]> git.ipfire.org Git - people/ms/linux.git/blame - mm/huge_memory.c
thp, mlock: do not allow huge pages in mlocked area
[people/ms/linux.git] / mm / huge_memory.c
CommitLineData
71e3aac0
AA
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
ae3a8c1c
AM
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
71e3aac0
AA
10#include <linux/mm.h>
11#include <linux/sched.h>
12#include <linux/highmem.h>
13#include <linux/hugetlb.h>
14#include <linux/mmu_notifier.h>
15#include <linux/rmap.h>
16#include <linux/swap.h>
97ae1749 17#include <linux/shrinker.h>
ba76149f 18#include <linux/mm_inline.h>
4897c765 19#include <linux/dax.h>
ba76149f
AA
20#include <linux/kthread.h>
21#include <linux/khugepaged.h>
878aee7d 22#include <linux/freezer.h>
a664b2d8 23#include <linux/mman.h>
325adeb5 24#include <linux/pagemap.h>
4daae3b4 25#include <linux/migrate.h>
43b5fbbd 26#include <linux/hashtable.h>
6b251fc9 27#include <linux/userfaultfd_k.h>
33c3fc71 28#include <linux/page_idle.h>
97ae1749 29
71e3aac0
AA
30#include <asm/tlb.h>
31#include <asm/pgalloc.h>
32#include "internal.h"
33
7d2eba05
EA
34enum scan_result {
35 SCAN_FAIL,
36 SCAN_SUCCEED,
37 SCAN_PMD_NULL,
38 SCAN_EXCEED_NONE_PTE,
39 SCAN_PTE_NON_PRESENT,
40 SCAN_PAGE_RO,
41 SCAN_NO_REFERENCED_PAGE,
42 SCAN_PAGE_NULL,
43 SCAN_SCAN_ABORT,
44 SCAN_PAGE_COUNT,
45 SCAN_PAGE_LRU,
46 SCAN_PAGE_LOCK,
47 SCAN_PAGE_ANON,
48 SCAN_ANY_PROCESS,
49 SCAN_VMA_NULL,
50 SCAN_VMA_CHECK,
51 SCAN_ADDRESS_RANGE,
52 SCAN_SWAP_CACHE_PAGE,
53 SCAN_DEL_PAGE_LRU,
54 SCAN_ALLOC_HUGE_PAGE_FAIL,
55 SCAN_CGROUP_CHARGE_FAIL
56};
57
58#define CREATE_TRACE_POINTS
59#include <trace/events/huge_memory.h>
60
ba76149f 61/*
8bfa3f9a
JW
62 * By default transparent hugepage support is disabled in order that avoid
63 * to risk increase the memory footprint of applications without a guaranteed
64 * benefit. When transparent hugepage support is enabled, is for all mappings,
65 * and khugepaged scans all mappings.
66 * Defrag is invoked by khugepaged hugepage allocations and by page faults
67 * for all hugepage allocations.
ba76149f 68 */
71e3aac0 69unsigned long transparent_hugepage_flags __read_mostly =
13ece886 70#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 71 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
72#endif
73#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
74 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
75#endif
d39d33c3 76 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
79da5407
KS
77 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
78 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
ba76149f
AA
79
80/* default scan 8*512 pte (or vmas) every 30 second */
81static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
82static unsigned int khugepaged_pages_collapsed;
83static unsigned int khugepaged_full_scans;
84static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
85/* during fragmentation poll the hugepage allocator once every minute */
86static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
87static struct task_struct *khugepaged_thread __read_mostly;
88static DEFINE_MUTEX(khugepaged_mutex);
89static DEFINE_SPINLOCK(khugepaged_mm_lock);
90static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
91/*
92 * default collapse hugepages if there is at least one pte mapped like
93 * it would have happened if the vma was large enough during page
94 * fault.
95 */
96static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
97
98static int khugepaged(void *none);
ba76149f 99static int khugepaged_slab_init(void);
65ebb64f 100static void khugepaged_slab_exit(void);
ba76149f 101
43b5fbbd
SL
102#define MM_SLOTS_HASH_BITS 10
103static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
104
ba76149f
AA
105static struct kmem_cache *mm_slot_cache __read_mostly;
106
107/**
108 * struct mm_slot - hash lookup from mm to mm_slot
109 * @hash: hash collision list
110 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
111 * @mm: the mm that this information is valid for
112 */
113struct mm_slot {
114 struct hlist_node hash;
115 struct list_head mm_node;
116 struct mm_struct *mm;
117};
118
119/**
120 * struct khugepaged_scan - cursor for scanning
121 * @mm_head: the head of the mm list to scan
122 * @mm_slot: the current mm_slot we are scanning
123 * @address: the next address inside that to be scanned
124 *
125 * There is only the one khugepaged_scan instance of this cursor structure.
126 */
127struct khugepaged_scan {
128 struct list_head mm_head;
129 struct mm_slot *mm_slot;
130 unsigned long address;
2f1da642
HS
131};
132static struct khugepaged_scan khugepaged_scan = {
ba76149f
AA
133 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
134};
135
f000565a 136
2c0b80d4 137static void set_recommended_min_free_kbytes(void)
f000565a
AA
138{
139 struct zone *zone;
140 int nr_zones = 0;
141 unsigned long recommended_min;
f000565a 142
f000565a
AA
143 for_each_populated_zone(zone)
144 nr_zones++;
145
974a786e 146 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
f000565a
AA
147 recommended_min = pageblock_nr_pages * nr_zones * 2;
148
149 /*
150 * Make sure that on average at least two pageblocks are almost free
151 * of another type, one for a migratetype to fall back to and a
152 * second to avoid subsequent fallbacks of other types There are 3
153 * MIGRATE_TYPES we care about.
154 */
155 recommended_min += pageblock_nr_pages * nr_zones *
156 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
157
158 /* don't ever allow to reserve more than 5% of the lowmem */
159 recommended_min = min(recommended_min,
160 (unsigned long) nr_free_buffer_pages() / 20);
161 recommended_min <<= (PAGE_SHIFT-10);
162
42aa83cb
HP
163 if (recommended_min > min_free_kbytes) {
164 if (user_min_free_kbytes >= 0)
165 pr_info("raising min_free_kbytes from %d to %lu "
166 "to help transparent hugepage allocations\n",
167 min_free_kbytes, recommended_min);
168
f000565a 169 min_free_kbytes = recommended_min;
42aa83cb 170 }
f000565a 171 setup_per_zone_wmarks();
f000565a 172}
f000565a 173
79553da2 174static int start_stop_khugepaged(void)
ba76149f
AA
175{
176 int err = 0;
177 if (khugepaged_enabled()) {
ba76149f
AA
178 if (!khugepaged_thread)
179 khugepaged_thread = kthread_run(khugepaged, NULL,
180 "khugepaged");
18e8e5c7 181 if (IS_ERR(khugepaged_thread)) {
ae3a8c1c 182 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
ba76149f
AA
183 err = PTR_ERR(khugepaged_thread);
184 khugepaged_thread = NULL;
79553da2 185 goto fail;
ba76149f 186 }
911891af
XG
187
188 if (!list_empty(&khugepaged_scan.mm_head))
ba76149f 189 wake_up_interruptible(&khugepaged_wait);
f000565a
AA
190
191 set_recommended_min_free_kbytes();
911891af 192 } else if (khugepaged_thread) {
911891af
XG
193 kthread_stop(khugepaged_thread);
194 khugepaged_thread = NULL;
195 }
79553da2 196fail:
ba76149f
AA
197 return err;
198}
71e3aac0 199
97ae1749 200static atomic_t huge_zero_refcount;
56873f43 201struct page *huge_zero_page __read_mostly;
4a6c1297 202
fc437044 203struct page *get_huge_zero_page(void)
97ae1749
KS
204{
205 struct page *zero_page;
206retry:
207 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
4db0c3c2 208 return READ_ONCE(huge_zero_page);
97ae1749
KS
209
210 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
4a6c1297 211 HPAGE_PMD_ORDER);
d8a8e1f0
KS
212 if (!zero_page) {
213 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
5918d10a 214 return NULL;
d8a8e1f0
KS
215 }
216 count_vm_event(THP_ZERO_PAGE_ALLOC);
97ae1749 217 preempt_disable();
5918d10a 218 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97ae1749 219 preempt_enable();
5ddacbe9 220 __free_pages(zero_page, compound_order(zero_page));
97ae1749
KS
221 goto retry;
222 }
223
224 /* We take additional reference here. It will be put back by shrinker */
225 atomic_set(&huge_zero_refcount, 2);
226 preempt_enable();
4db0c3c2 227 return READ_ONCE(huge_zero_page);
4a6c1297
KS
228}
229
97ae1749 230static void put_huge_zero_page(void)
4a6c1297 231{
97ae1749
KS
232 /*
233 * Counter should never go to zero here. Only shrinker can put
234 * last reference.
235 */
236 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
4a6c1297
KS
237}
238
48896466
GC
239static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
240 struct shrink_control *sc)
4a6c1297 241{
48896466
GC
242 /* we can free zero page only if last reference remains */
243 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
244}
97ae1749 245
48896466
GC
246static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
247 struct shrink_control *sc)
248{
97ae1749 249 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
5918d10a
KS
250 struct page *zero_page = xchg(&huge_zero_page, NULL);
251 BUG_ON(zero_page == NULL);
5ddacbe9 252 __free_pages(zero_page, compound_order(zero_page));
48896466 253 return HPAGE_PMD_NR;
97ae1749
KS
254 }
255
256 return 0;
4a6c1297
KS
257}
258
97ae1749 259static struct shrinker huge_zero_page_shrinker = {
48896466
GC
260 .count_objects = shrink_huge_zero_page_count,
261 .scan_objects = shrink_huge_zero_page_scan,
97ae1749
KS
262 .seeks = DEFAULT_SEEKS,
263};
264
71e3aac0 265#ifdef CONFIG_SYSFS
ba76149f 266
71e3aac0
AA
267static ssize_t double_flag_show(struct kobject *kobj,
268 struct kobj_attribute *attr, char *buf,
269 enum transparent_hugepage_flag enabled,
270 enum transparent_hugepage_flag req_madv)
271{
272 if (test_bit(enabled, &transparent_hugepage_flags)) {
273 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
274 return sprintf(buf, "[always] madvise never\n");
275 } else if (test_bit(req_madv, &transparent_hugepage_flags))
276 return sprintf(buf, "always [madvise] never\n");
277 else
278 return sprintf(buf, "always madvise [never]\n");
279}
280static ssize_t double_flag_store(struct kobject *kobj,
281 struct kobj_attribute *attr,
282 const char *buf, size_t count,
283 enum transparent_hugepage_flag enabled,
284 enum transparent_hugepage_flag req_madv)
285{
286 if (!memcmp("always", buf,
287 min(sizeof("always")-1, count))) {
288 set_bit(enabled, &transparent_hugepage_flags);
289 clear_bit(req_madv, &transparent_hugepage_flags);
290 } else if (!memcmp("madvise", buf,
291 min(sizeof("madvise")-1, count))) {
292 clear_bit(enabled, &transparent_hugepage_flags);
293 set_bit(req_madv, &transparent_hugepage_flags);
294 } else if (!memcmp("never", buf,
295 min(sizeof("never")-1, count))) {
296 clear_bit(enabled, &transparent_hugepage_flags);
297 clear_bit(req_madv, &transparent_hugepage_flags);
298 } else
299 return -EINVAL;
300
301 return count;
302}
303
304static ssize_t enabled_show(struct kobject *kobj,
305 struct kobj_attribute *attr, char *buf)
306{
307 return double_flag_show(kobj, attr, buf,
308 TRANSPARENT_HUGEPAGE_FLAG,
309 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
310}
311static ssize_t enabled_store(struct kobject *kobj,
312 struct kobj_attribute *attr,
313 const char *buf, size_t count)
314{
ba76149f
AA
315 ssize_t ret;
316
317 ret = double_flag_store(kobj, attr, buf, count,
318 TRANSPARENT_HUGEPAGE_FLAG,
319 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
320
321 if (ret > 0) {
911891af
XG
322 int err;
323
324 mutex_lock(&khugepaged_mutex);
79553da2 325 err = start_stop_khugepaged();
911891af
XG
326 mutex_unlock(&khugepaged_mutex);
327
ba76149f
AA
328 if (err)
329 ret = err;
330 }
331
332 return ret;
71e3aac0
AA
333}
334static struct kobj_attribute enabled_attr =
335 __ATTR(enabled, 0644, enabled_show, enabled_store);
336
337static ssize_t single_flag_show(struct kobject *kobj,
338 struct kobj_attribute *attr, char *buf,
339 enum transparent_hugepage_flag flag)
340{
e27e6151
BH
341 return sprintf(buf, "%d\n",
342 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 343}
e27e6151 344
71e3aac0
AA
345static ssize_t single_flag_store(struct kobject *kobj,
346 struct kobj_attribute *attr,
347 const char *buf, size_t count,
348 enum transparent_hugepage_flag flag)
349{
e27e6151
BH
350 unsigned long value;
351 int ret;
352
353 ret = kstrtoul(buf, 10, &value);
354 if (ret < 0)
355 return ret;
356 if (value > 1)
357 return -EINVAL;
358
359 if (value)
71e3aac0 360 set_bit(flag, &transparent_hugepage_flags);
e27e6151 361 else
71e3aac0 362 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
363
364 return count;
365}
366
367/*
368 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
369 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
370 * memory just to allocate one more hugepage.
371 */
372static ssize_t defrag_show(struct kobject *kobj,
373 struct kobj_attribute *attr, char *buf)
374{
375 return double_flag_show(kobj, attr, buf,
376 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
377 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
378}
379static ssize_t defrag_store(struct kobject *kobj,
380 struct kobj_attribute *attr,
381 const char *buf, size_t count)
382{
383 return double_flag_store(kobj, attr, buf, count,
384 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
385 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
386}
387static struct kobj_attribute defrag_attr =
388 __ATTR(defrag, 0644, defrag_show, defrag_store);
389
79da5407
KS
390static ssize_t use_zero_page_show(struct kobject *kobj,
391 struct kobj_attribute *attr, char *buf)
392{
393 return single_flag_show(kobj, attr, buf,
394 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
395}
396static ssize_t use_zero_page_store(struct kobject *kobj,
397 struct kobj_attribute *attr, const char *buf, size_t count)
398{
399 return single_flag_store(kobj, attr, buf, count,
400 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
401}
402static struct kobj_attribute use_zero_page_attr =
403 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
71e3aac0
AA
404#ifdef CONFIG_DEBUG_VM
405static ssize_t debug_cow_show(struct kobject *kobj,
406 struct kobj_attribute *attr, char *buf)
407{
408 return single_flag_show(kobj, attr, buf,
409 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
410}
411static ssize_t debug_cow_store(struct kobject *kobj,
412 struct kobj_attribute *attr,
413 const char *buf, size_t count)
414{
415 return single_flag_store(kobj, attr, buf, count,
416 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
417}
418static struct kobj_attribute debug_cow_attr =
419 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
420#endif /* CONFIG_DEBUG_VM */
421
422static struct attribute *hugepage_attr[] = {
423 &enabled_attr.attr,
424 &defrag_attr.attr,
79da5407 425 &use_zero_page_attr.attr,
71e3aac0
AA
426#ifdef CONFIG_DEBUG_VM
427 &debug_cow_attr.attr,
428#endif
429 NULL,
430};
431
432static struct attribute_group hugepage_attr_group = {
433 .attrs = hugepage_attr,
ba76149f
AA
434};
435
436static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
437 struct kobj_attribute *attr,
438 char *buf)
439{
440 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
441}
442
443static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
444 struct kobj_attribute *attr,
445 const char *buf, size_t count)
446{
447 unsigned long msecs;
448 int err;
449
3dbb95f7 450 err = kstrtoul(buf, 10, &msecs);
ba76149f
AA
451 if (err || msecs > UINT_MAX)
452 return -EINVAL;
453
454 khugepaged_scan_sleep_millisecs = msecs;
455 wake_up_interruptible(&khugepaged_wait);
456
457 return count;
458}
459static struct kobj_attribute scan_sleep_millisecs_attr =
460 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
461 scan_sleep_millisecs_store);
462
463static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
464 struct kobj_attribute *attr,
465 char *buf)
466{
467 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
468}
469
470static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
471 struct kobj_attribute *attr,
472 const char *buf, size_t count)
473{
474 unsigned long msecs;
475 int err;
476
3dbb95f7 477 err = kstrtoul(buf, 10, &msecs);
ba76149f
AA
478 if (err || msecs > UINT_MAX)
479 return -EINVAL;
480
481 khugepaged_alloc_sleep_millisecs = msecs;
482 wake_up_interruptible(&khugepaged_wait);
483
484 return count;
485}
486static struct kobj_attribute alloc_sleep_millisecs_attr =
487 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
488 alloc_sleep_millisecs_store);
489
490static ssize_t pages_to_scan_show(struct kobject *kobj,
491 struct kobj_attribute *attr,
492 char *buf)
493{
494 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
495}
496static ssize_t pages_to_scan_store(struct kobject *kobj,
497 struct kobj_attribute *attr,
498 const char *buf, size_t count)
499{
500 int err;
501 unsigned long pages;
502
3dbb95f7 503 err = kstrtoul(buf, 10, &pages);
ba76149f
AA
504 if (err || !pages || pages > UINT_MAX)
505 return -EINVAL;
506
507 khugepaged_pages_to_scan = pages;
508
509 return count;
510}
511static struct kobj_attribute pages_to_scan_attr =
512 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
513 pages_to_scan_store);
514
515static ssize_t pages_collapsed_show(struct kobject *kobj,
516 struct kobj_attribute *attr,
517 char *buf)
518{
519 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
520}
521static struct kobj_attribute pages_collapsed_attr =
522 __ATTR_RO(pages_collapsed);
523
524static ssize_t full_scans_show(struct kobject *kobj,
525 struct kobj_attribute *attr,
526 char *buf)
527{
528 return sprintf(buf, "%u\n", khugepaged_full_scans);
529}
530static struct kobj_attribute full_scans_attr =
531 __ATTR_RO(full_scans);
532
533static ssize_t khugepaged_defrag_show(struct kobject *kobj,
534 struct kobj_attribute *attr, char *buf)
535{
536 return single_flag_show(kobj, attr, buf,
537 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
538}
539static ssize_t khugepaged_defrag_store(struct kobject *kobj,
540 struct kobj_attribute *attr,
541 const char *buf, size_t count)
542{
543 return single_flag_store(kobj, attr, buf, count,
544 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
545}
546static struct kobj_attribute khugepaged_defrag_attr =
547 __ATTR(defrag, 0644, khugepaged_defrag_show,
548 khugepaged_defrag_store);
549
550/*
551 * max_ptes_none controls if khugepaged should collapse hugepages over
552 * any unmapped ptes in turn potentially increasing the memory
553 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
554 * reduce the available free memory in the system as it
555 * runs. Increasing max_ptes_none will instead potentially reduce the
556 * free memory in the system during the khugepaged scan.
557 */
558static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
559 struct kobj_attribute *attr,
560 char *buf)
561{
562 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
563}
564static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
565 struct kobj_attribute *attr,
566 const char *buf, size_t count)
567{
568 int err;
569 unsigned long max_ptes_none;
570
3dbb95f7 571 err = kstrtoul(buf, 10, &max_ptes_none);
ba76149f
AA
572 if (err || max_ptes_none > HPAGE_PMD_NR-1)
573 return -EINVAL;
574
575 khugepaged_max_ptes_none = max_ptes_none;
576
577 return count;
578}
579static struct kobj_attribute khugepaged_max_ptes_none_attr =
580 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
581 khugepaged_max_ptes_none_store);
582
583static struct attribute *khugepaged_attr[] = {
584 &khugepaged_defrag_attr.attr,
585 &khugepaged_max_ptes_none_attr.attr,
586 &pages_to_scan_attr.attr,
587 &pages_collapsed_attr.attr,
588 &full_scans_attr.attr,
589 &scan_sleep_millisecs_attr.attr,
590 &alloc_sleep_millisecs_attr.attr,
591 NULL,
592};
593
594static struct attribute_group khugepaged_attr_group = {
595 .attrs = khugepaged_attr,
596 .name = "khugepaged",
71e3aac0 597};
71e3aac0 598
569e5590 599static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 600{
71e3aac0
AA
601 int err;
602
569e5590
SL
603 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
604 if (unlikely(!*hugepage_kobj)) {
ae3a8c1c 605 pr_err("failed to create transparent hugepage kobject\n");
569e5590 606 return -ENOMEM;
ba76149f
AA
607 }
608
569e5590 609 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f 610 if (err) {
ae3a8c1c 611 pr_err("failed to register transparent hugepage group\n");
569e5590 612 goto delete_obj;
ba76149f
AA
613 }
614
569e5590 615 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f 616 if (err) {
ae3a8c1c 617 pr_err("failed to register transparent hugepage group\n");
569e5590 618 goto remove_hp_group;
ba76149f 619 }
569e5590
SL
620
621 return 0;
622
623remove_hp_group:
624 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
625delete_obj:
626 kobject_put(*hugepage_kobj);
627 return err;
628}
629
630static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
631{
632 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
633 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
634 kobject_put(hugepage_kobj);
635}
636#else
637static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
638{
639 return 0;
640}
641
642static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
643{
644}
645#endif /* CONFIG_SYSFS */
646
647static int __init hugepage_init(void)
648{
649 int err;
650 struct kobject *hugepage_kobj;
651
652 if (!has_transparent_hugepage()) {
653 transparent_hugepage_flags = 0;
654 return -EINVAL;
655 }
656
657 err = hugepage_init_sysfs(&hugepage_kobj);
658 if (err)
65ebb64f 659 goto err_sysfs;
ba76149f
AA
660
661 err = khugepaged_slab_init();
662 if (err)
65ebb64f 663 goto err_slab;
ba76149f 664
65ebb64f
KS
665 err = register_shrinker(&huge_zero_page_shrinker);
666 if (err)
667 goto err_hzp_shrinker;
97ae1749 668
97562cd2
RR
669 /*
670 * By default disable transparent hugepages on smaller systems,
671 * where the extra memory used could hurt more than TLB overhead
672 * is likely to save. The admin can still enable it through /sys.
673 */
79553da2 674 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
97562cd2 675 transparent_hugepage_flags = 0;
79553da2
KS
676 return 0;
677 }
97562cd2 678
79553da2 679 err = start_stop_khugepaged();
65ebb64f
KS
680 if (err)
681 goto err_khugepaged;
ba76149f 682
569e5590 683 return 0;
65ebb64f
KS
684err_khugepaged:
685 unregister_shrinker(&huge_zero_page_shrinker);
686err_hzp_shrinker:
687 khugepaged_slab_exit();
688err_slab:
569e5590 689 hugepage_exit_sysfs(hugepage_kobj);
65ebb64f 690err_sysfs:
ba76149f 691 return err;
71e3aac0 692}
a64fb3cd 693subsys_initcall(hugepage_init);
71e3aac0
AA
694
695static int __init setup_transparent_hugepage(char *str)
696{
697 int ret = 0;
698 if (!str)
699 goto out;
700 if (!strcmp(str, "always")) {
701 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
702 &transparent_hugepage_flags);
703 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
704 &transparent_hugepage_flags);
705 ret = 1;
706 } else if (!strcmp(str, "madvise")) {
707 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
708 &transparent_hugepage_flags);
709 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
710 &transparent_hugepage_flags);
711 ret = 1;
712 } else if (!strcmp(str, "never")) {
713 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
714 &transparent_hugepage_flags);
715 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
716 &transparent_hugepage_flags);
717 ret = 1;
718 }
719out:
720 if (!ret)
ae3a8c1c 721 pr_warn("transparent_hugepage= cannot parse, ignored\n");
71e3aac0
AA
722 return ret;
723}
724__setup("transparent_hugepage=", setup_transparent_hugepage);
725
b32967ff 726pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
71e3aac0
AA
727{
728 if (likely(vma->vm_flags & VM_WRITE))
729 pmd = pmd_mkwrite(pmd);
730 return pmd;
731}
732
3122359a 733static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
b3092b3b
BL
734{
735 pmd_t entry;
3122359a 736 entry = mk_pmd(page, prot);
b3092b3b
BL
737 entry = pmd_mkhuge(entry);
738 return entry;
739}
740
71e3aac0
AA
741static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
742 struct vm_area_struct *vma,
230c92a8 743 unsigned long address, pmd_t *pmd,
6b251fc9
AA
744 struct page *page, gfp_t gfp,
745 unsigned int flags)
71e3aac0 746{
00501b53 747 struct mem_cgroup *memcg;
71e3aac0 748 pgtable_t pgtable;
c4088ebd 749 spinlock_t *ptl;
230c92a8 750 unsigned long haddr = address & HPAGE_PMD_MASK;
71e3aac0 751
309381fe 752 VM_BUG_ON_PAGE(!PageCompound(page), page);
00501b53 753
f627c2f5 754 if (mem_cgroup_try_charge(page, mm, gfp, &memcg, true)) {
6b251fc9
AA
755 put_page(page);
756 count_vm_event(THP_FAULT_FALLBACK);
757 return VM_FAULT_FALLBACK;
758 }
00501b53 759
71e3aac0 760 pgtable = pte_alloc_one(mm, haddr);
00501b53 761 if (unlikely(!pgtable)) {
f627c2f5 762 mem_cgroup_cancel_charge(page, memcg, true);
6b251fc9 763 put_page(page);
71e3aac0 764 return VM_FAULT_OOM;
00501b53 765 }
71e3aac0
AA
766
767 clear_huge_page(page, haddr, HPAGE_PMD_NR);
52f37629
MK
768 /*
769 * The memory barrier inside __SetPageUptodate makes sure that
770 * clear_huge_page writes become visible before the set_pmd_at()
771 * write.
772 */
71e3aac0
AA
773 __SetPageUptodate(page);
774
c4088ebd 775 ptl = pmd_lock(mm, pmd);
71e3aac0 776 if (unlikely(!pmd_none(*pmd))) {
c4088ebd 777 spin_unlock(ptl);
f627c2f5 778 mem_cgroup_cancel_charge(page, memcg, true);
71e3aac0
AA
779 put_page(page);
780 pte_free(mm, pgtable);
781 } else {
782 pmd_t entry;
6b251fc9
AA
783
784 /* Deliver the page fault to userland */
785 if (userfaultfd_missing(vma)) {
786 int ret;
787
788 spin_unlock(ptl);
f627c2f5 789 mem_cgroup_cancel_charge(page, memcg, true);
6b251fc9
AA
790 put_page(page);
791 pte_free(mm, pgtable);
230c92a8 792 ret = handle_userfault(vma, address, flags,
6b251fc9
AA
793 VM_UFFD_MISSING);
794 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
795 return ret;
796 }
797
3122359a
KS
798 entry = mk_huge_pmd(page, vma->vm_page_prot);
799 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
d281ee61 800 page_add_new_anon_rmap(page, vma, haddr, true);
f627c2f5 801 mem_cgroup_commit_charge(page, memcg, false, true);
00501b53 802 lru_cache_add_active_or_unevictable(page, vma);
6b0b50b0 803 pgtable_trans_huge_deposit(mm, pmd, pgtable);
71e3aac0 804 set_pmd_at(mm, haddr, pmd, entry);
71e3aac0 805 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
e1f56c89 806 atomic_long_inc(&mm->nr_ptes);
c4088ebd 807 spin_unlock(ptl);
6b251fc9 808 count_vm_event(THP_FAULT_ALLOC);
71e3aac0
AA
809 }
810
aa2e878e 811 return 0;
71e3aac0
AA
812}
813
cc5d462f 814static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
0bbbc0b3 815{
71baba4b 816 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_RECLAIM)) | extra_gfp;
0bbbc0b3
AA
817}
818
c4088ebd 819/* Caller must hold page table lock. */
d295e341 820static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
97ae1749 821 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
5918d10a 822 struct page *zero_page)
fc9fe822
KS
823{
824 pmd_t entry;
7c414164
AM
825 if (!pmd_none(*pmd))
826 return false;
5918d10a 827 entry = mk_pmd(zero_page, vma->vm_page_prot);
fc9fe822 828 entry = pmd_mkhuge(entry);
6b0b50b0 829 pgtable_trans_huge_deposit(mm, pmd, pgtable);
fc9fe822 830 set_pmd_at(mm, haddr, pmd, entry);
e1f56c89 831 atomic_long_inc(&mm->nr_ptes);
7c414164 832 return true;
fc9fe822
KS
833}
834
71e3aac0
AA
835int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
836 unsigned long address, pmd_t *pmd,
837 unsigned int flags)
838{
077fcf11 839 gfp_t gfp;
71e3aac0
AA
840 struct page *page;
841 unsigned long haddr = address & HPAGE_PMD_MASK;
71e3aac0 842
128ec037 843 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
c0292554 844 return VM_FAULT_FALLBACK;
7479df6d
KS
845 if (vma->vm_flags & VM_LOCKED)
846 return VM_FAULT_FALLBACK;
128ec037
KS
847 if (unlikely(anon_vma_prepare(vma)))
848 return VM_FAULT_OOM;
6d50e60c 849 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
128ec037 850 return VM_FAULT_OOM;
593befa6 851 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) &&
128ec037 852 transparent_hugepage_use_zero_page()) {
c4088ebd 853 spinlock_t *ptl;
128ec037
KS
854 pgtable_t pgtable;
855 struct page *zero_page;
856 bool set;
6b251fc9 857 int ret;
128ec037
KS
858 pgtable = pte_alloc_one(mm, haddr);
859 if (unlikely(!pgtable))
ba76149f 860 return VM_FAULT_OOM;
128ec037
KS
861 zero_page = get_huge_zero_page();
862 if (unlikely(!zero_page)) {
863 pte_free(mm, pgtable);
81ab4201 864 count_vm_event(THP_FAULT_FALLBACK);
c0292554 865 return VM_FAULT_FALLBACK;
b9bbfbe3 866 }
c4088ebd 867 ptl = pmd_lock(mm, pmd);
6b251fc9
AA
868 ret = 0;
869 set = false;
870 if (pmd_none(*pmd)) {
871 if (userfaultfd_missing(vma)) {
872 spin_unlock(ptl);
230c92a8 873 ret = handle_userfault(vma, address, flags,
6b251fc9
AA
874 VM_UFFD_MISSING);
875 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
876 } else {
877 set_huge_zero_page(pgtable, mm, vma,
878 haddr, pmd,
879 zero_page);
880 spin_unlock(ptl);
881 set = true;
882 }
883 } else
884 spin_unlock(ptl);
128ec037
KS
885 if (!set) {
886 pte_free(mm, pgtable);
887 put_huge_zero_page();
edad9d2c 888 }
6b251fc9 889 return ret;
71e3aac0 890 }
077fcf11
AK
891 gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
892 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
128ec037
KS
893 if (unlikely(!page)) {
894 count_vm_event(THP_FAULT_FALLBACK);
c0292554 895 return VM_FAULT_FALLBACK;
128ec037 896 }
230c92a8
AA
897 return __do_huge_pmd_anonymous_page(mm, vma, address, pmd, page, gfp,
898 flags);
71e3aac0
AA
899}
900
ae18d6dc 901static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
5cad465d
MW
902 pmd_t *pmd, unsigned long pfn, pgprot_t prot, bool write)
903{
904 struct mm_struct *mm = vma->vm_mm;
905 pmd_t entry;
906 spinlock_t *ptl;
907
908 ptl = pmd_lock(mm, pmd);
909 if (pmd_none(*pmd)) {
910 entry = pmd_mkhuge(pfn_pmd(pfn, prot));
911 if (write) {
912 entry = pmd_mkyoung(pmd_mkdirty(entry));
913 entry = maybe_pmd_mkwrite(entry, vma);
914 }
915 set_pmd_at(mm, addr, pmd, entry);
916 update_mmu_cache_pmd(vma, addr, pmd);
917 }
918 spin_unlock(ptl);
5cad465d
MW
919}
920
921int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
922 pmd_t *pmd, unsigned long pfn, bool write)
923{
924 pgprot_t pgprot = vma->vm_page_prot;
925 /*
926 * If we had pmd_special, we could avoid all these restrictions,
927 * but we need to be consistent with PTEs and architectures that
928 * can't support a 'special' bit.
929 */
930 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
931 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
932 (VM_PFNMAP|VM_MIXEDMAP));
933 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
934 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
935
936 if (addr < vma->vm_start || addr >= vma->vm_end)
937 return VM_FAULT_SIGBUS;
938 if (track_pfn_insert(vma, &pgprot, pfn))
939 return VM_FAULT_SIGBUS;
ae18d6dc
MW
940 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
941 return VM_FAULT_NOPAGE;
5cad465d
MW
942}
943
71e3aac0
AA
944int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
945 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
946 struct vm_area_struct *vma)
947{
c4088ebd 948 spinlock_t *dst_ptl, *src_ptl;
71e3aac0
AA
949 struct page *src_page;
950 pmd_t pmd;
951 pgtable_t pgtable;
952 int ret;
953
954 ret = -ENOMEM;
955 pgtable = pte_alloc_one(dst_mm, addr);
956 if (unlikely(!pgtable))
957 goto out;
958
c4088ebd
KS
959 dst_ptl = pmd_lock(dst_mm, dst_pmd);
960 src_ptl = pmd_lockptr(src_mm, src_pmd);
961 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
71e3aac0
AA
962
963 ret = -EAGAIN;
964 pmd = *src_pmd;
965 if (unlikely(!pmd_trans_huge(pmd))) {
966 pte_free(dst_mm, pgtable);
967 goto out_unlock;
968 }
fc9fe822 969 /*
c4088ebd 970 * When page table lock is held, the huge zero pmd should not be
fc9fe822
KS
971 * under splitting since we don't split the page itself, only pmd to
972 * a page table.
973 */
974 if (is_huge_zero_pmd(pmd)) {
5918d10a 975 struct page *zero_page;
97ae1749
KS
976 /*
977 * get_huge_zero_page() will never allocate a new page here,
978 * since we already have a zero page to copy. It just takes a
979 * reference.
980 */
5918d10a 981 zero_page = get_huge_zero_page();
6b251fc9 982 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
5918d10a 983 zero_page);
fc9fe822
KS
984 ret = 0;
985 goto out_unlock;
986 }
de466bd6 987
71e3aac0
AA
988 if (unlikely(pmd_trans_splitting(pmd))) {
989 /* split huge page running from under us */
c4088ebd
KS
990 spin_unlock(src_ptl);
991 spin_unlock(dst_ptl);
71e3aac0
AA
992 pte_free(dst_mm, pgtable);
993
994 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
995 goto out;
996 }
997 src_page = pmd_page(pmd);
309381fe 998 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
71e3aac0
AA
999 get_page(src_page);
1000 page_dup_rmap(src_page);
1001 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1002
1003 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1004 pmd = pmd_mkold(pmd_wrprotect(pmd));
6b0b50b0 1005 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
71e3aac0 1006 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
e1f56c89 1007 atomic_long_inc(&dst_mm->nr_ptes);
71e3aac0
AA
1008
1009 ret = 0;
1010out_unlock:
c4088ebd
KS
1011 spin_unlock(src_ptl);
1012 spin_unlock(dst_ptl);
71e3aac0
AA
1013out:
1014 return ret;
1015}
1016
a1dd450b
WD
1017void huge_pmd_set_accessed(struct mm_struct *mm,
1018 struct vm_area_struct *vma,
1019 unsigned long address,
1020 pmd_t *pmd, pmd_t orig_pmd,
1021 int dirty)
1022{
c4088ebd 1023 spinlock_t *ptl;
a1dd450b
WD
1024 pmd_t entry;
1025 unsigned long haddr;
1026
c4088ebd 1027 ptl = pmd_lock(mm, pmd);
a1dd450b
WD
1028 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1029 goto unlock;
1030
1031 entry = pmd_mkyoung(orig_pmd);
1032 haddr = address & HPAGE_PMD_MASK;
1033 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
1034 update_mmu_cache_pmd(vma, address, pmd);
1035
1036unlock:
c4088ebd 1037 spin_unlock(ptl);
a1dd450b
WD
1038}
1039
5338a937
HD
1040/*
1041 * Save CONFIG_DEBUG_PAGEALLOC from faulting falsely on tail pages
1042 * during copy_user_huge_page()'s copy_page_rep(): in the case when
1043 * the source page gets split and a tail freed before copy completes.
1044 * Called under pmd_lock of checked pmd, so safe from splitting itself.
1045 */
1046static void get_user_huge_page(struct page *page)
1047{
1048 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
1049 struct page *endpage = page + HPAGE_PMD_NR;
1050
1051 atomic_add(HPAGE_PMD_NR, &page->_count);
1052 while (++page < endpage)
1053 get_huge_page_tail(page);
1054 } else {
1055 get_page(page);
1056 }
1057}
1058
1059static void put_user_huge_page(struct page *page)
1060{
1061 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
1062 struct page *endpage = page + HPAGE_PMD_NR;
1063
1064 while (page < endpage)
1065 put_page(page++);
1066 } else {
1067 put_page(page);
1068 }
1069}
1070
71e3aac0
AA
1071static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1072 struct vm_area_struct *vma,
1073 unsigned long address,
1074 pmd_t *pmd, pmd_t orig_pmd,
1075 struct page *page,
1076 unsigned long haddr)
1077{
00501b53 1078 struct mem_cgroup *memcg;
c4088ebd 1079 spinlock_t *ptl;
71e3aac0
AA
1080 pgtable_t pgtable;
1081 pmd_t _pmd;
1082 int ret = 0, i;
1083 struct page **pages;
2ec74c3e
SG
1084 unsigned long mmun_start; /* For mmu_notifiers */
1085 unsigned long mmun_end; /* For mmu_notifiers */
71e3aac0
AA
1086
1087 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1088 GFP_KERNEL);
1089 if (unlikely(!pages)) {
1090 ret |= VM_FAULT_OOM;
1091 goto out;
1092 }
1093
1094 for (i = 0; i < HPAGE_PMD_NR; i++) {
cc5d462f
AK
1095 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1096 __GFP_OTHER_NODE,
19ee151e 1097 vma, address, page_to_nid(page));
b9bbfbe3 1098 if (unlikely(!pages[i] ||
00501b53 1099 mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
f627c2f5 1100 &memcg, false))) {
b9bbfbe3 1101 if (pages[i])
71e3aac0 1102 put_page(pages[i]);
b9bbfbe3 1103 while (--i >= 0) {
00501b53
JW
1104 memcg = (void *)page_private(pages[i]);
1105 set_page_private(pages[i], 0);
f627c2f5
KS
1106 mem_cgroup_cancel_charge(pages[i], memcg,
1107 false);
b9bbfbe3
AA
1108 put_page(pages[i]);
1109 }
71e3aac0
AA
1110 kfree(pages);
1111 ret |= VM_FAULT_OOM;
1112 goto out;
1113 }
00501b53 1114 set_page_private(pages[i], (unsigned long)memcg);
71e3aac0
AA
1115 }
1116
1117 for (i = 0; i < HPAGE_PMD_NR; i++) {
1118 copy_user_highpage(pages[i], page + i,
0089e485 1119 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
1120 __SetPageUptodate(pages[i]);
1121 cond_resched();
1122 }
1123
2ec74c3e
SG
1124 mmun_start = haddr;
1125 mmun_end = haddr + HPAGE_PMD_SIZE;
1126 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1127
c4088ebd 1128 ptl = pmd_lock(mm, pmd);
71e3aac0
AA
1129 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1130 goto out_free_pages;
309381fe 1131 VM_BUG_ON_PAGE(!PageHead(page), page);
71e3aac0 1132
8809aa2d 1133 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
71e3aac0
AA
1134 /* leave pmd empty until pte is filled */
1135
6b0b50b0 1136 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
71e3aac0
AA
1137 pmd_populate(mm, &_pmd, pgtable);
1138
1139 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1140 pte_t *pte, entry;
1141 entry = mk_pte(pages[i], vma->vm_page_prot);
1142 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
00501b53
JW
1143 memcg = (void *)page_private(pages[i]);
1144 set_page_private(pages[i], 0);
d281ee61 1145 page_add_new_anon_rmap(pages[i], vma, haddr, false);
f627c2f5 1146 mem_cgroup_commit_charge(pages[i], memcg, false, false);
00501b53 1147 lru_cache_add_active_or_unevictable(pages[i], vma);
71e3aac0
AA
1148 pte = pte_offset_map(&_pmd, haddr);
1149 VM_BUG_ON(!pte_none(*pte));
1150 set_pte_at(mm, haddr, pte, entry);
1151 pte_unmap(pte);
1152 }
1153 kfree(pages);
1154
71e3aac0
AA
1155 smp_wmb(); /* make pte visible before pmd */
1156 pmd_populate(mm, pmd, pgtable);
d281ee61 1157 page_remove_rmap(page, true);
c4088ebd 1158 spin_unlock(ptl);
71e3aac0 1159
2ec74c3e
SG
1160 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1161
71e3aac0
AA
1162 ret |= VM_FAULT_WRITE;
1163 put_page(page);
1164
1165out:
1166 return ret;
1167
1168out_free_pages:
c4088ebd 1169 spin_unlock(ptl);
2ec74c3e 1170 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
b9bbfbe3 1171 for (i = 0; i < HPAGE_PMD_NR; i++) {
00501b53
JW
1172 memcg = (void *)page_private(pages[i]);
1173 set_page_private(pages[i], 0);
f627c2f5 1174 mem_cgroup_cancel_charge(pages[i], memcg, false);
71e3aac0 1175 put_page(pages[i]);
b9bbfbe3 1176 }
71e3aac0
AA
1177 kfree(pages);
1178 goto out;
1179}
1180
1181int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1182 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1183{
c4088ebd 1184 spinlock_t *ptl;
71e3aac0 1185 int ret = 0;
93b4796d 1186 struct page *page = NULL, *new_page;
00501b53 1187 struct mem_cgroup *memcg;
71e3aac0 1188 unsigned long haddr;
2ec74c3e
SG
1189 unsigned long mmun_start; /* For mmu_notifiers */
1190 unsigned long mmun_end; /* For mmu_notifiers */
3b363692 1191 gfp_t huge_gfp; /* for allocation and charge */
71e3aac0 1192
c4088ebd 1193 ptl = pmd_lockptr(mm, pmd);
81d1b09c 1194 VM_BUG_ON_VMA(!vma->anon_vma, vma);
93b4796d
KS
1195 haddr = address & HPAGE_PMD_MASK;
1196 if (is_huge_zero_pmd(orig_pmd))
1197 goto alloc;
c4088ebd 1198 spin_lock(ptl);
71e3aac0
AA
1199 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1200 goto out_unlock;
1201
1202 page = pmd_page(orig_pmd);
309381fe 1203 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1f25fe20
KS
1204 /*
1205 * We can only reuse the page if nobody else maps the huge page or it's
1206 * part. We can do it by checking page_mapcount() on each sub-page, but
1207 * it's expensive.
1208 * The cheaper way is to check page_count() to be equal 1: every
1209 * mapcount takes page reference reference, so this way we can
1210 * guarantee, that the PMD is the only mapping.
1211 * This can give false negative if somebody pinned the page, but that's
1212 * fine.
1213 */
1214 if (page_mapcount(page) == 1 && page_count(page) == 1) {
71e3aac0
AA
1215 pmd_t entry;
1216 entry = pmd_mkyoung(orig_pmd);
1217 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1218 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
b113da65 1219 update_mmu_cache_pmd(vma, address, pmd);
71e3aac0
AA
1220 ret |= VM_FAULT_WRITE;
1221 goto out_unlock;
1222 }
5338a937 1223 get_user_huge_page(page);
c4088ebd 1224 spin_unlock(ptl);
93b4796d 1225alloc:
71e3aac0 1226 if (transparent_hugepage_enabled(vma) &&
077fcf11 1227 !transparent_hugepage_debug_cow()) {
3b363692
MH
1228 huge_gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
1229 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
077fcf11 1230 } else
71e3aac0
AA
1231 new_page = NULL;
1232
1233 if (unlikely(!new_page)) {
eecc1e42 1234 if (!page) {
e9b71ca9
KS
1235 split_huge_page_pmd(vma, address, pmd);
1236 ret |= VM_FAULT_FALLBACK;
93b4796d
KS
1237 } else {
1238 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1239 pmd, orig_pmd, page, haddr);
9845cbbd 1240 if (ret & VM_FAULT_OOM) {
93b4796d 1241 split_huge_page(page);
9845cbbd
KS
1242 ret |= VM_FAULT_FALLBACK;
1243 }
5338a937 1244 put_user_huge_page(page);
93b4796d 1245 }
17766dde 1246 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0
AA
1247 goto out;
1248 }
1249
f627c2f5
KS
1250 if (unlikely(mem_cgroup_try_charge(new_page, mm, huge_gfp, &memcg,
1251 true))) {
b9bbfbe3 1252 put_page(new_page);
93b4796d
KS
1253 if (page) {
1254 split_huge_page(page);
5338a937 1255 put_user_huge_page(page);
9845cbbd
KS
1256 } else
1257 split_huge_page_pmd(vma, address, pmd);
1258 ret |= VM_FAULT_FALLBACK;
17766dde 1259 count_vm_event(THP_FAULT_FALLBACK);
b9bbfbe3
AA
1260 goto out;
1261 }
1262
17766dde
DR
1263 count_vm_event(THP_FAULT_ALLOC);
1264
eecc1e42 1265 if (!page)
93b4796d
KS
1266 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1267 else
1268 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
71e3aac0
AA
1269 __SetPageUptodate(new_page);
1270
2ec74c3e
SG
1271 mmun_start = haddr;
1272 mmun_end = haddr + HPAGE_PMD_SIZE;
1273 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1274
c4088ebd 1275 spin_lock(ptl);
93b4796d 1276 if (page)
5338a937 1277 put_user_huge_page(page);
b9bbfbe3 1278 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
c4088ebd 1279 spin_unlock(ptl);
f627c2f5 1280 mem_cgroup_cancel_charge(new_page, memcg, true);
71e3aac0 1281 put_page(new_page);
2ec74c3e 1282 goto out_mn;
b9bbfbe3 1283 } else {
71e3aac0 1284 pmd_t entry;
3122359a
KS
1285 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1286 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
8809aa2d 1287 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
d281ee61 1288 page_add_new_anon_rmap(new_page, vma, haddr, true);
f627c2f5 1289 mem_cgroup_commit_charge(new_page, memcg, false, true);
00501b53 1290 lru_cache_add_active_or_unevictable(new_page, vma);
71e3aac0 1291 set_pmd_at(mm, haddr, pmd, entry);
b113da65 1292 update_mmu_cache_pmd(vma, address, pmd);
eecc1e42 1293 if (!page) {
93b4796d 1294 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
97ae1749
KS
1295 put_huge_zero_page();
1296 } else {
309381fe 1297 VM_BUG_ON_PAGE(!PageHead(page), page);
d281ee61 1298 page_remove_rmap(page, true);
93b4796d
KS
1299 put_page(page);
1300 }
71e3aac0
AA
1301 ret |= VM_FAULT_WRITE;
1302 }
c4088ebd 1303 spin_unlock(ptl);
2ec74c3e
SG
1304out_mn:
1305 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
1306out:
1307 return ret;
2ec74c3e 1308out_unlock:
c4088ebd 1309 spin_unlock(ptl);
2ec74c3e 1310 return ret;
71e3aac0
AA
1311}
1312
b676b293 1313struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1314 unsigned long addr,
1315 pmd_t *pmd,
1316 unsigned int flags)
1317{
b676b293 1318 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1319 struct page *page = NULL;
1320
c4088ebd 1321 assert_spin_locked(pmd_lockptr(mm, pmd));
71e3aac0
AA
1322
1323 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1324 goto out;
1325
85facf25
KS
1326 /* Avoid dumping huge zero page */
1327 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1328 return ERR_PTR(-EFAULT);
1329
2b4847e7 1330 /* Full NUMA hinting faults to serialise migration in fault paths */
8a0516ed 1331 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
2b4847e7
MG
1332 goto out;
1333
71e3aac0 1334 page = pmd_page(*pmd);
309381fe 1335 VM_BUG_ON_PAGE(!PageHead(page), page);
71e3aac0
AA
1336 if (flags & FOLL_TOUCH) {
1337 pmd_t _pmd;
1338 /*
1339 * We should set the dirty bit only for FOLL_WRITE but
1340 * for now the dirty bit in the pmd is meaningless.
1341 * And if the dirty bit will become meaningful and
1342 * we'll only set it with FOLL_WRITE, an atomic
1343 * set_bit will be required on the pmd to set the
1344 * young bit, instead of the current set_pmd_at.
1345 */
1346 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
8663890a
AK
1347 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1348 pmd, _pmd, 1))
1349 update_mmu_cache_pmd(vma, addr, pmd);
71e3aac0 1350 }
de60f5f1 1351 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
b676b293
DR
1352 if (page->mapping && trylock_page(page)) {
1353 lru_add_drain();
1354 if (page->mapping)
1355 mlock_vma_page(page);
1356 unlock_page(page);
1357 }
1358 }
71e3aac0 1359 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
309381fe 1360 VM_BUG_ON_PAGE(!PageCompound(page), page);
71e3aac0 1361 if (flags & FOLL_GET)
70b50f94 1362 get_page_foll(page);
71e3aac0
AA
1363
1364out:
1365 return page;
1366}
1367
d10e63f2 1368/* NUMA hinting page fault entry point for trans huge pmds */
4daae3b4
MG
1369int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1370 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
d10e63f2 1371{
c4088ebd 1372 spinlock_t *ptl;
b8916634 1373 struct anon_vma *anon_vma = NULL;
b32967ff 1374 struct page *page;
d10e63f2 1375 unsigned long haddr = addr & HPAGE_PMD_MASK;
8191acbd 1376 int page_nid = -1, this_nid = numa_node_id();
90572890 1377 int target_nid, last_cpupid = -1;
8191acbd
MG
1378 bool page_locked;
1379 bool migrated = false;
b191f9b1 1380 bool was_writable;
6688cc05 1381 int flags = 0;
d10e63f2 1382
c0e7cad9
MG
1383 /* A PROT_NONE fault should not end up here */
1384 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
1385
c4088ebd 1386 ptl = pmd_lock(mm, pmdp);
d10e63f2
MG
1387 if (unlikely(!pmd_same(pmd, *pmdp)))
1388 goto out_unlock;
1389
de466bd6
MG
1390 /*
1391 * If there are potential migrations, wait for completion and retry
1392 * without disrupting NUMA hinting information. Do not relock and
1393 * check_same as the page may no longer be mapped.
1394 */
1395 if (unlikely(pmd_trans_migrating(*pmdp))) {
5d833062 1396 page = pmd_page(*pmdp);
de466bd6 1397 spin_unlock(ptl);
5d833062 1398 wait_on_page_locked(page);
de466bd6
MG
1399 goto out;
1400 }
1401
d10e63f2 1402 page = pmd_page(pmd);
a1a46184 1403 BUG_ON(is_huge_zero_page(page));
8191acbd 1404 page_nid = page_to_nid(page);
90572890 1405 last_cpupid = page_cpupid_last(page);
03c5a6e1 1406 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 1407 if (page_nid == this_nid) {
03c5a6e1 1408 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
1409 flags |= TNF_FAULT_LOCAL;
1410 }
4daae3b4 1411
bea66fbd
MG
1412 /* See similar comment in do_numa_page for explanation */
1413 if (!(vma->vm_flags & VM_WRITE))
6688cc05
PZ
1414 flags |= TNF_NO_GROUP;
1415
ff9042b1
MG
1416 /*
1417 * Acquire the page lock to serialise THP migrations but avoid dropping
1418 * page_table_lock if at all possible
1419 */
b8916634
MG
1420 page_locked = trylock_page(page);
1421 target_nid = mpol_misplaced(page, vma, haddr);
1422 if (target_nid == -1) {
1423 /* If the page was locked, there are no parallel migrations */
a54a407f 1424 if (page_locked)
b8916634 1425 goto clear_pmdnuma;
2b4847e7 1426 }
4daae3b4 1427
de466bd6 1428 /* Migration could have started since the pmd_trans_migrating check */
2b4847e7 1429 if (!page_locked) {
c4088ebd 1430 spin_unlock(ptl);
b8916634 1431 wait_on_page_locked(page);
a54a407f 1432 page_nid = -1;
b8916634
MG
1433 goto out;
1434 }
1435
2b4847e7
MG
1436 /*
1437 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1438 * to serialises splits
1439 */
b8916634 1440 get_page(page);
c4088ebd 1441 spin_unlock(ptl);
b8916634 1442 anon_vma = page_lock_anon_vma_read(page);
4daae3b4 1443
c69307d5 1444 /* Confirm the PMD did not change while page_table_lock was released */
c4088ebd 1445 spin_lock(ptl);
b32967ff
MG
1446 if (unlikely(!pmd_same(pmd, *pmdp))) {
1447 unlock_page(page);
1448 put_page(page);
a54a407f 1449 page_nid = -1;
4daae3b4 1450 goto out_unlock;
b32967ff 1451 }
ff9042b1 1452
c3a489ca
MG
1453 /* Bail if we fail to protect against THP splits for any reason */
1454 if (unlikely(!anon_vma)) {
1455 put_page(page);
1456 page_nid = -1;
1457 goto clear_pmdnuma;
1458 }
1459
a54a407f
MG
1460 /*
1461 * Migrate the THP to the requested node, returns with page unlocked
8a0516ed 1462 * and access rights restored.
a54a407f 1463 */
c4088ebd 1464 spin_unlock(ptl);
b32967ff 1465 migrated = migrate_misplaced_transhuge_page(mm, vma,
340ef390 1466 pmdp, pmd, addr, page, target_nid);
6688cc05
PZ
1467 if (migrated) {
1468 flags |= TNF_MIGRATED;
8191acbd 1469 page_nid = target_nid;
074c2381
MG
1470 } else
1471 flags |= TNF_MIGRATE_FAIL;
b32967ff 1472
8191acbd 1473 goto out;
b32967ff 1474clear_pmdnuma:
a54a407f 1475 BUG_ON(!PageLocked(page));
b191f9b1 1476 was_writable = pmd_write(pmd);
4d942466 1477 pmd = pmd_modify(pmd, vma->vm_page_prot);
b7b04004 1478 pmd = pmd_mkyoung(pmd);
b191f9b1
MG
1479 if (was_writable)
1480 pmd = pmd_mkwrite(pmd);
d10e63f2 1481 set_pmd_at(mm, haddr, pmdp, pmd);
d10e63f2 1482 update_mmu_cache_pmd(vma, addr, pmdp);
a54a407f 1483 unlock_page(page);
d10e63f2 1484out_unlock:
c4088ebd 1485 spin_unlock(ptl);
b8916634
MG
1486
1487out:
1488 if (anon_vma)
1489 page_unlock_anon_vma_read(anon_vma);
1490
8191acbd 1491 if (page_nid != -1)
6688cc05 1492 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
8191acbd 1493
d10e63f2
MG
1494 return 0;
1495}
1496
71e3aac0 1497int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1498 pmd_t *pmd, unsigned long addr)
71e3aac0 1499{
da146769 1500 pmd_t orig_pmd;
bf929152 1501 spinlock_t *ptl;
71e3aac0 1502
da146769
KS
1503 if (__pmd_trans_huge_lock(pmd, vma, &ptl) != 1)
1504 return 0;
1505 /*
1506 * For architectures like ppc64 we look at deposited pgtable
1507 * when calling pmdp_huge_get_and_clear. So do the
1508 * pgtable_trans_huge_withdraw after finishing pmdp related
1509 * operations.
1510 */
1511 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1512 tlb->fullmm);
1513 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1514 if (vma_is_dax(vma)) {
1515 spin_unlock(ptl);
1516 if (is_huge_zero_pmd(orig_pmd))
97ae1749 1517 put_huge_zero_page();
da146769
KS
1518 } else if (is_huge_zero_pmd(orig_pmd)) {
1519 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1520 atomic_long_dec(&tlb->mm->nr_ptes);
1521 spin_unlock(ptl);
1522 put_huge_zero_page();
1523 } else {
1524 struct page *page = pmd_page(orig_pmd);
d281ee61 1525 page_remove_rmap(page, true);
da146769
KS
1526 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1527 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1528 VM_BUG_ON_PAGE(!PageHead(page), page);
1529 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1530 atomic_long_dec(&tlb->mm->nr_ptes);
1531 spin_unlock(ptl);
1532 tlb_remove_page(tlb, page);
025c5b24 1533 }
da146769 1534 return 1;
71e3aac0
AA
1535}
1536
37a1c49a
AA
1537int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1538 unsigned long old_addr,
1539 unsigned long new_addr, unsigned long old_end,
1540 pmd_t *old_pmd, pmd_t *new_pmd)
1541{
bf929152 1542 spinlock_t *old_ptl, *new_ptl;
37a1c49a
AA
1543 int ret = 0;
1544 pmd_t pmd;
1545
1546 struct mm_struct *mm = vma->vm_mm;
1547
1548 if ((old_addr & ~HPAGE_PMD_MASK) ||
1549 (new_addr & ~HPAGE_PMD_MASK) ||
1550 old_end - old_addr < HPAGE_PMD_SIZE ||
1551 (new_vma->vm_flags & VM_NOHUGEPAGE))
1552 goto out;
1553
1554 /*
1555 * The destination pmd shouldn't be established, free_pgtables()
1556 * should have release it.
1557 */
1558 if (WARN_ON(!pmd_none(*new_pmd))) {
1559 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1560 goto out;
1561 }
1562
bf929152
KS
1563 /*
1564 * We don't have to worry about the ordering of src and dst
1565 * ptlocks because exclusive mmap_sem prevents deadlock.
1566 */
1567 ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl);
025c5b24 1568 if (ret == 1) {
bf929152
KS
1569 new_ptl = pmd_lockptr(mm, new_pmd);
1570 if (new_ptl != old_ptl)
1571 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
8809aa2d 1572 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
025c5b24 1573 VM_BUG_ON(!pmd_none(*new_pmd));
3592806c 1574
b3084f4d
AK
1575 if (pmd_move_must_withdraw(new_ptl, old_ptl)) {
1576 pgtable_t pgtable;
3592806c
KS
1577 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1578 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
3592806c 1579 }
b3084f4d
AK
1580 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1581 if (new_ptl != old_ptl)
1582 spin_unlock(new_ptl);
bf929152 1583 spin_unlock(old_ptl);
37a1c49a
AA
1584 }
1585out:
1586 return ret;
1587}
1588
f123d74a
MG
1589/*
1590 * Returns
1591 * - 0 if PMD could not be locked
1592 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1593 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1594 */
cd7548ab 1595int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
e944fd67 1596 unsigned long addr, pgprot_t newprot, int prot_numa)
cd7548ab
JW
1597{
1598 struct mm_struct *mm = vma->vm_mm;
bf929152 1599 spinlock_t *ptl;
cd7548ab
JW
1600 int ret = 0;
1601
bf929152 1602 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
025c5b24 1603 pmd_t entry;
b191f9b1 1604 bool preserve_write = prot_numa && pmd_write(*pmd);
ba68bc01 1605 ret = 1;
e944fd67
MG
1606
1607 /*
1608 * Avoid trapping faults against the zero page. The read-only
1609 * data is likely to be read-cached on the local CPU and
1610 * local/remote hits to the zero page are not interesting.
1611 */
1612 if (prot_numa && is_huge_zero_pmd(*pmd)) {
1613 spin_unlock(ptl);
ba68bc01 1614 return ret;
e944fd67
MG
1615 }
1616
10c1045f 1617 if (!prot_numa || !pmd_protnone(*pmd)) {
8809aa2d 1618 entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
10c1045f 1619 entry = pmd_modify(entry, newprot);
b191f9b1
MG
1620 if (preserve_write)
1621 entry = pmd_mkwrite(entry);
10c1045f
MG
1622 ret = HPAGE_PMD_NR;
1623 set_pmd_at(mm, addr, pmd, entry);
b191f9b1 1624 BUG_ON(!preserve_write && pmd_write(entry));
10c1045f 1625 }
bf929152 1626 spin_unlock(ptl);
025c5b24
NH
1627 }
1628
1629 return ret;
1630}
1631
1632/*
1633 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1634 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1635 *
1636 * Note that if it returns 1, this routine returns without unlocking page
1637 * table locks. So callers must unlock them.
1638 */
bf929152
KS
1639int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
1640 spinlock_t **ptl)
025c5b24 1641{
bf929152 1642 *ptl = pmd_lock(vma->vm_mm, pmd);
cd7548ab
JW
1643 if (likely(pmd_trans_huge(*pmd))) {
1644 if (unlikely(pmd_trans_splitting(*pmd))) {
bf929152 1645 spin_unlock(*ptl);
cd7548ab 1646 wait_split_huge_page(vma->anon_vma, pmd);
025c5b24 1647 return -1;
cd7548ab 1648 } else {
025c5b24
NH
1649 /* Thp mapped by 'pmd' is stable, so we can
1650 * handle it as it is. */
1651 return 1;
cd7548ab 1652 }
025c5b24 1653 }
bf929152 1654 spin_unlock(*ptl);
025c5b24 1655 return 0;
cd7548ab
JW
1656}
1657
117b0791
KS
1658/*
1659 * This function returns whether a given @page is mapped onto the @address
1660 * in the virtual space of @mm.
1661 *
1662 * When it's true, this function returns *pmd with holding the page table lock
1663 * and passing it back to the caller via @ptl.
1664 * If it's false, returns NULL without holding the page table lock.
1665 */
71e3aac0
AA
1666pmd_t *page_check_address_pmd(struct page *page,
1667 struct mm_struct *mm,
1668 unsigned long address,
117b0791
KS
1669 enum page_check_address_pmd_flag flag,
1670 spinlock_t **ptl)
71e3aac0 1671{
b5a8cad3
KS
1672 pgd_t *pgd;
1673 pud_t *pud;
117b0791 1674 pmd_t *pmd;
71e3aac0
AA
1675
1676 if (address & ~HPAGE_PMD_MASK)
117b0791 1677 return NULL;
71e3aac0 1678
b5a8cad3
KS
1679 pgd = pgd_offset(mm, address);
1680 if (!pgd_present(*pgd))
117b0791 1681 return NULL;
b5a8cad3
KS
1682 pud = pud_offset(pgd, address);
1683 if (!pud_present(*pud))
1684 return NULL;
1685 pmd = pmd_offset(pud, address);
1686
117b0791 1687 *ptl = pmd_lock(mm, pmd);
b5a8cad3 1688 if (!pmd_present(*pmd))
117b0791 1689 goto unlock;
71e3aac0 1690 if (pmd_page(*pmd) != page)
117b0791 1691 goto unlock;
94fcc585
AA
1692 /*
1693 * split_vma() may create temporary aliased mappings. There is
1694 * no risk as long as all huge pmd are found and have their
1695 * splitting bit set before __split_huge_page_refcount
1696 * runs. Finding the same huge pmd more than once during the
1697 * same rmap walk is not a problem.
1698 */
1699 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1700 pmd_trans_splitting(*pmd))
117b0791 1701 goto unlock;
71e3aac0
AA
1702 if (pmd_trans_huge(*pmd)) {
1703 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1704 !pmd_trans_splitting(*pmd));
117b0791 1705 return pmd;
71e3aac0 1706 }
117b0791
KS
1707unlock:
1708 spin_unlock(*ptl);
1709 return NULL;
71e3aac0
AA
1710}
1711
1712static int __split_huge_page_splitting(struct page *page,
1713 struct vm_area_struct *vma,
1714 unsigned long address)
1715{
1716 struct mm_struct *mm = vma->vm_mm;
117b0791 1717 spinlock_t *ptl;
71e3aac0
AA
1718 pmd_t *pmd;
1719 int ret = 0;
2ec74c3e
SG
1720 /* For mmu_notifiers */
1721 const unsigned long mmun_start = address;
1722 const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
71e3aac0 1723
2ec74c3e 1724 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
71e3aac0 1725 pmd = page_check_address_pmd(page, mm, address,
117b0791 1726 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl);
71e3aac0
AA
1727 if (pmd) {
1728 /*
1729 * We can't temporarily set the pmd to null in order
1730 * to split it, the pmd must remain marked huge at all
1731 * times or the VM won't take the pmd_trans_huge paths
5a505085 1732 * and it won't wait on the anon_vma->root->rwsem to
71e3aac0
AA
1733 * serialize against split_huge_page*.
1734 */
2ec74c3e 1735 pmdp_splitting_flush(vma, address, pmd);
34ee645e 1736
71e3aac0 1737 ret = 1;
117b0791 1738 spin_unlock(ptl);
71e3aac0 1739 }
2ec74c3e 1740 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
1741
1742 return ret;
1743}
1744
5bc7b8ac
SL
1745static void __split_huge_page_refcount(struct page *page,
1746 struct list_head *list)
71e3aac0
AA
1747{
1748 int i;
71e3aac0 1749 struct zone *zone = page_zone(page);
fa9add64 1750 struct lruvec *lruvec;
70b50f94 1751 int tail_count = 0;
71e3aac0
AA
1752
1753 /* prevent PageLRU to go away from under us, and freeze lru stats */
1754 spin_lock_irq(&zone->lru_lock);
fa9add64
HD
1755 lruvec = mem_cgroup_page_lruvec(page, zone);
1756
71e3aac0 1757 compound_lock(page);
e94c8a9c
KH
1758 /* complete memcg works before add pages to LRU */
1759 mem_cgroup_split_huge_fixup(page);
71e3aac0 1760
45676885 1761 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
71e3aac0
AA
1762 struct page *page_tail = page + i;
1763
70b50f94
AA
1764 /* tail_page->_mapcount cannot change */
1765 BUG_ON(page_mapcount(page_tail) < 0);
1766 tail_count += page_mapcount(page_tail);
1767 /* check for overflow */
1768 BUG_ON(tail_count < 0);
1769 BUG_ON(atomic_read(&page_tail->_count) != 0);
1770 /*
1771 * tail_page->_count is zero and not changing from
1772 * under us. But get_page_unless_zero() may be running
1773 * from under us on the tail_page. If we used
1774 * atomic_set() below instead of atomic_add(), we
1775 * would then run atomic_set() concurrently with
1776 * get_page_unless_zero(), and atomic_set() is
1777 * implemented in C not using locked ops. spin_unlock
1778 * on x86 sometime uses locked ops because of PPro
1779 * errata 66, 92, so unless somebody can guarantee
1780 * atomic_set() here would be safe on all archs (and
1781 * not only on x86), it's safer to use atomic_add().
1782 */
1783 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1784 &page_tail->_count);
71e3aac0
AA
1785
1786 /* after clearing PageTail the gup refcount can be released */
3a79d52a 1787 smp_mb__after_atomic();
71e3aac0 1788
f4c18e6f 1789 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
71e3aac0
AA
1790 page_tail->flags |= (page->flags &
1791 ((1L << PG_referenced) |
1792 (1L << PG_swapbacked) |
1793 (1L << PG_mlocked) |
e180cf80
KS
1794 (1L << PG_uptodate) |
1795 (1L << PG_active) |
1796 (1L << PG_unevictable)));
71e3aac0
AA
1797 page_tail->flags |= (1L << PG_dirty);
1798
1d798ca3 1799 clear_compound_head(page_tail);
71e3aac0 1800
33c3fc71
VD
1801 if (page_is_young(page))
1802 set_page_young(page_tail);
1803 if (page_is_idle(page))
1804 set_page_idle(page_tail);
1805
71e3aac0
AA
1806 /*
1807 * __split_huge_page_splitting() already set the
1808 * splitting bit in all pmd that could map this
1809 * hugepage, that will ensure no CPU can alter the
1810 * mapcount on the head page. The mapcount is only
1811 * accounted in the head page and it has to be
1812 * transferred to all tail pages in the below code. So
1813 * for this code to be safe, the split the mapcount
1814 * can't change. But that doesn't mean userland can't
1815 * keep changing and reading the page contents while
1816 * we transfer the mapcount, so the pmd splitting
1817 * status is achieved setting a reserved bit in the
1818 * pmd, not by clearing the present bit.
1819 */
71e3aac0
AA
1820 page_tail->_mapcount = page->_mapcount;
1821
1c290f64 1822 BUG_ON(page_tail->mapping != TAIL_MAPPING);
71e3aac0
AA
1823 page_tail->mapping = page->mapping;
1824
45676885 1825 page_tail->index = page->index + i;
90572890 1826 page_cpupid_xchg_last(page_tail, page_cpupid_last(page));
71e3aac0
AA
1827
1828 BUG_ON(!PageAnon(page_tail));
1829 BUG_ON(!PageUptodate(page_tail));
1830 BUG_ON(!PageDirty(page_tail));
1831 BUG_ON(!PageSwapBacked(page_tail));
1832
5bc7b8ac 1833 lru_add_page_tail(page, page_tail, lruvec, list);
71e3aac0 1834 }
70b50f94
AA
1835 atomic_sub(tail_count, &page->_count);
1836 BUG_ON(atomic_read(&page->_count) <= 0);
71e3aac0 1837
fa9add64 1838 __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
79134171 1839
71e3aac0
AA
1840 ClearPageCompound(page);
1841 compound_unlock(page);
1842 spin_unlock_irq(&zone->lru_lock);
1843
1844 for (i = 1; i < HPAGE_PMD_NR; i++) {
1845 struct page *page_tail = page + i;
1846 BUG_ON(page_count(page_tail) <= 0);
1847 /*
1848 * Tail pages may be freed if there wasn't any mapping
1849 * like if add_to_swap() is running on a lru page that
1850 * had its mapping zapped. And freeing these pages
1851 * requires taking the lru_lock so we do the put_page
1852 * of the tail pages after the split is complete.
1853 */
1854 put_page(page_tail);
1855 }
1856
1857 /*
1858 * Only the head page (now become a regular page) is required
1859 * to be pinned by the caller.
1860 */
1861 BUG_ON(page_count(page) <= 0);
1862}
1863
1864static int __split_huge_page_map(struct page *page,
1865 struct vm_area_struct *vma,
1866 unsigned long address)
1867{
1868 struct mm_struct *mm = vma->vm_mm;
117b0791 1869 spinlock_t *ptl;
71e3aac0
AA
1870 pmd_t *pmd, _pmd;
1871 int ret = 0, i;
1872 pgtable_t pgtable;
1873 unsigned long haddr;
1874
71e3aac0 1875 pmd = page_check_address_pmd(page, mm, address,
117b0791 1876 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl);
71e3aac0 1877 if (pmd) {
6b0b50b0 1878 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
71e3aac0 1879 pmd_populate(mm, &_pmd, pgtable);
f8303c25
WL
1880 if (pmd_write(*pmd))
1881 BUG_ON(page_mapcount(page) != 1);
71e3aac0 1882
e3ebcf64
GS
1883 haddr = address;
1884 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
71e3aac0
AA
1885 pte_t *pte, entry;
1886 BUG_ON(PageCompound(page+i));
abc40bd2 1887 /*
8a0516ed
MG
1888 * Note that NUMA hinting access restrictions are not
1889 * transferred to avoid any possibility of altering
1890 * permissions across VMAs.
abc40bd2 1891 */
71e3aac0
AA
1892 entry = mk_pte(page + i, vma->vm_page_prot);
1893 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1894 if (!pmd_write(*pmd))
1895 entry = pte_wrprotect(entry);
71e3aac0
AA
1896 if (!pmd_young(*pmd))
1897 entry = pte_mkold(entry);
1898 pte = pte_offset_map(&_pmd, haddr);
1899 BUG_ON(!pte_none(*pte));
1900 set_pte_at(mm, haddr, pte, entry);
1901 pte_unmap(pte);
1902 }
1903
71e3aac0
AA
1904 smp_wmb(); /* make pte visible before pmd */
1905 /*
1906 * Up to this point the pmd is present and huge and
1907 * userland has the whole access to the hugepage
1908 * during the split (which happens in place). If we
1909 * overwrite the pmd with the not-huge version
1910 * pointing to the pte here (which of course we could
1911 * if all CPUs were bug free), userland could trigger
1912 * a small page size TLB miss on the small sized TLB
1913 * while the hugepage TLB entry is still established
1914 * in the huge TLB. Some CPU doesn't like that. See
1915 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1916 * Erratum 383 on page 93. Intel should be safe but is
1917 * also warns that it's only safe if the permission
1918 * and cache attributes of the two entries loaded in
1919 * the two TLB is identical (which should be the case
1920 * here). But it is generally safer to never allow
1921 * small and huge TLB entries for the same virtual
1922 * address to be loaded simultaneously. So instead of
12ebc158 1923 * doing "pmd_populate(); flush_pmd_tlb_range();" we first
71e3aac0
AA
1924 * mark the current pmd notpresent (atomically because
1925 * here the pmd_trans_huge and pmd_trans_splitting
1926 * must remain set at all times on the pmd until the
1927 * split is complete for this pmd), then we flush the
1928 * SMP TLB and finally we write the non-huge version
1929 * of the pmd entry with pmd_populate.
1930 */
46dcde73 1931 pmdp_invalidate(vma, address, pmd);
71e3aac0
AA
1932 pmd_populate(mm, pmd, pgtable);
1933 ret = 1;
117b0791 1934 spin_unlock(ptl);
71e3aac0 1935 }
71e3aac0
AA
1936
1937 return ret;
1938}
1939
5a505085 1940/* must be called with anon_vma->root->rwsem held */
71e3aac0 1941static void __split_huge_page(struct page *page,
5bc7b8ac
SL
1942 struct anon_vma *anon_vma,
1943 struct list_head *list)
71e3aac0
AA
1944{
1945 int mapcount, mapcount2;
bf181b9f 1946 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
71e3aac0
AA
1947 struct anon_vma_chain *avc;
1948
1949 BUG_ON(!PageHead(page));
1950 BUG_ON(PageTail(page));
1951
1952 mapcount = 0;
bf181b9f 1953 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
71e3aac0
AA
1954 struct vm_area_struct *vma = avc->vma;
1955 unsigned long addr = vma_address(page, vma);
1956 BUG_ON(is_vma_temporary_stack(vma));
71e3aac0
AA
1957 mapcount += __split_huge_page_splitting(page, vma, addr);
1958 }
05759d38
AA
1959 /*
1960 * It is critical that new vmas are added to the tail of the
1961 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1962 * and establishes a child pmd before
1963 * __split_huge_page_splitting() freezes the parent pmd (so if
1964 * we fail to prevent copy_huge_pmd() from running until the
1965 * whole __split_huge_page() is complete), we will still see
1966 * the newly established pmd of the child later during the
1967 * walk, to be able to set it as pmd_trans_splitting too.
1968 */
ff9e43eb 1969 if (mapcount != page_mapcount(page)) {
ae3a8c1c
AM
1970 pr_err("mapcount %d page_mapcount %d\n",
1971 mapcount, page_mapcount(page));
ff9e43eb
KS
1972 BUG();
1973 }
71e3aac0 1974
5bc7b8ac 1975 __split_huge_page_refcount(page, list);
71e3aac0
AA
1976
1977 mapcount2 = 0;
bf181b9f 1978 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
71e3aac0
AA
1979 struct vm_area_struct *vma = avc->vma;
1980 unsigned long addr = vma_address(page, vma);
1981 BUG_ON(is_vma_temporary_stack(vma));
71e3aac0
AA
1982 mapcount2 += __split_huge_page_map(page, vma, addr);
1983 }
ff9e43eb 1984 if (mapcount != mapcount2) {
ae3a8c1c
AM
1985 pr_err("mapcount %d mapcount2 %d page_mapcount %d\n",
1986 mapcount, mapcount2, page_mapcount(page));
ff9e43eb
KS
1987 BUG();
1988 }
71e3aac0
AA
1989}
1990
5bc7b8ac
SL
1991/*
1992 * Split a hugepage into normal pages. This doesn't change the position of head
1993 * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1994 * @list. Both head page and tail pages will inherit mapping, flags, and so on
1995 * from the hugepage.
1996 * Return 0 if the hugepage is split successfully otherwise return 1.
1997 */
1998int split_huge_page_to_list(struct page *page, struct list_head *list)
71e3aac0
AA
1999{
2000 struct anon_vma *anon_vma;
2001 int ret = 1;
2002
5918d10a 2003 BUG_ON(is_huge_zero_page(page));
71e3aac0 2004 BUG_ON(!PageAnon(page));
062f1af2
MG
2005
2006 /*
2007 * The caller does not necessarily hold an mmap_sem that would prevent
2008 * the anon_vma disappearing so we first we take a reference to it
2009 * and then lock the anon_vma for write. This is similar to
2010 * page_lock_anon_vma_read except the write lock is taken to serialise
2011 * against parallel split or collapse operations.
2012 */
2013 anon_vma = page_get_anon_vma(page);
71e3aac0
AA
2014 if (!anon_vma)
2015 goto out;
062f1af2
MG
2016 anon_vma_lock_write(anon_vma);
2017
71e3aac0
AA
2018 ret = 0;
2019 if (!PageCompound(page))
2020 goto out_unlock;
2021
2022 BUG_ON(!PageSwapBacked(page));
5bc7b8ac 2023 __split_huge_page(page, anon_vma, list);
81ab4201 2024 count_vm_event(THP_SPLIT);
71e3aac0
AA
2025
2026 BUG_ON(PageCompound(page));
2027out_unlock:
08b52706 2028 anon_vma_unlock_write(anon_vma);
062f1af2 2029 put_anon_vma(anon_vma);
71e3aac0
AA
2030out:
2031 return ret;
2032}
2033
9050d7eb 2034#define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
78f11a25 2035
60ab3244
AA
2036int hugepage_madvise(struct vm_area_struct *vma,
2037 unsigned long *vm_flags, int advice)
0af4e98b 2038{
a664b2d8
AA
2039 switch (advice) {
2040 case MADV_HUGEPAGE:
1e1836e8
AT
2041#ifdef CONFIG_S390
2042 /*
2043 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
2044 * can't handle this properly after s390_enable_sie, so we simply
2045 * ignore the madvise to prevent qemu from causing a SIGSEGV.
2046 */
2047 if (mm_has_pgste(vma->vm_mm))
2048 return 0;
2049#endif
a664b2d8
AA
2050 /*
2051 * Be somewhat over-protective like KSM for now!
2052 */
1a763615 2053 if (*vm_flags & VM_NO_THP)
a664b2d8
AA
2054 return -EINVAL;
2055 *vm_flags &= ~VM_NOHUGEPAGE;
2056 *vm_flags |= VM_HUGEPAGE;
60ab3244
AA
2057 /*
2058 * If the vma become good for khugepaged to scan,
2059 * register it here without waiting a page fault that
2060 * may not happen any time soon.
2061 */
6d50e60c 2062 if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
60ab3244 2063 return -ENOMEM;
a664b2d8
AA
2064 break;
2065 case MADV_NOHUGEPAGE:
2066 /*
2067 * Be somewhat over-protective like KSM for now!
2068 */
1a763615 2069 if (*vm_flags & VM_NO_THP)
a664b2d8
AA
2070 return -EINVAL;
2071 *vm_flags &= ~VM_HUGEPAGE;
2072 *vm_flags |= VM_NOHUGEPAGE;
60ab3244
AA
2073 /*
2074 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
2075 * this vma even if we leave the mm registered in khugepaged if
2076 * it got registered before VM_NOHUGEPAGE was set.
2077 */
a664b2d8
AA
2078 break;
2079 }
0af4e98b
AA
2080
2081 return 0;
2082}
2083
ba76149f
AA
2084static int __init khugepaged_slab_init(void)
2085{
2086 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
2087 sizeof(struct mm_slot),
2088 __alignof__(struct mm_slot), 0, NULL);
2089 if (!mm_slot_cache)
2090 return -ENOMEM;
2091
2092 return 0;
2093}
2094
65ebb64f
KS
2095static void __init khugepaged_slab_exit(void)
2096{
2097 kmem_cache_destroy(mm_slot_cache);
2098}
2099
ba76149f
AA
2100static inline struct mm_slot *alloc_mm_slot(void)
2101{
2102 if (!mm_slot_cache) /* initialization failed */
2103 return NULL;
2104 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
2105}
2106
2107static inline void free_mm_slot(struct mm_slot *mm_slot)
2108{
2109 kmem_cache_free(mm_slot_cache, mm_slot);
2110}
2111
ba76149f
AA
2112static struct mm_slot *get_mm_slot(struct mm_struct *mm)
2113{
2114 struct mm_slot *mm_slot;
ba76149f 2115
b67bfe0d 2116 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
ba76149f
AA
2117 if (mm == mm_slot->mm)
2118 return mm_slot;
43b5fbbd 2119
ba76149f
AA
2120 return NULL;
2121}
2122
2123static void insert_to_mm_slots_hash(struct mm_struct *mm,
2124 struct mm_slot *mm_slot)
2125{
ba76149f 2126 mm_slot->mm = mm;
43b5fbbd 2127 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
ba76149f
AA
2128}
2129
2130static inline int khugepaged_test_exit(struct mm_struct *mm)
2131{
2132 return atomic_read(&mm->mm_users) == 0;
2133}
2134
2135int __khugepaged_enter(struct mm_struct *mm)
2136{
2137 struct mm_slot *mm_slot;
2138 int wakeup;
2139
2140 mm_slot = alloc_mm_slot();
2141 if (!mm_slot)
2142 return -ENOMEM;
2143
2144 /* __khugepaged_exit() must not run from under us */
96dad67f 2145 VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
ba76149f
AA
2146 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
2147 free_mm_slot(mm_slot);
2148 return 0;
2149 }
2150
2151 spin_lock(&khugepaged_mm_lock);
2152 insert_to_mm_slots_hash(mm, mm_slot);
2153 /*
2154 * Insert just behind the scanning cursor, to let the area settle
2155 * down a little.
2156 */
2157 wakeup = list_empty(&khugepaged_scan.mm_head);
2158 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
2159 spin_unlock(&khugepaged_mm_lock);
2160
2161 atomic_inc(&mm->mm_count);
2162 if (wakeup)
2163 wake_up_interruptible(&khugepaged_wait);
2164
2165 return 0;
2166}
2167
6d50e60c
DR
2168int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
2169 unsigned long vm_flags)
ba76149f
AA
2170{
2171 unsigned long hstart, hend;
2172 if (!vma->anon_vma)
2173 /*
2174 * Not yet faulted in so we will register later in the
2175 * page fault if needed.
2176 */
2177 return 0;
78f11a25 2178 if (vma->vm_ops)
ba76149f
AA
2179 /* khugepaged not yet working on file or special mappings */
2180 return 0;
6d50e60c 2181 VM_BUG_ON_VMA(vm_flags & VM_NO_THP, vma);
ba76149f
AA
2182 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2183 hend = vma->vm_end & HPAGE_PMD_MASK;
2184 if (hstart < hend)
6d50e60c 2185 return khugepaged_enter(vma, vm_flags);
ba76149f
AA
2186 return 0;
2187}
2188
2189void __khugepaged_exit(struct mm_struct *mm)
2190{
2191 struct mm_slot *mm_slot;
2192 int free = 0;
2193
2194 spin_lock(&khugepaged_mm_lock);
2195 mm_slot = get_mm_slot(mm);
2196 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
43b5fbbd 2197 hash_del(&mm_slot->hash);
ba76149f
AA
2198 list_del(&mm_slot->mm_node);
2199 free = 1;
2200 }
d788e80a 2201 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
2202
2203 if (free) {
ba76149f
AA
2204 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2205 free_mm_slot(mm_slot);
2206 mmdrop(mm);
2207 } else if (mm_slot) {
ba76149f
AA
2208 /*
2209 * This is required to serialize against
2210 * khugepaged_test_exit() (which is guaranteed to run
2211 * under mmap sem read mode). Stop here (after we
2212 * return all pagetables will be destroyed) until
2213 * khugepaged has finished working on the pagetables
2214 * under the mmap_sem.
2215 */
2216 down_write(&mm->mmap_sem);
2217 up_write(&mm->mmap_sem);
d788e80a 2218 }
ba76149f
AA
2219}
2220
2221static void release_pte_page(struct page *page)
2222{
2223 /* 0 stands for page_is_file_cache(page) == false */
2224 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2225 unlock_page(page);
2226 putback_lru_page(page);
2227}
2228
2229static void release_pte_pages(pte_t *pte, pte_t *_pte)
2230{
2231 while (--_pte >= pte) {
2232 pte_t pteval = *_pte;
ca0984ca 2233 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
ba76149f
AA
2234 release_pte_page(pte_page(pteval));
2235 }
2236}
2237
ba76149f
AA
2238static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2239 unsigned long address,
2240 pte_t *pte)
2241{
7d2eba05 2242 struct page *page = NULL;
ba76149f 2243 pte_t *_pte;
7d2eba05 2244 int none_or_zero = 0, result = 0;
10359213 2245 bool referenced = false, writable = false;
7d2eba05 2246
ba76149f
AA
2247 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2248 _pte++, address += PAGE_SIZE) {
2249 pte_t pteval = *_pte;
47aee4d8
MK
2250 if (pte_none(pteval) || (pte_present(pteval) &&
2251 is_zero_pfn(pte_pfn(pteval)))) {
c1294d05 2252 if (!userfaultfd_armed(vma) &&
7d2eba05 2253 ++none_or_zero <= khugepaged_max_ptes_none) {
ba76149f 2254 continue;
7d2eba05
EA
2255 } else {
2256 result = SCAN_EXCEED_NONE_PTE;
ba76149f 2257 goto out;
7d2eba05 2258 }
ba76149f 2259 }
7d2eba05
EA
2260 if (!pte_present(pteval)) {
2261 result = SCAN_PTE_NON_PRESENT;
ba76149f 2262 goto out;
7d2eba05 2263 }
ba76149f 2264 page = vm_normal_page(vma, address, pteval);
7d2eba05
EA
2265 if (unlikely(!page)) {
2266 result = SCAN_PAGE_NULL;
ba76149f 2267 goto out;
7d2eba05 2268 }
344aa35c 2269
309381fe
SL
2270 VM_BUG_ON_PAGE(PageCompound(page), page);
2271 VM_BUG_ON_PAGE(!PageAnon(page), page);
2272 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
ba76149f 2273
ba76149f
AA
2274 /*
2275 * We can do it before isolate_lru_page because the
2276 * page can't be freed from under us. NOTE: PG_lock
2277 * is needed to serialize against split_huge_page
2278 * when invoked from the VM.
2279 */
7d2eba05
EA
2280 if (!trylock_page(page)) {
2281 result = SCAN_PAGE_LOCK;
ba76149f 2282 goto out;
7d2eba05 2283 }
10359213
EA
2284
2285 /*
2286 * cannot use mapcount: can't collapse if there's a gup pin.
2287 * The page must only be referenced by the scanned process
2288 * and page swap cache.
2289 */
2290 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2291 unlock_page(page);
7d2eba05 2292 result = SCAN_PAGE_COUNT;
10359213
EA
2293 goto out;
2294 }
2295 if (pte_write(pteval)) {
2296 writable = true;
2297 } else {
2298 if (PageSwapCache(page) && !reuse_swap_page(page)) {
2299 unlock_page(page);
7d2eba05 2300 result = SCAN_SWAP_CACHE_PAGE;
10359213
EA
2301 goto out;
2302 }
2303 /*
2304 * Page is not in the swap cache. It can be collapsed
2305 * into a THP.
2306 */
2307 }
2308
ba76149f
AA
2309 /*
2310 * Isolate the page to avoid collapsing an hugepage
2311 * currently in use by the VM.
2312 */
2313 if (isolate_lru_page(page)) {
2314 unlock_page(page);
7d2eba05 2315 result = SCAN_DEL_PAGE_LRU;
ba76149f
AA
2316 goto out;
2317 }
2318 /* 0 stands for page_is_file_cache(page) == false */
2319 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
309381fe
SL
2320 VM_BUG_ON_PAGE(!PageLocked(page), page);
2321 VM_BUG_ON_PAGE(PageLRU(page), page);
ba76149f
AA
2322
2323 /* If there is no mapped pte young don't collapse the page */
33c3fc71
VD
2324 if (pte_young(pteval) ||
2325 page_is_young(page) || PageReferenced(page) ||
8ee53820 2326 mmu_notifier_test_young(vma->vm_mm, address))
10359213 2327 referenced = true;
ba76149f 2328 }
7d2eba05
EA
2329 if (likely(writable)) {
2330 if (likely(referenced)) {
2331 result = SCAN_SUCCEED;
2332 trace_mm_collapse_huge_page_isolate(page_to_pfn(page), none_or_zero,
2333 referenced, writable, result);
2334 return 1;
2335 }
2336 } else {
2337 result = SCAN_PAGE_RO;
2338 }
2339
ba76149f 2340out:
344aa35c 2341 release_pte_pages(pte, _pte);
7d2eba05
EA
2342 trace_mm_collapse_huge_page_isolate(page_to_pfn(page), none_or_zero,
2343 referenced, writable, result);
344aa35c 2344 return 0;
ba76149f
AA
2345}
2346
2347static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2348 struct vm_area_struct *vma,
2349 unsigned long address,
2350 spinlock_t *ptl)
2351{
2352 pte_t *_pte;
2353 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2354 pte_t pteval = *_pte;
2355 struct page *src_page;
2356
ca0984ca 2357 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
ba76149f
AA
2358 clear_user_highpage(page, address);
2359 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
ca0984ca
EA
2360 if (is_zero_pfn(pte_pfn(pteval))) {
2361 /*
2362 * ptl mostly unnecessary.
2363 */
2364 spin_lock(ptl);
2365 /*
2366 * paravirt calls inside pte_clear here are
2367 * superfluous.
2368 */
2369 pte_clear(vma->vm_mm, address, _pte);
2370 spin_unlock(ptl);
2371 }
ba76149f
AA
2372 } else {
2373 src_page = pte_page(pteval);
2374 copy_user_highpage(page, src_page, address, vma);
309381fe 2375 VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
ba76149f
AA
2376 release_pte_page(src_page);
2377 /*
2378 * ptl mostly unnecessary, but preempt has to
2379 * be disabled to update the per-cpu stats
2380 * inside page_remove_rmap().
2381 */
2382 spin_lock(ptl);
2383 /*
2384 * paravirt calls inside pte_clear here are
2385 * superfluous.
2386 */
2387 pte_clear(vma->vm_mm, address, _pte);
d281ee61 2388 page_remove_rmap(src_page, false);
ba76149f
AA
2389 spin_unlock(ptl);
2390 free_page_and_swap_cache(src_page);
2391 }
2392
2393 address += PAGE_SIZE;
2394 page++;
2395 }
2396}
2397
26234f36 2398static void khugepaged_alloc_sleep(void)
ba76149f 2399{
bde43c6c
PM
2400 DEFINE_WAIT(wait);
2401
2402 add_wait_queue(&khugepaged_wait, &wait);
2403 freezable_schedule_timeout_interruptible(
2404 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2405 remove_wait_queue(&khugepaged_wait, &wait);
26234f36 2406}
ba76149f 2407
9f1b868a
BL
2408static int khugepaged_node_load[MAX_NUMNODES];
2409
14a4e214
DR
2410static bool khugepaged_scan_abort(int nid)
2411{
2412 int i;
2413
2414 /*
2415 * If zone_reclaim_mode is disabled, then no extra effort is made to
2416 * allocate memory locally.
2417 */
2418 if (!zone_reclaim_mode)
2419 return false;
2420
2421 /* If there is a count for this node already, it must be acceptable */
2422 if (khugepaged_node_load[nid])
2423 return false;
2424
2425 for (i = 0; i < MAX_NUMNODES; i++) {
2426 if (!khugepaged_node_load[i])
2427 continue;
2428 if (node_distance(nid, i) > RECLAIM_DISTANCE)
2429 return true;
2430 }
2431 return false;
2432}
2433
26234f36 2434#ifdef CONFIG_NUMA
9f1b868a
BL
2435static int khugepaged_find_target_node(void)
2436{
2437 static int last_khugepaged_target_node = NUMA_NO_NODE;
2438 int nid, target_node = 0, max_value = 0;
2439
2440 /* find first node with max normal pages hit */
2441 for (nid = 0; nid < MAX_NUMNODES; nid++)
2442 if (khugepaged_node_load[nid] > max_value) {
2443 max_value = khugepaged_node_load[nid];
2444 target_node = nid;
2445 }
2446
2447 /* do some balance if several nodes have the same hit record */
2448 if (target_node <= last_khugepaged_target_node)
2449 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2450 nid++)
2451 if (max_value == khugepaged_node_load[nid]) {
2452 target_node = nid;
2453 break;
2454 }
2455
2456 last_khugepaged_target_node = target_node;
2457 return target_node;
2458}
2459
26234f36
XG
2460static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2461{
2462 if (IS_ERR(*hpage)) {
2463 if (!*wait)
2464 return false;
2465
2466 *wait = false;
e3b4126c 2467 *hpage = NULL;
26234f36
XG
2468 khugepaged_alloc_sleep();
2469 } else if (*hpage) {
2470 put_page(*hpage);
2471 *hpage = NULL;
2472 }
2473
2474 return true;
2475}
2476
3b363692
MH
2477static struct page *
2478khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
d6669d68 2479 unsigned long address, int node)
26234f36 2480{
309381fe 2481 VM_BUG_ON_PAGE(*hpage, *hpage);
8b164568 2482
ce83d217 2483 /*
8b164568
VB
2484 * Before allocating the hugepage, release the mmap_sem read lock.
2485 * The allocation can take potentially a long time if it involves
2486 * sync compaction, and we do not need to hold the mmap_sem during
2487 * that. We will recheck the vma after taking it again in write mode.
ce83d217 2488 */
8b164568
VB
2489 up_read(&mm->mmap_sem);
2490
96db800f 2491 *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
26234f36 2492 if (unlikely(!*hpage)) {
81ab4201 2493 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
ce83d217 2494 *hpage = ERR_PTR(-ENOMEM);
26234f36 2495 return NULL;
ce83d217 2496 }
26234f36 2497
65b3c07b 2498 count_vm_event(THP_COLLAPSE_ALLOC);
26234f36
XG
2499 return *hpage;
2500}
2501#else
9f1b868a
BL
2502static int khugepaged_find_target_node(void)
2503{
2504 return 0;
2505}
2506
10dc4155
BL
2507static inline struct page *alloc_hugepage(int defrag)
2508{
2509 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
2510 HPAGE_PMD_ORDER);
2511}
2512
26234f36
XG
2513static struct page *khugepaged_alloc_hugepage(bool *wait)
2514{
2515 struct page *hpage;
2516
2517 do {
2518 hpage = alloc_hugepage(khugepaged_defrag());
2519 if (!hpage) {
2520 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2521 if (!*wait)
2522 return NULL;
2523
2524 *wait = false;
2525 khugepaged_alloc_sleep();
2526 } else
2527 count_vm_event(THP_COLLAPSE_ALLOC);
2528 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2529
2530 return hpage;
2531}
2532
2533static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2534{
2535 if (!*hpage)
2536 *hpage = khugepaged_alloc_hugepage(wait);
2537
2538 if (unlikely(!*hpage))
2539 return false;
2540
2541 return true;
2542}
2543
3b363692
MH
2544static struct page *
2545khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
d6669d68 2546 unsigned long address, int node)
26234f36
XG
2547{
2548 up_read(&mm->mmap_sem);
2549 VM_BUG_ON(!*hpage);
3b363692 2550
26234f36
XG
2551 return *hpage;
2552}
692e0b35
AA
2553#endif
2554
fa475e51
BL
2555static bool hugepage_vma_check(struct vm_area_struct *vma)
2556{
2557 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2558 (vma->vm_flags & VM_NOHUGEPAGE))
2559 return false;
7479df6d
KS
2560 if (vma->vm_flags & VM_LOCKED)
2561 return false;
fa475e51
BL
2562 if (!vma->anon_vma || vma->vm_ops)
2563 return false;
2564 if (is_vma_temporary_stack(vma))
2565 return false;
81d1b09c 2566 VM_BUG_ON_VMA(vma->vm_flags & VM_NO_THP, vma);
fa475e51
BL
2567 return true;
2568}
2569
26234f36
XG
2570static void collapse_huge_page(struct mm_struct *mm,
2571 unsigned long address,
2572 struct page **hpage,
2573 struct vm_area_struct *vma,
2574 int node)
2575{
26234f36
XG
2576 pmd_t *pmd, _pmd;
2577 pte_t *pte;
2578 pgtable_t pgtable;
2579 struct page *new_page;
c4088ebd 2580 spinlock_t *pmd_ptl, *pte_ptl;
7d2eba05 2581 int isolated, result = 0;
26234f36 2582 unsigned long hstart, hend;
00501b53 2583 struct mem_cgroup *memcg;
2ec74c3e
SG
2584 unsigned long mmun_start; /* For mmu_notifiers */
2585 unsigned long mmun_end; /* For mmu_notifiers */
3b363692 2586 gfp_t gfp;
26234f36
XG
2587
2588 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2589
3b363692
MH
2590 /* Only allocate from the target node */
2591 gfp = alloc_hugepage_gfpmask(khugepaged_defrag(), __GFP_OTHER_NODE) |
2592 __GFP_THISNODE;
2593
26234f36 2594 /* release the mmap_sem read lock. */
d6669d68 2595 new_page = khugepaged_alloc_page(hpage, gfp, mm, address, node);
7d2eba05
EA
2596 if (!new_page) {
2597 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
2598 goto out_nolock;
2599 }
26234f36 2600
f627c2f5 2601 if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
7d2eba05
EA
2602 result = SCAN_CGROUP_CHARGE_FAIL;
2603 goto out_nolock;
2604 }
ba76149f
AA
2605
2606 /*
2607 * Prevent all access to pagetables with the exception of
2608 * gup_fast later hanlded by the ptep_clear_flush and the VM
2609 * handled by the anon_vma lock + PG_lock.
2610 */
2611 down_write(&mm->mmap_sem);
7d2eba05
EA
2612 if (unlikely(khugepaged_test_exit(mm))) {
2613 result = SCAN_ANY_PROCESS;
ba76149f 2614 goto out;
7d2eba05 2615 }
ba76149f
AA
2616
2617 vma = find_vma(mm, address);
7d2eba05
EA
2618 if (!vma) {
2619 result = SCAN_VMA_NULL;
a8f531eb 2620 goto out;
7d2eba05 2621 }
ba76149f
AA
2622 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2623 hend = vma->vm_end & HPAGE_PMD_MASK;
7d2eba05
EA
2624 if (address < hstart || address + HPAGE_PMD_SIZE > hend) {
2625 result = SCAN_ADDRESS_RANGE;
ba76149f 2626 goto out;
7d2eba05
EA
2627 }
2628 if (!hugepage_vma_check(vma)) {
2629 result = SCAN_VMA_CHECK;
a7d6e4ec 2630 goto out;
7d2eba05 2631 }
6219049a 2632 pmd = mm_find_pmd(mm, address);
7d2eba05
EA
2633 if (!pmd) {
2634 result = SCAN_PMD_NULL;
ba76149f 2635 goto out;
7d2eba05 2636 }
ba76149f 2637
4fc3f1d6 2638 anon_vma_lock_write(vma->anon_vma);
ba76149f
AA
2639
2640 pte = pte_offset_map(pmd, address);
c4088ebd 2641 pte_ptl = pte_lockptr(mm, pmd);
ba76149f 2642
2ec74c3e
SG
2643 mmun_start = address;
2644 mmun_end = address + HPAGE_PMD_SIZE;
2645 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
c4088ebd 2646 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
ba76149f
AA
2647 /*
2648 * After this gup_fast can't run anymore. This also removes
2649 * any huge TLB entry from the CPU so we won't allow
2650 * huge and small TLB entries for the same virtual address
2651 * to avoid the risk of CPU bugs in that area.
2652 */
15a25b2e 2653 _pmd = pmdp_collapse_flush(vma, address, pmd);
c4088ebd 2654 spin_unlock(pmd_ptl);
2ec74c3e 2655 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
ba76149f 2656
c4088ebd 2657 spin_lock(pte_ptl);
ba76149f 2658 isolated = __collapse_huge_page_isolate(vma, address, pte);
c4088ebd 2659 spin_unlock(pte_ptl);
ba76149f
AA
2660
2661 if (unlikely(!isolated)) {
453c7192 2662 pte_unmap(pte);
c4088ebd 2663 spin_lock(pmd_ptl);
ba76149f 2664 BUG_ON(!pmd_none(*pmd));
7c342512
AK
2665 /*
2666 * We can only use set_pmd_at when establishing
2667 * hugepmds and never for establishing regular pmds that
2668 * points to regular pagetables. Use pmd_populate for that
2669 */
2670 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
c4088ebd 2671 spin_unlock(pmd_ptl);
08b52706 2672 anon_vma_unlock_write(vma->anon_vma);
7d2eba05 2673 result = SCAN_FAIL;
ce83d217 2674 goto out;
ba76149f
AA
2675 }
2676
2677 /*
2678 * All pages are isolated and locked so anon_vma rmap
2679 * can't run anymore.
2680 */
08b52706 2681 anon_vma_unlock_write(vma->anon_vma);
ba76149f 2682
c4088ebd 2683 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
453c7192 2684 pte_unmap(pte);
ba76149f
AA
2685 __SetPageUptodate(new_page);
2686 pgtable = pmd_pgtable(_pmd);
ba76149f 2687
3122359a
KS
2688 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2689 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
ba76149f
AA
2690
2691 /*
2692 * spin_lock() below is not the equivalent of smp_wmb(), so
2693 * this is needed to avoid the copy_huge_page writes to become
2694 * visible after the set_pmd_at() write.
2695 */
2696 smp_wmb();
2697
c4088ebd 2698 spin_lock(pmd_ptl);
ba76149f 2699 BUG_ON(!pmd_none(*pmd));
d281ee61 2700 page_add_new_anon_rmap(new_page, vma, address, true);
f627c2f5 2701 mem_cgroup_commit_charge(new_page, memcg, false, true);
00501b53 2702 lru_cache_add_active_or_unevictable(new_page, vma);
fce144b4 2703 pgtable_trans_huge_deposit(mm, pmd, pgtable);
ba76149f 2704 set_pmd_at(mm, address, pmd, _pmd);
b113da65 2705 update_mmu_cache_pmd(vma, address, pmd);
c4088ebd 2706 spin_unlock(pmd_ptl);
ba76149f
AA
2707
2708 *hpage = NULL;
420256ef 2709
ba76149f 2710 khugepaged_pages_collapsed++;
7d2eba05 2711 result = SCAN_SUCCEED;
ce83d217 2712out_up_write:
ba76149f 2713 up_write(&mm->mmap_sem);
7d2eba05 2714 trace_mm_collapse_huge_page(mm, isolated, result);
0bbbc0b3
AA
2715 return;
2716
7d2eba05
EA
2717out_nolock:
2718 trace_mm_collapse_huge_page(mm, isolated, result);
2719 return;
ce83d217 2720out:
f627c2f5 2721 mem_cgroup_cancel_charge(new_page, memcg, true);
ce83d217 2722 goto out_up_write;
ba76149f
AA
2723}
2724
2725static int khugepaged_scan_pmd(struct mm_struct *mm,
2726 struct vm_area_struct *vma,
2727 unsigned long address,
2728 struct page **hpage)
2729{
ba76149f
AA
2730 pmd_t *pmd;
2731 pte_t *pte, *_pte;
7d2eba05
EA
2732 int ret = 0, none_or_zero = 0, result = 0;
2733 struct page *page = NULL;
ba76149f
AA
2734 unsigned long _address;
2735 spinlock_t *ptl;
00ef2d2f 2736 int node = NUMA_NO_NODE;
10359213 2737 bool writable = false, referenced = false;
ba76149f
AA
2738
2739 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2740
6219049a 2741 pmd = mm_find_pmd(mm, address);
7d2eba05
EA
2742 if (!pmd) {
2743 result = SCAN_PMD_NULL;
ba76149f 2744 goto out;
7d2eba05 2745 }
ba76149f 2746
9f1b868a 2747 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
ba76149f
AA
2748 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2749 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2750 _pte++, _address += PAGE_SIZE) {
2751 pte_t pteval = *_pte;
ca0984ca 2752 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
c1294d05 2753 if (!userfaultfd_armed(vma) &&
7d2eba05 2754 ++none_or_zero <= khugepaged_max_ptes_none) {
ba76149f 2755 continue;
7d2eba05
EA
2756 } else {
2757 result = SCAN_EXCEED_NONE_PTE;
ba76149f 2758 goto out_unmap;
7d2eba05 2759 }
ba76149f 2760 }
7d2eba05
EA
2761 if (!pte_present(pteval)) {
2762 result = SCAN_PTE_NON_PRESENT;
ba76149f 2763 goto out_unmap;
7d2eba05 2764 }
10359213
EA
2765 if (pte_write(pteval))
2766 writable = true;
2767
ba76149f 2768 page = vm_normal_page(vma, _address, pteval);
7d2eba05
EA
2769 if (unlikely(!page)) {
2770 result = SCAN_PAGE_NULL;
ba76149f 2771 goto out_unmap;
7d2eba05 2772 }
5c4b4be3 2773 /*
9f1b868a
BL
2774 * Record which node the original page is from and save this
2775 * information to khugepaged_node_load[].
2776 * Khupaged will allocate hugepage from the node has the max
2777 * hit record.
5c4b4be3 2778 */
9f1b868a 2779 node = page_to_nid(page);
7d2eba05
EA
2780 if (khugepaged_scan_abort(node)) {
2781 result = SCAN_SCAN_ABORT;
14a4e214 2782 goto out_unmap;
7d2eba05 2783 }
9f1b868a 2784 khugepaged_node_load[node]++;
309381fe 2785 VM_BUG_ON_PAGE(PageCompound(page), page);
7d2eba05
EA
2786 if (!PageLRU(page)) {
2787 result = SCAN_SCAN_ABORT;
2788 goto out_unmap;
2789 }
2790 if (PageLocked(page)) {
2791 result = SCAN_PAGE_LOCK;
ba76149f 2792 goto out_unmap;
7d2eba05
EA
2793 }
2794 if (!PageAnon(page)) {
2795 result = SCAN_PAGE_ANON;
2796 goto out_unmap;
2797 }
2798
10359213
EA
2799 /*
2800 * cannot use mapcount: can't collapse if there's a gup pin.
2801 * The page must only be referenced by the scanned process
2802 * and page swap cache.
2803 */
7d2eba05
EA
2804 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2805 result = SCAN_PAGE_COUNT;
ba76149f 2806 goto out_unmap;
7d2eba05 2807 }
33c3fc71
VD
2808 if (pte_young(pteval) ||
2809 page_is_young(page) || PageReferenced(page) ||
8ee53820 2810 mmu_notifier_test_young(vma->vm_mm, address))
10359213 2811 referenced = true;
ba76149f 2812 }
7d2eba05
EA
2813 if (writable) {
2814 if (referenced) {
2815 result = SCAN_SUCCEED;
2816 ret = 1;
2817 } else {
2818 result = SCAN_NO_REFERENCED_PAGE;
2819 }
2820 } else {
2821 result = SCAN_PAGE_RO;
2822 }
ba76149f
AA
2823out_unmap:
2824 pte_unmap_unlock(pte, ptl);
9f1b868a
BL
2825 if (ret) {
2826 node = khugepaged_find_target_node();
ce83d217 2827 /* collapse_huge_page will return with the mmap_sem released */
5c4b4be3 2828 collapse_huge_page(mm, address, hpage, vma, node);
9f1b868a 2829 }
ba76149f 2830out:
7d2eba05
EA
2831 trace_mm_khugepaged_scan_pmd(mm, page_to_pfn(page), writable, referenced,
2832 none_or_zero, result);
ba76149f
AA
2833 return ret;
2834}
2835
2836static void collect_mm_slot(struct mm_slot *mm_slot)
2837{
2838 struct mm_struct *mm = mm_slot->mm;
2839
b9980cdc 2840 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2841
2842 if (khugepaged_test_exit(mm)) {
2843 /* free mm_slot */
43b5fbbd 2844 hash_del(&mm_slot->hash);
ba76149f
AA
2845 list_del(&mm_slot->mm_node);
2846
2847 /*
2848 * Not strictly needed because the mm exited already.
2849 *
2850 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2851 */
2852
2853 /* khugepaged_mm_lock actually not necessary for the below */
2854 free_mm_slot(mm_slot);
2855 mmdrop(mm);
2856 }
2857}
2858
2859static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2860 struct page **hpage)
2f1da642
HS
2861 __releases(&khugepaged_mm_lock)
2862 __acquires(&khugepaged_mm_lock)
ba76149f
AA
2863{
2864 struct mm_slot *mm_slot;
2865 struct mm_struct *mm;
2866 struct vm_area_struct *vma;
2867 int progress = 0;
2868
2869 VM_BUG_ON(!pages);
b9980cdc 2870 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2871
2872 if (khugepaged_scan.mm_slot)
2873 mm_slot = khugepaged_scan.mm_slot;
2874 else {
2875 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2876 struct mm_slot, mm_node);
2877 khugepaged_scan.address = 0;
2878 khugepaged_scan.mm_slot = mm_slot;
2879 }
2880 spin_unlock(&khugepaged_mm_lock);
2881
2882 mm = mm_slot->mm;
2883 down_read(&mm->mmap_sem);
2884 if (unlikely(khugepaged_test_exit(mm)))
2885 vma = NULL;
2886 else
2887 vma = find_vma(mm, khugepaged_scan.address);
2888
2889 progress++;
2890 for (; vma; vma = vma->vm_next) {
2891 unsigned long hstart, hend;
2892
2893 cond_resched();
2894 if (unlikely(khugepaged_test_exit(mm))) {
2895 progress++;
2896 break;
2897 }
fa475e51
BL
2898 if (!hugepage_vma_check(vma)) {
2899skip:
ba76149f
AA
2900 progress++;
2901 continue;
2902 }
ba76149f
AA
2903 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2904 hend = vma->vm_end & HPAGE_PMD_MASK;
a7d6e4ec
AA
2905 if (hstart >= hend)
2906 goto skip;
2907 if (khugepaged_scan.address > hend)
2908 goto skip;
ba76149f
AA
2909 if (khugepaged_scan.address < hstart)
2910 khugepaged_scan.address = hstart;
a7d6e4ec 2911 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
ba76149f
AA
2912
2913 while (khugepaged_scan.address < hend) {
2914 int ret;
2915 cond_resched();
2916 if (unlikely(khugepaged_test_exit(mm)))
2917 goto breakouterloop;
2918
2919 VM_BUG_ON(khugepaged_scan.address < hstart ||
2920 khugepaged_scan.address + HPAGE_PMD_SIZE >
2921 hend);
2922 ret = khugepaged_scan_pmd(mm, vma,
2923 khugepaged_scan.address,
2924 hpage);
2925 /* move to next address */
2926 khugepaged_scan.address += HPAGE_PMD_SIZE;
2927 progress += HPAGE_PMD_NR;
2928 if (ret)
2929 /* we released mmap_sem so break loop */
2930 goto breakouterloop_mmap_sem;
2931 if (progress >= pages)
2932 goto breakouterloop;
2933 }
2934 }
2935breakouterloop:
2936 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2937breakouterloop_mmap_sem:
2938
2939 spin_lock(&khugepaged_mm_lock);
a7d6e4ec 2940 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
ba76149f
AA
2941 /*
2942 * Release the current mm_slot if this mm is about to die, or
2943 * if we scanned all vmas of this mm.
2944 */
2945 if (khugepaged_test_exit(mm) || !vma) {
2946 /*
2947 * Make sure that if mm_users is reaching zero while
2948 * khugepaged runs here, khugepaged_exit will find
2949 * mm_slot not pointing to the exiting mm.
2950 */
2951 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2952 khugepaged_scan.mm_slot = list_entry(
2953 mm_slot->mm_node.next,
2954 struct mm_slot, mm_node);
2955 khugepaged_scan.address = 0;
2956 } else {
2957 khugepaged_scan.mm_slot = NULL;
2958 khugepaged_full_scans++;
2959 }
2960
2961 collect_mm_slot(mm_slot);
2962 }
2963
2964 return progress;
2965}
2966
2967static int khugepaged_has_work(void)
2968{
2969 return !list_empty(&khugepaged_scan.mm_head) &&
2970 khugepaged_enabled();
2971}
2972
2973static int khugepaged_wait_event(void)
2974{
2975 return !list_empty(&khugepaged_scan.mm_head) ||
2017c0bf 2976 kthread_should_stop();
ba76149f
AA
2977}
2978
d516904b 2979static void khugepaged_do_scan(void)
ba76149f 2980{
d516904b 2981 struct page *hpage = NULL;
ba76149f
AA
2982 unsigned int progress = 0, pass_through_head = 0;
2983 unsigned int pages = khugepaged_pages_to_scan;
d516904b 2984 bool wait = true;
ba76149f
AA
2985
2986 barrier(); /* write khugepaged_pages_to_scan to local stack */
2987
2988 while (progress < pages) {
26234f36 2989 if (!khugepaged_prealloc_page(&hpage, &wait))
d516904b 2990 break;
26234f36 2991
420256ef 2992 cond_resched();
ba76149f 2993
cd092411 2994 if (unlikely(kthread_should_stop() || try_to_freeze()))
878aee7d
AA
2995 break;
2996
ba76149f
AA
2997 spin_lock(&khugepaged_mm_lock);
2998 if (!khugepaged_scan.mm_slot)
2999 pass_through_head++;
3000 if (khugepaged_has_work() &&
3001 pass_through_head < 2)
3002 progress += khugepaged_scan_mm_slot(pages - progress,
d516904b 3003 &hpage);
ba76149f
AA
3004 else
3005 progress = pages;
3006 spin_unlock(&khugepaged_mm_lock);
3007 }
ba76149f 3008
d516904b
XG
3009 if (!IS_ERR_OR_NULL(hpage))
3010 put_page(hpage);
0bbbc0b3
AA
3011}
3012
2017c0bf
XG
3013static void khugepaged_wait_work(void)
3014{
2017c0bf
XG
3015 if (khugepaged_has_work()) {
3016 if (!khugepaged_scan_sleep_millisecs)
3017 return;
3018
3019 wait_event_freezable_timeout(khugepaged_wait,
3020 kthread_should_stop(),
3021 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
3022 return;
3023 }
3024
3025 if (khugepaged_enabled())
3026 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
3027}
3028
ba76149f
AA
3029static int khugepaged(void *none)
3030{
3031 struct mm_slot *mm_slot;
3032
878aee7d 3033 set_freezable();
8698a745 3034 set_user_nice(current, MAX_NICE);
ba76149f 3035
b7231789
XG
3036 while (!kthread_should_stop()) {
3037 khugepaged_do_scan();
3038 khugepaged_wait_work();
3039 }
ba76149f
AA
3040
3041 spin_lock(&khugepaged_mm_lock);
3042 mm_slot = khugepaged_scan.mm_slot;
3043 khugepaged_scan.mm_slot = NULL;
3044 if (mm_slot)
3045 collect_mm_slot(mm_slot);
3046 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
3047 return 0;
3048}
3049
c5a647d0
KS
3050static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
3051 unsigned long haddr, pmd_t *pmd)
3052{
3053 struct mm_struct *mm = vma->vm_mm;
3054 pgtable_t pgtable;
3055 pmd_t _pmd;
3056 int i;
3057
8809aa2d 3058 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
c5a647d0
KS
3059 /* leave pmd empty until pte is filled */
3060
6b0b50b0 3061 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
c5a647d0
KS
3062 pmd_populate(mm, &_pmd, pgtable);
3063
3064 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
3065 pte_t *pte, entry;
3066 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
3067 entry = pte_mkspecial(entry);
3068 pte = pte_offset_map(&_pmd, haddr);
3069 VM_BUG_ON(!pte_none(*pte));
3070 set_pte_at(mm, haddr, pte, entry);
3071 pte_unmap(pte);
3072 }
3073 smp_wmb(); /* make pte visible before pmd */
3074 pmd_populate(mm, pmd, pgtable);
97ae1749 3075 put_huge_zero_page();
c5a647d0
KS
3076}
3077
e180377f
KS
3078void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
3079 pmd_t *pmd)
71e3aac0 3080{
c4088ebd 3081 spinlock_t *ptl;
4897c765 3082 struct page *page = NULL;
e180377f 3083 struct mm_struct *mm = vma->vm_mm;
c5a647d0
KS
3084 unsigned long haddr = address & HPAGE_PMD_MASK;
3085 unsigned long mmun_start; /* For mmu_notifiers */
3086 unsigned long mmun_end; /* For mmu_notifiers */
e180377f
KS
3087
3088 BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
71e3aac0 3089
c5a647d0
KS
3090 mmun_start = haddr;
3091 mmun_end = haddr + HPAGE_PMD_SIZE;
750e8165 3092again:
c5a647d0 3093 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
c4088ebd 3094 ptl = pmd_lock(mm, pmd);
4897c765
MW
3095 if (unlikely(!pmd_trans_huge(*pmd)))
3096 goto unlock;
3097 if (vma_is_dax(vma)) {
5b701b84
KS
3098 pmd_t _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
3099 if (is_huge_zero_pmd(_pmd))
3100 put_huge_zero_page();
4897c765 3101 } else if (is_huge_zero_pmd(*pmd)) {
c5a647d0 3102 __split_huge_zero_page_pmd(vma, haddr, pmd);
4897c765
MW
3103 } else {
3104 page = pmd_page(*pmd);
3105 VM_BUG_ON_PAGE(!page_count(page), page);
3106 get_page(page);
71e3aac0 3107 }
4897c765 3108 unlock:
c4088ebd 3109 spin_unlock(ptl);
c5a647d0 3110 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0 3111
4897c765
MW
3112 if (!page)
3113 return;
71e3aac0 3114
4897c765 3115 split_huge_page(page);
71e3aac0 3116 put_page(page);
750e8165
HD
3117
3118 /*
3119 * We don't always have down_write of mmap_sem here: a racing
3120 * do_huge_pmd_wp_page() might have copied-on-write to another
3121 * huge page before our split_huge_page() got the anon_vma lock.
3122 */
3123 if (unlikely(pmd_trans_huge(*pmd)))
3124 goto again;
71e3aac0 3125}
94fcc585 3126
e180377f
KS
3127void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
3128 pmd_t *pmd)
3129{
3130 struct vm_area_struct *vma;
3131
3132 vma = find_vma(mm, address);
3133 BUG_ON(vma == NULL);
3134 split_huge_page_pmd(vma, address, pmd);
3135}
3136
94fcc585
AA
3137static void split_huge_page_address(struct mm_struct *mm,
3138 unsigned long address)
3139{
f72e7dcd
HD
3140 pgd_t *pgd;
3141 pud_t *pud;
94fcc585
AA
3142 pmd_t *pmd;
3143
3144 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
3145
f72e7dcd
HD
3146 pgd = pgd_offset(mm, address);
3147 if (!pgd_present(*pgd))
3148 return;
3149
3150 pud = pud_offset(pgd, address);
3151 if (!pud_present(*pud))
3152 return;
3153
3154 pmd = pmd_offset(pud, address);
3155 if (!pmd_present(*pmd))
94fcc585
AA
3156 return;
3157 /*
3158 * Caller holds the mmap_sem write mode, so a huge pmd cannot
3159 * materialize from under us.
3160 */
e180377f 3161 split_huge_page_pmd_mm(mm, address, pmd);
94fcc585
AA
3162}
3163
e1b9996b 3164void vma_adjust_trans_huge(struct vm_area_struct *vma,
94fcc585
AA
3165 unsigned long start,
3166 unsigned long end,
3167 long adjust_next)
3168{
3169 /*
3170 * If the new start address isn't hpage aligned and it could
3171 * previously contain an hugepage: check if we need to split
3172 * an huge pmd.
3173 */
3174 if (start & ~HPAGE_PMD_MASK &&
3175 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
3176 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3177 split_huge_page_address(vma->vm_mm, start);
3178
3179 /*
3180 * If the new end address isn't hpage aligned and it could
3181 * previously contain an hugepage: check if we need to split
3182 * an huge pmd.
3183 */
3184 if (end & ~HPAGE_PMD_MASK &&
3185 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
3186 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3187 split_huge_page_address(vma->vm_mm, end);
3188
3189 /*
3190 * If we're also updating the vma->vm_next->vm_start, if the new
3191 * vm_next->vm_start isn't page aligned and it could previously
3192 * contain an hugepage: check if we need to split an huge pmd.
3193 */
3194 if (adjust_next > 0) {
3195 struct vm_area_struct *next = vma->vm_next;
3196 unsigned long nstart = next->vm_start;
3197 nstart += adjust_next << PAGE_SHIFT;
3198 if (nstart & ~HPAGE_PMD_MASK &&
3199 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
3200 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
3201 split_huge_page_address(next->vm_mm, nstart);
3202 }
3203}