]> git.ipfire.org Git - thirdparty/gcc.git/blame - libiberty/splay-tree.c
Makefile.in: Rebuilt.
[thirdparty/gcc.git] / libiberty / splay-tree.c
CommitLineData
ed87f9c8 1/* A splay-tree datatype.
5cdba4ff 2 Copyright (C) 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
ed87f9c8
MM
3 Contributed by Mark Mitchell (mark@markmitchell.com).
4
28923099 5This file is part of GNU CC.
ed87f9c8 6
28923099
JL
7GNU CC is free software; you can redistribute it and/or modify it
8under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
ed87f9c8 11
28923099
JL
12GNU CC is distributed in the hope that it will be useful, but
13WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15General Public License for more details.
ed87f9c8 16
28923099
JL
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
0cd43577
JL
19the Free Software Foundation, 59 Temple Place - Suite 330,
20Boston, MA 02111-1307, USA. */
ed87f9c8 21
28923099 22/* For an easily readable description of splay-trees, see:
ed87f9c8
MM
23
24 Lewis, Harry R. and Denenberg, Larry. Data Structures and Their
25 Algorithms. Harper-Collins, Inc. 1991. */
26
11a0bb74 27#ifdef HAVE_CONFIG_H
ad3ef78e
MM
28#include "config.h"
29#endif
30
31#ifdef HAVE_STDLIB_H
32#include <stdlib.h>
33#endif
34
4eaa189a
MS
35#include <stdio.h>
36
ed87f9c8 37#include "libiberty.h"
ed87f9c8
MM
38#include "splay-tree.h"
39
40static void splay_tree_delete_helper PARAMS((splay_tree,
41 splay_tree_node));
42static void splay_tree_splay PARAMS((splay_tree,
43 splay_tree_key));
44static splay_tree_node splay_tree_splay_helper
45 PARAMS((splay_tree,
46 splay_tree_key,
47 splay_tree_node*,
48 splay_tree_node*,
49 splay_tree_node*));
50static int splay_tree_foreach_helper PARAMS((splay_tree,
51 splay_tree_node,
52 splay_tree_foreach_fn,
53 void*));
54
55/* Deallocate NODE (a member of SP), and all its sub-trees. */
56
57static void
58splay_tree_delete_helper (sp, node)
59 splay_tree sp;
60 splay_tree_node node;
61{
62 if (!node)
63 return;
64
65 splay_tree_delete_helper (sp, node->left);
66 splay_tree_delete_helper (sp, node->right);
67
68 if (sp->delete_key)
69 (*sp->delete_key)(node->key);
70 if (sp->delete_value)
71 (*sp->delete_value)(node->value);
72
00c2f96f 73 (*sp->deallocate) ((char*) node, sp->allocate_data);
ed87f9c8
MM
74}
75
76/* Help splay SP around KEY. PARENT and GRANDPARENT are the parent
77 and grandparent, respectively, of NODE. */
78
79static splay_tree_node
80splay_tree_splay_helper (sp, key, node, parent, grandparent)
81 splay_tree sp;
82 splay_tree_key key;
83 splay_tree_node *node;
84 splay_tree_node *parent;
85 splay_tree_node *grandparent;
86{
87 splay_tree_node *next;
88 splay_tree_node n;
89 int comparison;
90
91 n = *node;
92
93 if (!n)
94 return *parent;
95
96 comparison = (*sp->comp) (key, n->key);
97
98 if (comparison == 0)
99 /* We've found the target. */
100 next = 0;
101 else if (comparison < 0)
102 /* The target is to the left. */
103 next = &n->left;
104 else
105 /* The target is to the right. */
106 next = &n->right;
107
108 if (next)
109 {
110 /* Continue down the tree. */
111 n = splay_tree_splay_helper (sp, key, next, node, parent);
112
113 /* The recursive call will change the place to which NODE
114 points. */
115 if (*node != n)
116 return n;
117 }
118
119 if (!parent)
120 /* NODE is the root. We are done. */
121 return n;
122
123 /* First, handle the case where there is no grandparent (i.e.,
124 *PARENT is the root of the tree.) */
125 if (!grandparent)
126 {
127 if (n == (*parent)->left)
128 {
129 *node = n->right;
130 n->right = *parent;
131 }
132 else
133 {
134 *node = n->left;
135 n->left = *parent;
136 }
137 *parent = n;
138 return n;
139 }
140
141 /* Next handle the cases where both N and *PARENT are left children,
142 or where both are right children. */
143 if (n == (*parent)->left && *parent == (*grandparent)->left)
144 {
145 splay_tree_node p = *parent;
146
147 (*grandparent)->left = p->right;
148 p->right = *grandparent;
149 p->left = n->right;
150 n->right = p;
151 *grandparent = n;
152 return n;
153 }
154 else if (n == (*parent)->right && *parent == (*grandparent)->right)
155 {
156 splay_tree_node p = *parent;
157
158 (*grandparent)->right = p->left;
159 p->left = *grandparent;
160 p->right = n->left;
161 n->left = p;
162 *grandparent = n;
163 return n;
164 }
165
166 /* Finally, deal with the case where N is a left child, but *PARENT
167 is a right child, or vice versa. */
168 if (n == (*parent)->left)
169 {
170 (*parent)->left = n->right;
171 n->right = *parent;
172 (*grandparent)->right = n->left;
173 n->left = *grandparent;
174 *grandparent = n;
175 return n;
176 }
177 else
178 {
179 (*parent)->right = n->left;
180 n->left = *parent;
181 (*grandparent)->left = n->right;
182 n->right = *grandparent;
183 *grandparent = n;
184 return n;
185 }
186}
187
188/* Splay SP around KEY. */
189
190static void
191splay_tree_splay (sp, key)
192 splay_tree sp;
193 splay_tree_key key;
194{
195 if (sp->root == 0)
196 return;
197
198 splay_tree_splay_helper (sp, key, &sp->root,
199 /*grandparent=*/0, /*parent=*/0);
200}
201
202/* Call FN, passing it the DATA, for every node below NODE, all of
203 which are from SP, following an in-order traversal. If FN every
204 returns a non-zero value, the iteration ceases immediately, and the
205 value is returned. Otherwise, this function returns 0. */
206
b056ad1c 207static int
ed87f9c8
MM
208splay_tree_foreach_helper (sp, node, fn, data)
209 splay_tree sp;
210 splay_tree_node node;
211 splay_tree_foreach_fn fn;
212 void* data;
213{
214 int val;
215
216 if (!node)
217 return 0;
218
219 val = splay_tree_foreach_helper (sp, node->left, fn, data);
220 if (val)
221 return val;
222
223 val = (*fn)(node, data);
224 if (val)
225 return val;
226
227 return splay_tree_foreach_helper (sp, node->right, fn, data);
228}
229
00c2f96f
JB
230
231/* An allocator and deallocator based on xmalloc. */
232static void *
957978a4
JB
233splay_tree_xmalloc_allocate (size, data)
234 int size;
235 void *data ATTRIBUTE_UNUSED;
00c2f96f
JB
236{
237 return xmalloc (size);
238}
239
240static void
957978a4
JB
241splay_tree_xmalloc_deallocate (object, data)
242 void *object;
243 void *data ATTRIBUTE_UNUSED;
00c2f96f
JB
244{
245 free (object);
246}
247
248
ed87f9c8
MM
249/* Allocate a new splay tree, using COMPARE_FN to compare nodes,
250 DELETE_KEY_FN to deallocate keys, and DELETE_VALUE_FN to deallocate
00c2f96f
JB
251 values. Use xmalloc to allocate the splay tree structure, and any
252 nodes added. */
ed87f9c8
MM
253
254splay_tree
255splay_tree_new (compare_fn, delete_key_fn, delete_value_fn)
256 splay_tree_compare_fn compare_fn;
257 splay_tree_delete_key_fn delete_key_fn;
258 splay_tree_delete_value_fn delete_value_fn;
259{
00c2f96f
JB
260 return (splay_tree_new_with_allocator
261 (compare_fn, delete_key_fn, delete_value_fn,
262 splay_tree_xmalloc_allocate, splay_tree_xmalloc_deallocate, 0));
263}
264
265
266/* Allocate a new splay tree, using COMPARE_FN to compare nodes,
267 DELETE_KEY_FN to deallocate keys, and DELETE_VALUE_FN to deallocate
268 values. */
269
270splay_tree
271splay_tree_new_with_allocator (compare_fn, delete_key_fn, delete_value_fn,
272 allocate_fn, deallocate_fn, allocate_data)
273 splay_tree_compare_fn compare_fn;
274 splay_tree_delete_key_fn delete_key_fn;
275 splay_tree_delete_value_fn delete_value_fn;
276 splay_tree_allocate_fn allocate_fn;
277 splay_tree_deallocate_fn deallocate_fn;
278 void *allocate_data;
279{
280 splay_tree sp = (splay_tree) (*allocate_fn) (sizeof (struct splay_tree_s),
281 allocate_data);
ed87f9c8
MM
282 sp->root = 0;
283 sp->comp = compare_fn;
284 sp->delete_key = delete_key_fn;
285 sp->delete_value = delete_value_fn;
00c2f96f
JB
286 sp->allocate = allocate_fn;
287 sp->deallocate = deallocate_fn;
288 sp->allocate_data = allocate_data;
ed87f9c8
MM
289
290 return sp;
291}
292
293/* Deallocate SP. */
294
295void
296splay_tree_delete (sp)
297 splay_tree sp;
298{
299 splay_tree_delete_helper (sp, sp->root);
00c2f96f 300 (*sp->deallocate) ((char*) sp, sp->allocate_data);
ed87f9c8
MM
301}
302
303/* Insert a new node (associating KEY with DATA) into SP. If a
304 previous node with the indicated KEY exists, its data is replaced
d080bbfa 305 with the new value. Returns the new node. */
ed87f9c8 306
d080bbfa 307splay_tree_node
ed87f9c8
MM
308splay_tree_insert (sp, key, value)
309 splay_tree sp;
310 splay_tree_key key;
311 splay_tree_value value;
312{
652374d3 313 int comparison = 0;
ed87f9c8
MM
314
315 splay_tree_splay (sp, key);
316
317 if (sp->root)
318 comparison = (*sp->comp)(sp->root->key, key);
319
320 if (sp->root && comparison == 0)
321 {
322 /* If the root of the tree already has the indicated KEY, just
323 replace the value with VALUE. */
324 if (sp->delete_value)
325 (*sp->delete_value)(sp->root->value);
326 sp->root->value = value;
327 }
328 else
329 {
330 /* Create a new node, and insert it at the root. */
331 splay_tree_node node;
332
00c2f96f
JB
333 node = ((splay_tree_node)
334 (*sp->allocate) (sizeof (struct splay_tree_node_s),
335 sp->allocate_data));
ed87f9c8
MM
336 node->key = key;
337 node->value = value;
338
339 if (!sp->root)
340 node->left = node->right = 0;
341 else if (comparison < 0)
342 {
343 node->left = sp->root;
344 node->right = node->left->right;
345 node->left->right = 0;
346 }
347 else
348 {
349 node->right = sp->root;
350 node->left = node->right->left;
351 node->right->left = 0;
352 }
353
f15b9af9
MM
354 sp->root = node;
355 }
d080bbfa
MM
356
357 return sp->root;
ed87f9c8
MM
358}
359
dc17cc7b
RH
360/* Remove KEY from SP. It is not an error if it did not exist. */
361
362void
363splay_tree_remove (sp, key)
364 splay_tree sp;
365 splay_tree_key key;
366{
367 splay_tree_splay (sp, key);
368
369 if (sp->root && (*sp->comp) (sp->root->key, key) == 0)
370 {
371 splay_tree_node left, right;
372
373 left = sp->root->left;
374 right = sp->root->right;
375
376 /* Delete the root node itself. */
377 if (sp->delete_value)
378 (*sp->delete_value) (sp->root->value);
00c2f96f 379 (*sp->deallocate) (sp->root, sp->allocate_data);
dc17cc7b
RH
380
381 /* One of the children is now the root. Doesn't matter much
382 which, so long as we preserve the properties of the tree. */
383 if (left)
384 {
385 sp->root = left;
386
387 /* If there was a right child as well, hang it off the
388 right-most leaf of the left child. */
389 if (right)
390 {
391 while (left->right)
392 left = left->right;
393 left->right = right;
394 }
395 }
396 else
397 sp->root = right;
398 }
399}
400
ed87f9c8
MM
401/* Lookup KEY in SP, returning VALUE if present, and NULL
402 otherwise. */
403
404splay_tree_node
405splay_tree_lookup (sp, key)
406 splay_tree sp;
407 splay_tree_key key;
408{
409 splay_tree_splay (sp, key);
410
411 if (sp->root && (*sp->comp)(sp->root->key, key) == 0)
412 return sp->root;
413 else
414 return 0;
415}
416
5cdba4ff
MM
417/* Return the node in SP with the greatest key. */
418
419splay_tree_node
420splay_tree_max (sp)
421 splay_tree sp;
422{
423 splay_tree_node n = sp->root;
424
425 if (!n)
426 return NULL;
427
428 while (n->right)
429 n = n->right;
430
431 return n;
432}
433
434/* Return the node in SP with the smallest key. */
435
436splay_tree_node
437splay_tree_min (sp)
438 splay_tree sp;
439{
440 splay_tree_node n = sp->root;
441
442 if (!n)
443 return NULL;
444
445 while (n->left)
446 n = n->left;
447
448 return n;
449}
450
2c9f4db7
MM
451/* Return the immediate predecessor KEY, or NULL if there is no
452 predecessor. KEY need not be present in the tree. */
453
454splay_tree_node
455splay_tree_predecessor (sp, key)
456 splay_tree sp;
457 splay_tree_key key;
458{
459 int comparison;
460 splay_tree_node node;
461
462 /* If the tree is empty, there is certainly no predecessor. */
463 if (!sp->root)
464 return NULL;
465
466 /* Splay the tree around KEY. That will leave either the KEY
467 itself, its predecessor, or its successor at the root. */
468 splay_tree_splay (sp, key);
469 comparison = (*sp->comp)(sp->root->key, key);
470
471 /* If the predecessor is at the root, just return it. */
472 if (comparison < 0)
473 return sp->root;
474
8f17b5c5 475 /* Otherwise, find the leftmost element of the right subtree. */
2c9f4db7
MM
476 node = sp->root->left;
477 if (node)
478 while (node->right)
479 node = node->right;
480
481 return node;
482}
483
484/* Return the immediate successor KEY, or NULL if there is no
485 predecessor. KEY need not be present in the tree. */
486
487splay_tree_node
488splay_tree_successor (sp, key)
489 splay_tree sp;
490 splay_tree_key key;
491{
492 int comparison;
493 splay_tree_node node;
494
495 /* If the tree is empty, there is certainly no predecessor. */
496 if (!sp->root)
497 return NULL;
498
499 /* Splay the tree around KEY. That will leave either the KEY
500 itself, its predecessor, or its successor at the root. */
501 splay_tree_splay (sp, key);
502 comparison = (*sp->comp)(sp->root->key, key);
503
504 /* If the successor is at the root, just return it. */
505 if (comparison > 0)
506 return sp->root;
507
508 /* Otherwise, find the rightmost element of the left subtree. */
509 node = sp->root->right;
510 if (node)
511 while (node->left)
512 node = node->left;
513
514 return node;
515}
516
ed87f9c8
MM
517/* Call FN, passing it the DATA, for every node in SP, following an
518 in-order traversal. If FN every returns a non-zero value, the
519 iteration ceases immediately, and the value is returned.
520 Otherwise, this function returns 0. */
521
522int
523splay_tree_foreach (sp, fn, data)
524 splay_tree sp;
525 splay_tree_foreach_fn fn;
526 void *data;
527{
528 return splay_tree_foreach_helper (sp, sp->root, fn, data);
529}
30f72379
MM
530
531/* Splay-tree comparison function, treating the keys as ints. */
532
533int
534splay_tree_compare_ints (k1, k2)
535 splay_tree_key k1;
536 splay_tree_key k2;
537{
538 if ((int) k1 < (int) k2)
539 return -1;
540 else if ((int) k1 > (int) k2)
541 return 1;
542 else
543 return 0;
544}
ae7f7270
MM
545
546/* Splay-tree comparison function, treating the keys as pointers. */
547
548int
549splay_tree_compare_pointers (k1, k2)
550 splay_tree_key k1;
551 splay_tree_key k2;
552{
553 if ((char*) k1 < (char*) k2)
554 return -1;
555 else if ((char*) k1 > (char*) k2)
556 return 1;
557 else
558 return 0;
559}