that would avoid
87 function-call overhead for the common case of hashing pointers. */
88htab_hash htab_hash_pointer = hash_pointer;
89htab_eq htab_eq_pointer = eq_pointer;
90
bb6a587d
DD
91/* Table of primes and multiplicative inverses.
92
93 Note that these are not minimally reduced inverses. Unlike when generating
94 code to divide by a constant, we want to be able to use the same algorithm
95 all the time. All of these inverses (are implied to) have bit 32 set.
96
97 For the record, here's the function that computed the table; it's a
98 vastly simplified version of the function of the same name from gcc. */
99
100#if 0
101unsigned int
102ceil_log2 (unsigned int x)
103{
104 int i;
105 for (i = 31; i >= 0 ; --i)
106 if (x > (1u << i))
107 return i+1;
108 abort ();
109}
e2eaf477 110
bb6a587d
DD
111unsigned int
112choose_multiplier (unsigned int d, unsigned int *mlp, unsigned char *shiftp)
113{
114 unsigned long long mhigh;
115 double nx;
116 int lgup, post_shift;
117 int pow, pow2;
118 int n = 32, precision = 32;
119
120 lgup = ceil_log2 (d);
121 pow = n + lgup;
122 pow2 = n + lgup - precision;
123
124 nx = ldexp (1.0, pow) + ldexp (1.0, pow2);
125 mhigh = nx / d;
126
127 *shiftp = lgup - 1;
128 *mlp = mhigh;
129 return mhigh >> 32;
130}
131#endif
132
133struct prime_ent
134{
135 hashval_t prime;
136 hashval_t inv;
137 hashval_t inv_m2; /* inverse of prime-2 */
138 hashval_t shift;
139};
140
141static struct prime_ent const prime_tab[] = {
142 { 7, 0x24924925, 0x9999999b, 2 },
143 { 13, 0x3b13b13c, 0x745d1747, 3 },
144 { 31, 0x08421085, 0x1a7b9612, 4 },
145 { 61, 0x0c9714fc, 0x15b1e5f8, 5 },
146 { 127, 0x02040811, 0x0624dd30, 6 },
147 { 251, 0x05197f7e, 0x073260a5, 7 },
148 { 509, 0x01824366, 0x02864fc8, 8 },
149 { 1021, 0x00c0906d, 0x014191f7, 9 },
150 { 2039, 0x0121456f, 0x0161e69e, 10 },
151 { 4093, 0x00300902, 0x00501908, 11 },
152 { 8191, 0x00080041, 0x00180241, 12 },
153 { 16381, 0x000c0091, 0x00140191, 13 },
154 { 32749, 0x002605a5, 0x002a06e6, 14 },
155 { 65521, 0x000f00e2, 0x00110122, 15 },
156 { 131071, 0x00008001, 0x00018003, 16 },
157 { 262139, 0x00014002, 0x0001c004, 17 },
158 { 524287, 0x00002001, 0x00006001, 18 },
159 { 1048573, 0x00003001, 0x00005001, 19 },
160 { 2097143, 0x00004801, 0x00005801, 20 },
161 { 4194301, 0x00000c01, 0x00001401, 21 },
162 { 8388593, 0x00001e01, 0x00002201, 22 },
163 { 16777213, 0x00000301, 0x00000501, 23 },
164 { 33554393, 0x00001381, 0x00001481, 24 },
165 { 67108859, 0x00000141, 0x000001c1, 25 },
166 { 134217689, 0x000004e1, 0x00000521, 26 },
167 { 268435399, 0x00000391, 0x000003b1, 27 },
168 { 536870909, 0x00000019, 0x00000029, 28 },
169 { 1073741789, 0x0000008d, 0x00000095, 29 },
170 { 2147483647, 0x00000003, 0x00000007, 30 },
171 /* Avoid "decimal constant so large it is unsigned" for 4294967291. */
172 { 0xfffffffb, 0x00000006, 0x00000008, 31 }
173};
174
175/* The following function returns an index into the above table of the
176 nearest prime number which is greater than N, and near a power of two. */
177
178static unsigned int
49b1fae4 179higher_prime_index (unsigned long n)
e2eaf477 180{
bb6a587d
DD
181 unsigned int low = 0;
182 unsigned int high = sizeof(prime_tab) / sizeof(prime_tab[0]);
5ca0f83d
DD
183
184 while (low != high)
185 {
bb6a587d
DD
186 unsigned int mid = low + (high - low) / 2;
187 if (n > prime_tab[mid].prime)
5ca0f83d
DD
188 low = mid + 1;
189 else
190 high = mid;
191 }
192
193 /* If we've run out of primes, abort. */
bb6a587d 194 if (n > prime_tab[low].prime)
5ca0f83d
DD
195 {
196 fprintf (stderr, "Cannot find prime bigger than %lu\n", n);
197 abort ();
198 }
199
bb6a587d 200 return low;
e2eaf477
ILT
201}
202
eb383413
L
203/* Returns a hash code for P. */
204
205static hashval_t
49b1fae4 206hash_pointer (const PTR p)
eb383413
L
207{
208 return (hashval_t) ((long)p >> 3);
209}
210
211/* Returns non-zero if P1 and P2 are equal. */
212
213static int
49b1fae4 214eq_pointer (const PTR p1, const PTR p2)
eb383413
L
215{
216 return p1 == p2;
217}
218
fe046a17 219
abf6a75b
DD
220/* The parens around the function names in the next two definitions
221 are essential in order to prevent macro expansions of the name.
222 The bodies, however, are expanded as expected, so they are not
223 recursive definitions. */
224
225/* Return the current size of given hash table. */
226
227#define htab_size(htab) ((htab)->size)
228
229size_t
230(htab_size) (htab_t htab)
fe046a17 231{
abf6a75b 232 return htab_size (htab);
fe046a17
DD
233}
234
235/* Return the current number of elements in given hash table. */
236
abf6a75b
DD
237#define htab_elements(htab) ((htab)->n_elements - (htab)->n_deleted)
238
239size_t
240(htab_elements) (htab_t htab)
fe046a17 241{
abf6a75b 242 return htab_elements (htab);
fe046a17
DD
243}
244
bb6a587d
DD
245/* Return X % Y. */
246
247static inline hashval_t
49b1fae4 248htab_mod_1 (hashval_t x, hashval_t y, hashval_t inv, int shift)
bb6a587d
DD
249{
250 /* The multiplicative inverses computed above are for 32-bit types, and
251 requires that we be able to compute a highpart multiply. */
252#ifdef UNSIGNED_64BIT_TYPE
253 __extension__ typedef UNSIGNED_64BIT_TYPE ull;
254 if (sizeof (hashval_t) * CHAR_BIT <= 32)
255 {
256 hashval_t t1, t2, t3, t4, q, r;
257
258 t1 = ((ull)x * inv) >> 32;
259 t2 = x - t1;
260 t3 = t2 >> 1;
261 t4 = t1 + t3;
262 q = t4 >> shift;
263 r = x - (q * y);
264
265 return r;
266 }
267#endif
268
269 /* Otherwise just use the native division routines. */
270 return x % y;
271}
272
fe046a17
DD
273/* Compute the primary hash for HASH given HTAB's current size. */
274
275static inline hashval_t
49b1fae4 276htab_mod (hashval_t hash, htab_t htab)
fe046a17 277{
bb6a587d
DD
278 const struct prime_ent *p = &prime_tab[htab->size_prime_index];
279 return htab_mod_1 (hash, p->prime, p->inv, p->shift);
fe046a17
DD
280}
281
282/* Compute the secondary hash for HASH given HTAB's current size. */
283
284static inline hashval_t
49b1fae4 285htab_mod_m2 (hashval_t hash, htab_t htab)
fe046a17 286{
bb6a587d
DD
287 const struct prime_ent *p = &prime_tab[htab->size_prime_index];
288 return 1 + htab_mod_1 (hash, p->prime - 2, p->inv_m2, p->shift);
fe046a17
DD
289}
290
e2eaf477
ILT
291/* This function creates table with length slightly longer than given
292 source length. Created hash table is initiated as empty (all the
293 hash table entries are EMPTY_ENTRY). The function returns the
18893690 294 created hash table, or NULL if memory allocation fails. */
e2eaf477 295
b4fe2683 296htab_t
49b1fae4
DD
297htab_create_alloc (size_t size, htab_hash hash_f, htab_eq eq_f,
298 htab_del del_f, htab_alloc alloc_f, htab_free free_f)
e2eaf477 299{
b4fe2683 300 htab_t result;
bb6a587d
DD
301 unsigned int size_prime_index;
302
303 size_prime_index = higher_prime_index (size);
304 size = prime_tab[size_prime_index].prime;
e2eaf477 305
18893690
DD
306 result = (htab_t) (*alloc_f) (1, sizeof (struct htab));
307 if (result == NULL)
308 return NULL;
309 result->entries = (PTR *) (*alloc_f) (size, sizeof (PTR));
310 if (result->entries == NULL)
311 {
312 if (free_f != NULL)
313 (*free_f) (result);
314 return NULL;
315 }
e2eaf477 316 result->size = size;
bb6a587d 317 result->size_prime_index = size_prime_index;
b4fe2683
JM
318 result->hash_f = hash_f;
319 result->eq_f = eq_f;
320 result->del_f = del_f;
18893690
DD
321 result->alloc_f = alloc_f;
322 result->free_f = free_f;
99a4c1bd
HPN
323 return result;
324}
325
5f9624e3
DJ
326/* As above, but use the variants of alloc_f and free_f which accept
327 an extra argument. */
328
329htab_t
abf6a75b
DD
330htab_create_alloc_ex (size_t size, htab_hash hash_f, htab_eq eq_f,
331 htab_del del_f, void *alloc_arg,
332 htab_alloc_with_arg alloc_f,
333 htab_free_with_arg free_f)
5f9624e3
DJ
334{
335 htab_t result;
bb6a587d
DD
336 unsigned int size_prime_index;
337
338 size_prime_index = higher_prime_index (size);
339 size = prime_tab[size_prime_index].prime;
5f9624e3 340
5f9624e3
DJ
341 result = (htab_t) (*alloc_f) (alloc_arg, 1, sizeof (struct htab));
342 if (result == NULL)
343 return NULL;
344 result->entries = (PTR *) (*alloc_f) (alloc_arg, size, sizeof (PTR));
345 if (result->entries == NULL)
346 {
347 if (free_f != NULL)
348 (*free_f) (alloc_arg, result);
349 return NULL;
350 }
351 result->size = size;
bb6a587d 352 result->size_prime_index = size_prime_index;
5f9624e3
DJ
353 result->hash_f = hash_f;
354 result->eq_f = eq_f;
355 result->del_f = del_f;
356 result->alloc_arg = alloc_arg;
357 result->alloc_with_arg_f = alloc_f;
358 result->free_with_arg_f = free_f;
359 return result;
360}
361
362/* Update the function pointers and allocation parameter in the htab_t. */
363
364void
49b1fae4
DD
365htab_set_functions_ex (htab_t htab, htab_hash hash_f, htab_eq eq_f,
366 htab_del del_f, PTR alloc_arg,
367 htab_alloc_with_arg alloc_f, htab_free_with_arg free_f)
5f9624e3
DJ
368{
369 htab->hash_f = hash_f;
370 htab->eq_f = eq_f;
371 htab->del_f = del_f;
372 htab->alloc_arg = alloc_arg;
373 htab->alloc_with_arg_f = alloc_f;
374 htab->free_with_arg_f = free_f;
375}
376
18893690 377/* These functions exist solely for backward compatibility. */
99a4c1bd 378
18893690 379#undef htab_create
99a4c1bd 380htab_t
49b1fae4 381htab_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f)
99a4c1bd 382{
18893690
DD
383 return htab_create_alloc (size, hash_f, eq_f, del_f, xcalloc, free);
384}
99a4c1bd 385
18893690 386htab_t
49b1fae4 387htab_try_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f)
18893690
DD
388{
389 return htab_create_alloc (size, hash_f, eq_f, del_f, calloc, free);
e2eaf477
ILT
390}
391
392/* This function frees all memory allocated for given hash table.
393 Naturally the hash table must already exist. */
394
395void
49b1fae4 396htab_delete (htab_t htab)
e2eaf477 397{
fe046a17
DD
398 size_t size = htab_size (htab);
399 PTR *entries = htab->entries;
b4fe2683 400 int i;
eb383413 401
b4fe2683 402 if (htab->del_f)
fe046a17
DD
403 for (i = size - 1; i >= 0; i--)
404 if (entries[i] != EMPTY_ENTRY && entries[i] != DELETED_ENTRY)
405 (*htab->del_f) (entries[i]);
b4fe2683 406
18893690
DD
407 if (htab->free_f != NULL)
408 {
fe046a17 409 (*htab->free_f) (entries);
18893690
DD
410 (*htab->free_f) (htab);
411 }
5f9624e3
DJ
412 else if (htab->free_with_arg_f != NULL)
413 {
fe046a17 414 (*htab->free_with_arg_f) (htab->alloc_arg, entries);
5f9624e3
DJ
415 (*htab->free_with_arg_f) (htab->alloc_arg, htab);
416 }
e2eaf477
ILT
417}
418
419/* This function clears all entries in the given hash table. */
420
421void
49b1fae4 422htab_empty (htab_t htab)
b4fe2683 423{
fe046a17
DD
424 size_t size = htab_size (htab);
425 PTR *entries = htab->entries;
b4fe2683 426 int i;
eb383413 427
b4fe2683 428 if (htab->del_f)
fe046a17
DD
429 for (i = size - 1; i >= 0; i--)
430 if (entries[i] != EMPTY_ENTRY && entries[i] != DELETED_ENTRY)
431 (*htab->del_f) (entries[i]);
b4fe2683 432
fe046a17 433 memset (entries, 0, size * sizeof (PTR));
b4fe2683
JM
434}
435
436/* Similar to htab_find_slot, but without several unwanted side effects:
437 - Does not call htab->eq_f when it finds an existing entry.
438 - Does not change the count of elements/searches/collisions in the
439 hash table.
440 This function also assumes there are no deleted entries in the table.
441 HASH is the hash value for the element to be inserted. */
eb383413 442
e0f3df8f 443static PTR *
49b1fae4 444find_empty_slot_for_expand (htab_t htab, hashval_t hash)
e2eaf477 445{
fe046a17
DD
446 hashval_t index = htab_mod (hash, htab);
447 size_t size = htab_size (htab);
b1c933fc
RH
448 PTR *slot = htab->entries + index;
449 hashval_t hash2;
450
451 if (*slot == EMPTY_ENTRY)
452 return slot;
453 else if (*slot == DELETED_ENTRY)
454 abort ();
b4fe2683 455
fe046a17 456 hash2 = htab_mod_m2 (hash, htab);
b4fe2683
JM
457 for (;;)
458 {
b1c933fc
RH
459 index += hash2;
460 if (index >= size)
461 index -= size;
eb383413 462
b1c933fc 463 slot = htab->entries + index;
b4fe2683
JM
464 if (*slot == EMPTY_ENTRY)
465 return slot;
eb383413 466 else if (*slot == DELETED_ENTRY)
b4fe2683 467 abort ();
b4fe2683 468 }
e2eaf477
ILT
469}
470
471/* The following function changes size of memory allocated for the
472 entries and repeatedly inserts the table elements. The occupancy
473 of the table after the call will be about 50%. Naturally the hash
474 table must already exist. Remember also that the place of the
99a4c1bd
HPN
475 table entries is changed. If memory allocation failures are allowed,
476 this function will return zero, indicating that the table could not be
477 expanded. If all goes well, it will return a non-zero value. */
e2eaf477 478
99a4c1bd 479static int
49b1fae4 480htab_expand (htab_t htab)
e2eaf477 481{
e0f3df8f
HPN
482 PTR *oentries;
483 PTR *olimit;
484 PTR *p;
18893690 485 PTR *nentries;
bb6a587d
DD
486 size_t nsize, osize, elts;
487 unsigned int oindex, nindex;
b4fe2683
JM
488
489 oentries = htab->entries;
bb6a587d
DD
490 oindex = htab->size_prime_index;
491 osize = htab->size;
492 olimit = oentries + osize;
493 elts = htab_elements (htab);
b4fe2683 494
c4d8feb2
DD
495 /* Resize only when table after removal of unused elements is either
496 too full or too empty. */
bb6a587d
DD
497 if (elts * 2 > osize || (elts * 8 < osize && osize > 32))
498 {
499 nindex = higher_prime_index (elts * 2);
500 nsize = prime_tab[nindex].prime;
501 }
c4d8feb2 502 else
bb6a587d
DD
503 {
504 nindex = oindex;
505 nsize = osize;
506 }
99a4c1bd 507
5f9624e3
DJ
508 if (htab->alloc_with_arg_f != NULL)
509 nentries = (PTR *) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize,
510 sizeof (PTR *));
511 else
512 nentries = (PTR *) (*htab->alloc_f) (nsize, sizeof (PTR *));
18893690
DD
513 if (nentries == NULL)
514 return 0;
515 htab->entries = nentries;
eed2b28c 516 htab->size = nsize;
bb6a587d 517 htab->size_prime_index = nindex;
b4fe2683
JM
518 htab->n_elements -= htab->n_deleted;
519 htab->n_deleted = 0;
520
521 p = oentries;
522 do
523 {
e0f3df8f 524 PTR x = *p;
eb383413 525
b4fe2683
JM
526 if (x != EMPTY_ENTRY && x != DELETED_ENTRY)
527 {
e0f3df8f 528 PTR *q = find_empty_slot_for_expand (htab, (*htab->hash_f) (x));
eb383413 529
b4fe2683
JM
530 *q = x;
531 }
eb383413 532
b4fe2683
JM
533 p++;
534 }
535 while (p < olimit);
eb383413 536
18893690
DD
537 if (htab->free_f != NULL)
538 (*htab->free_f) (oentries);
5f9624e3
DJ
539 else if (htab->free_with_arg_f != NULL)
540 (*htab->free_with_arg_f) (htab->alloc_arg, oentries);
99a4c1bd 541 return 1;
e2eaf477
ILT
542}
543
b4fe2683
JM
544/* This function searches for a hash table entry equal to the given
545 element. It cannot be used to insert or delete an element. */
546
e0f3df8f 547PTR
49b1fae4 548htab_find_with_hash (htab_t htab, const PTR element, hashval_t hash)
e2eaf477 549{
fe046a17 550 hashval_t index, hash2;
b4fe2683 551 size_t size;
e0f3df8f 552 PTR entry;
e2eaf477 553
b4fe2683 554 htab->searches++;
fe046a17
DD
555 size = htab_size (htab);
556 index = htab_mod (hash, htab);
b4fe2683 557
eb383413
L
558 entry = htab->entries[index];
559 if (entry == EMPTY_ENTRY
560 || (entry != DELETED_ENTRY && (*htab->eq_f) (entry, element)))
561 return entry;
562
fe046a17 563 hash2 = htab_mod_m2 (hash, htab);
b4fe2683 564 for (;;)
e2eaf477 565 {
b4fe2683
JM
566 htab->collisions++;
567 index += hash2;
568 if (index >= size)
569 index -= size;
eb383413
L
570
571 entry = htab->entries[index];
572 if (entry == EMPTY_ENTRY
573 || (entry != DELETED_ENTRY && (*htab->eq_f) (entry, element)))
574 return entry;
e2eaf477 575 }
b4fe2683
JM
576}
577
578/* Like htab_find_slot_with_hash, but compute the hash value from the
579 element. */
eb383413 580
e0f3df8f 581PTR
49b1fae4 582htab_find (htab_t htab, const PTR element)
b4fe2683
JM
583{
584 return htab_find_with_hash (htab, element, (*htab->hash_f) (element));
585}
586
587/* This function searches for a hash table slot containing an entry
588 equal to the given element. To delete an entry, call this with
bac7199c
DD
589 insert=NO_INSERT, then call htab_clear_slot on the slot returned
590 (possibly after doing some checks). To insert an entry, call this
591 with insert=INSERT, then write the value you want into the returned
592 slot. When inserting an entry, NULL may be returned if memory
593 allocation fails. */
b4fe2683 594
e0f3df8f 595PTR *
49b1fae4
DD
596htab_find_slot_with_hash (htab_t htab, const PTR element,
597 hashval_t hash, enum insert_option insert)
b4fe2683 598{
e0f3df8f 599 PTR *first_deleted_slot;
fe046a17 600 hashval_t index, hash2;
b4fe2683 601 size_t size;
b1c933fc 602 PTR entry;
b4fe2683 603
fe046a17
DD
604 size = htab_size (htab);
605 if (insert == INSERT && size * 3 <= htab->n_elements * 4)
606 {
607 if (htab_expand (htab) == 0)
608 return NULL;
609 size = htab_size (htab);
610 }
b4fe2683 611
fe046a17 612 index = htab_mod (hash, htab);
b4fe2683 613
e2eaf477 614 htab->searches++;
b4fe2683
JM
615 first_deleted_slot = NULL;
616
b1c933fc
RH
617 entry = htab->entries[index];
618 if (entry == EMPTY_ENTRY)
619 goto empty_entry;
620 else if (entry == DELETED_ENTRY)
621 first_deleted_slot = &htab->entries[index];
622 else if ((*htab->eq_f) (entry, element))
623 return &htab->entries[index];
624
fe046a17 625 hash2 = htab_mod_m2 (hash, htab);
b4fe2683 626 for (;;)
e2eaf477 627 {
b1c933fc
RH
628 htab->collisions++;
629 index += hash2;
630 if (index >= size)
631 index -= size;
632
633 entry = htab->entries[index];
b4fe2683 634 if (entry == EMPTY_ENTRY)
b1c933fc
RH
635 goto empty_entry;
636 else if (entry == DELETED_ENTRY)
b4fe2683
JM
637 {
638 if (!first_deleted_slot)
639 first_deleted_slot = &htab->entries[index];
640 }
b1c933fc 641 else if ((*htab->eq_f) (entry, element))
eb383413 642 return &htab->entries[index];
e2eaf477 643 }
b1c933fc
RH
644
645 empty_entry:
646 if (insert == NO_INSERT)
647 return NULL;
648
b1c933fc
RH
649 if (first_deleted_slot)
650 {
686e72d7 651 htab->n_deleted--;
b1c933fc
RH
652 *first_deleted_slot = EMPTY_ENTRY;
653 return first_deleted_slot;
654 }
655
686e72d7 656 htab->n_elements++;
b1c933fc 657 return &htab->entries[index];
e2eaf477
ILT
658}
659
b4fe2683
JM
660/* Like htab_find_slot_with_hash, but compute the hash value from the
661 element. */
eb383413 662
e0f3df8f 663PTR *
49b1fae4 664htab_find_slot (htab_t htab, const PTR element, enum insert_option insert)
b4fe2683
JM
665{
666 return htab_find_slot_with_hash (htab, element, (*htab->hash_f) (element),
667 insert);
668}
669
d6ea4e80
DD
670/* This function deletes an element with the given value from hash
671 table (the hash is computed from the element). If there is no matching
672 element in the hash table, this function does nothing. */
673
674void
49b1fae4 675htab_remove_elt (htab_t htab, PTR element)
d6ea4e80
DD
676{
677 htab_remove_elt_with_hash (htab, element, (*htab->hash_f) (element));
678}
679
680
b4fe2683
JM
681/* This function deletes an element with the given value from hash
682 table. If there is no matching element in the hash table, this
683 function does nothing. */
e2eaf477
ILT
684
685void
49b1fae4 686htab_remove_elt_with_hash (htab_t htab, PTR element, hashval_t hash)
e2eaf477 687{
e0f3df8f 688 PTR *slot;
b4fe2683 689
d6ea4e80 690 slot = htab_find_slot_with_hash (htab, element, hash, NO_INSERT);
b4fe2683
JM
691 if (*slot == EMPTY_ENTRY)
692 return;
693
694 if (htab->del_f)
695 (*htab->del_f) (*slot);
e2eaf477 696
b4fe2683
JM
697 *slot = DELETED_ENTRY;
698 htab->n_deleted++;
e2eaf477
ILT
699}
700
b4fe2683
JM
701/* This function clears a specified slot in a hash table. It is
702 useful when you've already done the lookup and don't want to do it
703 again. */
e2eaf477
ILT
704
705void
49b1fae4 706htab_clear_slot (htab_t htab, PTR *slot)
e2eaf477 707{
fe046a17 708 if (slot < htab->entries || slot >= htab->entries + htab_size (htab)
e2eaf477
ILT
709 || *slot == EMPTY_ENTRY || *slot == DELETED_ENTRY)
710 abort ();
eb383413 711
b4fe2683
JM
712 if (htab->del_f)
713 (*htab->del_f) (*slot);
eb383413 714
e2eaf477 715 *slot = DELETED_ENTRY;
b4fe2683 716 htab->n_deleted++;
e2eaf477
ILT
717}
718
719/* This function scans over the entire hash table calling
720 CALLBACK for each live entry. If CALLBACK returns false,
721 the iteration stops. INFO is passed as CALLBACK's second
722 argument. */
723
724void
49b1fae4 725htab_traverse_noresize (htab_t htab, htab_trav callback, PTR info)
e2eaf477 726{
c4d8feb2
DD
727 PTR *slot;
728 PTR *limit;
729
c4d8feb2 730 slot = htab->entries;
fe046a17 731 limit = slot + htab_size (htab);
eb383413 732
b4fe2683
JM
733 do
734 {
e0f3df8f 735 PTR x = *slot;
eb383413 736
b4fe2683
JM
737 if (x != EMPTY_ENTRY && x != DELETED_ENTRY)
738 if (!(*callback) (slot, info))
739 break;
740 }
741 while (++slot < limit);
e2eaf477
ILT
742}
743
f77ed96c
DD
744/* Like htab_traverse_noresize, but does resize the table when it is
745 too empty to improve effectivity of subsequent calls. */
746
747void
49b1fae4 748htab_traverse (htab_t htab, htab_trav callback, PTR info)
f77ed96c 749{
fe046a17 750 if (htab_elements (htab) * 8 < htab_size (htab))
f77ed96c
DD
751 htab_expand (htab);
752
753 htab_traverse_noresize (htab, callback, info);
754}
755
eb383413
L
756/* Return the fraction of fixed collisions during all work with given
757 hash table. */
e2eaf477 758
b4fe2683 759double
49b1fae4 760htab_collisions (htab_t htab)
e2eaf477 761{
eb383413 762 if (htab->searches == 0)
b4fe2683 763 return 0.0;
eb383413
L
764
765 return (double) htab->collisions / (double) htab->searches;
e2eaf477 766}
8fc34799 767
68a41de7
DD
768/* Hash P as a null-terminated string.
769
770 Copied from gcc/hashtable.c. Zack had the following to say with respect
771 to applicability, though note that unlike hashtable.c, this hash table
772 implementation re-hashes rather than chain buckets.
773
774 http://gcc.gnu.org/ml/gcc-patches/2001-08/msg01021.html
775 From: Zack Weinberg <zackw@panix.com>
776 Date: Fri, 17 Aug 2001 02:15:56 -0400
777
778 I got it by extracting all the identifiers from all the source code
779 I had lying around in mid-1999, and testing many recurrences of
780 the form "H_n = H_{n-1} * K + c_n * L + M" where K, L, M were either
781 prime numbers or the appropriate identity. This was the best one.
782 I don't remember exactly what constituted "best", except I was
783 looking at bucket-length distributions mostly.
784
785 So it should be very good at hashing identifiers, but might not be
786 as good at arbitrary strings.
787
788 I'll add that it thoroughly trounces the hash functions recommended
789 for this use at http://burtleburtle.net/bob/hash/index.html, both
790 on speed and bucket distribution. I haven't tried it against the
791 function they just started using for Perl's hashes. */
8fc34799
DD
792
793hashval_t
49b1fae4 794htab_hash_string (const PTR p)
8fc34799
DD
795{
796 const unsigned char *str = (const unsigned char *) p;
797 hashval_t r = 0;
798 unsigned char c;
799
800 while ((c = *str++) != 0)
801 r = r * 67 + c - 113;
802
803 return r;
804}
7108c5dc
JM
805
806/* DERIVED FROM:
807--------------------------------------------------------------------
808lookup2.c, by Bob Jenkins, December 1996, Public Domain.
809hash(), hash2(), hash3, and mix() are externally useful functions.
810Routines to test the hash are included if SELF_TEST is defined.
811You can use this free for any purpose. It has no warranty.
812--------------------------------------------------------------------
813*/
814
815/*
816--------------------------------------------------------------------
817mix -- mix 3 32-bit values reversibly.
818For every delta with one or two bit set, and the deltas of all three
819 high bits or all three low bits, whether the original value of a,b,c
820 is almost all zero or is uniformly distributed,
821* If mix() is run forward or backward, at least 32 bits in a,b,c
822 have at least 1/4 probability of changing.
823* If mix() is run forward, every bit of c will change between 1/3 and
824 2/3 of the time. (Well, 22/100 and 78/100 for some 2-bit deltas.)
825mix() was built out of 36 single-cycle latency instructions in a
826 structure that could supported 2x parallelism, like so:
827 a -= b;
828 a -= c; x = (c>>13);
829 b -= c; a ^= x;
830 b -= a; x = (a<<8);
831 c -= a; b ^= x;
832 c -= b; x = (b>>13);
833 ...
834 Unfortunately, superscalar Pentiums and Sparcs can't take advantage
835 of that parallelism. They've also turned some of those single-cycle
836 latency instructions into multi-cycle latency instructions. Still,
837 this is the fastest good hash I could find. There were about 2^^68
838 to choose from. I only looked at a billion or so.
839--------------------------------------------------------------------
840*/
841/* same, but slower, works on systems that might have 8 byte hashval_t's */
842#define mix(a,b,c) \
843{ \
844 a -= b; a -= c; a ^= (c>>13); \
845 b -= c; b -= a; b ^= (a<< 8); \
846 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
847 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
848 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
849 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
850 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
851 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
852 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
853}
854
855/*
856--------------------------------------------------------------------
857hash() -- hash a variable-length key into a 32-bit value
858 k : the key (the unaligned variable-length array of bytes)
859 len : the length of the key, counting by bytes
860 level : can be any 4-byte value
861Returns a 32-bit value. Every bit of the key affects every bit of
862the return value. Every 1-bit and 2-bit delta achieves avalanche.
863About 36+6len instructions.
864
865The best hash table sizes are powers of 2. There is no need to do
866mod a prime (mod is sooo slow!). If you need less than 32 bits,
867use a bitmask. For example, if you need only 10 bits, do
868 h = (h & hashmask(10));
869In which case, the hash table should have hashsize(10) elements.
870
871If you are hashing n strings (ub1 **)k, do it like this:
872 for (i=0, h=0; i<n; ++i) h = hash( k[i], len[i], h);
873
874By Bob Jenkins, 1996. bob_jenkins@burtleburtle.net. You may use this
875code any way you wish, private, educational, or commercial. It's free.
876
877See http://burtleburtle.net/bob/hash/evahash.html
878Use for hash table lookup, or anything where one collision in 2^32 is
879acceptable. Do NOT use for cryptographic purposes.
880--------------------------------------------------------------------
881*/
882
49b1fae4
DD
883hashval_t
884iterative_hash (const PTR k_in /* the key */,
885 register size_t length /* the length of the key */,
886 register hashval_t initval /* the previous hash, or
887 an arbitrary value */)
7108c5dc
JM
888{
889 register const unsigned char *k = (const unsigned char *)k_in;
890 register hashval_t a,b,c,len;
891
892 /* Set up the internal state */
893 len = length;
894 a = b = 0x9e3779b9; /* the golden ratio; an arbitrary value */
895 c = initval; /* the previous hash value */
896
897 /*---------------------------------------- handle most of the key */
898#ifndef WORDS_BIGENDIAN
899 /* On a little-endian machine, if the data is 4-byte aligned we can hash
900 by word for better speed. This gives nondeterministic results on
901 big-endian machines. */
902 if (sizeof (hashval_t) == 4 && (((size_t)k)&3) == 0)
903 while (len >= 12) /* aligned */
904 {
905 a += *(hashval_t *)(k+0);
906 b += *(hashval_t *)(k+4);
907 c += *(hashval_t *)(k+8);
908 mix(a,b,c);
909 k += 12; len -= 12;
910 }
911 else /* unaligned */
912#endif
913 while (len >= 12)
914 {
915 a += (k[0] +((hashval_t)k[1]<<8) +((hashval_t)k[2]<<16) +((hashval_t)k[3]<<24));
916 b += (k[4] +((hashval_t)k[5]<<8) +((hashval_t)k[6]<<16) +((hashval_t)k[7]<<24));
917 c += (k[8] +((hashval_t)k[9]<<8) +((hashval_t)k[10]<<16)+((hashval_t)k[11]<<24));
918 mix(a,b,c);
919 k += 12; len -= 12;
920 }
921
922 /*------------------------------------- handle the last 11 bytes */
923 c += length;
924 switch(len) /* all the case statements fall through */
925 {
926 case 11: c+=((hashval_t)k[10]<<24);
927 case 10: c+=((hashval_t)k[9]<<16);
928 case 9 : c+=((hashval_t)k[8]<<8);
929 /* the first byte of c is reserved for the length */
930 case 8 : b+=((hashval_t)k[7]<<24);
931 case 7 : b+=((hashval_t)k[6]<<16);
932 case 6 : b+=((hashval_t)k[5]<<8);
933 case 5 : b+=k[4];
934 case 4 : a+=((hashval_t)k[3]<<24);
935 case 3 : a+=((hashval_t)k[2]<<16);
936 case 2 : a+=((hashval_t)k[1]<<8);
937 case 1 : a+=k[0];
938 /* case 0: nothing left to add */
939 }
940 mix(a,b,c);
941 /*-------------------------------------------- report the result */
942 return c;
943}