]> git.ipfire.org Git - people/ms/linux.git/blame - mm/huge_memory.c
Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[people/ms/linux.git] / mm / huge_memory.c
CommitLineData
71e3aac0
AA
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
ae3a8c1c
AM
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
71e3aac0
AA
10#include <linux/mm.h>
11#include <linux/sched.h>
f7ccbae4 12#include <linux/sched/coredump.h>
6a3827d7 13#include <linux/sched/numa_balancing.h>
71e3aac0
AA
14#include <linux/highmem.h>
15#include <linux/hugetlb.h>
16#include <linux/mmu_notifier.h>
17#include <linux/rmap.h>
18#include <linux/swap.h>
97ae1749 19#include <linux/shrinker.h>
ba76149f 20#include <linux/mm_inline.h>
e9b61f19 21#include <linux/swapops.h>
4897c765 22#include <linux/dax.h>
ba76149f 23#include <linux/khugepaged.h>
878aee7d 24#include <linux/freezer.h>
f25748e3 25#include <linux/pfn_t.h>
a664b2d8 26#include <linux/mman.h>
3565fce3 27#include <linux/memremap.h>
325adeb5 28#include <linux/pagemap.h>
49071d43 29#include <linux/debugfs.h>
4daae3b4 30#include <linux/migrate.h>
43b5fbbd 31#include <linux/hashtable.h>
6b251fc9 32#include <linux/userfaultfd_k.h>
33c3fc71 33#include <linux/page_idle.h>
baa355fd 34#include <linux/shmem_fs.h>
6b31d595 35#include <linux/oom.h>
97ae1749 36
71e3aac0
AA
37#include <asm/tlb.h>
38#include <asm/pgalloc.h>
39#include "internal.h"
40
ba76149f 41/*
b14d595a
MD
42 * By default, transparent hugepage support is disabled in order to avoid
43 * risking an increased memory footprint for applications that are not
44 * guaranteed to benefit from it. When transparent hugepage support is
45 * enabled, it is for all mappings, and khugepaged scans all mappings.
8bfa3f9a
JW
46 * Defrag is invoked by khugepaged hugepage allocations and by page faults
47 * for all hugepage allocations.
ba76149f 48 */
71e3aac0 49unsigned long transparent_hugepage_flags __read_mostly =
13ece886 50#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 51 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
52#endif
53#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55#endif
444eb2a4 56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
79da5407
KS
57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
ba76149f 59
9a982250 60static struct shrinker deferred_split_shrinker;
f000565a 61
97ae1749 62static atomic_t huge_zero_refcount;
56873f43 63struct page *huge_zero_page __read_mostly;
4a6c1297 64
6fcb52a5 65static struct page *get_huge_zero_page(void)
97ae1749
KS
66{
67 struct page *zero_page;
68retry:
69 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
4db0c3c2 70 return READ_ONCE(huge_zero_page);
97ae1749
KS
71
72 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
4a6c1297 73 HPAGE_PMD_ORDER);
d8a8e1f0
KS
74 if (!zero_page) {
75 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
5918d10a 76 return NULL;
d8a8e1f0
KS
77 }
78 count_vm_event(THP_ZERO_PAGE_ALLOC);
97ae1749 79 preempt_disable();
5918d10a 80 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97ae1749 81 preempt_enable();
5ddacbe9 82 __free_pages(zero_page, compound_order(zero_page));
97ae1749
KS
83 goto retry;
84 }
85
86 /* We take additional reference here. It will be put back by shrinker */
87 atomic_set(&huge_zero_refcount, 2);
88 preempt_enable();
4db0c3c2 89 return READ_ONCE(huge_zero_page);
4a6c1297
KS
90}
91
6fcb52a5 92static void put_huge_zero_page(void)
4a6c1297 93{
97ae1749
KS
94 /*
95 * Counter should never go to zero here. Only shrinker can put
96 * last reference.
97 */
98 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
4a6c1297
KS
99}
100
6fcb52a5
AL
101struct page *mm_get_huge_zero_page(struct mm_struct *mm)
102{
103 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
104 return READ_ONCE(huge_zero_page);
105
106 if (!get_huge_zero_page())
107 return NULL;
108
109 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
110 put_huge_zero_page();
111
112 return READ_ONCE(huge_zero_page);
113}
114
115void mm_put_huge_zero_page(struct mm_struct *mm)
116{
117 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
118 put_huge_zero_page();
119}
120
48896466
GC
121static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
122 struct shrink_control *sc)
4a6c1297 123{
48896466
GC
124 /* we can free zero page only if last reference remains */
125 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
126}
97ae1749 127
48896466
GC
128static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
129 struct shrink_control *sc)
130{
97ae1749 131 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
5918d10a
KS
132 struct page *zero_page = xchg(&huge_zero_page, NULL);
133 BUG_ON(zero_page == NULL);
5ddacbe9 134 __free_pages(zero_page, compound_order(zero_page));
48896466 135 return HPAGE_PMD_NR;
97ae1749
KS
136 }
137
138 return 0;
4a6c1297
KS
139}
140
97ae1749 141static struct shrinker huge_zero_page_shrinker = {
48896466
GC
142 .count_objects = shrink_huge_zero_page_count,
143 .scan_objects = shrink_huge_zero_page_scan,
97ae1749
KS
144 .seeks = DEFAULT_SEEKS,
145};
146
71e3aac0 147#ifdef CONFIG_SYSFS
71e3aac0
AA
148static ssize_t enabled_show(struct kobject *kobj,
149 struct kobj_attribute *attr, char *buf)
150{
444eb2a4
MG
151 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
152 return sprintf(buf, "[always] madvise never\n");
153 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
154 return sprintf(buf, "always [madvise] never\n");
155 else
156 return sprintf(buf, "always madvise [never]\n");
71e3aac0 157}
444eb2a4 158
71e3aac0
AA
159static ssize_t enabled_store(struct kobject *kobj,
160 struct kobj_attribute *attr,
161 const char *buf, size_t count)
162{
21440d7e 163 ssize_t ret = count;
ba76149f 164
21440d7e
DR
165 if (!memcmp("always", buf,
166 min(sizeof("always")-1, count))) {
167 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
168 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
169 } else if (!memcmp("madvise", buf,
170 min(sizeof("madvise")-1, count))) {
171 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
172 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
173 } else if (!memcmp("never", buf,
174 min(sizeof("never")-1, count))) {
175 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
176 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
177 } else
178 ret = -EINVAL;
ba76149f
AA
179
180 if (ret > 0) {
b46e756f 181 int err = start_stop_khugepaged();
ba76149f
AA
182 if (err)
183 ret = err;
184 }
ba76149f 185 return ret;
71e3aac0
AA
186}
187static struct kobj_attribute enabled_attr =
188 __ATTR(enabled, 0644, enabled_show, enabled_store);
189
b46e756f 190ssize_t single_hugepage_flag_show(struct kobject *kobj,
71e3aac0
AA
191 struct kobj_attribute *attr, char *buf,
192 enum transparent_hugepage_flag flag)
193{
e27e6151
BH
194 return sprintf(buf, "%d\n",
195 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 196}
e27e6151 197
b46e756f 198ssize_t single_hugepage_flag_store(struct kobject *kobj,
71e3aac0
AA
199 struct kobj_attribute *attr,
200 const char *buf, size_t count,
201 enum transparent_hugepage_flag flag)
202{
e27e6151
BH
203 unsigned long value;
204 int ret;
205
206 ret = kstrtoul(buf, 10, &value);
207 if (ret < 0)
208 return ret;
209 if (value > 1)
210 return -EINVAL;
211
212 if (value)
71e3aac0 213 set_bit(flag, &transparent_hugepage_flags);
e27e6151 214 else
71e3aac0 215 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
216
217 return count;
218}
219
71e3aac0
AA
220static ssize_t defrag_show(struct kobject *kobj,
221 struct kobj_attribute *attr, char *buf)
222{
444eb2a4 223 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
21440d7e 224 return sprintf(buf, "[always] defer defer+madvise madvise never\n");
444eb2a4 225 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
21440d7e
DR
226 return sprintf(buf, "always [defer] defer+madvise madvise never\n");
227 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
228 return sprintf(buf, "always defer [defer+madvise] madvise never\n");
229 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
230 return sprintf(buf, "always defer defer+madvise [madvise] never\n");
231 return sprintf(buf, "always defer defer+madvise madvise [never]\n");
71e3aac0 232}
21440d7e 233
71e3aac0
AA
234static ssize_t defrag_store(struct kobject *kobj,
235 struct kobj_attribute *attr,
236 const char *buf, size_t count)
237{
21440d7e
DR
238 if (!memcmp("always", buf,
239 min(sizeof("always")-1, count))) {
240 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
241 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
242 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
243 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
21440d7e
DR
244 } else if (!memcmp("defer+madvise", buf,
245 min(sizeof("defer+madvise")-1, count))) {
246 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
247 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
248 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
249 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
4fad7fb6
DR
250 } else if (!memcmp("defer", buf,
251 min(sizeof("defer")-1, count))) {
252 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
253 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
254 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
255 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
21440d7e
DR
256 } else if (!memcmp("madvise", buf,
257 min(sizeof("madvise")-1, count))) {
258 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
259 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
260 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
261 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
262 } else if (!memcmp("never", buf,
263 min(sizeof("never")-1, count))) {
264 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
265 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
266 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
267 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
268 } else
269 return -EINVAL;
270
271 return count;
71e3aac0
AA
272}
273static struct kobj_attribute defrag_attr =
274 __ATTR(defrag, 0644, defrag_show, defrag_store);
275
79da5407
KS
276static ssize_t use_zero_page_show(struct kobject *kobj,
277 struct kobj_attribute *attr, char *buf)
278{
b46e756f 279 return single_hugepage_flag_show(kobj, attr, buf,
79da5407
KS
280 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
281}
282static ssize_t use_zero_page_store(struct kobject *kobj,
283 struct kobj_attribute *attr, const char *buf, size_t count)
284{
b46e756f 285 return single_hugepage_flag_store(kobj, attr, buf, count,
79da5407
KS
286 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
287}
288static struct kobj_attribute use_zero_page_attr =
289 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
49920d28
HD
290
291static ssize_t hpage_pmd_size_show(struct kobject *kobj,
292 struct kobj_attribute *attr, char *buf)
293{
294 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
295}
296static struct kobj_attribute hpage_pmd_size_attr =
297 __ATTR_RO(hpage_pmd_size);
298
71e3aac0
AA
299#ifdef CONFIG_DEBUG_VM
300static ssize_t debug_cow_show(struct kobject *kobj,
301 struct kobj_attribute *attr, char *buf)
302{
b46e756f 303 return single_hugepage_flag_show(kobj, attr, buf,
71e3aac0
AA
304 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
305}
306static ssize_t debug_cow_store(struct kobject *kobj,
307 struct kobj_attribute *attr,
308 const char *buf, size_t count)
309{
b46e756f 310 return single_hugepage_flag_store(kobj, attr, buf, count,
71e3aac0
AA
311 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
312}
313static struct kobj_attribute debug_cow_attr =
314 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
315#endif /* CONFIG_DEBUG_VM */
316
317static struct attribute *hugepage_attr[] = {
318 &enabled_attr.attr,
319 &defrag_attr.attr,
79da5407 320 &use_zero_page_attr.attr,
49920d28 321 &hpage_pmd_size_attr.attr,
e496cf3d 322#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
5a6e75f8
KS
323 &shmem_enabled_attr.attr,
324#endif
71e3aac0
AA
325#ifdef CONFIG_DEBUG_VM
326 &debug_cow_attr.attr,
327#endif
328 NULL,
329};
330
8aa95a21 331static const struct attribute_group hugepage_attr_group = {
71e3aac0 332 .attrs = hugepage_attr,
ba76149f
AA
333};
334
569e5590 335static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 336{
71e3aac0
AA
337 int err;
338
569e5590
SL
339 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
340 if (unlikely(!*hugepage_kobj)) {
ae3a8c1c 341 pr_err("failed to create transparent hugepage kobject\n");
569e5590 342 return -ENOMEM;
ba76149f
AA
343 }
344
569e5590 345 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f 346 if (err) {
ae3a8c1c 347 pr_err("failed to register transparent hugepage group\n");
569e5590 348 goto delete_obj;
ba76149f
AA
349 }
350
569e5590 351 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f 352 if (err) {
ae3a8c1c 353 pr_err("failed to register transparent hugepage group\n");
569e5590 354 goto remove_hp_group;
ba76149f 355 }
569e5590
SL
356
357 return 0;
358
359remove_hp_group:
360 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
361delete_obj:
362 kobject_put(*hugepage_kobj);
363 return err;
364}
365
366static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
367{
368 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
369 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
370 kobject_put(hugepage_kobj);
371}
372#else
373static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
374{
375 return 0;
376}
377
378static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
379{
380}
381#endif /* CONFIG_SYSFS */
382
383static int __init hugepage_init(void)
384{
385 int err;
386 struct kobject *hugepage_kobj;
387
388 if (!has_transparent_hugepage()) {
389 transparent_hugepage_flags = 0;
390 return -EINVAL;
391 }
392
ff20c2e0
KS
393 /*
394 * hugepages can't be allocated by the buddy allocator
395 */
396 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
397 /*
398 * we use page->mapping and page->index in second tail page
399 * as list_head: assuming THP order >= 2
400 */
401 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
402
569e5590
SL
403 err = hugepage_init_sysfs(&hugepage_kobj);
404 if (err)
65ebb64f 405 goto err_sysfs;
ba76149f 406
b46e756f 407 err = khugepaged_init();
ba76149f 408 if (err)
65ebb64f 409 goto err_slab;
ba76149f 410
65ebb64f
KS
411 err = register_shrinker(&huge_zero_page_shrinker);
412 if (err)
413 goto err_hzp_shrinker;
9a982250
KS
414 err = register_shrinker(&deferred_split_shrinker);
415 if (err)
416 goto err_split_shrinker;
97ae1749 417
97562cd2
RR
418 /*
419 * By default disable transparent hugepages on smaller systems,
420 * where the extra memory used could hurt more than TLB overhead
421 * is likely to save. The admin can still enable it through /sys.
422 */
79553da2 423 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
97562cd2 424 transparent_hugepage_flags = 0;
79553da2
KS
425 return 0;
426 }
97562cd2 427
79553da2 428 err = start_stop_khugepaged();
65ebb64f
KS
429 if (err)
430 goto err_khugepaged;
ba76149f 431
569e5590 432 return 0;
65ebb64f 433err_khugepaged:
9a982250
KS
434 unregister_shrinker(&deferred_split_shrinker);
435err_split_shrinker:
65ebb64f
KS
436 unregister_shrinker(&huge_zero_page_shrinker);
437err_hzp_shrinker:
b46e756f 438 khugepaged_destroy();
65ebb64f 439err_slab:
569e5590 440 hugepage_exit_sysfs(hugepage_kobj);
65ebb64f 441err_sysfs:
ba76149f 442 return err;
71e3aac0 443}
a64fb3cd 444subsys_initcall(hugepage_init);
71e3aac0
AA
445
446static int __init setup_transparent_hugepage(char *str)
447{
448 int ret = 0;
449 if (!str)
450 goto out;
451 if (!strcmp(str, "always")) {
452 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
453 &transparent_hugepage_flags);
454 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
455 &transparent_hugepage_flags);
456 ret = 1;
457 } else if (!strcmp(str, "madvise")) {
458 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
459 &transparent_hugepage_flags);
460 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
461 &transparent_hugepage_flags);
462 ret = 1;
463 } else if (!strcmp(str, "never")) {
464 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
465 &transparent_hugepage_flags);
466 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
467 &transparent_hugepage_flags);
468 ret = 1;
469 }
470out:
471 if (!ret)
ae3a8c1c 472 pr_warn("transparent_hugepage= cannot parse, ignored\n");
71e3aac0
AA
473 return ret;
474}
475__setup("transparent_hugepage=", setup_transparent_hugepage);
476
152e93af 477pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma, bool dirty)
71e3aac0 478{
152e93af 479 if (likely(vma->vm_flags & VM_WRITE)) {
71e3aac0 480 pmd = pmd_mkwrite(pmd);
152e93af
KS
481 if (dirty)
482 pmd = pmd_mkdirty(pmd);
483 }
71e3aac0
AA
484 return pmd;
485}
486
9a982250
KS
487static inline struct list_head *page_deferred_list(struct page *page)
488{
489 /*
490 * ->lru in the tail pages is occupied by compound_head.
491 * Let's use ->mapping + ->index in the second tail page as list_head.
492 */
493 return (struct list_head *)&page[2].mapping;
494}
495
496void prep_transhuge_page(struct page *page)
497{
498 /*
499 * we use page->mapping and page->indexlru in second tail page
500 * as list_head: assuming THP order >= 2
501 */
9a982250
KS
502
503 INIT_LIST_HEAD(page_deferred_list(page));
504 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
505}
506
74d2fad1
TK
507unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
508 loff_t off, unsigned long flags, unsigned long size)
509{
510 unsigned long addr;
511 loff_t off_end = off + len;
512 loff_t off_align = round_up(off, size);
513 unsigned long len_pad;
514
515 if (off_end <= off_align || (off_end - off_align) < size)
516 return 0;
517
518 len_pad = len + size;
519 if (len_pad < len || (off + len_pad) < off)
520 return 0;
521
522 addr = current->mm->get_unmapped_area(filp, 0, len_pad,
523 off >> PAGE_SHIFT, flags);
524 if (IS_ERR_VALUE(addr))
525 return 0;
526
527 addr += (off - addr) & (size - 1);
528 return addr;
529}
530
531unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
532 unsigned long len, unsigned long pgoff, unsigned long flags)
533{
534 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
535
536 if (addr)
537 goto out;
538 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
539 goto out;
540
541 addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
542 if (addr)
543 return addr;
544
545 out:
546 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
547}
548EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
549
82b0f8c3 550static int __do_huge_pmd_anonymous_page(struct vm_fault *vmf, struct page *page,
bae473a4 551 gfp_t gfp)
71e3aac0 552{
82b0f8c3 553 struct vm_area_struct *vma = vmf->vma;
00501b53 554 struct mem_cgroup *memcg;
71e3aac0 555 pgtable_t pgtable;
82b0f8c3 556 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
6b31d595 557 int ret = 0;
71e3aac0 558
309381fe 559 VM_BUG_ON_PAGE(!PageCompound(page), page);
00501b53 560
bae473a4 561 if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
6b251fc9
AA
562 put_page(page);
563 count_vm_event(THP_FAULT_FALLBACK);
564 return VM_FAULT_FALLBACK;
565 }
00501b53 566
bae473a4 567 pgtable = pte_alloc_one(vma->vm_mm, haddr);
00501b53 568 if (unlikely(!pgtable)) {
6b31d595
MH
569 ret = VM_FAULT_OOM;
570 goto release;
00501b53 571 }
71e3aac0 572
c79b57e4 573 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
52f37629
MK
574 /*
575 * The memory barrier inside __SetPageUptodate makes sure that
576 * clear_huge_page writes become visible before the set_pmd_at()
577 * write.
578 */
71e3aac0
AA
579 __SetPageUptodate(page);
580
82b0f8c3
JK
581 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
582 if (unlikely(!pmd_none(*vmf->pmd))) {
6b31d595 583 goto unlock_release;
71e3aac0
AA
584 } else {
585 pmd_t entry;
6b251fc9 586
6b31d595
MH
587 ret = check_stable_address_space(vma->vm_mm);
588 if (ret)
589 goto unlock_release;
590
6b251fc9
AA
591 /* Deliver the page fault to userland */
592 if (userfaultfd_missing(vma)) {
593 int ret;
594
82b0f8c3 595 spin_unlock(vmf->ptl);
f627c2f5 596 mem_cgroup_cancel_charge(page, memcg, true);
6b251fc9 597 put_page(page);
bae473a4 598 pte_free(vma->vm_mm, pgtable);
82b0f8c3 599 ret = handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
600 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
601 return ret;
602 }
603
3122359a 604 entry = mk_huge_pmd(page, vma->vm_page_prot);
152e93af 605 entry = maybe_pmd_mkwrite(entry, vma, true);
d281ee61 606 page_add_new_anon_rmap(page, vma, haddr, true);
f627c2f5 607 mem_cgroup_commit_charge(page, memcg, false, true);
00501b53 608 lru_cache_add_active_or_unevictable(page, vma);
82b0f8c3
JK
609 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
610 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
bae473a4 611 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
c4812909 612 mm_inc_nr_ptes(vma->vm_mm);
82b0f8c3 613 spin_unlock(vmf->ptl);
6b251fc9 614 count_vm_event(THP_FAULT_ALLOC);
71e3aac0
AA
615 }
616
aa2e878e 617 return 0;
6b31d595
MH
618unlock_release:
619 spin_unlock(vmf->ptl);
620release:
621 if (pgtable)
622 pte_free(vma->vm_mm, pgtable);
623 mem_cgroup_cancel_charge(page, memcg, true);
624 put_page(page);
625 return ret;
626
71e3aac0
AA
627}
628
444eb2a4 629/*
21440d7e
DR
630 * always: directly stall for all thp allocations
631 * defer: wake kswapd and fail if not immediately available
632 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
633 * fail if not immediately available
634 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
635 * available
636 * never: never stall for any thp allocation
444eb2a4
MG
637 */
638static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
639{
21440d7e 640 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
25160354 641
21440d7e 642 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
25160354 643 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
21440d7e
DR
644 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
645 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
646 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
647 return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
648 __GFP_KSWAPD_RECLAIM);
649 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
650 return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
651 0);
25160354 652 return GFP_TRANSHUGE_LIGHT;
444eb2a4
MG
653}
654
c4088ebd 655/* Caller must hold page table lock. */
d295e341 656static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
97ae1749 657 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
5918d10a 658 struct page *zero_page)
fc9fe822
KS
659{
660 pmd_t entry;
7c414164
AM
661 if (!pmd_none(*pmd))
662 return false;
5918d10a 663 entry = mk_pmd(zero_page, vma->vm_page_prot);
fc9fe822 664 entry = pmd_mkhuge(entry);
12c9d70b
MW
665 if (pgtable)
666 pgtable_trans_huge_deposit(mm, pmd, pgtable);
fc9fe822 667 set_pmd_at(mm, haddr, pmd, entry);
c4812909 668 mm_inc_nr_ptes(mm);
7c414164 669 return true;
fc9fe822
KS
670}
671
82b0f8c3 672int do_huge_pmd_anonymous_page(struct vm_fault *vmf)
71e3aac0 673{
82b0f8c3 674 struct vm_area_struct *vma = vmf->vma;
077fcf11 675 gfp_t gfp;
71e3aac0 676 struct page *page;
82b0f8c3 677 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
71e3aac0 678
128ec037 679 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
c0292554 680 return VM_FAULT_FALLBACK;
128ec037
KS
681 if (unlikely(anon_vma_prepare(vma)))
682 return VM_FAULT_OOM;
6d50e60c 683 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
128ec037 684 return VM_FAULT_OOM;
82b0f8c3 685 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 686 !mm_forbids_zeropage(vma->vm_mm) &&
128ec037
KS
687 transparent_hugepage_use_zero_page()) {
688 pgtable_t pgtable;
689 struct page *zero_page;
690 bool set;
6b251fc9 691 int ret;
bae473a4 692 pgtable = pte_alloc_one(vma->vm_mm, haddr);
128ec037 693 if (unlikely(!pgtable))
ba76149f 694 return VM_FAULT_OOM;
6fcb52a5 695 zero_page = mm_get_huge_zero_page(vma->vm_mm);
128ec037 696 if (unlikely(!zero_page)) {
bae473a4 697 pte_free(vma->vm_mm, pgtable);
81ab4201 698 count_vm_event(THP_FAULT_FALLBACK);
c0292554 699 return VM_FAULT_FALLBACK;
b9bbfbe3 700 }
82b0f8c3 701 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
6b251fc9
AA
702 ret = 0;
703 set = false;
82b0f8c3 704 if (pmd_none(*vmf->pmd)) {
6b31d595
MH
705 ret = check_stable_address_space(vma->vm_mm);
706 if (ret) {
707 spin_unlock(vmf->ptl);
708 } else if (userfaultfd_missing(vma)) {
82b0f8c3
JK
709 spin_unlock(vmf->ptl);
710 ret = handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
711 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
712 } else {
bae473a4 713 set_huge_zero_page(pgtable, vma->vm_mm, vma,
82b0f8c3
JK
714 haddr, vmf->pmd, zero_page);
715 spin_unlock(vmf->ptl);
6b251fc9
AA
716 set = true;
717 }
718 } else
82b0f8c3 719 spin_unlock(vmf->ptl);
6fcb52a5 720 if (!set)
bae473a4 721 pte_free(vma->vm_mm, pgtable);
6b251fc9 722 return ret;
71e3aac0 723 }
444eb2a4 724 gfp = alloc_hugepage_direct_gfpmask(vma);
077fcf11 725 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
128ec037
KS
726 if (unlikely(!page)) {
727 count_vm_event(THP_FAULT_FALLBACK);
c0292554 728 return VM_FAULT_FALLBACK;
128ec037 729 }
9a982250 730 prep_transhuge_page(page);
82b0f8c3 731 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
71e3aac0
AA
732}
733
ae18d6dc 734static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
3b6521f5
OH
735 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
736 pgtable_t pgtable)
5cad465d
MW
737{
738 struct mm_struct *mm = vma->vm_mm;
739 pmd_t entry;
740 spinlock_t *ptl;
741
742 ptl = pmd_lock(mm, pmd);
f25748e3
DW
743 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
744 if (pfn_t_devmap(pfn))
745 entry = pmd_mkdevmap(entry);
01871e59 746 if (write) {
152e93af
KS
747 entry = pmd_mkyoung(entry);
748 entry = maybe_pmd_mkwrite(entry, vma, true);
5cad465d 749 }
3b6521f5
OH
750
751 if (pgtable) {
752 pgtable_trans_huge_deposit(mm, pmd, pgtable);
c4812909 753 mm_inc_nr_ptes(mm);
3b6521f5
OH
754 }
755
01871e59
RZ
756 set_pmd_at(mm, addr, pmd, entry);
757 update_mmu_cache_pmd(vma, addr, pmd);
5cad465d 758 spin_unlock(ptl);
5cad465d
MW
759}
760
761int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
f25748e3 762 pmd_t *pmd, pfn_t pfn, bool write)
5cad465d
MW
763{
764 pgprot_t pgprot = vma->vm_page_prot;
3b6521f5 765 pgtable_t pgtable = NULL;
5cad465d
MW
766 /*
767 * If we had pmd_special, we could avoid all these restrictions,
768 * but we need to be consistent with PTEs and architectures that
769 * can't support a 'special' bit.
770 */
771 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
772 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
773 (VM_PFNMAP|VM_MIXEDMAP));
774 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
f25748e3 775 BUG_ON(!pfn_t_devmap(pfn));
5cad465d
MW
776
777 if (addr < vma->vm_start || addr >= vma->vm_end)
778 return VM_FAULT_SIGBUS;
308a047c 779
3b6521f5
OH
780 if (arch_needs_pgtable_deposit()) {
781 pgtable = pte_alloc_one(vma->vm_mm, addr);
782 if (!pgtable)
783 return VM_FAULT_OOM;
784 }
785
308a047c
BP
786 track_pfn_insert(vma, &pgprot, pfn);
787
3b6521f5 788 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write, pgtable);
ae18d6dc 789 return VM_FAULT_NOPAGE;
5cad465d 790}
dee41079 791EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
5cad465d 792
a00cc7d9 793#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
152e93af
KS
794static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma,
795 bool dirty)
a00cc7d9 796{
152e93af 797 if (likely(vma->vm_flags & VM_WRITE)) {
a00cc7d9 798 pud = pud_mkwrite(pud);
152e93af
KS
799 if (dirty)
800 pud = pud_mkdirty(pud);
801 }
a00cc7d9
MW
802 return pud;
803}
804
805static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
806 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
807{
808 struct mm_struct *mm = vma->vm_mm;
809 pud_t entry;
810 spinlock_t *ptl;
811
812 ptl = pud_lock(mm, pud);
813 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
814 if (pfn_t_devmap(pfn))
815 entry = pud_mkdevmap(entry);
816 if (write) {
152e93af
KS
817 entry = pud_mkyoung(entry);
818 entry = maybe_pud_mkwrite(entry, vma, true);
a00cc7d9
MW
819 }
820 set_pud_at(mm, addr, pud, entry);
821 update_mmu_cache_pud(vma, addr, pud);
822 spin_unlock(ptl);
823}
824
825int vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
826 pud_t *pud, pfn_t pfn, bool write)
827{
828 pgprot_t pgprot = vma->vm_page_prot;
829 /*
830 * If we had pud_special, we could avoid all these restrictions,
831 * but we need to be consistent with PTEs and architectures that
832 * can't support a 'special' bit.
833 */
834 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
835 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
836 (VM_PFNMAP|VM_MIXEDMAP));
837 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
838 BUG_ON(!pfn_t_devmap(pfn));
839
840 if (addr < vma->vm_start || addr >= vma->vm_end)
841 return VM_FAULT_SIGBUS;
842
843 track_pfn_insert(vma, &pgprot, pfn);
844
845 insert_pfn_pud(vma, addr, pud, pfn, pgprot, write);
846 return VM_FAULT_NOPAGE;
847}
848EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
849#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
850
3565fce3 851static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
a8f97366 852 pmd_t *pmd, int flags)
3565fce3
DW
853{
854 pmd_t _pmd;
855
a8f97366
KS
856 _pmd = pmd_mkyoung(*pmd);
857 if (flags & FOLL_WRITE)
858 _pmd = pmd_mkdirty(_pmd);
3565fce3 859 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
a8f97366 860 pmd, _pmd, flags & FOLL_WRITE))
3565fce3
DW
861 update_mmu_cache_pmd(vma, addr, pmd);
862}
863
864struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
865 pmd_t *pmd, int flags)
866{
867 unsigned long pfn = pmd_pfn(*pmd);
868 struct mm_struct *mm = vma->vm_mm;
869 struct dev_pagemap *pgmap;
870 struct page *page;
871
872 assert_spin_locked(pmd_lockptr(mm, pmd));
873
8310d48b
KF
874 /*
875 * When we COW a devmap PMD entry, we split it into PTEs, so we should
876 * not be in this function with `flags & FOLL_COW` set.
877 */
878 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
879
3565fce3
DW
880 if (flags & FOLL_WRITE && !pmd_write(*pmd))
881 return NULL;
882
883 if (pmd_present(*pmd) && pmd_devmap(*pmd))
884 /* pass */;
885 else
886 return NULL;
887
888 if (flags & FOLL_TOUCH)
a8f97366 889 touch_pmd(vma, addr, pmd, flags);
3565fce3
DW
890
891 /*
892 * device mapped pages can only be returned if the
893 * caller will manage the page reference count.
894 */
895 if (!(flags & FOLL_GET))
896 return ERR_PTR(-EEXIST);
897
898 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
899 pgmap = get_dev_pagemap(pfn, NULL);
900 if (!pgmap)
901 return ERR_PTR(-EFAULT);
902 page = pfn_to_page(pfn);
903 get_page(page);
904 put_dev_pagemap(pgmap);
905
906 return page;
907}
908
71e3aac0
AA
909int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
910 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
911 struct vm_area_struct *vma)
912{
c4088ebd 913 spinlock_t *dst_ptl, *src_ptl;
71e3aac0
AA
914 struct page *src_page;
915 pmd_t pmd;
12c9d70b 916 pgtable_t pgtable = NULL;
628d47ce 917 int ret = -ENOMEM;
71e3aac0 918
628d47ce
KS
919 /* Skip if can be re-fill on fault */
920 if (!vma_is_anonymous(vma))
921 return 0;
922
923 pgtable = pte_alloc_one(dst_mm, addr);
924 if (unlikely(!pgtable))
925 goto out;
71e3aac0 926
c4088ebd
KS
927 dst_ptl = pmd_lock(dst_mm, dst_pmd);
928 src_ptl = pmd_lockptr(src_mm, src_pmd);
929 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
71e3aac0
AA
930
931 ret = -EAGAIN;
932 pmd = *src_pmd;
84c3fc4e
ZY
933
934#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
935 if (unlikely(is_swap_pmd(pmd))) {
936 swp_entry_t entry = pmd_to_swp_entry(pmd);
937
938 VM_BUG_ON(!is_pmd_migration_entry(pmd));
939 if (is_write_migration_entry(entry)) {
940 make_migration_entry_read(&entry);
941 pmd = swp_entry_to_pmd(entry);
ab6e3d09
NH
942 if (pmd_swp_soft_dirty(*src_pmd))
943 pmd = pmd_swp_mksoft_dirty(pmd);
84c3fc4e
ZY
944 set_pmd_at(src_mm, addr, src_pmd, pmd);
945 }
dd8a67f9 946 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
af5b0f6a 947 mm_inc_nr_ptes(dst_mm);
dd8a67f9 948 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
84c3fc4e
ZY
949 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
950 ret = 0;
951 goto out_unlock;
952 }
953#endif
954
628d47ce 955 if (unlikely(!pmd_trans_huge(pmd))) {
71e3aac0
AA
956 pte_free(dst_mm, pgtable);
957 goto out_unlock;
958 }
fc9fe822 959 /*
c4088ebd 960 * When page table lock is held, the huge zero pmd should not be
fc9fe822
KS
961 * under splitting since we don't split the page itself, only pmd to
962 * a page table.
963 */
964 if (is_huge_zero_pmd(pmd)) {
5918d10a 965 struct page *zero_page;
97ae1749
KS
966 /*
967 * get_huge_zero_page() will never allocate a new page here,
968 * since we already have a zero page to copy. It just takes a
969 * reference.
970 */
6fcb52a5 971 zero_page = mm_get_huge_zero_page(dst_mm);
6b251fc9 972 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
5918d10a 973 zero_page);
fc9fe822
KS
974 ret = 0;
975 goto out_unlock;
976 }
de466bd6 977
628d47ce
KS
978 src_page = pmd_page(pmd);
979 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
980 get_page(src_page);
981 page_dup_rmap(src_page, true);
982 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
c4812909 983 mm_inc_nr_ptes(dst_mm);
628d47ce 984 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
71e3aac0
AA
985
986 pmdp_set_wrprotect(src_mm, addr, src_pmd);
987 pmd = pmd_mkold(pmd_wrprotect(pmd));
988 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
71e3aac0
AA
989
990 ret = 0;
991out_unlock:
c4088ebd
KS
992 spin_unlock(src_ptl);
993 spin_unlock(dst_ptl);
71e3aac0
AA
994out:
995 return ret;
996}
997
a00cc7d9
MW
998#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
999static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
a8f97366 1000 pud_t *pud, int flags)
a00cc7d9
MW
1001{
1002 pud_t _pud;
1003
a8f97366
KS
1004 _pud = pud_mkyoung(*pud);
1005 if (flags & FOLL_WRITE)
1006 _pud = pud_mkdirty(_pud);
a00cc7d9 1007 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
a8f97366 1008 pud, _pud, flags & FOLL_WRITE))
a00cc7d9
MW
1009 update_mmu_cache_pud(vma, addr, pud);
1010}
1011
1012struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1013 pud_t *pud, int flags)
1014{
1015 unsigned long pfn = pud_pfn(*pud);
1016 struct mm_struct *mm = vma->vm_mm;
1017 struct dev_pagemap *pgmap;
1018 struct page *page;
1019
1020 assert_spin_locked(pud_lockptr(mm, pud));
1021
1022 if (flags & FOLL_WRITE && !pud_write(*pud))
1023 return NULL;
1024
1025 if (pud_present(*pud) && pud_devmap(*pud))
1026 /* pass */;
1027 else
1028 return NULL;
1029
1030 if (flags & FOLL_TOUCH)
a8f97366 1031 touch_pud(vma, addr, pud, flags);
a00cc7d9
MW
1032
1033 /*
1034 * device mapped pages can only be returned if the
1035 * caller will manage the page reference count.
1036 */
1037 if (!(flags & FOLL_GET))
1038 return ERR_PTR(-EEXIST);
1039
1040 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1041 pgmap = get_dev_pagemap(pfn, NULL);
1042 if (!pgmap)
1043 return ERR_PTR(-EFAULT);
1044 page = pfn_to_page(pfn);
1045 get_page(page);
1046 put_dev_pagemap(pgmap);
1047
1048 return page;
1049}
1050
1051int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1052 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1053 struct vm_area_struct *vma)
1054{
1055 spinlock_t *dst_ptl, *src_ptl;
1056 pud_t pud;
1057 int ret;
1058
1059 dst_ptl = pud_lock(dst_mm, dst_pud);
1060 src_ptl = pud_lockptr(src_mm, src_pud);
1061 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1062
1063 ret = -EAGAIN;
1064 pud = *src_pud;
1065 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1066 goto out_unlock;
1067
1068 /*
1069 * When page table lock is held, the huge zero pud should not be
1070 * under splitting since we don't split the page itself, only pud to
1071 * a page table.
1072 */
1073 if (is_huge_zero_pud(pud)) {
1074 /* No huge zero pud yet */
1075 }
1076
1077 pudp_set_wrprotect(src_mm, addr, src_pud);
1078 pud = pud_mkold(pud_wrprotect(pud));
1079 set_pud_at(dst_mm, addr, dst_pud, pud);
1080
1081 ret = 0;
1082out_unlock:
1083 spin_unlock(src_ptl);
1084 spin_unlock(dst_ptl);
1085 return ret;
1086}
1087
1088void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1089{
1090 pud_t entry;
1091 unsigned long haddr;
1092 bool write = vmf->flags & FAULT_FLAG_WRITE;
1093
1094 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1095 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1096 goto unlock;
1097
1098 entry = pud_mkyoung(orig_pud);
1099 if (write)
1100 entry = pud_mkdirty(entry);
1101 haddr = vmf->address & HPAGE_PUD_MASK;
1102 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1103 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1104
1105unlock:
1106 spin_unlock(vmf->ptl);
1107}
1108#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1109
82b0f8c3 1110void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
a1dd450b
WD
1111{
1112 pmd_t entry;
1113 unsigned long haddr;
20f664aa 1114 bool write = vmf->flags & FAULT_FLAG_WRITE;
a1dd450b 1115
82b0f8c3
JK
1116 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1117 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
a1dd450b
WD
1118 goto unlock;
1119
1120 entry = pmd_mkyoung(orig_pmd);
20f664aa
MK
1121 if (write)
1122 entry = pmd_mkdirty(entry);
82b0f8c3 1123 haddr = vmf->address & HPAGE_PMD_MASK;
20f664aa 1124 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
82b0f8c3 1125 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
a1dd450b
WD
1126
1127unlock:
82b0f8c3 1128 spin_unlock(vmf->ptl);
a1dd450b
WD
1129}
1130
82b0f8c3 1131static int do_huge_pmd_wp_page_fallback(struct vm_fault *vmf, pmd_t orig_pmd,
bae473a4 1132 struct page *page)
71e3aac0 1133{
82b0f8c3
JK
1134 struct vm_area_struct *vma = vmf->vma;
1135 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
00501b53 1136 struct mem_cgroup *memcg;
71e3aac0
AA
1137 pgtable_t pgtable;
1138 pmd_t _pmd;
1139 int ret = 0, i;
1140 struct page **pages;
2ec74c3e
SG
1141 unsigned long mmun_start; /* For mmu_notifiers */
1142 unsigned long mmun_end; /* For mmu_notifiers */
71e3aac0
AA
1143
1144 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1145 GFP_KERNEL);
1146 if (unlikely(!pages)) {
1147 ret |= VM_FAULT_OOM;
1148 goto out;
1149 }
1150
1151 for (i = 0; i < HPAGE_PMD_NR; i++) {
41b6167e 1152 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 1153 vmf->address, page_to_nid(page));
b9bbfbe3 1154 if (unlikely(!pages[i] ||
bae473a4
KS
1155 mem_cgroup_try_charge(pages[i], vma->vm_mm,
1156 GFP_KERNEL, &memcg, false))) {
b9bbfbe3 1157 if (pages[i])
71e3aac0 1158 put_page(pages[i]);
b9bbfbe3 1159 while (--i >= 0) {
00501b53
JW
1160 memcg = (void *)page_private(pages[i]);
1161 set_page_private(pages[i], 0);
f627c2f5
KS
1162 mem_cgroup_cancel_charge(pages[i], memcg,
1163 false);
b9bbfbe3
AA
1164 put_page(pages[i]);
1165 }
71e3aac0
AA
1166 kfree(pages);
1167 ret |= VM_FAULT_OOM;
1168 goto out;
1169 }
00501b53 1170 set_page_private(pages[i], (unsigned long)memcg);
71e3aac0
AA
1171 }
1172
1173 for (i = 0; i < HPAGE_PMD_NR; i++) {
1174 copy_user_highpage(pages[i], page + i,
0089e485 1175 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
1176 __SetPageUptodate(pages[i]);
1177 cond_resched();
1178 }
1179
2ec74c3e
SG
1180 mmun_start = haddr;
1181 mmun_end = haddr + HPAGE_PMD_SIZE;
bae473a4 1182 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
2ec74c3e 1183
82b0f8c3
JK
1184 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1185 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
71e3aac0 1186 goto out_free_pages;
309381fe 1187 VM_BUG_ON_PAGE(!PageHead(page), page);
71e3aac0 1188
0f10851e
JG
1189 /*
1190 * Leave pmd empty until pte is filled note we must notify here as
1191 * concurrent CPU thread might write to new page before the call to
1192 * mmu_notifier_invalidate_range_end() happens which can lead to a
1193 * device seeing memory write in different order than CPU.
1194 *
1195 * See Documentation/vm/mmu_notifier.txt
1196 */
82b0f8c3 1197 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
71e3aac0 1198
82b0f8c3 1199 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
bae473a4 1200 pmd_populate(vma->vm_mm, &_pmd, pgtable);
71e3aac0
AA
1201
1202 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
bae473a4 1203 pte_t entry;
71e3aac0
AA
1204 entry = mk_pte(pages[i], vma->vm_page_prot);
1205 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
00501b53
JW
1206 memcg = (void *)page_private(pages[i]);
1207 set_page_private(pages[i], 0);
82b0f8c3 1208 page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
f627c2f5 1209 mem_cgroup_commit_charge(pages[i], memcg, false, false);
00501b53 1210 lru_cache_add_active_or_unevictable(pages[i], vma);
82b0f8c3
JK
1211 vmf->pte = pte_offset_map(&_pmd, haddr);
1212 VM_BUG_ON(!pte_none(*vmf->pte));
1213 set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1214 pte_unmap(vmf->pte);
71e3aac0
AA
1215 }
1216 kfree(pages);
1217
71e3aac0 1218 smp_wmb(); /* make pte visible before pmd */
82b0f8c3 1219 pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
d281ee61 1220 page_remove_rmap(page, true);
82b0f8c3 1221 spin_unlock(vmf->ptl);
71e3aac0 1222
4645b9fe
JG
1223 /*
1224 * No need to double call mmu_notifier->invalidate_range() callback as
1225 * the above pmdp_huge_clear_flush_notify() did already call it.
1226 */
1227 mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
1228 mmun_end);
2ec74c3e 1229
71e3aac0
AA
1230 ret |= VM_FAULT_WRITE;
1231 put_page(page);
1232
1233out:
1234 return ret;
1235
1236out_free_pages:
82b0f8c3 1237 spin_unlock(vmf->ptl);
bae473a4 1238 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
b9bbfbe3 1239 for (i = 0; i < HPAGE_PMD_NR; i++) {
00501b53
JW
1240 memcg = (void *)page_private(pages[i]);
1241 set_page_private(pages[i], 0);
f627c2f5 1242 mem_cgroup_cancel_charge(pages[i], memcg, false);
71e3aac0 1243 put_page(pages[i]);
b9bbfbe3 1244 }
71e3aac0
AA
1245 kfree(pages);
1246 goto out;
1247}
1248
82b0f8c3 1249int do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
71e3aac0 1250{
82b0f8c3 1251 struct vm_area_struct *vma = vmf->vma;
93b4796d 1252 struct page *page = NULL, *new_page;
00501b53 1253 struct mem_cgroup *memcg;
82b0f8c3 1254 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
2ec74c3e
SG
1255 unsigned long mmun_start; /* For mmu_notifiers */
1256 unsigned long mmun_end; /* For mmu_notifiers */
3b363692 1257 gfp_t huge_gfp; /* for allocation and charge */
bae473a4 1258 int ret = 0;
71e3aac0 1259
82b0f8c3 1260 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
81d1b09c 1261 VM_BUG_ON_VMA(!vma->anon_vma, vma);
93b4796d
KS
1262 if (is_huge_zero_pmd(orig_pmd))
1263 goto alloc;
82b0f8c3
JK
1264 spin_lock(vmf->ptl);
1265 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
71e3aac0
AA
1266 goto out_unlock;
1267
1268 page = pmd_page(orig_pmd);
309381fe 1269 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1f25fe20
KS
1270 /*
1271 * We can only reuse the page if nobody else maps the huge page or it's
6d0a07ed 1272 * part.
1f25fe20 1273 */
ba3c4ce6
HY
1274 if (!trylock_page(page)) {
1275 get_page(page);
1276 spin_unlock(vmf->ptl);
1277 lock_page(page);
1278 spin_lock(vmf->ptl);
1279 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1280 unlock_page(page);
1281 put_page(page);
1282 goto out_unlock;
1283 }
1284 put_page(page);
1285 }
1286 if (reuse_swap_page(page, NULL)) {
71e3aac0
AA
1287 pmd_t entry;
1288 entry = pmd_mkyoung(orig_pmd);
152e93af 1289 entry = maybe_pmd_mkwrite(entry, vma, true);
82b0f8c3
JK
1290 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1291 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
71e3aac0 1292 ret |= VM_FAULT_WRITE;
ba3c4ce6 1293 unlock_page(page);
71e3aac0
AA
1294 goto out_unlock;
1295 }
ba3c4ce6 1296 unlock_page(page);
ddc58f27 1297 get_page(page);
82b0f8c3 1298 spin_unlock(vmf->ptl);
93b4796d 1299alloc:
71e3aac0 1300 if (transparent_hugepage_enabled(vma) &&
077fcf11 1301 !transparent_hugepage_debug_cow()) {
444eb2a4 1302 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
3b363692 1303 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
077fcf11 1304 } else
71e3aac0
AA
1305 new_page = NULL;
1306
9a982250
KS
1307 if (likely(new_page)) {
1308 prep_transhuge_page(new_page);
1309 } else {
eecc1e42 1310 if (!page) {
82b0f8c3 1311 split_huge_pmd(vma, vmf->pmd, vmf->address);
e9b71ca9 1312 ret |= VM_FAULT_FALLBACK;
93b4796d 1313 } else {
82b0f8c3 1314 ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
9845cbbd 1315 if (ret & VM_FAULT_OOM) {
82b0f8c3 1316 split_huge_pmd(vma, vmf->pmd, vmf->address);
9845cbbd
KS
1317 ret |= VM_FAULT_FALLBACK;
1318 }
ddc58f27 1319 put_page(page);
93b4796d 1320 }
17766dde 1321 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0
AA
1322 goto out;
1323 }
1324
bae473a4
KS
1325 if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
1326 huge_gfp, &memcg, true))) {
b9bbfbe3 1327 put_page(new_page);
82b0f8c3 1328 split_huge_pmd(vma, vmf->pmd, vmf->address);
bae473a4 1329 if (page)
ddc58f27 1330 put_page(page);
9845cbbd 1331 ret |= VM_FAULT_FALLBACK;
17766dde 1332 count_vm_event(THP_FAULT_FALLBACK);
b9bbfbe3
AA
1333 goto out;
1334 }
1335
17766dde
DR
1336 count_vm_event(THP_FAULT_ALLOC);
1337
eecc1e42 1338 if (!page)
c79b57e4 1339 clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
93b4796d
KS
1340 else
1341 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
71e3aac0
AA
1342 __SetPageUptodate(new_page);
1343
2ec74c3e
SG
1344 mmun_start = haddr;
1345 mmun_end = haddr + HPAGE_PMD_SIZE;
bae473a4 1346 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
2ec74c3e 1347
82b0f8c3 1348 spin_lock(vmf->ptl);
93b4796d 1349 if (page)
ddc58f27 1350 put_page(page);
82b0f8c3
JK
1351 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1352 spin_unlock(vmf->ptl);
f627c2f5 1353 mem_cgroup_cancel_charge(new_page, memcg, true);
71e3aac0 1354 put_page(new_page);
2ec74c3e 1355 goto out_mn;
b9bbfbe3 1356 } else {
71e3aac0 1357 pmd_t entry;
3122359a 1358 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
152e93af 1359 entry = maybe_pmd_mkwrite(entry, vma, true);
82b0f8c3 1360 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
d281ee61 1361 page_add_new_anon_rmap(new_page, vma, haddr, true);
f627c2f5 1362 mem_cgroup_commit_charge(new_page, memcg, false, true);
00501b53 1363 lru_cache_add_active_or_unevictable(new_page, vma);
82b0f8c3
JK
1364 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1365 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
eecc1e42 1366 if (!page) {
bae473a4 1367 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
97ae1749 1368 } else {
309381fe 1369 VM_BUG_ON_PAGE(!PageHead(page), page);
d281ee61 1370 page_remove_rmap(page, true);
93b4796d
KS
1371 put_page(page);
1372 }
71e3aac0
AA
1373 ret |= VM_FAULT_WRITE;
1374 }
82b0f8c3 1375 spin_unlock(vmf->ptl);
2ec74c3e 1376out_mn:
4645b9fe
JG
1377 /*
1378 * No need to double call mmu_notifier->invalidate_range() callback as
1379 * the above pmdp_huge_clear_flush_notify() did already call it.
1380 */
1381 mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
1382 mmun_end);
71e3aac0
AA
1383out:
1384 return ret;
2ec74c3e 1385out_unlock:
82b0f8c3 1386 spin_unlock(vmf->ptl);
2ec74c3e 1387 return ret;
71e3aac0
AA
1388}
1389
8310d48b
KF
1390/*
1391 * FOLL_FORCE can write to even unwritable pmd's, but only
1392 * after we've gone through a COW cycle and they are dirty.
1393 */
1394static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1395{
1396 return pmd_write(pmd) ||
1397 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1398}
1399
b676b293 1400struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1401 unsigned long addr,
1402 pmd_t *pmd,
1403 unsigned int flags)
1404{
b676b293 1405 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1406 struct page *page = NULL;
1407
c4088ebd 1408 assert_spin_locked(pmd_lockptr(mm, pmd));
71e3aac0 1409
8310d48b 1410 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
71e3aac0
AA
1411 goto out;
1412
85facf25
KS
1413 /* Avoid dumping huge zero page */
1414 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1415 return ERR_PTR(-EFAULT);
1416
2b4847e7 1417 /* Full NUMA hinting faults to serialise migration in fault paths */
8a0516ed 1418 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
2b4847e7
MG
1419 goto out;
1420
71e3aac0 1421 page = pmd_page(*pmd);
ca120cf6 1422 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
3565fce3 1423 if (flags & FOLL_TOUCH)
a8f97366 1424 touch_pmd(vma, addr, pmd, flags);
de60f5f1 1425 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
1426 /*
1427 * We don't mlock() pte-mapped THPs. This way we can avoid
1428 * leaking mlocked pages into non-VM_LOCKED VMAs.
1429 *
9a73f61b
KS
1430 * For anon THP:
1431 *
e90309c9
KS
1432 * In most cases the pmd is the only mapping of the page as we
1433 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1434 * writable private mappings in populate_vma_page_range().
1435 *
1436 * The only scenario when we have the page shared here is if we
1437 * mlocking read-only mapping shared over fork(). We skip
1438 * mlocking such pages.
9a73f61b
KS
1439 *
1440 * For file THP:
1441 *
1442 * We can expect PageDoubleMap() to be stable under page lock:
1443 * for file pages we set it in page_add_file_rmap(), which
1444 * requires page to be locked.
e90309c9 1445 */
9a73f61b
KS
1446
1447 if (PageAnon(page) && compound_mapcount(page) != 1)
1448 goto skip_mlock;
1449 if (PageDoubleMap(page) || !page->mapping)
1450 goto skip_mlock;
1451 if (!trylock_page(page))
1452 goto skip_mlock;
1453 lru_add_drain();
1454 if (page->mapping && !PageDoubleMap(page))
1455 mlock_vma_page(page);
1456 unlock_page(page);
b676b293 1457 }
9a73f61b 1458skip_mlock:
71e3aac0 1459 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
ca120cf6 1460 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
71e3aac0 1461 if (flags & FOLL_GET)
ddc58f27 1462 get_page(page);
71e3aac0
AA
1463
1464out:
1465 return page;
1466}
1467
d10e63f2 1468/* NUMA hinting page fault entry point for trans huge pmds */
82b0f8c3 1469int do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
d10e63f2 1470{
82b0f8c3 1471 struct vm_area_struct *vma = vmf->vma;
b8916634 1472 struct anon_vma *anon_vma = NULL;
b32967ff 1473 struct page *page;
82b0f8c3 1474 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
8191acbd 1475 int page_nid = -1, this_nid = numa_node_id();
90572890 1476 int target_nid, last_cpupid = -1;
8191acbd
MG
1477 bool page_locked;
1478 bool migrated = false;
b191f9b1 1479 bool was_writable;
6688cc05 1480 int flags = 0;
d10e63f2 1481
82b0f8c3
JK
1482 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1483 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
d10e63f2
MG
1484 goto out_unlock;
1485
de466bd6
MG
1486 /*
1487 * If there are potential migrations, wait for completion and retry
1488 * without disrupting NUMA hinting information. Do not relock and
1489 * check_same as the page may no longer be mapped.
1490 */
82b0f8c3
JK
1491 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1492 page = pmd_page(*vmf->pmd);
3c226c63
MR
1493 if (!get_page_unless_zero(page))
1494 goto out_unlock;
82b0f8c3 1495 spin_unlock(vmf->ptl);
5d833062 1496 wait_on_page_locked(page);
3c226c63 1497 put_page(page);
de466bd6
MG
1498 goto out;
1499 }
1500
d10e63f2 1501 page = pmd_page(pmd);
a1a46184 1502 BUG_ON(is_huge_zero_page(page));
8191acbd 1503 page_nid = page_to_nid(page);
90572890 1504 last_cpupid = page_cpupid_last(page);
03c5a6e1 1505 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 1506 if (page_nid == this_nid) {
03c5a6e1 1507 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
1508 flags |= TNF_FAULT_LOCAL;
1509 }
4daae3b4 1510
bea66fbd 1511 /* See similar comment in do_numa_page for explanation */
288bc549 1512 if (!pmd_savedwrite(pmd))
6688cc05
PZ
1513 flags |= TNF_NO_GROUP;
1514
ff9042b1
MG
1515 /*
1516 * Acquire the page lock to serialise THP migrations but avoid dropping
1517 * page_table_lock if at all possible
1518 */
b8916634
MG
1519 page_locked = trylock_page(page);
1520 target_nid = mpol_misplaced(page, vma, haddr);
1521 if (target_nid == -1) {
1522 /* If the page was locked, there are no parallel migrations */
a54a407f 1523 if (page_locked)
b8916634 1524 goto clear_pmdnuma;
2b4847e7 1525 }
4daae3b4 1526
de466bd6 1527 /* Migration could have started since the pmd_trans_migrating check */
2b4847e7 1528 if (!page_locked) {
3c226c63
MR
1529 page_nid = -1;
1530 if (!get_page_unless_zero(page))
1531 goto out_unlock;
82b0f8c3 1532 spin_unlock(vmf->ptl);
b8916634 1533 wait_on_page_locked(page);
3c226c63 1534 put_page(page);
b8916634
MG
1535 goto out;
1536 }
1537
2b4847e7
MG
1538 /*
1539 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1540 * to serialises splits
1541 */
b8916634 1542 get_page(page);
82b0f8c3 1543 spin_unlock(vmf->ptl);
b8916634 1544 anon_vma = page_lock_anon_vma_read(page);
4daae3b4 1545
c69307d5 1546 /* Confirm the PMD did not change while page_table_lock was released */
82b0f8c3
JK
1547 spin_lock(vmf->ptl);
1548 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
b32967ff
MG
1549 unlock_page(page);
1550 put_page(page);
a54a407f 1551 page_nid = -1;
4daae3b4 1552 goto out_unlock;
b32967ff 1553 }
ff9042b1 1554
c3a489ca
MG
1555 /* Bail if we fail to protect against THP splits for any reason */
1556 if (unlikely(!anon_vma)) {
1557 put_page(page);
1558 page_nid = -1;
1559 goto clear_pmdnuma;
1560 }
1561
8b1b436d
PZ
1562 /*
1563 * Since we took the NUMA fault, we must have observed the !accessible
1564 * bit. Make sure all other CPUs agree with that, to avoid them
1565 * modifying the page we're about to migrate.
1566 *
1567 * Must be done under PTL such that we'll observe the relevant
ccde85ba
PZ
1568 * inc_tlb_flush_pending().
1569 *
1570 * We are not sure a pending tlb flush here is for a huge page
1571 * mapping or not. Hence use the tlb range variant
8b1b436d
PZ
1572 */
1573 if (mm_tlb_flush_pending(vma->vm_mm))
ccde85ba 1574 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
8b1b436d 1575
a54a407f
MG
1576 /*
1577 * Migrate the THP to the requested node, returns with page unlocked
8a0516ed 1578 * and access rights restored.
a54a407f 1579 */
82b0f8c3 1580 spin_unlock(vmf->ptl);
8b1b436d 1581
bae473a4 1582 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
82b0f8c3 1583 vmf->pmd, pmd, vmf->address, page, target_nid);
6688cc05
PZ
1584 if (migrated) {
1585 flags |= TNF_MIGRATED;
8191acbd 1586 page_nid = target_nid;
074c2381
MG
1587 } else
1588 flags |= TNF_MIGRATE_FAIL;
b32967ff 1589
8191acbd 1590 goto out;
b32967ff 1591clear_pmdnuma:
a54a407f 1592 BUG_ON(!PageLocked(page));
288bc549 1593 was_writable = pmd_savedwrite(pmd);
4d942466 1594 pmd = pmd_modify(pmd, vma->vm_page_prot);
b7b04004 1595 pmd = pmd_mkyoung(pmd);
b191f9b1
MG
1596 if (was_writable)
1597 pmd = pmd_mkwrite(pmd);
82b0f8c3
JK
1598 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1599 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
a54a407f 1600 unlock_page(page);
d10e63f2 1601out_unlock:
82b0f8c3 1602 spin_unlock(vmf->ptl);
b8916634
MG
1603
1604out:
1605 if (anon_vma)
1606 page_unlock_anon_vma_read(anon_vma);
1607
8191acbd 1608 if (page_nid != -1)
82b0f8c3 1609 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
9a8b300f 1610 flags);
8191acbd 1611
d10e63f2
MG
1612 return 0;
1613}
1614
319904ad
HY
1615/*
1616 * Return true if we do MADV_FREE successfully on entire pmd page.
1617 * Otherwise, return false.
1618 */
1619bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
b8d3c4c3 1620 pmd_t *pmd, unsigned long addr, unsigned long next)
b8d3c4c3
MK
1621{
1622 spinlock_t *ptl;
1623 pmd_t orig_pmd;
1624 struct page *page;
1625 struct mm_struct *mm = tlb->mm;
319904ad 1626 bool ret = false;
b8d3c4c3 1627
07e32661
AK
1628 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1629
b6ec57f4
KS
1630 ptl = pmd_trans_huge_lock(pmd, vma);
1631 if (!ptl)
25eedabe 1632 goto out_unlocked;
b8d3c4c3
MK
1633
1634 orig_pmd = *pmd;
319904ad 1635 if (is_huge_zero_pmd(orig_pmd))
b8d3c4c3 1636 goto out;
b8d3c4c3 1637
84c3fc4e
ZY
1638 if (unlikely(!pmd_present(orig_pmd))) {
1639 VM_BUG_ON(thp_migration_supported() &&
1640 !is_pmd_migration_entry(orig_pmd));
1641 goto out;
1642 }
1643
b8d3c4c3
MK
1644 page = pmd_page(orig_pmd);
1645 /*
1646 * If other processes are mapping this page, we couldn't discard
1647 * the page unless they all do MADV_FREE so let's skip the page.
1648 */
1649 if (page_mapcount(page) != 1)
1650 goto out;
1651
1652 if (!trylock_page(page))
1653 goto out;
1654
1655 /*
1656 * If user want to discard part-pages of THP, split it so MADV_FREE
1657 * will deactivate only them.
1658 */
1659 if (next - addr != HPAGE_PMD_SIZE) {
1660 get_page(page);
1661 spin_unlock(ptl);
9818b8cd 1662 split_huge_page(page);
b8d3c4c3 1663 unlock_page(page);
bbf29ffc 1664 put_page(page);
b8d3c4c3
MK
1665 goto out_unlocked;
1666 }
1667
1668 if (PageDirty(page))
1669 ClearPageDirty(page);
1670 unlock_page(page);
1671
b8d3c4c3 1672 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
58ceeb6b 1673 pmdp_invalidate(vma, addr, pmd);
b8d3c4c3
MK
1674 orig_pmd = pmd_mkold(orig_pmd);
1675 orig_pmd = pmd_mkclean(orig_pmd);
1676
1677 set_pmd_at(mm, addr, pmd, orig_pmd);
1678 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1679 }
802a3a92
SL
1680
1681 mark_page_lazyfree(page);
319904ad 1682 ret = true;
b8d3c4c3
MK
1683out:
1684 spin_unlock(ptl);
1685out_unlocked:
1686 return ret;
1687}
1688
953c66c2
AK
1689static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1690{
1691 pgtable_t pgtable;
1692
1693 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1694 pte_free(mm, pgtable);
c4812909 1695 mm_dec_nr_ptes(mm);
953c66c2
AK
1696}
1697
71e3aac0 1698int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1699 pmd_t *pmd, unsigned long addr)
71e3aac0 1700{
da146769 1701 pmd_t orig_pmd;
bf929152 1702 spinlock_t *ptl;
71e3aac0 1703
07e32661
AK
1704 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1705
b6ec57f4
KS
1706 ptl = __pmd_trans_huge_lock(pmd, vma);
1707 if (!ptl)
da146769
KS
1708 return 0;
1709 /*
1710 * For architectures like ppc64 we look at deposited pgtable
1711 * when calling pmdp_huge_get_and_clear. So do the
1712 * pgtable_trans_huge_withdraw after finishing pmdp related
1713 * operations.
1714 */
1715 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1716 tlb->fullmm);
1717 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1718 if (vma_is_dax(vma)) {
3b6521f5
OH
1719 if (arch_needs_pgtable_deposit())
1720 zap_deposited_table(tlb->mm, pmd);
da146769
KS
1721 spin_unlock(ptl);
1722 if (is_huge_zero_pmd(orig_pmd))
c0f2e176 1723 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769 1724 } else if (is_huge_zero_pmd(orig_pmd)) {
c14a6eb4 1725 zap_deposited_table(tlb->mm, pmd);
da146769 1726 spin_unlock(ptl);
c0f2e176 1727 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769 1728 } else {
616b8371
ZY
1729 struct page *page = NULL;
1730 int flush_needed = 1;
1731
1732 if (pmd_present(orig_pmd)) {
1733 page = pmd_page(orig_pmd);
1734 page_remove_rmap(page, true);
1735 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1736 VM_BUG_ON_PAGE(!PageHead(page), page);
1737 } else if (thp_migration_supported()) {
1738 swp_entry_t entry;
1739
1740 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1741 entry = pmd_to_swp_entry(orig_pmd);
1742 page = pfn_to_page(swp_offset(entry));
1743 flush_needed = 0;
1744 } else
1745 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1746
b5072380 1747 if (PageAnon(page)) {
c14a6eb4 1748 zap_deposited_table(tlb->mm, pmd);
b5072380
KS
1749 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1750 } else {
953c66c2
AK
1751 if (arch_needs_pgtable_deposit())
1752 zap_deposited_table(tlb->mm, pmd);
b5072380
KS
1753 add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1754 }
616b8371 1755
da146769 1756 spin_unlock(ptl);
616b8371
ZY
1757 if (flush_needed)
1758 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
025c5b24 1759 }
da146769 1760 return 1;
71e3aac0
AA
1761}
1762
1dd38b6c
AK
1763#ifndef pmd_move_must_withdraw
1764static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1765 spinlock_t *old_pmd_ptl,
1766 struct vm_area_struct *vma)
1767{
1768 /*
1769 * With split pmd lock we also need to move preallocated
1770 * PTE page table if new_pmd is on different PMD page table.
1771 *
1772 * We also don't deposit and withdraw tables for file pages.
1773 */
1774 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1775}
1776#endif
1777
ab6e3d09
NH
1778static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1779{
1780#ifdef CONFIG_MEM_SOFT_DIRTY
1781 if (unlikely(is_pmd_migration_entry(pmd)))
1782 pmd = pmd_swp_mksoft_dirty(pmd);
1783 else if (pmd_present(pmd))
1784 pmd = pmd_mksoft_dirty(pmd);
1785#endif
1786 return pmd;
1787}
1788
bf8616d5 1789bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
37a1c49a 1790 unsigned long new_addr, unsigned long old_end,
5d190420 1791 pmd_t *old_pmd, pmd_t *new_pmd, bool *need_flush)
37a1c49a 1792{
bf929152 1793 spinlock_t *old_ptl, *new_ptl;
37a1c49a 1794 pmd_t pmd;
37a1c49a 1795 struct mm_struct *mm = vma->vm_mm;
5d190420 1796 bool force_flush = false;
37a1c49a
AA
1797
1798 if ((old_addr & ~HPAGE_PMD_MASK) ||
1799 (new_addr & ~HPAGE_PMD_MASK) ||
bf8616d5 1800 old_end - old_addr < HPAGE_PMD_SIZE)
4b471e88 1801 return false;
37a1c49a
AA
1802
1803 /*
1804 * The destination pmd shouldn't be established, free_pgtables()
1805 * should have release it.
1806 */
1807 if (WARN_ON(!pmd_none(*new_pmd))) {
1808 VM_BUG_ON(pmd_trans_huge(*new_pmd));
4b471e88 1809 return false;
37a1c49a
AA
1810 }
1811
bf929152
KS
1812 /*
1813 * We don't have to worry about the ordering of src and dst
1814 * ptlocks because exclusive mmap_sem prevents deadlock.
1815 */
b6ec57f4
KS
1816 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1817 if (old_ptl) {
bf929152
KS
1818 new_ptl = pmd_lockptr(mm, new_pmd);
1819 if (new_ptl != old_ptl)
1820 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
8809aa2d 1821 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
a2ce2666
AL
1822 if (pmd_present(pmd) && pmd_dirty(pmd))
1823 force_flush = true;
025c5b24 1824 VM_BUG_ON(!pmd_none(*new_pmd));
3592806c 1825
1dd38b6c 1826 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
b3084f4d 1827 pgtable_t pgtable;
3592806c
KS
1828 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1829 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
3592806c 1830 }
ab6e3d09
NH
1831 pmd = move_soft_dirty_pmd(pmd);
1832 set_pmd_at(mm, new_addr, new_pmd, pmd);
b3084f4d
AK
1833 if (new_ptl != old_ptl)
1834 spin_unlock(new_ptl);
5d190420
AL
1835 if (force_flush)
1836 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1837 else
1838 *need_flush = true;
bf929152 1839 spin_unlock(old_ptl);
4b471e88 1840 return true;
37a1c49a 1841 }
4b471e88 1842 return false;
37a1c49a
AA
1843}
1844
f123d74a
MG
1845/*
1846 * Returns
1847 * - 0 if PMD could not be locked
1848 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1849 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1850 */
cd7548ab 1851int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
e944fd67 1852 unsigned long addr, pgprot_t newprot, int prot_numa)
cd7548ab
JW
1853{
1854 struct mm_struct *mm = vma->vm_mm;
bf929152 1855 spinlock_t *ptl;
0a85e51d
KS
1856 pmd_t entry;
1857 bool preserve_write;
1858 int ret;
cd7548ab 1859
b6ec57f4 1860 ptl = __pmd_trans_huge_lock(pmd, vma);
0a85e51d
KS
1861 if (!ptl)
1862 return 0;
e944fd67 1863
0a85e51d
KS
1864 preserve_write = prot_numa && pmd_write(*pmd);
1865 ret = 1;
e944fd67 1866
84c3fc4e
ZY
1867#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1868 if (is_swap_pmd(*pmd)) {
1869 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1870
1871 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1872 if (is_write_migration_entry(entry)) {
1873 pmd_t newpmd;
1874 /*
1875 * A protection check is difficult so
1876 * just be safe and disable write
1877 */
1878 make_migration_entry_read(&entry);
1879 newpmd = swp_entry_to_pmd(entry);
ab6e3d09
NH
1880 if (pmd_swp_soft_dirty(*pmd))
1881 newpmd = pmd_swp_mksoft_dirty(newpmd);
84c3fc4e
ZY
1882 set_pmd_at(mm, addr, pmd, newpmd);
1883 }
1884 goto unlock;
1885 }
1886#endif
1887
0a85e51d
KS
1888 /*
1889 * Avoid trapping faults against the zero page. The read-only
1890 * data is likely to be read-cached on the local CPU and
1891 * local/remote hits to the zero page are not interesting.
1892 */
1893 if (prot_numa && is_huge_zero_pmd(*pmd))
1894 goto unlock;
025c5b24 1895
0a85e51d
KS
1896 if (prot_numa && pmd_protnone(*pmd))
1897 goto unlock;
1898
ced10803
KS
1899 /*
1900 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1901 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1902 * which is also under down_read(mmap_sem):
1903 *
1904 * CPU0: CPU1:
1905 * change_huge_pmd(prot_numa=1)
1906 * pmdp_huge_get_and_clear_notify()
1907 * madvise_dontneed()
1908 * zap_pmd_range()
1909 * pmd_trans_huge(*pmd) == 0 (without ptl)
1910 * // skip the pmd
1911 * set_pmd_at();
1912 * // pmd is re-established
1913 *
1914 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1915 * which may break userspace.
1916 *
1917 * pmdp_invalidate() is required to make sure we don't miss
1918 * dirty/young flags set by hardware.
1919 */
1920 entry = *pmd;
1921 pmdp_invalidate(vma, addr, pmd);
1922
1923 /*
1924 * Recover dirty/young flags. It relies on pmdp_invalidate to not
1925 * corrupt them.
1926 */
1927 if (pmd_dirty(*pmd))
1928 entry = pmd_mkdirty(entry);
1929 if (pmd_young(*pmd))
1930 entry = pmd_mkyoung(entry);
1931
0a85e51d
KS
1932 entry = pmd_modify(entry, newprot);
1933 if (preserve_write)
1934 entry = pmd_mk_savedwrite(entry);
1935 ret = HPAGE_PMD_NR;
1936 set_pmd_at(mm, addr, pmd, entry);
1937 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1938unlock:
1939 spin_unlock(ptl);
025c5b24
NH
1940 return ret;
1941}
1942
1943/*
8f19b0c0 1944 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
025c5b24 1945 *
8f19b0c0
HY
1946 * Note that if it returns page table lock pointer, this routine returns without
1947 * unlocking page table lock. So callers must unlock it.
025c5b24 1948 */
b6ec57f4 1949spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
025c5b24 1950{
b6ec57f4
KS
1951 spinlock_t *ptl;
1952 ptl = pmd_lock(vma->vm_mm, pmd);
84c3fc4e
ZY
1953 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1954 pmd_devmap(*pmd)))
b6ec57f4
KS
1955 return ptl;
1956 spin_unlock(ptl);
1957 return NULL;
cd7548ab
JW
1958}
1959
a00cc7d9
MW
1960/*
1961 * Returns true if a given pud maps a thp, false otherwise.
1962 *
1963 * Note that if it returns true, this routine returns without unlocking page
1964 * table lock. So callers must unlock it.
1965 */
1966spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1967{
1968 spinlock_t *ptl;
1969
1970 ptl = pud_lock(vma->vm_mm, pud);
1971 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1972 return ptl;
1973 spin_unlock(ptl);
1974 return NULL;
1975}
1976
1977#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1978int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1979 pud_t *pud, unsigned long addr)
1980{
1981 pud_t orig_pud;
1982 spinlock_t *ptl;
1983
1984 ptl = __pud_trans_huge_lock(pud, vma);
1985 if (!ptl)
1986 return 0;
1987 /*
1988 * For architectures like ppc64 we look at deposited pgtable
1989 * when calling pudp_huge_get_and_clear. So do the
1990 * pgtable_trans_huge_withdraw after finishing pudp related
1991 * operations.
1992 */
1993 orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
1994 tlb->fullmm);
1995 tlb_remove_pud_tlb_entry(tlb, pud, addr);
1996 if (vma_is_dax(vma)) {
1997 spin_unlock(ptl);
1998 /* No zero page support yet */
1999 } else {
2000 /* No support for anonymous PUD pages yet */
2001 BUG();
2002 }
2003 return 1;
2004}
2005
2006static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2007 unsigned long haddr)
2008{
2009 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2010 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2011 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2012 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2013
ce9311cf 2014 count_vm_event(THP_SPLIT_PUD);
a00cc7d9
MW
2015
2016 pudp_huge_clear_flush_notify(vma, haddr, pud);
2017}
2018
2019void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2020 unsigned long address)
2021{
2022 spinlock_t *ptl;
2023 struct mm_struct *mm = vma->vm_mm;
2024 unsigned long haddr = address & HPAGE_PUD_MASK;
2025
2026 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE);
2027 ptl = pud_lock(mm, pud);
2028 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2029 goto out;
2030 __split_huge_pud_locked(vma, pud, haddr);
2031
2032out:
2033 spin_unlock(ptl);
4645b9fe
JG
2034 /*
2035 * No need to double call mmu_notifier->invalidate_range() callback as
2036 * the above pudp_huge_clear_flush_notify() did already call it.
2037 */
2038 mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
2039 HPAGE_PUD_SIZE);
a00cc7d9
MW
2040}
2041#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2042
eef1b3ba
KS
2043static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2044 unsigned long haddr, pmd_t *pmd)
2045{
2046 struct mm_struct *mm = vma->vm_mm;
2047 pgtable_t pgtable;
2048 pmd_t _pmd;
2049 int i;
2050
0f10851e
JG
2051 /*
2052 * Leave pmd empty until pte is filled note that it is fine to delay
2053 * notification until mmu_notifier_invalidate_range_end() as we are
2054 * replacing a zero pmd write protected page with a zero pte write
2055 * protected page.
2056 *
2057 * See Documentation/vm/mmu_notifier.txt
2058 */
2059 pmdp_huge_clear_flush(vma, haddr, pmd);
eef1b3ba
KS
2060
2061 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2062 pmd_populate(mm, &_pmd, pgtable);
2063
2064 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2065 pte_t *pte, entry;
2066 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2067 entry = pte_mkspecial(entry);
2068 pte = pte_offset_map(&_pmd, haddr);
2069 VM_BUG_ON(!pte_none(*pte));
2070 set_pte_at(mm, haddr, pte, entry);
2071 pte_unmap(pte);
2072 }
2073 smp_wmb(); /* make pte visible before pmd */
2074 pmd_populate(mm, pmd, pgtable);
eef1b3ba
KS
2075}
2076
2077static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
ba988280 2078 unsigned long haddr, bool freeze)
eef1b3ba
KS
2079{
2080 struct mm_struct *mm = vma->vm_mm;
2081 struct page *page;
2082 pgtable_t pgtable;
2083 pmd_t _pmd;
84c3fc4e 2084 bool young, write, dirty, soft_dirty, pmd_migration = false;
2ac015e2 2085 unsigned long addr;
eef1b3ba
KS
2086 int i;
2087
2088 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2089 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2090 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
84c3fc4e
ZY
2091 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2092 && !pmd_devmap(*pmd));
eef1b3ba
KS
2093
2094 count_vm_event(THP_SPLIT_PMD);
2095
d21b9e57
KS
2096 if (!vma_is_anonymous(vma)) {
2097 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
953c66c2
AK
2098 /*
2099 * We are going to unmap this huge page. So
2100 * just go ahead and zap it
2101 */
2102 if (arch_needs_pgtable_deposit())
2103 zap_deposited_table(mm, pmd);
d21b9e57
KS
2104 if (vma_is_dax(vma))
2105 return;
2106 page = pmd_page(_pmd);
2107 if (!PageReferenced(page) && pmd_young(_pmd))
2108 SetPageReferenced(page);
2109 page_remove_rmap(page, true);
2110 put_page(page);
2111 add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
eef1b3ba
KS
2112 return;
2113 } else if (is_huge_zero_pmd(*pmd)) {
4645b9fe
JG
2114 /*
2115 * FIXME: Do we want to invalidate secondary mmu by calling
2116 * mmu_notifier_invalidate_range() see comments below inside
2117 * __split_huge_pmd() ?
2118 *
2119 * We are going from a zero huge page write protected to zero
2120 * small page also write protected so it does not seems useful
2121 * to invalidate secondary mmu at this time.
2122 */
eef1b3ba
KS
2123 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2124 }
2125
84c3fc4e
ZY
2126#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2127 pmd_migration = is_pmd_migration_entry(*pmd);
2128 if (pmd_migration) {
2129 swp_entry_t entry;
2130
2131 entry = pmd_to_swp_entry(*pmd);
2132 page = pfn_to_page(swp_offset(entry));
2133 } else
2134#endif
2135 page = pmd_page(*pmd);
eef1b3ba 2136 VM_BUG_ON_PAGE(!page_count(page), page);
fe896d18 2137 page_ref_add(page, HPAGE_PMD_NR - 1);
eef1b3ba
KS
2138 write = pmd_write(*pmd);
2139 young = pmd_young(*pmd);
b8d3c4c3 2140 dirty = pmd_dirty(*pmd);
804dd150 2141 soft_dirty = pmd_soft_dirty(*pmd);
eef1b3ba 2142
c777e2a8 2143 pmdp_huge_split_prepare(vma, haddr, pmd);
eef1b3ba
KS
2144 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2145 pmd_populate(mm, &_pmd, pgtable);
2146
2ac015e2 2147 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
eef1b3ba
KS
2148 pte_t entry, *pte;
2149 /*
2150 * Note that NUMA hinting access restrictions are not
2151 * transferred to avoid any possibility of altering
2152 * permissions across VMAs.
2153 */
84c3fc4e 2154 if (freeze || pmd_migration) {
ba988280
KS
2155 swp_entry_t swp_entry;
2156 swp_entry = make_migration_entry(page + i, write);
2157 entry = swp_entry_to_pte(swp_entry);
804dd150
AA
2158 if (soft_dirty)
2159 entry = pte_swp_mksoft_dirty(entry);
ba988280 2160 } else {
6d2329f8 2161 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
b8d3c4c3 2162 entry = maybe_mkwrite(entry, vma);
ba988280
KS
2163 if (!write)
2164 entry = pte_wrprotect(entry);
2165 if (!young)
2166 entry = pte_mkold(entry);
804dd150
AA
2167 if (soft_dirty)
2168 entry = pte_mksoft_dirty(entry);
ba988280 2169 }
b8d3c4c3
MK
2170 if (dirty)
2171 SetPageDirty(page + i);
2ac015e2 2172 pte = pte_offset_map(&_pmd, addr);
eef1b3ba 2173 BUG_ON(!pte_none(*pte));
2ac015e2 2174 set_pte_at(mm, addr, pte, entry);
eef1b3ba
KS
2175 atomic_inc(&page[i]._mapcount);
2176 pte_unmap(pte);
2177 }
2178
2179 /*
2180 * Set PG_double_map before dropping compound_mapcount to avoid
2181 * false-negative page_mapped().
2182 */
2183 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2184 for (i = 0; i < HPAGE_PMD_NR; i++)
2185 atomic_inc(&page[i]._mapcount);
2186 }
2187
2188 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2189 /* Last compound_mapcount is gone. */
11fb9989 2190 __dec_node_page_state(page, NR_ANON_THPS);
eef1b3ba
KS
2191 if (TestClearPageDoubleMap(page)) {
2192 /* No need in mapcount reference anymore */
2193 for (i = 0; i < HPAGE_PMD_NR; i++)
2194 atomic_dec(&page[i]._mapcount);
2195 }
2196 }
2197
2198 smp_wmb(); /* make pte visible before pmd */
e9b61f19
KS
2199 /*
2200 * Up to this point the pmd is present and huge and userland has the
2201 * whole access to the hugepage during the split (which happens in
2202 * place). If we overwrite the pmd with the not-huge version pointing
2203 * to the pte here (which of course we could if all CPUs were bug
2204 * free), userland could trigger a small page size TLB miss on the
2205 * small sized TLB while the hugepage TLB entry is still established in
2206 * the huge TLB. Some CPU doesn't like that.
2207 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2208 * 383 on page 93. Intel should be safe but is also warns that it's
2209 * only safe if the permission and cache attributes of the two entries
2210 * loaded in the two TLB is identical (which should be the case here).
2211 * But it is generally safer to never allow small and huge TLB entries
2212 * for the same virtual address to be loaded simultaneously. So instead
2213 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2214 * current pmd notpresent (atomically because here the pmd_trans_huge
2215 * and pmd_trans_splitting must remain set at all times on the pmd
2216 * until the split is complete for this pmd), then we flush the SMP TLB
2217 * and finally we write the non-huge version of the pmd entry with
2218 * pmd_populate.
2219 */
2220 pmdp_invalidate(vma, haddr, pmd);
eef1b3ba 2221 pmd_populate(mm, pmd, pgtable);
e9b61f19
KS
2222
2223 if (freeze) {
2ac015e2 2224 for (i = 0; i < HPAGE_PMD_NR; i++) {
e9b61f19
KS
2225 page_remove_rmap(page + i, false);
2226 put_page(page + i);
2227 }
2228 }
eef1b3ba
KS
2229}
2230
2231void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
33f4751e 2232 unsigned long address, bool freeze, struct page *page)
eef1b3ba
KS
2233{
2234 spinlock_t *ptl;
2235 struct mm_struct *mm = vma->vm_mm;
2236 unsigned long haddr = address & HPAGE_PMD_MASK;
2237
2238 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2239 ptl = pmd_lock(mm, pmd);
33f4751e
NH
2240
2241 /*
2242 * If caller asks to setup a migration entries, we need a page to check
2243 * pmd against. Otherwise we can end up replacing wrong page.
2244 */
2245 VM_BUG_ON(freeze && !page);
2246 if (page && page != pmd_page(*pmd))
2247 goto out;
2248
5c7fb56e 2249 if (pmd_trans_huge(*pmd)) {
33f4751e 2250 page = pmd_page(*pmd);
5c7fb56e 2251 if (PageMlocked(page))
5f737714 2252 clear_page_mlock(page);
84c3fc4e 2253 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
e90309c9 2254 goto out;
fec89c10 2255 __split_huge_pmd_locked(vma, pmd, haddr, freeze);
e90309c9 2256out:
eef1b3ba 2257 spin_unlock(ptl);
4645b9fe
JG
2258 /*
2259 * No need to double call mmu_notifier->invalidate_range() callback.
2260 * They are 3 cases to consider inside __split_huge_pmd_locked():
2261 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2262 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2263 * fault will trigger a flush_notify before pointing to a new page
2264 * (it is fine if the secondary mmu keeps pointing to the old zero
2265 * page in the meantime)
2266 * 3) Split a huge pmd into pte pointing to the same page. No need
2267 * to invalidate secondary tlb entry they are all still valid.
2268 * any further changes to individual pte will notify. So no need
2269 * to call mmu_notifier->invalidate_range()
2270 */
2271 mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
2272 HPAGE_PMD_SIZE);
eef1b3ba
KS
2273}
2274
fec89c10
KS
2275void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2276 bool freeze, struct page *page)
94fcc585 2277{
f72e7dcd 2278 pgd_t *pgd;
c2febafc 2279 p4d_t *p4d;
f72e7dcd 2280 pud_t *pud;
94fcc585
AA
2281 pmd_t *pmd;
2282
78ddc534 2283 pgd = pgd_offset(vma->vm_mm, address);
f72e7dcd
HD
2284 if (!pgd_present(*pgd))
2285 return;
2286
c2febafc
KS
2287 p4d = p4d_offset(pgd, address);
2288 if (!p4d_present(*p4d))
2289 return;
2290
2291 pud = pud_offset(p4d, address);
f72e7dcd
HD
2292 if (!pud_present(*pud))
2293 return;
2294
2295 pmd = pmd_offset(pud, address);
fec89c10 2296
33f4751e 2297 __split_huge_pmd(vma, pmd, address, freeze, page);
94fcc585
AA
2298}
2299
e1b9996b 2300void vma_adjust_trans_huge(struct vm_area_struct *vma,
94fcc585
AA
2301 unsigned long start,
2302 unsigned long end,
2303 long adjust_next)
2304{
2305 /*
2306 * If the new start address isn't hpage aligned and it could
2307 * previously contain an hugepage: check if we need to split
2308 * an huge pmd.
2309 */
2310 if (start & ~HPAGE_PMD_MASK &&
2311 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2312 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 2313 split_huge_pmd_address(vma, start, false, NULL);
94fcc585
AA
2314
2315 /*
2316 * If the new end address isn't hpage aligned and it could
2317 * previously contain an hugepage: check if we need to split
2318 * an huge pmd.
2319 */
2320 if (end & ~HPAGE_PMD_MASK &&
2321 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2322 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 2323 split_huge_pmd_address(vma, end, false, NULL);
94fcc585
AA
2324
2325 /*
2326 * If we're also updating the vma->vm_next->vm_start, if the new
2327 * vm_next->vm_start isn't page aligned and it could previously
2328 * contain an hugepage: check if we need to split an huge pmd.
2329 */
2330 if (adjust_next > 0) {
2331 struct vm_area_struct *next = vma->vm_next;
2332 unsigned long nstart = next->vm_start;
2333 nstart += adjust_next << PAGE_SHIFT;
2334 if (nstart & ~HPAGE_PMD_MASK &&
2335 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2336 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
fec89c10 2337 split_huge_pmd_address(next, nstart, false, NULL);
94fcc585
AA
2338 }
2339}
e9b61f19 2340
fec89c10 2341static void freeze_page(struct page *page)
e9b61f19 2342{
baa355fd 2343 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
c7ab0d2f 2344 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
666e5a40 2345 bool unmap_success;
e9b61f19
KS
2346
2347 VM_BUG_ON_PAGE(!PageHead(page), page);
2348
baa355fd 2349 if (PageAnon(page))
b5ff8161 2350 ttu_flags |= TTU_SPLIT_FREEZE;
baa355fd 2351
666e5a40
MK
2352 unmap_success = try_to_unmap(page, ttu_flags);
2353 VM_BUG_ON_PAGE(!unmap_success, page);
e9b61f19
KS
2354}
2355
fec89c10 2356static void unfreeze_page(struct page *page)
e9b61f19 2357{
fec89c10 2358 int i;
ace71a19
KS
2359 if (PageTransHuge(page)) {
2360 remove_migration_ptes(page, page, true);
2361 } else {
2362 for (i = 0; i < HPAGE_PMD_NR; i++)
2363 remove_migration_ptes(page + i, page + i, true);
2364 }
e9b61f19
KS
2365}
2366
8df651c7 2367static void __split_huge_page_tail(struct page *head, int tail,
e9b61f19
KS
2368 struct lruvec *lruvec, struct list_head *list)
2369{
e9b61f19
KS
2370 struct page *page_tail = head + tail;
2371
8df651c7 2372 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
fe896d18 2373 VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
e9b61f19
KS
2374
2375 /*
0139aa7b 2376 * tail_page->_refcount is zero and not changing from under us. But
e9b61f19 2377 * get_page_unless_zero() may be running from under us on the
baa355fd
KS
2378 * tail_page. If we used atomic_set() below instead of atomic_inc() or
2379 * atomic_add(), we would then run atomic_set() concurrently with
e9b61f19
KS
2380 * get_page_unless_zero(), and atomic_set() is implemented in C not
2381 * using locked ops. spin_unlock on x86 sometime uses locked ops
2382 * because of PPro errata 66, 92, so unless somebody can guarantee
2383 * atomic_set() here would be safe on all archs (and not only on x86),
baa355fd 2384 * it's safer to use atomic_inc()/atomic_add().
e9b61f19 2385 */
38d8b4e6 2386 if (PageAnon(head) && !PageSwapCache(head)) {
baa355fd
KS
2387 page_ref_inc(page_tail);
2388 } else {
2389 /* Additional pin to radix tree */
2390 page_ref_add(page_tail, 2);
2391 }
e9b61f19
KS
2392
2393 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2394 page_tail->flags |= (head->flags &
2395 ((1L << PG_referenced) |
2396 (1L << PG_swapbacked) |
38d8b4e6 2397 (1L << PG_swapcache) |
e9b61f19
KS
2398 (1L << PG_mlocked) |
2399 (1L << PG_uptodate) |
2400 (1L << PG_active) |
2401 (1L << PG_locked) |
b8d3c4c3
MK
2402 (1L << PG_unevictable) |
2403 (1L << PG_dirty)));
e9b61f19
KS
2404
2405 /*
2406 * After clearing PageTail the gup refcount can be released.
2407 * Page flags also must be visible before we make the page non-compound.
2408 */
2409 smp_wmb();
2410
2411 clear_compound_head(page_tail);
2412
2413 if (page_is_young(head))
2414 set_page_young(page_tail);
2415 if (page_is_idle(head))
2416 set_page_idle(page_tail);
2417
2418 /* ->mapping in first tail page is compound_mapcount */
9a982250 2419 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
e9b61f19
KS
2420 page_tail);
2421 page_tail->mapping = head->mapping;
2422
2423 page_tail->index = head->index + tail;
2424 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2425 lru_add_page_tail(head, page_tail, lruvec, list);
e9b61f19
KS
2426}
2427
baa355fd
KS
2428static void __split_huge_page(struct page *page, struct list_head *list,
2429 unsigned long flags)
e9b61f19
KS
2430{
2431 struct page *head = compound_head(page);
2432 struct zone *zone = page_zone(head);
2433 struct lruvec *lruvec;
baa355fd 2434 pgoff_t end = -1;
8df651c7 2435 int i;
e9b61f19 2436
599d0c95 2437 lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
e9b61f19
KS
2438
2439 /* complete memcg works before add pages to LRU */
2440 mem_cgroup_split_huge_fixup(head);
2441
baa355fd
KS
2442 if (!PageAnon(page))
2443 end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
2444
2445 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
8df651c7 2446 __split_huge_page_tail(head, i, lruvec, list);
baa355fd
KS
2447 /* Some pages can be beyond i_size: drop them from page cache */
2448 if (head[i].index >= end) {
2449 __ClearPageDirty(head + i);
2450 __delete_from_page_cache(head + i, NULL);
800d8c63
KS
2451 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2452 shmem_uncharge(head->mapping->host, 1);
baa355fd
KS
2453 put_page(head + i);
2454 }
2455 }
e9b61f19
KS
2456
2457 ClearPageCompound(head);
baa355fd
KS
2458 /* See comment in __split_huge_page_tail() */
2459 if (PageAnon(head)) {
38d8b4e6
HY
2460 /* Additional pin to radix tree of swap cache */
2461 if (PageSwapCache(head))
2462 page_ref_add(head, 2);
2463 else
2464 page_ref_inc(head);
baa355fd
KS
2465 } else {
2466 /* Additional pin to radix tree */
2467 page_ref_add(head, 2);
2468 spin_unlock(&head->mapping->tree_lock);
2469 }
2470
a52633d8 2471 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
e9b61f19 2472
fec89c10 2473 unfreeze_page(head);
e9b61f19
KS
2474
2475 for (i = 0; i < HPAGE_PMD_NR; i++) {
2476 struct page *subpage = head + i;
2477 if (subpage == page)
2478 continue;
2479 unlock_page(subpage);
2480
2481 /*
2482 * Subpages may be freed if there wasn't any mapping
2483 * like if add_to_swap() is running on a lru page that
2484 * had its mapping zapped. And freeing these pages
2485 * requires taking the lru_lock so we do the put_page
2486 * of the tail pages after the split is complete.
2487 */
2488 put_page(subpage);
2489 }
2490}
2491
b20ce5e0
KS
2492int total_mapcount(struct page *page)
2493{
dd78fedd 2494 int i, compound, ret;
b20ce5e0
KS
2495
2496 VM_BUG_ON_PAGE(PageTail(page), page);
2497
2498 if (likely(!PageCompound(page)))
2499 return atomic_read(&page->_mapcount) + 1;
2500
dd78fedd 2501 compound = compound_mapcount(page);
b20ce5e0 2502 if (PageHuge(page))
dd78fedd
KS
2503 return compound;
2504 ret = compound;
b20ce5e0
KS
2505 for (i = 0; i < HPAGE_PMD_NR; i++)
2506 ret += atomic_read(&page[i]._mapcount) + 1;
dd78fedd
KS
2507 /* File pages has compound_mapcount included in _mapcount */
2508 if (!PageAnon(page))
2509 return ret - compound * HPAGE_PMD_NR;
b20ce5e0
KS
2510 if (PageDoubleMap(page))
2511 ret -= HPAGE_PMD_NR;
2512 return ret;
2513}
2514
6d0a07ed
AA
2515/*
2516 * This calculates accurately how many mappings a transparent hugepage
2517 * has (unlike page_mapcount() which isn't fully accurate). This full
2518 * accuracy is primarily needed to know if copy-on-write faults can
2519 * reuse the page and change the mapping to read-write instead of
2520 * copying them. At the same time this returns the total_mapcount too.
2521 *
2522 * The function returns the highest mapcount any one of the subpages
2523 * has. If the return value is one, even if different processes are
2524 * mapping different subpages of the transparent hugepage, they can
2525 * all reuse it, because each process is reusing a different subpage.
2526 *
2527 * The total_mapcount is instead counting all virtual mappings of the
2528 * subpages. If the total_mapcount is equal to "one", it tells the
2529 * caller all mappings belong to the same "mm" and in turn the
2530 * anon_vma of the transparent hugepage can become the vma->anon_vma
2531 * local one as no other process may be mapping any of the subpages.
2532 *
2533 * It would be more accurate to replace page_mapcount() with
2534 * page_trans_huge_mapcount(), however we only use
2535 * page_trans_huge_mapcount() in the copy-on-write faults where we
2536 * need full accuracy to avoid breaking page pinning, because
2537 * page_trans_huge_mapcount() is slower than page_mapcount().
2538 */
2539int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2540{
2541 int i, ret, _total_mapcount, mapcount;
2542
2543 /* hugetlbfs shouldn't call it */
2544 VM_BUG_ON_PAGE(PageHuge(page), page);
2545
2546 if (likely(!PageTransCompound(page))) {
2547 mapcount = atomic_read(&page->_mapcount) + 1;
2548 if (total_mapcount)
2549 *total_mapcount = mapcount;
2550 return mapcount;
2551 }
2552
2553 page = compound_head(page);
2554
2555 _total_mapcount = ret = 0;
2556 for (i = 0; i < HPAGE_PMD_NR; i++) {
2557 mapcount = atomic_read(&page[i]._mapcount) + 1;
2558 ret = max(ret, mapcount);
2559 _total_mapcount += mapcount;
2560 }
2561 if (PageDoubleMap(page)) {
2562 ret -= 1;
2563 _total_mapcount -= HPAGE_PMD_NR;
2564 }
2565 mapcount = compound_mapcount(page);
2566 ret += mapcount;
2567 _total_mapcount += mapcount;
2568 if (total_mapcount)
2569 *total_mapcount = _total_mapcount;
2570 return ret;
2571}
2572
b8f593cd
HY
2573/* Racy check whether the huge page can be split */
2574bool can_split_huge_page(struct page *page, int *pextra_pins)
2575{
2576 int extra_pins;
2577
2578 /* Additional pins from radix tree */
2579 if (PageAnon(page))
2580 extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2581 else
2582 extra_pins = HPAGE_PMD_NR;
2583 if (pextra_pins)
2584 *pextra_pins = extra_pins;
2585 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2586}
2587
e9b61f19
KS
2588/*
2589 * This function splits huge page into normal pages. @page can point to any
2590 * subpage of huge page to split. Split doesn't change the position of @page.
2591 *
2592 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2593 * The huge page must be locked.
2594 *
2595 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2596 *
2597 * Both head page and tail pages will inherit mapping, flags, and so on from
2598 * the hugepage.
2599 *
2600 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2601 * they are not mapped.
2602 *
2603 * Returns 0 if the hugepage is split successfully.
2604 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2605 * us.
2606 */
2607int split_huge_page_to_list(struct page *page, struct list_head *list)
2608{
2609 struct page *head = compound_head(page);
a3d0a918 2610 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
baa355fd
KS
2611 struct anon_vma *anon_vma = NULL;
2612 struct address_space *mapping = NULL;
2613 int count, mapcount, extra_pins, ret;
d9654322 2614 bool mlocked;
0b9b6fff 2615 unsigned long flags;
e9b61f19
KS
2616
2617 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
e9b61f19 2618 VM_BUG_ON_PAGE(!PageLocked(page), page);
e9b61f19
KS
2619 VM_BUG_ON_PAGE(!PageCompound(page), page);
2620
59807685
HY
2621 if (PageWriteback(page))
2622 return -EBUSY;
2623
baa355fd
KS
2624 if (PageAnon(head)) {
2625 /*
2626 * The caller does not necessarily hold an mmap_sem that would
2627 * prevent the anon_vma disappearing so we first we take a
2628 * reference to it and then lock the anon_vma for write. This
2629 * is similar to page_lock_anon_vma_read except the write lock
2630 * is taken to serialise against parallel split or collapse
2631 * operations.
2632 */
2633 anon_vma = page_get_anon_vma(head);
2634 if (!anon_vma) {
2635 ret = -EBUSY;
2636 goto out;
2637 }
baa355fd
KS
2638 mapping = NULL;
2639 anon_vma_lock_write(anon_vma);
2640 } else {
2641 mapping = head->mapping;
2642
2643 /* Truncated ? */
2644 if (!mapping) {
2645 ret = -EBUSY;
2646 goto out;
2647 }
2648
baa355fd
KS
2649 anon_vma = NULL;
2650 i_mmap_lock_read(mapping);
e9b61f19 2651 }
e9b61f19
KS
2652
2653 /*
2654 * Racy check if we can split the page, before freeze_page() will
2655 * split PMDs
2656 */
b8f593cd 2657 if (!can_split_huge_page(head, &extra_pins)) {
e9b61f19
KS
2658 ret = -EBUSY;
2659 goto out_unlock;
2660 }
2661
d9654322 2662 mlocked = PageMlocked(page);
fec89c10 2663 freeze_page(head);
e9b61f19
KS
2664 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2665
d9654322
KS
2666 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2667 if (mlocked)
2668 lru_add_drain();
2669
baa355fd 2670 /* prevent PageLRU to go away from under us, and freeze lru stats */
a52633d8 2671 spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
baa355fd
KS
2672
2673 if (mapping) {
2674 void **pslot;
2675
2676 spin_lock(&mapping->tree_lock);
2677 pslot = radix_tree_lookup_slot(&mapping->page_tree,
2678 page_index(head));
2679 /*
2680 * Check if the head page is present in radix tree.
2681 * We assume all tail are present too, if head is there.
2682 */
2683 if (radix_tree_deref_slot_protected(pslot,
2684 &mapping->tree_lock) != head)
2685 goto fail;
2686 }
2687
0139aa7b 2688 /* Prevent deferred_split_scan() touching ->_refcount */
baa355fd 2689 spin_lock(&pgdata->split_queue_lock);
e9b61f19
KS
2690 count = page_count(head);
2691 mapcount = total_mapcount(head);
baa355fd 2692 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
9a982250 2693 if (!list_empty(page_deferred_list(head))) {
a3d0a918 2694 pgdata->split_queue_len--;
9a982250
KS
2695 list_del(page_deferred_list(head));
2696 }
65c45377 2697 if (mapping)
11fb9989 2698 __dec_node_page_state(page, NR_SHMEM_THPS);
baa355fd
KS
2699 spin_unlock(&pgdata->split_queue_lock);
2700 __split_huge_page(page, list, flags);
59807685
HY
2701 if (PageSwapCache(head)) {
2702 swp_entry_t entry = { .val = page_private(head) };
2703
2704 ret = split_swap_cluster(entry);
2705 } else
2706 ret = 0;
e9b61f19 2707 } else {
baa355fd
KS
2708 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2709 pr_alert("total_mapcount: %u, page_count(): %u\n",
2710 mapcount, count);
2711 if (PageTail(page))
2712 dump_page(head, NULL);
2713 dump_page(page, "total_mapcount(head) > 0");
2714 BUG();
2715 }
2716 spin_unlock(&pgdata->split_queue_lock);
2717fail: if (mapping)
2718 spin_unlock(&mapping->tree_lock);
a52633d8 2719 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
fec89c10 2720 unfreeze_page(head);
e9b61f19
KS
2721 ret = -EBUSY;
2722 }
2723
2724out_unlock:
baa355fd
KS
2725 if (anon_vma) {
2726 anon_vma_unlock_write(anon_vma);
2727 put_anon_vma(anon_vma);
2728 }
2729 if (mapping)
2730 i_mmap_unlock_read(mapping);
e9b61f19
KS
2731out:
2732 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2733 return ret;
2734}
9a982250
KS
2735
2736void free_transhuge_page(struct page *page)
2737{
a3d0a918 2738 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
9a982250
KS
2739 unsigned long flags;
2740
a3d0a918 2741 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2742 if (!list_empty(page_deferred_list(page))) {
a3d0a918 2743 pgdata->split_queue_len--;
9a982250
KS
2744 list_del(page_deferred_list(page));
2745 }
a3d0a918 2746 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2747 free_compound_page(page);
2748}
2749
2750void deferred_split_huge_page(struct page *page)
2751{
a3d0a918 2752 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
9a982250
KS
2753 unsigned long flags;
2754
2755 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2756
a3d0a918 2757 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2758 if (list_empty(page_deferred_list(page))) {
f9719a03 2759 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
a3d0a918
KS
2760 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2761 pgdata->split_queue_len++;
9a982250 2762 }
a3d0a918 2763 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2764}
2765
2766static unsigned long deferred_split_count(struct shrinker *shrink,
2767 struct shrink_control *sc)
2768{
a3d0a918 2769 struct pglist_data *pgdata = NODE_DATA(sc->nid);
6aa7de05 2770 return READ_ONCE(pgdata->split_queue_len);
9a982250
KS
2771}
2772
2773static unsigned long deferred_split_scan(struct shrinker *shrink,
2774 struct shrink_control *sc)
2775{
a3d0a918 2776 struct pglist_data *pgdata = NODE_DATA(sc->nid);
9a982250
KS
2777 unsigned long flags;
2778 LIST_HEAD(list), *pos, *next;
2779 struct page *page;
2780 int split = 0;
2781
a3d0a918 2782 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2783 /* Take pin on all head pages to avoid freeing them under us */
ae026204 2784 list_for_each_safe(pos, next, &pgdata->split_queue) {
9a982250
KS
2785 page = list_entry((void *)pos, struct page, mapping);
2786 page = compound_head(page);
e3ae1953
KS
2787 if (get_page_unless_zero(page)) {
2788 list_move(page_deferred_list(page), &list);
2789 } else {
2790 /* We lost race with put_compound_page() */
9a982250 2791 list_del_init(page_deferred_list(page));
a3d0a918 2792 pgdata->split_queue_len--;
9a982250 2793 }
e3ae1953
KS
2794 if (!--sc->nr_to_scan)
2795 break;
9a982250 2796 }
a3d0a918 2797 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2798
2799 list_for_each_safe(pos, next, &list) {
2800 page = list_entry((void *)pos, struct page, mapping);
2801 lock_page(page);
2802 /* split_huge_page() removes page from list on success */
2803 if (!split_huge_page(page))
2804 split++;
2805 unlock_page(page);
2806 put_page(page);
2807 }
2808
a3d0a918
KS
2809 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2810 list_splice_tail(&list, &pgdata->split_queue);
2811 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250 2812
cb8d68ec
KS
2813 /*
2814 * Stop shrinker if we didn't split any page, but the queue is empty.
2815 * This can happen if pages were freed under us.
2816 */
2817 if (!split && list_empty(&pgdata->split_queue))
2818 return SHRINK_STOP;
2819 return split;
9a982250
KS
2820}
2821
2822static struct shrinker deferred_split_shrinker = {
2823 .count_objects = deferred_split_count,
2824 .scan_objects = deferred_split_scan,
2825 .seeks = DEFAULT_SEEKS,
a3d0a918 2826 .flags = SHRINKER_NUMA_AWARE,
9a982250 2827};
49071d43
KS
2828
2829#ifdef CONFIG_DEBUG_FS
2830static int split_huge_pages_set(void *data, u64 val)
2831{
2832 struct zone *zone;
2833 struct page *page;
2834 unsigned long pfn, max_zone_pfn;
2835 unsigned long total = 0, split = 0;
2836
2837 if (val != 1)
2838 return -EINVAL;
2839
2840 for_each_populated_zone(zone) {
2841 max_zone_pfn = zone_end_pfn(zone);
2842 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2843 if (!pfn_valid(pfn))
2844 continue;
2845
2846 page = pfn_to_page(pfn);
2847 if (!get_page_unless_zero(page))
2848 continue;
2849
2850 if (zone != page_zone(page))
2851 goto next;
2852
baa355fd 2853 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
49071d43
KS
2854 goto next;
2855
2856 total++;
2857 lock_page(page);
2858 if (!split_huge_page(page))
2859 split++;
2860 unlock_page(page);
2861next:
2862 put_page(page);
2863 }
2864 }
2865
145bdaa1 2866 pr_info("%lu of %lu THP split\n", split, total);
49071d43
KS
2867
2868 return 0;
2869}
2870DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2871 "%llu\n");
2872
2873static int __init split_huge_pages_debugfs(void)
2874{
2875 void *ret;
2876
145bdaa1 2877 ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
49071d43
KS
2878 &split_huge_pages_fops);
2879 if (!ret)
2880 pr_warn("Failed to create split_huge_pages in debugfs");
2881 return 0;
2882}
2883late_initcall(split_huge_pages_debugfs);
2884#endif
616b8371
ZY
2885
2886#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2887void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2888 struct page *page)
2889{
2890 struct vm_area_struct *vma = pvmw->vma;
2891 struct mm_struct *mm = vma->vm_mm;
2892 unsigned long address = pvmw->address;
2893 pmd_t pmdval;
2894 swp_entry_t entry;
ab6e3d09 2895 pmd_t pmdswp;
616b8371
ZY
2896
2897 if (!(pvmw->pmd && !pvmw->pte))
2898 return;
2899
2900 mmu_notifier_invalidate_range_start(mm, address,
2901 address + HPAGE_PMD_SIZE);
2902
2903 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2904 pmdval = *pvmw->pmd;
2905 pmdp_invalidate(vma, address, pvmw->pmd);
2906 if (pmd_dirty(pmdval))
2907 set_page_dirty(page);
2908 entry = make_migration_entry(page, pmd_write(pmdval));
ab6e3d09
NH
2909 pmdswp = swp_entry_to_pmd(entry);
2910 if (pmd_soft_dirty(pmdval))
2911 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2912 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
616b8371
ZY
2913 page_remove_rmap(page, true);
2914 put_page(page);
2915
2916 mmu_notifier_invalidate_range_end(mm, address,
2917 address + HPAGE_PMD_SIZE);
2918}
2919
2920void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2921{
2922 struct vm_area_struct *vma = pvmw->vma;
2923 struct mm_struct *mm = vma->vm_mm;
2924 unsigned long address = pvmw->address;
2925 unsigned long mmun_start = address & HPAGE_PMD_MASK;
2926 pmd_t pmde;
2927 swp_entry_t entry;
2928
2929 if (!(pvmw->pmd && !pvmw->pte))
2930 return;
2931
2932 entry = pmd_to_swp_entry(*pvmw->pmd);
2933 get_page(new);
2934 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
ab6e3d09
NH
2935 if (pmd_swp_soft_dirty(*pvmw->pmd))
2936 pmde = pmd_mksoft_dirty(pmde);
616b8371 2937 if (is_write_migration_entry(entry))
152e93af 2938 pmde = maybe_pmd_mkwrite(pmde, vma, false);
616b8371
ZY
2939
2940 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
2941 page_add_anon_rmap(new, vma, mmun_start, true);
2942 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
2943 if (vma->vm_flags & VM_LOCKED)
2944 mlock_vma_page(new);
2945 update_mmu_cache_pmd(vma, address, pvmw->pmd);
2946}
2947#endif