]> git.ipfire.org Git - thirdparty/gcc.git/blame - libphobos/libdruntime/core/lifetime.d
reorg: Change return type of predicate functions from int to bool
[thirdparty/gcc.git] / libphobos / libdruntime / core / lifetime.d
CommitLineData
5fee5ec3
IB
1module core.lifetime;
2
3import core.internal.attributes : betterC;
4
5// emplace
6/**
7Given a pointer `chunk` to uninitialized memory (but already typed
8as `T`), constructs an object of non-`class` type `T` at that
9address. If `T` is a class, initializes the class reference to null.
10Returns: A pointer to the newly constructed object (which is the same
11as `chunk`).
12 */
13T* emplace(T)(T* chunk) @safe pure nothrow
14{
15 import core.internal.lifetime : emplaceRef;
16
17 emplaceRef!T(*chunk);
18 return chunk;
19}
20
21///
22@betterC
23@system unittest
24{
25 static struct S
26 {
27 int i = 42;
28 }
29 S[2] s2 = void;
30 emplace(&s2);
31 assert(s2[0].i == 42 && s2[1].i == 42);
32}
33
34///
35@system unittest
36{
37 interface I {}
38 class K : I {}
39
40 K k = void;
41 emplace(&k);
42 assert(k is null);
43
44 I i = void;
45 emplace(&i);
46 assert(i is null);
47}
48
49/**
50Given a pointer `chunk` to uninitialized memory (but already typed
51as a non-class type `T`), constructs an object of type `T` at
52that address from arguments `args`. If `T` is a class, initializes
53the class reference to `args[0]`.
54This function can be `@trusted` if the corresponding constructor of
55`T` is `@safe`.
56Returns: A pointer to the newly constructed object (which is the same
57as `chunk`).
58 */
59T* emplace(T, Args...)(T* chunk, auto ref Args args)
60 if (is(T == struct) || Args.length == 1)
61{
62 import core.internal.lifetime : emplaceRef;
63
64 emplaceRef!T(*chunk, forward!args);
65 return chunk;
66}
67
68///
69@betterC
70@system unittest
71{
72 int a;
73 int b = 42;
74 assert(*emplace!int(&a, b) == 42);
75}
76
77@betterC
78@system unittest
79{
80 shared int i;
81 emplace(&i, 42);
82 assert(i == 42);
83}
84
85/**
86Given a raw memory area `chunk` (but already typed as a class type `T`),
87constructs an object of `class` type `T` at that address. The constructor
88is passed the arguments `Args`.
89If `T` is an inner class whose `outer` field can be used to access an instance
90of the enclosing class, then `Args` must not be empty, and the first member of it
91must be a valid initializer for that `outer` field. Correct initialization of
92this field is essential to access members of the outer class inside `T` methods.
93Note:
94This function is `@safe` if the corresponding constructor of `T` is `@safe`.
95Returns: The newly constructed object.
96 */
97T emplace(T, Args...)(T chunk, auto ref Args args)
98 if (is(T == class))
99{
100 import core.internal.traits : isInnerClass;
101
102 static assert(!__traits(isAbstractClass, T), T.stringof ~
103 " is abstract and it can't be emplaced");
104
105 // Initialize the object in its pre-ctor state
9c7d5e88
IB
106 const initializer = __traits(initSymbol, T);
107 (() @trusted { (cast(void*) chunk)[0 .. initializer.length] = initializer[]; })();
5fee5ec3
IB
108
109 static if (isInnerClass!T)
110 {
111 static assert(Args.length > 0,
112 "Initializing an inner class requires a pointer to the outer class");
113 static assert(is(Args[0] : typeof(T.outer)),
114 "The first argument must be a pointer to the outer class");
115
116 chunk.outer = args[0];
117 alias args1 = args[1..$];
118 }
119 else alias args1 = args;
120
121 // Call the ctor if any
122 static if (is(typeof(chunk.__ctor(forward!args1))))
123 {
124 // T defines a genuine constructor accepting args
125 // Go the classic route: write .init first, then call ctor
126 chunk.__ctor(forward!args1);
127 }
128 else
129 {
130 static assert(args1.length == 0 && !is(typeof(&T.__ctor)),
131 "Don't know how to initialize an object of type "
132 ~ T.stringof ~ " with arguments " ~ typeof(args1).stringof);
133 }
134 return chunk;
135}
136
137///
138@safe unittest
139{
140 () @safe {
141 class SafeClass
142 {
143 int x;
144 @safe this(int x) { this.x = x; }
145 }
146
147 auto buf = new void[__traits(classInstanceSize, SafeClass)];
148 auto support = (() @trusted => cast(SafeClass)(buf.ptr))();
149 auto safeClass = emplace!SafeClass(support, 5);
150 assert(safeClass.x == 5);
151
152 class UnsafeClass
153 {
154 int x;
155 @system this(int x) { this.x = x; }
156 }
157
158 auto buf2 = new void[__traits(classInstanceSize, UnsafeClass)];
159 auto support2 = (() @trusted => cast(UnsafeClass)(buf2.ptr))();
160 static assert(!__traits(compiles, emplace!UnsafeClass(support2, 5)));
161 static assert(!__traits(compiles, emplace!UnsafeClass(buf2, 5)));
162 }();
163}
164
165@safe unittest
166{
167 class Outer
168 {
169 int i = 3;
170 class Inner
171 {
172 @safe auto getI() { return i; }
173 }
174 }
175 auto outerBuf = new void[__traits(classInstanceSize, Outer)];
176 auto outerSupport = (() @trusted => cast(Outer)(outerBuf.ptr))();
177
178 auto innerBuf = new void[__traits(classInstanceSize, Outer.Inner)];
179 auto innerSupport = (() @trusted => cast(Outer.Inner)(innerBuf.ptr))();
180
181 auto inner = innerSupport.emplace!(Outer.Inner)(outerSupport.emplace!Outer);
182 assert(inner.getI == 3);
183}
184
185/**
186Given a raw memory area `chunk`, constructs an object of `class` type `T` at
187that address. The constructor is passed the arguments `Args`.
188If `T` is an inner class whose `outer` field can be used to access an instance
189of the enclosing class, then `Args` must not be empty, and the first member of it
190must be a valid initializer for that `outer` field. Correct initialization of
191this field is essential to access members of the outer class inside `T` methods.
192Preconditions:
193`chunk` must be at least as large as `T` needs and should have an alignment
194multiple of `T`'s alignment. (The size of a `class` instance is obtained by using
195$(D __traits(classInstanceSize, T))).
196Note:
197This function can be `@trusted` if the corresponding constructor of `T` is `@safe`.
198Returns: The newly constructed object.
199 */
200T emplace(T, Args...)(void[] chunk, auto ref Args args)
201 if (is(T == class))
202{
5fee5ec3
IB
203 enum classSize = __traits(classInstanceSize, T);
204 assert(chunk.length >= classSize, "chunk size too small.");
205
5eb9927a 206 enum alignment = __traits(classInstanceAlignment, T);
5fee5ec3
IB
207 assert((cast(size_t) chunk.ptr) % alignment == 0, "chunk is not aligned.");
208
209 return emplace!T(cast(T)(chunk.ptr), forward!args);
210}
211
212///
213@system unittest
214{
215 static class C
216 {
217 int i;
218 this(int i){this.i = i;}
219 }
220 auto buf = new void[__traits(classInstanceSize, C)];
221 auto c = emplace!C(buf, 5);
222 assert(c.i == 5);
223}
224
9c7d5e88
IB
225///
226@betterC
227@nogc pure nothrow @system unittest
228{
229 // works with -betterC too:
230
231 static extern (C++) class C
232 {
233 @nogc pure nothrow @safe:
234 int i = 3;
235 this(int i)
236 {
237 assert(this.i == 3);
238 this.i = i;
239 }
240 int virtualGetI() { return i; }
241 }
242
5eb9927a 243 align(__traits(classInstanceAlignment, C)) byte[__traits(classInstanceSize, C)] buffer;
9c7d5e88
IB
244 C c = emplace!C(buffer[], 42);
245 assert(c.virtualGetI() == 42);
246}
247
5fee5ec3
IB
248@system unittest
249{
250 class Outer
251 {
252 int i = 3;
253 class Inner
254 {
255 auto getI() { return i; }
256 }
257 }
258 auto outerBuf = new void[__traits(classInstanceSize, Outer)];
259 auto innerBuf = new void[__traits(classInstanceSize, Outer.Inner)];
260 auto inner = innerBuf.emplace!(Outer.Inner)(outerBuf.emplace!Outer);
261 assert(inner.getI == 3);
262}
263
264@nogc pure nothrow @safe unittest
265{
266 static class __conv_EmplaceTestClass
267 {
268 @nogc @safe pure nothrow:
269 int i = 3;
270 this(int i)
271 {
272 assert(this.i == 3);
273 this.i = 10 + i;
274 }
275 this(ref int i)
276 {
277 assert(this.i == 3);
278 this.i = 20 + i;
279 }
280 this(int i, ref int j)
281 {
282 assert(this.i == 3 && i == 5 && j == 6);
283 this.i = i;
284 ++j;
285 }
286 }
287
288 int var = 6;
5eb9927a
IB
289 align(__traits(classInstanceAlignment, __conv_EmplaceTestClass))
290 ubyte[__traits(classInstanceSize, __conv_EmplaceTestClass)] buf;
5fee5ec3
IB
291 auto support = (() @trusted => cast(__conv_EmplaceTestClass)(buf.ptr))();
292
293 auto fromRval = emplace!__conv_EmplaceTestClass(support, 1);
294 assert(fromRval.i == 11);
295
296 auto fromLval = emplace!__conv_EmplaceTestClass(support, var);
297 assert(fromLval.i == 26);
298
299 auto k = emplace!__conv_EmplaceTestClass(support, 5, var);
300 assert(k.i == 5);
301 assert(var == 7);
302}
303
304/**
305Given a raw memory area `chunk`, constructs an object of non-$(D
306class) type `T` at that address. The constructor is passed the
307arguments `args`, if any.
308Preconditions:
309`chunk` must be at least as large
310as `T` needs and should have an alignment multiple of `T`'s
311alignment.
312Note:
313This function can be `@trusted` if the corresponding constructor of
314`T` is `@safe`.
315Returns: A pointer to the newly constructed object.
316 */
317T* emplace(T, Args...)(void[] chunk, auto ref Args args)
318 if (!is(T == class))
319{
320 import core.internal.traits : Unqual;
321 import core.internal.lifetime : emplaceRef;
322
323 assert(chunk.length >= T.sizeof, "chunk size too small.");
324 assert((cast(size_t) chunk.ptr) % T.alignof == 0, "emplace: Chunk is not aligned.");
325
326 emplaceRef!(T, Unqual!T)(*cast(Unqual!T*) chunk.ptr, forward!args);
327 return cast(T*) chunk.ptr;
328}
329
330///
331@betterC
332@system unittest
333{
334 struct S
335 {
336 int a, b;
337 }
338 void[S.sizeof] buf = void;
339 S s;
340 s.a = 42;
341 s.b = 43;
342 auto s1 = emplace!S(buf, s);
343 assert(s1.a == 42 && s1.b == 43);
344}
345
346// Bulk of emplace unittests starts here
347
348@betterC
349@system unittest /* unions */
350{
351 static union U
352 {
353 string a;
354 int b;
355 struct
356 {
357 long c;
358 int[] d;
359 }
360 }
361 U u1 = void;
362 U u2 = { "hello" };
363 emplace(&u1, u2);
364 assert(u1.a == "hello");
365}
366
367@system unittest // bugzilla 15772
368{
369 abstract class Foo {}
370 class Bar: Foo {}
371 void[] memory;
372 // test in emplaceInitializer
373 static assert(!is(typeof(emplace!Foo(cast(Foo*) memory.ptr))));
374 static assert( is(typeof(emplace!Bar(cast(Bar*) memory.ptr))));
375 // test in the emplace overload that takes void[]
376 static assert(!is(typeof(emplace!Foo(memory))));
377 static assert( is(typeof(emplace!Bar(memory))));
378}
379
380@betterC
381@system unittest
382{
383 struct S { @disable this(); }
384 S s = void;
385 static assert(!__traits(compiles, emplace(&s)));
386 emplace(&s, S.init);
387}
388
389@betterC
390@system unittest
391{
392 struct S1
393 {}
394
395 struct S2
396 {
397 void opAssign(S2);
398 }
399
400 S1 s1 = void;
401 S2 s2 = void;
402 S1[2] as1 = void;
403 S2[2] as2 = void;
404 emplace(&s1);
405 emplace(&s2);
406 emplace(&as1);
407 emplace(&as2);
408}
409
410@system unittest
411{
412 static struct S1
413 {
414 this(this) @disable;
415 }
416 static struct S2
417 {
418 this() @disable;
419 }
420 S1[2] ss1 = void;
421 S2[2] ss2 = void;
422 emplace(&ss1);
423 static assert(!__traits(compiles, emplace(&ss2)));
424 S1 s1 = S1.init;
425 S2 s2 = S2.init;
426 static assert(!__traits(compiles, emplace(&ss1, s1)));
427 emplace(&ss2, s2);
428}
429
430@system unittest
431{
432 struct S
433 {
434 immutable int i;
435 }
436 S s = void;
437 S[2] ss1 = void;
438 S[2] ss2 = void;
439 emplace(&s, 5);
440 assert(s.i == 5);
441 emplace(&ss1, s);
442 assert(ss1[0].i == 5 && ss1[1].i == 5);
443 emplace(&ss2, ss1);
444 assert(ss2 == ss1);
445}
446
447//Start testing emplace-args here
448
449@system unittest
450{
451 interface I {}
452 class K : I {}
453
454 K k = null, k2 = new K;
455 assert(k !is k2);
456 emplace!K(&k, k2);
457 assert(k is k2);
458
459 I i = null;
460 assert(i !is k);
461 emplace!I(&i, k);
462 assert(i is k);
463}
464
465@system unittest
466{
467 static struct S
468 {
469 int i = 5;
470 void opAssign(S){assert(0);}
471 }
472 S[2] sa = void;
473 S[2] sb;
474 emplace(&sa, sb);
475 assert(sa[0].i == 5 && sa[1].i == 5);
476}
477
478//Start testing emplace-struct here
479
480// Test constructor branch
481@betterC
482@system unittest
483{
484 struct S
485 {
486 double x = 5, y = 6;
487 this(int a, int b)
488 {
489 assert(x == 5 && y == 6);
490 x = a;
491 y = b;
492 }
493 }
494
495 void[S.sizeof] s1 = void;
496 auto s2 = S(42, 43);
497 assert(*emplace!S(cast(S*) s1.ptr, s2) == s2);
498 assert(*emplace!S(cast(S*) s1, 44, 45) == S(44, 45));
499}
500
501@system unittest
502{
503 static struct __conv_EmplaceTest
504 {
505 int i = 3;
506 this(int i)
507 {
508 assert(this.i == 3 && i == 5);
509 this.i = i;
510 }
511 this(int i, ref int j)
512 {
513 assert(i == 5 && j == 6);
514 this.i = i;
515 ++j;
516 }
517
518 @disable:
519 this();
520 this(this);
521 void opAssign();
522 }
523
524 __conv_EmplaceTest k = void;
525 emplace(&k, 5);
526 assert(k.i == 5);
527
528 int var = 6;
529 __conv_EmplaceTest x = void;
530 emplace(&x, 5, var);
531 assert(x.i == 5);
532 assert(var == 7);
533
534 var = 6;
535 auto z = emplace!__conv_EmplaceTest(new void[__conv_EmplaceTest.sizeof], 5, var);
536 assert(z.i == 5);
537 assert(var == 7);
538}
539
540// Test matching fields branch
541@betterC
542@system unittest
543{
544 struct S { uint n; }
545 S s;
546 emplace!S(&s, 2U);
547 assert(s.n == 2);
548}
549
550@betterC
551@safe unittest
552{
553 struct S { int a, b; this(int){} }
554 S s;
555 static assert(!__traits(compiles, emplace!S(&s, 2, 3)));
556}
557
558@betterC
559@system unittest
560{
561 struct S { int a, b = 7; }
562 S s1 = void, s2 = void;
563
564 emplace!S(&s1, 2);
565 assert(s1.a == 2 && s1.b == 7);
566
567 emplace!S(&s2, 2, 3);
568 assert(s2.a == 2 && s2.b == 3);
569}
570
571//opAssign
572@betterC
573@system unittest
574{
575 static struct S
576 {
577 int i = 5;
578 void opAssign(int){assert(0);}
579 void opAssign(S){assert(0);}
580 }
581 S sa1 = void;
582 S sa2 = void;
583 S sb1 = S(1);
584 emplace(&sa1, sb1);
585 emplace(&sa2, 2);
586 assert(sa1.i == 1);
587 assert(sa2.i == 2);
588}
589
590//postblit precedence
591@betterC
592@system unittest
593{
594 //Works, but breaks in "-w -O" because of @@@9332@@@.
595 //Uncomment test when 9332 is fixed.
596 static struct S
597 {
598 int i;
599
600 this(S other){assert(false);}
601 this(int i){this.i = i;}
602 this(this){}
603 }
604 S a = void;
605 assert(is(typeof({S b = a;}))); //Postblit
606 assert(is(typeof({S b = S(a);}))); //Constructor
607 auto b = S(5);
608 emplace(&a, b);
609 assert(a.i == 5);
610
611 static struct S2
612 {
613 int* p;
614 this(const S2){}
615 }
616 static assert(!is(immutable S2 : S2));
617 S2 s2 = void;
618 immutable is2 = (immutable S2).init;
619 emplace(&s2, is2);
620}
621
622//nested structs and postblit
623@system unittest
624{
625 static struct S
626 {
627 int* p;
628 this(int i){p = [i].ptr;}
629 this(this)
630 {
631 if (p)
632 p = [*p].ptr;
633 }
634 }
635 static struct SS
636 {
637 S s;
638 void opAssign(const SS)
639 {
640 assert(0);
641 }
642 }
643 SS ssa = void;
644 SS ssb = SS(S(5));
645 emplace(&ssa, ssb);
646 assert(*ssa.s.p == 5);
647 assert(ssa.s.p != ssb.s.p);
648}
649
650//disabled postblit
651@betterC
652@system unittest
653{
654 static struct S1
655 {
656 int i;
657 @disable this(this);
658 }
659 S1 s1 = void;
660 emplace(&s1, 1);
661 assert(s1.i == 1);
662 static assert(!__traits(compiles, emplace(&s1, s1))); // copy disabled
663 static assert(__traits(compiles, emplace(&s1, move(s1)))); // move not affected
664
665 static struct S2
666 {
667 int i;
668 @disable this(this);
669 this(ref S2){}
670 }
671 S2 s2 = void;
672 //static assert(!__traits(compiles, emplace(&s2, 1)));
673 emplace(&s2, S2.init);
674
675 static struct SS1
676 {
677 S1 s;
678 }
679 SS1 ss1 = void;
680 emplace(&ss1);
681 static assert(!__traits(compiles, emplace(&ss1, ss1))); // copying disabled
682 static assert(__traits(compiles, emplace(&ss1, move(ss1)))); // move unaffected
683
684 static struct SS2
685 {
686 S2 s;
687 }
688 SS2 ss2 = void;
689 emplace(&ss2);
690 static assert(!__traits(compiles, emplace(&ss2, ss2))); // copying disabled
691 static assert(__traits(compiles, emplace(&ss2, SS2.init))); // move is OK
692
693
694 // SS1 sss1 = s1; //This doesn't compile
695 // SS1 sss1 = SS1(s1); //This doesn't compile
696 // So emplace shouldn't compile either
697 static assert(!__traits(compiles, emplace(&sss1, s1)));
698 static assert(!__traits(compiles, emplace(&sss2, s2)));
699}
700
701//Imutability
702@betterC
703@system unittest
704{
705 //Castable immutability
706 {
707 static struct S1
708 {
709 int i;
710 }
711 static assert(is( immutable(S1) : S1));
712 S1 sa = void;
713 auto sb = immutable(S1)(5);
714 emplace(&sa, sb);
715 assert(sa.i == 5);
716 }
717 //Un-castable immutability
718 {
719 static struct S2
720 {
721 int* p;
722 }
723 static assert(!is(immutable(S2) : S2));
724 S2 sa = void;
725 auto sb = immutable(S2)(null);
726 assert(!__traits(compiles, emplace(&sa, sb)));
727 }
728}
729
730@betterC
731@system unittest
732{
733 static struct S
734 {
735 immutable int i;
736 immutable(int)* j;
737 }
738 S s = void;
739 emplace(&s, 1, null);
740 emplace(&s, 2, &s.i);
741 assert(s is S(2, &s.i));
742}
743
744//Context pointer
745@system unittest
746{
747 int i = 0;
748 {
749 struct S1
750 {
751 void foo(){++i;}
752 }
753 S1 sa = void;
754 S1 sb;
755 emplace(&sa, sb);
756 sa.foo();
757 assert(i == 1);
758 }
759 {
760 struct S2
761 {
762 void foo(){++i;}
763 this(this){}
764 }
765 S2 sa = void;
766 S2 sb;
767 emplace(&sa, sb);
768 sa.foo();
769 assert(i == 2);
770 }
771}
772
773//Alias this
774@betterC
775@system unittest
776{
777 static struct S
778 {
779 int i;
780 }
781 //By Ref
782 {
783 static struct SS1
784 {
785 int j;
786 S s;
787 alias s this;
788 }
789 S s = void;
790 SS1 ss = SS1(1, S(2));
791 emplace(&s, ss);
792 assert(s.i == 2);
793 }
794 //By Value
795 {
796 static struct SS2
797 {
798 int j;
799 S s;
800 S foo() @property{return s;}
801 alias foo this;
802 }
803 S s = void;
804 SS2 ss = SS2(1, S(2));
805 emplace(&s, ss);
806 assert(s.i == 2);
807 }
808}
809
810version (CoreUnittest)
811{
812 //Ambiguity
813 private struct __std_conv_S
814 {
815 int i;
816 this(__std_conv_SS ss) {assert(0);}
817 static opCall(__std_conv_SS ss)
818 {
819 __std_conv_S s; s.i = ss.j;
820 return s;
821 }
822 }
823 private struct __std_conv_SS
824 {
825 int j;
826 __std_conv_S s;
827 ref __std_conv_S foo() return @property {s.i = j; return s;}
828 alias foo this;
829 }
830}
831
832@system unittest
833{
834 static assert(is(__std_conv_SS : __std_conv_S));
835 __std_conv_S s = void;
836 __std_conv_SS ss = __std_conv_SS(1);
837
838 __std_conv_S sTest1 = ss; //this calls "SS alias this" (and not "S.this(SS)")
839 emplace(&s, ss); //"alias this" should take precedence in emplace over "opCall"
840 assert(s.i == 1);
841}
842
843//Nested classes
844@system unittest
845{
846 class A{}
847 static struct S
848 {
849 A a;
850 }
851 S s1 = void;
852 S s2 = S(new A);
853 emplace(&s1, s2);
854 assert(s1.a is s2.a);
855}
856
857//safety & nothrow & CTFE
858@betterC
859@system unittest
860{
861 //emplace should be safe for anything with no elaborate opassign
862 static struct S1
863 {
864 int i;
865 }
866 static struct S2
867 {
868 int i;
869 this(int j)@safe nothrow{i = j;}
870 }
871
872 int i;
873 S1 s1 = void;
874 S2 s2 = void;
875
876 auto pi = &i;
877 auto ps1 = &s1;
878 auto ps2 = &s2;
879
880 void foo() @safe nothrow
881 {
882 emplace(pi);
883 emplace(pi, 5);
884 emplace(ps1);
885 emplace(ps1, 5);
886 emplace(ps1, S1.init);
887 emplace(ps2);
888 emplace(ps2, 5);
889 emplace(ps2, S2.init);
890 }
891 foo();
892
893 T bar(T)() @property
894 {
895 T t/+ = void+/; //CTFE void illegal
896 emplace(&t, 5);
897 return t;
898 }
899 // CTFE
900 enum a = bar!int;
901 static assert(a == 5);
902 enum b = bar!S1;
903 static assert(b.i == 5);
904 enum c = bar!S2;
905 static assert(c.i == 5);
906 // runtime
907 auto aa = bar!int;
908 assert(aa == 5);
909 auto bb = bar!S1;
910 assert(bb.i == 5);
911 auto cc = bar!S2;
912 assert(cc.i == 5);
913}
914
915@betterC
916@system unittest
917{
918 struct S
919 {
920 int[2] get(){return [1, 2];}
921 alias get this;
922 }
923 struct SS
924 {
925 int[2] ii;
926 }
927 struct ISS
928 {
929 int[2] ii;
930 }
931 S s;
932 SS ss = void;
933 ISS iss = void;
934 emplace(&ss, s);
935 emplace(&iss, s);
936 assert(ss.ii == [1, 2]);
937 assert(iss.ii == [1, 2]);
938}
939
940//disable opAssign
941@betterC
942@system unittest
943{
944 static struct S
945 {
946 @disable void opAssign(S);
947 }
948 S s;
949 emplace(&s, S.init);
950}
951
952//opCall
953@betterC
954@system unittest
955{
956 int i;
957 //Without constructor
958 {
959 static struct S1
960 {
961 int i;
962 static S1 opCall(int*){assert(0);}
963 }
964 S1 s = void;
965 static assert(!__traits(compiles, emplace(&s, 1)));
966 }
967 //With constructor
968 {
969 static struct S2
970 {
971 int i = 0;
972 static S2 opCall(int*){assert(0);}
973 static S2 opCall(int){assert(0);}
974 this(int i){this.i = i;}
975 }
976 S2 s = void;
977 emplace(&s, 1);
978 assert(s.i == 1);
979 }
980 //With postblit ambiguity
981 {
982 static struct S3
983 {
984 int i = 0;
985 static S3 opCall(ref S3){assert(0);}
986 }
987 S3 s = void;
988 emplace(&s, S3.init);
989 }
990}
991
992//static arrays
993@system unittest
994{
995 static struct S
996 {
997 int[2] ii;
998 }
999 static struct IS
1000 {
1001 immutable int[2] ii;
1002 }
1003 int[2] ii;
1004 S s = void;
1005 IS ims = void;
1006 ubyte ub = 2;
1007 emplace(&s, ub);
1008 emplace(&s, ii);
1009 emplace(&ims, ub);
1010 emplace(&ims, ii);
1011 uint[2] uu;
1012 static assert(!__traits(compiles, {S ss = S(uu);}));
1013 static assert(!__traits(compiles, emplace(&s, uu)));
1014}
1015
1016@system unittest
1017{
1018 int[2] sii;
1019 int[2] sii2;
1020 uint[2] uii;
1021 uint[2] uii2;
1022 emplace(&sii, 1);
1023 emplace(&sii, 1U);
1024 emplace(&uii, 1);
1025 emplace(&uii, 1U);
1026 emplace(&sii, sii2);
1027 //emplace(&sii, uii2); //Sorry, this implementation doesn't know how to...
1028 //emplace(&uii, sii2); //Sorry, this implementation doesn't know how to...
1029 emplace(&uii, uii2);
1030 emplace(&sii, sii2[]);
1031 //emplace(&sii, uii2[]); //Sorry, this implementation doesn't know how to...
1032 //emplace(&uii, sii2[]); //Sorry, this implementation doesn't know how to...
1033 emplace(&uii, uii2[]);
1034}
1035
1036@system unittest
1037{
1038 bool allowDestruction = false;
1039 struct S
1040 {
1041 int i;
1042 this(this){}
1043 ~this(){assert(allowDestruction);}
1044 }
1045 S s = S(1);
1046 S[2] ss1 = void;
1047 S[2] ss2 = void;
1048 S[2] ss3 = void;
1049 emplace(&ss1, s);
1050 emplace(&ss2, ss1);
1051 emplace(&ss3, ss2[]);
1052 assert(ss1[1] == s);
1053 assert(ss2[1] == s);
1054 assert(ss3[1] == s);
1055 allowDestruction = true;
1056}
1057
1058@system unittest
1059{
1060 //Checks postblit, construction, and context pointer
1061 int count = 0;
1062 struct S
1063 {
1064 this(this)
1065 {
1066 ++count;
1067 }
1068 ~this()
1069 {
1070 --count;
1071 }
1072 }
1073
1074 S s;
1075 {
1076 S[4] ss = void;
1077 emplace(&ss, s);
1078 assert(count == 4);
1079 }
1080 assert(count == 0);
1081}
1082
1083@system unittest
1084{
1085 struct S
1086 {
1087 int i;
1088 }
1089 S s;
1090 S[2][2][2] sss = void;
1091 emplace(&sss, s);
1092}
1093
1094@system unittest //Constness
1095{
1096 import core.internal.lifetime : emplaceRef;
1097
1098 int a = void;
1099 emplaceRef!(const int)(a, 5);
1100
1101 immutable i = 5;
1102 const(int)* p = void;
1103 emplaceRef!(const int*)(p, &i);
1104
1105 struct S
1106 {
1107 int* p;
1108 }
1109 alias IS = immutable(S);
1110 S s = void;
1111 emplaceRef!IS(s, IS());
1112 S[2] ss = void;
1113 emplaceRef!(IS[2])(ss, IS());
1114
1115 IS[2] iss = IS.init;
1116 emplaceRef!(IS[2])(ss, iss);
1117 emplaceRef!(IS[2])(ss, iss[]);
1118}
1119
1120@betterC
1121pure nothrow @safe @nogc unittest
1122{
1123 import core.internal.lifetime : emplaceRef;
1124
1125 int i;
1126 emplaceRef(i);
1127 emplaceRef!int(i);
1128 emplaceRef(i, 5);
1129 emplaceRef!int(i, 5);
1130}
1131
1132// Test attribute propagation for UDTs
1133pure nothrow @safe /* @nogc */ unittest
1134{
1135 import core.internal.lifetime : emplaceRef;
1136
1137 static struct Safe
1138 {
1139 this(this) pure nothrow @safe @nogc {}
1140 }
1141
1142 Safe safe = void;
1143 emplaceRef(safe, Safe());
1144
1145 Safe[1] safeArr = [Safe()];
1146 Safe[1] uninitializedSafeArr = void;
1147 emplaceRef(uninitializedSafeArr, safe);
1148 emplaceRef(uninitializedSafeArr, safeArr);
1149
1150 static struct Unsafe
1151 {
1152 this(this) @system {}
1153 }
1154
1155 Unsafe unsafe = void;
1156 static assert(!__traits(compiles, emplaceRef(unsafe, unsafe)));
1157
1158 Unsafe[1] unsafeArr = [Unsafe()];
1159 Unsafe[1] uninitializedUnsafeArr = void;
1160 static assert(!__traits(compiles, emplaceRef(uninitializedUnsafeArr, unsafe)));
1161 static assert(!__traits(compiles, emplaceRef(uninitializedUnsafeArr, unsafeArr)));
1162}
1163
1164@betterC
1165@system unittest
1166{
1167 // Issue 15313
1168 static struct Node
1169 {
1170 int payload;
1171 Node* next;
1172 uint refs;
1173 }
1174
1175 import core.stdc.stdlib : malloc;
1176 void[] buf = malloc(Node.sizeof)[0 .. Node.sizeof];
1177
1178 const Node* n = emplace!(const Node)(buf, 42, null, 10);
1179 assert(n.payload == 42);
1180 assert(n.next == null);
1181 assert(n.refs == 10);
1182}
1183
1184@system unittest
1185{
1186 class A
1187 {
1188 int x = 5;
1189 int y = 42;
1190 this(int z)
1191 {
1192 assert(x == 5 && y == 42);
1193 x = y = z;
1194 }
1195 }
1196 void[] buf;
1197
5eb9927a 1198 static align(__traits(classInstanceAlignment, A)) byte[__traits(classInstanceSize, A)] sbuf;
5fee5ec3
IB
1199 buf = sbuf[];
1200 auto a = emplace!A(buf, 55);
1201 assert(a.x == 55 && a.y == 55);
1202
1203 // emplace in bigger buffer
1204 buf = new byte[](__traits(classInstanceSize, A) + 10);
1205 a = emplace!A(buf, 55);
1206 assert(a.x == 55 && a.y == 55);
1207
1208 // need ctor args
1209 static assert(!is(typeof(emplace!A(buf))));
1210}
1211
1212//constructor arguments forwarding
1213@betterC
1214@system unittest
1215{
1216 static struct S
1217 {
1218 this()(auto ref long arg)
1219 {
1220 // assert that arg is an lvalue
1221 static assert(__traits(isRef, arg));
1222 }
1223 this()(auto ref double arg)
1224 // assert that arg is an rvalue
1225 {
1226 static assert(!__traits(isRef, arg));
1227 }
1228 }
1229 S obj = void;
1230 long i;
1231 emplace(&obj, i); // lvalue
1232 emplace(&obj, 0.0); // rvalue
1233}
1234// Bulk of emplace unittests ends here
1235
1236/**
1237 * Emplaces a copy of the specified source value into uninitialized memory,
1238 * i.e., simulates `T target = source` copy-construction for cases where the
1239 * target memory is already allocated and to be initialized with a copy.
1240 *
1241 * Params:
1242 * source = value to be copied into target
1243 * target = uninitialized value to be initialized with a copy of source
1244 */
1245void copyEmplace(S, T)(ref S source, ref T target) @system
1246 if (is(immutable S == immutable T))
1247{
1248 import core.internal.traits : BaseElemOf, hasElaborateCopyConstructor, Unconst, Unqual;
1249
1250 // cannot have the following as simple template constraint due to nested-struct special case...
1251 static if (!__traits(compiles, (ref S src) { T tgt = src; }))
1252 {
1253 alias B = BaseElemOf!T;
1254 enum isNestedStruct = is(B == struct) && __traits(isNested, B);
1255 static assert(isNestedStruct, "cannot copy-construct " ~ T.stringof ~ " from " ~ S.stringof);
1256 }
1257
1258 void blit()
1259 {
1260 import core.stdc.string : memcpy;
1261 memcpy(cast(Unqual!(T)*) &target, cast(Unqual!(T)*) &source, T.sizeof);
1262 }
1263
1264 static if (is(T == struct))
1265 {
1266 static if (__traits(hasPostblit, T))
1267 {
1268 blit();
1269 (cast() target).__xpostblit();
1270 }
1271 else static if (__traits(hasCopyConstructor, T))
1272 {
31350635
IB
1273 // https://issues.dlang.org/show_bug.cgi?id=22766
1274 import core.internal.lifetime : emplaceInitializer;
1275 emplaceInitializer(*(cast(Unqual!T*)&target));
5fee5ec3
IB
1276 static if (__traits(isNested, T))
1277 {
1278 // copy context pointer
1279 *(cast(void**) &target.tupleof[$-1]) = cast(void*) source.tupleof[$-1];
1280 }
1281 target.__ctor(source); // invoke copy ctor
1282 }
1283 else
1284 {
1285 blit(); // no opAssign
1286 }
1287 }
1288 else static if (is(T == E[n], E, size_t n))
1289 {
1290 static if (hasElaborateCopyConstructor!E)
1291 {
1292 size_t i;
1293 try
1294 {
1295 for (i = 0; i < n; i++)
1296 copyEmplace(source[i], target[i]);
1297 }
1298 catch (Exception e)
1299 {
1300 // destroy, in reverse order, what we've constructed so far
1301 while (i--)
1302 destroy(*cast(Unconst!(E)*) &target[i]);
1303 throw e;
1304 }
1305 }
1306 else // trivial copy
1307 {
1308 blit(); // all elements at once
1309 }
1310 }
1311 else
1312 {
1313 *cast(Unconst!(T)*) &target = *cast(Unconst!(T)*) &source;
1314 }
1315}
1316
1317///
1318@betterC
1319@system pure nothrow @nogc unittest
1320{
1321 int source = 123;
1322 int target = void;
1323 copyEmplace(source, target);
1324 assert(target == 123);
1325}
1326
1327///
1328@betterC
1329@system pure nothrow @nogc unittest
1330{
1331 immutable int[1][1] source = [ [123] ];
1332 immutable int[1][1] target = void;
1333 copyEmplace(source, target);
1334 assert(target[0][0] == 123);
1335}
1336
1337///
1338@betterC
1339@system pure nothrow @nogc unittest
1340{
1341 struct S
1342 {
1343 int x;
1344 void opAssign(const scope ref S rhs) @safe pure nothrow @nogc
1345 {
1346 assert(0);
1347 }
1348 }
1349
1350 S source = S(42);
1351 S target = void;
1352 copyEmplace(source, target);
1353 assert(target.x == 42);
1354}
1355
1356// preserve shared-ness
1357@system pure nothrow unittest
1358{
1359 auto s = new Object();
1360 auto ss = new shared Object();
1361
1362 Object t;
1363 shared Object st;
1364
1365 copyEmplace(s, t);
1366 assert(t is s);
1367
1368 copyEmplace(ss, st);
1369 assert(st is ss);
1370
1371 static assert(!__traits(compiles, copyEmplace(s, st)));
1372 static assert(!__traits(compiles, copyEmplace(ss, t)));
1373}
1374
31350635
IB
1375// https://issues.dlang.org/show_bug.cgi?id=22766
1376@system pure nothrow @nogc unittest
1377{
1378 static struct S
1379 {
1380 @disable this();
1381 this(int) @safe pure nothrow @nogc{}
1382 this(ref const(S) other) @safe pure nothrow @nogc {}
1383 }
1384
1385 S s1 = S(1);
1386 S s2 = void;
1387 copyEmplace(s1, s2);
1388 assert(s2 == S(1));
1389}
1390
5fee5ec3
IB
1391version (DigitalMars) version (X86) version (Posix) version = DMD_X86_Posix;
1392
1393// don't violate immutability for reference types
1394@system pure nothrow unittest
1395{
1396 auto s = new Object();
1397 auto si = new immutable Object();
1398
1399 Object t;
1400 immutable Object ti;
1401
1402 copyEmplace(s, t);
1403 assert(t is s);
1404
1405 copyEmplace(si, ti);
1406 version (DMD_X86_Posix) { /* wrongly fails without -O */ } else
1407 assert(ti is si);
1408
1409 static assert(!__traits(compiles, copyEmplace(s, ti)));
1410 static assert(!__traits(compiles, copyEmplace(si, t)));
1411}
1412
1413version (CoreUnittest)
1414{
1415 private void testCopyEmplace(S, T)(const scope T* expected = null)
1416 {
1417 S source;
1418 T target = void;
1419 copyEmplace(source, target);
1420 if (expected)
1421 assert(target == *expected);
1422 else
1423 {
1424 T expectedCopy = source;
1425 assert(target == expectedCopy);
1426 }
1427 }
1428}
1429
1430// postblit
1431@system pure nothrow @nogc unittest
1432{
1433 static struct S
1434 {
1435 @safe pure nothrow @nogc:
1436 int x = 42;
1437 this(this) { x += 10; }
1438 }
1439
1440 testCopyEmplace!(S, S)();
1441 testCopyEmplace!(immutable S, S)();
1442 testCopyEmplace!(S, immutable S)();
1443 testCopyEmplace!(immutable S, immutable S)();
1444
1445 testCopyEmplace!(S[1], S[1])();
1446 testCopyEmplace!(immutable S[1], S[1])();
1447
1448 // copying to an immutable static array works, but `T expected = source`
1449 // wrongly ignores the postblit: https://issues.dlang.org/show_bug.cgi?id=8950
1450 immutable S[1] expectedImmutable = [S(52)];
1451 testCopyEmplace!(S[1], immutable S[1])(&expectedImmutable);
1452 testCopyEmplace!(immutable S[1], immutable S[1])(&expectedImmutable);
1453}
1454
1455// copy constructors
1456@system pure nothrow @nogc unittest
1457{
1458 static struct S
1459 {
1460 @safe pure nothrow @nogc:
1461 int x = 42;
1462 this(int x) { this.x = x; }
1463 this(const scope ref S rhs) { x = rhs.x + 10; }
1464 this(const scope ref S rhs) immutable { x = rhs.x + 20; }
1465 }
1466
1467 testCopyEmplace!(S, S)();
1468 testCopyEmplace!(immutable S, S)();
1469 testCopyEmplace!(S, immutable S)();
1470 testCopyEmplace!(immutable S, immutable S)();
1471
1472 // static arrays work, but `T expected = source` wrongly ignores copy ctors
1473 // https://issues.dlang.org/show_bug.cgi?id=20365
1474 S[1] expectedMutable = [S(52)];
1475 immutable S[1] expectedImmutable = [immutable S(62)];
1476 testCopyEmplace!(S[1], S[1])(&expectedMutable);
1477 testCopyEmplace!(immutable S[1], S[1])(&expectedMutable);
1478 testCopyEmplace!(S[1], immutable S[1])(&expectedImmutable);
1479 testCopyEmplace!(immutable S[1], immutable S[1])(&expectedImmutable);
1480}
1481
1482// copy constructor in nested struct
1483@system pure nothrow unittest
1484{
1485 int copies;
1486 struct S
1487 {
1488 @safe pure nothrow @nogc:
1489 size_t x = 42;
1490 this(size_t x) { this.x = x; }
1491 this(const scope ref S rhs)
1492 {
1493 assert(x == 42); // T.init
1494 x = rhs.x;
1495 ++copies;
1496 }
1497 }
1498
1499 {
1500 copies = 0;
1501 S source = S(123);
1502 immutable S target = void;
1503 copyEmplace(source, target);
1504 assert(target is source);
1505 assert(copies == 1);
1506 }
1507
1508 {
1509 copies = 0;
1510 immutable S[1] source = [immutable S(456)];
1511 S[1] target = void;
1512 copyEmplace(source, target);
1513 assert(target[0] is source[0]);
1514 assert(copies == 1);
1515 }
1516}
1517
1518// destruction of partially copied static array
1519@system unittest
1520{
1521 static struct S
1522 {
1523 __gshared int[] deletions;
1524 int x;
1525 this(this) { if (x == 5) throw new Exception(""); }
1526 ~this() { deletions ~= x; }
1527 }
1528
1529 alias T = immutable S[3][2];
1530 T source = [ [S(1), S(2), S(3)], [S(4), S(5), S(6)] ];
1531 T target = void;
1532 try
1533 {
1534 copyEmplace(source, target);
1535 assert(0);
1536 }
1537 catch (Exception)
1538 {
1539 static immutable expectedDeletions = [ 4, 3, 2, 1 ];
1540 version (DigitalMars)
1541 {
1542 assert(S.deletions == expectedDeletions ||
1543 S.deletions == [ 4 ]); // FIXME: happens with -O
1544 }
1545 else
1546 assert(S.deletions == expectedDeletions);
1547 }
1548}
1549
1550/**
1551Forwards function arguments while keeping `out`, `ref`, and `lazy` on
1552the parameters.
1553
1554Params:
1555 args = a parameter list or an $(REF AliasSeq,std,meta).
1556Returns:
1557 An `AliasSeq` of `args` with `out`, `ref`, and `lazy` saved.
1558*/
1559template forward(args...)
1560{
1561 import core.internal.traits : AliasSeq;
1562
b3f58f87 1563 template fwd(alias arg)
5fee5ec3 1564 {
5fee5ec3
IB
1565 // by ref || lazy || const/immutable
1566 static if (__traits(isRef, arg) ||
1567 __traits(isOut, arg) ||
1568 __traits(isLazy, arg) ||
1569 !is(typeof(move(arg))))
1570 alias fwd = arg;
1571 // (r)value
1572 else
b3f58f87 1573 @property auto fwd(){ pragma(inline, true); return move(arg); }
5fee5ec3 1574 }
b3f58f87
IB
1575
1576 alias Result = AliasSeq!();
1577 static foreach (arg; args)
1578 Result = AliasSeq!(Result, fwd!arg);
1579 static if (Result.length == 1)
1580 alias forward = Result[0];
5fee5ec3 1581 else
b3f58f87 1582 alias forward = Result;
5fee5ec3
IB
1583}
1584
1585///
1586@safe unittest
1587{
1588 class C
1589 {
1590 static int foo(int n) { return 1; }
1591 static int foo(ref int n) { return 2; }
1592 }
1593
1594 // with forward
1595 int bar()(auto ref int x) { return C.foo(forward!x); }
1596
1597 // without forward
1598 int baz()(auto ref int x) { return C.foo(x); }
1599
1600 int i;
1601 assert(bar(1) == 1);
1602 assert(bar(i) == 2);
1603
1604 assert(baz(1) == 2);
1605 assert(baz(i) == 2);
1606}
1607
1608///
1609@safe unittest
1610{
1611 void foo(int n, ref string s) { s = null; foreach (i; 0 .. n) s ~= "Hello"; }
1612
1613 // forwards all arguments which are bound to parameter tuple
1614 void bar(Args...)(auto ref Args args) { return foo(forward!args); }
1615
1616 // forwards all arguments with swapping order
1617 void baz(Args...)(auto ref Args args) { return foo(forward!args[$/2..$], forward!args[0..$/2]); }
1618
1619 string s;
1620 bar(1, s);
1621 assert(s == "Hello");
1622 baz(s, 2);
1623 assert(s == "HelloHello");
1624}
1625
1626@safe unittest
1627{
1628 auto foo(TL...)(auto ref TL args)
1629 {
1630 string result = "";
1631 foreach (i, _; args)
1632 {
1633 //pragma(msg, "[",i,"] ", __traits(isRef, args[i]) ? "L" : "R");
1634 result ~= __traits(isRef, args[i]) ? "L" : "R";
1635 }
1636 return result;
1637 }
1638
1639 string bar(TL...)(auto ref TL args)
1640 {
1641 return foo(forward!args);
1642 }
1643 string baz(TL...)(auto ref TL args)
1644 {
1645 int x;
1646 return foo(forward!args[3], forward!args[2], 1, forward!args[1], forward!args[0], x);
1647 }
1648
1649 struct S {}
1650 S makeS(){ return S(); }
1651 int n;
1652 string s;
1653 assert(bar(S(), makeS(), n, s) == "RRLL");
1654 assert(baz(S(), makeS(), n, s) == "LLRRRL");
1655}
1656
1657@betterC
1658@safe unittest
1659{
1660 ref int foo(return ref int a) { return a; }
1661 ref int bar(Args)(auto ref Args args)
1662 {
1663 return foo(forward!args);
1664 }
1665 static assert(!__traits(compiles, { auto x1 = bar(3); })); // case of NG
1666 int value = 3;
1667 auto x2 = bar(value); // case of OK
1668}
1669
1670///
1671@betterC
1672@safe unittest
1673{
1674 struct X {
1675 int i;
1676 this(this)
1677 {
1678 ++i;
1679 }
1680 }
1681
1682 struct Y
1683 {
1684 private X x_;
1685 this()(auto ref X x)
1686 {
1687 x_ = forward!x;
1688 }
1689 }
1690
1691 struct Z
1692 {
1693 private const X x_;
1694 this()(auto ref X x)
1695 {
1696 x_ = forward!x;
1697 }
1698 this()(auto const ref X x)
1699 {
1700 x_ = forward!x;
1701 }
1702 }
1703
1704 X x;
1705 const X cx;
1706 auto constX = (){ const X x; return x; };
1707 static assert(__traits(compiles, { Y y = x; }));
1708 static assert(__traits(compiles, { Y y = X(); }));
1709 static assert(!__traits(compiles, { Y y = cx; }));
1710 static assert(!__traits(compiles, { Y y = constX(); }));
1711 static assert(__traits(compiles, { Z z = x; }));
1712 static assert(__traits(compiles, { Z z = X(); }));
1713 static assert(__traits(compiles, { Z z = cx; }));
1714 static assert(__traits(compiles, { Z z = constX(); }));
1715
1716
1717 Y y1 = x;
1718 // ref lvalue, copy
1719 assert(y1.x_.i == 1);
1720 Y y2 = X();
1721 // rvalue, move
1722 assert(y2.x_.i == 0);
1723
1724 Z z1 = x;
1725 // ref lvalue, copy
1726 assert(z1.x_.i == 1);
1727 Z z2 = X();
1728 // rvalue, move
1729 assert(z2.x_.i == 0);
1730 Z z3 = cx;
1731 // ref const lvalue, copy
1732 assert(z3.x_.i == 1);
1733 Z z4 = constX();
1734 // const rvalue, copy
1735 assert(z4.x_.i == 1);
1736}
1737
1738// lazy -> lazy
1739@betterC
1740@safe unittest
1741{
1742 int foo1(lazy int i) { return i; }
1743 int foo2(A)(auto ref A i) { return foo1(forward!i); }
1744 int foo3(lazy int i) { return foo2(i); }
1745
1746 int numCalls = 0;
1747 assert(foo3({ ++numCalls; return 42; }()) == 42);
1748 assert(numCalls == 1);
1749}
1750
1751// lazy -> non-lazy
1752@betterC
1753@safe unittest
1754{
1755 int foo1(int a, int b) { return a + b; }
1756 int foo2(A...)(auto ref A args) { return foo1(forward!args); }
1757 int foo3(int a, lazy int b) { return foo2(a, b); }
1758
1759 int numCalls;
1760 assert(foo3(11, { ++numCalls; return 31; }()) == 42);
1761 assert(numCalls == 1);
1762}
1763
1764// non-lazy -> lazy
1765@betterC
1766@safe unittest
1767{
1768 int foo1(int a, lazy int b) { return a + b; }
1769 int foo2(A...)(auto ref A args) { return foo1(forward!args); }
1770 int foo3(int a, int b) { return foo2(a, b); }
1771
1772 assert(foo3(11, 31) == 42);
1773}
1774
1775// out
1776@betterC
1777@safe unittest
1778{
1779 void foo1(int a, out int b) { b = a; }
1780 void foo2(A...)(auto ref A args) { foo1(forward!args); }
1781 void foo3(int a, out int b) { foo2(a, b); }
1782
1783 int b;
1784 foo3(42, b);
1785 assert(b == 42);
1786}
1787
1788// move
1789/**
1790Moves `source` into `target`, via a destructive copy when necessary.
1791
1792If `T` is a struct with a destructor or postblit defined, source is reset
1793to its `.init` value after it is moved into target, otherwise it is
1794left unchanged.
1795
1796Preconditions:
1797If source has internal pointers that point to itself and doesn't define
1798opPostMove, it cannot be moved, and will trigger an assertion failure.
1799
1800Params:
1801 source = Data to copy.
1802 target = Where to copy into. The destructor, if any, is invoked before the
1803 copy is performed.
1804*/
1805void move(T)(ref T source, ref T target)
1806{
1807 moveImpl(target, source);
1808}
1809
1810/// For non-struct types, `move` just performs `target = source`:
1811@safe unittest
1812{
1813 Object obj1 = new Object;
1814 Object obj2 = obj1;
1815 Object obj3;
1816
1817 move(obj2, obj3);
1818 assert(obj3 is obj1);
1819 // obj2 unchanged
1820 assert(obj2 is obj1);
1821}
1822
1823///
1824pure nothrow @safe @nogc unittest
1825{
1826 // Structs without destructors are simply copied
1827 struct S1
1828 {
1829 int a = 1;
1830 int b = 2;
1831 }
1832 S1 s11 = { 10, 11 };
1833 S1 s12;
1834
1835 move(s11, s12);
1836
1837 assert(s12 == S1(10, 11));
1838 assert(s11 == s12);
1839
1840 // But structs with destructors or postblits are reset to their .init value
1841 // after copying to the target.
1842 struct S2
1843 {
1844 int a = 1;
1845 int b = 2;
1846
1847 ~this() pure nothrow @safe @nogc { }
1848 }
1849 S2 s21 = { 3, 4 };
1850 S2 s22;
1851
1852 move(s21, s22);
1853
1854 assert(s21 == S2(1, 2));
1855 assert(s22 == S2(3, 4));
1856}
1857
1858@safe unittest
1859{
1860 import core.internal.traits;
1861
1862 assertCTFEable!((){
1863 Object obj1 = new Object;
1864 Object obj2 = obj1;
1865 Object obj3;
1866 move(obj2, obj3);
1867 assert(obj3 is obj1);
1868
1869 static struct S1 { int a = 1, b = 2; }
1870 S1 s11 = { 10, 11 };
1871 S1 s12;
1872 move(s11, s12);
1873 assert(s11.a == 10 && s11.b == 11 && s12.a == 10 && s12.b == 11);
1874
1875 static struct S2 { int a = 1; int * b; }
1876 S2 s21 = { 10, null };
1877 s21.b = new int;
1878 S2 s22;
1879 move(s21, s22);
1880 assert(s21 == s22);
1881 });
1882 // Issue 5661 test(1)
1883 static struct S3
1884 {
1885 static struct X { int n = 0; ~this(){n = 0;} }
1886 X x;
1887 }
1888 static assert(hasElaborateDestructor!S3);
1889 S3 s31, s32;
1890 s31.x.n = 1;
1891 move(s31, s32);
1892 assert(s31.x.n == 0);
1893 assert(s32.x.n == 1);
1894
1895 // Issue 5661 test(2)
1896 static struct S4
1897 {
1898 static struct X { int n = 0; this(this){n = 0;} }
1899 X x;
1900 }
1901 static assert(hasElaborateCopyConstructor!S4);
1902 S4 s41, s42;
1903 s41.x.n = 1;
1904 move(s41, s42);
1905 assert(s41.x.n == 0);
1906 assert(s42.x.n == 1);
1907
1908 // Issue 13990 test
1909 class S5;
1910
1911 S5 s51;
1912 S5 s52 = s51;
1913 S5 s53;
1914 move(s52, s53);
1915 assert(s53 is s51);
1916}
1917
1918/// Ditto
1919T move(T)(return scope ref T source)
1920{
1921 return moveImpl(source);
1922}
1923
1924/// Non-copyable structs can still be moved:
1925pure nothrow @safe @nogc unittest
1926{
1927 struct S
1928 {
1929 int a = 1;
1930 @disable this(this);
1931 ~this() pure nothrow @safe @nogc {}
1932 }
1933 S s1;
1934 s1.a = 2;
1935 S s2 = move(s1);
1936 assert(s1.a == 1);
1937 assert(s2.a == 2);
1938}
1939
1940// https://issues.dlang.org/show_bug.cgi?id=20869
1941// `move` should propagate the attributes of `opPostMove`
1942@system unittest
1943{
1944 static struct S
1945 {
1946 void opPostMove(const ref S old) nothrow @system
1947 {
1948 __gshared int i;
1949 new int(i++); // Force @gc impure @system
1950 }
1951 }
1952
1953 alias T = void function() @system nothrow;
1954 static assert(is(typeof({ S s; move(s); }) == T));
1955 static assert(is(typeof({ S s; move(s, s); }) == T));
1956}
1957
1958private void moveImpl(T)(scope ref T target, return scope ref T source)
1959{
1960 import core.internal.traits : hasElaborateDestructor;
1961
1962 static if (is(T == struct))
1963 {
9c7d5e88 1964 // Unsafe when compiling without -preview=dip1000
5fee5ec3
IB
1965 if ((() @trusted => &source == &target)()) return;
1966 // Destroy target before overwriting it
1967 static if (hasElaborateDestructor!T) target.__xdtor();
1968 }
1969 // move and emplace source into target
1970 moveEmplaceImpl(target, source);
1971}
1972
1973private T moveImpl(T)(return scope ref T source)
1974{
1975 // Properly infer safety from moveEmplaceImpl as the implementation below
1976 // might void-initialize pointers in result and hence needs to be @trusted
1977 if (false) moveEmplaceImpl(source, source);
1978
1979 return trustedMoveImpl(source);
1980}
1981
1982private T trustedMoveImpl(T)(return scope ref T source) @trusted
1983{
1984 T result = void;
1985 moveEmplaceImpl(result, source);
1986 return result;
1987}
1988
1989@safe unittest
1990{
1991 import core.internal.traits;
1992
1993 assertCTFEable!((){
1994 Object obj1 = new Object;
1995 Object obj2 = obj1;
1996 Object obj3 = move(obj2);
1997 assert(obj3 is obj1);
1998
1999 static struct S1 { int a = 1, b = 2; }
2000 S1 s11 = { 10, 11 };
2001 S1 s12 = move(s11);
2002 assert(s11.a == 10 && s11.b == 11 && s12.a == 10 && s12.b == 11);
2003
2004 static struct S2 { int a = 1; int * b; }
2005 S2 s21 = { 10, null };
2006 s21.b = new int;
2007 S2 s22 = move(s21);
2008 assert(s21 == s22);
2009 });
2010
2011 // Issue 5661 test(1)
2012 static struct S3
2013 {
2014 static struct X { int n = 0; ~this(){n = 0;} }
2015 X x;
2016 }
2017 static assert(hasElaborateDestructor!S3);
2018 S3 s31;
2019 s31.x.n = 1;
2020 S3 s32 = move(s31);
2021 assert(s31.x.n == 0);
2022 assert(s32.x.n == 1);
2023
2024 // Issue 5661 test(2)
2025 static struct S4
2026 {
2027 static struct X { int n = 0; this(this){n = 0;} }
2028 X x;
2029 }
2030 static assert(hasElaborateCopyConstructor!S4);
2031 S4 s41;
2032 s41.x.n = 1;
2033 S4 s42 = move(s41);
2034 assert(s41.x.n == 0);
2035 assert(s42.x.n == 1);
2036
2037 // Issue 13990 test
2038 class S5;
2039
2040 S5 s51;
2041 S5 s52 = s51;
2042 S5 s53;
2043 s53 = move(s52);
2044 assert(s53 is s51);
2045}
2046
2047@betterC
2048@system unittest
2049{
2050 static struct S { int n = 0; ~this() @system { n = 0; } }
2051 S a, b;
2052 static assert(!__traits(compiles, () @safe { move(a, b); }));
2053 static assert(!__traits(compiles, () @safe { move(a); }));
2054 a.n = 1;
2055 () @trusted { move(a, b); }();
2056 assert(a.n == 0);
2057 a.n = 1;
2058 () @trusted { move(a); }();
2059 assert(a.n == 0);
2060}
2061/+ this can't be tested in druntime, tests are still run in phobos
2062@safe unittest//Issue 6217
2063{
2064 import std.algorithm.iteration : map;
2065 auto x = map!"a"([1,2,3]);
2066 x = move(x);
2067}
2068+/
2069@betterC
2070@safe unittest// Issue 8055
2071{
2072 static struct S
2073 {
2074 int x;
2075 ~this()
2076 {
2077 assert(x == 0);
2078 }
2079 }
2080 S foo(S s)
2081 {
2082 return move(s);
2083 }
2084 S a;
2085 a.x = 0;
2086 auto b = foo(a);
2087 assert(b.x == 0);
2088}
2089
2090@system unittest// Issue 8057
2091{
2092 int n = 10;
2093 struct S
2094 {
2095 int x;
2096 ~this()
2097 {
2098 // Access to enclosing scope
2099 assert(n == 10);
2100 }
2101 }
2102 S foo(S s)
2103 {
2104 // Move nested struct
2105 return move(s);
2106 }
2107 S a;
2108 a.x = 1;
2109 auto b = foo(a);
2110 assert(b.x == 1);
2111
2112 // Regression 8171
2113 static struct Array(T)
2114 {
2115 // nested struct has no member
2116 struct Payload
2117 {
2118 ~this() {}
2119 }
2120 }
2121 Array!int.Payload x = void;
2122 move(x);
2123 move(x, x);
2124}
2125
d7569187
IB
2126private enum bool hasContextPointers(T) = {
2127 static if (__traits(isStaticArray, T))
2128 {
2129 return hasContextPointers!(typeof(T.init[0]));
2130 }
2131 else static if (is(T == struct))
2132 {
2133 import core.internal.traits : anySatisfy;
2134 return __traits(isNested, T) || anySatisfy!(hasContextPointers, typeof(T.tupleof));
2135 }
2136 else return false;
2137} ();
2138
2139@safe @nogc nothrow pure unittest
2140{
2141 static assert(!hasContextPointers!int);
2142 static assert(!hasContextPointers!(void*));
2143
2144 static struct S {}
2145 static assert(!hasContextPointers!S);
2146 static assert(!hasContextPointers!(S[1]));
2147
2148 struct Nested
2149 {
2150 void foo() {}
2151 }
2152
2153 static assert(hasContextPointers!Nested);
2154 static assert(hasContextPointers!(Nested[1]));
2155
2156 static struct OneLevel
2157 {
2158 int before;
2159 Nested n;
2160 int after;
2161 }
2162
2163 static assert(hasContextPointers!OneLevel);
2164 static assert(hasContextPointers!(OneLevel[1]));
2165
2166 static struct TwoLevels
2167 {
2168 int before;
2169 OneLevel o;
2170 int after;
2171 }
2172
2173 static assert(hasContextPointers!TwoLevels);
2174 static assert(hasContextPointers!(TwoLevels[1]));
2175
2176 union U
2177 {
2178 Nested n;
2179 }
2180
2181 // unions can have false positives, so this query ignores them
2182 static assert(!hasContextPointers!U);
2183}
2184
5fee5ec3
IB
2185// target must be first-parameter, because in void-functions DMD + dip1000 allows it to take the place of a return-scope
2186private void moveEmplaceImpl(T)(scope ref T target, return scope ref T source)
2187{
5fee5ec3
IB
2188 // TODO: this assert pulls in half of phobos. we need to work out an alternative assert strategy.
2189// static if (!is(T == class) && hasAliasing!T) if (!__ctfe)
2190// {
2191// import std.exception : doesPointTo;
2192// assert(!doesPointTo(source, source) && !hasElaborateMove!T),
2193// "Cannot move object with internal pointer unless `opPostMove` is defined.");
2194// }
2195
d7569187
IB
2196 import core.internal.traits : hasElaborateAssign, isAssignable, hasElaborateMove,
2197 hasElaborateDestructor, hasElaborateCopyConstructor;
5fee5ec3
IB
2198 static if (is(T == struct))
2199 {
fd43568c 2200
9c7d5e88 2201 // Unsafe when compiling without -preview=dip1000
5fee5ec3
IB
2202 assert((() @trusted => &source !is &target)(), "source and target must not be identical");
2203
2204 static if (hasElaborateAssign!T || !isAssignable!T)
fd43568c
IB
2205 {
2206 import core.stdc.string : memcpy;
5fee5ec3 2207 () @trusted { memcpy(&target, &source, T.sizeof); }();
fd43568c 2208 }
5fee5ec3
IB
2209 else
2210 target = source;
2211
2212 static if (hasElaborateMove!T)
2213 __move_post_blt(target, source);
2214
2215 // If the source defines a destructor or a postblit hook, we must obliterate the
2216 // object in order to avoid double freeing and undue aliasing
2217 static if (hasElaborateDestructor!T || hasElaborateCopyConstructor!T)
2218 {
d7569187
IB
2219 // If there are members that are nested structs, we must take care
2220 // not to erase any context pointers, so we might have to recurse
5fee5ec3 2221 static if (__traits(isZeroInit, T))
d7569187
IB
2222 wipe(source);
2223 else
2224 wipe(source, ref () @trusted { return *cast(immutable(T)*) __traits(initSymbol, T).ptr; } ());
2225 }
2226 }
2227 else static if (__traits(isStaticArray, T))
2228 {
2229 static if (T.length)
2230 {
2231 static if (!hasElaborateMove!T &&
2232 !hasElaborateDestructor!T &&
2233 !hasElaborateCopyConstructor!T)
fd43568c 2234 {
d7569187
IB
2235 // Single blit if no special per-instance handling is required
2236 () @trusted
2237 {
2238 assert(source.ptr !is target.ptr, "source and target must not be identical");
2239 *cast(ubyte[T.sizeof]*) &target = *cast(ubyte[T.sizeof]*) &source;
2240 } ();
fd43568c 2241 }
5fee5ec3 2242 else
fd43568c 2243 {
d7569187
IB
2244 for (size_t i = 0; i < source.length; ++i)
2245 moveEmplaceImpl(target[i], source[i]);
fd43568c 2246 }
5fee5ec3
IB
2247 }
2248 }
5fee5ec3
IB
2249 else
2250 {
2251 // Primitive data (including pointers and arrays) or class -
2252 // assignment works great
2253 target = source;
2254 }
2255}
2256
2257/**
2258 * Similar to $(LREF move) but assumes `target` is uninitialized. This
2259 * is more efficient because `source` can be blitted over `target`
2260 * without destroying or initializing it first.
2261 *
2262 * Params:
2263 * source = value to be moved into target
2264 * target = uninitialized value to be filled by source
2265 */
2266void moveEmplace(T)(ref T source, ref T target) @system
2267{
2268 moveEmplaceImpl(target, source);
2269}
2270
2271///
2272@betterC
2273pure nothrow @nogc @system unittest
2274{
2275 static struct Foo
2276 {
2277 pure nothrow @nogc:
2278 this(int* ptr) { _ptr = ptr; }
2279 ~this() { if (_ptr) ++*_ptr; }
2280 int* _ptr;
2281 }
2282
2283 int val;
2284 Foo foo1 = void; // uninitialized
2285 auto foo2 = Foo(&val); // initialized
2286 assert(foo2._ptr is &val);
2287
2288 // Using `move(foo2, foo1)` would have an undefined effect because it would destroy
2289 // the uninitialized foo1.
2290 // moveEmplace directly overwrites foo1 without destroying or initializing it first.
2291 moveEmplace(foo2, foo1);
2292 assert(foo1._ptr is &val);
2293 assert(foo2._ptr is null);
2294 assert(val == 0);
2295}
2296
fd43568c
IB
2297@betterC
2298pure nothrow @nogc @system unittest
2299{
2300 static struct Foo
2301 {
2302 pure nothrow @nogc:
2303 this(int* ptr) { _ptr = ptr; }
2304 ~this() { if (_ptr) ++*_ptr; }
2305 int* _ptr;
2306 }
2307
2308 int val;
2309 {
2310 Foo[1] foo1 = void; // uninitialized
2311 Foo[1] foo2 = [Foo(&val)];// initialized
2312 assert(foo2[0]._ptr is &val);
2313
2314 // Using `move(foo2, foo1)` would have an undefined effect because it would destroy
2315 // the uninitialized foo1.
2316 // moveEmplace directly overwrites foo1 without destroying or initializing it first.
2317 moveEmplace(foo2, foo1);
2318 assert(foo1[0]._ptr is &val);
2319 assert(foo2[0]._ptr is null);
2320 assert(val == 0);
2321 }
2322 assert(val == 1);
2323}
2324
5fee5ec3
IB
2325// issue 18913
2326@safe unittest
2327{
2328 static struct NoCopy
2329 {
2330 int payload;
2331 ~this() { }
2332 @disable this(this);
2333 }
2334
2335 static void f(NoCopy[2]) { }
2336
2337 NoCopy[2] ncarray = [ NoCopy(1), NoCopy(2) ];
2338
2339 static assert(!__traits(compiles, f(ncarray)));
2340 f(move(ncarray));
2341}
9c7d5e88 2342
d7569187
IB
2343//debug = PRINTF;
2344
2345debug(PRINTF)
2346{
2347 import core.stdc.stdio;
2348}
2349
fd43568c
IB
2350/// Implementation of `_d_delstruct` and `_d_delstructTrace`
2351template _d_delstructImpl(T)
9c7d5e88 2352{
fd43568c 2353 private void _d_delstructImpure(ref T p)
9c7d5e88
IB
2354 {
2355 debug(PRINTF) printf("_d_delstruct(%p)\n", p);
2356
2357 import core.memory : GC;
2358
2359 destroy(*p);
2360 GC.free(p);
2361 p = null;
2362 }
fd43568c
IB
2363
2364 /**
2365 * This is called for a delete statement where the value being deleted is a
2366 * pointer to a struct with a destructor but doesn't have an overloaded
2367 * `delete` operator.
2368 *
2369 * Params:
2370 * p = pointer to the value to be deleted
2371 *
2372 * Bugs:
2373 * This function template was ported from a much older runtime hook that
2374 * bypassed safety, purity, and throwabilty checks. To prevent breaking
2375 * existing code, this function template is temporarily declared
2376 * `@trusted` until the implementation can be brought up to modern D
2377 * expectations.
2378 */
2379 void _d_delstruct(ref T p) @trusted @nogc pure nothrow
2380 {
2381 if (p)
2382 {
2383 alias Type = void function(ref T P) @nogc pure nothrow;
2384 (cast(Type) &_d_delstructImpure)(p);
2385 }
2386 }
2387
8da8c7d3
IB
2388 version (D_ProfileGC)
2389 {
2390 import core.internal.array.utils : _d_HookTraceImpl;
fd43568c 2391
8da8c7d3 2392 private enum errorMessage = "Cannot delete struct if compiling without support for runtime type information!";
fd43568c 2393
8da8c7d3
IB
2394 /**
2395 * TraceGC wrapper around $(REF _d_delstruct, core,lifetime,_d_delstructImpl).
2396 *
2397 * Bugs:
2398 * This function template was ported from a much older runtime hook that
2399 * bypassed safety, purity, and throwabilty checks. To prevent breaking
2400 * existing code, this function template is temporarily declared
2401 * `@trusted` until the implementation can be brought up to modern D
2402 * expectations.
2403 */
2404 alias _d_delstructTrace = _d_HookTraceImpl!(T, _d_delstruct, errorMessage);
2405 }
9c7d5e88
IB
2406}
2407
fd43568c 2408@system pure nothrow unittest
9c7d5e88
IB
2409{
2410 int dtors = 0;
b3f58f87 2411 struct S { ~this() nothrow { ++dtors; } }
9c7d5e88
IB
2412
2413 S *s = new S();
fd43568c 2414 _d_delstructImpl!(typeof(s))._d_delstruct(s);
9c7d5e88
IB
2415
2416 assert(s == null);
2417 assert(dtors == 1);
2418}
2419
fd43568c 2420@system pure unittest
9c7d5e88
IB
2421{
2422 int innerDtors = 0;
2423 int outerDtors = 0;
2424
2425 struct Inner { ~this() { ++innerDtors; } }
2426 struct Outer
2427 {
2428 Inner *i1;
2429 Inner *i2;
2430
2431 this(int x)
2432 {
2433 i1 = new Inner();
2434 i2 = new Inner();
2435 }
2436
2437 ~this()
2438 {
2439 ++outerDtors;
2440
fd43568c 2441 _d_delstructImpl!(typeof(i1))._d_delstruct(i1);
9c7d5e88
IB
2442 assert(i1 == null);
2443
fd43568c 2444 _d_delstructImpl!(typeof(i2))._d_delstruct(i2);
9c7d5e88
IB
2445 assert(i2 == null);
2446 }
2447 }
2448
2449 Outer *o = new Outer(0);
fd43568c 2450 _d_delstructImpl!(typeof(o))._d_delstruct(o);
9c7d5e88
IB
2451
2452 assert(o == null);
2453 assert(innerDtors == 2);
2454 assert(outerDtors == 1);
2455}
d7569187
IB
2456
2457// issue 25552
2458pure nothrow @system unittest
2459{
2460 int i;
2461 struct Nested
2462 {
2463 pure nothrow @nogc:
2464 char[1] arr; // char.init is not 0
2465 ~this() { ++i; }
2466 }
2467
2468 {
2469 Nested[1] dst = void;
2470 Nested[1] src = [Nested(['a'])];
2471
2472 moveEmplace(src, dst);
2473 assert(i == 0);
2474 assert(dst[0].arr == ['a']);
2475 assert(src[0].arr == [char.init]);
2476 assert(dst[0].tupleof[$-1] is src[0].tupleof[$-1]);
2477 }
2478 assert(i == 2);
2479}
2480
2481// issue 25552
2482@safe unittest
2483{
2484 int i;
2485 struct Nested
2486 {
2487 ~this() { ++i; }
2488 }
2489
2490 static struct NotNested
2491 {
2492 Nested n;
2493 }
2494
2495 static struct Deep
2496 {
2497 NotNested nn;
2498 }
2499
2500 static struct Deeper
2501 {
2502 NotNested[1] nn;
2503 }
2504
2505 static assert(__traits(isZeroInit, Nested));
2506 static assert(__traits(isZeroInit, NotNested));
2507 static assert(__traits(isZeroInit, Deep));
2508 static assert(__traits(isZeroInit, Deeper));
2509
2510 {
2511 auto a = NotNested(Nested());
2512 assert(a.n.tupleof[$-1]);
2513 auto b = move(a);
2514 assert(b.n.tupleof[$-1]);
2515 assert(a.n.tupleof[$-1] is b.n.tupleof[$-1]);
2516
2517 auto c = Deep(NotNested(Nested()));
2518 auto d = move(c);
2519 assert(d.nn.n.tupleof[$-1]);
2520 assert(c.nn.n.tupleof[$-1] is d.nn.n.tupleof[$-1]);
2521
2522 auto e = Deeper([NotNested(Nested())]);
2523 auto f = move(e);
2524 assert(f.nn[0].n.tupleof[$-1]);
2525 assert(e.nn[0].n.tupleof[$-1] is f.nn[0].n.tupleof[$-1]);
2526 }
2527 assert(i == 6);
2528}
2529
2530// issue 25552
2531@safe unittest
2532{
2533 int i;
2534 struct Nested
2535 {
2536 align(32) // better still find context pointer correctly!
2537 int[3] stuff = [0, 1, 2];
2538 ~this() { ++i; }
2539 }
2540
2541 static struct NoAssign
2542 {
2543 int value;
2544 @disable void opAssign(typeof(this));
2545 }
2546
2547 static struct NotNested
2548 {
2549 int before = 42;
2550 align(Nested.alignof * 4) // better still find context pointer correctly!
2551 Nested n;
2552 auto after = NoAssign(43);
2553 }
2554
2555 static struct Deep
2556 {
2557 NotNested nn;
2558 }
2559
2560 static struct Deeper
2561 {
2562 NotNested[1] nn;
2563 }
2564
2565 static assert(!__traits(isZeroInit, Nested));
2566 static assert(!__traits(isZeroInit, NotNested));
2567 static assert(!__traits(isZeroInit, Deep));
2568 static assert(!__traits(isZeroInit, Deeper));
2569
2570 {
2571 auto a = NotNested(1, Nested([3, 4, 5]), NoAssign(2));
2572 auto b = move(a);
2573 assert(b.n.tupleof[$-1]);
2574 assert(a.n.tupleof[$-1] is b.n.tupleof[$-1]);
2575 assert(a.n.stuff == [0, 1, 2]);
2576 assert(a.before == 42);
2577 assert(a.after == NoAssign(43));
2578
2579 auto c = Deep(NotNested(1, Nested([3, 4, 5]), NoAssign(2)));
2580 auto d = move(c);
2581 assert(d.nn.n.tupleof[$-1]);
2582 assert(c.nn.n.tupleof[$-1] is d.nn.n.tupleof[$-1]);
2583 assert(c.nn.n.stuff == [0, 1, 2]);
2584 assert(c.nn.before == 42);
2585 assert(c.nn.after == NoAssign(43));
2586
2587 auto e = Deeper([NotNested(1, Nested([3, 4, 5]), NoAssign(2))]);
2588 auto f = move(e);
2589 assert(f.nn[0].n.tupleof[$-1]);
2590 assert(e.nn[0].n.tupleof[$-1] is f.nn[0].n.tupleof[$-1]);
2591 assert(e.nn[0].n.stuff == [0, 1, 2]);
2592 assert(e.nn[0].before == 42);
2593 assert(e.nn[0].after == NoAssign(43));
2594 }
2595 assert(i == 6);
2596}
2597
2598// wipes source after moving
2599pragma(inline, true)
2600private void wipe(T, Init...)(return scope ref T source, ref const scope Init initializer) @trusted
2601if (!Init.length ||
2602 ((Init.length == 1) && (is(immutable T == immutable Init[0]))))
2603{
2604 static if (__traits(isStaticArray, T) && hasContextPointers!T)
2605 {
2606 for (auto i = 0; i < T.length; i++)
2607 static if (Init.length)
2608 wipe(source[i], initializer[0][i]);
2609 else
2610 wipe(source[i]);
2611 }
2612 else static if (is(T == struct) && hasContextPointers!T)
2613 {
2614 import core.internal.traits : anySatisfy;
2615 static if (anySatisfy!(hasContextPointers, typeof(T.tupleof)))
2616 {
2617 static foreach (i; 0 .. T.tupleof.length - __traits(isNested, T))
2618 static if (Init.length)
2619 wipe(source.tupleof[i], initializer[0].tupleof[i]);
2620 else
2621 wipe(source.tupleof[i]);
2622 }
2623 else
2624 {
2625 static if (__traits(isNested, T))
2626 enum sz = T.tupleof[$-1].offsetof;
2627 else
2628 enum sz = T.sizeof;
2629
2630 static if (Init.length)
2631 *cast(ubyte[sz]*) &source = *cast(ubyte[sz]*) &initializer[0];
2632 else
2633 *cast(ubyte[sz]*) &source = 0;
2634 }
2635 }
2636 else
2637 {
2638 import core.internal.traits : hasElaborateAssign, isAssignable;
2639 static if (Init.length)
2640 {
2641 static if (hasElaborateAssign!T || !isAssignable!T)
2642 *cast(ubyte[T.sizeof]*) &source = *cast(ubyte[T.sizeof]*) &initializer[0];
2643 else
2644 source = *cast(T*) &initializer[0];
2645 }
2646 else
2647 {
2648 *cast(ubyte[T.sizeof]*) &source = 0;
2649 }
2650 }
2651}
2652
2653/**
ec486b73
IB
2654 * Allocate an exception of type `T` from the exception pool.
2655 * `T` must be `Throwable` or derived from it and cannot be a COM or C++ class.
2656 *
2657 * Note:
2658 * This function does not call the constructor of `T` because that would require
2659 * `forward!args`, which causes errors with -dip1008. This inconvenience will be
2660 * removed once -dip1008 works as intended.
2661 *
d7569187 2662 * Returns:
ec486b73 2663 * allocated instance of type `T`
d7569187 2664 */
ec486b73
IB
2665T _d_newThrowable(T)() @trusted
2666 if (is(T : Throwable) && __traits(getLinkage, T) == "D")
d7569187
IB
2667{
2668 debug(PRINTF) printf("_d_newThrowable(%s)\n", cast(char*) T.stringof);
2669
6384eff5 2670 import core.memory : pureMalloc;
d7569187 2671 auto init = __traits(initSymbol, T);
6384eff5 2672 void* p = pureMalloc(init.length);
d7569187
IB
2673 if (!p)
2674 {
2675 import core.exception : onOutOfMemoryError;
2676 onOutOfMemoryError();
2677 }
2678
2679 debug(PRINTF) printf(" p = %p\n", p);
2680
2681 // initialize it
2682 p[0 .. init.length] = init[];
2683
2684 import core.internal.traits : hasIndirections;
2685 if (hasIndirections!T)
2686 {
2687 // Inform the GC about the pointers in the object instance
2688 import core.memory : GC;
2689 GC.addRange(p, init.length);
2690 }
2691
2692 debug(PRINTF) printf("initialization done\n");
2693
2694 (cast(Throwable) p).refcount() = 1;
2695
ec486b73 2696 return cast(T) p;
d7569187
IB
2697}
2698
2699@system unittest
2700{
2701 class E : Exception
2702 {
ec486b73 2703 this(string msg = "", Throwable nextInChain = null)
d7569187
IB
2704 {
2705 super(msg, nextInChain);
d7569187
IB
2706 }
2707 }
2708
ec486b73
IB
2709 Throwable exc = _d_newThrowable!Exception();
2710 Throwable e = _d_newThrowable!E();
d7569187 2711
ec486b73 2712 assert(exc.refcount() == 1);
d7569187 2713 assert(e.refcount() == 1);
d7569187 2714}
8da8c7d3
IB
2715
2716/**
2717 * Create a new class instance.
2718 * Allocates memory and sets fields to their initial value, but does not call a
2719 * constructor.
2720 * ---
2721 * new C() // _d_newclass!(C)()
2722 * ---
2723 * Returns: newly created object
2724 */
2725T _d_newclassT(T)() @trusted
2726if (is(T == class))
2727{
2728 import core.internal.traits : hasIndirections;
2729 import core.exception : onOutOfMemoryError;
2730 import core.memory : GC, pureMalloc;
2731
2732 alias BlkAttr = GC.BlkAttr;
2733
2734 auto init = __traits(initSymbol, T);
2735 void* p;
2736
2737 static if (__traits(getLinkage, T) == "Windows")
2738 {
2739 p = pureMalloc(init.length);
2740 if (!p)
2741 onOutOfMemoryError();
2742 }
2743 else
2744 {
2745 BlkAttr attr = BlkAttr.NONE;
2746
2747 /* `extern(C++)`` classes don't have a classinfo pointer in their vtable,
2748 * so the GC can't finalize them.
2749 */
2750 static if (__traits(hasMember, T, "__dtor") && __traits(getLinkage, T) != "C++")
2751 attr |= BlkAttr.FINALIZE;
2752 static if (!hasIndirections!T)
2753 attr |= BlkAttr.NO_SCAN;
2754
2755 p = GC.malloc(init.length, attr, typeid(T));
2756 debug(PRINTF) printf(" p = %p\n", p);
2757 }
2758
2759 debug(PRINTF)
2760 {
2761 printf("p = %p\n", p);
2762 printf("init.ptr = %p, len = %llu\n", init.ptr, cast(ulong)init.length);
2763 printf("vptr = %p\n", *cast(void**) init);
2764 printf("vtbl[0] = %p\n", (*cast(void***) init)[0]);
2765 printf("vtbl[1] = %p\n", (*cast(void***) init)[1]);
2766 printf("init[0] = %x\n", (cast(uint*) init)[0]);
2767 printf("init[1] = %x\n", (cast(uint*) init)[1]);
2768 printf("init[2] = %x\n", (cast(uint*) init)[2]);
2769 printf("init[3] = %x\n", (cast(uint*) init)[3]);
2770 printf("init[4] = %x\n", (cast(uint*) init)[4]);
2771 }
2772
2773 // initialize it
2774 p[0 .. init.length] = init[];
2775
2776 debug(PRINTF) printf("initialization done\n");
2777 return cast(T) p;
2778}
2779
0cafc3b6
IB
2780/**
2781 * TraceGC wrapper around $(REF _d_newclassT, core,lifetime).
2782 */
2783T _d_newclassTTrace(T)(string file, int line, string funcname) @trusted
2784{
2785 version (D_TypeInfo)
2786 {
2787 import core.internal.array.utils : TraceHook, gcStatsPure, accumulatePure;
2788 mixin(TraceHook!(T.stringof, "_d_newclassT"));
2789
2790 return _d_newclassT!T();
2791 }
2792 else
2793 assert(0, "Cannot create new class if compiling without support for runtime type information!");
2794}
2795
2796/**
2797 * Allocate an initialized non-array item.
2798 *
2799 * This is an optimization to avoid things needed for arrays like the __arrayPad(size).
2800 * Used to allocate struct instances on the heap.
2801 *
2802 * ---
2803 * struct Sz {int x = 0;}
2804 * struct Si {int x = 3;}
2805 *
2806 * void main()
2807 * {
2808 * new Sz(); // uses zero-initialization
2809 * new Si(); // uses Si.init
2810 * }
2811 * ---
2812 *
2813 * Returns:
2814 * newly allocated item
2815 */
2816T* _d_newitemT(T)() @trusted
2817{
2818 import core.internal.lifetime : emplaceInitializer;
2819 import core.internal.traits : hasElaborateDestructor, hasIndirections;
2820 import core.memory : GC;
2821
2822 auto flags = !hasIndirections!T ? GC.BlkAttr.NO_SCAN : GC.BlkAttr.NONE;
2823 immutable tiSize = hasElaborateDestructor!T ? size_t.sizeof : 0;
2824 immutable itemSize = T.sizeof;
2825 immutable totalSize = itemSize + tiSize;
2826 if (tiSize)
2827 flags |= GC.BlkAttr.STRUCTFINAL | GC.BlkAttr.FINALIZE;
2828
2829 auto blkInfo = GC.qalloc(totalSize, flags, null);
2830 auto p = blkInfo.base;
2831
2832 if (tiSize)
2833 {
2834 // The GC might not have cleared the padding area in the block.
2835 *cast(TypeInfo*) (p + (itemSize & ~(size_t.sizeof - 1))) = null;
2836 *cast(TypeInfo*) (p + blkInfo.size - tiSize) = cast() typeid(T);
2837 }
2838
2839 emplaceInitializer(*(cast(T*) p));
2840
2841 return cast(T*) p;
2842}
2843
8da8c7d3
IB
2844// Test allocation
2845@safe unittest
2846{
2847 class C { }
2848 C c = _d_newclassT!C();
2849
2850 assert(c !is null);
2851}
2852
2853// Test initializers
2854@safe unittest
2855{
2856 {
2857 class C { int x, y; }
2858 C c = _d_newclassT!C();
2859
2860 assert(c.x == 0);
2861 assert(c.y == 0);
2862 }
2863 {
2864 class C { int x = 2, y = 3; }
2865 C c = _d_newclassT!C();
2866
2867 assert(c.x == 2);
2868 assert(c.y == 3);
2869 }
2870}
2871
0cafc3b6
IB
2872// Test allocation
2873@safe unittest
2874{
2875 struct S { }
2876 S* s = _d_newitemT!S();
2877
2878 assert(s !is null);
2879}
2880
2881// Test initializers
2882@safe unittest
8da8c7d3 2883{
8da8c7d3 2884 {
0cafc3b6
IB
2885 // zero-initialization
2886 struct S { int x, y; }
2887 S* s = _d_newitemT!S();
8da8c7d3 2888
0cafc3b6
IB
2889 assert(s.x == 0);
2890 assert(s.y == 0);
2891 }
2892 {
2893 // S.init
2894 struct S { int x = 2, y = 3; }
2895 S* s = _d_newitemT!S();
2896
2897 assert(s.x == 2);
2898 assert(s.y == 3);
2899 }
2900}
2901
2902// Test GC attributes
2903version (CoreUnittest)
2904{
2905 struct S1
2906 {
2907 int x = 5;
2908 }
2909 struct S2
2910 {
2911 int x;
2912 this(int x) { this.x = x; }
2913 }
2914 struct S3
2915 {
2916 int[4] x;
2917 this(int x) { this.x[] = x; }
2918 }
2919 struct S4
2920 {
2921 int *x;
2922 }
2923
2924}
2925@system unittest
2926{
2927 import core.memory : GC;
2928
2929 auto s1 = new S1;
2930 assert(s1.x == 5);
2931 assert(GC.getAttr(s1) == GC.BlkAttr.NO_SCAN);
2932
2933 auto s2 = new S2(3);
2934 assert(s2.x == 3);
2935 assert(GC.getAttr(s2) == GC.BlkAttr.NO_SCAN);
2936
2937 auto s3 = new S3(1);
2938 assert(s3.x == [1, 1, 1, 1]);
2939 assert(GC.getAttr(s3) == GC.BlkAttr.NO_SCAN);
2940 debug(SENTINEL) {} else
2941 assert(GC.sizeOf(s3) == 16);
2942
2943 auto s4 = new S4;
2944 assert(s4.x == null);
2945 assert(GC.getAttr(s4) == 0);
2946}
2947
2948// Test struct finalizers exception handling
2949debug(SENTINEL) {} else
2950@system unittest
2951{
2952 import core.memory : GC;
2953
2954 bool test(E)()
2955 {
2956 import core.exception;
2957 static struct S1
2958 {
2959 E exc;
2960 ~this() { throw exc; }
2961 }
2962
2963 bool caught = false;
2964 S1* s = new S1(new E("test onFinalizeError"));
2965 try
2966 {
2967 GC.runFinalizers((cast(char*)(typeid(S1).xdtor))[0 .. 1]);
2968 }
2969 catch (FinalizeError err)
2970 {
2971 caught = true;
2972 }
2973 catch (E)
2974 {
2975 }
2976 GC.free(s);
2977 return caught;
2978 }
2979
2980 assert(test!Exception);
2981 import core.exception : InvalidMemoryOperationError;
2982 assert(!test!InvalidMemoryOperationError);
2983}
2984
2985version (D_ProfileGC)
2986{
2987 /**
2988 * TraceGC wrapper around $(REF _d_newitemT, core,lifetime).
2989 */
2990 T* _d_newitemTTrace(T)(string file, int line, string funcname) @trusted
2991 {
2992 version (D_TypeInfo)
2993 {
2994 import core.internal.array.utils : TraceHook, gcStatsPure, accumulatePure;
2995 mixin(TraceHook!(T.stringof, "_d_newitemT"));
2996
2997 return _d_newitemT!T();
2998 }
2999 else
3000 assert(0, "Cannot create new `struct` if compiling without support for runtime type information!");
8da8c7d3 3001 }
8da8c7d3 3002}