]> git.ipfire.org Git - thirdparty/gcc.git/blame - libiberty/md5.c
verify.c (merge_types): Load the types to merge if necessary.
[thirdparty/gcc.git] / libiberty / md5.c
CommitLineData
881c6935
JM
1/* md5.c - Functions to compute MD5 message digest of files or memory blocks
2 according to the definition of MD5 in RFC 1321 from April 1992.
3 Copyright (C) 1995, 1996 Free Software Foundation, Inc.
4 NOTE: The canonical source of this file is maintained with the GNU C
5 Library. Bugs can be reported to bug-glibc@prep.ai.mit.edu.
6
7 This program is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 2, or (at your option) any
10 later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software Foundation,
19 Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21/* Written by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1995. */
22
23#ifdef HAVE_CONFIG_H
24# include <config.h>
25#endif
26
27#include <sys/types.h>
28
29#if STDC_HEADERS || defined _LIBC
30# include <stdlib.h>
31# include <string.h>
32#else
33# ifndef HAVE_MEMCPY
34# define memcpy(d, s, n) bcopy ((s), (d), (n))
35# endif
36#endif
37
38#include "md5.h"
39
40#ifdef _LIBC
41# include <endian.h>
42# if __BYTE_ORDER == __BIG_ENDIAN
43# define WORDS_BIGENDIAN 1
44# endif
45#endif
46
47#ifdef WORDS_BIGENDIAN
48# define SWAP(n) \
49 (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24))
50#else
51# define SWAP(n) (n)
52#endif
53
54
55/* This array contains the bytes used to pad the buffer to the next
56 64-byte boundary. (RFC 1321, 3.1: Step 1) */
57static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ };
58
59
60/* Initialize structure containing state of computation.
61 (RFC 1321, 3.3: Step 3) */
62void
63md5_init_ctx (ctx)
64 struct md5_ctx *ctx;
65{
66 ctx->A = 0x67452301;
67 ctx->B = 0xefcdab89;
68 ctx->C = 0x98badcfe;
69 ctx->D = 0x10325476;
70
71 ctx->total[0] = ctx->total[1] = 0;
72 ctx->buflen = 0;
73}
74
75/* Put result from CTX in first 16 bytes following RESBUF. The result
76 must be in little endian byte order.
77
78 IMPORTANT: On some systems it is required that RESBUF is correctly
79 aligned for a 32 bits value. */
80void *
81md5_read_ctx (ctx, resbuf)
82 const struct md5_ctx *ctx;
83 void *resbuf;
84{
85 ((md5_uint32 *) resbuf)[0] = SWAP (ctx->A);
86 ((md5_uint32 *) resbuf)[1] = SWAP (ctx->B);
87 ((md5_uint32 *) resbuf)[2] = SWAP (ctx->C);
88 ((md5_uint32 *) resbuf)[3] = SWAP (ctx->D);
89
90 return resbuf;
91}
92
93/* Process the remaining bytes in the internal buffer and the usual
94 prolog according to the standard and write the result to RESBUF.
95
96 IMPORTANT: On some systems it is required that RESBUF is correctly
97 aligned for a 32 bits value. */
98void *
99md5_finish_ctx (ctx, resbuf)
100 struct md5_ctx *ctx;
101 void *resbuf;
102{
103 /* Take yet unprocessed bytes into account. */
104 md5_uint32 bytes = ctx->buflen;
105 size_t pad;
106
107 /* Now count remaining bytes. */
108 ctx->total[0] += bytes;
109 if (ctx->total[0] < bytes)
110 ++ctx->total[1];
111
112 pad = bytes >= 56 ? 64 + 56 - bytes : 56 - bytes;
113 memcpy (&ctx->buffer[bytes], fillbuf, pad);
114
115 /* Put the 64-bit file length in *bits* at the end of the buffer. */
116 *(md5_uint32 *) &ctx->buffer[bytes + pad] = SWAP (ctx->total[0] << 3);
117 *(md5_uint32 *) &ctx->buffer[bytes + pad + 4] = SWAP ((ctx->total[1] << 3) |
118 (ctx->total[0] >> 29));
119
120 /* Process last bytes. */
121 md5_process_block (ctx->buffer, bytes + pad + 8, ctx);
122
123 return md5_read_ctx (ctx, resbuf);
124}
125
126/* Compute MD5 message digest for bytes read from STREAM. The
127 resulting message digest number will be written into the 16 bytes
128 beginning at RESBLOCK. */
129int
130md5_stream (stream, resblock)
131 FILE *stream;
132 void *resblock;
133{
134 /* Important: BLOCKSIZE must be a multiple of 64. */
135#define BLOCKSIZE 4096
136 struct md5_ctx ctx;
137 char buffer[BLOCKSIZE + 72];
138 size_t sum;
139
140 /* Initialize the computation context. */
141 md5_init_ctx (&ctx);
142
143 /* Iterate over full file contents. */
144 while (1)
145 {
146 /* We read the file in blocks of BLOCKSIZE bytes. One call of the
147 computation function processes the whole buffer so that with the
148 next round of the loop another block can be read. */
149 size_t n;
150 sum = 0;
151
152 /* Read block. Take care for partial reads. */
153 do
154 {
155 n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream);
156
157 sum += n;
158 }
159 while (sum < BLOCKSIZE && n != 0);
160 if (n == 0 && ferror (stream))
161 return 1;
162
163 /* If end of file is reached, end the loop. */
164 if (n == 0)
165 break;
166
167 /* Process buffer with BLOCKSIZE bytes. Note that
168 BLOCKSIZE % 64 == 0
169 */
170 md5_process_block (buffer, BLOCKSIZE, &ctx);
171 }
172
173 /* Add the last bytes if necessary. */
174 if (sum > 0)
175 md5_process_bytes (buffer, sum, &ctx);
176
177 /* Construct result in desired memory. */
178 md5_finish_ctx (&ctx, resblock);
179 return 0;
180}
181
182/* Compute MD5 message digest for LEN bytes beginning at BUFFER. The
183 result is always in little endian byte order, so that a byte-wise
184 output yields to the wanted ASCII representation of the message
185 digest. */
186void *
187md5_buffer (buffer, len, resblock)
188 const char *buffer;
189 size_t len;
190 void *resblock;
191{
192 struct md5_ctx ctx;
193
194 /* Initialize the computation context. */
195 md5_init_ctx (&ctx);
196
197 /* Process whole buffer but last len % 64 bytes. */
198 md5_process_bytes (buffer, len, &ctx);
199
200 /* Put result in desired memory area. */
201 return md5_finish_ctx (&ctx, resblock);
202}
203
204
205void
206md5_process_bytes (buffer, len, ctx)
207 const void *buffer;
208 size_t len;
209 struct md5_ctx *ctx;
210{
211 /* When we already have some bits in our internal buffer concatenate
212 both inputs first. */
213 if (ctx->buflen != 0)
214 {
215 size_t left_over = ctx->buflen;
216 size_t add = 128 - left_over > len ? len : 128 - left_over;
217
218 memcpy (&ctx->buffer[left_over], buffer, add);
219 ctx->buflen += add;
220
221 if (left_over + add > 64)
222 {
223 md5_process_block (ctx->buffer, (left_over + add) & ~63, ctx);
224 /* The regions in the following copy operation cannot overlap. */
225 memcpy (ctx->buffer, &ctx->buffer[(left_over + add) & ~63],
226 (left_over + add) & 63);
227 ctx->buflen = (left_over + add) & 63;
228 }
229
230 buffer = (const char *) buffer + add;
231 len -= add;
232 }
233
234 /* Process available complete blocks. */
235 if (len > 64)
236 {
237 md5_process_block (buffer, len & ~63, ctx);
238 buffer = (const char *) buffer + (len & ~63);
239 len &= 63;
240 }
241
242 /* Move remaining bytes in internal buffer. */
243 if (len > 0)
244 {
245 memcpy (ctx->buffer, buffer, len);
246 ctx->buflen = len;
247 }
248}
249
250
251/* These are the four functions used in the four steps of the MD5 algorithm
252 and defined in the RFC 1321. The first function is a little bit optimized
253 (as found in Colin Plumbs public domain implementation). */
254/* #define FF(b, c, d) ((b & c) | (~b & d)) */
255#define FF(b, c, d) (d ^ (b & (c ^ d)))
256#define FG(b, c, d) FF (d, b, c)
257#define FH(b, c, d) (b ^ c ^ d)
258#define FI(b, c, d) (c ^ (b | ~d))
259
260/* Process LEN bytes of BUFFER, accumulating context into CTX.
261 It is assumed that LEN % 64 == 0. */
262
263void
264md5_process_block (buffer, len, ctx)
265 const void *buffer;
266 size_t len;
267 struct md5_ctx *ctx;
268{
269 md5_uint32 correct_words[16];
270 const md5_uint32 *words = buffer;
271 size_t nwords = len / sizeof (md5_uint32);
272 const md5_uint32 *endp = words + nwords;
273 md5_uint32 A = ctx->A;
274 md5_uint32 B = ctx->B;
275 md5_uint32 C = ctx->C;
276 md5_uint32 D = ctx->D;
277
278 /* First increment the byte count. RFC 1321 specifies the possible
279 length of the file up to 2^64 bits. Here we only compute the
280 number of bytes. Do a double word increment. */
281 ctx->total[0] += len;
282 if (ctx->total[0] < len)
283 ++ctx->total[1];
284
285 /* Process all bytes in the buffer with 64 bytes in each round of
286 the loop. */
287 while (words < endp)
288 {
289 md5_uint32 *cwp = correct_words;
290 md5_uint32 A_save = A;
291 md5_uint32 B_save = B;
292 md5_uint32 C_save = C;
293 md5_uint32 D_save = D;
294
295 /* First round: using the given function, the context and a constant
296 the next context is computed. Because the algorithms processing
297 unit is a 32-bit word and it is determined to work on words in
298 little endian byte order we perhaps have to change the byte order
299 before the computation. To reduce the work for the next steps
300 we store the swapped words in the array CORRECT_WORDS. */
301
302#define OP(a, b, c, d, s, T) \
303 do \
304 { \
305 a += FF (b, c, d) + (*cwp++ = SWAP (*words)) + T; \
306 ++words; \
307 CYCLIC (a, s); \
308 a += b; \
309 } \
310 while (0)
311
312 /* It is unfortunate that C does not provide an operator for
313 cyclic rotation. Hope the C compiler is smart enough. */
314#define CYCLIC(w, s) (w = (w << s) | (w >> (32 - s)))
315
316 /* Before we start, one word to the strange constants.
317 They are defined in RFC 1321 as
318
319 T[i] = (int) (4294967296.0 * fabs (sin (i))), i=1..64
320 */
321
322 /* Round 1. */
323 OP (A, B, C, D, 7, 0xd76aa478);
324 OP (D, A, B, C, 12, 0xe8c7b756);
325 OP (C, D, A, B, 17, 0x242070db);
326 OP (B, C, D, A, 22, 0xc1bdceee);
327 OP (A, B, C, D, 7, 0xf57c0faf);
328 OP (D, A, B, C, 12, 0x4787c62a);
329 OP (C, D, A, B, 17, 0xa8304613);
330 OP (B, C, D, A, 22, 0xfd469501);
331 OP (A, B, C, D, 7, 0x698098d8);
332 OP (D, A, B, C, 12, 0x8b44f7af);
333 OP (C, D, A, B, 17, 0xffff5bb1);
334 OP (B, C, D, A, 22, 0x895cd7be);
335 OP (A, B, C, D, 7, 0x6b901122);
336 OP (D, A, B, C, 12, 0xfd987193);
337 OP (C, D, A, B, 17, 0xa679438e);
338 OP (B, C, D, A, 22, 0x49b40821);
339
340 /* For the second to fourth round we have the possibly swapped words
341 in CORRECT_WORDS. Redefine the macro to take an additional first
342 argument specifying the function to use. */
343#undef OP
344#define OP(f, a, b, c, d, k, s, T) \
345 do \
346 { \
347 a += f (b, c, d) + correct_words[k] + T; \
348 CYCLIC (a, s); \
349 a += b; \
350 } \
351 while (0)
352
353 /* Round 2. */
354 OP (FG, A, B, C, D, 1, 5, 0xf61e2562);
355 OP (FG, D, A, B, C, 6, 9, 0xc040b340);
356 OP (FG, C, D, A, B, 11, 14, 0x265e5a51);
357 OP (FG, B, C, D, A, 0, 20, 0xe9b6c7aa);
358 OP (FG, A, B, C, D, 5, 5, 0xd62f105d);
359 OP (FG, D, A, B, C, 10, 9, 0x02441453);
360 OP (FG, C, D, A, B, 15, 14, 0xd8a1e681);
361 OP (FG, B, C, D, A, 4, 20, 0xe7d3fbc8);
362 OP (FG, A, B, C, D, 9, 5, 0x21e1cde6);
363 OP (FG, D, A, B, C, 14, 9, 0xc33707d6);
364 OP (FG, C, D, A, B, 3, 14, 0xf4d50d87);
365 OP (FG, B, C, D, A, 8, 20, 0x455a14ed);
366 OP (FG, A, B, C, D, 13, 5, 0xa9e3e905);
367 OP (FG, D, A, B, C, 2, 9, 0xfcefa3f8);
368 OP (FG, C, D, A, B, 7, 14, 0x676f02d9);
369 OP (FG, B, C, D, A, 12, 20, 0x8d2a4c8a);
370
371 /* Round 3. */
372 OP (FH, A, B, C, D, 5, 4, 0xfffa3942);
373 OP (FH, D, A, B, C, 8, 11, 0x8771f681);
374 OP (FH, C, D, A, B, 11, 16, 0x6d9d6122);
375 OP (FH, B, C, D, A, 14, 23, 0xfde5380c);
376 OP (FH, A, B, C, D, 1, 4, 0xa4beea44);
377 OP (FH, D, A, B, C, 4, 11, 0x4bdecfa9);
378 OP (FH, C, D, A, B, 7, 16, 0xf6bb4b60);
379 OP (FH, B, C, D, A, 10, 23, 0xbebfbc70);
380 OP (FH, A, B, C, D, 13, 4, 0x289b7ec6);
381 OP (FH, D, A, B, C, 0, 11, 0xeaa127fa);
382 OP (FH, C, D, A, B, 3, 16, 0xd4ef3085);
383 OP (FH, B, C, D, A, 6, 23, 0x04881d05);
384 OP (FH, A, B, C, D, 9, 4, 0xd9d4d039);
385 OP (FH, D, A, B, C, 12, 11, 0xe6db99e5);
386 OP (FH, C, D, A, B, 15, 16, 0x1fa27cf8);
387 OP (FH, B, C, D, A, 2, 23, 0xc4ac5665);
388
389 /* Round 4. */
390 OP (FI, A, B, C, D, 0, 6, 0xf4292244);
391 OP (FI, D, A, B, C, 7, 10, 0x432aff97);
392 OP (FI, C, D, A, B, 14, 15, 0xab9423a7);
393 OP (FI, B, C, D, A, 5, 21, 0xfc93a039);
394 OP (FI, A, B, C, D, 12, 6, 0x655b59c3);
395 OP (FI, D, A, B, C, 3, 10, 0x8f0ccc92);
396 OP (FI, C, D, A, B, 10, 15, 0xffeff47d);
397 OP (FI, B, C, D, A, 1, 21, 0x85845dd1);
398 OP (FI, A, B, C, D, 8, 6, 0x6fa87e4f);
399 OP (FI, D, A, B, C, 15, 10, 0xfe2ce6e0);
400 OP (FI, C, D, A, B, 6, 15, 0xa3014314);
401 OP (FI, B, C, D, A, 13, 21, 0x4e0811a1);
402 OP (FI, A, B, C, D, 4, 6, 0xf7537e82);
403 OP (FI, D, A, B, C, 11, 10, 0xbd3af235);
404 OP (FI, C, D, A, B, 2, 15, 0x2ad7d2bb);
405 OP (FI, B, C, D, A, 9, 21, 0xeb86d391);
406
407 /* Add the starting values of the context. */
408 A += A_save;
409 B += B_save;
410 C += C_save;
411 D += D_save;
412 }
413
414 /* Put checksum in context given as argument. */
415 ctx->A = A;
416 ctx->B = B;
417 ctx->C = C;
418 ctx->D = D;
419}