]> git.ipfire.org Git - people/ms/linux.git/blame - mm/huge_memory.c
userfaultfd: wp: add UFFDIO_COPY_MODE_WP
[people/ms/linux.git] / mm / huge_memory.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
71e3aac0
AA
2/*
3 * Copyright (C) 2009 Red Hat, Inc.
71e3aac0
AA
4 */
5
ae3a8c1c
AM
6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
71e3aac0
AA
8#include <linux/mm.h>
9#include <linux/sched.h>
f7ccbae4 10#include <linux/sched/coredump.h>
6a3827d7 11#include <linux/sched/numa_balancing.h>
71e3aac0
AA
12#include <linux/highmem.h>
13#include <linux/hugetlb.h>
14#include <linux/mmu_notifier.h>
15#include <linux/rmap.h>
16#include <linux/swap.h>
97ae1749 17#include <linux/shrinker.h>
ba76149f 18#include <linux/mm_inline.h>
e9b61f19 19#include <linux/swapops.h>
4897c765 20#include <linux/dax.h>
ba76149f 21#include <linux/khugepaged.h>
878aee7d 22#include <linux/freezer.h>
f25748e3 23#include <linux/pfn_t.h>
a664b2d8 24#include <linux/mman.h>
3565fce3 25#include <linux/memremap.h>
325adeb5 26#include <linux/pagemap.h>
49071d43 27#include <linux/debugfs.h>
4daae3b4 28#include <linux/migrate.h>
43b5fbbd 29#include <linux/hashtable.h>
6b251fc9 30#include <linux/userfaultfd_k.h>
33c3fc71 31#include <linux/page_idle.h>
baa355fd 32#include <linux/shmem_fs.h>
6b31d595 33#include <linux/oom.h>
98fa15f3 34#include <linux/numa.h>
f7da677b 35#include <linux/page_owner.h>
97ae1749 36
71e3aac0
AA
37#include <asm/tlb.h>
38#include <asm/pgalloc.h>
39#include "internal.h"
40
ba76149f 41/*
b14d595a
MD
42 * By default, transparent hugepage support is disabled in order to avoid
43 * risking an increased memory footprint for applications that are not
44 * guaranteed to benefit from it. When transparent hugepage support is
45 * enabled, it is for all mappings, and khugepaged scans all mappings.
8bfa3f9a
JW
46 * Defrag is invoked by khugepaged hugepage allocations and by page faults
47 * for all hugepage allocations.
ba76149f 48 */
71e3aac0 49unsigned long transparent_hugepage_flags __read_mostly =
13ece886 50#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 51 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
52#endif
53#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55#endif
444eb2a4 56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
79da5407
KS
57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
ba76149f 59
9a982250 60static struct shrinker deferred_split_shrinker;
f000565a 61
97ae1749 62static atomic_t huge_zero_refcount;
56873f43 63struct page *huge_zero_page __read_mostly;
4a6c1297 64
7635d9cb
MH
65bool transparent_hugepage_enabled(struct vm_area_struct *vma)
66{
c0630669
YS
67 /* The addr is used to check if the vma size fits */
68 unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
69
70 if (!transhuge_vma_suitable(vma, addr))
71 return false;
7635d9cb
MH
72 if (vma_is_anonymous(vma))
73 return __transparent_hugepage_enabled(vma);
c0630669
YS
74 if (vma_is_shmem(vma))
75 return shmem_huge_enabled(vma);
7635d9cb
MH
76
77 return false;
78}
79
6fcb52a5 80static struct page *get_huge_zero_page(void)
97ae1749
KS
81{
82 struct page *zero_page;
83retry:
84 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
4db0c3c2 85 return READ_ONCE(huge_zero_page);
97ae1749
KS
86
87 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
4a6c1297 88 HPAGE_PMD_ORDER);
d8a8e1f0
KS
89 if (!zero_page) {
90 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
5918d10a 91 return NULL;
d8a8e1f0
KS
92 }
93 count_vm_event(THP_ZERO_PAGE_ALLOC);
97ae1749 94 preempt_disable();
5918d10a 95 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97ae1749 96 preempt_enable();
5ddacbe9 97 __free_pages(zero_page, compound_order(zero_page));
97ae1749
KS
98 goto retry;
99 }
100
101 /* We take additional reference here. It will be put back by shrinker */
102 atomic_set(&huge_zero_refcount, 2);
103 preempt_enable();
4db0c3c2 104 return READ_ONCE(huge_zero_page);
4a6c1297
KS
105}
106
6fcb52a5 107static void put_huge_zero_page(void)
4a6c1297 108{
97ae1749
KS
109 /*
110 * Counter should never go to zero here. Only shrinker can put
111 * last reference.
112 */
113 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
4a6c1297
KS
114}
115
6fcb52a5
AL
116struct page *mm_get_huge_zero_page(struct mm_struct *mm)
117{
118 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
119 return READ_ONCE(huge_zero_page);
120
121 if (!get_huge_zero_page())
122 return NULL;
123
124 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
125 put_huge_zero_page();
126
127 return READ_ONCE(huge_zero_page);
128}
129
130void mm_put_huge_zero_page(struct mm_struct *mm)
131{
132 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
133 put_huge_zero_page();
134}
135
48896466
GC
136static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
137 struct shrink_control *sc)
4a6c1297 138{
48896466
GC
139 /* we can free zero page only if last reference remains */
140 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
141}
97ae1749 142
48896466
GC
143static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
144 struct shrink_control *sc)
145{
97ae1749 146 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
5918d10a
KS
147 struct page *zero_page = xchg(&huge_zero_page, NULL);
148 BUG_ON(zero_page == NULL);
5ddacbe9 149 __free_pages(zero_page, compound_order(zero_page));
48896466 150 return HPAGE_PMD_NR;
97ae1749
KS
151 }
152
153 return 0;
4a6c1297
KS
154}
155
97ae1749 156static struct shrinker huge_zero_page_shrinker = {
48896466
GC
157 .count_objects = shrink_huge_zero_page_count,
158 .scan_objects = shrink_huge_zero_page_scan,
97ae1749
KS
159 .seeks = DEFAULT_SEEKS,
160};
161
71e3aac0 162#ifdef CONFIG_SYSFS
71e3aac0
AA
163static ssize_t enabled_show(struct kobject *kobj,
164 struct kobj_attribute *attr, char *buf)
165{
444eb2a4
MG
166 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
167 return sprintf(buf, "[always] madvise never\n");
168 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
169 return sprintf(buf, "always [madvise] never\n");
170 else
171 return sprintf(buf, "always madvise [never]\n");
71e3aac0 172}
444eb2a4 173
71e3aac0
AA
174static ssize_t enabled_store(struct kobject *kobj,
175 struct kobj_attribute *attr,
176 const char *buf, size_t count)
177{
21440d7e 178 ssize_t ret = count;
ba76149f 179
f42f2552 180 if (sysfs_streq(buf, "always")) {
21440d7e
DR
181 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
182 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
f42f2552 183 } else if (sysfs_streq(buf, "madvise")) {
21440d7e
DR
184 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
185 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
f42f2552 186 } else if (sysfs_streq(buf, "never")) {
21440d7e
DR
187 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
188 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
189 } else
190 ret = -EINVAL;
ba76149f
AA
191
192 if (ret > 0) {
b46e756f 193 int err = start_stop_khugepaged();
ba76149f
AA
194 if (err)
195 ret = err;
196 }
ba76149f 197 return ret;
71e3aac0
AA
198}
199static struct kobj_attribute enabled_attr =
200 __ATTR(enabled, 0644, enabled_show, enabled_store);
201
b46e756f 202ssize_t single_hugepage_flag_show(struct kobject *kobj,
71e3aac0
AA
203 struct kobj_attribute *attr, char *buf,
204 enum transparent_hugepage_flag flag)
205{
e27e6151
BH
206 return sprintf(buf, "%d\n",
207 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 208}
e27e6151 209
b46e756f 210ssize_t single_hugepage_flag_store(struct kobject *kobj,
71e3aac0
AA
211 struct kobj_attribute *attr,
212 const char *buf, size_t count,
213 enum transparent_hugepage_flag flag)
214{
e27e6151
BH
215 unsigned long value;
216 int ret;
217
218 ret = kstrtoul(buf, 10, &value);
219 if (ret < 0)
220 return ret;
221 if (value > 1)
222 return -EINVAL;
223
224 if (value)
71e3aac0 225 set_bit(flag, &transparent_hugepage_flags);
e27e6151 226 else
71e3aac0 227 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
228
229 return count;
230}
231
71e3aac0
AA
232static ssize_t defrag_show(struct kobject *kobj,
233 struct kobj_attribute *attr, char *buf)
234{
444eb2a4 235 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
21440d7e 236 return sprintf(buf, "[always] defer defer+madvise madvise never\n");
444eb2a4 237 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
21440d7e
DR
238 return sprintf(buf, "always [defer] defer+madvise madvise never\n");
239 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
240 return sprintf(buf, "always defer [defer+madvise] madvise never\n");
241 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
242 return sprintf(buf, "always defer defer+madvise [madvise] never\n");
243 return sprintf(buf, "always defer defer+madvise madvise [never]\n");
71e3aac0 244}
21440d7e 245
71e3aac0
AA
246static ssize_t defrag_store(struct kobject *kobj,
247 struct kobj_attribute *attr,
248 const char *buf, size_t count)
249{
f42f2552 250 if (sysfs_streq(buf, "always")) {
21440d7e
DR
251 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
252 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
253 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
254 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
f42f2552 255 } else if (sysfs_streq(buf, "defer+madvise")) {
21440d7e
DR
256 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
257 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
258 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
259 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
f42f2552 260 } else if (sysfs_streq(buf, "defer")) {
4fad7fb6
DR
261 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
262 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
263 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
264 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
f42f2552 265 } else if (sysfs_streq(buf, "madvise")) {
21440d7e
DR
266 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
267 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
268 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
269 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
f42f2552 270 } else if (sysfs_streq(buf, "never")) {
21440d7e
DR
271 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
272 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
273 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
274 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
275 } else
276 return -EINVAL;
277
278 return count;
71e3aac0
AA
279}
280static struct kobj_attribute defrag_attr =
281 __ATTR(defrag, 0644, defrag_show, defrag_store);
282
79da5407
KS
283static ssize_t use_zero_page_show(struct kobject *kobj,
284 struct kobj_attribute *attr, char *buf)
285{
b46e756f 286 return single_hugepage_flag_show(kobj, attr, buf,
79da5407
KS
287 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
288}
289static ssize_t use_zero_page_store(struct kobject *kobj,
290 struct kobj_attribute *attr, const char *buf, size_t count)
291{
b46e756f 292 return single_hugepage_flag_store(kobj, attr, buf, count,
79da5407
KS
293 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
294}
295static struct kobj_attribute use_zero_page_attr =
296 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
49920d28
HD
297
298static ssize_t hpage_pmd_size_show(struct kobject *kobj,
299 struct kobj_attribute *attr, char *buf)
300{
301 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
302}
303static struct kobj_attribute hpage_pmd_size_attr =
304 __ATTR_RO(hpage_pmd_size);
305
71e3aac0
AA
306#ifdef CONFIG_DEBUG_VM
307static ssize_t debug_cow_show(struct kobject *kobj,
308 struct kobj_attribute *attr, char *buf)
309{
b46e756f 310 return single_hugepage_flag_show(kobj, attr, buf,
71e3aac0
AA
311 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
312}
313static ssize_t debug_cow_store(struct kobject *kobj,
314 struct kobj_attribute *attr,
315 const char *buf, size_t count)
316{
b46e756f 317 return single_hugepage_flag_store(kobj, attr, buf, count,
71e3aac0
AA
318 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
319}
320static struct kobj_attribute debug_cow_attr =
321 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
322#endif /* CONFIG_DEBUG_VM */
323
324static struct attribute *hugepage_attr[] = {
325 &enabled_attr.attr,
326 &defrag_attr.attr,
79da5407 327 &use_zero_page_attr.attr,
49920d28 328 &hpage_pmd_size_attr.attr,
396bcc52 329#ifdef CONFIG_SHMEM
5a6e75f8
KS
330 &shmem_enabled_attr.attr,
331#endif
71e3aac0
AA
332#ifdef CONFIG_DEBUG_VM
333 &debug_cow_attr.attr,
334#endif
335 NULL,
336};
337
8aa95a21 338static const struct attribute_group hugepage_attr_group = {
71e3aac0 339 .attrs = hugepage_attr,
ba76149f
AA
340};
341
569e5590 342static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 343{
71e3aac0
AA
344 int err;
345
569e5590
SL
346 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
347 if (unlikely(!*hugepage_kobj)) {
ae3a8c1c 348 pr_err("failed to create transparent hugepage kobject\n");
569e5590 349 return -ENOMEM;
ba76149f
AA
350 }
351
569e5590 352 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f 353 if (err) {
ae3a8c1c 354 pr_err("failed to register transparent hugepage group\n");
569e5590 355 goto delete_obj;
ba76149f
AA
356 }
357
569e5590 358 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f 359 if (err) {
ae3a8c1c 360 pr_err("failed to register transparent hugepage group\n");
569e5590 361 goto remove_hp_group;
ba76149f 362 }
569e5590
SL
363
364 return 0;
365
366remove_hp_group:
367 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
368delete_obj:
369 kobject_put(*hugepage_kobj);
370 return err;
371}
372
373static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
374{
375 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
376 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
377 kobject_put(hugepage_kobj);
378}
379#else
380static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
381{
382 return 0;
383}
384
385static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
386{
387}
388#endif /* CONFIG_SYSFS */
389
390static int __init hugepage_init(void)
391{
392 int err;
393 struct kobject *hugepage_kobj;
394
395 if (!has_transparent_hugepage()) {
396 transparent_hugepage_flags = 0;
397 return -EINVAL;
398 }
399
ff20c2e0
KS
400 /*
401 * hugepages can't be allocated by the buddy allocator
402 */
403 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
404 /*
405 * we use page->mapping and page->index in second tail page
406 * as list_head: assuming THP order >= 2
407 */
408 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
409
569e5590
SL
410 err = hugepage_init_sysfs(&hugepage_kobj);
411 if (err)
65ebb64f 412 goto err_sysfs;
ba76149f 413
b46e756f 414 err = khugepaged_init();
ba76149f 415 if (err)
65ebb64f 416 goto err_slab;
ba76149f 417
65ebb64f
KS
418 err = register_shrinker(&huge_zero_page_shrinker);
419 if (err)
420 goto err_hzp_shrinker;
9a982250
KS
421 err = register_shrinker(&deferred_split_shrinker);
422 if (err)
423 goto err_split_shrinker;
97ae1749 424
97562cd2
RR
425 /*
426 * By default disable transparent hugepages on smaller systems,
427 * where the extra memory used could hurt more than TLB overhead
428 * is likely to save. The admin can still enable it through /sys.
429 */
ca79b0c2 430 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
97562cd2 431 transparent_hugepage_flags = 0;
79553da2
KS
432 return 0;
433 }
97562cd2 434
79553da2 435 err = start_stop_khugepaged();
65ebb64f
KS
436 if (err)
437 goto err_khugepaged;
ba76149f 438
569e5590 439 return 0;
65ebb64f 440err_khugepaged:
9a982250
KS
441 unregister_shrinker(&deferred_split_shrinker);
442err_split_shrinker:
65ebb64f
KS
443 unregister_shrinker(&huge_zero_page_shrinker);
444err_hzp_shrinker:
b46e756f 445 khugepaged_destroy();
65ebb64f 446err_slab:
569e5590 447 hugepage_exit_sysfs(hugepage_kobj);
65ebb64f 448err_sysfs:
ba76149f 449 return err;
71e3aac0 450}
a64fb3cd 451subsys_initcall(hugepage_init);
71e3aac0
AA
452
453static int __init setup_transparent_hugepage(char *str)
454{
455 int ret = 0;
456 if (!str)
457 goto out;
458 if (!strcmp(str, "always")) {
459 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
460 &transparent_hugepage_flags);
461 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
462 &transparent_hugepage_flags);
463 ret = 1;
464 } else if (!strcmp(str, "madvise")) {
465 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
466 &transparent_hugepage_flags);
467 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
468 &transparent_hugepage_flags);
469 ret = 1;
470 } else if (!strcmp(str, "never")) {
471 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
472 &transparent_hugepage_flags);
473 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
474 &transparent_hugepage_flags);
475 ret = 1;
476 }
477out:
478 if (!ret)
ae3a8c1c 479 pr_warn("transparent_hugepage= cannot parse, ignored\n");
71e3aac0
AA
480 return ret;
481}
482__setup("transparent_hugepage=", setup_transparent_hugepage);
483
f55e1014 484pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
71e3aac0 485{
f55e1014 486 if (likely(vma->vm_flags & VM_WRITE))
71e3aac0
AA
487 pmd = pmd_mkwrite(pmd);
488 return pmd;
489}
490
87eaceb3
YS
491#ifdef CONFIG_MEMCG
492static inline struct deferred_split *get_deferred_split_queue(struct page *page)
9a982250 493{
87eaceb3
YS
494 struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
495 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
496
497 if (memcg)
498 return &memcg->deferred_split_queue;
499 else
500 return &pgdat->deferred_split_queue;
9a982250 501}
87eaceb3
YS
502#else
503static inline struct deferred_split *get_deferred_split_queue(struct page *page)
504{
505 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
506
507 return &pgdat->deferred_split_queue;
508}
509#endif
9a982250
KS
510
511void prep_transhuge_page(struct page *page)
512{
513 /*
514 * we use page->mapping and page->indexlru in second tail page
515 * as list_head: assuming THP order >= 2
516 */
9a982250
KS
517
518 INIT_LIST_HEAD(page_deferred_list(page));
519 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
520}
521
005ba37c
SC
522bool is_transparent_hugepage(struct page *page)
523{
524 if (!PageCompound(page))
525 return 0;
526
527 page = compound_head(page);
528 return is_huge_zero_page(page) ||
529 page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
530}
531EXPORT_SYMBOL_GPL(is_transparent_hugepage);
532
97d3d0f9
KS
533static unsigned long __thp_get_unmapped_area(struct file *filp,
534 unsigned long addr, unsigned long len,
74d2fad1
TK
535 loff_t off, unsigned long flags, unsigned long size)
536{
74d2fad1
TK
537 loff_t off_end = off + len;
538 loff_t off_align = round_up(off, size);
97d3d0f9 539 unsigned long len_pad, ret;
74d2fad1
TK
540
541 if (off_end <= off_align || (off_end - off_align) < size)
542 return 0;
543
544 len_pad = len + size;
545 if (len_pad < len || (off + len_pad) < off)
546 return 0;
547
97d3d0f9 548 ret = current->mm->get_unmapped_area(filp, addr, len_pad,
74d2fad1 549 off >> PAGE_SHIFT, flags);
97d3d0f9
KS
550
551 /*
552 * The failure might be due to length padding. The caller will retry
553 * without the padding.
554 */
555 if (IS_ERR_VALUE(ret))
74d2fad1
TK
556 return 0;
557
97d3d0f9
KS
558 /*
559 * Do not try to align to THP boundary if allocation at the address
560 * hint succeeds.
561 */
562 if (ret == addr)
563 return addr;
564
565 ret += (off - ret) & (size - 1);
566 return ret;
74d2fad1
TK
567}
568
569unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
570 unsigned long len, unsigned long pgoff, unsigned long flags)
571{
97d3d0f9 572 unsigned long ret;
74d2fad1
TK
573 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
574
74d2fad1
TK
575 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
576 goto out;
577
97d3d0f9
KS
578 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
579 if (ret)
580 return ret;
581out:
74d2fad1
TK
582 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
583}
584EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
585
2b740303
SJ
586static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
587 struct page *page, gfp_t gfp)
71e3aac0 588{
82b0f8c3 589 struct vm_area_struct *vma = vmf->vma;
00501b53 590 struct mem_cgroup *memcg;
71e3aac0 591 pgtable_t pgtable;
82b0f8c3 592 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
2b740303 593 vm_fault_t ret = 0;
71e3aac0 594
309381fe 595 VM_BUG_ON_PAGE(!PageCompound(page), page);
00501b53 596
2cf85583 597 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg, true)) {
6b251fc9
AA
598 put_page(page);
599 count_vm_event(THP_FAULT_FALLBACK);
85b9f46e 600 count_vm_event(THP_FAULT_FALLBACK_CHARGE);
6b251fc9
AA
601 return VM_FAULT_FALLBACK;
602 }
00501b53 603
4cf58924 604 pgtable = pte_alloc_one(vma->vm_mm);
00501b53 605 if (unlikely(!pgtable)) {
6b31d595
MH
606 ret = VM_FAULT_OOM;
607 goto release;
00501b53 608 }
71e3aac0 609
c79b57e4 610 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
52f37629
MK
611 /*
612 * The memory barrier inside __SetPageUptodate makes sure that
613 * clear_huge_page writes become visible before the set_pmd_at()
614 * write.
615 */
71e3aac0
AA
616 __SetPageUptodate(page);
617
82b0f8c3
JK
618 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
619 if (unlikely(!pmd_none(*vmf->pmd))) {
6b31d595 620 goto unlock_release;
71e3aac0
AA
621 } else {
622 pmd_t entry;
6b251fc9 623
6b31d595
MH
624 ret = check_stable_address_space(vma->vm_mm);
625 if (ret)
626 goto unlock_release;
627
6b251fc9
AA
628 /* Deliver the page fault to userland */
629 if (userfaultfd_missing(vma)) {
2b740303 630 vm_fault_t ret2;
6b251fc9 631
82b0f8c3 632 spin_unlock(vmf->ptl);
f627c2f5 633 mem_cgroup_cancel_charge(page, memcg, true);
6b251fc9 634 put_page(page);
bae473a4 635 pte_free(vma->vm_mm, pgtable);
2b740303
SJ
636 ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
637 VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
638 return ret2;
6b251fc9
AA
639 }
640
3122359a 641 entry = mk_huge_pmd(page, vma->vm_page_prot);
f55e1014 642 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
d281ee61 643 page_add_new_anon_rmap(page, vma, haddr, true);
f627c2f5 644 mem_cgroup_commit_charge(page, memcg, false, true);
00501b53 645 lru_cache_add_active_or_unevictable(page, vma);
82b0f8c3
JK
646 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
647 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
bae473a4 648 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
c4812909 649 mm_inc_nr_ptes(vma->vm_mm);
82b0f8c3 650 spin_unlock(vmf->ptl);
6b251fc9 651 count_vm_event(THP_FAULT_ALLOC);
1ff9e6e1 652 count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
71e3aac0
AA
653 }
654
aa2e878e 655 return 0;
6b31d595
MH
656unlock_release:
657 spin_unlock(vmf->ptl);
658release:
659 if (pgtable)
660 pte_free(vma->vm_mm, pgtable);
661 mem_cgroup_cancel_charge(page, memcg, true);
662 put_page(page);
663 return ret;
664
71e3aac0
AA
665}
666
444eb2a4 667/*
21440d7e
DR
668 * always: directly stall for all thp allocations
669 * defer: wake kswapd and fail if not immediately available
670 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
671 * fail if not immediately available
672 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
673 * available
674 * never: never stall for any thp allocation
444eb2a4 675 */
19deb769 676static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
444eb2a4 677{
21440d7e 678 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
2f0799a0 679
ac79f78d 680 /* Always do synchronous compaction */
a8282608
AA
681 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
682 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
ac79f78d
DR
683
684 /* Kick kcompactd and fail quickly */
21440d7e 685 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
19deb769 686 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
ac79f78d
DR
687
688 /* Synchronous compaction if madvised, otherwise kick kcompactd */
21440d7e 689 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
19deb769
DR
690 return GFP_TRANSHUGE_LIGHT |
691 (vma_madvised ? __GFP_DIRECT_RECLAIM :
692 __GFP_KSWAPD_RECLAIM);
ac79f78d
DR
693
694 /* Only do synchronous compaction if madvised */
21440d7e 695 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
19deb769
DR
696 return GFP_TRANSHUGE_LIGHT |
697 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
ac79f78d 698
19deb769 699 return GFP_TRANSHUGE_LIGHT;
444eb2a4
MG
700}
701
c4088ebd 702/* Caller must hold page table lock. */
d295e341 703static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
97ae1749 704 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
5918d10a 705 struct page *zero_page)
fc9fe822
KS
706{
707 pmd_t entry;
7c414164
AM
708 if (!pmd_none(*pmd))
709 return false;
5918d10a 710 entry = mk_pmd(zero_page, vma->vm_page_prot);
fc9fe822 711 entry = pmd_mkhuge(entry);
12c9d70b
MW
712 if (pgtable)
713 pgtable_trans_huge_deposit(mm, pmd, pgtable);
fc9fe822 714 set_pmd_at(mm, haddr, pmd, entry);
c4812909 715 mm_inc_nr_ptes(mm);
7c414164 716 return true;
fc9fe822
KS
717}
718
2b740303 719vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
71e3aac0 720{
82b0f8c3 721 struct vm_area_struct *vma = vmf->vma;
077fcf11 722 gfp_t gfp;
71e3aac0 723 struct page *page;
82b0f8c3 724 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
71e3aac0 725
43675e6f 726 if (!transhuge_vma_suitable(vma, haddr))
c0292554 727 return VM_FAULT_FALLBACK;
128ec037
KS
728 if (unlikely(anon_vma_prepare(vma)))
729 return VM_FAULT_OOM;
6d50e60c 730 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
128ec037 731 return VM_FAULT_OOM;
82b0f8c3 732 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 733 !mm_forbids_zeropage(vma->vm_mm) &&
128ec037
KS
734 transparent_hugepage_use_zero_page()) {
735 pgtable_t pgtable;
736 struct page *zero_page;
737 bool set;
2b740303 738 vm_fault_t ret;
4cf58924 739 pgtable = pte_alloc_one(vma->vm_mm);
128ec037 740 if (unlikely(!pgtable))
ba76149f 741 return VM_FAULT_OOM;
6fcb52a5 742 zero_page = mm_get_huge_zero_page(vma->vm_mm);
128ec037 743 if (unlikely(!zero_page)) {
bae473a4 744 pte_free(vma->vm_mm, pgtable);
81ab4201 745 count_vm_event(THP_FAULT_FALLBACK);
c0292554 746 return VM_FAULT_FALLBACK;
b9bbfbe3 747 }
82b0f8c3 748 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
6b251fc9
AA
749 ret = 0;
750 set = false;
82b0f8c3 751 if (pmd_none(*vmf->pmd)) {
6b31d595
MH
752 ret = check_stable_address_space(vma->vm_mm);
753 if (ret) {
754 spin_unlock(vmf->ptl);
755 } else if (userfaultfd_missing(vma)) {
82b0f8c3
JK
756 spin_unlock(vmf->ptl);
757 ret = handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
758 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
759 } else {
bae473a4 760 set_huge_zero_page(pgtable, vma->vm_mm, vma,
82b0f8c3
JK
761 haddr, vmf->pmd, zero_page);
762 spin_unlock(vmf->ptl);
6b251fc9
AA
763 set = true;
764 }
765 } else
82b0f8c3 766 spin_unlock(vmf->ptl);
6fcb52a5 767 if (!set)
bae473a4 768 pte_free(vma->vm_mm, pgtable);
6b251fc9 769 return ret;
71e3aac0 770 }
19deb769
DR
771 gfp = alloc_hugepage_direct_gfpmask(vma);
772 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
128ec037
KS
773 if (unlikely(!page)) {
774 count_vm_event(THP_FAULT_FALLBACK);
c0292554 775 return VM_FAULT_FALLBACK;
128ec037 776 }
9a982250 777 prep_transhuge_page(page);
82b0f8c3 778 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
71e3aac0
AA
779}
780
ae18d6dc 781static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
3b6521f5
OH
782 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
783 pgtable_t pgtable)
5cad465d
MW
784{
785 struct mm_struct *mm = vma->vm_mm;
786 pmd_t entry;
787 spinlock_t *ptl;
788
789 ptl = pmd_lock(mm, pmd);
c6f3c5ee
AK
790 if (!pmd_none(*pmd)) {
791 if (write) {
792 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
793 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
794 goto out_unlock;
795 }
796 entry = pmd_mkyoung(*pmd);
797 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
798 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
799 update_mmu_cache_pmd(vma, addr, pmd);
800 }
801
802 goto out_unlock;
803 }
804
f25748e3
DW
805 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
806 if (pfn_t_devmap(pfn))
807 entry = pmd_mkdevmap(entry);
01871e59 808 if (write) {
f55e1014
LT
809 entry = pmd_mkyoung(pmd_mkdirty(entry));
810 entry = maybe_pmd_mkwrite(entry, vma);
5cad465d 811 }
3b6521f5
OH
812
813 if (pgtable) {
814 pgtable_trans_huge_deposit(mm, pmd, pgtable);
c4812909 815 mm_inc_nr_ptes(mm);
c6f3c5ee 816 pgtable = NULL;
3b6521f5
OH
817 }
818
01871e59
RZ
819 set_pmd_at(mm, addr, pmd, entry);
820 update_mmu_cache_pmd(vma, addr, pmd);
c6f3c5ee
AK
821
822out_unlock:
5cad465d 823 spin_unlock(ptl);
c6f3c5ee
AK
824 if (pgtable)
825 pte_free(mm, pgtable);
5cad465d
MW
826}
827
9a9731b1
THV
828/**
829 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
830 * @vmf: Structure describing the fault
831 * @pfn: pfn to insert
832 * @pgprot: page protection to use
833 * @write: whether it's a write fault
834 *
835 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
836 * also consult the vmf_insert_mixed_prot() documentation when
837 * @pgprot != @vmf->vma->vm_page_prot.
838 *
839 * Return: vm_fault_t value.
840 */
841vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
842 pgprot_t pgprot, bool write)
5cad465d 843{
fce86ff5
DW
844 unsigned long addr = vmf->address & PMD_MASK;
845 struct vm_area_struct *vma = vmf->vma;
3b6521f5 846 pgtable_t pgtable = NULL;
fce86ff5 847
5cad465d
MW
848 /*
849 * If we had pmd_special, we could avoid all these restrictions,
850 * but we need to be consistent with PTEs and architectures that
851 * can't support a 'special' bit.
852 */
e1fb4a08
DJ
853 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
854 !pfn_t_devmap(pfn));
5cad465d
MW
855 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
856 (VM_PFNMAP|VM_MIXEDMAP));
857 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
5cad465d
MW
858
859 if (addr < vma->vm_start || addr >= vma->vm_end)
860 return VM_FAULT_SIGBUS;
308a047c 861
3b6521f5 862 if (arch_needs_pgtable_deposit()) {
4cf58924 863 pgtable = pte_alloc_one(vma->vm_mm);
3b6521f5
OH
864 if (!pgtable)
865 return VM_FAULT_OOM;
866 }
867
308a047c
BP
868 track_pfn_insert(vma, &pgprot, pfn);
869
fce86ff5 870 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
ae18d6dc 871 return VM_FAULT_NOPAGE;
5cad465d 872}
9a9731b1 873EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
5cad465d 874
a00cc7d9 875#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
f55e1014 876static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
a00cc7d9 877{
f55e1014 878 if (likely(vma->vm_flags & VM_WRITE))
a00cc7d9
MW
879 pud = pud_mkwrite(pud);
880 return pud;
881}
882
883static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
884 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
885{
886 struct mm_struct *mm = vma->vm_mm;
887 pud_t entry;
888 spinlock_t *ptl;
889
890 ptl = pud_lock(mm, pud);
c6f3c5ee
AK
891 if (!pud_none(*pud)) {
892 if (write) {
893 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
894 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
895 goto out_unlock;
896 }
897 entry = pud_mkyoung(*pud);
898 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
899 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
900 update_mmu_cache_pud(vma, addr, pud);
901 }
902 goto out_unlock;
903 }
904
a00cc7d9
MW
905 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
906 if (pfn_t_devmap(pfn))
907 entry = pud_mkdevmap(entry);
908 if (write) {
f55e1014
LT
909 entry = pud_mkyoung(pud_mkdirty(entry));
910 entry = maybe_pud_mkwrite(entry, vma);
a00cc7d9
MW
911 }
912 set_pud_at(mm, addr, pud, entry);
913 update_mmu_cache_pud(vma, addr, pud);
c6f3c5ee
AK
914
915out_unlock:
a00cc7d9
MW
916 spin_unlock(ptl);
917}
918
9a9731b1
THV
919/**
920 * vmf_insert_pfn_pud_prot - insert a pud size pfn
921 * @vmf: Structure describing the fault
922 * @pfn: pfn to insert
923 * @pgprot: page protection to use
924 * @write: whether it's a write fault
925 *
926 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
927 * also consult the vmf_insert_mixed_prot() documentation when
928 * @pgprot != @vmf->vma->vm_page_prot.
929 *
930 * Return: vm_fault_t value.
931 */
932vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
933 pgprot_t pgprot, bool write)
a00cc7d9 934{
fce86ff5
DW
935 unsigned long addr = vmf->address & PUD_MASK;
936 struct vm_area_struct *vma = vmf->vma;
fce86ff5 937
a00cc7d9
MW
938 /*
939 * If we had pud_special, we could avoid all these restrictions,
940 * but we need to be consistent with PTEs and architectures that
941 * can't support a 'special' bit.
942 */
62ec0d8c
DJ
943 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
944 !pfn_t_devmap(pfn));
a00cc7d9
MW
945 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
946 (VM_PFNMAP|VM_MIXEDMAP));
947 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
a00cc7d9
MW
948
949 if (addr < vma->vm_start || addr >= vma->vm_end)
950 return VM_FAULT_SIGBUS;
951
952 track_pfn_insert(vma, &pgprot, pfn);
953
fce86ff5 954 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
a00cc7d9
MW
955 return VM_FAULT_NOPAGE;
956}
9a9731b1 957EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
a00cc7d9
MW
958#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
959
3565fce3 960static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
a8f97366 961 pmd_t *pmd, int flags)
3565fce3
DW
962{
963 pmd_t _pmd;
964
a8f97366
KS
965 _pmd = pmd_mkyoung(*pmd);
966 if (flags & FOLL_WRITE)
967 _pmd = pmd_mkdirty(_pmd);
3565fce3 968 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
a8f97366 969 pmd, _pmd, flags & FOLL_WRITE))
3565fce3
DW
970 update_mmu_cache_pmd(vma, addr, pmd);
971}
972
973struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
df06b37f 974 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
3565fce3
DW
975{
976 unsigned long pfn = pmd_pfn(*pmd);
977 struct mm_struct *mm = vma->vm_mm;
3565fce3
DW
978 struct page *page;
979
980 assert_spin_locked(pmd_lockptr(mm, pmd));
981
8310d48b
KF
982 /*
983 * When we COW a devmap PMD entry, we split it into PTEs, so we should
984 * not be in this function with `flags & FOLL_COW` set.
985 */
986 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
987
3faa52c0
JH
988 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
989 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
990 (FOLL_PIN | FOLL_GET)))
991 return NULL;
992
f6f37321 993 if (flags & FOLL_WRITE && !pmd_write(*pmd))
3565fce3
DW
994 return NULL;
995
996 if (pmd_present(*pmd) && pmd_devmap(*pmd))
997 /* pass */;
998 else
999 return NULL;
1000
1001 if (flags & FOLL_TOUCH)
a8f97366 1002 touch_pmd(vma, addr, pmd, flags);
3565fce3
DW
1003
1004 /*
1005 * device mapped pages can only be returned if the
1006 * caller will manage the page reference count.
1007 */
3faa52c0 1008 if (!(flags & (FOLL_GET | FOLL_PIN)))
3565fce3
DW
1009 return ERR_PTR(-EEXIST);
1010
1011 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
df06b37f
KB
1012 *pgmap = get_dev_pagemap(pfn, *pgmap);
1013 if (!*pgmap)
3565fce3
DW
1014 return ERR_PTR(-EFAULT);
1015 page = pfn_to_page(pfn);
3faa52c0
JH
1016 if (!try_grab_page(page, flags))
1017 page = ERR_PTR(-ENOMEM);
3565fce3
DW
1018
1019 return page;
1020}
1021
71e3aac0
AA
1022int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1023 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1024 struct vm_area_struct *vma)
1025{
c4088ebd 1026 spinlock_t *dst_ptl, *src_ptl;
71e3aac0
AA
1027 struct page *src_page;
1028 pmd_t pmd;
12c9d70b 1029 pgtable_t pgtable = NULL;
628d47ce 1030 int ret = -ENOMEM;
71e3aac0 1031
628d47ce
KS
1032 /* Skip if can be re-fill on fault */
1033 if (!vma_is_anonymous(vma))
1034 return 0;
1035
4cf58924 1036 pgtable = pte_alloc_one(dst_mm);
628d47ce
KS
1037 if (unlikely(!pgtable))
1038 goto out;
71e3aac0 1039
c4088ebd
KS
1040 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1041 src_ptl = pmd_lockptr(src_mm, src_pmd);
1042 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
71e3aac0
AA
1043
1044 ret = -EAGAIN;
1045 pmd = *src_pmd;
84c3fc4e
ZY
1046
1047#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1048 if (unlikely(is_swap_pmd(pmd))) {
1049 swp_entry_t entry = pmd_to_swp_entry(pmd);
1050
1051 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1052 if (is_write_migration_entry(entry)) {
1053 make_migration_entry_read(&entry);
1054 pmd = swp_entry_to_pmd(entry);
ab6e3d09
NH
1055 if (pmd_swp_soft_dirty(*src_pmd))
1056 pmd = pmd_swp_mksoft_dirty(pmd);
84c3fc4e
ZY
1057 set_pmd_at(src_mm, addr, src_pmd, pmd);
1058 }
dd8a67f9 1059 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
af5b0f6a 1060 mm_inc_nr_ptes(dst_mm);
dd8a67f9 1061 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
84c3fc4e
ZY
1062 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1063 ret = 0;
1064 goto out_unlock;
1065 }
1066#endif
1067
628d47ce 1068 if (unlikely(!pmd_trans_huge(pmd))) {
71e3aac0
AA
1069 pte_free(dst_mm, pgtable);
1070 goto out_unlock;
1071 }
fc9fe822 1072 /*
c4088ebd 1073 * When page table lock is held, the huge zero pmd should not be
fc9fe822
KS
1074 * under splitting since we don't split the page itself, only pmd to
1075 * a page table.
1076 */
1077 if (is_huge_zero_pmd(pmd)) {
5918d10a 1078 struct page *zero_page;
97ae1749
KS
1079 /*
1080 * get_huge_zero_page() will never allocate a new page here,
1081 * since we already have a zero page to copy. It just takes a
1082 * reference.
1083 */
6fcb52a5 1084 zero_page = mm_get_huge_zero_page(dst_mm);
6b251fc9 1085 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
5918d10a 1086 zero_page);
fc9fe822
KS
1087 ret = 0;
1088 goto out_unlock;
1089 }
de466bd6 1090
628d47ce
KS
1091 src_page = pmd_page(pmd);
1092 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1093 get_page(src_page);
1094 page_dup_rmap(src_page, true);
1095 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
c4812909 1096 mm_inc_nr_ptes(dst_mm);
628d47ce 1097 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
71e3aac0
AA
1098
1099 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1100 pmd = pmd_mkold(pmd_wrprotect(pmd));
1101 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
71e3aac0
AA
1102
1103 ret = 0;
1104out_unlock:
c4088ebd
KS
1105 spin_unlock(src_ptl);
1106 spin_unlock(dst_ptl);
71e3aac0
AA
1107out:
1108 return ret;
1109}
1110
a00cc7d9
MW
1111#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1112static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
a8f97366 1113 pud_t *pud, int flags)
a00cc7d9
MW
1114{
1115 pud_t _pud;
1116
a8f97366
KS
1117 _pud = pud_mkyoung(*pud);
1118 if (flags & FOLL_WRITE)
1119 _pud = pud_mkdirty(_pud);
a00cc7d9 1120 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
a8f97366 1121 pud, _pud, flags & FOLL_WRITE))
a00cc7d9
MW
1122 update_mmu_cache_pud(vma, addr, pud);
1123}
1124
1125struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
df06b37f 1126 pud_t *pud, int flags, struct dev_pagemap **pgmap)
a00cc7d9
MW
1127{
1128 unsigned long pfn = pud_pfn(*pud);
1129 struct mm_struct *mm = vma->vm_mm;
a00cc7d9
MW
1130 struct page *page;
1131
1132 assert_spin_locked(pud_lockptr(mm, pud));
1133
f6f37321 1134 if (flags & FOLL_WRITE && !pud_write(*pud))
a00cc7d9
MW
1135 return NULL;
1136
3faa52c0
JH
1137 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
1138 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1139 (FOLL_PIN | FOLL_GET)))
1140 return NULL;
1141
a00cc7d9
MW
1142 if (pud_present(*pud) && pud_devmap(*pud))
1143 /* pass */;
1144 else
1145 return NULL;
1146
1147 if (flags & FOLL_TOUCH)
a8f97366 1148 touch_pud(vma, addr, pud, flags);
a00cc7d9
MW
1149
1150 /*
1151 * device mapped pages can only be returned if the
1152 * caller will manage the page reference count.
3faa52c0
JH
1153 *
1154 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
a00cc7d9 1155 */
3faa52c0 1156 if (!(flags & (FOLL_GET | FOLL_PIN)))
a00cc7d9
MW
1157 return ERR_PTR(-EEXIST);
1158
1159 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
df06b37f
KB
1160 *pgmap = get_dev_pagemap(pfn, *pgmap);
1161 if (!*pgmap)
a00cc7d9
MW
1162 return ERR_PTR(-EFAULT);
1163 page = pfn_to_page(pfn);
3faa52c0
JH
1164 if (!try_grab_page(page, flags))
1165 page = ERR_PTR(-ENOMEM);
a00cc7d9
MW
1166
1167 return page;
1168}
1169
1170int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1171 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1172 struct vm_area_struct *vma)
1173{
1174 spinlock_t *dst_ptl, *src_ptl;
1175 pud_t pud;
1176 int ret;
1177
1178 dst_ptl = pud_lock(dst_mm, dst_pud);
1179 src_ptl = pud_lockptr(src_mm, src_pud);
1180 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1181
1182 ret = -EAGAIN;
1183 pud = *src_pud;
1184 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1185 goto out_unlock;
1186
1187 /*
1188 * When page table lock is held, the huge zero pud should not be
1189 * under splitting since we don't split the page itself, only pud to
1190 * a page table.
1191 */
1192 if (is_huge_zero_pud(pud)) {
1193 /* No huge zero pud yet */
1194 }
1195
1196 pudp_set_wrprotect(src_mm, addr, src_pud);
1197 pud = pud_mkold(pud_wrprotect(pud));
1198 set_pud_at(dst_mm, addr, dst_pud, pud);
1199
1200 ret = 0;
1201out_unlock:
1202 spin_unlock(src_ptl);
1203 spin_unlock(dst_ptl);
1204 return ret;
1205}
1206
1207void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1208{
1209 pud_t entry;
1210 unsigned long haddr;
1211 bool write = vmf->flags & FAULT_FLAG_WRITE;
1212
1213 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1214 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1215 goto unlock;
1216
1217 entry = pud_mkyoung(orig_pud);
1218 if (write)
1219 entry = pud_mkdirty(entry);
1220 haddr = vmf->address & HPAGE_PUD_MASK;
1221 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1222 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1223
1224unlock:
1225 spin_unlock(vmf->ptl);
1226}
1227#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1228
82b0f8c3 1229void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
a1dd450b
WD
1230{
1231 pmd_t entry;
1232 unsigned long haddr;
20f664aa 1233 bool write = vmf->flags & FAULT_FLAG_WRITE;
a1dd450b 1234
82b0f8c3
JK
1235 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1236 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
a1dd450b
WD
1237 goto unlock;
1238
1239 entry = pmd_mkyoung(orig_pmd);
20f664aa
MK
1240 if (write)
1241 entry = pmd_mkdirty(entry);
82b0f8c3 1242 haddr = vmf->address & HPAGE_PMD_MASK;
20f664aa 1243 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
82b0f8c3 1244 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
a1dd450b
WD
1245
1246unlock:
82b0f8c3 1247 spin_unlock(vmf->ptl);
a1dd450b
WD
1248}
1249
2b740303
SJ
1250static vm_fault_t do_huge_pmd_wp_page_fallback(struct vm_fault *vmf,
1251 pmd_t orig_pmd, struct page *page)
71e3aac0 1252{
82b0f8c3
JK
1253 struct vm_area_struct *vma = vmf->vma;
1254 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
00501b53 1255 struct mem_cgroup *memcg;
71e3aac0
AA
1256 pgtable_t pgtable;
1257 pmd_t _pmd;
2b740303
SJ
1258 int i;
1259 vm_fault_t ret = 0;
71e3aac0 1260 struct page **pages;
ac46d4f3 1261 struct mmu_notifier_range range;
71e3aac0 1262
6da2ec56
KC
1263 pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *),
1264 GFP_KERNEL);
71e3aac0
AA
1265 if (unlikely(!pages)) {
1266 ret |= VM_FAULT_OOM;
1267 goto out;
1268 }
1269
1270 for (i = 0; i < HPAGE_PMD_NR; i++) {
41b6167e 1271 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 1272 vmf->address, page_to_nid(page));
b9bbfbe3 1273 if (unlikely(!pages[i] ||
2cf85583 1274 mem_cgroup_try_charge_delay(pages[i], vma->vm_mm,
bae473a4 1275 GFP_KERNEL, &memcg, false))) {
b9bbfbe3 1276 if (pages[i])
71e3aac0 1277 put_page(pages[i]);
b9bbfbe3 1278 while (--i >= 0) {
00501b53
JW
1279 memcg = (void *)page_private(pages[i]);
1280 set_page_private(pages[i], 0);
f627c2f5
KS
1281 mem_cgroup_cancel_charge(pages[i], memcg,
1282 false);
b9bbfbe3
AA
1283 put_page(pages[i]);
1284 }
71e3aac0
AA
1285 kfree(pages);
1286 ret |= VM_FAULT_OOM;
1287 goto out;
1288 }
00501b53 1289 set_page_private(pages[i], (unsigned long)memcg);
71e3aac0
AA
1290 }
1291
1292 for (i = 0; i < HPAGE_PMD_NR; i++) {
1293 copy_user_highpage(pages[i], page + i,
0089e485 1294 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
1295 __SetPageUptodate(pages[i]);
1296 cond_resched();
1297 }
1298
7269f999
JG
1299 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1300 haddr, haddr + HPAGE_PMD_SIZE);
ac46d4f3 1301 mmu_notifier_invalidate_range_start(&range);
2ec74c3e 1302
82b0f8c3
JK
1303 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1304 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
71e3aac0 1305 goto out_free_pages;
309381fe 1306 VM_BUG_ON_PAGE(!PageHead(page), page);
71e3aac0 1307
0f10851e
JG
1308 /*
1309 * Leave pmd empty until pte is filled note we must notify here as
1310 * concurrent CPU thread might write to new page before the call to
1311 * mmu_notifier_invalidate_range_end() happens which can lead to a
1312 * device seeing memory write in different order than CPU.
1313 *
ad56b738 1314 * See Documentation/vm/mmu_notifier.rst
0f10851e 1315 */
82b0f8c3 1316 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
71e3aac0 1317
82b0f8c3 1318 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
bae473a4 1319 pmd_populate(vma->vm_mm, &_pmd, pgtable);
71e3aac0
AA
1320
1321 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
bae473a4 1322 pte_t entry;
71e3aac0
AA
1323 entry = mk_pte(pages[i], vma->vm_page_prot);
1324 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
00501b53
JW
1325 memcg = (void *)page_private(pages[i]);
1326 set_page_private(pages[i], 0);
82b0f8c3 1327 page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
f627c2f5 1328 mem_cgroup_commit_charge(pages[i], memcg, false, false);
00501b53 1329 lru_cache_add_active_or_unevictable(pages[i], vma);
82b0f8c3
JK
1330 vmf->pte = pte_offset_map(&_pmd, haddr);
1331 VM_BUG_ON(!pte_none(*vmf->pte));
1332 set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1333 pte_unmap(vmf->pte);
71e3aac0
AA
1334 }
1335 kfree(pages);
1336
71e3aac0 1337 smp_wmb(); /* make pte visible before pmd */
82b0f8c3 1338 pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
d281ee61 1339 page_remove_rmap(page, true);
82b0f8c3 1340 spin_unlock(vmf->ptl);
71e3aac0 1341
4645b9fe
JG
1342 /*
1343 * No need to double call mmu_notifier->invalidate_range() callback as
1344 * the above pmdp_huge_clear_flush_notify() did already call it.
1345 */
ac46d4f3 1346 mmu_notifier_invalidate_range_only_end(&range);
2ec74c3e 1347
71e3aac0
AA
1348 ret |= VM_FAULT_WRITE;
1349 put_page(page);
1350
1351out:
1352 return ret;
1353
1354out_free_pages:
82b0f8c3 1355 spin_unlock(vmf->ptl);
ac46d4f3 1356 mmu_notifier_invalidate_range_end(&range);
b9bbfbe3 1357 for (i = 0; i < HPAGE_PMD_NR; i++) {
00501b53
JW
1358 memcg = (void *)page_private(pages[i]);
1359 set_page_private(pages[i], 0);
f627c2f5 1360 mem_cgroup_cancel_charge(pages[i], memcg, false);
71e3aac0 1361 put_page(pages[i]);
b9bbfbe3 1362 }
71e3aac0
AA
1363 kfree(pages);
1364 goto out;
1365}
1366
2b740303 1367vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
71e3aac0 1368{
82b0f8c3 1369 struct vm_area_struct *vma = vmf->vma;
93b4796d 1370 struct page *page = NULL, *new_page;
00501b53 1371 struct mem_cgroup *memcg;
82b0f8c3 1372 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
ac46d4f3 1373 struct mmu_notifier_range range;
3b363692 1374 gfp_t huge_gfp; /* for allocation and charge */
2b740303 1375 vm_fault_t ret = 0;
71e3aac0 1376
82b0f8c3 1377 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
81d1b09c 1378 VM_BUG_ON_VMA(!vma->anon_vma, vma);
93b4796d
KS
1379 if (is_huge_zero_pmd(orig_pmd))
1380 goto alloc;
82b0f8c3
JK
1381 spin_lock(vmf->ptl);
1382 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
71e3aac0
AA
1383 goto out_unlock;
1384
1385 page = pmd_page(orig_pmd);
309381fe 1386 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1f25fe20
KS
1387 /*
1388 * We can only reuse the page if nobody else maps the huge page or it's
6d0a07ed 1389 * part.
1f25fe20 1390 */
ba3c4ce6
HY
1391 if (!trylock_page(page)) {
1392 get_page(page);
1393 spin_unlock(vmf->ptl);
1394 lock_page(page);
1395 spin_lock(vmf->ptl);
1396 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1397 unlock_page(page);
1398 put_page(page);
1399 goto out_unlock;
1400 }
1401 put_page(page);
1402 }
1403 if (reuse_swap_page(page, NULL)) {
71e3aac0
AA
1404 pmd_t entry;
1405 entry = pmd_mkyoung(orig_pmd);
f55e1014 1406 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
82b0f8c3
JK
1407 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1408 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
71e3aac0 1409 ret |= VM_FAULT_WRITE;
ba3c4ce6 1410 unlock_page(page);
71e3aac0
AA
1411 goto out_unlock;
1412 }
ba3c4ce6 1413 unlock_page(page);
ddc58f27 1414 get_page(page);
82b0f8c3 1415 spin_unlock(vmf->ptl);
93b4796d 1416alloc:
7635d9cb 1417 if (__transparent_hugepage_enabled(vma) &&
077fcf11 1418 !transparent_hugepage_debug_cow()) {
19deb769
DR
1419 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1420 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
077fcf11 1421 } else
71e3aac0
AA
1422 new_page = NULL;
1423
9a982250
KS
1424 if (likely(new_page)) {
1425 prep_transhuge_page(new_page);
1426 } else {
eecc1e42 1427 if (!page) {
82b0f8c3 1428 split_huge_pmd(vma, vmf->pmd, vmf->address);
e9b71ca9 1429 ret |= VM_FAULT_FALLBACK;
93b4796d 1430 } else {
82b0f8c3 1431 ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
9845cbbd 1432 if (ret & VM_FAULT_OOM) {
82b0f8c3 1433 split_huge_pmd(vma, vmf->pmd, vmf->address);
9845cbbd
KS
1434 ret |= VM_FAULT_FALLBACK;
1435 }
ddc58f27 1436 put_page(page);
93b4796d 1437 }
17766dde 1438 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0
AA
1439 goto out;
1440 }
1441
2cf85583 1442 if (unlikely(mem_cgroup_try_charge_delay(new_page, vma->vm_mm,
2a70f6a7 1443 huge_gfp, &memcg, true))) {
b9bbfbe3 1444 put_page(new_page);
82b0f8c3 1445 split_huge_pmd(vma, vmf->pmd, vmf->address);
bae473a4 1446 if (page)
ddc58f27 1447 put_page(page);
9845cbbd 1448 ret |= VM_FAULT_FALLBACK;
17766dde 1449 count_vm_event(THP_FAULT_FALLBACK);
85b9f46e 1450 count_vm_event(THP_FAULT_FALLBACK_CHARGE);
b9bbfbe3
AA
1451 goto out;
1452 }
1453
17766dde 1454 count_vm_event(THP_FAULT_ALLOC);
1ff9e6e1 1455 count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
17766dde 1456
eecc1e42 1457 if (!page)
c79b57e4 1458 clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
93b4796d 1459 else
c9f4cd71
HY
1460 copy_user_huge_page(new_page, page, vmf->address,
1461 vma, HPAGE_PMD_NR);
71e3aac0
AA
1462 __SetPageUptodate(new_page);
1463
7269f999
JG
1464 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1465 haddr, haddr + HPAGE_PMD_SIZE);
ac46d4f3 1466 mmu_notifier_invalidate_range_start(&range);
2ec74c3e 1467
82b0f8c3 1468 spin_lock(vmf->ptl);
93b4796d 1469 if (page)
ddc58f27 1470 put_page(page);
82b0f8c3
JK
1471 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1472 spin_unlock(vmf->ptl);
f627c2f5 1473 mem_cgroup_cancel_charge(new_page, memcg, true);
71e3aac0 1474 put_page(new_page);
2ec74c3e 1475 goto out_mn;
b9bbfbe3 1476 } else {
71e3aac0 1477 pmd_t entry;
3122359a 1478 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
f55e1014 1479 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
82b0f8c3 1480 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
d281ee61 1481 page_add_new_anon_rmap(new_page, vma, haddr, true);
f627c2f5 1482 mem_cgroup_commit_charge(new_page, memcg, false, true);
00501b53 1483 lru_cache_add_active_or_unevictable(new_page, vma);
82b0f8c3
JK
1484 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1485 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
eecc1e42 1486 if (!page) {
bae473a4 1487 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
97ae1749 1488 } else {
309381fe 1489 VM_BUG_ON_PAGE(!PageHead(page), page);
d281ee61 1490 page_remove_rmap(page, true);
93b4796d
KS
1491 put_page(page);
1492 }
71e3aac0
AA
1493 ret |= VM_FAULT_WRITE;
1494 }
82b0f8c3 1495 spin_unlock(vmf->ptl);
2ec74c3e 1496out_mn:
4645b9fe
JG
1497 /*
1498 * No need to double call mmu_notifier->invalidate_range() callback as
1499 * the above pmdp_huge_clear_flush_notify() did already call it.
1500 */
ac46d4f3 1501 mmu_notifier_invalidate_range_only_end(&range);
71e3aac0
AA
1502out:
1503 return ret;
2ec74c3e 1504out_unlock:
82b0f8c3 1505 spin_unlock(vmf->ptl);
2ec74c3e 1506 return ret;
71e3aac0
AA
1507}
1508
8310d48b
KF
1509/*
1510 * FOLL_FORCE can write to even unwritable pmd's, but only
1511 * after we've gone through a COW cycle and they are dirty.
1512 */
1513static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1514{
f6f37321 1515 return pmd_write(pmd) ||
8310d48b
KF
1516 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1517}
1518
b676b293 1519struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1520 unsigned long addr,
1521 pmd_t *pmd,
1522 unsigned int flags)
1523{
b676b293 1524 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1525 struct page *page = NULL;
1526
c4088ebd 1527 assert_spin_locked(pmd_lockptr(mm, pmd));
71e3aac0 1528
8310d48b 1529 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
71e3aac0
AA
1530 goto out;
1531
85facf25
KS
1532 /* Avoid dumping huge zero page */
1533 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1534 return ERR_PTR(-EFAULT);
1535
2b4847e7 1536 /* Full NUMA hinting faults to serialise migration in fault paths */
8a0516ed 1537 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
2b4847e7
MG
1538 goto out;
1539
71e3aac0 1540 page = pmd_page(*pmd);
ca120cf6 1541 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
3faa52c0
JH
1542
1543 if (!try_grab_page(page, flags))
1544 return ERR_PTR(-ENOMEM);
1545
3565fce3 1546 if (flags & FOLL_TOUCH)
a8f97366 1547 touch_pmd(vma, addr, pmd, flags);
3faa52c0 1548
de60f5f1 1549 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
1550 /*
1551 * We don't mlock() pte-mapped THPs. This way we can avoid
1552 * leaking mlocked pages into non-VM_LOCKED VMAs.
1553 *
9a73f61b
KS
1554 * For anon THP:
1555 *
e90309c9
KS
1556 * In most cases the pmd is the only mapping of the page as we
1557 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1558 * writable private mappings in populate_vma_page_range().
1559 *
1560 * The only scenario when we have the page shared here is if we
1561 * mlocking read-only mapping shared over fork(). We skip
1562 * mlocking such pages.
9a73f61b
KS
1563 *
1564 * For file THP:
1565 *
1566 * We can expect PageDoubleMap() to be stable under page lock:
1567 * for file pages we set it in page_add_file_rmap(), which
1568 * requires page to be locked.
e90309c9 1569 */
9a73f61b
KS
1570
1571 if (PageAnon(page) && compound_mapcount(page) != 1)
1572 goto skip_mlock;
1573 if (PageDoubleMap(page) || !page->mapping)
1574 goto skip_mlock;
1575 if (!trylock_page(page))
1576 goto skip_mlock;
1577 lru_add_drain();
1578 if (page->mapping && !PageDoubleMap(page))
1579 mlock_vma_page(page);
1580 unlock_page(page);
b676b293 1581 }
9a73f61b 1582skip_mlock:
71e3aac0 1583 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
ca120cf6 1584 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
71e3aac0
AA
1585
1586out:
1587 return page;
1588}
1589
d10e63f2 1590/* NUMA hinting page fault entry point for trans huge pmds */
2b740303 1591vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
d10e63f2 1592{
82b0f8c3 1593 struct vm_area_struct *vma = vmf->vma;
b8916634 1594 struct anon_vma *anon_vma = NULL;
b32967ff 1595 struct page *page;
82b0f8c3 1596 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
98fa15f3 1597 int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
90572890 1598 int target_nid, last_cpupid = -1;
8191acbd
MG
1599 bool page_locked;
1600 bool migrated = false;
b191f9b1 1601 bool was_writable;
6688cc05 1602 int flags = 0;
d10e63f2 1603
82b0f8c3
JK
1604 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1605 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
d10e63f2
MG
1606 goto out_unlock;
1607
de466bd6
MG
1608 /*
1609 * If there are potential migrations, wait for completion and retry
1610 * without disrupting NUMA hinting information. Do not relock and
1611 * check_same as the page may no longer be mapped.
1612 */
82b0f8c3
JK
1613 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1614 page = pmd_page(*vmf->pmd);
3c226c63
MR
1615 if (!get_page_unless_zero(page))
1616 goto out_unlock;
82b0f8c3 1617 spin_unlock(vmf->ptl);
9a1ea439 1618 put_and_wait_on_page_locked(page);
de466bd6
MG
1619 goto out;
1620 }
1621
d10e63f2 1622 page = pmd_page(pmd);
a1a46184 1623 BUG_ON(is_huge_zero_page(page));
8191acbd 1624 page_nid = page_to_nid(page);
90572890 1625 last_cpupid = page_cpupid_last(page);
03c5a6e1 1626 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 1627 if (page_nid == this_nid) {
03c5a6e1 1628 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
1629 flags |= TNF_FAULT_LOCAL;
1630 }
4daae3b4 1631
bea66fbd 1632 /* See similar comment in do_numa_page for explanation */
288bc549 1633 if (!pmd_savedwrite(pmd))
6688cc05
PZ
1634 flags |= TNF_NO_GROUP;
1635
ff9042b1
MG
1636 /*
1637 * Acquire the page lock to serialise THP migrations but avoid dropping
1638 * page_table_lock if at all possible
1639 */
b8916634
MG
1640 page_locked = trylock_page(page);
1641 target_nid = mpol_misplaced(page, vma, haddr);
98fa15f3 1642 if (target_nid == NUMA_NO_NODE) {
b8916634 1643 /* If the page was locked, there are no parallel migrations */
a54a407f 1644 if (page_locked)
b8916634 1645 goto clear_pmdnuma;
2b4847e7 1646 }
4daae3b4 1647
de466bd6 1648 /* Migration could have started since the pmd_trans_migrating check */
2b4847e7 1649 if (!page_locked) {
98fa15f3 1650 page_nid = NUMA_NO_NODE;
3c226c63
MR
1651 if (!get_page_unless_zero(page))
1652 goto out_unlock;
82b0f8c3 1653 spin_unlock(vmf->ptl);
9a1ea439 1654 put_and_wait_on_page_locked(page);
b8916634
MG
1655 goto out;
1656 }
1657
2b4847e7
MG
1658 /*
1659 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1660 * to serialises splits
1661 */
b8916634 1662 get_page(page);
82b0f8c3 1663 spin_unlock(vmf->ptl);
b8916634 1664 anon_vma = page_lock_anon_vma_read(page);
4daae3b4 1665
c69307d5 1666 /* Confirm the PMD did not change while page_table_lock was released */
82b0f8c3
JK
1667 spin_lock(vmf->ptl);
1668 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
b32967ff
MG
1669 unlock_page(page);
1670 put_page(page);
98fa15f3 1671 page_nid = NUMA_NO_NODE;
4daae3b4 1672 goto out_unlock;
b32967ff 1673 }
ff9042b1 1674
c3a489ca
MG
1675 /* Bail if we fail to protect against THP splits for any reason */
1676 if (unlikely(!anon_vma)) {
1677 put_page(page);
98fa15f3 1678 page_nid = NUMA_NO_NODE;
c3a489ca
MG
1679 goto clear_pmdnuma;
1680 }
1681
8b1b436d
PZ
1682 /*
1683 * Since we took the NUMA fault, we must have observed the !accessible
1684 * bit. Make sure all other CPUs agree with that, to avoid them
1685 * modifying the page we're about to migrate.
1686 *
1687 * Must be done under PTL such that we'll observe the relevant
ccde85ba
PZ
1688 * inc_tlb_flush_pending().
1689 *
1690 * We are not sure a pending tlb flush here is for a huge page
1691 * mapping or not. Hence use the tlb range variant
8b1b436d 1692 */
7066f0f9 1693 if (mm_tlb_flush_pending(vma->vm_mm)) {
ccde85ba 1694 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
7066f0f9
AA
1695 /*
1696 * change_huge_pmd() released the pmd lock before
1697 * invalidating the secondary MMUs sharing the primary
1698 * MMU pagetables (with ->invalidate_range()). The
1699 * mmu_notifier_invalidate_range_end() (which
1700 * internally calls ->invalidate_range()) in
1701 * change_pmd_range() will run after us, so we can't
1702 * rely on it here and we need an explicit invalidate.
1703 */
1704 mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1705 haddr + HPAGE_PMD_SIZE);
1706 }
8b1b436d 1707
a54a407f
MG
1708 /*
1709 * Migrate the THP to the requested node, returns with page unlocked
8a0516ed 1710 * and access rights restored.
a54a407f 1711 */
82b0f8c3 1712 spin_unlock(vmf->ptl);
8b1b436d 1713
bae473a4 1714 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
82b0f8c3 1715 vmf->pmd, pmd, vmf->address, page, target_nid);
6688cc05
PZ
1716 if (migrated) {
1717 flags |= TNF_MIGRATED;
8191acbd 1718 page_nid = target_nid;
074c2381
MG
1719 } else
1720 flags |= TNF_MIGRATE_FAIL;
b32967ff 1721
8191acbd 1722 goto out;
b32967ff 1723clear_pmdnuma:
a54a407f 1724 BUG_ON(!PageLocked(page));
288bc549 1725 was_writable = pmd_savedwrite(pmd);
4d942466 1726 pmd = pmd_modify(pmd, vma->vm_page_prot);
b7b04004 1727 pmd = pmd_mkyoung(pmd);
b191f9b1
MG
1728 if (was_writable)
1729 pmd = pmd_mkwrite(pmd);
82b0f8c3
JK
1730 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1731 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
a54a407f 1732 unlock_page(page);
d10e63f2 1733out_unlock:
82b0f8c3 1734 spin_unlock(vmf->ptl);
b8916634
MG
1735
1736out:
1737 if (anon_vma)
1738 page_unlock_anon_vma_read(anon_vma);
1739
98fa15f3 1740 if (page_nid != NUMA_NO_NODE)
82b0f8c3 1741 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
9a8b300f 1742 flags);
8191acbd 1743
d10e63f2
MG
1744 return 0;
1745}
1746
319904ad
HY
1747/*
1748 * Return true if we do MADV_FREE successfully on entire pmd page.
1749 * Otherwise, return false.
1750 */
1751bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
b8d3c4c3 1752 pmd_t *pmd, unsigned long addr, unsigned long next)
b8d3c4c3
MK
1753{
1754 spinlock_t *ptl;
1755 pmd_t orig_pmd;
1756 struct page *page;
1757 struct mm_struct *mm = tlb->mm;
319904ad 1758 bool ret = false;
b8d3c4c3 1759
ed6a7935 1760 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
07e32661 1761
b6ec57f4
KS
1762 ptl = pmd_trans_huge_lock(pmd, vma);
1763 if (!ptl)
25eedabe 1764 goto out_unlocked;
b8d3c4c3
MK
1765
1766 orig_pmd = *pmd;
319904ad 1767 if (is_huge_zero_pmd(orig_pmd))
b8d3c4c3 1768 goto out;
b8d3c4c3 1769
84c3fc4e
ZY
1770 if (unlikely(!pmd_present(orig_pmd))) {
1771 VM_BUG_ON(thp_migration_supported() &&
1772 !is_pmd_migration_entry(orig_pmd));
1773 goto out;
1774 }
1775
b8d3c4c3
MK
1776 page = pmd_page(orig_pmd);
1777 /*
1778 * If other processes are mapping this page, we couldn't discard
1779 * the page unless they all do MADV_FREE so let's skip the page.
1780 */
1781 if (page_mapcount(page) != 1)
1782 goto out;
1783
1784 if (!trylock_page(page))
1785 goto out;
1786
1787 /*
1788 * If user want to discard part-pages of THP, split it so MADV_FREE
1789 * will deactivate only them.
1790 */
1791 if (next - addr != HPAGE_PMD_SIZE) {
1792 get_page(page);
1793 spin_unlock(ptl);
9818b8cd 1794 split_huge_page(page);
b8d3c4c3 1795 unlock_page(page);
bbf29ffc 1796 put_page(page);
b8d3c4c3
MK
1797 goto out_unlocked;
1798 }
1799
1800 if (PageDirty(page))
1801 ClearPageDirty(page);
1802 unlock_page(page);
1803
b8d3c4c3 1804 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
58ceeb6b 1805 pmdp_invalidate(vma, addr, pmd);
b8d3c4c3
MK
1806 orig_pmd = pmd_mkold(orig_pmd);
1807 orig_pmd = pmd_mkclean(orig_pmd);
1808
1809 set_pmd_at(mm, addr, pmd, orig_pmd);
1810 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1811 }
802a3a92
SL
1812
1813 mark_page_lazyfree(page);
319904ad 1814 ret = true;
b8d3c4c3
MK
1815out:
1816 spin_unlock(ptl);
1817out_unlocked:
1818 return ret;
1819}
1820
953c66c2
AK
1821static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1822{
1823 pgtable_t pgtable;
1824
1825 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1826 pte_free(mm, pgtable);
c4812909 1827 mm_dec_nr_ptes(mm);
953c66c2
AK
1828}
1829
71e3aac0 1830int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1831 pmd_t *pmd, unsigned long addr)
71e3aac0 1832{
da146769 1833 pmd_t orig_pmd;
bf929152 1834 spinlock_t *ptl;
71e3aac0 1835
ed6a7935 1836 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
07e32661 1837
b6ec57f4
KS
1838 ptl = __pmd_trans_huge_lock(pmd, vma);
1839 if (!ptl)
da146769
KS
1840 return 0;
1841 /*
1842 * For architectures like ppc64 we look at deposited pgtable
1843 * when calling pmdp_huge_get_and_clear. So do the
1844 * pgtable_trans_huge_withdraw after finishing pmdp related
1845 * operations.
1846 */
1847 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1848 tlb->fullmm);
1849 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
2484ca9b 1850 if (vma_is_special_huge(vma)) {
3b6521f5
OH
1851 if (arch_needs_pgtable_deposit())
1852 zap_deposited_table(tlb->mm, pmd);
da146769
KS
1853 spin_unlock(ptl);
1854 if (is_huge_zero_pmd(orig_pmd))
c0f2e176 1855 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769 1856 } else if (is_huge_zero_pmd(orig_pmd)) {
c14a6eb4 1857 zap_deposited_table(tlb->mm, pmd);
da146769 1858 spin_unlock(ptl);
c0f2e176 1859 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769 1860 } else {
616b8371
ZY
1861 struct page *page = NULL;
1862 int flush_needed = 1;
1863
1864 if (pmd_present(orig_pmd)) {
1865 page = pmd_page(orig_pmd);
1866 page_remove_rmap(page, true);
1867 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1868 VM_BUG_ON_PAGE(!PageHead(page), page);
1869 } else if (thp_migration_supported()) {
1870 swp_entry_t entry;
1871
1872 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1873 entry = pmd_to_swp_entry(orig_pmd);
1874 page = pfn_to_page(swp_offset(entry));
1875 flush_needed = 0;
1876 } else
1877 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1878
b5072380 1879 if (PageAnon(page)) {
c14a6eb4 1880 zap_deposited_table(tlb->mm, pmd);
b5072380
KS
1881 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1882 } else {
953c66c2
AK
1883 if (arch_needs_pgtable_deposit())
1884 zap_deposited_table(tlb->mm, pmd);
fadae295 1885 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
b5072380 1886 }
616b8371 1887
da146769 1888 spin_unlock(ptl);
616b8371
ZY
1889 if (flush_needed)
1890 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
025c5b24 1891 }
da146769 1892 return 1;
71e3aac0
AA
1893}
1894
1dd38b6c
AK
1895#ifndef pmd_move_must_withdraw
1896static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1897 spinlock_t *old_pmd_ptl,
1898 struct vm_area_struct *vma)
1899{
1900 /*
1901 * With split pmd lock we also need to move preallocated
1902 * PTE page table if new_pmd is on different PMD page table.
1903 *
1904 * We also don't deposit and withdraw tables for file pages.
1905 */
1906 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1907}
1908#endif
1909
ab6e3d09
NH
1910static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1911{
1912#ifdef CONFIG_MEM_SOFT_DIRTY
1913 if (unlikely(is_pmd_migration_entry(pmd)))
1914 pmd = pmd_swp_mksoft_dirty(pmd);
1915 else if (pmd_present(pmd))
1916 pmd = pmd_mksoft_dirty(pmd);
1917#endif
1918 return pmd;
1919}
1920
bf8616d5 1921bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
37a1c49a 1922 unsigned long new_addr, unsigned long old_end,
eb66ae03 1923 pmd_t *old_pmd, pmd_t *new_pmd)
37a1c49a 1924{
bf929152 1925 spinlock_t *old_ptl, *new_ptl;
37a1c49a 1926 pmd_t pmd;
37a1c49a 1927 struct mm_struct *mm = vma->vm_mm;
5d190420 1928 bool force_flush = false;
37a1c49a
AA
1929
1930 if ((old_addr & ~HPAGE_PMD_MASK) ||
1931 (new_addr & ~HPAGE_PMD_MASK) ||
bf8616d5 1932 old_end - old_addr < HPAGE_PMD_SIZE)
4b471e88 1933 return false;
37a1c49a
AA
1934
1935 /*
1936 * The destination pmd shouldn't be established, free_pgtables()
1937 * should have release it.
1938 */
1939 if (WARN_ON(!pmd_none(*new_pmd))) {
1940 VM_BUG_ON(pmd_trans_huge(*new_pmd));
4b471e88 1941 return false;
37a1c49a
AA
1942 }
1943
bf929152
KS
1944 /*
1945 * We don't have to worry about the ordering of src and dst
1946 * ptlocks because exclusive mmap_sem prevents deadlock.
1947 */
b6ec57f4
KS
1948 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1949 if (old_ptl) {
bf929152
KS
1950 new_ptl = pmd_lockptr(mm, new_pmd);
1951 if (new_ptl != old_ptl)
1952 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
8809aa2d 1953 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
eb66ae03 1954 if (pmd_present(pmd))
a2ce2666 1955 force_flush = true;
025c5b24 1956 VM_BUG_ON(!pmd_none(*new_pmd));
3592806c 1957
1dd38b6c 1958 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
b3084f4d 1959 pgtable_t pgtable;
3592806c
KS
1960 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1961 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
3592806c 1962 }
ab6e3d09
NH
1963 pmd = move_soft_dirty_pmd(pmd);
1964 set_pmd_at(mm, new_addr, new_pmd, pmd);
5d190420
AL
1965 if (force_flush)
1966 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
eb66ae03
LT
1967 if (new_ptl != old_ptl)
1968 spin_unlock(new_ptl);
bf929152 1969 spin_unlock(old_ptl);
4b471e88 1970 return true;
37a1c49a 1971 }
4b471e88 1972 return false;
37a1c49a
AA
1973}
1974
f123d74a
MG
1975/*
1976 * Returns
1977 * - 0 if PMD could not be locked
1978 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1979 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1980 */
cd7548ab 1981int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
e944fd67 1982 unsigned long addr, pgprot_t newprot, int prot_numa)
cd7548ab
JW
1983{
1984 struct mm_struct *mm = vma->vm_mm;
bf929152 1985 spinlock_t *ptl;
0a85e51d
KS
1986 pmd_t entry;
1987 bool preserve_write;
1988 int ret;
cd7548ab 1989
b6ec57f4 1990 ptl = __pmd_trans_huge_lock(pmd, vma);
0a85e51d
KS
1991 if (!ptl)
1992 return 0;
e944fd67 1993
0a85e51d
KS
1994 preserve_write = prot_numa && pmd_write(*pmd);
1995 ret = 1;
e944fd67 1996
84c3fc4e
ZY
1997#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1998 if (is_swap_pmd(*pmd)) {
1999 swp_entry_t entry = pmd_to_swp_entry(*pmd);
2000
2001 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
2002 if (is_write_migration_entry(entry)) {
2003 pmd_t newpmd;
2004 /*
2005 * A protection check is difficult so
2006 * just be safe and disable write
2007 */
2008 make_migration_entry_read(&entry);
2009 newpmd = swp_entry_to_pmd(entry);
ab6e3d09
NH
2010 if (pmd_swp_soft_dirty(*pmd))
2011 newpmd = pmd_swp_mksoft_dirty(newpmd);
84c3fc4e
ZY
2012 set_pmd_at(mm, addr, pmd, newpmd);
2013 }
2014 goto unlock;
2015 }
2016#endif
2017
0a85e51d
KS
2018 /*
2019 * Avoid trapping faults against the zero page. The read-only
2020 * data is likely to be read-cached on the local CPU and
2021 * local/remote hits to the zero page are not interesting.
2022 */
2023 if (prot_numa && is_huge_zero_pmd(*pmd))
2024 goto unlock;
025c5b24 2025
0a85e51d
KS
2026 if (prot_numa && pmd_protnone(*pmd))
2027 goto unlock;
2028
ced10803
KS
2029 /*
2030 * In case prot_numa, we are under down_read(mmap_sem). It's critical
2031 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
2032 * which is also under down_read(mmap_sem):
2033 *
2034 * CPU0: CPU1:
2035 * change_huge_pmd(prot_numa=1)
2036 * pmdp_huge_get_and_clear_notify()
2037 * madvise_dontneed()
2038 * zap_pmd_range()
2039 * pmd_trans_huge(*pmd) == 0 (without ptl)
2040 * // skip the pmd
2041 * set_pmd_at();
2042 * // pmd is re-established
2043 *
2044 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
2045 * which may break userspace.
2046 *
2047 * pmdp_invalidate() is required to make sure we don't miss
2048 * dirty/young flags set by hardware.
2049 */
a3cf988f 2050 entry = pmdp_invalidate(vma, addr, pmd);
ced10803 2051
0a85e51d
KS
2052 entry = pmd_modify(entry, newprot);
2053 if (preserve_write)
2054 entry = pmd_mk_savedwrite(entry);
2055 ret = HPAGE_PMD_NR;
2056 set_pmd_at(mm, addr, pmd, entry);
2057 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
2058unlock:
2059 spin_unlock(ptl);
025c5b24
NH
2060 return ret;
2061}
2062
2063/*
8f19b0c0 2064 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
025c5b24 2065 *
8f19b0c0
HY
2066 * Note that if it returns page table lock pointer, this routine returns without
2067 * unlocking page table lock. So callers must unlock it.
025c5b24 2068 */
b6ec57f4 2069spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
025c5b24 2070{
b6ec57f4
KS
2071 spinlock_t *ptl;
2072 ptl = pmd_lock(vma->vm_mm, pmd);
84c3fc4e
ZY
2073 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
2074 pmd_devmap(*pmd)))
b6ec57f4
KS
2075 return ptl;
2076 spin_unlock(ptl);
2077 return NULL;
cd7548ab
JW
2078}
2079
a00cc7d9
MW
2080/*
2081 * Returns true if a given pud maps a thp, false otherwise.
2082 *
2083 * Note that if it returns true, this routine returns without unlocking page
2084 * table lock. So callers must unlock it.
2085 */
2086spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
2087{
2088 spinlock_t *ptl;
2089
2090 ptl = pud_lock(vma->vm_mm, pud);
2091 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
2092 return ptl;
2093 spin_unlock(ptl);
2094 return NULL;
2095}
2096
2097#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2098int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2099 pud_t *pud, unsigned long addr)
2100{
a00cc7d9
MW
2101 spinlock_t *ptl;
2102
2103 ptl = __pud_trans_huge_lock(pud, vma);
2104 if (!ptl)
2105 return 0;
2106 /*
2107 * For architectures like ppc64 we look at deposited pgtable
2108 * when calling pudp_huge_get_and_clear. So do the
2109 * pgtable_trans_huge_withdraw after finishing pudp related
2110 * operations.
2111 */
70516b93 2112 pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
a00cc7d9 2113 tlb_remove_pud_tlb_entry(tlb, pud, addr);
2484ca9b 2114 if (vma_is_special_huge(vma)) {
a00cc7d9
MW
2115 spin_unlock(ptl);
2116 /* No zero page support yet */
2117 } else {
2118 /* No support for anonymous PUD pages yet */
2119 BUG();
2120 }
2121 return 1;
2122}
2123
2124static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2125 unsigned long haddr)
2126{
2127 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2128 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2129 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2130 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2131
ce9311cf 2132 count_vm_event(THP_SPLIT_PUD);
a00cc7d9
MW
2133
2134 pudp_huge_clear_flush_notify(vma, haddr, pud);
2135}
2136
2137void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2138 unsigned long address)
2139{
2140 spinlock_t *ptl;
ac46d4f3 2141 struct mmu_notifier_range range;
a00cc7d9 2142
7269f999 2143 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 2144 address & HPAGE_PUD_MASK,
ac46d4f3
JG
2145 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2146 mmu_notifier_invalidate_range_start(&range);
2147 ptl = pud_lock(vma->vm_mm, pud);
a00cc7d9
MW
2148 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2149 goto out;
ac46d4f3 2150 __split_huge_pud_locked(vma, pud, range.start);
a00cc7d9
MW
2151
2152out:
2153 spin_unlock(ptl);
4645b9fe
JG
2154 /*
2155 * No need to double call mmu_notifier->invalidate_range() callback as
2156 * the above pudp_huge_clear_flush_notify() did already call it.
2157 */
ac46d4f3 2158 mmu_notifier_invalidate_range_only_end(&range);
a00cc7d9
MW
2159}
2160#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2161
eef1b3ba
KS
2162static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2163 unsigned long haddr, pmd_t *pmd)
2164{
2165 struct mm_struct *mm = vma->vm_mm;
2166 pgtable_t pgtable;
2167 pmd_t _pmd;
2168 int i;
2169
0f10851e
JG
2170 /*
2171 * Leave pmd empty until pte is filled note that it is fine to delay
2172 * notification until mmu_notifier_invalidate_range_end() as we are
2173 * replacing a zero pmd write protected page with a zero pte write
2174 * protected page.
2175 *
ad56b738 2176 * See Documentation/vm/mmu_notifier.rst
0f10851e
JG
2177 */
2178 pmdp_huge_clear_flush(vma, haddr, pmd);
eef1b3ba
KS
2179
2180 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2181 pmd_populate(mm, &_pmd, pgtable);
2182
2183 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2184 pte_t *pte, entry;
2185 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2186 entry = pte_mkspecial(entry);
2187 pte = pte_offset_map(&_pmd, haddr);
2188 VM_BUG_ON(!pte_none(*pte));
2189 set_pte_at(mm, haddr, pte, entry);
2190 pte_unmap(pte);
2191 }
2192 smp_wmb(); /* make pte visible before pmd */
2193 pmd_populate(mm, pmd, pgtable);
eef1b3ba
KS
2194}
2195
2196static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
ba988280 2197 unsigned long haddr, bool freeze)
eef1b3ba
KS
2198{
2199 struct mm_struct *mm = vma->vm_mm;
2200 struct page *page;
2201 pgtable_t pgtable;
423ac9af 2202 pmd_t old_pmd, _pmd;
a3cf988f 2203 bool young, write, soft_dirty, pmd_migration = false;
2ac015e2 2204 unsigned long addr;
eef1b3ba
KS
2205 int i;
2206
2207 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2208 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2209 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
84c3fc4e
ZY
2210 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2211 && !pmd_devmap(*pmd));
eef1b3ba
KS
2212
2213 count_vm_event(THP_SPLIT_PMD);
2214
d21b9e57
KS
2215 if (!vma_is_anonymous(vma)) {
2216 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
953c66c2
AK
2217 /*
2218 * We are going to unmap this huge page. So
2219 * just go ahead and zap it
2220 */
2221 if (arch_needs_pgtable_deposit())
2222 zap_deposited_table(mm, pmd);
2484ca9b 2223 if (vma_is_special_huge(vma))
d21b9e57
KS
2224 return;
2225 page = pmd_page(_pmd);
e1f1b157
HD
2226 if (!PageDirty(page) && pmd_dirty(_pmd))
2227 set_page_dirty(page);
d21b9e57
KS
2228 if (!PageReferenced(page) && pmd_young(_pmd))
2229 SetPageReferenced(page);
2230 page_remove_rmap(page, true);
2231 put_page(page);
fadae295 2232 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
eef1b3ba
KS
2233 return;
2234 } else if (is_huge_zero_pmd(*pmd)) {
4645b9fe
JG
2235 /*
2236 * FIXME: Do we want to invalidate secondary mmu by calling
2237 * mmu_notifier_invalidate_range() see comments below inside
2238 * __split_huge_pmd() ?
2239 *
2240 * We are going from a zero huge page write protected to zero
2241 * small page also write protected so it does not seems useful
2242 * to invalidate secondary mmu at this time.
2243 */
eef1b3ba
KS
2244 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2245 }
2246
423ac9af
AK
2247 /*
2248 * Up to this point the pmd is present and huge and userland has the
2249 * whole access to the hugepage during the split (which happens in
2250 * place). If we overwrite the pmd with the not-huge version pointing
2251 * to the pte here (which of course we could if all CPUs were bug
2252 * free), userland could trigger a small page size TLB miss on the
2253 * small sized TLB while the hugepage TLB entry is still established in
2254 * the huge TLB. Some CPU doesn't like that.
2255 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2256 * 383 on page 93. Intel should be safe but is also warns that it's
2257 * only safe if the permission and cache attributes of the two entries
2258 * loaded in the two TLB is identical (which should be the case here).
2259 * But it is generally safer to never allow small and huge TLB entries
2260 * for the same virtual address to be loaded simultaneously. So instead
2261 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2262 * current pmd notpresent (atomically because here the pmd_trans_huge
2263 * must remain set at all times on the pmd until the split is complete
2264 * for this pmd), then we flush the SMP TLB and finally we write the
2265 * non-huge version of the pmd entry with pmd_populate.
2266 */
2267 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2268
423ac9af 2269 pmd_migration = is_pmd_migration_entry(old_pmd);
2e83ee1d 2270 if (unlikely(pmd_migration)) {
84c3fc4e
ZY
2271 swp_entry_t entry;
2272
423ac9af 2273 entry = pmd_to_swp_entry(old_pmd);
84c3fc4e 2274 page = pfn_to_page(swp_offset(entry));
2e83ee1d
PX
2275 write = is_write_migration_entry(entry);
2276 young = false;
2277 soft_dirty = pmd_swp_soft_dirty(old_pmd);
2278 } else {
423ac9af 2279 page = pmd_page(old_pmd);
2e83ee1d
PX
2280 if (pmd_dirty(old_pmd))
2281 SetPageDirty(page);
2282 write = pmd_write(old_pmd);
2283 young = pmd_young(old_pmd);
2284 soft_dirty = pmd_soft_dirty(old_pmd);
2285 }
eef1b3ba 2286 VM_BUG_ON_PAGE(!page_count(page), page);
fe896d18 2287 page_ref_add(page, HPAGE_PMD_NR - 1);
eef1b3ba 2288
423ac9af
AK
2289 /*
2290 * Withdraw the table only after we mark the pmd entry invalid.
2291 * This's critical for some architectures (Power).
2292 */
eef1b3ba
KS
2293 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2294 pmd_populate(mm, &_pmd, pgtable);
2295
2ac015e2 2296 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
eef1b3ba
KS
2297 pte_t entry, *pte;
2298 /*
2299 * Note that NUMA hinting access restrictions are not
2300 * transferred to avoid any possibility of altering
2301 * permissions across VMAs.
2302 */
84c3fc4e 2303 if (freeze || pmd_migration) {
ba988280
KS
2304 swp_entry_t swp_entry;
2305 swp_entry = make_migration_entry(page + i, write);
2306 entry = swp_entry_to_pte(swp_entry);
804dd150
AA
2307 if (soft_dirty)
2308 entry = pte_swp_mksoft_dirty(entry);
ba988280 2309 } else {
6d2329f8 2310 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
b8d3c4c3 2311 entry = maybe_mkwrite(entry, vma);
ba988280
KS
2312 if (!write)
2313 entry = pte_wrprotect(entry);
2314 if (!young)
2315 entry = pte_mkold(entry);
804dd150
AA
2316 if (soft_dirty)
2317 entry = pte_mksoft_dirty(entry);
ba988280 2318 }
2ac015e2 2319 pte = pte_offset_map(&_pmd, addr);
eef1b3ba 2320 BUG_ON(!pte_none(*pte));
2ac015e2 2321 set_pte_at(mm, addr, pte, entry);
eef1b3ba
KS
2322 atomic_inc(&page[i]._mapcount);
2323 pte_unmap(pte);
2324 }
2325
2326 /*
2327 * Set PG_double_map before dropping compound_mapcount to avoid
2328 * false-negative page_mapped().
2329 */
2330 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2331 for (i = 0; i < HPAGE_PMD_NR; i++)
2332 atomic_inc(&page[i]._mapcount);
2333 }
2334
2335 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2336 /* Last compound_mapcount is gone. */
11fb9989 2337 __dec_node_page_state(page, NR_ANON_THPS);
eef1b3ba
KS
2338 if (TestClearPageDoubleMap(page)) {
2339 /* No need in mapcount reference anymore */
2340 for (i = 0; i < HPAGE_PMD_NR; i++)
2341 atomic_dec(&page[i]._mapcount);
2342 }
2343 }
2344
2345 smp_wmb(); /* make pte visible before pmd */
2346 pmd_populate(mm, pmd, pgtable);
e9b61f19
KS
2347
2348 if (freeze) {
2ac015e2 2349 for (i = 0; i < HPAGE_PMD_NR; i++) {
e9b61f19
KS
2350 page_remove_rmap(page + i, false);
2351 put_page(page + i);
2352 }
2353 }
eef1b3ba
KS
2354}
2355
2356void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
33f4751e 2357 unsigned long address, bool freeze, struct page *page)
eef1b3ba
KS
2358{
2359 spinlock_t *ptl;
ac46d4f3 2360 struct mmu_notifier_range range;
eef1b3ba 2361
7269f999 2362 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 2363 address & HPAGE_PMD_MASK,
ac46d4f3
JG
2364 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2365 mmu_notifier_invalidate_range_start(&range);
2366 ptl = pmd_lock(vma->vm_mm, pmd);
33f4751e
NH
2367
2368 /*
2369 * If caller asks to setup a migration entries, we need a page to check
2370 * pmd against. Otherwise we can end up replacing wrong page.
2371 */
2372 VM_BUG_ON(freeze && !page);
2373 if (page && page != pmd_page(*pmd))
2374 goto out;
2375
5c7fb56e 2376 if (pmd_trans_huge(*pmd)) {
33f4751e 2377 page = pmd_page(*pmd);
5c7fb56e 2378 if (PageMlocked(page))
5f737714 2379 clear_page_mlock(page);
84c3fc4e 2380 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
e90309c9 2381 goto out;
ac46d4f3 2382 __split_huge_pmd_locked(vma, pmd, range.start, freeze);
e90309c9 2383out:
eef1b3ba 2384 spin_unlock(ptl);
4645b9fe
JG
2385 /*
2386 * No need to double call mmu_notifier->invalidate_range() callback.
2387 * They are 3 cases to consider inside __split_huge_pmd_locked():
2388 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2389 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2390 * fault will trigger a flush_notify before pointing to a new page
2391 * (it is fine if the secondary mmu keeps pointing to the old zero
2392 * page in the meantime)
2393 * 3) Split a huge pmd into pte pointing to the same page. No need
2394 * to invalidate secondary tlb entry they are all still valid.
2395 * any further changes to individual pte will notify. So no need
2396 * to call mmu_notifier->invalidate_range()
2397 */
ac46d4f3 2398 mmu_notifier_invalidate_range_only_end(&range);
eef1b3ba
KS
2399}
2400
fec89c10
KS
2401void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2402 bool freeze, struct page *page)
94fcc585 2403{
f72e7dcd 2404 pgd_t *pgd;
c2febafc 2405 p4d_t *p4d;
f72e7dcd 2406 pud_t *pud;
94fcc585
AA
2407 pmd_t *pmd;
2408
78ddc534 2409 pgd = pgd_offset(vma->vm_mm, address);
f72e7dcd
HD
2410 if (!pgd_present(*pgd))
2411 return;
2412
c2febafc
KS
2413 p4d = p4d_offset(pgd, address);
2414 if (!p4d_present(*p4d))
2415 return;
2416
2417 pud = pud_offset(p4d, address);
f72e7dcd
HD
2418 if (!pud_present(*pud))
2419 return;
2420
2421 pmd = pmd_offset(pud, address);
fec89c10 2422
33f4751e 2423 __split_huge_pmd(vma, pmd, address, freeze, page);
94fcc585
AA
2424}
2425
e1b9996b 2426void vma_adjust_trans_huge(struct vm_area_struct *vma,
94fcc585
AA
2427 unsigned long start,
2428 unsigned long end,
2429 long adjust_next)
2430{
2431 /*
2432 * If the new start address isn't hpage aligned and it could
2433 * previously contain an hugepage: check if we need to split
2434 * an huge pmd.
2435 */
2436 if (start & ~HPAGE_PMD_MASK &&
2437 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2438 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 2439 split_huge_pmd_address(vma, start, false, NULL);
94fcc585
AA
2440
2441 /*
2442 * If the new end address isn't hpage aligned and it could
2443 * previously contain an hugepage: check if we need to split
2444 * an huge pmd.
2445 */
2446 if (end & ~HPAGE_PMD_MASK &&
2447 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2448 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 2449 split_huge_pmd_address(vma, end, false, NULL);
94fcc585
AA
2450
2451 /*
2452 * If we're also updating the vma->vm_next->vm_start, if the new
2453 * vm_next->vm_start isn't page aligned and it could previously
2454 * contain an hugepage: check if we need to split an huge pmd.
2455 */
2456 if (adjust_next > 0) {
2457 struct vm_area_struct *next = vma->vm_next;
2458 unsigned long nstart = next->vm_start;
2459 nstart += adjust_next << PAGE_SHIFT;
2460 if (nstart & ~HPAGE_PMD_MASK &&
2461 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2462 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
fec89c10 2463 split_huge_pmd_address(next, nstart, false, NULL);
94fcc585
AA
2464 }
2465}
e9b61f19 2466
906f9cdf 2467static void unmap_page(struct page *page)
e9b61f19 2468{
baa355fd 2469 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
c7ab0d2f 2470 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
666e5a40 2471 bool unmap_success;
e9b61f19
KS
2472
2473 VM_BUG_ON_PAGE(!PageHead(page), page);
2474
baa355fd 2475 if (PageAnon(page))
b5ff8161 2476 ttu_flags |= TTU_SPLIT_FREEZE;
baa355fd 2477
666e5a40
MK
2478 unmap_success = try_to_unmap(page, ttu_flags);
2479 VM_BUG_ON_PAGE(!unmap_success, page);
e9b61f19
KS
2480}
2481
906f9cdf 2482static void remap_page(struct page *page)
e9b61f19 2483{
fec89c10 2484 int i;
ace71a19
KS
2485 if (PageTransHuge(page)) {
2486 remove_migration_ptes(page, page, true);
2487 } else {
2488 for (i = 0; i < HPAGE_PMD_NR; i++)
2489 remove_migration_ptes(page + i, page + i, true);
2490 }
e9b61f19
KS
2491}
2492
8df651c7 2493static void __split_huge_page_tail(struct page *head, int tail,
e9b61f19
KS
2494 struct lruvec *lruvec, struct list_head *list)
2495{
e9b61f19
KS
2496 struct page *page_tail = head + tail;
2497
8df651c7 2498 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
e9b61f19
KS
2499
2500 /*
605ca5ed
KK
2501 * Clone page flags before unfreezing refcount.
2502 *
2503 * After successful get_page_unless_zero() might follow flags change,
2504 * for exmaple lock_page() which set PG_waiters.
e9b61f19 2505 */
e9b61f19
KS
2506 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2507 page_tail->flags |= (head->flags &
2508 ((1L << PG_referenced) |
2509 (1L << PG_swapbacked) |
38d8b4e6 2510 (1L << PG_swapcache) |
e9b61f19
KS
2511 (1L << PG_mlocked) |
2512 (1L << PG_uptodate) |
2513 (1L << PG_active) |
1899ad18 2514 (1L << PG_workingset) |
e9b61f19 2515 (1L << PG_locked) |
b8d3c4c3
MK
2516 (1L << PG_unevictable) |
2517 (1L << PG_dirty)));
e9b61f19 2518
173d9d9f
HD
2519 /* ->mapping in first tail page is compound_mapcount */
2520 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2521 page_tail);
2522 page_tail->mapping = head->mapping;
2523 page_tail->index = head->index + tail;
2524
605ca5ed 2525 /* Page flags must be visible before we make the page non-compound. */
e9b61f19
KS
2526 smp_wmb();
2527
605ca5ed
KK
2528 /*
2529 * Clear PageTail before unfreezing page refcount.
2530 *
2531 * After successful get_page_unless_zero() might follow put_page()
2532 * which needs correct compound_head().
2533 */
e9b61f19
KS
2534 clear_compound_head(page_tail);
2535
605ca5ed
KK
2536 /* Finally unfreeze refcount. Additional reference from page cache. */
2537 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2538 PageSwapCache(head)));
2539
e9b61f19
KS
2540 if (page_is_young(head))
2541 set_page_young(page_tail);
2542 if (page_is_idle(head))
2543 set_page_idle(page_tail);
2544
e9b61f19 2545 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
94723aaf
MH
2546
2547 /*
2548 * always add to the tail because some iterators expect new
2549 * pages to show after the currently processed elements - e.g.
2550 * migrate_pages
2551 */
e9b61f19 2552 lru_add_page_tail(head, page_tail, lruvec, list);
e9b61f19
KS
2553}
2554
baa355fd 2555static void __split_huge_page(struct page *page, struct list_head *list,
006d3ff2 2556 pgoff_t end, unsigned long flags)
e9b61f19
KS
2557{
2558 struct page *head = compound_head(page);
f4b7e272 2559 pg_data_t *pgdat = page_pgdat(head);
e9b61f19 2560 struct lruvec *lruvec;
4101196b
MWO
2561 struct address_space *swap_cache = NULL;
2562 unsigned long offset = 0;
8df651c7 2563 int i;
e9b61f19 2564
f4b7e272 2565 lruvec = mem_cgroup_page_lruvec(head, pgdat);
e9b61f19
KS
2566
2567 /* complete memcg works before add pages to LRU */
2568 mem_cgroup_split_huge_fixup(head);
2569
4101196b
MWO
2570 if (PageAnon(head) && PageSwapCache(head)) {
2571 swp_entry_t entry = { .val = page_private(head) };
2572
2573 offset = swp_offset(entry);
2574 swap_cache = swap_address_space(entry);
2575 xa_lock(&swap_cache->i_pages);
2576 }
2577
baa355fd 2578 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
8df651c7 2579 __split_huge_page_tail(head, i, lruvec, list);
baa355fd
KS
2580 /* Some pages can be beyond i_size: drop them from page cache */
2581 if (head[i].index >= end) {
2d077d4b 2582 ClearPageDirty(head + i);
baa355fd 2583 __delete_from_page_cache(head + i, NULL);
800d8c63
KS
2584 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2585 shmem_uncharge(head->mapping->host, 1);
baa355fd 2586 put_page(head + i);
4101196b
MWO
2587 } else if (!PageAnon(page)) {
2588 __xa_store(&head->mapping->i_pages, head[i].index,
2589 head + i, 0);
2590 } else if (swap_cache) {
2591 __xa_store(&swap_cache->i_pages, offset + i,
2592 head + i, 0);
baa355fd
KS
2593 }
2594 }
e9b61f19
KS
2595
2596 ClearPageCompound(head);
f7da677b
VB
2597
2598 split_page_owner(head, HPAGE_PMD_ORDER);
2599
baa355fd
KS
2600 /* See comment in __split_huge_page_tail() */
2601 if (PageAnon(head)) {
aa5dc07f 2602 /* Additional pin to swap cache */
4101196b 2603 if (PageSwapCache(head)) {
38d8b4e6 2604 page_ref_add(head, 2);
4101196b
MWO
2605 xa_unlock(&swap_cache->i_pages);
2606 } else {
38d8b4e6 2607 page_ref_inc(head);
4101196b 2608 }
baa355fd 2609 } else {
aa5dc07f 2610 /* Additional pin to page cache */
baa355fd 2611 page_ref_add(head, 2);
b93b0163 2612 xa_unlock(&head->mapping->i_pages);
baa355fd
KS
2613 }
2614
f4b7e272 2615 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
e9b61f19 2616
906f9cdf 2617 remap_page(head);
e9b61f19
KS
2618
2619 for (i = 0; i < HPAGE_PMD_NR; i++) {
2620 struct page *subpage = head + i;
2621 if (subpage == page)
2622 continue;
2623 unlock_page(subpage);
2624
2625 /*
2626 * Subpages may be freed if there wasn't any mapping
2627 * like if add_to_swap() is running on a lru page that
2628 * had its mapping zapped. And freeing these pages
2629 * requires taking the lru_lock so we do the put_page
2630 * of the tail pages after the split is complete.
2631 */
2632 put_page(subpage);
2633 }
2634}
2635
b20ce5e0
KS
2636int total_mapcount(struct page *page)
2637{
dd78fedd 2638 int i, compound, ret;
b20ce5e0
KS
2639
2640 VM_BUG_ON_PAGE(PageTail(page), page);
2641
2642 if (likely(!PageCompound(page)))
2643 return atomic_read(&page->_mapcount) + 1;
2644
dd78fedd 2645 compound = compound_mapcount(page);
b20ce5e0 2646 if (PageHuge(page))
dd78fedd
KS
2647 return compound;
2648 ret = compound;
b20ce5e0
KS
2649 for (i = 0; i < HPAGE_PMD_NR; i++)
2650 ret += atomic_read(&page[i]._mapcount) + 1;
dd78fedd
KS
2651 /* File pages has compound_mapcount included in _mapcount */
2652 if (!PageAnon(page))
2653 return ret - compound * HPAGE_PMD_NR;
b20ce5e0
KS
2654 if (PageDoubleMap(page))
2655 ret -= HPAGE_PMD_NR;
2656 return ret;
2657}
2658
6d0a07ed
AA
2659/*
2660 * This calculates accurately how many mappings a transparent hugepage
2661 * has (unlike page_mapcount() which isn't fully accurate). This full
2662 * accuracy is primarily needed to know if copy-on-write faults can
2663 * reuse the page and change the mapping to read-write instead of
2664 * copying them. At the same time this returns the total_mapcount too.
2665 *
2666 * The function returns the highest mapcount any one of the subpages
2667 * has. If the return value is one, even if different processes are
2668 * mapping different subpages of the transparent hugepage, they can
2669 * all reuse it, because each process is reusing a different subpage.
2670 *
2671 * The total_mapcount is instead counting all virtual mappings of the
2672 * subpages. If the total_mapcount is equal to "one", it tells the
2673 * caller all mappings belong to the same "mm" and in turn the
2674 * anon_vma of the transparent hugepage can become the vma->anon_vma
2675 * local one as no other process may be mapping any of the subpages.
2676 *
2677 * It would be more accurate to replace page_mapcount() with
2678 * page_trans_huge_mapcount(), however we only use
2679 * page_trans_huge_mapcount() in the copy-on-write faults where we
2680 * need full accuracy to avoid breaking page pinning, because
2681 * page_trans_huge_mapcount() is slower than page_mapcount().
2682 */
2683int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2684{
2685 int i, ret, _total_mapcount, mapcount;
2686
2687 /* hugetlbfs shouldn't call it */
2688 VM_BUG_ON_PAGE(PageHuge(page), page);
2689
2690 if (likely(!PageTransCompound(page))) {
2691 mapcount = atomic_read(&page->_mapcount) + 1;
2692 if (total_mapcount)
2693 *total_mapcount = mapcount;
2694 return mapcount;
2695 }
2696
2697 page = compound_head(page);
2698
2699 _total_mapcount = ret = 0;
2700 for (i = 0; i < HPAGE_PMD_NR; i++) {
2701 mapcount = atomic_read(&page[i]._mapcount) + 1;
2702 ret = max(ret, mapcount);
2703 _total_mapcount += mapcount;
2704 }
2705 if (PageDoubleMap(page)) {
2706 ret -= 1;
2707 _total_mapcount -= HPAGE_PMD_NR;
2708 }
2709 mapcount = compound_mapcount(page);
2710 ret += mapcount;
2711 _total_mapcount += mapcount;
2712 if (total_mapcount)
2713 *total_mapcount = _total_mapcount;
2714 return ret;
2715}
2716
b8f593cd
HY
2717/* Racy check whether the huge page can be split */
2718bool can_split_huge_page(struct page *page, int *pextra_pins)
2719{
2720 int extra_pins;
2721
aa5dc07f 2722 /* Additional pins from page cache */
b8f593cd
HY
2723 if (PageAnon(page))
2724 extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2725 else
2726 extra_pins = HPAGE_PMD_NR;
2727 if (pextra_pins)
2728 *pextra_pins = extra_pins;
2729 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2730}
2731
e9b61f19
KS
2732/*
2733 * This function splits huge page into normal pages. @page can point to any
2734 * subpage of huge page to split. Split doesn't change the position of @page.
2735 *
2736 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2737 * The huge page must be locked.
2738 *
2739 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2740 *
2741 * Both head page and tail pages will inherit mapping, flags, and so on from
2742 * the hugepage.
2743 *
2744 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2745 * they are not mapped.
2746 *
2747 * Returns 0 if the hugepage is split successfully.
2748 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2749 * us.
2750 */
2751int split_huge_page_to_list(struct page *page, struct list_head *list)
2752{
2753 struct page *head = compound_head(page);
a3d0a918 2754 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
a8803e6c 2755 struct deferred_split *ds_queue = get_deferred_split_queue(head);
baa355fd
KS
2756 struct anon_vma *anon_vma = NULL;
2757 struct address_space *mapping = NULL;
2758 int count, mapcount, extra_pins, ret;
d9654322 2759 bool mlocked;
0b9b6fff 2760 unsigned long flags;
006d3ff2 2761 pgoff_t end;
e9b61f19 2762
cb829624 2763 VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
a8803e6c
WY
2764 VM_BUG_ON_PAGE(!PageLocked(head), head);
2765 VM_BUG_ON_PAGE(!PageCompound(head), head);
e9b61f19 2766
a8803e6c 2767 if (PageWriteback(head))
59807685
HY
2768 return -EBUSY;
2769
baa355fd
KS
2770 if (PageAnon(head)) {
2771 /*
2772 * The caller does not necessarily hold an mmap_sem that would
2773 * prevent the anon_vma disappearing so we first we take a
2774 * reference to it and then lock the anon_vma for write. This
2775 * is similar to page_lock_anon_vma_read except the write lock
2776 * is taken to serialise against parallel split or collapse
2777 * operations.
2778 */
2779 anon_vma = page_get_anon_vma(head);
2780 if (!anon_vma) {
2781 ret = -EBUSY;
2782 goto out;
2783 }
006d3ff2 2784 end = -1;
baa355fd
KS
2785 mapping = NULL;
2786 anon_vma_lock_write(anon_vma);
2787 } else {
2788 mapping = head->mapping;
2789
2790 /* Truncated ? */
2791 if (!mapping) {
2792 ret = -EBUSY;
2793 goto out;
2794 }
2795
baa355fd
KS
2796 anon_vma = NULL;
2797 i_mmap_lock_read(mapping);
006d3ff2
HD
2798
2799 /*
2800 *__split_huge_page() may need to trim off pages beyond EOF:
2801 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2802 * which cannot be nested inside the page tree lock. So note
2803 * end now: i_size itself may be changed at any moment, but
2804 * head page lock is good enough to serialize the trimming.
2805 */
2806 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
e9b61f19 2807 }
e9b61f19
KS
2808
2809 /*
906f9cdf 2810 * Racy check if we can split the page, before unmap_page() will
e9b61f19
KS
2811 * split PMDs
2812 */
b8f593cd 2813 if (!can_split_huge_page(head, &extra_pins)) {
e9b61f19
KS
2814 ret = -EBUSY;
2815 goto out_unlock;
2816 }
2817
a8803e6c 2818 mlocked = PageMlocked(head);
906f9cdf 2819 unmap_page(head);
e9b61f19
KS
2820 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2821
d9654322
KS
2822 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2823 if (mlocked)
2824 lru_add_drain();
2825
baa355fd 2826 /* prevent PageLRU to go away from under us, and freeze lru stats */
f4b7e272 2827 spin_lock_irqsave(&pgdata->lru_lock, flags);
baa355fd
KS
2828
2829 if (mapping) {
aa5dc07f 2830 XA_STATE(xas, &mapping->i_pages, page_index(head));
baa355fd 2831
baa355fd 2832 /*
aa5dc07f 2833 * Check if the head page is present in page cache.
baa355fd
KS
2834 * We assume all tail are present too, if head is there.
2835 */
aa5dc07f
MW
2836 xa_lock(&mapping->i_pages);
2837 if (xas_load(&xas) != head)
baa355fd
KS
2838 goto fail;
2839 }
2840
0139aa7b 2841 /* Prevent deferred_split_scan() touching ->_refcount */
364c1eeb 2842 spin_lock(&ds_queue->split_queue_lock);
e9b61f19
KS
2843 count = page_count(head);
2844 mapcount = total_mapcount(head);
baa355fd 2845 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
9a982250 2846 if (!list_empty(page_deferred_list(head))) {
364c1eeb 2847 ds_queue->split_queue_len--;
9a982250
KS
2848 list_del(page_deferred_list(head));
2849 }
afb97172 2850 spin_unlock(&ds_queue->split_queue_lock);
06d3eff6 2851 if (mapping) {
a8803e6c
WY
2852 if (PageSwapBacked(head))
2853 __dec_node_page_state(head, NR_SHMEM_THPS);
06d3eff6 2854 else
a8803e6c 2855 __dec_node_page_state(head, NR_FILE_THPS);
06d3eff6
KS
2856 }
2857
006d3ff2 2858 __split_huge_page(page, list, end, flags);
59807685
HY
2859 if (PageSwapCache(head)) {
2860 swp_entry_t entry = { .val = page_private(head) };
2861
2862 ret = split_swap_cluster(entry);
2863 } else
2864 ret = 0;
e9b61f19 2865 } else {
baa355fd
KS
2866 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2867 pr_alert("total_mapcount: %u, page_count(): %u\n",
2868 mapcount, count);
2869 if (PageTail(page))
2870 dump_page(head, NULL);
2871 dump_page(page, "total_mapcount(head) > 0");
2872 BUG();
2873 }
364c1eeb 2874 spin_unlock(&ds_queue->split_queue_lock);
baa355fd 2875fail: if (mapping)
b93b0163 2876 xa_unlock(&mapping->i_pages);
f4b7e272 2877 spin_unlock_irqrestore(&pgdata->lru_lock, flags);
906f9cdf 2878 remap_page(head);
e9b61f19
KS
2879 ret = -EBUSY;
2880 }
2881
2882out_unlock:
baa355fd
KS
2883 if (anon_vma) {
2884 anon_vma_unlock_write(anon_vma);
2885 put_anon_vma(anon_vma);
2886 }
2887 if (mapping)
2888 i_mmap_unlock_read(mapping);
e9b61f19
KS
2889out:
2890 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2891 return ret;
2892}
9a982250
KS
2893
2894void free_transhuge_page(struct page *page)
2895{
87eaceb3 2896 struct deferred_split *ds_queue = get_deferred_split_queue(page);
9a982250
KS
2897 unsigned long flags;
2898
364c1eeb 2899 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
9a982250 2900 if (!list_empty(page_deferred_list(page))) {
364c1eeb 2901 ds_queue->split_queue_len--;
9a982250
KS
2902 list_del(page_deferred_list(page));
2903 }
364c1eeb 2904 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
9a982250
KS
2905 free_compound_page(page);
2906}
2907
2908void deferred_split_huge_page(struct page *page)
2909{
87eaceb3
YS
2910 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2911#ifdef CONFIG_MEMCG
2912 struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
2913#endif
9a982250
KS
2914 unsigned long flags;
2915
2916 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2917
87eaceb3
YS
2918 /*
2919 * The try_to_unmap() in page reclaim path might reach here too,
2920 * this may cause a race condition to corrupt deferred split queue.
2921 * And, if page reclaim is already handling the same page, it is
2922 * unnecessary to handle it again in shrinker.
2923 *
2924 * Check PageSwapCache to determine if the page is being
2925 * handled by page reclaim since THP swap would add the page into
2926 * swap cache before calling try_to_unmap().
2927 */
2928 if (PageSwapCache(page))
2929 return;
2930
364c1eeb 2931 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
9a982250 2932 if (list_empty(page_deferred_list(page))) {
f9719a03 2933 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
364c1eeb
YS
2934 list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2935 ds_queue->split_queue_len++;
87eaceb3
YS
2936#ifdef CONFIG_MEMCG
2937 if (memcg)
2938 memcg_set_shrinker_bit(memcg, page_to_nid(page),
2939 deferred_split_shrinker.id);
2940#endif
9a982250 2941 }
364c1eeb 2942 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
9a982250
KS
2943}
2944
2945static unsigned long deferred_split_count(struct shrinker *shrink,
2946 struct shrink_control *sc)
2947{
a3d0a918 2948 struct pglist_data *pgdata = NODE_DATA(sc->nid);
364c1eeb 2949 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
87eaceb3
YS
2950
2951#ifdef CONFIG_MEMCG
2952 if (sc->memcg)
2953 ds_queue = &sc->memcg->deferred_split_queue;
2954#endif
364c1eeb 2955 return READ_ONCE(ds_queue->split_queue_len);
9a982250
KS
2956}
2957
2958static unsigned long deferred_split_scan(struct shrinker *shrink,
2959 struct shrink_control *sc)
2960{
a3d0a918 2961 struct pglist_data *pgdata = NODE_DATA(sc->nid);
364c1eeb 2962 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
9a982250
KS
2963 unsigned long flags;
2964 LIST_HEAD(list), *pos, *next;
2965 struct page *page;
2966 int split = 0;
2967
87eaceb3
YS
2968#ifdef CONFIG_MEMCG
2969 if (sc->memcg)
2970 ds_queue = &sc->memcg->deferred_split_queue;
2971#endif
2972
364c1eeb 2973 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
9a982250 2974 /* Take pin on all head pages to avoid freeing them under us */
364c1eeb 2975 list_for_each_safe(pos, next, &ds_queue->split_queue) {
9a982250
KS
2976 page = list_entry((void *)pos, struct page, mapping);
2977 page = compound_head(page);
e3ae1953
KS
2978 if (get_page_unless_zero(page)) {
2979 list_move(page_deferred_list(page), &list);
2980 } else {
2981 /* We lost race with put_compound_page() */
9a982250 2982 list_del_init(page_deferred_list(page));
364c1eeb 2983 ds_queue->split_queue_len--;
9a982250 2984 }
e3ae1953
KS
2985 if (!--sc->nr_to_scan)
2986 break;
9a982250 2987 }
364c1eeb 2988 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
9a982250
KS
2989
2990 list_for_each_safe(pos, next, &list) {
2991 page = list_entry((void *)pos, struct page, mapping);
fa41b900
KS
2992 if (!trylock_page(page))
2993 goto next;
9a982250
KS
2994 /* split_huge_page() removes page from list on success */
2995 if (!split_huge_page(page))
2996 split++;
2997 unlock_page(page);
fa41b900 2998next:
9a982250
KS
2999 put_page(page);
3000 }
3001
364c1eeb
YS
3002 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3003 list_splice_tail(&list, &ds_queue->split_queue);
3004 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
9a982250 3005
cb8d68ec
KS
3006 /*
3007 * Stop shrinker if we didn't split any page, but the queue is empty.
3008 * This can happen if pages were freed under us.
3009 */
364c1eeb 3010 if (!split && list_empty(&ds_queue->split_queue))
cb8d68ec
KS
3011 return SHRINK_STOP;
3012 return split;
9a982250
KS
3013}
3014
3015static struct shrinker deferred_split_shrinker = {
3016 .count_objects = deferred_split_count,
3017 .scan_objects = deferred_split_scan,
3018 .seeks = DEFAULT_SEEKS,
87eaceb3
YS
3019 .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
3020 SHRINKER_NONSLAB,
9a982250 3021};
49071d43
KS
3022
3023#ifdef CONFIG_DEBUG_FS
3024static int split_huge_pages_set(void *data, u64 val)
3025{
3026 struct zone *zone;
3027 struct page *page;
3028 unsigned long pfn, max_zone_pfn;
3029 unsigned long total = 0, split = 0;
3030
3031 if (val != 1)
3032 return -EINVAL;
3033
3034 for_each_populated_zone(zone) {
3035 max_zone_pfn = zone_end_pfn(zone);
3036 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
3037 if (!pfn_valid(pfn))
3038 continue;
3039
3040 page = pfn_to_page(pfn);
3041 if (!get_page_unless_zero(page))
3042 continue;
3043
3044 if (zone != page_zone(page))
3045 goto next;
3046
baa355fd 3047 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
49071d43
KS
3048 goto next;
3049
3050 total++;
3051 lock_page(page);
3052 if (!split_huge_page(page))
3053 split++;
3054 unlock_page(page);
3055next:
3056 put_page(page);
3057 }
3058 }
3059
145bdaa1 3060 pr_info("%lu of %lu THP split\n", split, total);
49071d43
KS
3061
3062 return 0;
3063}
f1287869 3064DEFINE_DEBUGFS_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
49071d43
KS
3065 "%llu\n");
3066
3067static int __init split_huge_pages_debugfs(void)
3068{
d9f7979c
GKH
3069 debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3070 &split_huge_pages_fops);
49071d43
KS
3071 return 0;
3072}
3073late_initcall(split_huge_pages_debugfs);
3074#endif
616b8371
ZY
3075
3076#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3077void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3078 struct page *page)
3079{
3080 struct vm_area_struct *vma = pvmw->vma;
3081 struct mm_struct *mm = vma->vm_mm;
3082 unsigned long address = pvmw->address;
3083 pmd_t pmdval;
3084 swp_entry_t entry;
ab6e3d09 3085 pmd_t pmdswp;
616b8371
ZY
3086
3087 if (!(pvmw->pmd && !pvmw->pte))
3088 return;
3089
616b8371 3090 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
8a8683ad 3091 pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
616b8371
ZY
3092 if (pmd_dirty(pmdval))
3093 set_page_dirty(page);
3094 entry = make_migration_entry(page, pmd_write(pmdval));
ab6e3d09
NH
3095 pmdswp = swp_entry_to_pmd(entry);
3096 if (pmd_soft_dirty(pmdval))
3097 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3098 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
616b8371
ZY
3099 page_remove_rmap(page, true);
3100 put_page(page);
616b8371
ZY
3101}
3102
3103void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3104{
3105 struct vm_area_struct *vma = pvmw->vma;
3106 struct mm_struct *mm = vma->vm_mm;
3107 unsigned long address = pvmw->address;
3108 unsigned long mmun_start = address & HPAGE_PMD_MASK;
3109 pmd_t pmde;
3110 swp_entry_t entry;
3111
3112 if (!(pvmw->pmd && !pvmw->pte))
3113 return;
3114
3115 entry = pmd_to_swp_entry(*pvmw->pmd);
3116 get_page(new);
3117 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
ab6e3d09
NH
3118 if (pmd_swp_soft_dirty(*pvmw->pmd))
3119 pmde = pmd_mksoft_dirty(pmde);
616b8371 3120 if (is_write_migration_entry(entry))
f55e1014 3121 pmde = maybe_pmd_mkwrite(pmde, vma);
616b8371
ZY
3122
3123 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
e71769ae
NH
3124 if (PageAnon(new))
3125 page_add_anon_rmap(new, vma, mmun_start, true);
3126 else
3127 page_add_file_rmap(new, true);
616b8371 3128 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
e125fe40 3129 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
616b8371
ZY
3130 mlock_vma_page(new);
3131 update_mmu_cache_pmd(vma, address, pvmw->pmd);
3132}
3133#endif