]> git.ipfire.org Git - people/ms/linux.git/blame - mm/huge_memory.c
mm/huge_memory.c: remove unused return value of set_huge_zero_page()
[people/ms/linux.git] / mm / huge_memory.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
71e3aac0
AA
2/*
3 * Copyright (C) 2009 Red Hat, Inc.
71e3aac0
AA
4 */
5
ae3a8c1c
AM
6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
71e3aac0
AA
8#include <linux/mm.h>
9#include <linux/sched.h>
f7ccbae4 10#include <linux/sched/coredump.h>
6a3827d7 11#include <linux/sched/numa_balancing.h>
71e3aac0
AA
12#include <linux/highmem.h>
13#include <linux/hugetlb.h>
14#include <linux/mmu_notifier.h>
15#include <linux/rmap.h>
16#include <linux/swap.h>
97ae1749 17#include <linux/shrinker.h>
ba76149f 18#include <linux/mm_inline.h>
e9b61f19 19#include <linux/swapops.h>
4897c765 20#include <linux/dax.h>
ba76149f 21#include <linux/khugepaged.h>
878aee7d 22#include <linux/freezer.h>
f25748e3 23#include <linux/pfn_t.h>
a664b2d8 24#include <linux/mman.h>
3565fce3 25#include <linux/memremap.h>
325adeb5 26#include <linux/pagemap.h>
49071d43 27#include <linux/debugfs.h>
4daae3b4 28#include <linux/migrate.h>
43b5fbbd 29#include <linux/hashtable.h>
6b251fc9 30#include <linux/userfaultfd_k.h>
33c3fc71 31#include <linux/page_idle.h>
baa355fd 32#include <linux/shmem_fs.h>
6b31d595 33#include <linux/oom.h>
98fa15f3 34#include <linux/numa.h>
f7da677b 35#include <linux/page_owner.h>
97ae1749 36
71e3aac0
AA
37#include <asm/tlb.h>
38#include <asm/pgalloc.h>
39#include "internal.h"
40
ba76149f 41/*
b14d595a
MD
42 * By default, transparent hugepage support is disabled in order to avoid
43 * risking an increased memory footprint for applications that are not
44 * guaranteed to benefit from it. When transparent hugepage support is
45 * enabled, it is for all mappings, and khugepaged scans all mappings.
8bfa3f9a
JW
46 * Defrag is invoked by khugepaged hugepage allocations and by page faults
47 * for all hugepage allocations.
ba76149f 48 */
71e3aac0 49unsigned long transparent_hugepage_flags __read_mostly =
13ece886 50#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 51 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
52#endif
53#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55#endif
444eb2a4 56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
79da5407
KS
57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
ba76149f 59
9a982250 60static struct shrinker deferred_split_shrinker;
f000565a 61
97ae1749 62static atomic_t huge_zero_refcount;
56873f43 63struct page *huge_zero_page __read_mostly;
4a6c1297 64
7635d9cb
MH
65bool transparent_hugepage_enabled(struct vm_area_struct *vma)
66{
c0630669
YS
67 /* The addr is used to check if the vma size fits */
68 unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
69
70 if (!transhuge_vma_suitable(vma, addr))
71 return false;
7635d9cb
MH
72 if (vma_is_anonymous(vma))
73 return __transparent_hugepage_enabled(vma);
c0630669
YS
74 if (vma_is_shmem(vma))
75 return shmem_huge_enabled(vma);
7635d9cb
MH
76
77 return false;
78}
79
6fcb52a5 80static struct page *get_huge_zero_page(void)
97ae1749
KS
81{
82 struct page *zero_page;
83retry:
84 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
4db0c3c2 85 return READ_ONCE(huge_zero_page);
97ae1749
KS
86
87 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
4a6c1297 88 HPAGE_PMD_ORDER);
d8a8e1f0
KS
89 if (!zero_page) {
90 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
5918d10a 91 return NULL;
d8a8e1f0
KS
92 }
93 count_vm_event(THP_ZERO_PAGE_ALLOC);
97ae1749 94 preempt_disable();
5918d10a 95 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97ae1749 96 preempt_enable();
5ddacbe9 97 __free_pages(zero_page, compound_order(zero_page));
97ae1749
KS
98 goto retry;
99 }
100
101 /* We take additional reference here. It will be put back by shrinker */
102 atomic_set(&huge_zero_refcount, 2);
103 preempt_enable();
4db0c3c2 104 return READ_ONCE(huge_zero_page);
4a6c1297
KS
105}
106
6fcb52a5 107static void put_huge_zero_page(void)
4a6c1297 108{
97ae1749
KS
109 /*
110 * Counter should never go to zero here. Only shrinker can put
111 * last reference.
112 */
113 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
4a6c1297
KS
114}
115
6fcb52a5
AL
116struct page *mm_get_huge_zero_page(struct mm_struct *mm)
117{
118 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
119 return READ_ONCE(huge_zero_page);
120
121 if (!get_huge_zero_page())
122 return NULL;
123
124 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
125 put_huge_zero_page();
126
127 return READ_ONCE(huge_zero_page);
128}
129
130void mm_put_huge_zero_page(struct mm_struct *mm)
131{
132 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
133 put_huge_zero_page();
134}
135
48896466
GC
136static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
137 struct shrink_control *sc)
4a6c1297 138{
48896466
GC
139 /* we can free zero page only if last reference remains */
140 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
141}
97ae1749 142
48896466
GC
143static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
144 struct shrink_control *sc)
145{
97ae1749 146 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
5918d10a
KS
147 struct page *zero_page = xchg(&huge_zero_page, NULL);
148 BUG_ON(zero_page == NULL);
5ddacbe9 149 __free_pages(zero_page, compound_order(zero_page));
48896466 150 return HPAGE_PMD_NR;
97ae1749
KS
151 }
152
153 return 0;
4a6c1297
KS
154}
155
97ae1749 156static struct shrinker huge_zero_page_shrinker = {
48896466
GC
157 .count_objects = shrink_huge_zero_page_count,
158 .scan_objects = shrink_huge_zero_page_scan,
97ae1749
KS
159 .seeks = DEFAULT_SEEKS,
160};
161
71e3aac0 162#ifdef CONFIG_SYSFS
71e3aac0
AA
163static ssize_t enabled_show(struct kobject *kobj,
164 struct kobj_attribute *attr, char *buf)
165{
bfb0ffeb
JP
166 const char *output;
167
444eb2a4 168 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
bfb0ffeb
JP
169 output = "[always] madvise never";
170 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
171 &transparent_hugepage_flags))
172 output = "always [madvise] never";
444eb2a4 173 else
bfb0ffeb
JP
174 output = "always madvise [never]";
175
176 return sysfs_emit(buf, "%s\n", output);
71e3aac0 177}
444eb2a4 178
71e3aac0
AA
179static ssize_t enabled_store(struct kobject *kobj,
180 struct kobj_attribute *attr,
181 const char *buf, size_t count)
182{
21440d7e 183 ssize_t ret = count;
ba76149f 184
f42f2552 185 if (sysfs_streq(buf, "always")) {
21440d7e
DR
186 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
187 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
f42f2552 188 } else if (sysfs_streq(buf, "madvise")) {
21440d7e
DR
189 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
190 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
f42f2552 191 } else if (sysfs_streq(buf, "never")) {
21440d7e
DR
192 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
193 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
194 } else
195 ret = -EINVAL;
ba76149f
AA
196
197 if (ret > 0) {
b46e756f 198 int err = start_stop_khugepaged();
ba76149f
AA
199 if (err)
200 ret = err;
201 }
ba76149f 202 return ret;
71e3aac0
AA
203}
204static struct kobj_attribute enabled_attr =
205 __ATTR(enabled, 0644, enabled_show, enabled_store);
206
b46e756f 207ssize_t single_hugepage_flag_show(struct kobject *kobj,
bfb0ffeb
JP
208 struct kobj_attribute *attr, char *buf,
209 enum transparent_hugepage_flag flag)
71e3aac0 210{
bfb0ffeb
JP
211 return sysfs_emit(buf, "%d\n",
212 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 213}
e27e6151 214
b46e756f 215ssize_t single_hugepage_flag_store(struct kobject *kobj,
71e3aac0
AA
216 struct kobj_attribute *attr,
217 const char *buf, size_t count,
218 enum transparent_hugepage_flag flag)
219{
e27e6151
BH
220 unsigned long value;
221 int ret;
222
223 ret = kstrtoul(buf, 10, &value);
224 if (ret < 0)
225 return ret;
226 if (value > 1)
227 return -EINVAL;
228
229 if (value)
71e3aac0 230 set_bit(flag, &transparent_hugepage_flags);
e27e6151 231 else
71e3aac0 232 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
233
234 return count;
235}
236
71e3aac0
AA
237static ssize_t defrag_show(struct kobject *kobj,
238 struct kobj_attribute *attr, char *buf)
239{
bfb0ffeb
JP
240 const char *output;
241
242 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
243 &transparent_hugepage_flags))
244 output = "[always] defer defer+madvise madvise never";
245 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
246 &transparent_hugepage_flags))
247 output = "always [defer] defer+madvise madvise never";
248 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
249 &transparent_hugepage_flags))
250 output = "always defer [defer+madvise] madvise never";
251 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
252 &transparent_hugepage_flags))
253 output = "always defer defer+madvise [madvise] never";
254 else
255 output = "always defer defer+madvise madvise [never]";
256
257 return sysfs_emit(buf, "%s\n", output);
71e3aac0 258}
21440d7e 259
71e3aac0
AA
260static ssize_t defrag_store(struct kobject *kobj,
261 struct kobj_attribute *attr,
262 const char *buf, size_t count)
263{
f42f2552 264 if (sysfs_streq(buf, "always")) {
21440d7e
DR
265 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
266 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
267 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
268 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
f42f2552 269 } else if (sysfs_streq(buf, "defer+madvise")) {
21440d7e
DR
270 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
271 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
272 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
273 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
f42f2552 274 } else if (sysfs_streq(buf, "defer")) {
4fad7fb6
DR
275 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
276 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
277 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
278 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
f42f2552 279 } else if (sysfs_streq(buf, "madvise")) {
21440d7e
DR
280 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
281 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
282 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
283 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
f42f2552 284 } else if (sysfs_streq(buf, "never")) {
21440d7e
DR
285 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
286 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
287 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
288 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
289 } else
290 return -EINVAL;
291
292 return count;
71e3aac0
AA
293}
294static struct kobj_attribute defrag_attr =
295 __ATTR(defrag, 0644, defrag_show, defrag_store);
296
79da5407 297static ssize_t use_zero_page_show(struct kobject *kobj,
ae7a927d 298 struct kobj_attribute *attr, char *buf)
79da5407 299{
b46e756f 300 return single_hugepage_flag_show(kobj, attr, buf,
ae7a927d 301 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
79da5407
KS
302}
303static ssize_t use_zero_page_store(struct kobject *kobj,
304 struct kobj_attribute *attr, const char *buf, size_t count)
305{
b46e756f 306 return single_hugepage_flag_store(kobj, attr, buf, count,
79da5407
KS
307 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
308}
309static struct kobj_attribute use_zero_page_attr =
310 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
49920d28
HD
311
312static ssize_t hpage_pmd_size_show(struct kobject *kobj,
ae7a927d 313 struct kobj_attribute *attr, char *buf)
49920d28 314{
ae7a927d 315 return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
49920d28
HD
316}
317static struct kobj_attribute hpage_pmd_size_attr =
318 __ATTR_RO(hpage_pmd_size);
319
71e3aac0
AA
320static struct attribute *hugepage_attr[] = {
321 &enabled_attr.attr,
322 &defrag_attr.attr,
79da5407 323 &use_zero_page_attr.attr,
49920d28 324 &hpage_pmd_size_attr.attr,
396bcc52 325#ifdef CONFIG_SHMEM
5a6e75f8 326 &shmem_enabled_attr.attr,
71e3aac0
AA
327#endif
328 NULL,
329};
330
8aa95a21 331static const struct attribute_group hugepage_attr_group = {
71e3aac0 332 .attrs = hugepage_attr,
ba76149f
AA
333};
334
569e5590 335static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 336{
71e3aac0
AA
337 int err;
338
569e5590
SL
339 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
340 if (unlikely(!*hugepage_kobj)) {
ae3a8c1c 341 pr_err("failed to create transparent hugepage kobject\n");
569e5590 342 return -ENOMEM;
ba76149f
AA
343 }
344
569e5590 345 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f 346 if (err) {
ae3a8c1c 347 pr_err("failed to register transparent hugepage group\n");
569e5590 348 goto delete_obj;
ba76149f
AA
349 }
350
569e5590 351 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f 352 if (err) {
ae3a8c1c 353 pr_err("failed to register transparent hugepage group\n");
569e5590 354 goto remove_hp_group;
ba76149f 355 }
569e5590
SL
356
357 return 0;
358
359remove_hp_group:
360 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
361delete_obj:
362 kobject_put(*hugepage_kobj);
363 return err;
364}
365
366static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
367{
368 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
369 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
370 kobject_put(hugepage_kobj);
371}
372#else
373static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
374{
375 return 0;
376}
377
378static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
379{
380}
381#endif /* CONFIG_SYSFS */
382
383static int __init hugepage_init(void)
384{
385 int err;
386 struct kobject *hugepage_kobj;
387
388 if (!has_transparent_hugepage()) {
389 transparent_hugepage_flags = 0;
390 return -EINVAL;
391 }
392
ff20c2e0
KS
393 /*
394 * hugepages can't be allocated by the buddy allocator
395 */
396 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
397 /*
398 * we use page->mapping and page->index in second tail page
399 * as list_head: assuming THP order >= 2
400 */
401 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
402
569e5590
SL
403 err = hugepage_init_sysfs(&hugepage_kobj);
404 if (err)
65ebb64f 405 goto err_sysfs;
ba76149f 406
b46e756f 407 err = khugepaged_init();
ba76149f 408 if (err)
65ebb64f 409 goto err_slab;
ba76149f 410
65ebb64f
KS
411 err = register_shrinker(&huge_zero_page_shrinker);
412 if (err)
413 goto err_hzp_shrinker;
9a982250
KS
414 err = register_shrinker(&deferred_split_shrinker);
415 if (err)
416 goto err_split_shrinker;
97ae1749 417
97562cd2
RR
418 /*
419 * By default disable transparent hugepages on smaller systems,
420 * where the extra memory used could hurt more than TLB overhead
421 * is likely to save. The admin can still enable it through /sys.
422 */
ca79b0c2 423 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
97562cd2 424 transparent_hugepage_flags = 0;
79553da2
KS
425 return 0;
426 }
97562cd2 427
79553da2 428 err = start_stop_khugepaged();
65ebb64f
KS
429 if (err)
430 goto err_khugepaged;
ba76149f 431
569e5590 432 return 0;
65ebb64f 433err_khugepaged:
9a982250
KS
434 unregister_shrinker(&deferred_split_shrinker);
435err_split_shrinker:
65ebb64f
KS
436 unregister_shrinker(&huge_zero_page_shrinker);
437err_hzp_shrinker:
b46e756f 438 khugepaged_destroy();
65ebb64f 439err_slab:
569e5590 440 hugepage_exit_sysfs(hugepage_kobj);
65ebb64f 441err_sysfs:
ba76149f 442 return err;
71e3aac0 443}
a64fb3cd 444subsys_initcall(hugepage_init);
71e3aac0
AA
445
446static int __init setup_transparent_hugepage(char *str)
447{
448 int ret = 0;
449 if (!str)
450 goto out;
451 if (!strcmp(str, "always")) {
452 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
453 &transparent_hugepage_flags);
454 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
455 &transparent_hugepage_flags);
456 ret = 1;
457 } else if (!strcmp(str, "madvise")) {
458 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
459 &transparent_hugepage_flags);
460 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
461 &transparent_hugepage_flags);
462 ret = 1;
463 } else if (!strcmp(str, "never")) {
464 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
465 &transparent_hugepage_flags);
466 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
467 &transparent_hugepage_flags);
468 ret = 1;
469 }
470out:
471 if (!ret)
ae3a8c1c 472 pr_warn("transparent_hugepage= cannot parse, ignored\n");
71e3aac0
AA
473 return ret;
474}
475__setup("transparent_hugepage=", setup_transparent_hugepage);
476
f55e1014 477pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
71e3aac0 478{
f55e1014 479 if (likely(vma->vm_flags & VM_WRITE))
71e3aac0
AA
480 pmd = pmd_mkwrite(pmd);
481 return pmd;
482}
483
87eaceb3
YS
484#ifdef CONFIG_MEMCG
485static inline struct deferred_split *get_deferred_split_queue(struct page *page)
9a982250 486{
bcfe06bf 487 struct mem_cgroup *memcg = page_memcg(compound_head(page));
87eaceb3
YS
488 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
489
490 if (memcg)
491 return &memcg->deferred_split_queue;
492 else
493 return &pgdat->deferred_split_queue;
9a982250 494}
87eaceb3
YS
495#else
496static inline struct deferred_split *get_deferred_split_queue(struct page *page)
497{
498 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
499
500 return &pgdat->deferred_split_queue;
501}
502#endif
9a982250
KS
503
504void prep_transhuge_page(struct page *page)
505{
506 /*
507 * we use page->mapping and page->indexlru in second tail page
508 * as list_head: assuming THP order >= 2
509 */
9a982250
KS
510
511 INIT_LIST_HEAD(page_deferred_list(page));
512 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
513}
514
005ba37c
SC
515bool is_transparent_hugepage(struct page *page)
516{
517 if (!PageCompound(page))
fa1f68cc 518 return false;
005ba37c
SC
519
520 page = compound_head(page);
521 return is_huge_zero_page(page) ||
522 page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
523}
524EXPORT_SYMBOL_GPL(is_transparent_hugepage);
525
97d3d0f9
KS
526static unsigned long __thp_get_unmapped_area(struct file *filp,
527 unsigned long addr, unsigned long len,
74d2fad1
TK
528 loff_t off, unsigned long flags, unsigned long size)
529{
74d2fad1
TK
530 loff_t off_end = off + len;
531 loff_t off_align = round_up(off, size);
97d3d0f9 532 unsigned long len_pad, ret;
74d2fad1
TK
533
534 if (off_end <= off_align || (off_end - off_align) < size)
535 return 0;
536
537 len_pad = len + size;
538 if (len_pad < len || (off + len_pad) < off)
539 return 0;
540
97d3d0f9 541 ret = current->mm->get_unmapped_area(filp, addr, len_pad,
74d2fad1 542 off >> PAGE_SHIFT, flags);
97d3d0f9
KS
543
544 /*
545 * The failure might be due to length padding. The caller will retry
546 * without the padding.
547 */
548 if (IS_ERR_VALUE(ret))
74d2fad1
TK
549 return 0;
550
97d3d0f9
KS
551 /*
552 * Do not try to align to THP boundary if allocation at the address
553 * hint succeeds.
554 */
555 if (ret == addr)
556 return addr;
557
558 ret += (off - ret) & (size - 1);
559 return ret;
74d2fad1
TK
560}
561
562unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
563 unsigned long len, unsigned long pgoff, unsigned long flags)
564{
97d3d0f9 565 unsigned long ret;
74d2fad1
TK
566 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
567
74d2fad1
TK
568 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
569 goto out;
570
97d3d0f9
KS
571 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
572 if (ret)
573 return ret;
574out:
74d2fad1
TK
575 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
576}
577EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
578
2b740303
SJ
579static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
580 struct page *page, gfp_t gfp)
71e3aac0 581{
82b0f8c3 582 struct vm_area_struct *vma = vmf->vma;
71e3aac0 583 pgtable_t pgtable;
82b0f8c3 584 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
2b740303 585 vm_fault_t ret = 0;
71e3aac0 586
309381fe 587 VM_BUG_ON_PAGE(!PageCompound(page), page);
00501b53 588
d9eb1ea2 589 if (mem_cgroup_charge(page, vma->vm_mm, gfp)) {
6b251fc9
AA
590 put_page(page);
591 count_vm_event(THP_FAULT_FALLBACK);
85b9f46e 592 count_vm_event(THP_FAULT_FALLBACK_CHARGE);
6b251fc9
AA
593 return VM_FAULT_FALLBACK;
594 }
9d82c694 595 cgroup_throttle_swaprate(page, gfp);
00501b53 596
4cf58924 597 pgtable = pte_alloc_one(vma->vm_mm);
00501b53 598 if (unlikely(!pgtable)) {
6b31d595
MH
599 ret = VM_FAULT_OOM;
600 goto release;
00501b53 601 }
71e3aac0 602
c79b57e4 603 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
52f37629
MK
604 /*
605 * The memory barrier inside __SetPageUptodate makes sure that
606 * clear_huge_page writes become visible before the set_pmd_at()
607 * write.
608 */
71e3aac0
AA
609 __SetPageUptodate(page);
610
82b0f8c3
JK
611 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
612 if (unlikely(!pmd_none(*vmf->pmd))) {
6b31d595 613 goto unlock_release;
71e3aac0
AA
614 } else {
615 pmd_t entry;
6b251fc9 616
6b31d595
MH
617 ret = check_stable_address_space(vma->vm_mm);
618 if (ret)
619 goto unlock_release;
620
6b251fc9
AA
621 /* Deliver the page fault to userland */
622 if (userfaultfd_missing(vma)) {
2b740303 623 vm_fault_t ret2;
6b251fc9 624
82b0f8c3 625 spin_unlock(vmf->ptl);
6b251fc9 626 put_page(page);
bae473a4 627 pte_free(vma->vm_mm, pgtable);
2b740303
SJ
628 ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
629 VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
630 return ret2;
6b251fc9
AA
631 }
632
3122359a 633 entry = mk_huge_pmd(page, vma->vm_page_prot);
f55e1014 634 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
d281ee61 635 page_add_new_anon_rmap(page, vma, haddr, true);
b518154e 636 lru_cache_add_inactive_or_unevictable(page, vma);
82b0f8c3
JK
637 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
638 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
fca40573 639 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
bae473a4 640 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
c4812909 641 mm_inc_nr_ptes(vma->vm_mm);
82b0f8c3 642 spin_unlock(vmf->ptl);
6b251fc9 643 count_vm_event(THP_FAULT_ALLOC);
9d82c694 644 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
71e3aac0
AA
645 }
646
aa2e878e 647 return 0;
6b31d595
MH
648unlock_release:
649 spin_unlock(vmf->ptl);
650release:
651 if (pgtable)
652 pte_free(vma->vm_mm, pgtable);
6b31d595
MH
653 put_page(page);
654 return ret;
655
71e3aac0
AA
656}
657
444eb2a4 658/*
21440d7e
DR
659 * always: directly stall for all thp allocations
660 * defer: wake kswapd and fail if not immediately available
661 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
662 * fail if not immediately available
663 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
664 * available
665 * never: never stall for any thp allocation
444eb2a4 666 */
19deb769 667static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
444eb2a4 668{
21440d7e 669 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
2f0799a0 670
ac79f78d 671 /* Always do synchronous compaction */
a8282608
AA
672 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
673 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
ac79f78d
DR
674
675 /* Kick kcompactd and fail quickly */
21440d7e 676 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
19deb769 677 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
ac79f78d
DR
678
679 /* Synchronous compaction if madvised, otherwise kick kcompactd */
21440d7e 680 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
19deb769
DR
681 return GFP_TRANSHUGE_LIGHT |
682 (vma_madvised ? __GFP_DIRECT_RECLAIM :
683 __GFP_KSWAPD_RECLAIM);
ac79f78d
DR
684
685 /* Only do synchronous compaction if madvised */
21440d7e 686 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
19deb769
DR
687 return GFP_TRANSHUGE_LIGHT |
688 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
ac79f78d 689
19deb769 690 return GFP_TRANSHUGE_LIGHT;
444eb2a4
MG
691}
692
c4088ebd 693/* Caller must hold page table lock. */
2efeb8da 694static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
97ae1749 695 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
5918d10a 696 struct page *zero_page)
fc9fe822
KS
697{
698 pmd_t entry;
7c414164 699 if (!pmd_none(*pmd))
2efeb8da 700 return;
5918d10a 701 entry = mk_pmd(zero_page, vma->vm_page_prot);
fc9fe822 702 entry = pmd_mkhuge(entry);
12c9d70b
MW
703 if (pgtable)
704 pgtable_trans_huge_deposit(mm, pmd, pgtable);
fc9fe822 705 set_pmd_at(mm, haddr, pmd, entry);
c4812909 706 mm_inc_nr_ptes(mm);
fc9fe822
KS
707}
708
2b740303 709vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
71e3aac0 710{
82b0f8c3 711 struct vm_area_struct *vma = vmf->vma;
077fcf11 712 gfp_t gfp;
71e3aac0 713 struct page *page;
82b0f8c3 714 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
71e3aac0 715
43675e6f 716 if (!transhuge_vma_suitable(vma, haddr))
c0292554 717 return VM_FAULT_FALLBACK;
128ec037
KS
718 if (unlikely(anon_vma_prepare(vma)))
719 return VM_FAULT_OOM;
6d50e60c 720 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
128ec037 721 return VM_FAULT_OOM;
82b0f8c3 722 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 723 !mm_forbids_zeropage(vma->vm_mm) &&
128ec037
KS
724 transparent_hugepage_use_zero_page()) {
725 pgtable_t pgtable;
726 struct page *zero_page;
2b740303 727 vm_fault_t ret;
4cf58924 728 pgtable = pte_alloc_one(vma->vm_mm);
128ec037 729 if (unlikely(!pgtable))
ba76149f 730 return VM_FAULT_OOM;
6fcb52a5 731 zero_page = mm_get_huge_zero_page(vma->vm_mm);
128ec037 732 if (unlikely(!zero_page)) {
bae473a4 733 pte_free(vma->vm_mm, pgtable);
81ab4201 734 count_vm_event(THP_FAULT_FALLBACK);
c0292554 735 return VM_FAULT_FALLBACK;
b9bbfbe3 736 }
82b0f8c3 737 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
6b251fc9 738 ret = 0;
82b0f8c3 739 if (pmd_none(*vmf->pmd)) {
6b31d595
MH
740 ret = check_stable_address_space(vma->vm_mm);
741 if (ret) {
742 spin_unlock(vmf->ptl);
bfe8cc1d 743 pte_free(vma->vm_mm, pgtable);
6b31d595 744 } else if (userfaultfd_missing(vma)) {
82b0f8c3 745 spin_unlock(vmf->ptl);
bfe8cc1d 746 pte_free(vma->vm_mm, pgtable);
82b0f8c3 747 ret = handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
748 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
749 } else {
bae473a4 750 set_huge_zero_page(pgtable, vma->vm_mm, vma,
82b0f8c3 751 haddr, vmf->pmd, zero_page);
fca40573 752 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
82b0f8c3 753 spin_unlock(vmf->ptl);
6b251fc9 754 }
bfe8cc1d 755 } else {
82b0f8c3 756 spin_unlock(vmf->ptl);
bae473a4 757 pte_free(vma->vm_mm, pgtable);
bfe8cc1d 758 }
6b251fc9 759 return ret;
71e3aac0 760 }
19deb769
DR
761 gfp = alloc_hugepage_direct_gfpmask(vma);
762 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
128ec037
KS
763 if (unlikely(!page)) {
764 count_vm_event(THP_FAULT_FALLBACK);
c0292554 765 return VM_FAULT_FALLBACK;
128ec037 766 }
9a982250 767 prep_transhuge_page(page);
82b0f8c3 768 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
71e3aac0
AA
769}
770
ae18d6dc 771static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
3b6521f5
OH
772 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
773 pgtable_t pgtable)
5cad465d
MW
774{
775 struct mm_struct *mm = vma->vm_mm;
776 pmd_t entry;
777 spinlock_t *ptl;
778
779 ptl = pmd_lock(mm, pmd);
c6f3c5ee
AK
780 if (!pmd_none(*pmd)) {
781 if (write) {
782 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
783 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
784 goto out_unlock;
785 }
786 entry = pmd_mkyoung(*pmd);
787 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
788 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
789 update_mmu_cache_pmd(vma, addr, pmd);
790 }
791
792 goto out_unlock;
793 }
794
f25748e3
DW
795 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
796 if (pfn_t_devmap(pfn))
797 entry = pmd_mkdevmap(entry);
01871e59 798 if (write) {
f55e1014
LT
799 entry = pmd_mkyoung(pmd_mkdirty(entry));
800 entry = maybe_pmd_mkwrite(entry, vma);
5cad465d 801 }
3b6521f5
OH
802
803 if (pgtable) {
804 pgtable_trans_huge_deposit(mm, pmd, pgtable);
c4812909 805 mm_inc_nr_ptes(mm);
c6f3c5ee 806 pgtable = NULL;
3b6521f5
OH
807 }
808
01871e59
RZ
809 set_pmd_at(mm, addr, pmd, entry);
810 update_mmu_cache_pmd(vma, addr, pmd);
c6f3c5ee
AK
811
812out_unlock:
5cad465d 813 spin_unlock(ptl);
c6f3c5ee
AK
814 if (pgtable)
815 pte_free(mm, pgtable);
5cad465d
MW
816}
817
9a9731b1
THV
818/**
819 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
820 * @vmf: Structure describing the fault
821 * @pfn: pfn to insert
822 * @pgprot: page protection to use
823 * @write: whether it's a write fault
824 *
825 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
826 * also consult the vmf_insert_mixed_prot() documentation when
827 * @pgprot != @vmf->vma->vm_page_prot.
828 *
829 * Return: vm_fault_t value.
830 */
831vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
832 pgprot_t pgprot, bool write)
5cad465d 833{
fce86ff5
DW
834 unsigned long addr = vmf->address & PMD_MASK;
835 struct vm_area_struct *vma = vmf->vma;
3b6521f5 836 pgtable_t pgtable = NULL;
fce86ff5 837
5cad465d
MW
838 /*
839 * If we had pmd_special, we could avoid all these restrictions,
840 * but we need to be consistent with PTEs and architectures that
841 * can't support a 'special' bit.
842 */
e1fb4a08
DJ
843 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
844 !pfn_t_devmap(pfn));
5cad465d
MW
845 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
846 (VM_PFNMAP|VM_MIXEDMAP));
847 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
5cad465d
MW
848
849 if (addr < vma->vm_start || addr >= vma->vm_end)
850 return VM_FAULT_SIGBUS;
308a047c 851
3b6521f5 852 if (arch_needs_pgtable_deposit()) {
4cf58924 853 pgtable = pte_alloc_one(vma->vm_mm);
3b6521f5
OH
854 if (!pgtable)
855 return VM_FAULT_OOM;
856 }
857
308a047c
BP
858 track_pfn_insert(vma, &pgprot, pfn);
859
fce86ff5 860 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
ae18d6dc 861 return VM_FAULT_NOPAGE;
5cad465d 862}
9a9731b1 863EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
5cad465d 864
a00cc7d9 865#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
f55e1014 866static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
a00cc7d9 867{
f55e1014 868 if (likely(vma->vm_flags & VM_WRITE))
a00cc7d9
MW
869 pud = pud_mkwrite(pud);
870 return pud;
871}
872
873static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
874 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
875{
876 struct mm_struct *mm = vma->vm_mm;
877 pud_t entry;
878 spinlock_t *ptl;
879
880 ptl = pud_lock(mm, pud);
c6f3c5ee
AK
881 if (!pud_none(*pud)) {
882 if (write) {
883 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
884 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
885 goto out_unlock;
886 }
887 entry = pud_mkyoung(*pud);
888 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
889 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
890 update_mmu_cache_pud(vma, addr, pud);
891 }
892 goto out_unlock;
893 }
894
a00cc7d9
MW
895 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
896 if (pfn_t_devmap(pfn))
897 entry = pud_mkdevmap(entry);
898 if (write) {
f55e1014
LT
899 entry = pud_mkyoung(pud_mkdirty(entry));
900 entry = maybe_pud_mkwrite(entry, vma);
a00cc7d9
MW
901 }
902 set_pud_at(mm, addr, pud, entry);
903 update_mmu_cache_pud(vma, addr, pud);
c6f3c5ee
AK
904
905out_unlock:
a00cc7d9
MW
906 spin_unlock(ptl);
907}
908
9a9731b1
THV
909/**
910 * vmf_insert_pfn_pud_prot - insert a pud size pfn
911 * @vmf: Structure describing the fault
912 * @pfn: pfn to insert
913 * @pgprot: page protection to use
914 * @write: whether it's a write fault
915 *
916 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
917 * also consult the vmf_insert_mixed_prot() documentation when
918 * @pgprot != @vmf->vma->vm_page_prot.
919 *
920 * Return: vm_fault_t value.
921 */
922vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
923 pgprot_t pgprot, bool write)
a00cc7d9 924{
fce86ff5
DW
925 unsigned long addr = vmf->address & PUD_MASK;
926 struct vm_area_struct *vma = vmf->vma;
fce86ff5 927
a00cc7d9
MW
928 /*
929 * If we had pud_special, we could avoid all these restrictions,
930 * but we need to be consistent with PTEs and architectures that
931 * can't support a 'special' bit.
932 */
62ec0d8c
DJ
933 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
934 !pfn_t_devmap(pfn));
a00cc7d9
MW
935 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
936 (VM_PFNMAP|VM_MIXEDMAP));
937 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
a00cc7d9
MW
938
939 if (addr < vma->vm_start || addr >= vma->vm_end)
940 return VM_FAULT_SIGBUS;
941
942 track_pfn_insert(vma, &pgprot, pfn);
943
fce86ff5 944 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
a00cc7d9
MW
945 return VM_FAULT_NOPAGE;
946}
9a9731b1 947EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
a00cc7d9
MW
948#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
949
3565fce3 950static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
a8f97366 951 pmd_t *pmd, int flags)
3565fce3
DW
952{
953 pmd_t _pmd;
954
a8f97366
KS
955 _pmd = pmd_mkyoung(*pmd);
956 if (flags & FOLL_WRITE)
957 _pmd = pmd_mkdirty(_pmd);
3565fce3 958 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
a8f97366 959 pmd, _pmd, flags & FOLL_WRITE))
3565fce3
DW
960 update_mmu_cache_pmd(vma, addr, pmd);
961}
962
963struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
df06b37f 964 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
3565fce3
DW
965{
966 unsigned long pfn = pmd_pfn(*pmd);
967 struct mm_struct *mm = vma->vm_mm;
3565fce3
DW
968 struct page *page;
969
970 assert_spin_locked(pmd_lockptr(mm, pmd));
971
8310d48b
KF
972 /*
973 * When we COW a devmap PMD entry, we split it into PTEs, so we should
974 * not be in this function with `flags & FOLL_COW` set.
975 */
976 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
977
3faa52c0
JH
978 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
979 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
980 (FOLL_PIN | FOLL_GET)))
981 return NULL;
982
f6f37321 983 if (flags & FOLL_WRITE && !pmd_write(*pmd))
3565fce3
DW
984 return NULL;
985
986 if (pmd_present(*pmd) && pmd_devmap(*pmd))
987 /* pass */;
988 else
989 return NULL;
990
991 if (flags & FOLL_TOUCH)
a8f97366 992 touch_pmd(vma, addr, pmd, flags);
3565fce3
DW
993
994 /*
995 * device mapped pages can only be returned if the
996 * caller will manage the page reference count.
997 */
3faa52c0 998 if (!(flags & (FOLL_GET | FOLL_PIN)))
3565fce3
DW
999 return ERR_PTR(-EEXIST);
1000
1001 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
df06b37f
KB
1002 *pgmap = get_dev_pagemap(pfn, *pgmap);
1003 if (!*pgmap)
3565fce3
DW
1004 return ERR_PTR(-EFAULT);
1005 page = pfn_to_page(pfn);
3faa52c0
JH
1006 if (!try_grab_page(page, flags))
1007 page = ERR_PTR(-ENOMEM);
3565fce3
DW
1008
1009 return page;
1010}
1011
71e3aac0
AA
1012int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1013 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1014 struct vm_area_struct *vma)
1015{
c4088ebd 1016 spinlock_t *dst_ptl, *src_ptl;
71e3aac0
AA
1017 struct page *src_page;
1018 pmd_t pmd;
12c9d70b 1019 pgtable_t pgtable = NULL;
628d47ce 1020 int ret = -ENOMEM;
71e3aac0 1021
628d47ce
KS
1022 /* Skip if can be re-fill on fault */
1023 if (!vma_is_anonymous(vma))
1024 return 0;
1025
4cf58924 1026 pgtable = pte_alloc_one(dst_mm);
628d47ce
KS
1027 if (unlikely(!pgtable))
1028 goto out;
71e3aac0 1029
c4088ebd
KS
1030 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1031 src_ptl = pmd_lockptr(src_mm, src_pmd);
1032 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
71e3aac0
AA
1033
1034 ret = -EAGAIN;
1035 pmd = *src_pmd;
84c3fc4e 1036
b569a176
PX
1037 /*
1038 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
1039 * does not have the VM_UFFD_WP, which means that the uffd
1040 * fork event is not enabled.
1041 */
1042 if (!(vma->vm_flags & VM_UFFD_WP))
1043 pmd = pmd_clear_uffd_wp(pmd);
1044
84c3fc4e
ZY
1045#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1046 if (unlikely(is_swap_pmd(pmd))) {
1047 swp_entry_t entry = pmd_to_swp_entry(pmd);
1048
1049 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1050 if (is_write_migration_entry(entry)) {
1051 make_migration_entry_read(&entry);
1052 pmd = swp_entry_to_pmd(entry);
ab6e3d09
NH
1053 if (pmd_swp_soft_dirty(*src_pmd))
1054 pmd = pmd_swp_mksoft_dirty(pmd);
84c3fc4e
ZY
1055 set_pmd_at(src_mm, addr, src_pmd, pmd);
1056 }
dd8a67f9 1057 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
af5b0f6a 1058 mm_inc_nr_ptes(dst_mm);
dd8a67f9 1059 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
84c3fc4e
ZY
1060 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1061 ret = 0;
1062 goto out_unlock;
1063 }
1064#endif
1065
628d47ce 1066 if (unlikely(!pmd_trans_huge(pmd))) {
71e3aac0
AA
1067 pte_free(dst_mm, pgtable);
1068 goto out_unlock;
1069 }
fc9fe822 1070 /*
c4088ebd 1071 * When page table lock is held, the huge zero pmd should not be
fc9fe822
KS
1072 * under splitting since we don't split the page itself, only pmd to
1073 * a page table.
1074 */
1075 if (is_huge_zero_pmd(pmd)) {
5918d10a 1076 struct page *zero_page;
97ae1749
KS
1077 /*
1078 * get_huge_zero_page() will never allocate a new page here,
1079 * since we already have a zero page to copy. It just takes a
1080 * reference.
1081 */
6fcb52a5 1082 zero_page = mm_get_huge_zero_page(dst_mm);
6b251fc9 1083 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
5918d10a 1084 zero_page);
fc9fe822
KS
1085 ret = 0;
1086 goto out_unlock;
1087 }
de466bd6 1088
628d47ce
KS
1089 src_page = pmd_page(pmd);
1090 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
d042035e
PX
1091
1092 /*
1093 * If this page is a potentially pinned page, split and retry the fault
1094 * with smaller page size. Normally this should not happen because the
1095 * userspace should use MADV_DONTFORK upon pinned regions. This is a
1096 * best effort that the pinned pages won't be replaced by another
1097 * random page during the coming copy-on-write.
1098 */
1099 if (unlikely(is_cow_mapping(vma->vm_flags) &&
1100 atomic_read(&src_mm->has_pinned) &&
1101 page_maybe_dma_pinned(src_page))) {
1102 pte_free(dst_mm, pgtable);
1103 spin_unlock(src_ptl);
1104 spin_unlock(dst_ptl);
1105 __split_huge_pmd(vma, src_pmd, addr, false, NULL);
1106 return -EAGAIN;
1107 }
1108
628d47ce
KS
1109 get_page(src_page);
1110 page_dup_rmap(src_page, true);
1111 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
c4812909 1112 mm_inc_nr_ptes(dst_mm);
628d47ce 1113 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
71e3aac0
AA
1114
1115 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1116 pmd = pmd_mkold(pmd_wrprotect(pmd));
1117 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
71e3aac0
AA
1118
1119 ret = 0;
1120out_unlock:
c4088ebd
KS
1121 spin_unlock(src_ptl);
1122 spin_unlock(dst_ptl);
71e3aac0
AA
1123out:
1124 return ret;
1125}
1126
a00cc7d9
MW
1127#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1128static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
a8f97366 1129 pud_t *pud, int flags)
a00cc7d9
MW
1130{
1131 pud_t _pud;
1132
a8f97366
KS
1133 _pud = pud_mkyoung(*pud);
1134 if (flags & FOLL_WRITE)
1135 _pud = pud_mkdirty(_pud);
a00cc7d9 1136 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
a8f97366 1137 pud, _pud, flags & FOLL_WRITE))
a00cc7d9
MW
1138 update_mmu_cache_pud(vma, addr, pud);
1139}
1140
1141struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
df06b37f 1142 pud_t *pud, int flags, struct dev_pagemap **pgmap)
a00cc7d9
MW
1143{
1144 unsigned long pfn = pud_pfn(*pud);
1145 struct mm_struct *mm = vma->vm_mm;
a00cc7d9
MW
1146 struct page *page;
1147
1148 assert_spin_locked(pud_lockptr(mm, pud));
1149
f6f37321 1150 if (flags & FOLL_WRITE && !pud_write(*pud))
a00cc7d9
MW
1151 return NULL;
1152
3faa52c0
JH
1153 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
1154 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1155 (FOLL_PIN | FOLL_GET)))
1156 return NULL;
1157
a00cc7d9
MW
1158 if (pud_present(*pud) && pud_devmap(*pud))
1159 /* pass */;
1160 else
1161 return NULL;
1162
1163 if (flags & FOLL_TOUCH)
a8f97366 1164 touch_pud(vma, addr, pud, flags);
a00cc7d9
MW
1165
1166 /*
1167 * device mapped pages can only be returned if the
1168 * caller will manage the page reference count.
3faa52c0
JH
1169 *
1170 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
a00cc7d9 1171 */
3faa52c0 1172 if (!(flags & (FOLL_GET | FOLL_PIN)))
a00cc7d9
MW
1173 return ERR_PTR(-EEXIST);
1174
1175 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
df06b37f
KB
1176 *pgmap = get_dev_pagemap(pfn, *pgmap);
1177 if (!*pgmap)
a00cc7d9
MW
1178 return ERR_PTR(-EFAULT);
1179 page = pfn_to_page(pfn);
3faa52c0
JH
1180 if (!try_grab_page(page, flags))
1181 page = ERR_PTR(-ENOMEM);
a00cc7d9
MW
1182
1183 return page;
1184}
1185
1186int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1187 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1188 struct vm_area_struct *vma)
1189{
1190 spinlock_t *dst_ptl, *src_ptl;
1191 pud_t pud;
1192 int ret;
1193
1194 dst_ptl = pud_lock(dst_mm, dst_pud);
1195 src_ptl = pud_lockptr(src_mm, src_pud);
1196 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1197
1198 ret = -EAGAIN;
1199 pud = *src_pud;
1200 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1201 goto out_unlock;
1202
1203 /*
1204 * When page table lock is held, the huge zero pud should not be
1205 * under splitting since we don't split the page itself, only pud to
1206 * a page table.
1207 */
1208 if (is_huge_zero_pud(pud)) {
1209 /* No huge zero pud yet */
1210 }
1211
d042035e
PX
1212 /* Please refer to comments in copy_huge_pmd() */
1213 if (unlikely(is_cow_mapping(vma->vm_flags) &&
1214 atomic_read(&src_mm->has_pinned) &&
1215 page_maybe_dma_pinned(pud_page(pud)))) {
1216 spin_unlock(src_ptl);
1217 spin_unlock(dst_ptl);
1218 __split_huge_pud(vma, src_pud, addr);
1219 return -EAGAIN;
1220 }
1221
a00cc7d9
MW
1222 pudp_set_wrprotect(src_mm, addr, src_pud);
1223 pud = pud_mkold(pud_wrprotect(pud));
1224 set_pud_at(dst_mm, addr, dst_pud, pud);
1225
1226 ret = 0;
1227out_unlock:
1228 spin_unlock(src_ptl);
1229 spin_unlock(dst_ptl);
1230 return ret;
1231}
1232
1233void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1234{
1235 pud_t entry;
1236 unsigned long haddr;
1237 bool write = vmf->flags & FAULT_FLAG_WRITE;
1238
1239 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1240 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1241 goto unlock;
1242
1243 entry = pud_mkyoung(orig_pud);
1244 if (write)
1245 entry = pud_mkdirty(entry);
1246 haddr = vmf->address & HPAGE_PUD_MASK;
1247 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1248 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1249
1250unlock:
1251 spin_unlock(vmf->ptl);
1252}
1253#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1254
82b0f8c3 1255void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
a1dd450b
WD
1256{
1257 pmd_t entry;
1258 unsigned long haddr;
20f664aa 1259 bool write = vmf->flags & FAULT_FLAG_WRITE;
a1dd450b 1260
82b0f8c3
JK
1261 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1262 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
a1dd450b
WD
1263 goto unlock;
1264
1265 entry = pmd_mkyoung(orig_pmd);
20f664aa
MK
1266 if (write)
1267 entry = pmd_mkdirty(entry);
82b0f8c3 1268 haddr = vmf->address & HPAGE_PMD_MASK;
20f664aa 1269 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
82b0f8c3 1270 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
a1dd450b
WD
1271
1272unlock:
82b0f8c3 1273 spin_unlock(vmf->ptl);
a1dd450b
WD
1274}
1275
2b740303 1276vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
71e3aac0 1277{
82b0f8c3 1278 struct vm_area_struct *vma = vmf->vma;
3917c802 1279 struct page *page;
82b0f8c3 1280 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
71e3aac0 1281
82b0f8c3 1282 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
81d1b09c 1283 VM_BUG_ON_VMA(!vma->anon_vma, vma);
3917c802 1284
93b4796d 1285 if (is_huge_zero_pmd(orig_pmd))
3917c802
KS
1286 goto fallback;
1287
82b0f8c3 1288 spin_lock(vmf->ptl);
3917c802
KS
1289
1290 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1291 spin_unlock(vmf->ptl);
1292 return 0;
1293 }
71e3aac0
AA
1294
1295 page = pmd_page(orig_pmd);
309381fe 1296 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
3917c802
KS
1297
1298 /* Lock page for reuse_swap_page() */
ba3c4ce6
HY
1299 if (!trylock_page(page)) {
1300 get_page(page);
1301 spin_unlock(vmf->ptl);
1302 lock_page(page);
1303 spin_lock(vmf->ptl);
1304 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
3917c802 1305 spin_unlock(vmf->ptl);
ba3c4ce6
HY
1306 unlock_page(page);
1307 put_page(page);
3917c802 1308 return 0;
ba3c4ce6
HY
1309 }
1310 put_page(page);
1311 }
3917c802
KS
1312
1313 /*
1314 * We can only reuse the page if nobody else maps the huge page or it's
1315 * part.
1316 */
ba3c4ce6 1317 if (reuse_swap_page(page, NULL)) {
71e3aac0
AA
1318 pmd_t entry;
1319 entry = pmd_mkyoung(orig_pmd);
f55e1014 1320 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3917c802 1321 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
82b0f8c3 1322 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
ba3c4ce6 1323 unlock_page(page);
82b0f8c3 1324 spin_unlock(vmf->ptl);
3917c802 1325 return VM_FAULT_WRITE;
71e3aac0 1326 }
3917c802
KS
1327
1328 unlock_page(page);
82b0f8c3 1329 spin_unlock(vmf->ptl);
3917c802
KS
1330fallback:
1331 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1332 return VM_FAULT_FALLBACK;
71e3aac0
AA
1333}
1334
8310d48b 1335/*
a308c71b
PX
1336 * FOLL_FORCE can write to even unwritable pmd's, but only
1337 * after we've gone through a COW cycle and they are dirty.
8310d48b
KF
1338 */
1339static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1340{
a308c71b
PX
1341 return pmd_write(pmd) ||
1342 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
8310d48b
KF
1343}
1344
b676b293 1345struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1346 unsigned long addr,
1347 pmd_t *pmd,
1348 unsigned int flags)
1349{
b676b293 1350 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1351 struct page *page = NULL;
1352
c4088ebd 1353 assert_spin_locked(pmd_lockptr(mm, pmd));
71e3aac0 1354
8310d48b 1355 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
71e3aac0
AA
1356 goto out;
1357
85facf25
KS
1358 /* Avoid dumping huge zero page */
1359 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1360 return ERR_PTR(-EFAULT);
1361
2b4847e7 1362 /* Full NUMA hinting faults to serialise migration in fault paths */
8a0516ed 1363 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
2b4847e7
MG
1364 goto out;
1365
71e3aac0 1366 page = pmd_page(*pmd);
ca120cf6 1367 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
3faa52c0
JH
1368
1369 if (!try_grab_page(page, flags))
1370 return ERR_PTR(-ENOMEM);
1371
3565fce3 1372 if (flags & FOLL_TOUCH)
a8f97366 1373 touch_pmd(vma, addr, pmd, flags);
3faa52c0 1374
de60f5f1 1375 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
1376 /*
1377 * We don't mlock() pte-mapped THPs. This way we can avoid
1378 * leaking mlocked pages into non-VM_LOCKED VMAs.
1379 *
9a73f61b
KS
1380 * For anon THP:
1381 *
e90309c9
KS
1382 * In most cases the pmd is the only mapping of the page as we
1383 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1384 * writable private mappings in populate_vma_page_range().
1385 *
1386 * The only scenario when we have the page shared here is if we
1387 * mlocking read-only mapping shared over fork(). We skip
1388 * mlocking such pages.
9a73f61b
KS
1389 *
1390 * For file THP:
1391 *
1392 * We can expect PageDoubleMap() to be stable under page lock:
1393 * for file pages we set it in page_add_file_rmap(), which
1394 * requires page to be locked.
e90309c9 1395 */
9a73f61b
KS
1396
1397 if (PageAnon(page) && compound_mapcount(page) != 1)
1398 goto skip_mlock;
1399 if (PageDoubleMap(page) || !page->mapping)
1400 goto skip_mlock;
1401 if (!trylock_page(page))
1402 goto skip_mlock;
9a73f61b
KS
1403 if (page->mapping && !PageDoubleMap(page))
1404 mlock_vma_page(page);
1405 unlock_page(page);
b676b293 1406 }
9a73f61b 1407skip_mlock:
71e3aac0 1408 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
ca120cf6 1409 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
71e3aac0
AA
1410
1411out:
1412 return page;
1413}
1414
d10e63f2 1415/* NUMA hinting page fault entry point for trans huge pmds */
2b740303 1416vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
d10e63f2 1417{
82b0f8c3 1418 struct vm_area_struct *vma = vmf->vma;
b8916634 1419 struct anon_vma *anon_vma = NULL;
b32967ff 1420 struct page *page;
82b0f8c3 1421 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
98fa15f3 1422 int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
90572890 1423 int target_nid, last_cpupid = -1;
8191acbd
MG
1424 bool page_locked;
1425 bool migrated = false;
b191f9b1 1426 bool was_writable;
6688cc05 1427 int flags = 0;
d10e63f2 1428
82b0f8c3
JK
1429 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1430 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
d10e63f2
MG
1431 goto out_unlock;
1432
de466bd6
MG
1433 /*
1434 * If there are potential migrations, wait for completion and retry
1435 * without disrupting NUMA hinting information. Do not relock and
1436 * check_same as the page may no longer be mapped.
1437 */
82b0f8c3
JK
1438 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1439 page = pmd_page(*vmf->pmd);
3c226c63
MR
1440 if (!get_page_unless_zero(page))
1441 goto out_unlock;
82b0f8c3 1442 spin_unlock(vmf->ptl);
48054625 1443 put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
de466bd6
MG
1444 goto out;
1445 }
1446
d10e63f2 1447 page = pmd_page(pmd);
a1a46184 1448 BUG_ON(is_huge_zero_page(page));
8191acbd 1449 page_nid = page_to_nid(page);
90572890 1450 last_cpupid = page_cpupid_last(page);
03c5a6e1 1451 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 1452 if (page_nid == this_nid) {
03c5a6e1 1453 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
1454 flags |= TNF_FAULT_LOCAL;
1455 }
4daae3b4 1456
bea66fbd 1457 /* See similar comment in do_numa_page for explanation */
288bc549 1458 if (!pmd_savedwrite(pmd))
6688cc05
PZ
1459 flags |= TNF_NO_GROUP;
1460
ff9042b1
MG
1461 /*
1462 * Acquire the page lock to serialise THP migrations but avoid dropping
1463 * page_table_lock if at all possible
1464 */
b8916634
MG
1465 page_locked = trylock_page(page);
1466 target_nid = mpol_misplaced(page, vma, haddr);
98fa15f3 1467 if (target_nid == NUMA_NO_NODE) {
b8916634 1468 /* If the page was locked, there are no parallel migrations */
a54a407f 1469 if (page_locked)
b8916634 1470 goto clear_pmdnuma;
2b4847e7 1471 }
4daae3b4 1472
de466bd6 1473 /* Migration could have started since the pmd_trans_migrating check */
2b4847e7 1474 if (!page_locked) {
98fa15f3 1475 page_nid = NUMA_NO_NODE;
3c226c63
MR
1476 if (!get_page_unless_zero(page))
1477 goto out_unlock;
82b0f8c3 1478 spin_unlock(vmf->ptl);
48054625 1479 put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
b8916634
MG
1480 goto out;
1481 }
1482
2b4847e7
MG
1483 /*
1484 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1485 * to serialises splits
1486 */
b8916634 1487 get_page(page);
82b0f8c3 1488 spin_unlock(vmf->ptl);
b8916634 1489 anon_vma = page_lock_anon_vma_read(page);
4daae3b4 1490
c69307d5 1491 /* Confirm the PMD did not change while page_table_lock was released */
82b0f8c3
JK
1492 spin_lock(vmf->ptl);
1493 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
b32967ff
MG
1494 unlock_page(page);
1495 put_page(page);
98fa15f3 1496 page_nid = NUMA_NO_NODE;
4daae3b4 1497 goto out_unlock;
b32967ff 1498 }
ff9042b1 1499
c3a489ca
MG
1500 /* Bail if we fail to protect against THP splits for any reason */
1501 if (unlikely(!anon_vma)) {
1502 put_page(page);
98fa15f3 1503 page_nid = NUMA_NO_NODE;
c3a489ca
MG
1504 goto clear_pmdnuma;
1505 }
1506
8b1b436d
PZ
1507 /*
1508 * Since we took the NUMA fault, we must have observed the !accessible
1509 * bit. Make sure all other CPUs agree with that, to avoid them
1510 * modifying the page we're about to migrate.
1511 *
1512 * Must be done under PTL such that we'll observe the relevant
ccde85ba
PZ
1513 * inc_tlb_flush_pending().
1514 *
1515 * We are not sure a pending tlb flush here is for a huge page
1516 * mapping or not. Hence use the tlb range variant
8b1b436d 1517 */
7066f0f9 1518 if (mm_tlb_flush_pending(vma->vm_mm)) {
ccde85ba 1519 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
7066f0f9
AA
1520 /*
1521 * change_huge_pmd() released the pmd lock before
1522 * invalidating the secondary MMUs sharing the primary
1523 * MMU pagetables (with ->invalidate_range()). The
1524 * mmu_notifier_invalidate_range_end() (which
1525 * internally calls ->invalidate_range()) in
1526 * change_pmd_range() will run after us, so we can't
1527 * rely on it here and we need an explicit invalidate.
1528 */
1529 mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1530 haddr + HPAGE_PMD_SIZE);
1531 }
8b1b436d 1532
a54a407f
MG
1533 /*
1534 * Migrate the THP to the requested node, returns with page unlocked
8a0516ed 1535 * and access rights restored.
a54a407f 1536 */
82b0f8c3 1537 spin_unlock(vmf->ptl);
8b1b436d 1538
bae473a4 1539 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
82b0f8c3 1540 vmf->pmd, pmd, vmf->address, page, target_nid);
6688cc05
PZ
1541 if (migrated) {
1542 flags |= TNF_MIGRATED;
8191acbd 1543 page_nid = target_nid;
074c2381
MG
1544 } else
1545 flags |= TNF_MIGRATE_FAIL;
b32967ff 1546
8191acbd 1547 goto out;
b32967ff 1548clear_pmdnuma:
a54a407f 1549 BUG_ON(!PageLocked(page));
288bc549 1550 was_writable = pmd_savedwrite(pmd);
4d942466 1551 pmd = pmd_modify(pmd, vma->vm_page_prot);
b7b04004 1552 pmd = pmd_mkyoung(pmd);
b191f9b1
MG
1553 if (was_writable)
1554 pmd = pmd_mkwrite(pmd);
82b0f8c3
JK
1555 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1556 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
a54a407f 1557 unlock_page(page);
d10e63f2 1558out_unlock:
82b0f8c3 1559 spin_unlock(vmf->ptl);
b8916634
MG
1560
1561out:
1562 if (anon_vma)
1563 page_unlock_anon_vma_read(anon_vma);
1564
98fa15f3 1565 if (page_nid != NUMA_NO_NODE)
82b0f8c3 1566 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
9a8b300f 1567 flags);
8191acbd 1568
d10e63f2
MG
1569 return 0;
1570}
1571
319904ad
HY
1572/*
1573 * Return true if we do MADV_FREE successfully on entire pmd page.
1574 * Otherwise, return false.
1575 */
1576bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
b8d3c4c3 1577 pmd_t *pmd, unsigned long addr, unsigned long next)
b8d3c4c3
MK
1578{
1579 spinlock_t *ptl;
1580 pmd_t orig_pmd;
1581 struct page *page;
1582 struct mm_struct *mm = tlb->mm;
319904ad 1583 bool ret = false;
b8d3c4c3 1584
ed6a7935 1585 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
07e32661 1586
b6ec57f4
KS
1587 ptl = pmd_trans_huge_lock(pmd, vma);
1588 if (!ptl)
25eedabe 1589 goto out_unlocked;
b8d3c4c3
MK
1590
1591 orig_pmd = *pmd;
319904ad 1592 if (is_huge_zero_pmd(orig_pmd))
b8d3c4c3 1593 goto out;
b8d3c4c3 1594
84c3fc4e
ZY
1595 if (unlikely(!pmd_present(orig_pmd))) {
1596 VM_BUG_ON(thp_migration_supported() &&
1597 !is_pmd_migration_entry(orig_pmd));
1598 goto out;
1599 }
1600
b8d3c4c3
MK
1601 page = pmd_page(orig_pmd);
1602 /*
1603 * If other processes are mapping this page, we couldn't discard
1604 * the page unless they all do MADV_FREE so let's skip the page.
1605 */
1606 if (page_mapcount(page) != 1)
1607 goto out;
1608
1609 if (!trylock_page(page))
1610 goto out;
1611
1612 /*
1613 * If user want to discard part-pages of THP, split it so MADV_FREE
1614 * will deactivate only them.
1615 */
1616 if (next - addr != HPAGE_PMD_SIZE) {
1617 get_page(page);
1618 spin_unlock(ptl);
9818b8cd 1619 split_huge_page(page);
b8d3c4c3 1620 unlock_page(page);
bbf29ffc 1621 put_page(page);
b8d3c4c3
MK
1622 goto out_unlocked;
1623 }
1624
1625 if (PageDirty(page))
1626 ClearPageDirty(page);
1627 unlock_page(page);
1628
b8d3c4c3 1629 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
58ceeb6b 1630 pmdp_invalidate(vma, addr, pmd);
b8d3c4c3
MK
1631 orig_pmd = pmd_mkold(orig_pmd);
1632 orig_pmd = pmd_mkclean(orig_pmd);
1633
1634 set_pmd_at(mm, addr, pmd, orig_pmd);
1635 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1636 }
802a3a92
SL
1637
1638 mark_page_lazyfree(page);
319904ad 1639 ret = true;
b8d3c4c3
MK
1640out:
1641 spin_unlock(ptl);
1642out_unlocked:
1643 return ret;
1644}
1645
953c66c2
AK
1646static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1647{
1648 pgtable_t pgtable;
1649
1650 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1651 pte_free(mm, pgtable);
c4812909 1652 mm_dec_nr_ptes(mm);
953c66c2
AK
1653}
1654
71e3aac0 1655int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1656 pmd_t *pmd, unsigned long addr)
71e3aac0 1657{
da146769 1658 pmd_t orig_pmd;
bf929152 1659 spinlock_t *ptl;
71e3aac0 1660
ed6a7935 1661 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
07e32661 1662
b6ec57f4
KS
1663 ptl = __pmd_trans_huge_lock(pmd, vma);
1664 if (!ptl)
da146769
KS
1665 return 0;
1666 /*
1667 * For architectures like ppc64 we look at deposited pgtable
1668 * when calling pmdp_huge_get_and_clear. So do the
1669 * pgtable_trans_huge_withdraw after finishing pmdp related
1670 * operations.
1671 */
93a98695
AK
1672 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1673 tlb->fullmm);
da146769 1674 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
2484ca9b 1675 if (vma_is_special_huge(vma)) {
3b6521f5
OH
1676 if (arch_needs_pgtable_deposit())
1677 zap_deposited_table(tlb->mm, pmd);
da146769
KS
1678 spin_unlock(ptl);
1679 if (is_huge_zero_pmd(orig_pmd))
c0f2e176 1680 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769 1681 } else if (is_huge_zero_pmd(orig_pmd)) {
c14a6eb4 1682 zap_deposited_table(tlb->mm, pmd);
da146769 1683 spin_unlock(ptl);
c0f2e176 1684 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769 1685 } else {
616b8371
ZY
1686 struct page *page = NULL;
1687 int flush_needed = 1;
1688
1689 if (pmd_present(orig_pmd)) {
1690 page = pmd_page(orig_pmd);
1691 page_remove_rmap(page, true);
1692 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1693 VM_BUG_ON_PAGE(!PageHead(page), page);
1694 } else if (thp_migration_supported()) {
1695 swp_entry_t entry;
1696
1697 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1698 entry = pmd_to_swp_entry(orig_pmd);
1699 page = pfn_to_page(swp_offset(entry));
1700 flush_needed = 0;
1701 } else
1702 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1703
b5072380 1704 if (PageAnon(page)) {
c14a6eb4 1705 zap_deposited_table(tlb->mm, pmd);
b5072380
KS
1706 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1707 } else {
953c66c2
AK
1708 if (arch_needs_pgtable_deposit())
1709 zap_deposited_table(tlb->mm, pmd);
fadae295 1710 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
b5072380 1711 }
616b8371 1712
da146769 1713 spin_unlock(ptl);
616b8371
ZY
1714 if (flush_needed)
1715 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
025c5b24 1716 }
da146769 1717 return 1;
71e3aac0
AA
1718}
1719
1dd38b6c
AK
1720#ifndef pmd_move_must_withdraw
1721static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1722 spinlock_t *old_pmd_ptl,
1723 struct vm_area_struct *vma)
1724{
1725 /*
1726 * With split pmd lock we also need to move preallocated
1727 * PTE page table if new_pmd is on different PMD page table.
1728 *
1729 * We also don't deposit and withdraw tables for file pages.
1730 */
1731 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1732}
1733#endif
1734
ab6e3d09
NH
1735static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1736{
1737#ifdef CONFIG_MEM_SOFT_DIRTY
1738 if (unlikely(is_pmd_migration_entry(pmd)))
1739 pmd = pmd_swp_mksoft_dirty(pmd);
1740 else if (pmd_present(pmd))
1741 pmd = pmd_mksoft_dirty(pmd);
1742#endif
1743 return pmd;
1744}
1745
bf8616d5 1746bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
b8aa9d9d 1747 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
37a1c49a 1748{
bf929152 1749 spinlock_t *old_ptl, *new_ptl;
37a1c49a 1750 pmd_t pmd;
37a1c49a 1751 struct mm_struct *mm = vma->vm_mm;
5d190420 1752 bool force_flush = false;
37a1c49a 1753
37a1c49a
AA
1754 /*
1755 * The destination pmd shouldn't be established, free_pgtables()
1756 * should have release it.
1757 */
1758 if (WARN_ON(!pmd_none(*new_pmd))) {
1759 VM_BUG_ON(pmd_trans_huge(*new_pmd));
4b471e88 1760 return false;
37a1c49a
AA
1761 }
1762
bf929152
KS
1763 /*
1764 * We don't have to worry about the ordering of src and dst
c1e8d7c6 1765 * ptlocks because exclusive mmap_lock prevents deadlock.
bf929152 1766 */
b6ec57f4
KS
1767 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1768 if (old_ptl) {
bf929152
KS
1769 new_ptl = pmd_lockptr(mm, new_pmd);
1770 if (new_ptl != old_ptl)
1771 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
8809aa2d 1772 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
eb66ae03 1773 if (pmd_present(pmd))
a2ce2666 1774 force_flush = true;
025c5b24 1775 VM_BUG_ON(!pmd_none(*new_pmd));
3592806c 1776
1dd38b6c 1777 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
b3084f4d 1778 pgtable_t pgtable;
3592806c
KS
1779 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1780 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
3592806c 1781 }
ab6e3d09
NH
1782 pmd = move_soft_dirty_pmd(pmd);
1783 set_pmd_at(mm, new_addr, new_pmd, pmd);
5d190420
AL
1784 if (force_flush)
1785 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
eb66ae03
LT
1786 if (new_ptl != old_ptl)
1787 spin_unlock(new_ptl);
bf929152 1788 spin_unlock(old_ptl);
4b471e88 1789 return true;
37a1c49a 1790 }
4b471e88 1791 return false;
37a1c49a
AA
1792}
1793
f123d74a
MG
1794/*
1795 * Returns
1796 * - 0 if PMD could not be locked
1797 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1798 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1799 */
cd7548ab 1800int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
58705444 1801 unsigned long addr, pgprot_t newprot, unsigned long cp_flags)
cd7548ab
JW
1802{
1803 struct mm_struct *mm = vma->vm_mm;
bf929152 1804 spinlock_t *ptl;
0a85e51d
KS
1805 pmd_t entry;
1806 bool preserve_write;
1807 int ret;
58705444 1808 bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
292924b2
PX
1809 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1810 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
cd7548ab 1811
b6ec57f4 1812 ptl = __pmd_trans_huge_lock(pmd, vma);
0a85e51d
KS
1813 if (!ptl)
1814 return 0;
e944fd67 1815
0a85e51d
KS
1816 preserve_write = prot_numa && pmd_write(*pmd);
1817 ret = 1;
e944fd67 1818
84c3fc4e
ZY
1819#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1820 if (is_swap_pmd(*pmd)) {
1821 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1822
1823 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1824 if (is_write_migration_entry(entry)) {
1825 pmd_t newpmd;
1826 /*
1827 * A protection check is difficult so
1828 * just be safe and disable write
1829 */
1830 make_migration_entry_read(&entry);
1831 newpmd = swp_entry_to_pmd(entry);
ab6e3d09
NH
1832 if (pmd_swp_soft_dirty(*pmd))
1833 newpmd = pmd_swp_mksoft_dirty(newpmd);
84c3fc4e
ZY
1834 set_pmd_at(mm, addr, pmd, newpmd);
1835 }
1836 goto unlock;
1837 }
1838#endif
1839
0a85e51d
KS
1840 /*
1841 * Avoid trapping faults against the zero page. The read-only
1842 * data is likely to be read-cached on the local CPU and
1843 * local/remote hits to the zero page are not interesting.
1844 */
1845 if (prot_numa && is_huge_zero_pmd(*pmd))
1846 goto unlock;
025c5b24 1847
0a85e51d
KS
1848 if (prot_numa && pmd_protnone(*pmd))
1849 goto unlock;
1850
ced10803 1851 /*
3e4e28c5 1852 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
ced10803 1853 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
3e4e28c5 1854 * which is also under mmap_read_lock(mm):
ced10803
KS
1855 *
1856 * CPU0: CPU1:
1857 * change_huge_pmd(prot_numa=1)
1858 * pmdp_huge_get_and_clear_notify()
1859 * madvise_dontneed()
1860 * zap_pmd_range()
1861 * pmd_trans_huge(*pmd) == 0 (without ptl)
1862 * // skip the pmd
1863 * set_pmd_at();
1864 * // pmd is re-established
1865 *
1866 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1867 * which may break userspace.
1868 *
1869 * pmdp_invalidate() is required to make sure we don't miss
1870 * dirty/young flags set by hardware.
1871 */
a3cf988f 1872 entry = pmdp_invalidate(vma, addr, pmd);
ced10803 1873
0a85e51d
KS
1874 entry = pmd_modify(entry, newprot);
1875 if (preserve_write)
1876 entry = pmd_mk_savedwrite(entry);
292924b2
PX
1877 if (uffd_wp) {
1878 entry = pmd_wrprotect(entry);
1879 entry = pmd_mkuffd_wp(entry);
1880 } else if (uffd_wp_resolve) {
1881 /*
1882 * Leave the write bit to be handled by PF interrupt
1883 * handler, then things like COW could be properly
1884 * handled.
1885 */
1886 entry = pmd_clear_uffd_wp(entry);
1887 }
0a85e51d
KS
1888 ret = HPAGE_PMD_NR;
1889 set_pmd_at(mm, addr, pmd, entry);
1890 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1891unlock:
1892 spin_unlock(ptl);
025c5b24
NH
1893 return ret;
1894}
1895
1896/*
8f19b0c0 1897 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
025c5b24 1898 *
8f19b0c0
HY
1899 * Note that if it returns page table lock pointer, this routine returns without
1900 * unlocking page table lock. So callers must unlock it.
025c5b24 1901 */
b6ec57f4 1902spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
025c5b24 1903{
b6ec57f4
KS
1904 spinlock_t *ptl;
1905 ptl = pmd_lock(vma->vm_mm, pmd);
84c3fc4e
ZY
1906 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1907 pmd_devmap(*pmd)))
b6ec57f4
KS
1908 return ptl;
1909 spin_unlock(ptl);
1910 return NULL;
cd7548ab
JW
1911}
1912
a00cc7d9
MW
1913/*
1914 * Returns true if a given pud maps a thp, false otherwise.
1915 *
1916 * Note that if it returns true, this routine returns without unlocking page
1917 * table lock. So callers must unlock it.
1918 */
1919spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1920{
1921 spinlock_t *ptl;
1922
1923 ptl = pud_lock(vma->vm_mm, pud);
1924 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1925 return ptl;
1926 spin_unlock(ptl);
1927 return NULL;
1928}
1929
1930#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1931int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1932 pud_t *pud, unsigned long addr)
1933{
a00cc7d9
MW
1934 spinlock_t *ptl;
1935
1936 ptl = __pud_trans_huge_lock(pud, vma);
1937 if (!ptl)
1938 return 0;
1939 /*
1940 * For architectures like ppc64 we look at deposited pgtable
1941 * when calling pudp_huge_get_and_clear. So do the
1942 * pgtable_trans_huge_withdraw after finishing pudp related
1943 * operations.
1944 */
70516b93 1945 pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
a00cc7d9 1946 tlb_remove_pud_tlb_entry(tlb, pud, addr);
2484ca9b 1947 if (vma_is_special_huge(vma)) {
a00cc7d9
MW
1948 spin_unlock(ptl);
1949 /* No zero page support yet */
1950 } else {
1951 /* No support for anonymous PUD pages yet */
1952 BUG();
1953 }
1954 return 1;
1955}
1956
1957static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1958 unsigned long haddr)
1959{
1960 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1961 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1962 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1963 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1964
ce9311cf 1965 count_vm_event(THP_SPLIT_PUD);
a00cc7d9
MW
1966
1967 pudp_huge_clear_flush_notify(vma, haddr, pud);
1968}
1969
1970void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1971 unsigned long address)
1972{
1973 spinlock_t *ptl;
ac46d4f3 1974 struct mmu_notifier_range range;
a00cc7d9 1975
7269f999 1976 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1977 address & HPAGE_PUD_MASK,
ac46d4f3
JG
1978 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
1979 mmu_notifier_invalidate_range_start(&range);
1980 ptl = pud_lock(vma->vm_mm, pud);
a00cc7d9
MW
1981 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1982 goto out;
ac46d4f3 1983 __split_huge_pud_locked(vma, pud, range.start);
a00cc7d9
MW
1984
1985out:
1986 spin_unlock(ptl);
4645b9fe
JG
1987 /*
1988 * No need to double call mmu_notifier->invalidate_range() callback as
1989 * the above pudp_huge_clear_flush_notify() did already call it.
1990 */
ac46d4f3 1991 mmu_notifier_invalidate_range_only_end(&range);
a00cc7d9
MW
1992}
1993#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1994
eef1b3ba
KS
1995static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1996 unsigned long haddr, pmd_t *pmd)
1997{
1998 struct mm_struct *mm = vma->vm_mm;
1999 pgtable_t pgtable;
2000 pmd_t _pmd;
2001 int i;
2002
0f10851e
JG
2003 /*
2004 * Leave pmd empty until pte is filled note that it is fine to delay
2005 * notification until mmu_notifier_invalidate_range_end() as we are
2006 * replacing a zero pmd write protected page with a zero pte write
2007 * protected page.
2008 *
ad56b738 2009 * See Documentation/vm/mmu_notifier.rst
0f10851e
JG
2010 */
2011 pmdp_huge_clear_flush(vma, haddr, pmd);
eef1b3ba
KS
2012
2013 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2014 pmd_populate(mm, &_pmd, pgtable);
2015
2016 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2017 pte_t *pte, entry;
2018 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2019 entry = pte_mkspecial(entry);
2020 pte = pte_offset_map(&_pmd, haddr);
2021 VM_BUG_ON(!pte_none(*pte));
2022 set_pte_at(mm, haddr, pte, entry);
2023 pte_unmap(pte);
2024 }
2025 smp_wmb(); /* make pte visible before pmd */
2026 pmd_populate(mm, pmd, pgtable);
eef1b3ba
KS
2027}
2028
2029static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
ba988280 2030 unsigned long haddr, bool freeze)
eef1b3ba
KS
2031{
2032 struct mm_struct *mm = vma->vm_mm;
2033 struct page *page;
2034 pgtable_t pgtable;
423ac9af 2035 pmd_t old_pmd, _pmd;
292924b2 2036 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2ac015e2 2037 unsigned long addr;
eef1b3ba
KS
2038 int i;
2039
2040 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2041 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2042 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
84c3fc4e
ZY
2043 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2044 && !pmd_devmap(*pmd));
eef1b3ba
KS
2045
2046 count_vm_event(THP_SPLIT_PMD);
2047
d21b9e57
KS
2048 if (!vma_is_anonymous(vma)) {
2049 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
953c66c2
AK
2050 /*
2051 * We are going to unmap this huge page. So
2052 * just go ahead and zap it
2053 */
2054 if (arch_needs_pgtable_deposit())
2055 zap_deposited_table(mm, pmd);
2484ca9b 2056 if (vma_is_special_huge(vma))
d21b9e57
KS
2057 return;
2058 page = pmd_page(_pmd);
e1f1b157
HD
2059 if (!PageDirty(page) && pmd_dirty(_pmd))
2060 set_page_dirty(page);
d21b9e57
KS
2061 if (!PageReferenced(page) && pmd_young(_pmd))
2062 SetPageReferenced(page);
2063 page_remove_rmap(page, true);
2064 put_page(page);
fadae295 2065 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
eef1b3ba 2066 return;
ec0abae6 2067 } else if (pmd_trans_huge(*pmd) && is_huge_zero_pmd(*pmd)) {
4645b9fe
JG
2068 /*
2069 * FIXME: Do we want to invalidate secondary mmu by calling
2070 * mmu_notifier_invalidate_range() see comments below inside
2071 * __split_huge_pmd() ?
2072 *
2073 * We are going from a zero huge page write protected to zero
2074 * small page also write protected so it does not seems useful
2075 * to invalidate secondary mmu at this time.
2076 */
eef1b3ba
KS
2077 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2078 }
2079
423ac9af
AK
2080 /*
2081 * Up to this point the pmd is present and huge and userland has the
2082 * whole access to the hugepage during the split (which happens in
2083 * place). If we overwrite the pmd with the not-huge version pointing
2084 * to the pte here (which of course we could if all CPUs were bug
2085 * free), userland could trigger a small page size TLB miss on the
2086 * small sized TLB while the hugepage TLB entry is still established in
2087 * the huge TLB. Some CPU doesn't like that.
42742d9b
AK
2088 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2089 * 383 on page 105. Intel should be safe but is also warns that it's
423ac9af
AK
2090 * only safe if the permission and cache attributes of the two entries
2091 * loaded in the two TLB is identical (which should be the case here).
2092 * But it is generally safer to never allow small and huge TLB entries
2093 * for the same virtual address to be loaded simultaneously. So instead
2094 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2095 * current pmd notpresent (atomically because here the pmd_trans_huge
2096 * must remain set at all times on the pmd until the split is complete
2097 * for this pmd), then we flush the SMP TLB and finally we write the
2098 * non-huge version of the pmd entry with pmd_populate.
2099 */
2100 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2101
423ac9af 2102 pmd_migration = is_pmd_migration_entry(old_pmd);
2e83ee1d 2103 if (unlikely(pmd_migration)) {
84c3fc4e
ZY
2104 swp_entry_t entry;
2105
423ac9af 2106 entry = pmd_to_swp_entry(old_pmd);
84c3fc4e 2107 page = pfn_to_page(swp_offset(entry));
2e83ee1d
PX
2108 write = is_write_migration_entry(entry);
2109 young = false;
2110 soft_dirty = pmd_swp_soft_dirty(old_pmd);
f45ec5ff 2111 uffd_wp = pmd_swp_uffd_wp(old_pmd);
2e83ee1d 2112 } else {
423ac9af 2113 page = pmd_page(old_pmd);
2e83ee1d
PX
2114 if (pmd_dirty(old_pmd))
2115 SetPageDirty(page);
2116 write = pmd_write(old_pmd);
2117 young = pmd_young(old_pmd);
2118 soft_dirty = pmd_soft_dirty(old_pmd);
292924b2 2119 uffd_wp = pmd_uffd_wp(old_pmd);
2e83ee1d 2120 }
eef1b3ba 2121 VM_BUG_ON_PAGE(!page_count(page), page);
fe896d18 2122 page_ref_add(page, HPAGE_PMD_NR - 1);
eef1b3ba 2123
423ac9af
AK
2124 /*
2125 * Withdraw the table only after we mark the pmd entry invalid.
2126 * This's critical for some architectures (Power).
2127 */
eef1b3ba
KS
2128 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2129 pmd_populate(mm, &_pmd, pgtable);
2130
2ac015e2 2131 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
eef1b3ba
KS
2132 pte_t entry, *pte;
2133 /*
2134 * Note that NUMA hinting access restrictions are not
2135 * transferred to avoid any possibility of altering
2136 * permissions across VMAs.
2137 */
84c3fc4e 2138 if (freeze || pmd_migration) {
ba988280
KS
2139 swp_entry_t swp_entry;
2140 swp_entry = make_migration_entry(page + i, write);
2141 entry = swp_entry_to_pte(swp_entry);
804dd150
AA
2142 if (soft_dirty)
2143 entry = pte_swp_mksoft_dirty(entry);
f45ec5ff
PX
2144 if (uffd_wp)
2145 entry = pte_swp_mkuffd_wp(entry);
ba988280 2146 } else {
6d2329f8 2147 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
b8d3c4c3 2148 entry = maybe_mkwrite(entry, vma);
ba988280
KS
2149 if (!write)
2150 entry = pte_wrprotect(entry);
2151 if (!young)
2152 entry = pte_mkold(entry);
804dd150
AA
2153 if (soft_dirty)
2154 entry = pte_mksoft_dirty(entry);
292924b2
PX
2155 if (uffd_wp)
2156 entry = pte_mkuffd_wp(entry);
ba988280 2157 }
2ac015e2 2158 pte = pte_offset_map(&_pmd, addr);
eef1b3ba 2159 BUG_ON(!pte_none(*pte));
2ac015e2 2160 set_pte_at(mm, addr, pte, entry);
ec0abae6 2161 if (!pmd_migration)
eef1b3ba 2162 atomic_inc(&page[i]._mapcount);
ec0abae6 2163 pte_unmap(pte);
eef1b3ba
KS
2164 }
2165
ec0abae6
RC
2166 if (!pmd_migration) {
2167 /*
2168 * Set PG_double_map before dropping compound_mapcount to avoid
2169 * false-negative page_mapped().
2170 */
2171 if (compound_mapcount(page) > 1 &&
2172 !TestSetPageDoubleMap(page)) {
eef1b3ba 2173 for (i = 0; i < HPAGE_PMD_NR; i++)
ec0abae6
RC
2174 atomic_inc(&page[i]._mapcount);
2175 }
2176
2177 lock_page_memcg(page);
2178 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2179 /* Last compound_mapcount is gone. */
69473e5d
MS
2180 __mod_lruvec_page_state(page, NR_ANON_THPS,
2181 -HPAGE_PMD_NR);
ec0abae6
RC
2182 if (TestClearPageDoubleMap(page)) {
2183 /* No need in mapcount reference anymore */
2184 for (i = 0; i < HPAGE_PMD_NR; i++)
2185 atomic_dec(&page[i]._mapcount);
2186 }
eef1b3ba 2187 }
ec0abae6 2188 unlock_page_memcg(page);
eef1b3ba
KS
2189 }
2190
2191 smp_wmb(); /* make pte visible before pmd */
2192 pmd_populate(mm, pmd, pgtable);
e9b61f19
KS
2193
2194 if (freeze) {
2ac015e2 2195 for (i = 0; i < HPAGE_PMD_NR; i++) {
e9b61f19
KS
2196 page_remove_rmap(page + i, false);
2197 put_page(page + i);
2198 }
2199 }
eef1b3ba
KS
2200}
2201
2202void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
33f4751e 2203 unsigned long address, bool freeze, struct page *page)
eef1b3ba
KS
2204{
2205 spinlock_t *ptl;
ac46d4f3 2206 struct mmu_notifier_range range;
1c2f6730 2207 bool do_unlock_page = false;
c444eb56 2208 pmd_t _pmd;
eef1b3ba 2209
7269f999 2210 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 2211 address & HPAGE_PMD_MASK,
ac46d4f3
JG
2212 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2213 mmu_notifier_invalidate_range_start(&range);
2214 ptl = pmd_lock(vma->vm_mm, pmd);
33f4751e
NH
2215
2216 /*
2217 * If caller asks to setup a migration entries, we need a page to check
2218 * pmd against. Otherwise we can end up replacing wrong page.
2219 */
2220 VM_BUG_ON(freeze && !page);
c444eb56
AA
2221 if (page) {
2222 VM_WARN_ON_ONCE(!PageLocked(page));
c444eb56
AA
2223 if (page != pmd_page(*pmd))
2224 goto out;
2225 }
33f4751e 2226
c444eb56 2227repeat:
5c7fb56e 2228 if (pmd_trans_huge(*pmd)) {
c444eb56
AA
2229 if (!page) {
2230 page = pmd_page(*pmd);
1c2f6730
HD
2231 /*
2232 * An anonymous page must be locked, to ensure that a
2233 * concurrent reuse_swap_page() sees stable mapcount;
2234 * but reuse_swap_page() is not used on shmem or file,
2235 * and page lock must not be taken when zap_pmd_range()
2236 * calls __split_huge_pmd() while i_mmap_lock is held.
2237 */
2238 if (PageAnon(page)) {
2239 if (unlikely(!trylock_page(page))) {
2240 get_page(page);
2241 _pmd = *pmd;
2242 spin_unlock(ptl);
2243 lock_page(page);
2244 spin_lock(ptl);
2245 if (unlikely(!pmd_same(*pmd, _pmd))) {
2246 unlock_page(page);
2247 put_page(page);
2248 page = NULL;
2249 goto repeat;
2250 }
c444eb56 2251 put_page(page);
c444eb56 2252 }
1c2f6730 2253 do_unlock_page = true;
c444eb56
AA
2254 }
2255 }
5c7fb56e 2256 if (PageMlocked(page))
5f737714 2257 clear_page_mlock(page);
84c3fc4e 2258 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
e90309c9 2259 goto out;
ac46d4f3 2260 __split_huge_pmd_locked(vma, pmd, range.start, freeze);
e90309c9 2261out:
eef1b3ba 2262 spin_unlock(ptl);
1c2f6730 2263 if (do_unlock_page)
c444eb56 2264 unlock_page(page);
4645b9fe
JG
2265 /*
2266 * No need to double call mmu_notifier->invalidate_range() callback.
2267 * They are 3 cases to consider inside __split_huge_pmd_locked():
2268 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2269 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2270 * fault will trigger a flush_notify before pointing to a new page
2271 * (it is fine if the secondary mmu keeps pointing to the old zero
2272 * page in the meantime)
2273 * 3) Split a huge pmd into pte pointing to the same page. No need
2274 * to invalidate secondary tlb entry they are all still valid.
2275 * any further changes to individual pte will notify. So no need
2276 * to call mmu_notifier->invalidate_range()
2277 */
ac46d4f3 2278 mmu_notifier_invalidate_range_only_end(&range);
eef1b3ba
KS
2279}
2280
fec89c10
KS
2281void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2282 bool freeze, struct page *page)
94fcc585 2283{
f72e7dcd 2284 pgd_t *pgd;
c2febafc 2285 p4d_t *p4d;
f72e7dcd 2286 pud_t *pud;
94fcc585
AA
2287 pmd_t *pmd;
2288
78ddc534 2289 pgd = pgd_offset(vma->vm_mm, address);
f72e7dcd
HD
2290 if (!pgd_present(*pgd))
2291 return;
2292
c2febafc
KS
2293 p4d = p4d_offset(pgd, address);
2294 if (!p4d_present(*p4d))
2295 return;
2296
2297 pud = pud_offset(p4d, address);
f72e7dcd
HD
2298 if (!pud_present(*pud))
2299 return;
2300
2301 pmd = pmd_offset(pud, address);
fec89c10 2302
33f4751e 2303 __split_huge_pmd(vma, pmd, address, freeze, page);
94fcc585
AA
2304}
2305
e1b9996b 2306void vma_adjust_trans_huge(struct vm_area_struct *vma,
94fcc585
AA
2307 unsigned long start,
2308 unsigned long end,
2309 long adjust_next)
2310{
2311 /*
2312 * If the new start address isn't hpage aligned and it could
2313 * previously contain an hugepage: check if we need to split
2314 * an huge pmd.
2315 */
2316 if (start & ~HPAGE_PMD_MASK &&
2317 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2318 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 2319 split_huge_pmd_address(vma, start, false, NULL);
94fcc585
AA
2320
2321 /*
2322 * If the new end address isn't hpage aligned and it could
2323 * previously contain an hugepage: check if we need to split
2324 * an huge pmd.
2325 */
2326 if (end & ~HPAGE_PMD_MASK &&
2327 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2328 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 2329 split_huge_pmd_address(vma, end, false, NULL);
94fcc585
AA
2330
2331 /*
2332 * If we're also updating the vma->vm_next->vm_start, if the new
f9d86a60 2333 * vm_next->vm_start isn't hpage aligned and it could previously
94fcc585
AA
2334 * contain an hugepage: check if we need to split an huge pmd.
2335 */
2336 if (adjust_next > 0) {
2337 struct vm_area_struct *next = vma->vm_next;
2338 unsigned long nstart = next->vm_start;
f9d86a60 2339 nstart += adjust_next;
94fcc585
AA
2340 if (nstart & ~HPAGE_PMD_MASK &&
2341 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2342 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
fec89c10 2343 split_huge_pmd_address(next, nstart, false, NULL);
94fcc585
AA
2344 }
2345}
e9b61f19 2346
906f9cdf 2347static void unmap_page(struct page *page)
e9b61f19 2348{
013339df 2349 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK |
c7ab0d2f 2350 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
666e5a40 2351 bool unmap_success;
e9b61f19
KS
2352
2353 VM_BUG_ON_PAGE(!PageHead(page), page);
2354
baa355fd 2355 if (PageAnon(page))
b5ff8161 2356 ttu_flags |= TTU_SPLIT_FREEZE;
baa355fd 2357
666e5a40
MK
2358 unmap_success = try_to_unmap(page, ttu_flags);
2359 VM_BUG_ON_PAGE(!unmap_success, page);
e9b61f19
KS
2360}
2361
8cce5475 2362static void remap_page(struct page *page, unsigned int nr)
e9b61f19 2363{
fec89c10 2364 int i;
ace71a19
KS
2365 if (PageTransHuge(page)) {
2366 remove_migration_ptes(page, page, true);
2367 } else {
8cce5475 2368 for (i = 0; i < nr; i++)
ace71a19
KS
2369 remove_migration_ptes(page + i, page + i, true);
2370 }
e9b61f19
KS
2371}
2372
94866635 2373static void lru_add_page_tail(struct page *head, struct page *tail,
88dcb9a3
AS
2374 struct lruvec *lruvec, struct list_head *list)
2375{
94866635
AS
2376 VM_BUG_ON_PAGE(!PageHead(head), head);
2377 VM_BUG_ON_PAGE(PageCompound(tail), head);
2378 VM_BUG_ON_PAGE(PageLRU(tail), head);
6168d0da 2379 lockdep_assert_held(&lruvec->lru_lock);
88dcb9a3 2380
6dbb5741 2381 if (list) {
88dcb9a3 2382 /* page reclaim is reclaiming a huge page */
6dbb5741 2383 VM_WARN_ON(PageLRU(head));
94866635
AS
2384 get_page(tail);
2385 list_add_tail(&tail->lru, list);
88dcb9a3 2386 } else {
6dbb5741
AS
2387 /* head is still on lru (and we have it frozen) */
2388 VM_WARN_ON(!PageLRU(head));
2389 SetPageLRU(tail);
2390 list_add_tail(&tail->lru, &head->lru);
88dcb9a3
AS
2391 }
2392}
2393
8df651c7 2394static void __split_huge_page_tail(struct page *head, int tail,
e9b61f19
KS
2395 struct lruvec *lruvec, struct list_head *list)
2396{
e9b61f19
KS
2397 struct page *page_tail = head + tail;
2398
8df651c7 2399 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
e9b61f19
KS
2400
2401 /*
605ca5ed
KK
2402 * Clone page flags before unfreezing refcount.
2403 *
2404 * After successful get_page_unless_zero() might follow flags change,
8958b249 2405 * for example lock_page() which set PG_waiters.
e9b61f19 2406 */
e9b61f19
KS
2407 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2408 page_tail->flags |= (head->flags &
2409 ((1L << PG_referenced) |
2410 (1L << PG_swapbacked) |
38d8b4e6 2411 (1L << PG_swapcache) |
e9b61f19
KS
2412 (1L << PG_mlocked) |
2413 (1L << PG_uptodate) |
2414 (1L << PG_active) |
1899ad18 2415 (1L << PG_workingset) |
e9b61f19 2416 (1L << PG_locked) |
b8d3c4c3 2417 (1L << PG_unevictable) |
72e6afa0
CM
2418#ifdef CONFIG_64BIT
2419 (1L << PG_arch_2) |
2420#endif
b8d3c4c3 2421 (1L << PG_dirty)));
e9b61f19 2422
173d9d9f
HD
2423 /* ->mapping in first tail page is compound_mapcount */
2424 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2425 page_tail);
2426 page_tail->mapping = head->mapping;
2427 page_tail->index = head->index + tail;
2428
605ca5ed 2429 /* Page flags must be visible before we make the page non-compound. */
e9b61f19
KS
2430 smp_wmb();
2431
605ca5ed
KK
2432 /*
2433 * Clear PageTail before unfreezing page refcount.
2434 *
2435 * After successful get_page_unless_zero() might follow put_page()
2436 * which needs correct compound_head().
2437 */
e9b61f19
KS
2438 clear_compound_head(page_tail);
2439
605ca5ed
KK
2440 /* Finally unfreeze refcount. Additional reference from page cache. */
2441 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2442 PageSwapCache(head)));
2443
e9b61f19
KS
2444 if (page_is_young(head))
2445 set_page_young(page_tail);
2446 if (page_is_idle(head))
2447 set_page_idle(page_tail);
2448
e9b61f19 2449 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
94723aaf
MH
2450
2451 /*
2452 * always add to the tail because some iterators expect new
2453 * pages to show after the currently processed elements - e.g.
2454 * migrate_pages
2455 */
e9b61f19 2456 lru_add_page_tail(head, page_tail, lruvec, list);
e9b61f19
KS
2457}
2458
baa355fd 2459static void __split_huge_page(struct page *page, struct list_head *list,
b6769834 2460 pgoff_t end)
e9b61f19
KS
2461{
2462 struct page *head = compound_head(page);
e9b61f19 2463 struct lruvec *lruvec;
4101196b
MWO
2464 struct address_space *swap_cache = NULL;
2465 unsigned long offset = 0;
8cce5475 2466 unsigned int nr = thp_nr_pages(head);
8df651c7 2467 int i;
e9b61f19 2468
e9b61f19
KS
2469 /* complete memcg works before add pages to LRU */
2470 mem_cgroup_split_huge_fixup(head);
2471
4101196b
MWO
2472 if (PageAnon(head) && PageSwapCache(head)) {
2473 swp_entry_t entry = { .val = page_private(head) };
2474
2475 offset = swp_offset(entry);
2476 swap_cache = swap_address_space(entry);
2477 xa_lock(&swap_cache->i_pages);
2478 }
2479
6168d0da
AS
2480 /* lock lru list/PageCompound, ref freezed by page_ref_freeze */
2481 lruvec = lock_page_lruvec(head);
b6769834 2482
8cce5475 2483 for (i = nr - 1; i >= 1; i--) {
8df651c7 2484 __split_huge_page_tail(head, i, lruvec, list);
baa355fd
KS
2485 /* Some pages can be beyond i_size: drop them from page cache */
2486 if (head[i].index >= end) {
2d077d4b 2487 ClearPageDirty(head + i);
baa355fd 2488 __delete_from_page_cache(head + i, NULL);
800d8c63
KS
2489 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2490 shmem_uncharge(head->mapping->host, 1);
baa355fd 2491 put_page(head + i);
4101196b
MWO
2492 } else if (!PageAnon(page)) {
2493 __xa_store(&head->mapping->i_pages, head[i].index,
2494 head + i, 0);
2495 } else if (swap_cache) {
2496 __xa_store(&swap_cache->i_pages, offset + i,
2497 head + i, 0);
baa355fd
KS
2498 }
2499 }
e9b61f19
KS
2500
2501 ClearPageCompound(head);
6168d0da 2502 unlock_page_lruvec(lruvec);
b6769834 2503 /* Caller disabled irqs, so they are still disabled here */
f7da677b 2504
8cce5475 2505 split_page_owner(head, nr);
f7da677b 2506
baa355fd
KS
2507 /* See comment in __split_huge_page_tail() */
2508 if (PageAnon(head)) {
aa5dc07f 2509 /* Additional pin to swap cache */
4101196b 2510 if (PageSwapCache(head)) {
38d8b4e6 2511 page_ref_add(head, 2);
4101196b
MWO
2512 xa_unlock(&swap_cache->i_pages);
2513 } else {
38d8b4e6 2514 page_ref_inc(head);
4101196b 2515 }
baa355fd 2516 } else {
aa5dc07f 2517 /* Additional pin to page cache */
baa355fd 2518 page_ref_add(head, 2);
b93b0163 2519 xa_unlock(&head->mapping->i_pages);
baa355fd 2520 }
b6769834 2521 local_irq_enable();
e9b61f19 2522
8cce5475 2523 remap_page(head, nr);
e9b61f19 2524
c4f9c701
HY
2525 if (PageSwapCache(head)) {
2526 swp_entry_t entry = { .val = page_private(head) };
2527
2528 split_swap_cluster(entry);
2529 }
2530
8cce5475 2531 for (i = 0; i < nr; i++) {
e9b61f19
KS
2532 struct page *subpage = head + i;
2533 if (subpage == page)
2534 continue;
2535 unlock_page(subpage);
2536
2537 /*
2538 * Subpages may be freed if there wasn't any mapping
2539 * like if add_to_swap() is running on a lru page that
2540 * had its mapping zapped. And freeing these pages
2541 * requires taking the lru_lock so we do the put_page
2542 * of the tail pages after the split is complete.
2543 */
2544 put_page(subpage);
2545 }
2546}
2547
b20ce5e0
KS
2548int total_mapcount(struct page *page)
2549{
86b562b6 2550 int i, compound, nr, ret;
b20ce5e0
KS
2551
2552 VM_BUG_ON_PAGE(PageTail(page), page);
2553
2554 if (likely(!PageCompound(page)))
2555 return atomic_read(&page->_mapcount) + 1;
2556
dd78fedd 2557 compound = compound_mapcount(page);
86b562b6 2558 nr = compound_nr(page);
b20ce5e0 2559 if (PageHuge(page))
dd78fedd
KS
2560 return compound;
2561 ret = compound;
86b562b6 2562 for (i = 0; i < nr; i++)
b20ce5e0 2563 ret += atomic_read(&page[i]._mapcount) + 1;
dd78fedd
KS
2564 /* File pages has compound_mapcount included in _mapcount */
2565 if (!PageAnon(page))
86b562b6 2566 return ret - compound * nr;
b20ce5e0 2567 if (PageDoubleMap(page))
86b562b6 2568 ret -= nr;
b20ce5e0
KS
2569 return ret;
2570}
2571
6d0a07ed
AA
2572/*
2573 * This calculates accurately how many mappings a transparent hugepage
2574 * has (unlike page_mapcount() which isn't fully accurate). This full
2575 * accuracy is primarily needed to know if copy-on-write faults can
2576 * reuse the page and change the mapping to read-write instead of
2577 * copying them. At the same time this returns the total_mapcount too.
2578 *
2579 * The function returns the highest mapcount any one of the subpages
2580 * has. If the return value is one, even if different processes are
2581 * mapping different subpages of the transparent hugepage, they can
2582 * all reuse it, because each process is reusing a different subpage.
2583 *
2584 * The total_mapcount is instead counting all virtual mappings of the
2585 * subpages. If the total_mapcount is equal to "one", it tells the
2586 * caller all mappings belong to the same "mm" and in turn the
2587 * anon_vma of the transparent hugepage can become the vma->anon_vma
2588 * local one as no other process may be mapping any of the subpages.
2589 *
2590 * It would be more accurate to replace page_mapcount() with
2591 * page_trans_huge_mapcount(), however we only use
2592 * page_trans_huge_mapcount() in the copy-on-write faults where we
2593 * need full accuracy to avoid breaking page pinning, because
2594 * page_trans_huge_mapcount() is slower than page_mapcount().
2595 */
2596int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2597{
2598 int i, ret, _total_mapcount, mapcount;
2599
2600 /* hugetlbfs shouldn't call it */
2601 VM_BUG_ON_PAGE(PageHuge(page), page);
2602
2603 if (likely(!PageTransCompound(page))) {
2604 mapcount = atomic_read(&page->_mapcount) + 1;
2605 if (total_mapcount)
2606 *total_mapcount = mapcount;
2607 return mapcount;
2608 }
2609
2610 page = compound_head(page);
2611
2612 _total_mapcount = ret = 0;
65dfe3c3 2613 for (i = 0; i < thp_nr_pages(page); i++) {
6d0a07ed
AA
2614 mapcount = atomic_read(&page[i]._mapcount) + 1;
2615 ret = max(ret, mapcount);
2616 _total_mapcount += mapcount;
2617 }
2618 if (PageDoubleMap(page)) {
2619 ret -= 1;
65dfe3c3 2620 _total_mapcount -= thp_nr_pages(page);
6d0a07ed
AA
2621 }
2622 mapcount = compound_mapcount(page);
2623 ret += mapcount;
2624 _total_mapcount += mapcount;
2625 if (total_mapcount)
2626 *total_mapcount = _total_mapcount;
2627 return ret;
2628}
2629
b8f593cd
HY
2630/* Racy check whether the huge page can be split */
2631bool can_split_huge_page(struct page *page, int *pextra_pins)
2632{
2633 int extra_pins;
2634
aa5dc07f 2635 /* Additional pins from page cache */
b8f593cd 2636 if (PageAnon(page))
e2333dad 2637 extra_pins = PageSwapCache(page) ? thp_nr_pages(page) : 0;
b8f593cd 2638 else
e2333dad 2639 extra_pins = thp_nr_pages(page);
b8f593cd
HY
2640 if (pextra_pins)
2641 *pextra_pins = extra_pins;
2642 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2643}
2644
e9b61f19
KS
2645/*
2646 * This function splits huge page into normal pages. @page can point to any
2647 * subpage of huge page to split. Split doesn't change the position of @page.
2648 *
2649 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2650 * The huge page must be locked.
2651 *
2652 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2653 *
2654 * Both head page and tail pages will inherit mapping, flags, and so on from
2655 * the hugepage.
2656 *
2657 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2658 * they are not mapped.
2659 *
2660 * Returns 0 if the hugepage is split successfully.
2661 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2662 * us.
2663 */
2664int split_huge_page_to_list(struct page *page, struct list_head *list)
2665{
2666 struct page *head = compound_head(page);
a8803e6c 2667 struct deferred_split *ds_queue = get_deferred_split_queue(head);
baa355fd
KS
2668 struct anon_vma *anon_vma = NULL;
2669 struct address_space *mapping = NULL;
2670 int count, mapcount, extra_pins, ret;
006d3ff2 2671 pgoff_t end;
e9b61f19 2672
cb829624 2673 VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
a8803e6c
WY
2674 VM_BUG_ON_PAGE(!PageLocked(head), head);
2675 VM_BUG_ON_PAGE(!PageCompound(head), head);
e9b61f19 2676
a8803e6c 2677 if (PageWriteback(head))
59807685
HY
2678 return -EBUSY;
2679
baa355fd
KS
2680 if (PageAnon(head)) {
2681 /*
c1e8d7c6 2682 * The caller does not necessarily hold an mmap_lock that would
baa355fd
KS
2683 * prevent the anon_vma disappearing so we first we take a
2684 * reference to it and then lock the anon_vma for write. This
2685 * is similar to page_lock_anon_vma_read except the write lock
2686 * is taken to serialise against parallel split or collapse
2687 * operations.
2688 */
2689 anon_vma = page_get_anon_vma(head);
2690 if (!anon_vma) {
2691 ret = -EBUSY;
2692 goto out;
2693 }
006d3ff2 2694 end = -1;
baa355fd
KS
2695 mapping = NULL;
2696 anon_vma_lock_write(anon_vma);
2697 } else {
2698 mapping = head->mapping;
2699
2700 /* Truncated ? */
2701 if (!mapping) {
2702 ret = -EBUSY;
2703 goto out;
2704 }
2705
baa355fd
KS
2706 anon_vma = NULL;
2707 i_mmap_lock_read(mapping);
006d3ff2
HD
2708
2709 /*
2710 *__split_huge_page() may need to trim off pages beyond EOF:
2711 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2712 * which cannot be nested inside the page tree lock. So note
2713 * end now: i_size itself may be changed at any moment, but
2714 * head page lock is good enough to serialize the trimming.
2715 */
2716 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
e9b61f19 2717 }
e9b61f19
KS
2718
2719 /*
906f9cdf 2720 * Racy check if we can split the page, before unmap_page() will
e9b61f19
KS
2721 * split PMDs
2722 */
b8f593cd 2723 if (!can_split_huge_page(head, &extra_pins)) {
e9b61f19
KS
2724 ret = -EBUSY;
2725 goto out_unlock;
2726 }
2727
906f9cdf 2728 unmap_page(head);
e9b61f19
KS
2729 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2730
b6769834
AS
2731 /* block interrupt reentry in xa_lock and spinlock */
2732 local_irq_disable();
baa355fd 2733 if (mapping) {
aa5dc07f 2734 XA_STATE(xas, &mapping->i_pages, page_index(head));
baa355fd 2735
baa355fd 2736 /*
aa5dc07f 2737 * Check if the head page is present in page cache.
baa355fd
KS
2738 * We assume all tail are present too, if head is there.
2739 */
aa5dc07f
MW
2740 xa_lock(&mapping->i_pages);
2741 if (xas_load(&xas) != head)
baa355fd
KS
2742 goto fail;
2743 }
2744
0139aa7b 2745 /* Prevent deferred_split_scan() touching ->_refcount */
364c1eeb 2746 spin_lock(&ds_queue->split_queue_lock);
e9b61f19
KS
2747 count = page_count(head);
2748 mapcount = total_mapcount(head);
baa355fd 2749 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
9a982250 2750 if (!list_empty(page_deferred_list(head))) {
364c1eeb 2751 ds_queue->split_queue_len--;
9a982250
KS
2752 list_del(page_deferred_list(head));
2753 }
afb97172 2754 spin_unlock(&ds_queue->split_queue_lock);
06d3eff6 2755 if (mapping) {
bf9ecead
MS
2756 int nr = thp_nr_pages(head);
2757
a8803e6c 2758 if (PageSwapBacked(head))
57b2847d
MS
2759 __mod_lruvec_page_state(head, NR_SHMEM_THPS,
2760 -nr);
06d3eff6 2761 else
bf9ecead
MS
2762 __mod_lruvec_page_state(head, NR_FILE_THPS,
2763 -nr);
06d3eff6
KS
2764 }
2765
b6769834 2766 __split_huge_page(page, list, end);
c4f9c701 2767 ret = 0;
e9b61f19 2768 } else {
baa355fd
KS
2769 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2770 pr_alert("total_mapcount: %u, page_count(): %u\n",
2771 mapcount, count);
2772 if (PageTail(page))
2773 dump_page(head, NULL);
2774 dump_page(page, "total_mapcount(head) > 0");
2775 BUG();
2776 }
364c1eeb 2777 spin_unlock(&ds_queue->split_queue_lock);
baa355fd 2778fail: if (mapping)
b93b0163 2779 xa_unlock(&mapping->i_pages);
b6769834 2780 local_irq_enable();
8cce5475 2781 remap_page(head, thp_nr_pages(head));
e9b61f19
KS
2782 ret = -EBUSY;
2783 }
2784
2785out_unlock:
baa355fd
KS
2786 if (anon_vma) {
2787 anon_vma_unlock_write(anon_vma);
2788 put_anon_vma(anon_vma);
2789 }
2790 if (mapping)
2791 i_mmap_unlock_read(mapping);
e9b61f19
KS
2792out:
2793 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2794 return ret;
2795}
9a982250
KS
2796
2797void free_transhuge_page(struct page *page)
2798{
87eaceb3 2799 struct deferred_split *ds_queue = get_deferred_split_queue(page);
9a982250
KS
2800 unsigned long flags;
2801
364c1eeb 2802 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
9a982250 2803 if (!list_empty(page_deferred_list(page))) {
364c1eeb 2804 ds_queue->split_queue_len--;
9a982250
KS
2805 list_del(page_deferred_list(page));
2806 }
364c1eeb 2807 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
9a982250
KS
2808 free_compound_page(page);
2809}
2810
2811void deferred_split_huge_page(struct page *page)
2812{
87eaceb3
YS
2813 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2814#ifdef CONFIG_MEMCG
bcfe06bf 2815 struct mem_cgroup *memcg = page_memcg(compound_head(page));
87eaceb3 2816#endif
9a982250
KS
2817 unsigned long flags;
2818
2819 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2820
87eaceb3
YS
2821 /*
2822 * The try_to_unmap() in page reclaim path might reach here too,
2823 * this may cause a race condition to corrupt deferred split queue.
2824 * And, if page reclaim is already handling the same page, it is
2825 * unnecessary to handle it again in shrinker.
2826 *
2827 * Check PageSwapCache to determine if the page is being
2828 * handled by page reclaim since THP swap would add the page into
2829 * swap cache before calling try_to_unmap().
2830 */
2831 if (PageSwapCache(page))
2832 return;
2833
364c1eeb 2834 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
9a982250 2835 if (list_empty(page_deferred_list(page))) {
f9719a03 2836 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
364c1eeb
YS
2837 list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2838 ds_queue->split_queue_len++;
87eaceb3
YS
2839#ifdef CONFIG_MEMCG
2840 if (memcg)
2841 memcg_set_shrinker_bit(memcg, page_to_nid(page),
2842 deferred_split_shrinker.id);
2843#endif
9a982250 2844 }
364c1eeb 2845 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
9a982250
KS
2846}
2847
2848static unsigned long deferred_split_count(struct shrinker *shrink,
2849 struct shrink_control *sc)
2850{
a3d0a918 2851 struct pglist_data *pgdata = NODE_DATA(sc->nid);
364c1eeb 2852 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
87eaceb3
YS
2853
2854#ifdef CONFIG_MEMCG
2855 if (sc->memcg)
2856 ds_queue = &sc->memcg->deferred_split_queue;
2857#endif
364c1eeb 2858 return READ_ONCE(ds_queue->split_queue_len);
9a982250
KS
2859}
2860
2861static unsigned long deferred_split_scan(struct shrinker *shrink,
2862 struct shrink_control *sc)
2863{
a3d0a918 2864 struct pglist_data *pgdata = NODE_DATA(sc->nid);
364c1eeb 2865 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
9a982250
KS
2866 unsigned long flags;
2867 LIST_HEAD(list), *pos, *next;
2868 struct page *page;
2869 int split = 0;
2870
87eaceb3
YS
2871#ifdef CONFIG_MEMCG
2872 if (sc->memcg)
2873 ds_queue = &sc->memcg->deferred_split_queue;
2874#endif
2875
364c1eeb 2876 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
9a982250 2877 /* Take pin on all head pages to avoid freeing them under us */
364c1eeb 2878 list_for_each_safe(pos, next, &ds_queue->split_queue) {
9a982250
KS
2879 page = list_entry((void *)pos, struct page, mapping);
2880 page = compound_head(page);
e3ae1953
KS
2881 if (get_page_unless_zero(page)) {
2882 list_move(page_deferred_list(page), &list);
2883 } else {
2884 /* We lost race with put_compound_page() */
9a982250 2885 list_del_init(page_deferred_list(page));
364c1eeb 2886 ds_queue->split_queue_len--;
9a982250 2887 }
e3ae1953
KS
2888 if (!--sc->nr_to_scan)
2889 break;
9a982250 2890 }
364c1eeb 2891 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
9a982250
KS
2892
2893 list_for_each_safe(pos, next, &list) {
2894 page = list_entry((void *)pos, struct page, mapping);
fa41b900
KS
2895 if (!trylock_page(page))
2896 goto next;
9a982250
KS
2897 /* split_huge_page() removes page from list on success */
2898 if (!split_huge_page(page))
2899 split++;
2900 unlock_page(page);
fa41b900 2901next:
9a982250
KS
2902 put_page(page);
2903 }
2904
364c1eeb
YS
2905 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2906 list_splice_tail(&list, &ds_queue->split_queue);
2907 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
9a982250 2908
cb8d68ec
KS
2909 /*
2910 * Stop shrinker if we didn't split any page, but the queue is empty.
2911 * This can happen if pages were freed under us.
2912 */
364c1eeb 2913 if (!split && list_empty(&ds_queue->split_queue))
cb8d68ec
KS
2914 return SHRINK_STOP;
2915 return split;
9a982250
KS
2916}
2917
2918static struct shrinker deferred_split_shrinker = {
2919 .count_objects = deferred_split_count,
2920 .scan_objects = deferred_split_scan,
2921 .seeks = DEFAULT_SEEKS,
87eaceb3
YS
2922 .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2923 SHRINKER_NONSLAB,
9a982250 2924};
49071d43
KS
2925
2926#ifdef CONFIG_DEBUG_FS
2927static int split_huge_pages_set(void *data, u64 val)
2928{
2929 struct zone *zone;
2930 struct page *page;
2931 unsigned long pfn, max_zone_pfn;
2932 unsigned long total = 0, split = 0;
2933
2934 if (val != 1)
2935 return -EINVAL;
2936
2937 for_each_populated_zone(zone) {
2938 max_zone_pfn = zone_end_pfn(zone);
2939 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2940 if (!pfn_valid(pfn))
2941 continue;
2942
2943 page = pfn_to_page(pfn);
2944 if (!get_page_unless_zero(page))
2945 continue;
2946
2947 if (zone != page_zone(page))
2948 goto next;
2949
baa355fd 2950 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
49071d43
KS
2951 goto next;
2952
2953 total++;
2954 lock_page(page);
2955 if (!split_huge_page(page))
2956 split++;
2957 unlock_page(page);
2958next:
2959 put_page(page);
2960 }
2961 }
2962
145bdaa1 2963 pr_info("%lu of %lu THP split\n", split, total);
49071d43
KS
2964
2965 return 0;
2966}
f1287869 2967DEFINE_DEBUGFS_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
49071d43
KS
2968 "%llu\n");
2969
2970static int __init split_huge_pages_debugfs(void)
2971{
d9f7979c
GKH
2972 debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2973 &split_huge_pages_fops);
49071d43
KS
2974 return 0;
2975}
2976late_initcall(split_huge_pages_debugfs);
2977#endif
616b8371
ZY
2978
2979#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2980void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2981 struct page *page)
2982{
2983 struct vm_area_struct *vma = pvmw->vma;
2984 struct mm_struct *mm = vma->vm_mm;
2985 unsigned long address = pvmw->address;
2986 pmd_t pmdval;
2987 swp_entry_t entry;
ab6e3d09 2988 pmd_t pmdswp;
616b8371
ZY
2989
2990 if (!(pvmw->pmd && !pvmw->pte))
2991 return;
2992
616b8371 2993 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
8a8683ad 2994 pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
616b8371
ZY
2995 if (pmd_dirty(pmdval))
2996 set_page_dirty(page);
2997 entry = make_migration_entry(page, pmd_write(pmdval));
ab6e3d09
NH
2998 pmdswp = swp_entry_to_pmd(entry);
2999 if (pmd_soft_dirty(pmdval))
3000 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3001 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
616b8371
ZY
3002 page_remove_rmap(page, true);
3003 put_page(page);
616b8371
ZY
3004}
3005
3006void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3007{
3008 struct vm_area_struct *vma = pvmw->vma;
3009 struct mm_struct *mm = vma->vm_mm;
3010 unsigned long address = pvmw->address;
3011 unsigned long mmun_start = address & HPAGE_PMD_MASK;
3012 pmd_t pmde;
3013 swp_entry_t entry;
3014
3015 if (!(pvmw->pmd && !pvmw->pte))
3016 return;
3017
3018 entry = pmd_to_swp_entry(*pvmw->pmd);
3019 get_page(new);
3020 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
ab6e3d09
NH
3021 if (pmd_swp_soft_dirty(*pvmw->pmd))
3022 pmde = pmd_mksoft_dirty(pmde);
616b8371 3023 if (is_write_migration_entry(entry))
f55e1014 3024 pmde = maybe_pmd_mkwrite(pmde, vma);
616b8371
ZY
3025
3026 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
e71769ae
NH
3027 if (PageAnon(new))
3028 page_add_anon_rmap(new, vma, mmun_start, true);
3029 else
3030 page_add_file_rmap(new, true);
616b8371 3031 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
e125fe40 3032 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
616b8371
ZY
3033 mlock_vma_page(new);
3034 update_mmu_cache_pmd(vma, address, pvmw->pmd);
3035}
3036#endif