]> git.ipfire.org Git - people/ms/linux.git/blame - mm/huge_memory.c
mm/mmu_notifier: avoid double notification when it is useless
[people/ms/linux.git] / mm / huge_memory.c
CommitLineData
71e3aac0
AA
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
ae3a8c1c
AM
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
71e3aac0
AA
10#include <linux/mm.h>
11#include <linux/sched.h>
f7ccbae4 12#include <linux/sched/coredump.h>
6a3827d7 13#include <linux/sched/numa_balancing.h>
71e3aac0
AA
14#include <linux/highmem.h>
15#include <linux/hugetlb.h>
16#include <linux/mmu_notifier.h>
17#include <linux/rmap.h>
18#include <linux/swap.h>
97ae1749 19#include <linux/shrinker.h>
ba76149f 20#include <linux/mm_inline.h>
e9b61f19 21#include <linux/swapops.h>
4897c765 22#include <linux/dax.h>
ba76149f 23#include <linux/khugepaged.h>
878aee7d 24#include <linux/freezer.h>
f25748e3 25#include <linux/pfn_t.h>
a664b2d8 26#include <linux/mman.h>
3565fce3 27#include <linux/memremap.h>
325adeb5 28#include <linux/pagemap.h>
49071d43 29#include <linux/debugfs.h>
4daae3b4 30#include <linux/migrate.h>
43b5fbbd 31#include <linux/hashtable.h>
6b251fc9 32#include <linux/userfaultfd_k.h>
33c3fc71 33#include <linux/page_idle.h>
baa355fd 34#include <linux/shmem_fs.h>
6b31d595 35#include <linux/oom.h>
97ae1749 36
71e3aac0
AA
37#include <asm/tlb.h>
38#include <asm/pgalloc.h>
39#include "internal.h"
40
ba76149f 41/*
b14d595a
MD
42 * By default, transparent hugepage support is disabled in order to avoid
43 * risking an increased memory footprint for applications that are not
44 * guaranteed to benefit from it. When transparent hugepage support is
45 * enabled, it is for all mappings, and khugepaged scans all mappings.
8bfa3f9a
JW
46 * Defrag is invoked by khugepaged hugepage allocations and by page faults
47 * for all hugepage allocations.
ba76149f 48 */
71e3aac0 49unsigned long transparent_hugepage_flags __read_mostly =
13ece886 50#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 51 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
52#endif
53#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55#endif
444eb2a4 56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
79da5407
KS
57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
ba76149f 59
9a982250 60static struct shrinker deferred_split_shrinker;
f000565a 61
97ae1749 62static atomic_t huge_zero_refcount;
56873f43 63struct page *huge_zero_page __read_mostly;
4a6c1297 64
6fcb52a5 65static struct page *get_huge_zero_page(void)
97ae1749
KS
66{
67 struct page *zero_page;
68retry:
69 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
4db0c3c2 70 return READ_ONCE(huge_zero_page);
97ae1749
KS
71
72 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
4a6c1297 73 HPAGE_PMD_ORDER);
d8a8e1f0
KS
74 if (!zero_page) {
75 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
5918d10a 76 return NULL;
d8a8e1f0
KS
77 }
78 count_vm_event(THP_ZERO_PAGE_ALLOC);
97ae1749 79 preempt_disable();
5918d10a 80 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97ae1749 81 preempt_enable();
5ddacbe9 82 __free_pages(zero_page, compound_order(zero_page));
97ae1749
KS
83 goto retry;
84 }
85
86 /* We take additional reference here. It will be put back by shrinker */
87 atomic_set(&huge_zero_refcount, 2);
88 preempt_enable();
4db0c3c2 89 return READ_ONCE(huge_zero_page);
4a6c1297
KS
90}
91
6fcb52a5 92static void put_huge_zero_page(void)
4a6c1297 93{
97ae1749
KS
94 /*
95 * Counter should never go to zero here. Only shrinker can put
96 * last reference.
97 */
98 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
4a6c1297
KS
99}
100
6fcb52a5
AL
101struct page *mm_get_huge_zero_page(struct mm_struct *mm)
102{
103 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
104 return READ_ONCE(huge_zero_page);
105
106 if (!get_huge_zero_page())
107 return NULL;
108
109 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
110 put_huge_zero_page();
111
112 return READ_ONCE(huge_zero_page);
113}
114
115void mm_put_huge_zero_page(struct mm_struct *mm)
116{
117 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
118 put_huge_zero_page();
119}
120
48896466
GC
121static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
122 struct shrink_control *sc)
4a6c1297 123{
48896466
GC
124 /* we can free zero page only if last reference remains */
125 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
126}
97ae1749 127
48896466
GC
128static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
129 struct shrink_control *sc)
130{
97ae1749 131 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
5918d10a
KS
132 struct page *zero_page = xchg(&huge_zero_page, NULL);
133 BUG_ON(zero_page == NULL);
5ddacbe9 134 __free_pages(zero_page, compound_order(zero_page));
48896466 135 return HPAGE_PMD_NR;
97ae1749
KS
136 }
137
138 return 0;
4a6c1297
KS
139}
140
97ae1749 141static struct shrinker huge_zero_page_shrinker = {
48896466
GC
142 .count_objects = shrink_huge_zero_page_count,
143 .scan_objects = shrink_huge_zero_page_scan,
97ae1749
KS
144 .seeks = DEFAULT_SEEKS,
145};
146
71e3aac0 147#ifdef CONFIG_SYSFS
71e3aac0
AA
148static ssize_t enabled_show(struct kobject *kobj,
149 struct kobj_attribute *attr, char *buf)
150{
444eb2a4
MG
151 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
152 return sprintf(buf, "[always] madvise never\n");
153 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
154 return sprintf(buf, "always [madvise] never\n");
155 else
156 return sprintf(buf, "always madvise [never]\n");
71e3aac0 157}
444eb2a4 158
71e3aac0
AA
159static ssize_t enabled_store(struct kobject *kobj,
160 struct kobj_attribute *attr,
161 const char *buf, size_t count)
162{
21440d7e 163 ssize_t ret = count;
ba76149f 164
21440d7e
DR
165 if (!memcmp("always", buf,
166 min(sizeof("always")-1, count))) {
167 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
168 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
169 } else if (!memcmp("madvise", buf,
170 min(sizeof("madvise")-1, count))) {
171 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
172 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
173 } else if (!memcmp("never", buf,
174 min(sizeof("never")-1, count))) {
175 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
176 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
177 } else
178 ret = -EINVAL;
ba76149f
AA
179
180 if (ret > 0) {
b46e756f 181 int err = start_stop_khugepaged();
ba76149f
AA
182 if (err)
183 ret = err;
184 }
ba76149f 185 return ret;
71e3aac0
AA
186}
187static struct kobj_attribute enabled_attr =
188 __ATTR(enabled, 0644, enabled_show, enabled_store);
189
b46e756f 190ssize_t single_hugepage_flag_show(struct kobject *kobj,
71e3aac0
AA
191 struct kobj_attribute *attr, char *buf,
192 enum transparent_hugepage_flag flag)
193{
e27e6151
BH
194 return sprintf(buf, "%d\n",
195 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 196}
e27e6151 197
b46e756f 198ssize_t single_hugepage_flag_store(struct kobject *kobj,
71e3aac0
AA
199 struct kobj_attribute *attr,
200 const char *buf, size_t count,
201 enum transparent_hugepage_flag flag)
202{
e27e6151
BH
203 unsigned long value;
204 int ret;
205
206 ret = kstrtoul(buf, 10, &value);
207 if (ret < 0)
208 return ret;
209 if (value > 1)
210 return -EINVAL;
211
212 if (value)
71e3aac0 213 set_bit(flag, &transparent_hugepage_flags);
e27e6151 214 else
71e3aac0 215 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
216
217 return count;
218}
219
71e3aac0
AA
220static ssize_t defrag_show(struct kobject *kobj,
221 struct kobj_attribute *attr, char *buf)
222{
444eb2a4 223 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
21440d7e 224 return sprintf(buf, "[always] defer defer+madvise madvise never\n");
444eb2a4 225 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
21440d7e
DR
226 return sprintf(buf, "always [defer] defer+madvise madvise never\n");
227 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
228 return sprintf(buf, "always defer [defer+madvise] madvise never\n");
229 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
230 return sprintf(buf, "always defer defer+madvise [madvise] never\n");
231 return sprintf(buf, "always defer defer+madvise madvise [never]\n");
71e3aac0 232}
21440d7e 233
71e3aac0
AA
234static ssize_t defrag_store(struct kobject *kobj,
235 struct kobj_attribute *attr,
236 const char *buf, size_t count)
237{
21440d7e
DR
238 if (!memcmp("always", buf,
239 min(sizeof("always")-1, count))) {
240 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
241 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
242 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
243 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
21440d7e
DR
244 } else if (!memcmp("defer+madvise", buf,
245 min(sizeof("defer+madvise")-1, count))) {
246 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
247 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
248 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
249 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
4fad7fb6
DR
250 } else if (!memcmp("defer", buf,
251 min(sizeof("defer")-1, count))) {
252 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
253 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
254 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
255 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
21440d7e
DR
256 } else if (!memcmp("madvise", buf,
257 min(sizeof("madvise")-1, count))) {
258 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
259 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
260 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
261 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
262 } else if (!memcmp("never", buf,
263 min(sizeof("never")-1, count))) {
264 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
265 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
266 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
267 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
268 } else
269 return -EINVAL;
270
271 return count;
71e3aac0
AA
272}
273static struct kobj_attribute defrag_attr =
274 __ATTR(defrag, 0644, defrag_show, defrag_store);
275
79da5407
KS
276static ssize_t use_zero_page_show(struct kobject *kobj,
277 struct kobj_attribute *attr, char *buf)
278{
b46e756f 279 return single_hugepage_flag_show(kobj, attr, buf,
79da5407
KS
280 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
281}
282static ssize_t use_zero_page_store(struct kobject *kobj,
283 struct kobj_attribute *attr, const char *buf, size_t count)
284{
b46e756f 285 return single_hugepage_flag_store(kobj, attr, buf, count,
79da5407
KS
286 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
287}
288static struct kobj_attribute use_zero_page_attr =
289 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
49920d28
HD
290
291static ssize_t hpage_pmd_size_show(struct kobject *kobj,
292 struct kobj_attribute *attr, char *buf)
293{
294 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
295}
296static struct kobj_attribute hpage_pmd_size_attr =
297 __ATTR_RO(hpage_pmd_size);
298
71e3aac0
AA
299#ifdef CONFIG_DEBUG_VM
300static ssize_t debug_cow_show(struct kobject *kobj,
301 struct kobj_attribute *attr, char *buf)
302{
b46e756f 303 return single_hugepage_flag_show(kobj, attr, buf,
71e3aac0
AA
304 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
305}
306static ssize_t debug_cow_store(struct kobject *kobj,
307 struct kobj_attribute *attr,
308 const char *buf, size_t count)
309{
b46e756f 310 return single_hugepage_flag_store(kobj, attr, buf, count,
71e3aac0
AA
311 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
312}
313static struct kobj_attribute debug_cow_attr =
314 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
315#endif /* CONFIG_DEBUG_VM */
316
317static struct attribute *hugepage_attr[] = {
318 &enabled_attr.attr,
319 &defrag_attr.attr,
79da5407 320 &use_zero_page_attr.attr,
49920d28 321 &hpage_pmd_size_attr.attr,
e496cf3d 322#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
5a6e75f8
KS
323 &shmem_enabled_attr.attr,
324#endif
71e3aac0
AA
325#ifdef CONFIG_DEBUG_VM
326 &debug_cow_attr.attr,
327#endif
328 NULL,
329};
330
8aa95a21 331static const struct attribute_group hugepage_attr_group = {
71e3aac0 332 .attrs = hugepage_attr,
ba76149f
AA
333};
334
569e5590 335static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 336{
71e3aac0
AA
337 int err;
338
569e5590
SL
339 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
340 if (unlikely(!*hugepage_kobj)) {
ae3a8c1c 341 pr_err("failed to create transparent hugepage kobject\n");
569e5590 342 return -ENOMEM;
ba76149f
AA
343 }
344
569e5590 345 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f 346 if (err) {
ae3a8c1c 347 pr_err("failed to register transparent hugepage group\n");
569e5590 348 goto delete_obj;
ba76149f
AA
349 }
350
569e5590 351 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f 352 if (err) {
ae3a8c1c 353 pr_err("failed to register transparent hugepage group\n");
569e5590 354 goto remove_hp_group;
ba76149f 355 }
569e5590
SL
356
357 return 0;
358
359remove_hp_group:
360 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
361delete_obj:
362 kobject_put(*hugepage_kobj);
363 return err;
364}
365
366static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
367{
368 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
369 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
370 kobject_put(hugepage_kobj);
371}
372#else
373static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
374{
375 return 0;
376}
377
378static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
379{
380}
381#endif /* CONFIG_SYSFS */
382
383static int __init hugepage_init(void)
384{
385 int err;
386 struct kobject *hugepage_kobj;
387
388 if (!has_transparent_hugepage()) {
389 transparent_hugepage_flags = 0;
390 return -EINVAL;
391 }
392
ff20c2e0
KS
393 /*
394 * hugepages can't be allocated by the buddy allocator
395 */
396 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
397 /*
398 * we use page->mapping and page->index in second tail page
399 * as list_head: assuming THP order >= 2
400 */
401 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
402
569e5590
SL
403 err = hugepage_init_sysfs(&hugepage_kobj);
404 if (err)
65ebb64f 405 goto err_sysfs;
ba76149f 406
b46e756f 407 err = khugepaged_init();
ba76149f 408 if (err)
65ebb64f 409 goto err_slab;
ba76149f 410
65ebb64f
KS
411 err = register_shrinker(&huge_zero_page_shrinker);
412 if (err)
413 goto err_hzp_shrinker;
9a982250
KS
414 err = register_shrinker(&deferred_split_shrinker);
415 if (err)
416 goto err_split_shrinker;
97ae1749 417
97562cd2
RR
418 /*
419 * By default disable transparent hugepages on smaller systems,
420 * where the extra memory used could hurt more than TLB overhead
421 * is likely to save. The admin can still enable it through /sys.
422 */
79553da2 423 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
97562cd2 424 transparent_hugepage_flags = 0;
79553da2
KS
425 return 0;
426 }
97562cd2 427
79553da2 428 err = start_stop_khugepaged();
65ebb64f
KS
429 if (err)
430 goto err_khugepaged;
ba76149f 431
569e5590 432 return 0;
65ebb64f 433err_khugepaged:
9a982250
KS
434 unregister_shrinker(&deferred_split_shrinker);
435err_split_shrinker:
65ebb64f
KS
436 unregister_shrinker(&huge_zero_page_shrinker);
437err_hzp_shrinker:
b46e756f 438 khugepaged_destroy();
65ebb64f 439err_slab:
569e5590 440 hugepage_exit_sysfs(hugepage_kobj);
65ebb64f 441err_sysfs:
ba76149f 442 return err;
71e3aac0 443}
a64fb3cd 444subsys_initcall(hugepage_init);
71e3aac0
AA
445
446static int __init setup_transparent_hugepage(char *str)
447{
448 int ret = 0;
449 if (!str)
450 goto out;
451 if (!strcmp(str, "always")) {
452 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
453 &transparent_hugepage_flags);
454 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
455 &transparent_hugepage_flags);
456 ret = 1;
457 } else if (!strcmp(str, "madvise")) {
458 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
459 &transparent_hugepage_flags);
460 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
461 &transparent_hugepage_flags);
462 ret = 1;
463 } else if (!strcmp(str, "never")) {
464 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
465 &transparent_hugepage_flags);
466 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
467 &transparent_hugepage_flags);
468 ret = 1;
469 }
470out:
471 if (!ret)
ae3a8c1c 472 pr_warn("transparent_hugepage= cannot parse, ignored\n");
71e3aac0
AA
473 return ret;
474}
475__setup("transparent_hugepage=", setup_transparent_hugepage);
476
b32967ff 477pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
71e3aac0
AA
478{
479 if (likely(vma->vm_flags & VM_WRITE))
480 pmd = pmd_mkwrite(pmd);
481 return pmd;
482}
483
9a982250
KS
484static inline struct list_head *page_deferred_list(struct page *page)
485{
486 /*
487 * ->lru in the tail pages is occupied by compound_head.
488 * Let's use ->mapping + ->index in the second tail page as list_head.
489 */
490 return (struct list_head *)&page[2].mapping;
491}
492
493void prep_transhuge_page(struct page *page)
494{
495 /*
496 * we use page->mapping and page->indexlru in second tail page
497 * as list_head: assuming THP order >= 2
498 */
9a982250
KS
499
500 INIT_LIST_HEAD(page_deferred_list(page));
501 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
502}
503
74d2fad1
TK
504unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
505 loff_t off, unsigned long flags, unsigned long size)
506{
507 unsigned long addr;
508 loff_t off_end = off + len;
509 loff_t off_align = round_up(off, size);
510 unsigned long len_pad;
511
512 if (off_end <= off_align || (off_end - off_align) < size)
513 return 0;
514
515 len_pad = len + size;
516 if (len_pad < len || (off + len_pad) < off)
517 return 0;
518
519 addr = current->mm->get_unmapped_area(filp, 0, len_pad,
520 off >> PAGE_SHIFT, flags);
521 if (IS_ERR_VALUE(addr))
522 return 0;
523
524 addr += (off - addr) & (size - 1);
525 return addr;
526}
527
528unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
529 unsigned long len, unsigned long pgoff, unsigned long flags)
530{
531 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
532
533 if (addr)
534 goto out;
535 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
536 goto out;
537
538 addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
539 if (addr)
540 return addr;
541
542 out:
543 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
544}
545EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
546
82b0f8c3 547static int __do_huge_pmd_anonymous_page(struct vm_fault *vmf, struct page *page,
bae473a4 548 gfp_t gfp)
71e3aac0 549{
82b0f8c3 550 struct vm_area_struct *vma = vmf->vma;
00501b53 551 struct mem_cgroup *memcg;
71e3aac0 552 pgtable_t pgtable;
82b0f8c3 553 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
6b31d595 554 int ret = 0;
71e3aac0 555
309381fe 556 VM_BUG_ON_PAGE(!PageCompound(page), page);
00501b53 557
bae473a4 558 if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
6b251fc9
AA
559 put_page(page);
560 count_vm_event(THP_FAULT_FALLBACK);
561 return VM_FAULT_FALLBACK;
562 }
00501b53 563
bae473a4 564 pgtable = pte_alloc_one(vma->vm_mm, haddr);
00501b53 565 if (unlikely(!pgtable)) {
6b31d595
MH
566 ret = VM_FAULT_OOM;
567 goto release;
00501b53 568 }
71e3aac0 569
c79b57e4 570 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
52f37629
MK
571 /*
572 * The memory barrier inside __SetPageUptodate makes sure that
573 * clear_huge_page writes become visible before the set_pmd_at()
574 * write.
575 */
71e3aac0
AA
576 __SetPageUptodate(page);
577
82b0f8c3
JK
578 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
579 if (unlikely(!pmd_none(*vmf->pmd))) {
6b31d595 580 goto unlock_release;
71e3aac0
AA
581 } else {
582 pmd_t entry;
6b251fc9 583
6b31d595
MH
584 ret = check_stable_address_space(vma->vm_mm);
585 if (ret)
586 goto unlock_release;
587
6b251fc9
AA
588 /* Deliver the page fault to userland */
589 if (userfaultfd_missing(vma)) {
590 int ret;
591
82b0f8c3 592 spin_unlock(vmf->ptl);
f627c2f5 593 mem_cgroup_cancel_charge(page, memcg, true);
6b251fc9 594 put_page(page);
bae473a4 595 pte_free(vma->vm_mm, pgtable);
82b0f8c3 596 ret = handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
597 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
598 return ret;
599 }
600
3122359a
KS
601 entry = mk_huge_pmd(page, vma->vm_page_prot);
602 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
d281ee61 603 page_add_new_anon_rmap(page, vma, haddr, true);
f627c2f5 604 mem_cgroup_commit_charge(page, memcg, false, true);
00501b53 605 lru_cache_add_active_or_unevictable(page, vma);
82b0f8c3
JK
606 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
607 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
bae473a4
KS
608 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
609 atomic_long_inc(&vma->vm_mm->nr_ptes);
82b0f8c3 610 spin_unlock(vmf->ptl);
6b251fc9 611 count_vm_event(THP_FAULT_ALLOC);
71e3aac0
AA
612 }
613
aa2e878e 614 return 0;
6b31d595
MH
615unlock_release:
616 spin_unlock(vmf->ptl);
617release:
618 if (pgtable)
619 pte_free(vma->vm_mm, pgtable);
620 mem_cgroup_cancel_charge(page, memcg, true);
621 put_page(page);
622 return ret;
623
71e3aac0
AA
624}
625
444eb2a4 626/*
21440d7e
DR
627 * always: directly stall for all thp allocations
628 * defer: wake kswapd and fail if not immediately available
629 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
630 * fail if not immediately available
631 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
632 * available
633 * never: never stall for any thp allocation
444eb2a4
MG
634 */
635static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
636{
21440d7e 637 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
25160354 638
21440d7e 639 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
25160354 640 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
21440d7e
DR
641 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
642 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
643 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
644 return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
645 __GFP_KSWAPD_RECLAIM);
646 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
647 return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
648 0);
25160354 649 return GFP_TRANSHUGE_LIGHT;
444eb2a4
MG
650}
651
c4088ebd 652/* Caller must hold page table lock. */
d295e341 653static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
97ae1749 654 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
5918d10a 655 struct page *zero_page)
fc9fe822
KS
656{
657 pmd_t entry;
7c414164
AM
658 if (!pmd_none(*pmd))
659 return false;
5918d10a 660 entry = mk_pmd(zero_page, vma->vm_page_prot);
fc9fe822 661 entry = pmd_mkhuge(entry);
12c9d70b
MW
662 if (pgtable)
663 pgtable_trans_huge_deposit(mm, pmd, pgtable);
fc9fe822 664 set_pmd_at(mm, haddr, pmd, entry);
e1f56c89 665 atomic_long_inc(&mm->nr_ptes);
7c414164 666 return true;
fc9fe822
KS
667}
668
82b0f8c3 669int do_huge_pmd_anonymous_page(struct vm_fault *vmf)
71e3aac0 670{
82b0f8c3 671 struct vm_area_struct *vma = vmf->vma;
077fcf11 672 gfp_t gfp;
71e3aac0 673 struct page *page;
82b0f8c3 674 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
71e3aac0 675
128ec037 676 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
c0292554 677 return VM_FAULT_FALLBACK;
128ec037
KS
678 if (unlikely(anon_vma_prepare(vma)))
679 return VM_FAULT_OOM;
6d50e60c 680 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
128ec037 681 return VM_FAULT_OOM;
82b0f8c3 682 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 683 !mm_forbids_zeropage(vma->vm_mm) &&
128ec037
KS
684 transparent_hugepage_use_zero_page()) {
685 pgtable_t pgtable;
686 struct page *zero_page;
687 bool set;
6b251fc9 688 int ret;
bae473a4 689 pgtable = pte_alloc_one(vma->vm_mm, haddr);
128ec037 690 if (unlikely(!pgtable))
ba76149f 691 return VM_FAULT_OOM;
6fcb52a5 692 zero_page = mm_get_huge_zero_page(vma->vm_mm);
128ec037 693 if (unlikely(!zero_page)) {
bae473a4 694 pte_free(vma->vm_mm, pgtable);
81ab4201 695 count_vm_event(THP_FAULT_FALLBACK);
c0292554 696 return VM_FAULT_FALLBACK;
b9bbfbe3 697 }
82b0f8c3 698 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
6b251fc9
AA
699 ret = 0;
700 set = false;
82b0f8c3 701 if (pmd_none(*vmf->pmd)) {
6b31d595
MH
702 ret = check_stable_address_space(vma->vm_mm);
703 if (ret) {
704 spin_unlock(vmf->ptl);
705 } else if (userfaultfd_missing(vma)) {
82b0f8c3
JK
706 spin_unlock(vmf->ptl);
707 ret = handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
708 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
709 } else {
bae473a4 710 set_huge_zero_page(pgtable, vma->vm_mm, vma,
82b0f8c3
JK
711 haddr, vmf->pmd, zero_page);
712 spin_unlock(vmf->ptl);
6b251fc9
AA
713 set = true;
714 }
715 } else
82b0f8c3 716 spin_unlock(vmf->ptl);
6fcb52a5 717 if (!set)
bae473a4 718 pte_free(vma->vm_mm, pgtable);
6b251fc9 719 return ret;
71e3aac0 720 }
444eb2a4 721 gfp = alloc_hugepage_direct_gfpmask(vma);
077fcf11 722 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
128ec037
KS
723 if (unlikely(!page)) {
724 count_vm_event(THP_FAULT_FALLBACK);
c0292554 725 return VM_FAULT_FALLBACK;
128ec037 726 }
9a982250 727 prep_transhuge_page(page);
82b0f8c3 728 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
71e3aac0
AA
729}
730
ae18d6dc 731static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
3b6521f5
OH
732 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
733 pgtable_t pgtable)
5cad465d
MW
734{
735 struct mm_struct *mm = vma->vm_mm;
736 pmd_t entry;
737 spinlock_t *ptl;
738
739 ptl = pmd_lock(mm, pmd);
f25748e3
DW
740 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
741 if (pfn_t_devmap(pfn))
742 entry = pmd_mkdevmap(entry);
01871e59
RZ
743 if (write) {
744 entry = pmd_mkyoung(pmd_mkdirty(entry));
745 entry = maybe_pmd_mkwrite(entry, vma);
5cad465d 746 }
3b6521f5
OH
747
748 if (pgtable) {
749 pgtable_trans_huge_deposit(mm, pmd, pgtable);
750 atomic_long_inc(&mm->nr_ptes);
751 }
752
01871e59
RZ
753 set_pmd_at(mm, addr, pmd, entry);
754 update_mmu_cache_pmd(vma, addr, pmd);
5cad465d 755 spin_unlock(ptl);
5cad465d
MW
756}
757
758int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
f25748e3 759 pmd_t *pmd, pfn_t pfn, bool write)
5cad465d
MW
760{
761 pgprot_t pgprot = vma->vm_page_prot;
3b6521f5 762 pgtable_t pgtable = NULL;
5cad465d
MW
763 /*
764 * If we had pmd_special, we could avoid all these restrictions,
765 * but we need to be consistent with PTEs and architectures that
766 * can't support a 'special' bit.
767 */
768 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
769 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
770 (VM_PFNMAP|VM_MIXEDMAP));
771 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
f25748e3 772 BUG_ON(!pfn_t_devmap(pfn));
5cad465d
MW
773
774 if (addr < vma->vm_start || addr >= vma->vm_end)
775 return VM_FAULT_SIGBUS;
308a047c 776
3b6521f5
OH
777 if (arch_needs_pgtable_deposit()) {
778 pgtable = pte_alloc_one(vma->vm_mm, addr);
779 if (!pgtable)
780 return VM_FAULT_OOM;
781 }
782
308a047c
BP
783 track_pfn_insert(vma, &pgprot, pfn);
784
3b6521f5 785 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write, pgtable);
ae18d6dc 786 return VM_FAULT_NOPAGE;
5cad465d 787}
dee41079 788EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
5cad465d 789
a00cc7d9
MW
790#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
791static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
792{
793 if (likely(vma->vm_flags & VM_WRITE))
794 pud = pud_mkwrite(pud);
795 return pud;
796}
797
798static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
799 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
800{
801 struct mm_struct *mm = vma->vm_mm;
802 pud_t entry;
803 spinlock_t *ptl;
804
805 ptl = pud_lock(mm, pud);
806 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
807 if (pfn_t_devmap(pfn))
808 entry = pud_mkdevmap(entry);
809 if (write) {
810 entry = pud_mkyoung(pud_mkdirty(entry));
811 entry = maybe_pud_mkwrite(entry, vma);
812 }
813 set_pud_at(mm, addr, pud, entry);
814 update_mmu_cache_pud(vma, addr, pud);
815 spin_unlock(ptl);
816}
817
818int vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
819 pud_t *pud, pfn_t pfn, bool write)
820{
821 pgprot_t pgprot = vma->vm_page_prot;
822 /*
823 * If we had pud_special, we could avoid all these restrictions,
824 * but we need to be consistent with PTEs and architectures that
825 * can't support a 'special' bit.
826 */
827 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
828 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
829 (VM_PFNMAP|VM_MIXEDMAP));
830 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
831 BUG_ON(!pfn_t_devmap(pfn));
832
833 if (addr < vma->vm_start || addr >= vma->vm_end)
834 return VM_FAULT_SIGBUS;
835
836 track_pfn_insert(vma, &pgprot, pfn);
837
838 insert_pfn_pud(vma, addr, pud, pfn, pgprot, write);
839 return VM_FAULT_NOPAGE;
840}
841EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
842#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
843
3565fce3
DW
844static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
845 pmd_t *pmd)
846{
847 pmd_t _pmd;
848
849 /*
850 * We should set the dirty bit only for FOLL_WRITE but for now
851 * the dirty bit in the pmd is meaningless. And if the dirty
852 * bit will become meaningful and we'll only set it with
853 * FOLL_WRITE, an atomic set_bit will be required on the pmd to
854 * set the young bit, instead of the current set_pmd_at.
855 */
856 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
857 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
858 pmd, _pmd, 1))
859 update_mmu_cache_pmd(vma, addr, pmd);
860}
861
862struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
863 pmd_t *pmd, int flags)
864{
865 unsigned long pfn = pmd_pfn(*pmd);
866 struct mm_struct *mm = vma->vm_mm;
867 struct dev_pagemap *pgmap;
868 struct page *page;
869
870 assert_spin_locked(pmd_lockptr(mm, pmd));
871
8310d48b
KF
872 /*
873 * When we COW a devmap PMD entry, we split it into PTEs, so we should
874 * not be in this function with `flags & FOLL_COW` set.
875 */
876 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
877
3565fce3
DW
878 if (flags & FOLL_WRITE && !pmd_write(*pmd))
879 return NULL;
880
881 if (pmd_present(*pmd) && pmd_devmap(*pmd))
882 /* pass */;
883 else
884 return NULL;
885
886 if (flags & FOLL_TOUCH)
887 touch_pmd(vma, addr, pmd);
888
889 /*
890 * device mapped pages can only be returned if the
891 * caller will manage the page reference count.
892 */
893 if (!(flags & FOLL_GET))
894 return ERR_PTR(-EEXIST);
895
896 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
897 pgmap = get_dev_pagemap(pfn, NULL);
898 if (!pgmap)
899 return ERR_PTR(-EFAULT);
900 page = pfn_to_page(pfn);
901 get_page(page);
902 put_dev_pagemap(pgmap);
903
904 return page;
905}
906
71e3aac0
AA
907int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
908 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
909 struct vm_area_struct *vma)
910{
c4088ebd 911 spinlock_t *dst_ptl, *src_ptl;
71e3aac0
AA
912 struct page *src_page;
913 pmd_t pmd;
12c9d70b 914 pgtable_t pgtable = NULL;
628d47ce 915 int ret = -ENOMEM;
71e3aac0 916
628d47ce
KS
917 /* Skip if can be re-fill on fault */
918 if (!vma_is_anonymous(vma))
919 return 0;
920
921 pgtable = pte_alloc_one(dst_mm, addr);
922 if (unlikely(!pgtable))
923 goto out;
71e3aac0 924
c4088ebd
KS
925 dst_ptl = pmd_lock(dst_mm, dst_pmd);
926 src_ptl = pmd_lockptr(src_mm, src_pmd);
927 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
71e3aac0
AA
928
929 ret = -EAGAIN;
930 pmd = *src_pmd;
84c3fc4e
ZY
931
932#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
933 if (unlikely(is_swap_pmd(pmd))) {
934 swp_entry_t entry = pmd_to_swp_entry(pmd);
935
936 VM_BUG_ON(!is_pmd_migration_entry(pmd));
937 if (is_write_migration_entry(entry)) {
938 make_migration_entry_read(&entry);
939 pmd = swp_entry_to_pmd(entry);
ab6e3d09
NH
940 if (pmd_swp_soft_dirty(*src_pmd))
941 pmd = pmd_swp_mksoft_dirty(pmd);
84c3fc4e
ZY
942 set_pmd_at(src_mm, addr, src_pmd, pmd);
943 }
dd8a67f9
ZY
944 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
945 atomic_long_inc(&dst_mm->nr_ptes);
946 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
84c3fc4e
ZY
947 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
948 ret = 0;
949 goto out_unlock;
950 }
951#endif
952
628d47ce 953 if (unlikely(!pmd_trans_huge(pmd))) {
71e3aac0
AA
954 pte_free(dst_mm, pgtable);
955 goto out_unlock;
956 }
fc9fe822 957 /*
c4088ebd 958 * When page table lock is held, the huge zero pmd should not be
fc9fe822
KS
959 * under splitting since we don't split the page itself, only pmd to
960 * a page table.
961 */
962 if (is_huge_zero_pmd(pmd)) {
5918d10a 963 struct page *zero_page;
97ae1749
KS
964 /*
965 * get_huge_zero_page() will never allocate a new page here,
966 * since we already have a zero page to copy. It just takes a
967 * reference.
968 */
6fcb52a5 969 zero_page = mm_get_huge_zero_page(dst_mm);
6b251fc9 970 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
5918d10a 971 zero_page);
fc9fe822
KS
972 ret = 0;
973 goto out_unlock;
974 }
de466bd6 975
628d47ce
KS
976 src_page = pmd_page(pmd);
977 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
978 get_page(src_page);
979 page_dup_rmap(src_page, true);
980 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
981 atomic_long_inc(&dst_mm->nr_ptes);
982 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
71e3aac0
AA
983
984 pmdp_set_wrprotect(src_mm, addr, src_pmd);
985 pmd = pmd_mkold(pmd_wrprotect(pmd));
986 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
71e3aac0
AA
987
988 ret = 0;
989out_unlock:
c4088ebd
KS
990 spin_unlock(src_ptl);
991 spin_unlock(dst_ptl);
71e3aac0
AA
992out:
993 return ret;
994}
995
a00cc7d9
MW
996#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
997static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
998 pud_t *pud)
999{
1000 pud_t _pud;
1001
1002 /*
1003 * We should set the dirty bit only for FOLL_WRITE but for now
1004 * the dirty bit in the pud is meaningless. And if the dirty
1005 * bit will become meaningful and we'll only set it with
1006 * FOLL_WRITE, an atomic set_bit will be required on the pud to
1007 * set the young bit, instead of the current set_pud_at.
1008 */
1009 _pud = pud_mkyoung(pud_mkdirty(*pud));
1010 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1011 pud, _pud, 1))
1012 update_mmu_cache_pud(vma, addr, pud);
1013}
1014
1015struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1016 pud_t *pud, int flags)
1017{
1018 unsigned long pfn = pud_pfn(*pud);
1019 struct mm_struct *mm = vma->vm_mm;
1020 struct dev_pagemap *pgmap;
1021 struct page *page;
1022
1023 assert_spin_locked(pud_lockptr(mm, pud));
1024
1025 if (flags & FOLL_WRITE && !pud_write(*pud))
1026 return NULL;
1027
1028 if (pud_present(*pud) && pud_devmap(*pud))
1029 /* pass */;
1030 else
1031 return NULL;
1032
1033 if (flags & FOLL_TOUCH)
1034 touch_pud(vma, addr, pud);
1035
1036 /*
1037 * device mapped pages can only be returned if the
1038 * caller will manage the page reference count.
1039 */
1040 if (!(flags & FOLL_GET))
1041 return ERR_PTR(-EEXIST);
1042
1043 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1044 pgmap = get_dev_pagemap(pfn, NULL);
1045 if (!pgmap)
1046 return ERR_PTR(-EFAULT);
1047 page = pfn_to_page(pfn);
1048 get_page(page);
1049 put_dev_pagemap(pgmap);
1050
1051 return page;
1052}
1053
1054int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1055 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1056 struct vm_area_struct *vma)
1057{
1058 spinlock_t *dst_ptl, *src_ptl;
1059 pud_t pud;
1060 int ret;
1061
1062 dst_ptl = pud_lock(dst_mm, dst_pud);
1063 src_ptl = pud_lockptr(src_mm, src_pud);
1064 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1065
1066 ret = -EAGAIN;
1067 pud = *src_pud;
1068 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1069 goto out_unlock;
1070
1071 /*
1072 * When page table lock is held, the huge zero pud should not be
1073 * under splitting since we don't split the page itself, only pud to
1074 * a page table.
1075 */
1076 if (is_huge_zero_pud(pud)) {
1077 /* No huge zero pud yet */
1078 }
1079
1080 pudp_set_wrprotect(src_mm, addr, src_pud);
1081 pud = pud_mkold(pud_wrprotect(pud));
1082 set_pud_at(dst_mm, addr, dst_pud, pud);
1083
1084 ret = 0;
1085out_unlock:
1086 spin_unlock(src_ptl);
1087 spin_unlock(dst_ptl);
1088 return ret;
1089}
1090
1091void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1092{
1093 pud_t entry;
1094 unsigned long haddr;
1095 bool write = vmf->flags & FAULT_FLAG_WRITE;
1096
1097 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1098 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1099 goto unlock;
1100
1101 entry = pud_mkyoung(orig_pud);
1102 if (write)
1103 entry = pud_mkdirty(entry);
1104 haddr = vmf->address & HPAGE_PUD_MASK;
1105 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1106 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1107
1108unlock:
1109 spin_unlock(vmf->ptl);
1110}
1111#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1112
82b0f8c3 1113void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
a1dd450b
WD
1114{
1115 pmd_t entry;
1116 unsigned long haddr;
20f664aa 1117 bool write = vmf->flags & FAULT_FLAG_WRITE;
a1dd450b 1118
82b0f8c3
JK
1119 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1120 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
a1dd450b
WD
1121 goto unlock;
1122
1123 entry = pmd_mkyoung(orig_pmd);
20f664aa
MK
1124 if (write)
1125 entry = pmd_mkdirty(entry);
82b0f8c3 1126 haddr = vmf->address & HPAGE_PMD_MASK;
20f664aa 1127 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
82b0f8c3 1128 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
a1dd450b
WD
1129
1130unlock:
82b0f8c3 1131 spin_unlock(vmf->ptl);
a1dd450b
WD
1132}
1133
82b0f8c3 1134static int do_huge_pmd_wp_page_fallback(struct vm_fault *vmf, pmd_t orig_pmd,
bae473a4 1135 struct page *page)
71e3aac0 1136{
82b0f8c3
JK
1137 struct vm_area_struct *vma = vmf->vma;
1138 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
00501b53 1139 struct mem_cgroup *memcg;
71e3aac0
AA
1140 pgtable_t pgtable;
1141 pmd_t _pmd;
1142 int ret = 0, i;
1143 struct page **pages;
2ec74c3e
SG
1144 unsigned long mmun_start; /* For mmu_notifiers */
1145 unsigned long mmun_end; /* For mmu_notifiers */
71e3aac0
AA
1146
1147 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1148 GFP_KERNEL);
1149 if (unlikely(!pages)) {
1150 ret |= VM_FAULT_OOM;
1151 goto out;
1152 }
1153
1154 for (i = 0; i < HPAGE_PMD_NR; i++) {
41b6167e 1155 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 1156 vmf->address, page_to_nid(page));
b9bbfbe3 1157 if (unlikely(!pages[i] ||
bae473a4
KS
1158 mem_cgroup_try_charge(pages[i], vma->vm_mm,
1159 GFP_KERNEL, &memcg, false))) {
b9bbfbe3 1160 if (pages[i])
71e3aac0 1161 put_page(pages[i]);
b9bbfbe3 1162 while (--i >= 0) {
00501b53
JW
1163 memcg = (void *)page_private(pages[i]);
1164 set_page_private(pages[i], 0);
f627c2f5
KS
1165 mem_cgroup_cancel_charge(pages[i], memcg,
1166 false);
b9bbfbe3
AA
1167 put_page(pages[i]);
1168 }
71e3aac0
AA
1169 kfree(pages);
1170 ret |= VM_FAULT_OOM;
1171 goto out;
1172 }
00501b53 1173 set_page_private(pages[i], (unsigned long)memcg);
71e3aac0
AA
1174 }
1175
1176 for (i = 0; i < HPAGE_PMD_NR; i++) {
1177 copy_user_highpage(pages[i], page + i,
0089e485 1178 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
1179 __SetPageUptodate(pages[i]);
1180 cond_resched();
1181 }
1182
2ec74c3e
SG
1183 mmun_start = haddr;
1184 mmun_end = haddr + HPAGE_PMD_SIZE;
bae473a4 1185 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
2ec74c3e 1186
82b0f8c3
JK
1187 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1188 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
71e3aac0 1189 goto out_free_pages;
309381fe 1190 VM_BUG_ON_PAGE(!PageHead(page), page);
71e3aac0 1191
0f10851e
JG
1192 /*
1193 * Leave pmd empty until pte is filled note we must notify here as
1194 * concurrent CPU thread might write to new page before the call to
1195 * mmu_notifier_invalidate_range_end() happens which can lead to a
1196 * device seeing memory write in different order than CPU.
1197 *
1198 * See Documentation/vm/mmu_notifier.txt
1199 */
82b0f8c3 1200 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
71e3aac0 1201
82b0f8c3 1202 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
bae473a4 1203 pmd_populate(vma->vm_mm, &_pmd, pgtable);
71e3aac0
AA
1204
1205 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
bae473a4 1206 pte_t entry;
71e3aac0
AA
1207 entry = mk_pte(pages[i], vma->vm_page_prot);
1208 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
00501b53
JW
1209 memcg = (void *)page_private(pages[i]);
1210 set_page_private(pages[i], 0);
82b0f8c3 1211 page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
f627c2f5 1212 mem_cgroup_commit_charge(pages[i], memcg, false, false);
00501b53 1213 lru_cache_add_active_or_unevictable(pages[i], vma);
82b0f8c3
JK
1214 vmf->pte = pte_offset_map(&_pmd, haddr);
1215 VM_BUG_ON(!pte_none(*vmf->pte));
1216 set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1217 pte_unmap(vmf->pte);
71e3aac0
AA
1218 }
1219 kfree(pages);
1220
71e3aac0 1221 smp_wmb(); /* make pte visible before pmd */
82b0f8c3 1222 pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
d281ee61 1223 page_remove_rmap(page, true);
82b0f8c3 1224 spin_unlock(vmf->ptl);
71e3aac0 1225
bae473a4 1226 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
2ec74c3e 1227
71e3aac0
AA
1228 ret |= VM_FAULT_WRITE;
1229 put_page(page);
1230
1231out:
1232 return ret;
1233
1234out_free_pages:
82b0f8c3 1235 spin_unlock(vmf->ptl);
bae473a4 1236 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
b9bbfbe3 1237 for (i = 0; i < HPAGE_PMD_NR; i++) {
00501b53
JW
1238 memcg = (void *)page_private(pages[i]);
1239 set_page_private(pages[i], 0);
f627c2f5 1240 mem_cgroup_cancel_charge(pages[i], memcg, false);
71e3aac0 1241 put_page(pages[i]);
b9bbfbe3 1242 }
71e3aac0
AA
1243 kfree(pages);
1244 goto out;
1245}
1246
82b0f8c3 1247int do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
71e3aac0 1248{
82b0f8c3 1249 struct vm_area_struct *vma = vmf->vma;
93b4796d 1250 struct page *page = NULL, *new_page;
00501b53 1251 struct mem_cgroup *memcg;
82b0f8c3 1252 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
2ec74c3e
SG
1253 unsigned long mmun_start; /* For mmu_notifiers */
1254 unsigned long mmun_end; /* For mmu_notifiers */
3b363692 1255 gfp_t huge_gfp; /* for allocation and charge */
bae473a4 1256 int ret = 0;
71e3aac0 1257
82b0f8c3 1258 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
81d1b09c 1259 VM_BUG_ON_VMA(!vma->anon_vma, vma);
93b4796d
KS
1260 if (is_huge_zero_pmd(orig_pmd))
1261 goto alloc;
82b0f8c3
JK
1262 spin_lock(vmf->ptl);
1263 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
71e3aac0
AA
1264 goto out_unlock;
1265
1266 page = pmd_page(orig_pmd);
309381fe 1267 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1f25fe20
KS
1268 /*
1269 * We can only reuse the page if nobody else maps the huge page or it's
6d0a07ed 1270 * part.
1f25fe20 1271 */
ba3c4ce6
HY
1272 if (!trylock_page(page)) {
1273 get_page(page);
1274 spin_unlock(vmf->ptl);
1275 lock_page(page);
1276 spin_lock(vmf->ptl);
1277 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1278 unlock_page(page);
1279 put_page(page);
1280 goto out_unlock;
1281 }
1282 put_page(page);
1283 }
1284 if (reuse_swap_page(page, NULL)) {
71e3aac0
AA
1285 pmd_t entry;
1286 entry = pmd_mkyoung(orig_pmd);
1287 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
82b0f8c3
JK
1288 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1289 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
71e3aac0 1290 ret |= VM_FAULT_WRITE;
ba3c4ce6 1291 unlock_page(page);
71e3aac0
AA
1292 goto out_unlock;
1293 }
ba3c4ce6 1294 unlock_page(page);
ddc58f27 1295 get_page(page);
82b0f8c3 1296 spin_unlock(vmf->ptl);
93b4796d 1297alloc:
71e3aac0 1298 if (transparent_hugepage_enabled(vma) &&
077fcf11 1299 !transparent_hugepage_debug_cow()) {
444eb2a4 1300 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
3b363692 1301 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
077fcf11 1302 } else
71e3aac0
AA
1303 new_page = NULL;
1304
9a982250
KS
1305 if (likely(new_page)) {
1306 prep_transhuge_page(new_page);
1307 } else {
eecc1e42 1308 if (!page) {
82b0f8c3 1309 split_huge_pmd(vma, vmf->pmd, vmf->address);
e9b71ca9 1310 ret |= VM_FAULT_FALLBACK;
93b4796d 1311 } else {
82b0f8c3 1312 ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
9845cbbd 1313 if (ret & VM_FAULT_OOM) {
82b0f8c3 1314 split_huge_pmd(vma, vmf->pmd, vmf->address);
9845cbbd
KS
1315 ret |= VM_FAULT_FALLBACK;
1316 }
ddc58f27 1317 put_page(page);
93b4796d 1318 }
17766dde 1319 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0
AA
1320 goto out;
1321 }
1322
bae473a4
KS
1323 if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
1324 huge_gfp, &memcg, true))) {
b9bbfbe3 1325 put_page(new_page);
82b0f8c3 1326 split_huge_pmd(vma, vmf->pmd, vmf->address);
bae473a4 1327 if (page)
ddc58f27 1328 put_page(page);
9845cbbd 1329 ret |= VM_FAULT_FALLBACK;
17766dde 1330 count_vm_event(THP_FAULT_FALLBACK);
b9bbfbe3
AA
1331 goto out;
1332 }
1333
17766dde
DR
1334 count_vm_event(THP_FAULT_ALLOC);
1335
eecc1e42 1336 if (!page)
c79b57e4 1337 clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
93b4796d
KS
1338 else
1339 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
71e3aac0
AA
1340 __SetPageUptodate(new_page);
1341
2ec74c3e
SG
1342 mmun_start = haddr;
1343 mmun_end = haddr + HPAGE_PMD_SIZE;
bae473a4 1344 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
2ec74c3e 1345
82b0f8c3 1346 spin_lock(vmf->ptl);
93b4796d 1347 if (page)
ddc58f27 1348 put_page(page);
82b0f8c3
JK
1349 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1350 spin_unlock(vmf->ptl);
f627c2f5 1351 mem_cgroup_cancel_charge(new_page, memcg, true);
71e3aac0 1352 put_page(new_page);
2ec74c3e 1353 goto out_mn;
b9bbfbe3 1354 } else {
71e3aac0 1355 pmd_t entry;
3122359a
KS
1356 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1357 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
82b0f8c3 1358 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
d281ee61 1359 page_add_new_anon_rmap(new_page, vma, haddr, true);
f627c2f5 1360 mem_cgroup_commit_charge(new_page, memcg, false, true);
00501b53 1361 lru_cache_add_active_or_unevictable(new_page, vma);
82b0f8c3
JK
1362 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1363 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
eecc1e42 1364 if (!page) {
bae473a4 1365 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
97ae1749 1366 } else {
309381fe 1367 VM_BUG_ON_PAGE(!PageHead(page), page);
d281ee61 1368 page_remove_rmap(page, true);
93b4796d
KS
1369 put_page(page);
1370 }
71e3aac0
AA
1371 ret |= VM_FAULT_WRITE;
1372 }
82b0f8c3 1373 spin_unlock(vmf->ptl);
2ec74c3e 1374out_mn:
bae473a4 1375 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
71e3aac0
AA
1376out:
1377 return ret;
2ec74c3e 1378out_unlock:
82b0f8c3 1379 spin_unlock(vmf->ptl);
2ec74c3e 1380 return ret;
71e3aac0
AA
1381}
1382
8310d48b
KF
1383/*
1384 * FOLL_FORCE can write to even unwritable pmd's, but only
1385 * after we've gone through a COW cycle and they are dirty.
1386 */
1387static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1388{
1389 return pmd_write(pmd) ||
1390 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1391}
1392
b676b293 1393struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1394 unsigned long addr,
1395 pmd_t *pmd,
1396 unsigned int flags)
1397{
b676b293 1398 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1399 struct page *page = NULL;
1400
c4088ebd 1401 assert_spin_locked(pmd_lockptr(mm, pmd));
71e3aac0 1402
8310d48b 1403 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
71e3aac0
AA
1404 goto out;
1405
85facf25
KS
1406 /* Avoid dumping huge zero page */
1407 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1408 return ERR_PTR(-EFAULT);
1409
2b4847e7 1410 /* Full NUMA hinting faults to serialise migration in fault paths */
8a0516ed 1411 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
2b4847e7
MG
1412 goto out;
1413
71e3aac0 1414 page = pmd_page(*pmd);
ca120cf6 1415 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
3565fce3
DW
1416 if (flags & FOLL_TOUCH)
1417 touch_pmd(vma, addr, pmd);
de60f5f1 1418 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
1419 /*
1420 * We don't mlock() pte-mapped THPs. This way we can avoid
1421 * leaking mlocked pages into non-VM_LOCKED VMAs.
1422 *
9a73f61b
KS
1423 * For anon THP:
1424 *
e90309c9
KS
1425 * In most cases the pmd is the only mapping of the page as we
1426 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1427 * writable private mappings in populate_vma_page_range().
1428 *
1429 * The only scenario when we have the page shared here is if we
1430 * mlocking read-only mapping shared over fork(). We skip
1431 * mlocking such pages.
9a73f61b
KS
1432 *
1433 * For file THP:
1434 *
1435 * We can expect PageDoubleMap() to be stable under page lock:
1436 * for file pages we set it in page_add_file_rmap(), which
1437 * requires page to be locked.
e90309c9 1438 */
9a73f61b
KS
1439
1440 if (PageAnon(page) && compound_mapcount(page) != 1)
1441 goto skip_mlock;
1442 if (PageDoubleMap(page) || !page->mapping)
1443 goto skip_mlock;
1444 if (!trylock_page(page))
1445 goto skip_mlock;
1446 lru_add_drain();
1447 if (page->mapping && !PageDoubleMap(page))
1448 mlock_vma_page(page);
1449 unlock_page(page);
b676b293 1450 }
9a73f61b 1451skip_mlock:
71e3aac0 1452 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
ca120cf6 1453 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
71e3aac0 1454 if (flags & FOLL_GET)
ddc58f27 1455 get_page(page);
71e3aac0
AA
1456
1457out:
1458 return page;
1459}
1460
d10e63f2 1461/* NUMA hinting page fault entry point for trans huge pmds */
82b0f8c3 1462int do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
d10e63f2 1463{
82b0f8c3 1464 struct vm_area_struct *vma = vmf->vma;
b8916634 1465 struct anon_vma *anon_vma = NULL;
b32967ff 1466 struct page *page;
82b0f8c3 1467 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
8191acbd 1468 int page_nid = -1, this_nid = numa_node_id();
90572890 1469 int target_nid, last_cpupid = -1;
8191acbd
MG
1470 bool page_locked;
1471 bool migrated = false;
b191f9b1 1472 bool was_writable;
6688cc05 1473 int flags = 0;
d10e63f2 1474
82b0f8c3
JK
1475 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1476 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
d10e63f2
MG
1477 goto out_unlock;
1478
de466bd6
MG
1479 /*
1480 * If there are potential migrations, wait for completion and retry
1481 * without disrupting NUMA hinting information. Do not relock and
1482 * check_same as the page may no longer be mapped.
1483 */
82b0f8c3
JK
1484 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1485 page = pmd_page(*vmf->pmd);
3c226c63
MR
1486 if (!get_page_unless_zero(page))
1487 goto out_unlock;
82b0f8c3 1488 spin_unlock(vmf->ptl);
5d833062 1489 wait_on_page_locked(page);
3c226c63 1490 put_page(page);
de466bd6
MG
1491 goto out;
1492 }
1493
d10e63f2 1494 page = pmd_page(pmd);
a1a46184 1495 BUG_ON(is_huge_zero_page(page));
8191acbd 1496 page_nid = page_to_nid(page);
90572890 1497 last_cpupid = page_cpupid_last(page);
03c5a6e1 1498 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 1499 if (page_nid == this_nid) {
03c5a6e1 1500 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
1501 flags |= TNF_FAULT_LOCAL;
1502 }
4daae3b4 1503
bea66fbd 1504 /* See similar comment in do_numa_page for explanation */
288bc549 1505 if (!pmd_savedwrite(pmd))
6688cc05
PZ
1506 flags |= TNF_NO_GROUP;
1507
ff9042b1
MG
1508 /*
1509 * Acquire the page lock to serialise THP migrations but avoid dropping
1510 * page_table_lock if at all possible
1511 */
b8916634
MG
1512 page_locked = trylock_page(page);
1513 target_nid = mpol_misplaced(page, vma, haddr);
1514 if (target_nid == -1) {
1515 /* If the page was locked, there are no parallel migrations */
a54a407f 1516 if (page_locked)
b8916634 1517 goto clear_pmdnuma;
2b4847e7 1518 }
4daae3b4 1519
de466bd6 1520 /* Migration could have started since the pmd_trans_migrating check */
2b4847e7 1521 if (!page_locked) {
3c226c63
MR
1522 page_nid = -1;
1523 if (!get_page_unless_zero(page))
1524 goto out_unlock;
82b0f8c3 1525 spin_unlock(vmf->ptl);
b8916634 1526 wait_on_page_locked(page);
3c226c63 1527 put_page(page);
b8916634
MG
1528 goto out;
1529 }
1530
2b4847e7
MG
1531 /*
1532 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1533 * to serialises splits
1534 */
b8916634 1535 get_page(page);
82b0f8c3 1536 spin_unlock(vmf->ptl);
b8916634 1537 anon_vma = page_lock_anon_vma_read(page);
4daae3b4 1538
c69307d5 1539 /* Confirm the PMD did not change while page_table_lock was released */
82b0f8c3
JK
1540 spin_lock(vmf->ptl);
1541 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
b32967ff
MG
1542 unlock_page(page);
1543 put_page(page);
a54a407f 1544 page_nid = -1;
4daae3b4 1545 goto out_unlock;
b32967ff 1546 }
ff9042b1 1547
c3a489ca
MG
1548 /* Bail if we fail to protect against THP splits for any reason */
1549 if (unlikely(!anon_vma)) {
1550 put_page(page);
1551 page_nid = -1;
1552 goto clear_pmdnuma;
1553 }
1554
8b1b436d
PZ
1555 /*
1556 * Since we took the NUMA fault, we must have observed the !accessible
1557 * bit. Make sure all other CPUs agree with that, to avoid them
1558 * modifying the page we're about to migrate.
1559 *
1560 * Must be done under PTL such that we'll observe the relevant
ccde85ba
PZ
1561 * inc_tlb_flush_pending().
1562 *
1563 * We are not sure a pending tlb flush here is for a huge page
1564 * mapping or not. Hence use the tlb range variant
8b1b436d
PZ
1565 */
1566 if (mm_tlb_flush_pending(vma->vm_mm))
ccde85ba 1567 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
8b1b436d 1568
a54a407f
MG
1569 /*
1570 * Migrate the THP to the requested node, returns with page unlocked
8a0516ed 1571 * and access rights restored.
a54a407f 1572 */
82b0f8c3 1573 spin_unlock(vmf->ptl);
8b1b436d 1574
bae473a4 1575 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
82b0f8c3 1576 vmf->pmd, pmd, vmf->address, page, target_nid);
6688cc05
PZ
1577 if (migrated) {
1578 flags |= TNF_MIGRATED;
8191acbd 1579 page_nid = target_nid;
074c2381
MG
1580 } else
1581 flags |= TNF_MIGRATE_FAIL;
b32967ff 1582
8191acbd 1583 goto out;
b32967ff 1584clear_pmdnuma:
a54a407f 1585 BUG_ON(!PageLocked(page));
288bc549 1586 was_writable = pmd_savedwrite(pmd);
4d942466 1587 pmd = pmd_modify(pmd, vma->vm_page_prot);
b7b04004 1588 pmd = pmd_mkyoung(pmd);
b191f9b1
MG
1589 if (was_writable)
1590 pmd = pmd_mkwrite(pmd);
82b0f8c3
JK
1591 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1592 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
a54a407f 1593 unlock_page(page);
d10e63f2 1594out_unlock:
82b0f8c3 1595 spin_unlock(vmf->ptl);
b8916634
MG
1596
1597out:
1598 if (anon_vma)
1599 page_unlock_anon_vma_read(anon_vma);
1600
8191acbd 1601 if (page_nid != -1)
82b0f8c3 1602 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
9a8b300f 1603 flags);
8191acbd 1604
d10e63f2
MG
1605 return 0;
1606}
1607
319904ad
HY
1608/*
1609 * Return true if we do MADV_FREE successfully on entire pmd page.
1610 * Otherwise, return false.
1611 */
1612bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
b8d3c4c3 1613 pmd_t *pmd, unsigned long addr, unsigned long next)
b8d3c4c3
MK
1614{
1615 spinlock_t *ptl;
1616 pmd_t orig_pmd;
1617 struct page *page;
1618 struct mm_struct *mm = tlb->mm;
319904ad 1619 bool ret = false;
b8d3c4c3 1620
07e32661
AK
1621 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1622
b6ec57f4
KS
1623 ptl = pmd_trans_huge_lock(pmd, vma);
1624 if (!ptl)
25eedabe 1625 goto out_unlocked;
b8d3c4c3
MK
1626
1627 orig_pmd = *pmd;
319904ad 1628 if (is_huge_zero_pmd(orig_pmd))
b8d3c4c3 1629 goto out;
b8d3c4c3 1630
84c3fc4e
ZY
1631 if (unlikely(!pmd_present(orig_pmd))) {
1632 VM_BUG_ON(thp_migration_supported() &&
1633 !is_pmd_migration_entry(orig_pmd));
1634 goto out;
1635 }
1636
b8d3c4c3
MK
1637 page = pmd_page(orig_pmd);
1638 /*
1639 * If other processes are mapping this page, we couldn't discard
1640 * the page unless they all do MADV_FREE so let's skip the page.
1641 */
1642 if (page_mapcount(page) != 1)
1643 goto out;
1644
1645 if (!trylock_page(page))
1646 goto out;
1647
1648 /*
1649 * If user want to discard part-pages of THP, split it so MADV_FREE
1650 * will deactivate only them.
1651 */
1652 if (next - addr != HPAGE_PMD_SIZE) {
1653 get_page(page);
1654 spin_unlock(ptl);
9818b8cd 1655 split_huge_page(page);
b8d3c4c3 1656 unlock_page(page);
bbf29ffc 1657 put_page(page);
b8d3c4c3
MK
1658 goto out_unlocked;
1659 }
1660
1661 if (PageDirty(page))
1662 ClearPageDirty(page);
1663 unlock_page(page);
1664
b8d3c4c3 1665 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
58ceeb6b 1666 pmdp_invalidate(vma, addr, pmd);
b8d3c4c3
MK
1667 orig_pmd = pmd_mkold(orig_pmd);
1668 orig_pmd = pmd_mkclean(orig_pmd);
1669
1670 set_pmd_at(mm, addr, pmd, orig_pmd);
1671 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1672 }
802a3a92
SL
1673
1674 mark_page_lazyfree(page);
319904ad 1675 ret = true;
b8d3c4c3
MK
1676out:
1677 spin_unlock(ptl);
1678out_unlocked:
1679 return ret;
1680}
1681
953c66c2
AK
1682static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1683{
1684 pgtable_t pgtable;
1685
1686 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1687 pte_free(mm, pgtable);
1688 atomic_long_dec(&mm->nr_ptes);
1689}
1690
71e3aac0 1691int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1692 pmd_t *pmd, unsigned long addr)
71e3aac0 1693{
da146769 1694 pmd_t orig_pmd;
bf929152 1695 spinlock_t *ptl;
71e3aac0 1696
07e32661
AK
1697 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1698
b6ec57f4
KS
1699 ptl = __pmd_trans_huge_lock(pmd, vma);
1700 if (!ptl)
da146769
KS
1701 return 0;
1702 /*
1703 * For architectures like ppc64 we look at deposited pgtable
1704 * when calling pmdp_huge_get_and_clear. So do the
1705 * pgtable_trans_huge_withdraw after finishing pmdp related
1706 * operations.
1707 */
1708 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1709 tlb->fullmm);
1710 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1711 if (vma_is_dax(vma)) {
3b6521f5
OH
1712 if (arch_needs_pgtable_deposit())
1713 zap_deposited_table(tlb->mm, pmd);
da146769
KS
1714 spin_unlock(ptl);
1715 if (is_huge_zero_pmd(orig_pmd))
c0f2e176 1716 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769 1717 } else if (is_huge_zero_pmd(orig_pmd)) {
c14a6eb4 1718 zap_deposited_table(tlb->mm, pmd);
da146769 1719 spin_unlock(ptl);
c0f2e176 1720 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769 1721 } else {
616b8371
ZY
1722 struct page *page = NULL;
1723 int flush_needed = 1;
1724
1725 if (pmd_present(orig_pmd)) {
1726 page = pmd_page(orig_pmd);
1727 page_remove_rmap(page, true);
1728 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1729 VM_BUG_ON_PAGE(!PageHead(page), page);
1730 } else if (thp_migration_supported()) {
1731 swp_entry_t entry;
1732
1733 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1734 entry = pmd_to_swp_entry(orig_pmd);
1735 page = pfn_to_page(swp_offset(entry));
1736 flush_needed = 0;
1737 } else
1738 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1739
b5072380 1740 if (PageAnon(page)) {
c14a6eb4 1741 zap_deposited_table(tlb->mm, pmd);
b5072380
KS
1742 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1743 } else {
953c66c2
AK
1744 if (arch_needs_pgtable_deposit())
1745 zap_deposited_table(tlb->mm, pmd);
b5072380
KS
1746 add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1747 }
616b8371 1748
da146769 1749 spin_unlock(ptl);
616b8371
ZY
1750 if (flush_needed)
1751 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
025c5b24 1752 }
da146769 1753 return 1;
71e3aac0
AA
1754}
1755
1dd38b6c
AK
1756#ifndef pmd_move_must_withdraw
1757static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1758 spinlock_t *old_pmd_ptl,
1759 struct vm_area_struct *vma)
1760{
1761 /*
1762 * With split pmd lock we also need to move preallocated
1763 * PTE page table if new_pmd is on different PMD page table.
1764 *
1765 * We also don't deposit and withdraw tables for file pages.
1766 */
1767 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1768}
1769#endif
1770
ab6e3d09
NH
1771static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1772{
1773#ifdef CONFIG_MEM_SOFT_DIRTY
1774 if (unlikely(is_pmd_migration_entry(pmd)))
1775 pmd = pmd_swp_mksoft_dirty(pmd);
1776 else if (pmd_present(pmd))
1777 pmd = pmd_mksoft_dirty(pmd);
1778#endif
1779 return pmd;
1780}
1781
bf8616d5 1782bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
37a1c49a 1783 unsigned long new_addr, unsigned long old_end,
5d190420 1784 pmd_t *old_pmd, pmd_t *new_pmd, bool *need_flush)
37a1c49a 1785{
bf929152 1786 spinlock_t *old_ptl, *new_ptl;
37a1c49a 1787 pmd_t pmd;
37a1c49a 1788 struct mm_struct *mm = vma->vm_mm;
5d190420 1789 bool force_flush = false;
37a1c49a
AA
1790
1791 if ((old_addr & ~HPAGE_PMD_MASK) ||
1792 (new_addr & ~HPAGE_PMD_MASK) ||
bf8616d5 1793 old_end - old_addr < HPAGE_PMD_SIZE)
4b471e88 1794 return false;
37a1c49a
AA
1795
1796 /*
1797 * The destination pmd shouldn't be established, free_pgtables()
1798 * should have release it.
1799 */
1800 if (WARN_ON(!pmd_none(*new_pmd))) {
1801 VM_BUG_ON(pmd_trans_huge(*new_pmd));
4b471e88 1802 return false;
37a1c49a
AA
1803 }
1804
bf929152
KS
1805 /*
1806 * We don't have to worry about the ordering of src and dst
1807 * ptlocks because exclusive mmap_sem prevents deadlock.
1808 */
b6ec57f4
KS
1809 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1810 if (old_ptl) {
bf929152
KS
1811 new_ptl = pmd_lockptr(mm, new_pmd);
1812 if (new_ptl != old_ptl)
1813 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
8809aa2d 1814 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
a2ce2666
AL
1815 if (pmd_present(pmd) && pmd_dirty(pmd))
1816 force_flush = true;
025c5b24 1817 VM_BUG_ON(!pmd_none(*new_pmd));
3592806c 1818
1dd38b6c 1819 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
b3084f4d 1820 pgtable_t pgtable;
3592806c
KS
1821 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1822 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
3592806c 1823 }
ab6e3d09
NH
1824 pmd = move_soft_dirty_pmd(pmd);
1825 set_pmd_at(mm, new_addr, new_pmd, pmd);
b3084f4d
AK
1826 if (new_ptl != old_ptl)
1827 spin_unlock(new_ptl);
5d190420
AL
1828 if (force_flush)
1829 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1830 else
1831 *need_flush = true;
bf929152 1832 spin_unlock(old_ptl);
4b471e88 1833 return true;
37a1c49a 1834 }
4b471e88 1835 return false;
37a1c49a
AA
1836}
1837
f123d74a
MG
1838/*
1839 * Returns
1840 * - 0 if PMD could not be locked
1841 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1842 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1843 */
cd7548ab 1844int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
e944fd67 1845 unsigned long addr, pgprot_t newprot, int prot_numa)
cd7548ab
JW
1846{
1847 struct mm_struct *mm = vma->vm_mm;
bf929152 1848 spinlock_t *ptl;
0a85e51d
KS
1849 pmd_t entry;
1850 bool preserve_write;
1851 int ret;
cd7548ab 1852
b6ec57f4 1853 ptl = __pmd_trans_huge_lock(pmd, vma);
0a85e51d
KS
1854 if (!ptl)
1855 return 0;
e944fd67 1856
0a85e51d
KS
1857 preserve_write = prot_numa && pmd_write(*pmd);
1858 ret = 1;
e944fd67 1859
84c3fc4e
ZY
1860#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1861 if (is_swap_pmd(*pmd)) {
1862 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1863
1864 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1865 if (is_write_migration_entry(entry)) {
1866 pmd_t newpmd;
1867 /*
1868 * A protection check is difficult so
1869 * just be safe and disable write
1870 */
1871 make_migration_entry_read(&entry);
1872 newpmd = swp_entry_to_pmd(entry);
ab6e3d09
NH
1873 if (pmd_swp_soft_dirty(*pmd))
1874 newpmd = pmd_swp_mksoft_dirty(newpmd);
84c3fc4e
ZY
1875 set_pmd_at(mm, addr, pmd, newpmd);
1876 }
1877 goto unlock;
1878 }
1879#endif
1880
0a85e51d
KS
1881 /*
1882 * Avoid trapping faults against the zero page. The read-only
1883 * data is likely to be read-cached on the local CPU and
1884 * local/remote hits to the zero page are not interesting.
1885 */
1886 if (prot_numa && is_huge_zero_pmd(*pmd))
1887 goto unlock;
025c5b24 1888
0a85e51d
KS
1889 if (prot_numa && pmd_protnone(*pmd))
1890 goto unlock;
1891
ced10803
KS
1892 /*
1893 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1894 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1895 * which is also under down_read(mmap_sem):
1896 *
1897 * CPU0: CPU1:
1898 * change_huge_pmd(prot_numa=1)
1899 * pmdp_huge_get_and_clear_notify()
1900 * madvise_dontneed()
1901 * zap_pmd_range()
1902 * pmd_trans_huge(*pmd) == 0 (without ptl)
1903 * // skip the pmd
1904 * set_pmd_at();
1905 * // pmd is re-established
1906 *
1907 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1908 * which may break userspace.
1909 *
1910 * pmdp_invalidate() is required to make sure we don't miss
1911 * dirty/young flags set by hardware.
1912 */
1913 entry = *pmd;
1914 pmdp_invalidate(vma, addr, pmd);
1915
1916 /*
1917 * Recover dirty/young flags. It relies on pmdp_invalidate to not
1918 * corrupt them.
1919 */
1920 if (pmd_dirty(*pmd))
1921 entry = pmd_mkdirty(entry);
1922 if (pmd_young(*pmd))
1923 entry = pmd_mkyoung(entry);
1924
0a85e51d
KS
1925 entry = pmd_modify(entry, newprot);
1926 if (preserve_write)
1927 entry = pmd_mk_savedwrite(entry);
1928 ret = HPAGE_PMD_NR;
1929 set_pmd_at(mm, addr, pmd, entry);
1930 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1931unlock:
1932 spin_unlock(ptl);
025c5b24
NH
1933 return ret;
1934}
1935
1936/*
8f19b0c0 1937 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
025c5b24 1938 *
8f19b0c0
HY
1939 * Note that if it returns page table lock pointer, this routine returns without
1940 * unlocking page table lock. So callers must unlock it.
025c5b24 1941 */
b6ec57f4 1942spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
025c5b24 1943{
b6ec57f4
KS
1944 spinlock_t *ptl;
1945 ptl = pmd_lock(vma->vm_mm, pmd);
84c3fc4e
ZY
1946 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1947 pmd_devmap(*pmd)))
b6ec57f4
KS
1948 return ptl;
1949 spin_unlock(ptl);
1950 return NULL;
cd7548ab
JW
1951}
1952
a00cc7d9
MW
1953/*
1954 * Returns true if a given pud maps a thp, false otherwise.
1955 *
1956 * Note that if it returns true, this routine returns without unlocking page
1957 * table lock. So callers must unlock it.
1958 */
1959spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1960{
1961 spinlock_t *ptl;
1962
1963 ptl = pud_lock(vma->vm_mm, pud);
1964 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1965 return ptl;
1966 spin_unlock(ptl);
1967 return NULL;
1968}
1969
1970#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1971int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1972 pud_t *pud, unsigned long addr)
1973{
1974 pud_t orig_pud;
1975 spinlock_t *ptl;
1976
1977 ptl = __pud_trans_huge_lock(pud, vma);
1978 if (!ptl)
1979 return 0;
1980 /*
1981 * For architectures like ppc64 we look at deposited pgtable
1982 * when calling pudp_huge_get_and_clear. So do the
1983 * pgtable_trans_huge_withdraw after finishing pudp related
1984 * operations.
1985 */
1986 orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
1987 tlb->fullmm);
1988 tlb_remove_pud_tlb_entry(tlb, pud, addr);
1989 if (vma_is_dax(vma)) {
1990 spin_unlock(ptl);
1991 /* No zero page support yet */
1992 } else {
1993 /* No support for anonymous PUD pages yet */
1994 BUG();
1995 }
1996 return 1;
1997}
1998
1999static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2000 unsigned long haddr)
2001{
2002 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2003 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2004 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2005 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2006
ce9311cf 2007 count_vm_event(THP_SPLIT_PUD);
a00cc7d9
MW
2008
2009 pudp_huge_clear_flush_notify(vma, haddr, pud);
2010}
2011
2012void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2013 unsigned long address)
2014{
2015 spinlock_t *ptl;
2016 struct mm_struct *mm = vma->vm_mm;
2017 unsigned long haddr = address & HPAGE_PUD_MASK;
2018
2019 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE);
2020 ptl = pud_lock(mm, pud);
2021 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2022 goto out;
2023 __split_huge_pud_locked(vma, pud, haddr);
2024
2025out:
2026 spin_unlock(ptl);
2027 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PUD_SIZE);
2028}
2029#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2030
eef1b3ba
KS
2031static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2032 unsigned long haddr, pmd_t *pmd)
2033{
2034 struct mm_struct *mm = vma->vm_mm;
2035 pgtable_t pgtable;
2036 pmd_t _pmd;
2037 int i;
2038
0f10851e
JG
2039 /*
2040 * Leave pmd empty until pte is filled note that it is fine to delay
2041 * notification until mmu_notifier_invalidate_range_end() as we are
2042 * replacing a zero pmd write protected page with a zero pte write
2043 * protected page.
2044 *
2045 * See Documentation/vm/mmu_notifier.txt
2046 */
2047 pmdp_huge_clear_flush(vma, haddr, pmd);
eef1b3ba
KS
2048
2049 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2050 pmd_populate(mm, &_pmd, pgtable);
2051
2052 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2053 pte_t *pte, entry;
2054 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2055 entry = pte_mkspecial(entry);
2056 pte = pte_offset_map(&_pmd, haddr);
2057 VM_BUG_ON(!pte_none(*pte));
2058 set_pte_at(mm, haddr, pte, entry);
2059 pte_unmap(pte);
2060 }
2061 smp_wmb(); /* make pte visible before pmd */
2062 pmd_populate(mm, pmd, pgtable);
eef1b3ba
KS
2063}
2064
2065static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
ba988280 2066 unsigned long haddr, bool freeze)
eef1b3ba
KS
2067{
2068 struct mm_struct *mm = vma->vm_mm;
2069 struct page *page;
2070 pgtable_t pgtable;
2071 pmd_t _pmd;
84c3fc4e 2072 bool young, write, dirty, soft_dirty, pmd_migration = false;
2ac015e2 2073 unsigned long addr;
eef1b3ba
KS
2074 int i;
2075
2076 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2077 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2078 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
84c3fc4e
ZY
2079 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2080 && !pmd_devmap(*pmd));
eef1b3ba
KS
2081
2082 count_vm_event(THP_SPLIT_PMD);
2083
d21b9e57
KS
2084 if (!vma_is_anonymous(vma)) {
2085 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
953c66c2
AK
2086 /*
2087 * We are going to unmap this huge page. So
2088 * just go ahead and zap it
2089 */
2090 if (arch_needs_pgtable_deposit())
2091 zap_deposited_table(mm, pmd);
d21b9e57
KS
2092 if (vma_is_dax(vma))
2093 return;
2094 page = pmd_page(_pmd);
2095 if (!PageReferenced(page) && pmd_young(_pmd))
2096 SetPageReferenced(page);
2097 page_remove_rmap(page, true);
2098 put_page(page);
2099 add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
eef1b3ba
KS
2100 return;
2101 } else if (is_huge_zero_pmd(*pmd)) {
2102 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2103 }
2104
84c3fc4e
ZY
2105#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2106 pmd_migration = is_pmd_migration_entry(*pmd);
2107 if (pmd_migration) {
2108 swp_entry_t entry;
2109
2110 entry = pmd_to_swp_entry(*pmd);
2111 page = pfn_to_page(swp_offset(entry));
2112 } else
2113#endif
2114 page = pmd_page(*pmd);
eef1b3ba 2115 VM_BUG_ON_PAGE(!page_count(page), page);
fe896d18 2116 page_ref_add(page, HPAGE_PMD_NR - 1);
eef1b3ba
KS
2117 write = pmd_write(*pmd);
2118 young = pmd_young(*pmd);
b8d3c4c3 2119 dirty = pmd_dirty(*pmd);
804dd150 2120 soft_dirty = pmd_soft_dirty(*pmd);
eef1b3ba 2121
c777e2a8 2122 pmdp_huge_split_prepare(vma, haddr, pmd);
eef1b3ba
KS
2123 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2124 pmd_populate(mm, &_pmd, pgtable);
2125
2ac015e2 2126 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
eef1b3ba
KS
2127 pte_t entry, *pte;
2128 /*
2129 * Note that NUMA hinting access restrictions are not
2130 * transferred to avoid any possibility of altering
2131 * permissions across VMAs.
2132 */
84c3fc4e 2133 if (freeze || pmd_migration) {
ba988280
KS
2134 swp_entry_t swp_entry;
2135 swp_entry = make_migration_entry(page + i, write);
2136 entry = swp_entry_to_pte(swp_entry);
804dd150
AA
2137 if (soft_dirty)
2138 entry = pte_swp_mksoft_dirty(entry);
ba988280 2139 } else {
6d2329f8 2140 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
b8d3c4c3 2141 entry = maybe_mkwrite(entry, vma);
ba988280
KS
2142 if (!write)
2143 entry = pte_wrprotect(entry);
2144 if (!young)
2145 entry = pte_mkold(entry);
804dd150
AA
2146 if (soft_dirty)
2147 entry = pte_mksoft_dirty(entry);
ba988280 2148 }
b8d3c4c3
MK
2149 if (dirty)
2150 SetPageDirty(page + i);
2ac015e2 2151 pte = pte_offset_map(&_pmd, addr);
eef1b3ba 2152 BUG_ON(!pte_none(*pte));
2ac015e2 2153 set_pte_at(mm, addr, pte, entry);
eef1b3ba
KS
2154 atomic_inc(&page[i]._mapcount);
2155 pte_unmap(pte);
2156 }
2157
2158 /*
2159 * Set PG_double_map before dropping compound_mapcount to avoid
2160 * false-negative page_mapped().
2161 */
2162 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2163 for (i = 0; i < HPAGE_PMD_NR; i++)
2164 atomic_inc(&page[i]._mapcount);
2165 }
2166
2167 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2168 /* Last compound_mapcount is gone. */
11fb9989 2169 __dec_node_page_state(page, NR_ANON_THPS);
eef1b3ba
KS
2170 if (TestClearPageDoubleMap(page)) {
2171 /* No need in mapcount reference anymore */
2172 for (i = 0; i < HPAGE_PMD_NR; i++)
2173 atomic_dec(&page[i]._mapcount);
2174 }
2175 }
2176
2177 smp_wmb(); /* make pte visible before pmd */
e9b61f19
KS
2178 /*
2179 * Up to this point the pmd is present and huge and userland has the
2180 * whole access to the hugepage during the split (which happens in
2181 * place). If we overwrite the pmd with the not-huge version pointing
2182 * to the pte here (which of course we could if all CPUs were bug
2183 * free), userland could trigger a small page size TLB miss on the
2184 * small sized TLB while the hugepage TLB entry is still established in
2185 * the huge TLB. Some CPU doesn't like that.
2186 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2187 * 383 on page 93. Intel should be safe but is also warns that it's
2188 * only safe if the permission and cache attributes of the two entries
2189 * loaded in the two TLB is identical (which should be the case here).
2190 * But it is generally safer to never allow small and huge TLB entries
2191 * for the same virtual address to be loaded simultaneously. So instead
2192 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2193 * current pmd notpresent (atomically because here the pmd_trans_huge
2194 * and pmd_trans_splitting must remain set at all times on the pmd
2195 * until the split is complete for this pmd), then we flush the SMP TLB
2196 * and finally we write the non-huge version of the pmd entry with
2197 * pmd_populate.
2198 */
2199 pmdp_invalidate(vma, haddr, pmd);
eef1b3ba 2200 pmd_populate(mm, pmd, pgtable);
e9b61f19
KS
2201
2202 if (freeze) {
2ac015e2 2203 for (i = 0; i < HPAGE_PMD_NR; i++) {
e9b61f19
KS
2204 page_remove_rmap(page + i, false);
2205 put_page(page + i);
2206 }
2207 }
eef1b3ba
KS
2208}
2209
2210void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
33f4751e 2211 unsigned long address, bool freeze, struct page *page)
eef1b3ba
KS
2212{
2213 spinlock_t *ptl;
2214 struct mm_struct *mm = vma->vm_mm;
2215 unsigned long haddr = address & HPAGE_PMD_MASK;
2216
2217 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2218 ptl = pmd_lock(mm, pmd);
33f4751e
NH
2219
2220 /*
2221 * If caller asks to setup a migration entries, we need a page to check
2222 * pmd against. Otherwise we can end up replacing wrong page.
2223 */
2224 VM_BUG_ON(freeze && !page);
2225 if (page && page != pmd_page(*pmd))
2226 goto out;
2227
5c7fb56e 2228 if (pmd_trans_huge(*pmd)) {
33f4751e 2229 page = pmd_page(*pmd);
5c7fb56e 2230 if (PageMlocked(page))
5f737714 2231 clear_page_mlock(page);
84c3fc4e 2232 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
e90309c9 2233 goto out;
fec89c10 2234 __split_huge_pmd_locked(vma, pmd, haddr, freeze);
e90309c9 2235out:
eef1b3ba
KS
2236 spin_unlock(ptl);
2237 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
2238}
2239
fec89c10
KS
2240void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2241 bool freeze, struct page *page)
94fcc585 2242{
f72e7dcd 2243 pgd_t *pgd;
c2febafc 2244 p4d_t *p4d;
f72e7dcd 2245 pud_t *pud;
94fcc585
AA
2246 pmd_t *pmd;
2247
78ddc534 2248 pgd = pgd_offset(vma->vm_mm, address);
f72e7dcd
HD
2249 if (!pgd_present(*pgd))
2250 return;
2251
c2febafc
KS
2252 p4d = p4d_offset(pgd, address);
2253 if (!p4d_present(*p4d))
2254 return;
2255
2256 pud = pud_offset(p4d, address);
f72e7dcd
HD
2257 if (!pud_present(*pud))
2258 return;
2259
2260 pmd = pmd_offset(pud, address);
fec89c10 2261
33f4751e 2262 __split_huge_pmd(vma, pmd, address, freeze, page);
94fcc585
AA
2263}
2264
e1b9996b 2265void vma_adjust_trans_huge(struct vm_area_struct *vma,
94fcc585
AA
2266 unsigned long start,
2267 unsigned long end,
2268 long adjust_next)
2269{
2270 /*
2271 * If the new start address isn't hpage aligned and it could
2272 * previously contain an hugepage: check if we need to split
2273 * an huge pmd.
2274 */
2275 if (start & ~HPAGE_PMD_MASK &&
2276 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2277 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 2278 split_huge_pmd_address(vma, start, false, NULL);
94fcc585
AA
2279
2280 /*
2281 * If the new end address isn't hpage aligned and it could
2282 * previously contain an hugepage: check if we need to split
2283 * an huge pmd.
2284 */
2285 if (end & ~HPAGE_PMD_MASK &&
2286 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2287 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 2288 split_huge_pmd_address(vma, end, false, NULL);
94fcc585
AA
2289
2290 /*
2291 * If we're also updating the vma->vm_next->vm_start, if the new
2292 * vm_next->vm_start isn't page aligned and it could previously
2293 * contain an hugepage: check if we need to split an huge pmd.
2294 */
2295 if (adjust_next > 0) {
2296 struct vm_area_struct *next = vma->vm_next;
2297 unsigned long nstart = next->vm_start;
2298 nstart += adjust_next << PAGE_SHIFT;
2299 if (nstart & ~HPAGE_PMD_MASK &&
2300 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2301 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
fec89c10 2302 split_huge_pmd_address(next, nstart, false, NULL);
94fcc585
AA
2303 }
2304}
e9b61f19 2305
fec89c10 2306static void freeze_page(struct page *page)
e9b61f19 2307{
baa355fd 2308 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
c7ab0d2f 2309 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
666e5a40 2310 bool unmap_success;
e9b61f19
KS
2311
2312 VM_BUG_ON_PAGE(!PageHead(page), page);
2313
baa355fd 2314 if (PageAnon(page))
b5ff8161 2315 ttu_flags |= TTU_SPLIT_FREEZE;
baa355fd 2316
666e5a40
MK
2317 unmap_success = try_to_unmap(page, ttu_flags);
2318 VM_BUG_ON_PAGE(!unmap_success, page);
e9b61f19
KS
2319}
2320
fec89c10 2321static void unfreeze_page(struct page *page)
e9b61f19 2322{
fec89c10 2323 int i;
ace71a19
KS
2324 if (PageTransHuge(page)) {
2325 remove_migration_ptes(page, page, true);
2326 } else {
2327 for (i = 0; i < HPAGE_PMD_NR; i++)
2328 remove_migration_ptes(page + i, page + i, true);
2329 }
e9b61f19
KS
2330}
2331
8df651c7 2332static void __split_huge_page_tail(struct page *head, int tail,
e9b61f19
KS
2333 struct lruvec *lruvec, struct list_head *list)
2334{
e9b61f19
KS
2335 struct page *page_tail = head + tail;
2336
8df651c7 2337 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
fe896d18 2338 VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
e9b61f19
KS
2339
2340 /*
0139aa7b 2341 * tail_page->_refcount is zero and not changing from under us. But
e9b61f19 2342 * get_page_unless_zero() may be running from under us on the
baa355fd
KS
2343 * tail_page. If we used atomic_set() below instead of atomic_inc() or
2344 * atomic_add(), we would then run atomic_set() concurrently with
e9b61f19
KS
2345 * get_page_unless_zero(), and atomic_set() is implemented in C not
2346 * using locked ops. spin_unlock on x86 sometime uses locked ops
2347 * because of PPro errata 66, 92, so unless somebody can guarantee
2348 * atomic_set() here would be safe on all archs (and not only on x86),
baa355fd 2349 * it's safer to use atomic_inc()/atomic_add().
e9b61f19 2350 */
38d8b4e6 2351 if (PageAnon(head) && !PageSwapCache(head)) {
baa355fd
KS
2352 page_ref_inc(page_tail);
2353 } else {
2354 /* Additional pin to radix tree */
2355 page_ref_add(page_tail, 2);
2356 }
e9b61f19
KS
2357
2358 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2359 page_tail->flags |= (head->flags &
2360 ((1L << PG_referenced) |
2361 (1L << PG_swapbacked) |
38d8b4e6 2362 (1L << PG_swapcache) |
e9b61f19
KS
2363 (1L << PG_mlocked) |
2364 (1L << PG_uptodate) |
2365 (1L << PG_active) |
2366 (1L << PG_locked) |
b8d3c4c3
MK
2367 (1L << PG_unevictable) |
2368 (1L << PG_dirty)));
e9b61f19
KS
2369
2370 /*
2371 * After clearing PageTail the gup refcount can be released.
2372 * Page flags also must be visible before we make the page non-compound.
2373 */
2374 smp_wmb();
2375
2376 clear_compound_head(page_tail);
2377
2378 if (page_is_young(head))
2379 set_page_young(page_tail);
2380 if (page_is_idle(head))
2381 set_page_idle(page_tail);
2382
2383 /* ->mapping in first tail page is compound_mapcount */
9a982250 2384 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
e9b61f19
KS
2385 page_tail);
2386 page_tail->mapping = head->mapping;
2387
2388 page_tail->index = head->index + tail;
2389 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2390 lru_add_page_tail(head, page_tail, lruvec, list);
e9b61f19
KS
2391}
2392
baa355fd
KS
2393static void __split_huge_page(struct page *page, struct list_head *list,
2394 unsigned long flags)
e9b61f19
KS
2395{
2396 struct page *head = compound_head(page);
2397 struct zone *zone = page_zone(head);
2398 struct lruvec *lruvec;
baa355fd 2399 pgoff_t end = -1;
8df651c7 2400 int i;
e9b61f19 2401
599d0c95 2402 lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
e9b61f19
KS
2403
2404 /* complete memcg works before add pages to LRU */
2405 mem_cgroup_split_huge_fixup(head);
2406
baa355fd
KS
2407 if (!PageAnon(page))
2408 end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
2409
2410 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
8df651c7 2411 __split_huge_page_tail(head, i, lruvec, list);
baa355fd
KS
2412 /* Some pages can be beyond i_size: drop them from page cache */
2413 if (head[i].index >= end) {
2414 __ClearPageDirty(head + i);
2415 __delete_from_page_cache(head + i, NULL);
800d8c63
KS
2416 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2417 shmem_uncharge(head->mapping->host, 1);
baa355fd
KS
2418 put_page(head + i);
2419 }
2420 }
e9b61f19
KS
2421
2422 ClearPageCompound(head);
baa355fd
KS
2423 /* See comment in __split_huge_page_tail() */
2424 if (PageAnon(head)) {
38d8b4e6
HY
2425 /* Additional pin to radix tree of swap cache */
2426 if (PageSwapCache(head))
2427 page_ref_add(head, 2);
2428 else
2429 page_ref_inc(head);
baa355fd
KS
2430 } else {
2431 /* Additional pin to radix tree */
2432 page_ref_add(head, 2);
2433 spin_unlock(&head->mapping->tree_lock);
2434 }
2435
a52633d8 2436 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
e9b61f19 2437
fec89c10 2438 unfreeze_page(head);
e9b61f19
KS
2439
2440 for (i = 0; i < HPAGE_PMD_NR; i++) {
2441 struct page *subpage = head + i;
2442 if (subpage == page)
2443 continue;
2444 unlock_page(subpage);
2445
2446 /*
2447 * Subpages may be freed if there wasn't any mapping
2448 * like if add_to_swap() is running on a lru page that
2449 * had its mapping zapped. And freeing these pages
2450 * requires taking the lru_lock so we do the put_page
2451 * of the tail pages after the split is complete.
2452 */
2453 put_page(subpage);
2454 }
2455}
2456
b20ce5e0
KS
2457int total_mapcount(struct page *page)
2458{
dd78fedd 2459 int i, compound, ret;
b20ce5e0
KS
2460
2461 VM_BUG_ON_PAGE(PageTail(page), page);
2462
2463 if (likely(!PageCompound(page)))
2464 return atomic_read(&page->_mapcount) + 1;
2465
dd78fedd 2466 compound = compound_mapcount(page);
b20ce5e0 2467 if (PageHuge(page))
dd78fedd
KS
2468 return compound;
2469 ret = compound;
b20ce5e0
KS
2470 for (i = 0; i < HPAGE_PMD_NR; i++)
2471 ret += atomic_read(&page[i]._mapcount) + 1;
dd78fedd
KS
2472 /* File pages has compound_mapcount included in _mapcount */
2473 if (!PageAnon(page))
2474 return ret - compound * HPAGE_PMD_NR;
b20ce5e0
KS
2475 if (PageDoubleMap(page))
2476 ret -= HPAGE_PMD_NR;
2477 return ret;
2478}
2479
6d0a07ed
AA
2480/*
2481 * This calculates accurately how many mappings a transparent hugepage
2482 * has (unlike page_mapcount() which isn't fully accurate). This full
2483 * accuracy is primarily needed to know if copy-on-write faults can
2484 * reuse the page and change the mapping to read-write instead of
2485 * copying them. At the same time this returns the total_mapcount too.
2486 *
2487 * The function returns the highest mapcount any one of the subpages
2488 * has. If the return value is one, even if different processes are
2489 * mapping different subpages of the transparent hugepage, they can
2490 * all reuse it, because each process is reusing a different subpage.
2491 *
2492 * The total_mapcount is instead counting all virtual mappings of the
2493 * subpages. If the total_mapcount is equal to "one", it tells the
2494 * caller all mappings belong to the same "mm" and in turn the
2495 * anon_vma of the transparent hugepage can become the vma->anon_vma
2496 * local one as no other process may be mapping any of the subpages.
2497 *
2498 * It would be more accurate to replace page_mapcount() with
2499 * page_trans_huge_mapcount(), however we only use
2500 * page_trans_huge_mapcount() in the copy-on-write faults where we
2501 * need full accuracy to avoid breaking page pinning, because
2502 * page_trans_huge_mapcount() is slower than page_mapcount().
2503 */
2504int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2505{
2506 int i, ret, _total_mapcount, mapcount;
2507
2508 /* hugetlbfs shouldn't call it */
2509 VM_BUG_ON_PAGE(PageHuge(page), page);
2510
2511 if (likely(!PageTransCompound(page))) {
2512 mapcount = atomic_read(&page->_mapcount) + 1;
2513 if (total_mapcount)
2514 *total_mapcount = mapcount;
2515 return mapcount;
2516 }
2517
2518 page = compound_head(page);
2519
2520 _total_mapcount = ret = 0;
2521 for (i = 0; i < HPAGE_PMD_NR; i++) {
2522 mapcount = atomic_read(&page[i]._mapcount) + 1;
2523 ret = max(ret, mapcount);
2524 _total_mapcount += mapcount;
2525 }
2526 if (PageDoubleMap(page)) {
2527 ret -= 1;
2528 _total_mapcount -= HPAGE_PMD_NR;
2529 }
2530 mapcount = compound_mapcount(page);
2531 ret += mapcount;
2532 _total_mapcount += mapcount;
2533 if (total_mapcount)
2534 *total_mapcount = _total_mapcount;
2535 return ret;
2536}
2537
b8f593cd
HY
2538/* Racy check whether the huge page can be split */
2539bool can_split_huge_page(struct page *page, int *pextra_pins)
2540{
2541 int extra_pins;
2542
2543 /* Additional pins from radix tree */
2544 if (PageAnon(page))
2545 extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2546 else
2547 extra_pins = HPAGE_PMD_NR;
2548 if (pextra_pins)
2549 *pextra_pins = extra_pins;
2550 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2551}
2552
e9b61f19
KS
2553/*
2554 * This function splits huge page into normal pages. @page can point to any
2555 * subpage of huge page to split. Split doesn't change the position of @page.
2556 *
2557 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2558 * The huge page must be locked.
2559 *
2560 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2561 *
2562 * Both head page and tail pages will inherit mapping, flags, and so on from
2563 * the hugepage.
2564 *
2565 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2566 * they are not mapped.
2567 *
2568 * Returns 0 if the hugepage is split successfully.
2569 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2570 * us.
2571 */
2572int split_huge_page_to_list(struct page *page, struct list_head *list)
2573{
2574 struct page *head = compound_head(page);
a3d0a918 2575 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
baa355fd
KS
2576 struct anon_vma *anon_vma = NULL;
2577 struct address_space *mapping = NULL;
2578 int count, mapcount, extra_pins, ret;
d9654322 2579 bool mlocked;
0b9b6fff 2580 unsigned long flags;
e9b61f19
KS
2581
2582 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
e9b61f19 2583 VM_BUG_ON_PAGE(!PageLocked(page), page);
e9b61f19
KS
2584 VM_BUG_ON_PAGE(!PageCompound(page), page);
2585
59807685
HY
2586 if (PageWriteback(page))
2587 return -EBUSY;
2588
baa355fd
KS
2589 if (PageAnon(head)) {
2590 /*
2591 * The caller does not necessarily hold an mmap_sem that would
2592 * prevent the anon_vma disappearing so we first we take a
2593 * reference to it and then lock the anon_vma for write. This
2594 * is similar to page_lock_anon_vma_read except the write lock
2595 * is taken to serialise against parallel split or collapse
2596 * operations.
2597 */
2598 anon_vma = page_get_anon_vma(head);
2599 if (!anon_vma) {
2600 ret = -EBUSY;
2601 goto out;
2602 }
baa355fd
KS
2603 mapping = NULL;
2604 anon_vma_lock_write(anon_vma);
2605 } else {
2606 mapping = head->mapping;
2607
2608 /* Truncated ? */
2609 if (!mapping) {
2610 ret = -EBUSY;
2611 goto out;
2612 }
2613
baa355fd
KS
2614 anon_vma = NULL;
2615 i_mmap_lock_read(mapping);
e9b61f19 2616 }
e9b61f19
KS
2617
2618 /*
2619 * Racy check if we can split the page, before freeze_page() will
2620 * split PMDs
2621 */
b8f593cd 2622 if (!can_split_huge_page(head, &extra_pins)) {
e9b61f19
KS
2623 ret = -EBUSY;
2624 goto out_unlock;
2625 }
2626
d9654322 2627 mlocked = PageMlocked(page);
fec89c10 2628 freeze_page(head);
e9b61f19
KS
2629 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2630
d9654322
KS
2631 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2632 if (mlocked)
2633 lru_add_drain();
2634
baa355fd 2635 /* prevent PageLRU to go away from under us, and freeze lru stats */
a52633d8 2636 spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
baa355fd
KS
2637
2638 if (mapping) {
2639 void **pslot;
2640
2641 spin_lock(&mapping->tree_lock);
2642 pslot = radix_tree_lookup_slot(&mapping->page_tree,
2643 page_index(head));
2644 /*
2645 * Check if the head page is present in radix tree.
2646 * We assume all tail are present too, if head is there.
2647 */
2648 if (radix_tree_deref_slot_protected(pslot,
2649 &mapping->tree_lock) != head)
2650 goto fail;
2651 }
2652
0139aa7b 2653 /* Prevent deferred_split_scan() touching ->_refcount */
baa355fd 2654 spin_lock(&pgdata->split_queue_lock);
e9b61f19
KS
2655 count = page_count(head);
2656 mapcount = total_mapcount(head);
baa355fd 2657 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
9a982250 2658 if (!list_empty(page_deferred_list(head))) {
a3d0a918 2659 pgdata->split_queue_len--;
9a982250
KS
2660 list_del(page_deferred_list(head));
2661 }
65c45377 2662 if (mapping)
11fb9989 2663 __dec_node_page_state(page, NR_SHMEM_THPS);
baa355fd
KS
2664 spin_unlock(&pgdata->split_queue_lock);
2665 __split_huge_page(page, list, flags);
59807685
HY
2666 if (PageSwapCache(head)) {
2667 swp_entry_t entry = { .val = page_private(head) };
2668
2669 ret = split_swap_cluster(entry);
2670 } else
2671 ret = 0;
e9b61f19 2672 } else {
baa355fd
KS
2673 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2674 pr_alert("total_mapcount: %u, page_count(): %u\n",
2675 mapcount, count);
2676 if (PageTail(page))
2677 dump_page(head, NULL);
2678 dump_page(page, "total_mapcount(head) > 0");
2679 BUG();
2680 }
2681 spin_unlock(&pgdata->split_queue_lock);
2682fail: if (mapping)
2683 spin_unlock(&mapping->tree_lock);
a52633d8 2684 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
fec89c10 2685 unfreeze_page(head);
e9b61f19
KS
2686 ret = -EBUSY;
2687 }
2688
2689out_unlock:
baa355fd
KS
2690 if (anon_vma) {
2691 anon_vma_unlock_write(anon_vma);
2692 put_anon_vma(anon_vma);
2693 }
2694 if (mapping)
2695 i_mmap_unlock_read(mapping);
e9b61f19
KS
2696out:
2697 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2698 return ret;
2699}
9a982250
KS
2700
2701void free_transhuge_page(struct page *page)
2702{
a3d0a918 2703 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
9a982250
KS
2704 unsigned long flags;
2705
a3d0a918 2706 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2707 if (!list_empty(page_deferred_list(page))) {
a3d0a918 2708 pgdata->split_queue_len--;
9a982250
KS
2709 list_del(page_deferred_list(page));
2710 }
a3d0a918 2711 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2712 free_compound_page(page);
2713}
2714
2715void deferred_split_huge_page(struct page *page)
2716{
a3d0a918 2717 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
9a982250
KS
2718 unsigned long flags;
2719
2720 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2721
a3d0a918 2722 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2723 if (list_empty(page_deferred_list(page))) {
f9719a03 2724 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
a3d0a918
KS
2725 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2726 pgdata->split_queue_len++;
9a982250 2727 }
a3d0a918 2728 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2729}
2730
2731static unsigned long deferred_split_count(struct shrinker *shrink,
2732 struct shrink_control *sc)
2733{
a3d0a918 2734 struct pglist_data *pgdata = NODE_DATA(sc->nid);
6aa7de05 2735 return READ_ONCE(pgdata->split_queue_len);
9a982250
KS
2736}
2737
2738static unsigned long deferred_split_scan(struct shrinker *shrink,
2739 struct shrink_control *sc)
2740{
a3d0a918 2741 struct pglist_data *pgdata = NODE_DATA(sc->nid);
9a982250
KS
2742 unsigned long flags;
2743 LIST_HEAD(list), *pos, *next;
2744 struct page *page;
2745 int split = 0;
2746
a3d0a918 2747 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2748 /* Take pin on all head pages to avoid freeing them under us */
ae026204 2749 list_for_each_safe(pos, next, &pgdata->split_queue) {
9a982250
KS
2750 page = list_entry((void *)pos, struct page, mapping);
2751 page = compound_head(page);
e3ae1953
KS
2752 if (get_page_unless_zero(page)) {
2753 list_move(page_deferred_list(page), &list);
2754 } else {
2755 /* We lost race with put_compound_page() */
9a982250 2756 list_del_init(page_deferred_list(page));
a3d0a918 2757 pgdata->split_queue_len--;
9a982250 2758 }
e3ae1953
KS
2759 if (!--sc->nr_to_scan)
2760 break;
9a982250 2761 }
a3d0a918 2762 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2763
2764 list_for_each_safe(pos, next, &list) {
2765 page = list_entry((void *)pos, struct page, mapping);
2766 lock_page(page);
2767 /* split_huge_page() removes page from list on success */
2768 if (!split_huge_page(page))
2769 split++;
2770 unlock_page(page);
2771 put_page(page);
2772 }
2773
a3d0a918
KS
2774 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2775 list_splice_tail(&list, &pgdata->split_queue);
2776 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250 2777
cb8d68ec
KS
2778 /*
2779 * Stop shrinker if we didn't split any page, but the queue is empty.
2780 * This can happen if pages were freed under us.
2781 */
2782 if (!split && list_empty(&pgdata->split_queue))
2783 return SHRINK_STOP;
2784 return split;
9a982250
KS
2785}
2786
2787static struct shrinker deferred_split_shrinker = {
2788 .count_objects = deferred_split_count,
2789 .scan_objects = deferred_split_scan,
2790 .seeks = DEFAULT_SEEKS,
a3d0a918 2791 .flags = SHRINKER_NUMA_AWARE,
9a982250 2792};
49071d43
KS
2793
2794#ifdef CONFIG_DEBUG_FS
2795static int split_huge_pages_set(void *data, u64 val)
2796{
2797 struct zone *zone;
2798 struct page *page;
2799 unsigned long pfn, max_zone_pfn;
2800 unsigned long total = 0, split = 0;
2801
2802 if (val != 1)
2803 return -EINVAL;
2804
2805 for_each_populated_zone(zone) {
2806 max_zone_pfn = zone_end_pfn(zone);
2807 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2808 if (!pfn_valid(pfn))
2809 continue;
2810
2811 page = pfn_to_page(pfn);
2812 if (!get_page_unless_zero(page))
2813 continue;
2814
2815 if (zone != page_zone(page))
2816 goto next;
2817
baa355fd 2818 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
49071d43
KS
2819 goto next;
2820
2821 total++;
2822 lock_page(page);
2823 if (!split_huge_page(page))
2824 split++;
2825 unlock_page(page);
2826next:
2827 put_page(page);
2828 }
2829 }
2830
145bdaa1 2831 pr_info("%lu of %lu THP split\n", split, total);
49071d43
KS
2832
2833 return 0;
2834}
2835DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2836 "%llu\n");
2837
2838static int __init split_huge_pages_debugfs(void)
2839{
2840 void *ret;
2841
145bdaa1 2842 ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
49071d43
KS
2843 &split_huge_pages_fops);
2844 if (!ret)
2845 pr_warn("Failed to create split_huge_pages in debugfs");
2846 return 0;
2847}
2848late_initcall(split_huge_pages_debugfs);
2849#endif
616b8371
ZY
2850
2851#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2852void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2853 struct page *page)
2854{
2855 struct vm_area_struct *vma = pvmw->vma;
2856 struct mm_struct *mm = vma->vm_mm;
2857 unsigned long address = pvmw->address;
2858 pmd_t pmdval;
2859 swp_entry_t entry;
ab6e3d09 2860 pmd_t pmdswp;
616b8371
ZY
2861
2862 if (!(pvmw->pmd && !pvmw->pte))
2863 return;
2864
2865 mmu_notifier_invalidate_range_start(mm, address,
2866 address + HPAGE_PMD_SIZE);
2867
2868 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2869 pmdval = *pvmw->pmd;
2870 pmdp_invalidate(vma, address, pvmw->pmd);
2871 if (pmd_dirty(pmdval))
2872 set_page_dirty(page);
2873 entry = make_migration_entry(page, pmd_write(pmdval));
ab6e3d09
NH
2874 pmdswp = swp_entry_to_pmd(entry);
2875 if (pmd_soft_dirty(pmdval))
2876 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2877 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
616b8371
ZY
2878 page_remove_rmap(page, true);
2879 put_page(page);
2880
2881 mmu_notifier_invalidate_range_end(mm, address,
2882 address + HPAGE_PMD_SIZE);
2883}
2884
2885void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2886{
2887 struct vm_area_struct *vma = pvmw->vma;
2888 struct mm_struct *mm = vma->vm_mm;
2889 unsigned long address = pvmw->address;
2890 unsigned long mmun_start = address & HPAGE_PMD_MASK;
2891 pmd_t pmde;
2892 swp_entry_t entry;
2893
2894 if (!(pvmw->pmd && !pvmw->pte))
2895 return;
2896
2897 entry = pmd_to_swp_entry(*pvmw->pmd);
2898 get_page(new);
2899 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
ab6e3d09
NH
2900 if (pmd_swp_soft_dirty(*pvmw->pmd))
2901 pmde = pmd_mksoft_dirty(pmde);
616b8371
ZY
2902 if (is_write_migration_entry(entry))
2903 pmde = maybe_pmd_mkwrite(pmde, vma);
2904
2905 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
2906 page_add_anon_rmap(new, vma, mmun_start, true);
2907 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
2908 if (vma->vm_flags & VM_LOCKED)
2909 mlock_vma_page(new);
2910 update_mmu_cache_pmd(vma, address, pvmw->pmd);
2911}
2912#endif