]> git.ipfire.org Git - people/ms/linux.git/blame - mm/huge_memory.c
mm/thp: fix __split_huge_pmd_locked() on shmem migration entry
[people/ms/linux.git] / mm / huge_memory.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
71e3aac0
AA
2/*
3 * Copyright (C) 2009 Red Hat, Inc.
71e3aac0
AA
4 */
5
ae3a8c1c
AM
6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
71e3aac0
AA
8#include <linux/mm.h>
9#include <linux/sched.h>
fa6c0231 10#include <linux/sched/mm.h>
f7ccbae4 11#include <linux/sched/coredump.h>
6a3827d7 12#include <linux/sched/numa_balancing.h>
71e3aac0
AA
13#include <linux/highmem.h>
14#include <linux/hugetlb.h>
15#include <linux/mmu_notifier.h>
16#include <linux/rmap.h>
17#include <linux/swap.h>
97ae1749 18#include <linux/shrinker.h>
ba76149f 19#include <linux/mm_inline.h>
e9b61f19 20#include <linux/swapops.h>
4897c765 21#include <linux/dax.h>
ba76149f 22#include <linux/khugepaged.h>
878aee7d 23#include <linux/freezer.h>
f25748e3 24#include <linux/pfn_t.h>
a664b2d8 25#include <linux/mman.h>
3565fce3 26#include <linux/memremap.h>
325adeb5 27#include <linux/pagemap.h>
49071d43 28#include <linux/debugfs.h>
4daae3b4 29#include <linux/migrate.h>
43b5fbbd 30#include <linux/hashtable.h>
6b251fc9 31#include <linux/userfaultfd_k.h>
33c3fc71 32#include <linux/page_idle.h>
baa355fd 33#include <linux/shmem_fs.h>
6b31d595 34#include <linux/oom.h>
98fa15f3 35#include <linux/numa.h>
f7da677b 36#include <linux/page_owner.h>
97ae1749 37
71e3aac0
AA
38#include <asm/tlb.h>
39#include <asm/pgalloc.h>
40#include "internal.h"
41
ba76149f 42/*
b14d595a
MD
43 * By default, transparent hugepage support is disabled in order to avoid
44 * risking an increased memory footprint for applications that are not
45 * guaranteed to benefit from it. When transparent hugepage support is
46 * enabled, it is for all mappings, and khugepaged scans all mappings.
8bfa3f9a
JW
47 * Defrag is invoked by khugepaged hugepage allocations and by page faults
48 * for all hugepage allocations.
ba76149f 49 */
71e3aac0 50unsigned long transparent_hugepage_flags __read_mostly =
13ece886 51#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 52 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
53#endif
54#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
55 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
56#endif
444eb2a4 57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
79da5407
KS
58 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
59 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
ba76149f 60
9a982250 61static struct shrinker deferred_split_shrinker;
f000565a 62
97ae1749 63static atomic_t huge_zero_refcount;
56873f43 64struct page *huge_zero_page __read_mostly;
4a6c1297 65
7635d9cb
MH
66bool transparent_hugepage_enabled(struct vm_area_struct *vma)
67{
c0630669
YS
68 /* The addr is used to check if the vma size fits */
69 unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
70
71 if (!transhuge_vma_suitable(vma, addr))
72 return false;
7635d9cb
MH
73 if (vma_is_anonymous(vma))
74 return __transparent_hugepage_enabled(vma);
c0630669
YS
75 if (vma_is_shmem(vma))
76 return shmem_huge_enabled(vma);
7635d9cb
MH
77
78 return false;
79}
80
aaa9705b 81static bool get_huge_zero_page(void)
97ae1749
KS
82{
83 struct page *zero_page;
84retry:
85 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
aaa9705b 86 return true;
97ae1749
KS
87
88 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
4a6c1297 89 HPAGE_PMD_ORDER);
d8a8e1f0
KS
90 if (!zero_page) {
91 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
aaa9705b 92 return false;
d8a8e1f0
KS
93 }
94 count_vm_event(THP_ZERO_PAGE_ALLOC);
97ae1749 95 preempt_disable();
5918d10a 96 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97ae1749 97 preempt_enable();
5ddacbe9 98 __free_pages(zero_page, compound_order(zero_page));
97ae1749
KS
99 goto retry;
100 }
101
102 /* We take additional reference here. It will be put back by shrinker */
103 atomic_set(&huge_zero_refcount, 2);
104 preempt_enable();
aaa9705b 105 return true;
4a6c1297
KS
106}
107
6fcb52a5 108static void put_huge_zero_page(void)
4a6c1297 109{
97ae1749
KS
110 /*
111 * Counter should never go to zero here. Only shrinker can put
112 * last reference.
113 */
114 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
4a6c1297
KS
115}
116
6fcb52a5
AL
117struct page *mm_get_huge_zero_page(struct mm_struct *mm)
118{
119 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
120 return READ_ONCE(huge_zero_page);
121
122 if (!get_huge_zero_page())
123 return NULL;
124
125 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
126 put_huge_zero_page();
127
128 return READ_ONCE(huge_zero_page);
129}
130
131void mm_put_huge_zero_page(struct mm_struct *mm)
132{
133 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
134 put_huge_zero_page();
135}
136
48896466
GC
137static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
138 struct shrink_control *sc)
4a6c1297 139{
48896466
GC
140 /* we can free zero page only if last reference remains */
141 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
142}
97ae1749 143
48896466
GC
144static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
145 struct shrink_control *sc)
146{
97ae1749 147 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
5918d10a
KS
148 struct page *zero_page = xchg(&huge_zero_page, NULL);
149 BUG_ON(zero_page == NULL);
5ddacbe9 150 __free_pages(zero_page, compound_order(zero_page));
48896466 151 return HPAGE_PMD_NR;
97ae1749
KS
152 }
153
154 return 0;
4a6c1297
KS
155}
156
97ae1749 157static struct shrinker huge_zero_page_shrinker = {
48896466
GC
158 .count_objects = shrink_huge_zero_page_count,
159 .scan_objects = shrink_huge_zero_page_scan,
97ae1749
KS
160 .seeks = DEFAULT_SEEKS,
161};
162
71e3aac0 163#ifdef CONFIG_SYSFS
71e3aac0
AA
164static ssize_t enabled_show(struct kobject *kobj,
165 struct kobj_attribute *attr, char *buf)
166{
bfb0ffeb
JP
167 const char *output;
168
444eb2a4 169 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
bfb0ffeb
JP
170 output = "[always] madvise never";
171 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
172 &transparent_hugepage_flags))
173 output = "always [madvise] never";
444eb2a4 174 else
bfb0ffeb
JP
175 output = "always madvise [never]";
176
177 return sysfs_emit(buf, "%s\n", output);
71e3aac0 178}
444eb2a4 179
71e3aac0
AA
180static ssize_t enabled_store(struct kobject *kobj,
181 struct kobj_attribute *attr,
182 const char *buf, size_t count)
183{
21440d7e 184 ssize_t ret = count;
ba76149f 185
f42f2552 186 if (sysfs_streq(buf, "always")) {
21440d7e
DR
187 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
188 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
f42f2552 189 } else if (sysfs_streq(buf, "madvise")) {
21440d7e
DR
190 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
191 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
f42f2552 192 } else if (sysfs_streq(buf, "never")) {
21440d7e
DR
193 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
194 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
195 } else
196 ret = -EINVAL;
ba76149f
AA
197
198 if (ret > 0) {
b46e756f 199 int err = start_stop_khugepaged();
ba76149f
AA
200 if (err)
201 ret = err;
202 }
ba76149f 203 return ret;
71e3aac0
AA
204}
205static struct kobj_attribute enabled_attr =
206 __ATTR(enabled, 0644, enabled_show, enabled_store);
207
b46e756f 208ssize_t single_hugepage_flag_show(struct kobject *kobj,
bfb0ffeb
JP
209 struct kobj_attribute *attr, char *buf,
210 enum transparent_hugepage_flag flag)
71e3aac0 211{
bfb0ffeb
JP
212 return sysfs_emit(buf, "%d\n",
213 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 214}
e27e6151 215
b46e756f 216ssize_t single_hugepage_flag_store(struct kobject *kobj,
71e3aac0
AA
217 struct kobj_attribute *attr,
218 const char *buf, size_t count,
219 enum transparent_hugepage_flag flag)
220{
e27e6151
BH
221 unsigned long value;
222 int ret;
223
224 ret = kstrtoul(buf, 10, &value);
225 if (ret < 0)
226 return ret;
227 if (value > 1)
228 return -EINVAL;
229
230 if (value)
71e3aac0 231 set_bit(flag, &transparent_hugepage_flags);
e27e6151 232 else
71e3aac0 233 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
234
235 return count;
236}
237
71e3aac0
AA
238static ssize_t defrag_show(struct kobject *kobj,
239 struct kobj_attribute *attr, char *buf)
240{
bfb0ffeb
JP
241 const char *output;
242
243 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
244 &transparent_hugepage_flags))
245 output = "[always] defer defer+madvise madvise never";
246 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
247 &transparent_hugepage_flags))
248 output = "always [defer] defer+madvise madvise never";
249 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
250 &transparent_hugepage_flags))
251 output = "always defer [defer+madvise] madvise never";
252 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
253 &transparent_hugepage_flags))
254 output = "always defer defer+madvise [madvise] never";
255 else
256 output = "always defer defer+madvise madvise [never]";
257
258 return sysfs_emit(buf, "%s\n", output);
71e3aac0 259}
21440d7e 260
71e3aac0
AA
261static ssize_t defrag_store(struct kobject *kobj,
262 struct kobj_attribute *attr,
263 const char *buf, size_t count)
264{
f42f2552 265 if (sysfs_streq(buf, "always")) {
21440d7e
DR
266 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
267 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
268 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
269 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
f42f2552 270 } else if (sysfs_streq(buf, "defer+madvise")) {
21440d7e
DR
271 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
272 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
273 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
274 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
f42f2552 275 } else if (sysfs_streq(buf, "defer")) {
4fad7fb6
DR
276 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
277 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
278 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
279 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
f42f2552 280 } else if (sysfs_streq(buf, "madvise")) {
21440d7e
DR
281 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
282 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
283 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
284 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
f42f2552 285 } else if (sysfs_streq(buf, "never")) {
21440d7e
DR
286 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
287 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
288 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
289 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
290 } else
291 return -EINVAL;
292
293 return count;
71e3aac0
AA
294}
295static struct kobj_attribute defrag_attr =
296 __ATTR(defrag, 0644, defrag_show, defrag_store);
297
79da5407 298static ssize_t use_zero_page_show(struct kobject *kobj,
ae7a927d 299 struct kobj_attribute *attr, char *buf)
79da5407 300{
b46e756f 301 return single_hugepage_flag_show(kobj, attr, buf,
ae7a927d 302 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
79da5407
KS
303}
304static ssize_t use_zero_page_store(struct kobject *kobj,
305 struct kobj_attribute *attr, const char *buf, size_t count)
306{
b46e756f 307 return single_hugepage_flag_store(kobj, attr, buf, count,
79da5407
KS
308 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
309}
310static struct kobj_attribute use_zero_page_attr =
311 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
49920d28
HD
312
313static ssize_t hpage_pmd_size_show(struct kobject *kobj,
ae7a927d 314 struct kobj_attribute *attr, char *buf)
49920d28 315{
ae7a927d 316 return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
49920d28
HD
317}
318static struct kobj_attribute hpage_pmd_size_attr =
319 __ATTR_RO(hpage_pmd_size);
320
71e3aac0
AA
321static struct attribute *hugepage_attr[] = {
322 &enabled_attr.attr,
323 &defrag_attr.attr,
79da5407 324 &use_zero_page_attr.attr,
49920d28 325 &hpage_pmd_size_attr.attr,
396bcc52 326#ifdef CONFIG_SHMEM
5a6e75f8 327 &shmem_enabled_attr.attr,
71e3aac0
AA
328#endif
329 NULL,
330};
331
8aa95a21 332static const struct attribute_group hugepage_attr_group = {
71e3aac0 333 .attrs = hugepage_attr,
ba76149f
AA
334};
335
569e5590 336static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 337{
71e3aac0
AA
338 int err;
339
569e5590
SL
340 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
341 if (unlikely(!*hugepage_kobj)) {
ae3a8c1c 342 pr_err("failed to create transparent hugepage kobject\n");
569e5590 343 return -ENOMEM;
ba76149f
AA
344 }
345
569e5590 346 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f 347 if (err) {
ae3a8c1c 348 pr_err("failed to register transparent hugepage group\n");
569e5590 349 goto delete_obj;
ba76149f
AA
350 }
351
569e5590 352 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f 353 if (err) {
ae3a8c1c 354 pr_err("failed to register transparent hugepage group\n");
569e5590 355 goto remove_hp_group;
ba76149f 356 }
569e5590
SL
357
358 return 0;
359
360remove_hp_group:
361 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
362delete_obj:
363 kobject_put(*hugepage_kobj);
364 return err;
365}
366
367static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
368{
369 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
370 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
371 kobject_put(hugepage_kobj);
372}
373#else
374static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
375{
376 return 0;
377}
378
379static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
380{
381}
382#endif /* CONFIG_SYSFS */
383
384static int __init hugepage_init(void)
385{
386 int err;
387 struct kobject *hugepage_kobj;
388
389 if (!has_transparent_hugepage()) {
bae84953
AK
390 /*
391 * Hardware doesn't support hugepages, hence disable
392 * DAX PMD support.
393 */
394 transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_NEVER_DAX;
569e5590
SL
395 return -EINVAL;
396 }
397
ff20c2e0
KS
398 /*
399 * hugepages can't be allocated by the buddy allocator
400 */
401 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
402 /*
403 * we use page->mapping and page->index in second tail page
404 * as list_head: assuming THP order >= 2
405 */
406 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
407
569e5590
SL
408 err = hugepage_init_sysfs(&hugepage_kobj);
409 if (err)
65ebb64f 410 goto err_sysfs;
ba76149f 411
b46e756f 412 err = khugepaged_init();
ba76149f 413 if (err)
65ebb64f 414 goto err_slab;
ba76149f 415
65ebb64f
KS
416 err = register_shrinker(&huge_zero_page_shrinker);
417 if (err)
418 goto err_hzp_shrinker;
9a982250
KS
419 err = register_shrinker(&deferred_split_shrinker);
420 if (err)
421 goto err_split_shrinker;
97ae1749 422
97562cd2
RR
423 /*
424 * By default disable transparent hugepages on smaller systems,
425 * where the extra memory used could hurt more than TLB overhead
426 * is likely to save. The admin can still enable it through /sys.
427 */
ca79b0c2 428 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
97562cd2 429 transparent_hugepage_flags = 0;
79553da2
KS
430 return 0;
431 }
97562cd2 432
79553da2 433 err = start_stop_khugepaged();
65ebb64f
KS
434 if (err)
435 goto err_khugepaged;
ba76149f 436
569e5590 437 return 0;
65ebb64f 438err_khugepaged:
9a982250
KS
439 unregister_shrinker(&deferred_split_shrinker);
440err_split_shrinker:
65ebb64f
KS
441 unregister_shrinker(&huge_zero_page_shrinker);
442err_hzp_shrinker:
b46e756f 443 khugepaged_destroy();
65ebb64f 444err_slab:
569e5590 445 hugepage_exit_sysfs(hugepage_kobj);
65ebb64f 446err_sysfs:
ba76149f 447 return err;
71e3aac0 448}
a64fb3cd 449subsys_initcall(hugepage_init);
71e3aac0
AA
450
451static int __init setup_transparent_hugepage(char *str)
452{
453 int ret = 0;
454 if (!str)
455 goto out;
456 if (!strcmp(str, "always")) {
457 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
458 &transparent_hugepage_flags);
459 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
460 &transparent_hugepage_flags);
461 ret = 1;
462 } else if (!strcmp(str, "madvise")) {
463 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
464 &transparent_hugepage_flags);
465 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
466 &transparent_hugepage_flags);
467 ret = 1;
468 } else if (!strcmp(str, "never")) {
469 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
470 &transparent_hugepage_flags);
471 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
472 &transparent_hugepage_flags);
473 ret = 1;
474 }
475out:
476 if (!ret)
ae3a8c1c 477 pr_warn("transparent_hugepage= cannot parse, ignored\n");
71e3aac0
AA
478 return ret;
479}
480__setup("transparent_hugepage=", setup_transparent_hugepage);
481
f55e1014 482pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
71e3aac0 483{
f55e1014 484 if (likely(vma->vm_flags & VM_WRITE))
71e3aac0
AA
485 pmd = pmd_mkwrite(pmd);
486 return pmd;
487}
488
87eaceb3
YS
489#ifdef CONFIG_MEMCG
490static inline struct deferred_split *get_deferred_split_queue(struct page *page)
9a982250 491{
bcfe06bf 492 struct mem_cgroup *memcg = page_memcg(compound_head(page));
87eaceb3
YS
493 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
494
495 if (memcg)
496 return &memcg->deferred_split_queue;
497 else
498 return &pgdat->deferred_split_queue;
9a982250 499}
87eaceb3
YS
500#else
501static inline struct deferred_split *get_deferred_split_queue(struct page *page)
502{
503 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
504
505 return &pgdat->deferred_split_queue;
506}
507#endif
9a982250
KS
508
509void prep_transhuge_page(struct page *page)
510{
511 /*
512 * we use page->mapping and page->indexlru in second tail page
513 * as list_head: assuming THP order >= 2
514 */
9a982250
KS
515
516 INIT_LIST_HEAD(page_deferred_list(page));
517 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
518}
519
005ba37c
SC
520bool is_transparent_hugepage(struct page *page)
521{
522 if (!PageCompound(page))
fa1f68cc 523 return false;
005ba37c
SC
524
525 page = compound_head(page);
526 return is_huge_zero_page(page) ||
527 page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
528}
529EXPORT_SYMBOL_GPL(is_transparent_hugepage);
530
97d3d0f9
KS
531static unsigned long __thp_get_unmapped_area(struct file *filp,
532 unsigned long addr, unsigned long len,
74d2fad1
TK
533 loff_t off, unsigned long flags, unsigned long size)
534{
74d2fad1
TK
535 loff_t off_end = off + len;
536 loff_t off_align = round_up(off, size);
97d3d0f9 537 unsigned long len_pad, ret;
74d2fad1
TK
538
539 if (off_end <= off_align || (off_end - off_align) < size)
540 return 0;
541
542 len_pad = len + size;
543 if (len_pad < len || (off + len_pad) < off)
544 return 0;
545
97d3d0f9 546 ret = current->mm->get_unmapped_area(filp, addr, len_pad,
74d2fad1 547 off >> PAGE_SHIFT, flags);
97d3d0f9
KS
548
549 /*
550 * The failure might be due to length padding. The caller will retry
551 * without the padding.
552 */
553 if (IS_ERR_VALUE(ret))
74d2fad1
TK
554 return 0;
555
97d3d0f9
KS
556 /*
557 * Do not try to align to THP boundary if allocation at the address
558 * hint succeeds.
559 */
560 if (ret == addr)
561 return addr;
562
563 ret += (off - ret) & (size - 1);
564 return ret;
74d2fad1
TK
565}
566
567unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
568 unsigned long len, unsigned long pgoff, unsigned long flags)
569{
97d3d0f9 570 unsigned long ret;
74d2fad1
TK
571 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
572
74d2fad1
TK
573 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
574 goto out;
575
97d3d0f9
KS
576 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
577 if (ret)
578 return ret;
579out:
74d2fad1
TK
580 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
581}
582EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
583
2b740303
SJ
584static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
585 struct page *page, gfp_t gfp)
71e3aac0 586{
82b0f8c3 587 struct vm_area_struct *vma = vmf->vma;
71e3aac0 588 pgtable_t pgtable;
82b0f8c3 589 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
2b740303 590 vm_fault_t ret = 0;
71e3aac0 591
309381fe 592 VM_BUG_ON_PAGE(!PageCompound(page), page);
00501b53 593
d9eb1ea2 594 if (mem_cgroup_charge(page, vma->vm_mm, gfp)) {
6b251fc9
AA
595 put_page(page);
596 count_vm_event(THP_FAULT_FALLBACK);
85b9f46e 597 count_vm_event(THP_FAULT_FALLBACK_CHARGE);
6b251fc9
AA
598 return VM_FAULT_FALLBACK;
599 }
9d82c694 600 cgroup_throttle_swaprate(page, gfp);
00501b53 601
4cf58924 602 pgtable = pte_alloc_one(vma->vm_mm);
00501b53 603 if (unlikely(!pgtable)) {
6b31d595
MH
604 ret = VM_FAULT_OOM;
605 goto release;
00501b53 606 }
71e3aac0 607
c79b57e4 608 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
52f37629
MK
609 /*
610 * The memory barrier inside __SetPageUptodate makes sure that
611 * clear_huge_page writes become visible before the set_pmd_at()
612 * write.
613 */
71e3aac0
AA
614 __SetPageUptodate(page);
615
82b0f8c3
JK
616 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
617 if (unlikely(!pmd_none(*vmf->pmd))) {
6b31d595 618 goto unlock_release;
71e3aac0
AA
619 } else {
620 pmd_t entry;
6b251fc9 621
6b31d595
MH
622 ret = check_stable_address_space(vma->vm_mm);
623 if (ret)
624 goto unlock_release;
625
6b251fc9
AA
626 /* Deliver the page fault to userland */
627 if (userfaultfd_missing(vma)) {
82b0f8c3 628 spin_unlock(vmf->ptl);
6b251fc9 629 put_page(page);
bae473a4 630 pte_free(vma->vm_mm, pgtable);
8fd5eda4
ML
631 ret = handle_userfault(vmf, VM_UFFD_MISSING);
632 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
633 return ret;
6b251fc9
AA
634 }
635
3122359a 636 entry = mk_huge_pmd(page, vma->vm_page_prot);
f55e1014 637 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
d281ee61 638 page_add_new_anon_rmap(page, vma, haddr, true);
b518154e 639 lru_cache_add_inactive_or_unevictable(page, vma);
82b0f8c3
JK
640 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
641 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
fca40573 642 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
bae473a4 643 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
c4812909 644 mm_inc_nr_ptes(vma->vm_mm);
82b0f8c3 645 spin_unlock(vmf->ptl);
6b251fc9 646 count_vm_event(THP_FAULT_ALLOC);
9d82c694 647 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
71e3aac0
AA
648 }
649
aa2e878e 650 return 0;
6b31d595
MH
651unlock_release:
652 spin_unlock(vmf->ptl);
653release:
654 if (pgtable)
655 pte_free(vma->vm_mm, pgtable);
6b31d595
MH
656 put_page(page);
657 return ret;
658
71e3aac0
AA
659}
660
444eb2a4 661/*
21440d7e
DR
662 * always: directly stall for all thp allocations
663 * defer: wake kswapd and fail if not immediately available
664 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
665 * fail if not immediately available
666 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
667 * available
668 * never: never stall for any thp allocation
444eb2a4 669 */
164cc4fe 670gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
444eb2a4 671{
164cc4fe 672 const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
2f0799a0 673
ac79f78d 674 /* Always do synchronous compaction */
a8282608
AA
675 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
676 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
ac79f78d
DR
677
678 /* Kick kcompactd and fail quickly */
21440d7e 679 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
19deb769 680 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
ac79f78d
DR
681
682 /* Synchronous compaction if madvised, otherwise kick kcompactd */
21440d7e 683 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
19deb769
DR
684 return GFP_TRANSHUGE_LIGHT |
685 (vma_madvised ? __GFP_DIRECT_RECLAIM :
686 __GFP_KSWAPD_RECLAIM);
ac79f78d
DR
687
688 /* Only do synchronous compaction if madvised */
21440d7e 689 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
19deb769
DR
690 return GFP_TRANSHUGE_LIGHT |
691 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
ac79f78d 692
19deb769 693 return GFP_TRANSHUGE_LIGHT;
444eb2a4
MG
694}
695
c4088ebd 696/* Caller must hold page table lock. */
2efeb8da 697static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
97ae1749 698 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
5918d10a 699 struct page *zero_page)
fc9fe822
KS
700{
701 pmd_t entry;
7c414164 702 if (!pmd_none(*pmd))
2efeb8da 703 return;
5918d10a 704 entry = mk_pmd(zero_page, vma->vm_page_prot);
fc9fe822 705 entry = pmd_mkhuge(entry);
12c9d70b
MW
706 if (pgtable)
707 pgtable_trans_huge_deposit(mm, pmd, pgtable);
fc9fe822 708 set_pmd_at(mm, haddr, pmd, entry);
c4812909 709 mm_inc_nr_ptes(mm);
fc9fe822
KS
710}
711
2b740303 712vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
71e3aac0 713{
82b0f8c3 714 struct vm_area_struct *vma = vmf->vma;
077fcf11 715 gfp_t gfp;
71e3aac0 716 struct page *page;
82b0f8c3 717 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
71e3aac0 718
43675e6f 719 if (!transhuge_vma_suitable(vma, haddr))
c0292554 720 return VM_FAULT_FALLBACK;
128ec037
KS
721 if (unlikely(anon_vma_prepare(vma)))
722 return VM_FAULT_OOM;
6d50e60c 723 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
128ec037 724 return VM_FAULT_OOM;
82b0f8c3 725 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 726 !mm_forbids_zeropage(vma->vm_mm) &&
128ec037
KS
727 transparent_hugepage_use_zero_page()) {
728 pgtable_t pgtable;
729 struct page *zero_page;
2b740303 730 vm_fault_t ret;
4cf58924 731 pgtable = pte_alloc_one(vma->vm_mm);
128ec037 732 if (unlikely(!pgtable))
ba76149f 733 return VM_FAULT_OOM;
6fcb52a5 734 zero_page = mm_get_huge_zero_page(vma->vm_mm);
128ec037 735 if (unlikely(!zero_page)) {
bae473a4 736 pte_free(vma->vm_mm, pgtable);
81ab4201 737 count_vm_event(THP_FAULT_FALLBACK);
c0292554 738 return VM_FAULT_FALLBACK;
b9bbfbe3 739 }
82b0f8c3 740 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
6b251fc9 741 ret = 0;
82b0f8c3 742 if (pmd_none(*vmf->pmd)) {
6b31d595
MH
743 ret = check_stable_address_space(vma->vm_mm);
744 if (ret) {
745 spin_unlock(vmf->ptl);
bfe8cc1d 746 pte_free(vma->vm_mm, pgtable);
6b31d595 747 } else if (userfaultfd_missing(vma)) {
82b0f8c3 748 spin_unlock(vmf->ptl);
bfe8cc1d 749 pte_free(vma->vm_mm, pgtable);
82b0f8c3 750 ret = handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
751 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
752 } else {
bae473a4 753 set_huge_zero_page(pgtable, vma->vm_mm, vma,
82b0f8c3 754 haddr, vmf->pmd, zero_page);
fca40573 755 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
82b0f8c3 756 spin_unlock(vmf->ptl);
6b251fc9 757 }
bfe8cc1d 758 } else {
82b0f8c3 759 spin_unlock(vmf->ptl);
bae473a4 760 pte_free(vma->vm_mm, pgtable);
bfe8cc1d 761 }
6b251fc9 762 return ret;
71e3aac0 763 }
164cc4fe 764 gfp = vma_thp_gfp_mask(vma);
19deb769 765 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
128ec037
KS
766 if (unlikely(!page)) {
767 count_vm_event(THP_FAULT_FALLBACK);
c0292554 768 return VM_FAULT_FALLBACK;
128ec037 769 }
9a982250 770 prep_transhuge_page(page);
82b0f8c3 771 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
71e3aac0
AA
772}
773
ae18d6dc 774static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
3b6521f5
OH
775 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
776 pgtable_t pgtable)
5cad465d
MW
777{
778 struct mm_struct *mm = vma->vm_mm;
779 pmd_t entry;
780 spinlock_t *ptl;
781
782 ptl = pmd_lock(mm, pmd);
c6f3c5ee
AK
783 if (!pmd_none(*pmd)) {
784 if (write) {
785 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
786 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
787 goto out_unlock;
788 }
789 entry = pmd_mkyoung(*pmd);
790 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
791 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
792 update_mmu_cache_pmd(vma, addr, pmd);
793 }
794
795 goto out_unlock;
796 }
797
f25748e3
DW
798 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
799 if (pfn_t_devmap(pfn))
800 entry = pmd_mkdevmap(entry);
01871e59 801 if (write) {
f55e1014
LT
802 entry = pmd_mkyoung(pmd_mkdirty(entry));
803 entry = maybe_pmd_mkwrite(entry, vma);
5cad465d 804 }
3b6521f5
OH
805
806 if (pgtable) {
807 pgtable_trans_huge_deposit(mm, pmd, pgtable);
c4812909 808 mm_inc_nr_ptes(mm);
c6f3c5ee 809 pgtable = NULL;
3b6521f5
OH
810 }
811
01871e59
RZ
812 set_pmd_at(mm, addr, pmd, entry);
813 update_mmu_cache_pmd(vma, addr, pmd);
c6f3c5ee
AK
814
815out_unlock:
5cad465d 816 spin_unlock(ptl);
c6f3c5ee
AK
817 if (pgtable)
818 pte_free(mm, pgtable);
5cad465d
MW
819}
820
9a9731b1
THV
821/**
822 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
823 * @vmf: Structure describing the fault
824 * @pfn: pfn to insert
825 * @pgprot: page protection to use
826 * @write: whether it's a write fault
827 *
828 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
829 * also consult the vmf_insert_mixed_prot() documentation when
830 * @pgprot != @vmf->vma->vm_page_prot.
831 *
832 * Return: vm_fault_t value.
833 */
834vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
835 pgprot_t pgprot, bool write)
5cad465d 836{
fce86ff5
DW
837 unsigned long addr = vmf->address & PMD_MASK;
838 struct vm_area_struct *vma = vmf->vma;
3b6521f5 839 pgtable_t pgtable = NULL;
fce86ff5 840
5cad465d
MW
841 /*
842 * If we had pmd_special, we could avoid all these restrictions,
843 * but we need to be consistent with PTEs and architectures that
844 * can't support a 'special' bit.
845 */
e1fb4a08
DJ
846 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
847 !pfn_t_devmap(pfn));
5cad465d
MW
848 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
849 (VM_PFNMAP|VM_MIXEDMAP));
850 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
5cad465d
MW
851
852 if (addr < vma->vm_start || addr >= vma->vm_end)
853 return VM_FAULT_SIGBUS;
308a047c 854
3b6521f5 855 if (arch_needs_pgtable_deposit()) {
4cf58924 856 pgtable = pte_alloc_one(vma->vm_mm);
3b6521f5
OH
857 if (!pgtable)
858 return VM_FAULT_OOM;
859 }
860
308a047c
BP
861 track_pfn_insert(vma, &pgprot, pfn);
862
fce86ff5 863 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
ae18d6dc 864 return VM_FAULT_NOPAGE;
5cad465d 865}
9a9731b1 866EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
5cad465d 867
a00cc7d9 868#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
f55e1014 869static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
a00cc7d9 870{
f55e1014 871 if (likely(vma->vm_flags & VM_WRITE))
a00cc7d9
MW
872 pud = pud_mkwrite(pud);
873 return pud;
874}
875
876static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
877 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
878{
879 struct mm_struct *mm = vma->vm_mm;
880 pud_t entry;
881 spinlock_t *ptl;
882
883 ptl = pud_lock(mm, pud);
c6f3c5ee
AK
884 if (!pud_none(*pud)) {
885 if (write) {
886 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
887 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
888 goto out_unlock;
889 }
890 entry = pud_mkyoung(*pud);
891 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
892 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
893 update_mmu_cache_pud(vma, addr, pud);
894 }
895 goto out_unlock;
896 }
897
a00cc7d9
MW
898 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
899 if (pfn_t_devmap(pfn))
900 entry = pud_mkdevmap(entry);
901 if (write) {
f55e1014
LT
902 entry = pud_mkyoung(pud_mkdirty(entry));
903 entry = maybe_pud_mkwrite(entry, vma);
a00cc7d9
MW
904 }
905 set_pud_at(mm, addr, pud, entry);
906 update_mmu_cache_pud(vma, addr, pud);
c6f3c5ee
AK
907
908out_unlock:
a00cc7d9
MW
909 spin_unlock(ptl);
910}
911
9a9731b1
THV
912/**
913 * vmf_insert_pfn_pud_prot - insert a pud size pfn
914 * @vmf: Structure describing the fault
915 * @pfn: pfn to insert
916 * @pgprot: page protection to use
917 * @write: whether it's a write fault
918 *
919 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
920 * also consult the vmf_insert_mixed_prot() documentation when
921 * @pgprot != @vmf->vma->vm_page_prot.
922 *
923 * Return: vm_fault_t value.
924 */
925vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
926 pgprot_t pgprot, bool write)
a00cc7d9 927{
fce86ff5
DW
928 unsigned long addr = vmf->address & PUD_MASK;
929 struct vm_area_struct *vma = vmf->vma;
fce86ff5 930
a00cc7d9
MW
931 /*
932 * If we had pud_special, we could avoid all these restrictions,
933 * but we need to be consistent with PTEs and architectures that
934 * can't support a 'special' bit.
935 */
62ec0d8c
DJ
936 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
937 !pfn_t_devmap(pfn));
a00cc7d9
MW
938 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
939 (VM_PFNMAP|VM_MIXEDMAP));
940 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
a00cc7d9
MW
941
942 if (addr < vma->vm_start || addr >= vma->vm_end)
943 return VM_FAULT_SIGBUS;
944
945 track_pfn_insert(vma, &pgprot, pfn);
946
fce86ff5 947 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
a00cc7d9
MW
948 return VM_FAULT_NOPAGE;
949}
9a9731b1 950EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
a00cc7d9
MW
951#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
952
3565fce3 953static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
a8f97366 954 pmd_t *pmd, int flags)
3565fce3
DW
955{
956 pmd_t _pmd;
957
a8f97366
KS
958 _pmd = pmd_mkyoung(*pmd);
959 if (flags & FOLL_WRITE)
960 _pmd = pmd_mkdirty(_pmd);
3565fce3 961 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
a8f97366 962 pmd, _pmd, flags & FOLL_WRITE))
3565fce3
DW
963 update_mmu_cache_pmd(vma, addr, pmd);
964}
965
966struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
df06b37f 967 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
3565fce3
DW
968{
969 unsigned long pfn = pmd_pfn(*pmd);
970 struct mm_struct *mm = vma->vm_mm;
3565fce3
DW
971 struct page *page;
972
973 assert_spin_locked(pmd_lockptr(mm, pmd));
974
8310d48b
KF
975 /*
976 * When we COW a devmap PMD entry, we split it into PTEs, so we should
977 * not be in this function with `flags & FOLL_COW` set.
978 */
979 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
980
3faa52c0
JH
981 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
982 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
983 (FOLL_PIN | FOLL_GET)))
984 return NULL;
985
f6f37321 986 if (flags & FOLL_WRITE && !pmd_write(*pmd))
3565fce3
DW
987 return NULL;
988
989 if (pmd_present(*pmd) && pmd_devmap(*pmd))
990 /* pass */;
991 else
992 return NULL;
993
994 if (flags & FOLL_TOUCH)
a8f97366 995 touch_pmd(vma, addr, pmd, flags);
3565fce3
DW
996
997 /*
998 * device mapped pages can only be returned if the
999 * caller will manage the page reference count.
1000 */
3faa52c0 1001 if (!(flags & (FOLL_GET | FOLL_PIN)))
3565fce3
DW
1002 return ERR_PTR(-EEXIST);
1003
1004 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
df06b37f
KB
1005 *pgmap = get_dev_pagemap(pfn, *pgmap);
1006 if (!*pgmap)
3565fce3
DW
1007 return ERR_PTR(-EFAULT);
1008 page = pfn_to_page(pfn);
3faa52c0
JH
1009 if (!try_grab_page(page, flags))
1010 page = ERR_PTR(-ENOMEM);
3565fce3
DW
1011
1012 return page;
1013}
1014
71e3aac0
AA
1015int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1016 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1017 struct vm_area_struct *vma)
1018{
c4088ebd 1019 spinlock_t *dst_ptl, *src_ptl;
71e3aac0
AA
1020 struct page *src_page;
1021 pmd_t pmd;
12c9d70b 1022 pgtable_t pgtable = NULL;
628d47ce 1023 int ret = -ENOMEM;
71e3aac0 1024
628d47ce
KS
1025 /* Skip if can be re-fill on fault */
1026 if (!vma_is_anonymous(vma))
1027 return 0;
1028
4cf58924 1029 pgtable = pte_alloc_one(dst_mm);
628d47ce
KS
1030 if (unlikely(!pgtable))
1031 goto out;
71e3aac0 1032
c4088ebd
KS
1033 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1034 src_ptl = pmd_lockptr(src_mm, src_pmd);
1035 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
71e3aac0
AA
1036
1037 ret = -EAGAIN;
1038 pmd = *src_pmd;
84c3fc4e 1039
b569a176
PX
1040 /*
1041 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
1042 * does not have the VM_UFFD_WP, which means that the uffd
1043 * fork event is not enabled.
1044 */
1045 if (!(vma->vm_flags & VM_UFFD_WP))
1046 pmd = pmd_clear_uffd_wp(pmd);
1047
84c3fc4e
ZY
1048#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1049 if (unlikely(is_swap_pmd(pmd))) {
1050 swp_entry_t entry = pmd_to_swp_entry(pmd);
1051
1052 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1053 if (is_write_migration_entry(entry)) {
1054 make_migration_entry_read(&entry);
1055 pmd = swp_entry_to_pmd(entry);
ab6e3d09
NH
1056 if (pmd_swp_soft_dirty(*src_pmd))
1057 pmd = pmd_swp_mksoft_dirty(pmd);
84c3fc4e
ZY
1058 set_pmd_at(src_mm, addr, src_pmd, pmd);
1059 }
dd8a67f9 1060 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
af5b0f6a 1061 mm_inc_nr_ptes(dst_mm);
dd8a67f9 1062 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
84c3fc4e
ZY
1063 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1064 ret = 0;
1065 goto out_unlock;
1066 }
1067#endif
1068
628d47ce 1069 if (unlikely(!pmd_trans_huge(pmd))) {
71e3aac0
AA
1070 pte_free(dst_mm, pgtable);
1071 goto out_unlock;
1072 }
fc9fe822 1073 /*
c4088ebd 1074 * When page table lock is held, the huge zero pmd should not be
fc9fe822
KS
1075 * under splitting since we don't split the page itself, only pmd to
1076 * a page table.
1077 */
1078 if (is_huge_zero_pmd(pmd)) {
5918d10a 1079 struct page *zero_page;
97ae1749
KS
1080 /*
1081 * get_huge_zero_page() will never allocate a new page here,
1082 * since we already have a zero page to copy. It just takes a
1083 * reference.
1084 */
6fcb52a5 1085 zero_page = mm_get_huge_zero_page(dst_mm);
6b251fc9 1086 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
5918d10a 1087 zero_page);
fc9fe822
KS
1088 ret = 0;
1089 goto out_unlock;
1090 }
de466bd6 1091
628d47ce
KS
1092 src_page = pmd_page(pmd);
1093 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
d042035e
PX
1094
1095 /*
1096 * If this page is a potentially pinned page, split and retry the fault
1097 * with smaller page size. Normally this should not happen because the
1098 * userspace should use MADV_DONTFORK upon pinned regions. This is a
1099 * best effort that the pinned pages won't be replaced by another
1100 * random page during the coming copy-on-write.
1101 */
97a7e473 1102 if (unlikely(page_needs_cow_for_dma(vma, src_page))) {
d042035e
PX
1103 pte_free(dst_mm, pgtable);
1104 spin_unlock(src_ptl);
1105 spin_unlock(dst_ptl);
1106 __split_huge_pmd(vma, src_pmd, addr, false, NULL);
1107 return -EAGAIN;
1108 }
1109
628d47ce
KS
1110 get_page(src_page);
1111 page_dup_rmap(src_page, true);
1112 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
c4812909 1113 mm_inc_nr_ptes(dst_mm);
628d47ce 1114 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
71e3aac0
AA
1115
1116 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1117 pmd = pmd_mkold(pmd_wrprotect(pmd));
1118 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
71e3aac0
AA
1119
1120 ret = 0;
1121out_unlock:
c4088ebd
KS
1122 spin_unlock(src_ptl);
1123 spin_unlock(dst_ptl);
71e3aac0
AA
1124out:
1125 return ret;
1126}
1127
a00cc7d9
MW
1128#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1129static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
a8f97366 1130 pud_t *pud, int flags)
a00cc7d9
MW
1131{
1132 pud_t _pud;
1133
a8f97366
KS
1134 _pud = pud_mkyoung(*pud);
1135 if (flags & FOLL_WRITE)
1136 _pud = pud_mkdirty(_pud);
a00cc7d9 1137 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
a8f97366 1138 pud, _pud, flags & FOLL_WRITE))
a00cc7d9
MW
1139 update_mmu_cache_pud(vma, addr, pud);
1140}
1141
1142struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
df06b37f 1143 pud_t *pud, int flags, struct dev_pagemap **pgmap)
a00cc7d9
MW
1144{
1145 unsigned long pfn = pud_pfn(*pud);
1146 struct mm_struct *mm = vma->vm_mm;
a00cc7d9
MW
1147 struct page *page;
1148
1149 assert_spin_locked(pud_lockptr(mm, pud));
1150
f6f37321 1151 if (flags & FOLL_WRITE && !pud_write(*pud))
a00cc7d9
MW
1152 return NULL;
1153
3faa52c0
JH
1154 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
1155 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1156 (FOLL_PIN | FOLL_GET)))
1157 return NULL;
1158
a00cc7d9
MW
1159 if (pud_present(*pud) && pud_devmap(*pud))
1160 /* pass */;
1161 else
1162 return NULL;
1163
1164 if (flags & FOLL_TOUCH)
a8f97366 1165 touch_pud(vma, addr, pud, flags);
a00cc7d9
MW
1166
1167 /*
1168 * device mapped pages can only be returned if the
1169 * caller will manage the page reference count.
3faa52c0
JH
1170 *
1171 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
a00cc7d9 1172 */
3faa52c0 1173 if (!(flags & (FOLL_GET | FOLL_PIN)))
a00cc7d9
MW
1174 return ERR_PTR(-EEXIST);
1175
1176 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
df06b37f
KB
1177 *pgmap = get_dev_pagemap(pfn, *pgmap);
1178 if (!*pgmap)
a00cc7d9
MW
1179 return ERR_PTR(-EFAULT);
1180 page = pfn_to_page(pfn);
3faa52c0
JH
1181 if (!try_grab_page(page, flags))
1182 page = ERR_PTR(-ENOMEM);
a00cc7d9
MW
1183
1184 return page;
1185}
1186
1187int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1188 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1189 struct vm_area_struct *vma)
1190{
1191 spinlock_t *dst_ptl, *src_ptl;
1192 pud_t pud;
1193 int ret;
1194
1195 dst_ptl = pud_lock(dst_mm, dst_pud);
1196 src_ptl = pud_lockptr(src_mm, src_pud);
1197 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1198
1199 ret = -EAGAIN;
1200 pud = *src_pud;
1201 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1202 goto out_unlock;
1203
1204 /*
1205 * When page table lock is held, the huge zero pud should not be
1206 * under splitting since we don't split the page itself, only pud to
1207 * a page table.
1208 */
1209 if (is_huge_zero_pud(pud)) {
1210 /* No huge zero pud yet */
1211 }
1212
d042035e 1213 /* Please refer to comments in copy_huge_pmd() */
97a7e473 1214 if (unlikely(page_needs_cow_for_dma(vma, pud_page(pud)))) {
d042035e
PX
1215 spin_unlock(src_ptl);
1216 spin_unlock(dst_ptl);
1217 __split_huge_pud(vma, src_pud, addr);
1218 return -EAGAIN;
1219 }
1220
a00cc7d9
MW
1221 pudp_set_wrprotect(src_mm, addr, src_pud);
1222 pud = pud_mkold(pud_wrprotect(pud));
1223 set_pud_at(dst_mm, addr, dst_pud, pud);
1224
1225 ret = 0;
1226out_unlock:
1227 spin_unlock(src_ptl);
1228 spin_unlock(dst_ptl);
1229 return ret;
1230}
1231
1232void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1233{
1234 pud_t entry;
1235 unsigned long haddr;
1236 bool write = vmf->flags & FAULT_FLAG_WRITE;
1237
1238 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1239 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1240 goto unlock;
1241
1242 entry = pud_mkyoung(orig_pud);
1243 if (write)
1244 entry = pud_mkdirty(entry);
1245 haddr = vmf->address & HPAGE_PUD_MASK;
1246 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1247 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1248
1249unlock:
1250 spin_unlock(vmf->ptl);
1251}
1252#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1253
82b0f8c3 1254void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
a1dd450b
WD
1255{
1256 pmd_t entry;
1257 unsigned long haddr;
20f664aa 1258 bool write = vmf->flags & FAULT_FLAG_WRITE;
a1dd450b 1259
82b0f8c3
JK
1260 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1261 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
a1dd450b
WD
1262 goto unlock;
1263
1264 entry = pmd_mkyoung(orig_pmd);
20f664aa
MK
1265 if (write)
1266 entry = pmd_mkdirty(entry);
82b0f8c3 1267 haddr = vmf->address & HPAGE_PMD_MASK;
20f664aa 1268 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
82b0f8c3 1269 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
a1dd450b
WD
1270
1271unlock:
82b0f8c3 1272 spin_unlock(vmf->ptl);
a1dd450b
WD
1273}
1274
2b740303 1275vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
71e3aac0 1276{
82b0f8c3 1277 struct vm_area_struct *vma = vmf->vma;
3917c802 1278 struct page *page;
82b0f8c3 1279 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
71e3aac0 1280
82b0f8c3 1281 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
81d1b09c 1282 VM_BUG_ON_VMA(!vma->anon_vma, vma);
3917c802 1283
93b4796d 1284 if (is_huge_zero_pmd(orig_pmd))
3917c802
KS
1285 goto fallback;
1286
82b0f8c3 1287 spin_lock(vmf->ptl);
3917c802
KS
1288
1289 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1290 spin_unlock(vmf->ptl);
1291 return 0;
1292 }
71e3aac0
AA
1293
1294 page = pmd_page(orig_pmd);
f6004e73 1295 VM_BUG_ON_PAGE(!PageHead(page), page);
3917c802
KS
1296
1297 /* Lock page for reuse_swap_page() */
ba3c4ce6
HY
1298 if (!trylock_page(page)) {
1299 get_page(page);
1300 spin_unlock(vmf->ptl);
1301 lock_page(page);
1302 spin_lock(vmf->ptl);
1303 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
3917c802 1304 spin_unlock(vmf->ptl);
ba3c4ce6
HY
1305 unlock_page(page);
1306 put_page(page);
3917c802 1307 return 0;
ba3c4ce6
HY
1308 }
1309 put_page(page);
1310 }
3917c802
KS
1311
1312 /*
1313 * We can only reuse the page if nobody else maps the huge page or it's
1314 * part.
1315 */
ba3c4ce6 1316 if (reuse_swap_page(page, NULL)) {
71e3aac0
AA
1317 pmd_t entry;
1318 entry = pmd_mkyoung(orig_pmd);
f55e1014 1319 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3917c802 1320 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
82b0f8c3 1321 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
ba3c4ce6 1322 unlock_page(page);
82b0f8c3 1323 spin_unlock(vmf->ptl);
3917c802 1324 return VM_FAULT_WRITE;
71e3aac0 1325 }
3917c802
KS
1326
1327 unlock_page(page);
82b0f8c3 1328 spin_unlock(vmf->ptl);
3917c802
KS
1329fallback:
1330 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1331 return VM_FAULT_FALLBACK;
71e3aac0
AA
1332}
1333
8310d48b 1334/*
a308c71b
PX
1335 * FOLL_FORCE can write to even unwritable pmd's, but only
1336 * after we've gone through a COW cycle and they are dirty.
8310d48b
KF
1337 */
1338static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1339{
a308c71b
PX
1340 return pmd_write(pmd) ||
1341 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
8310d48b
KF
1342}
1343
b676b293 1344struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1345 unsigned long addr,
1346 pmd_t *pmd,
1347 unsigned int flags)
1348{
b676b293 1349 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1350 struct page *page = NULL;
1351
c4088ebd 1352 assert_spin_locked(pmd_lockptr(mm, pmd));
71e3aac0 1353
8310d48b 1354 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
71e3aac0
AA
1355 goto out;
1356
85facf25
KS
1357 /* Avoid dumping huge zero page */
1358 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1359 return ERR_PTR(-EFAULT);
1360
2b4847e7 1361 /* Full NUMA hinting faults to serialise migration in fault paths */
8a0516ed 1362 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
2b4847e7
MG
1363 goto out;
1364
71e3aac0 1365 page = pmd_page(*pmd);
ca120cf6 1366 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
3faa52c0
JH
1367
1368 if (!try_grab_page(page, flags))
1369 return ERR_PTR(-ENOMEM);
1370
3565fce3 1371 if (flags & FOLL_TOUCH)
a8f97366 1372 touch_pmd(vma, addr, pmd, flags);
3faa52c0 1373
de60f5f1 1374 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
1375 /*
1376 * We don't mlock() pte-mapped THPs. This way we can avoid
1377 * leaking mlocked pages into non-VM_LOCKED VMAs.
1378 *
9a73f61b
KS
1379 * For anon THP:
1380 *
e90309c9
KS
1381 * In most cases the pmd is the only mapping of the page as we
1382 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1383 * writable private mappings in populate_vma_page_range().
1384 *
1385 * The only scenario when we have the page shared here is if we
1386 * mlocking read-only mapping shared over fork(). We skip
1387 * mlocking such pages.
9a73f61b
KS
1388 *
1389 * For file THP:
1390 *
1391 * We can expect PageDoubleMap() to be stable under page lock:
1392 * for file pages we set it in page_add_file_rmap(), which
1393 * requires page to be locked.
e90309c9 1394 */
9a73f61b
KS
1395
1396 if (PageAnon(page) && compound_mapcount(page) != 1)
1397 goto skip_mlock;
1398 if (PageDoubleMap(page) || !page->mapping)
1399 goto skip_mlock;
1400 if (!trylock_page(page))
1401 goto skip_mlock;
9a73f61b
KS
1402 if (page->mapping && !PageDoubleMap(page))
1403 mlock_vma_page(page);
1404 unlock_page(page);
b676b293 1405 }
9a73f61b 1406skip_mlock:
71e3aac0 1407 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
ca120cf6 1408 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
71e3aac0
AA
1409
1410out:
1411 return page;
1412}
1413
d10e63f2 1414/* NUMA hinting page fault entry point for trans huge pmds */
2b740303 1415vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
d10e63f2 1416{
82b0f8c3 1417 struct vm_area_struct *vma = vmf->vma;
b8916634 1418 struct anon_vma *anon_vma = NULL;
b32967ff 1419 struct page *page;
82b0f8c3 1420 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
98fa15f3 1421 int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
90572890 1422 int target_nid, last_cpupid = -1;
8191acbd
MG
1423 bool page_locked;
1424 bool migrated = false;
b191f9b1 1425 bool was_writable;
6688cc05 1426 int flags = 0;
d10e63f2 1427
82b0f8c3
JK
1428 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1429 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
d10e63f2
MG
1430 goto out_unlock;
1431
de466bd6
MG
1432 /*
1433 * If there are potential migrations, wait for completion and retry
1434 * without disrupting NUMA hinting information. Do not relock and
1435 * check_same as the page may no longer be mapped.
1436 */
82b0f8c3
JK
1437 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1438 page = pmd_page(*vmf->pmd);
3c226c63
MR
1439 if (!get_page_unless_zero(page))
1440 goto out_unlock;
82b0f8c3 1441 spin_unlock(vmf->ptl);
48054625 1442 put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
de466bd6
MG
1443 goto out;
1444 }
1445
d10e63f2 1446 page = pmd_page(pmd);
a1a46184 1447 BUG_ON(is_huge_zero_page(page));
8191acbd 1448 page_nid = page_to_nid(page);
90572890 1449 last_cpupid = page_cpupid_last(page);
03c5a6e1 1450 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 1451 if (page_nid == this_nid) {
03c5a6e1 1452 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
1453 flags |= TNF_FAULT_LOCAL;
1454 }
4daae3b4 1455
bea66fbd 1456 /* See similar comment in do_numa_page for explanation */
288bc549 1457 if (!pmd_savedwrite(pmd))
6688cc05
PZ
1458 flags |= TNF_NO_GROUP;
1459
ff9042b1
MG
1460 /*
1461 * Acquire the page lock to serialise THP migrations but avoid dropping
1462 * page_table_lock if at all possible
1463 */
b8916634
MG
1464 page_locked = trylock_page(page);
1465 target_nid = mpol_misplaced(page, vma, haddr);
de466bd6 1466 /* Migration could have started since the pmd_trans_migrating check */
2b4847e7 1467 if (!page_locked) {
98fa15f3 1468 page_nid = NUMA_NO_NODE;
3c226c63
MR
1469 if (!get_page_unless_zero(page))
1470 goto out_unlock;
82b0f8c3 1471 spin_unlock(vmf->ptl);
48054625 1472 put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
b8916634 1473 goto out;
6beb5e8b
ML
1474 } else if (target_nid == NUMA_NO_NODE) {
1475 /* There are no parallel migrations and page is in the right
1476 * node. Clear the numa hinting info in this pmd.
1477 */
1478 goto clear_pmdnuma;
b8916634
MG
1479 }
1480
2b4847e7
MG
1481 /*
1482 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1483 * to serialises splits
1484 */
b8916634 1485 get_page(page);
82b0f8c3 1486 spin_unlock(vmf->ptl);
b8916634 1487 anon_vma = page_lock_anon_vma_read(page);
4daae3b4 1488
c69307d5 1489 /* Confirm the PMD did not change while page_table_lock was released */
82b0f8c3
JK
1490 spin_lock(vmf->ptl);
1491 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
b32967ff
MG
1492 unlock_page(page);
1493 put_page(page);
98fa15f3 1494 page_nid = NUMA_NO_NODE;
4daae3b4 1495 goto out_unlock;
b32967ff 1496 }
ff9042b1 1497
c3a489ca
MG
1498 /* Bail if we fail to protect against THP splits for any reason */
1499 if (unlikely(!anon_vma)) {
1500 put_page(page);
98fa15f3 1501 page_nid = NUMA_NO_NODE;
c3a489ca
MG
1502 goto clear_pmdnuma;
1503 }
1504
8b1b436d
PZ
1505 /*
1506 * Since we took the NUMA fault, we must have observed the !accessible
1507 * bit. Make sure all other CPUs agree with that, to avoid them
1508 * modifying the page we're about to migrate.
1509 *
1510 * Must be done under PTL such that we'll observe the relevant
ccde85ba
PZ
1511 * inc_tlb_flush_pending().
1512 *
1513 * We are not sure a pending tlb flush here is for a huge page
1514 * mapping or not. Hence use the tlb range variant
8b1b436d 1515 */
7066f0f9 1516 if (mm_tlb_flush_pending(vma->vm_mm)) {
ccde85ba 1517 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
7066f0f9
AA
1518 /*
1519 * change_huge_pmd() released the pmd lock before
1520 * invalidating the secondary MMUs sharing the primary
1521 * MMU pagetables (with ->invalidate_range()). The
1522 * mmu_notifier_invalidate_range_end() (which
1523 * internally calls ->invalidate_range()) in
1524 * change_pmd_range() will run after us, so we can't
1525 * rely on it here and we need an explicit invalidate.
1526 */
1527 mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1528 haddr + HPAGE_PMD_SIZE);
1529 }
8b1b436d 1530
a54a407f
MG
1531 /*
1532 * Migrate the THP to the requested node, returns with page unlocked
8a0516ed 1533 * and access rights restored.
a54a407f 1534 */
82b0f8c3 1535 spin_unlock(vmf->ptl);
8b1b436d 1536
bae473a4 1537 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
82b0f8c3 1538 vmf->pmd, pmd, vmf->address, page, target_nid);
6688cc05
PZ
1539 if (migrated) {
1540 flags |= TNF_MIGRATED;
8191acbd 1541 page_nid = target_nid;
074c2381
MG
1542 } else
1543 flags |= TNF_MIGRATE_FAIL;
b32967ff 1544
8191acbd 1545 goto out;
b32967ff 1546clear_pmdnuma:
a54a407f 1547 BUG_ON(!PageLocked(page));
288bc549 1548 was_writable = pmd_savedwrite(pmd);
4d942466 1549 pmd = pmd_modify(pmd, vma->vm_page_prot);
b7b04004 1550 pmd = pmd_mkyoung(pmd);
b191f9b1
MG
1551 if (was_writable)
1552 pmd = pmd_mkwrite(pmd);
82b0f8c3
JK
1553 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1554 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
a54a407f 1555 unlock_page(page);
d10e63f2 1556out_unlock:
82b0f8c3 1557 spin_unlock(vmf->ptl);
b8916634
MG
1558
1559out:
1560 if (anon_vma)
1561 page_unlock_anon_vma_read(anon_vma);
1562
98fa15f3 1563 if (page_nid != NUMA_NO_NODE)
82b0f8c3 1564 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
9a8b300f 1565 flags);
8191acbd 1566
d10e63f2
MG
1567 return 0;
1568}
1569
319904ad
HY
1570/*
1571 * Return true if we do MADV_FREE successfully on entire pmd page.
1572 * Otherwise, return false.
1573 */
1574bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
b8d3c4c3 1575 pmd_t *pmd, unsigned long addr, unsigned long next)
b8d3c4c3
MK
1576{
1577 spinlock_t *ptl;
1578 pmd_t orig_pmd;
1579 struct page *page;
1580 struct mm_struct *mm = tlb->mm;
319904ad 1581 bool ret = false;
b8d3c4c3 1582
ed6a7935 1583 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
07e32661 1584
b6ec57f4
KS
1585 ptl = pmd_trans_huge_lock(pmd, vma);
1586 if (!ptl)
25eedabe 1587 goto out_unlocked;
b8d3c4c3
MK
1588
1589 orig_pmd = *pmd;
319904ad 1590 if (is_huge_zero_pmd(orig_pmd))
b8d3c4c3 1591 goto out;
b8d3c4c3 1592
84c3fc4e
ZY
1593 if (unlikely(!pmd_present(orig_pmd))) {
1594 VM_BUG_ON(thp_migration_supported() &&
1595 !is_pmd_migration_entry(orig_pmd));
1596 goto out;
1597 }
1598
b8d3c4c3
MK
1599 page = pmd_page(orig_pmd);
1600 /*
1601 * If other processes are mapping this page, we couldn't discard
1602 * the page unless they all do MADV_FREE so let's skip the page.
1603 */
1604 if (page_mapcount(page) != 1)
1605 goto out;
1606
1607 if (!trylock_page(page))
1608 goto out;
1609
1610 /*
1611 * If user want to discard part-pages of THP, split it so MADV_FREE
1612 * will deactivate only them.
1613 */
1614 if (next - addr != HPAGE_PMD_SIZE) {
1615 get_page(page);
1616 spin_unlock(ptl);
9818b8cd 1617 split_huge_page(page);
b8d3c4c3 1618 unlock_page(page);
bbf29ffc 1619 put_page(page);
b8d3c4c3
MK
1620 goto out_unlocked;
1621 }
1622
1623 if (PageDirty(page))
1624 ClearPageDirty(page);
1625 unlock_page(page);
1626
b8d3c4c3 1627 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
58ceeb6b 1628 pmdp_invalidate(vma, addr, pmd);
b8d3c4c3
MK
1629 orig_pmd = pmd_mkold(orig_pmd);
1630 orig_pmd = pmd_mkclean(orig_pmd);
1631
1632 set_pmd_at(mm, addr, pmd, orig_pmd);
1633 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1634 }
802a3a92
SL
1635
1636 mark_page_lazyfree(page);
319904ad 1637 ret = true;
b8d3c4c3
MK
1638out:
1639 spin_unlock(ptl);
1640out_unlocked:
1641 return ret;
1642}
1643
953c66c2
AK
1644static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1645{
1646 pgtable_t pgtable;
1647
1648 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1649 pte_free(mm, pgtable);
c4812909 1650 mm_dec_nr_ptes(mm);
953c66c2
AK
1651}
1652
71e3aac0 1653int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1654 pmd_t *pmd, unsigned long addr)
71e3aac0 1655{
da146769 1656 pmd_t orig_pmd;
bf929152 1657 spinlock_t *ptl;
71e3aac0 1658
ed6a7935 1659 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
07e32661 1660
b6ec57f4
KS
1661 ptl = __pmd_trans_huge_lock(pmd, vma);
1662 if (!ptl)
da146769
KS
1663 return 0;
1664 /*
1665 * For architectures like ppc64 we look at deposited pgtable
1666 * when calling pmdp_huge_get_and_clear. So do the
1667 * pgtable_trans_huge_withdraw after finishing pmdp related
1668 * operations.
1669 */
93a98695
AK
1670 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1671 tlb->fullmm);
da146769 1672 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
2484ca9b 1673 if (vma_is_special_huge(vma)) {
3b6521f5
OH
1674 if (arch_needs_pgtable_deposit())
1675 zap_deposited_table(tlb->mm, pmd);
da146769
KS
1676 spin_unlock(ptl);
1677 if (is_huge_zero_pmd(orig_pmd))
c0f2e176 1678 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769 1679 } else if (is_huge_zero_pmd(orig_pmd)) {
c14a6eb4 1680 zap_deposited_table(tlb->mm, pmd);
da146769 1681 spin_unlock(ptl);
c0f2e176 1682 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769 1683 } else {
616b8371
ZY
1684 struct page *page = NULL;
1685 int flush_needed = 1;
1686
1687 if (pmd_present(orig_pmd)) {
1688 page = pmd_page(orig_pmd);
1689 page_remove_rmap(page, true);
1690 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1691 VM_BUG_ON_PAGE(!PageHead(page), page);
1692 } else if (thp_migration_supported()) {
1693 swp_entry_t entry;
1694
1695 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1696 entry = pmd_to_swp_entry(orig_pmd);
a44f89dc 1697 page = migration_entry_to_page(entry);
616b8371
ZY
1698 flush_needed = 0;
1699 } else
1700 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1701
b5072380 1702 if (PageAnon(page)) {
c14a6eb4 1703 zap_deposited_table(tlb->mm, pmd);
b5072380
KS
1704 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1705 } else {
953c66c2
AK
1706 if (arch_needs_pgtable_deposit())
1707 zap_deposited_table(tlb->mm, pmd);
fadae295 1708 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
b5072380 1709 }
616b8371 1710
da146769 1711 spin_unlock(ptl);
616b8371
ZY
1712 if (flush_needed)
1713 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
025c5b24 1714 }
da146769 1715 return 1;
71e3aac0
AA
1716}
1717
1dd38b6c
AK
1718#ifndef pmd_move_must_withdraw
1719static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1720 spinlock_t *old_pmd_ptl,
1721 struct vm_area_struct *vma)
1722{
1723 /*
1724 * With split pmd lock we also need to move preallocated
1725 * PTE page table if new_pmd is on different PMD page table.
1726 *
1727 * We also don't deposit and withdraw tables for file pages.
1728 */
1729 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1730}
1731#endif
1732
ab6e3d09
NH
1733static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1734{
1735#ifdef CONFIG_MEM_SOFT_DIRTY
1736 if (unlikely(is_pmd_migration_entry(pmd)))
1737 pmd = pmd_swp_mksoft_dirty(pmd);
1738 else if (pmd_present(pmd))
1739 pmd = pmd_mksoft_dirty(pmd);
1740#endif
1741 return pmd;
1742}
1743
bf8616d5 1744bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
b8aa9d9d 1745 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
37a1c49a 1746{
bf929152 1747 spinlock_t *old_ptl, *new_ptl;
37a1c49a 1748 pmd_t pmd;
37a1c49a 1749 struct mm_struct *mm = vma->vm_mm;
5d190420 1750 bool force_flush = false;
37a1c49a 1751
37a1c49a
AA
1752 /*
1753 * The destination pmd shouldn't be established, free_pgtables()
1754 * should have release it.
1755 */
1756 if (WARN_ON(!pmd_none(*new_pmd))) {
1757 VM_BUG_ON(pmd_trans_huge(*new_pmd));
4b471e88 1758 return false;
37a1c49a
AA
1759 }
1760
bf929152
KS
1761 /*
1762 * We don't have to worry about the ordering of src and dst
c1e8d7c6 1763 * ptlocks because exclusive mmap_lock prevents deadlock.
bf929152 1764 */
b6ec57f4
KS
1765 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1766 if (old_ptl) {
bf929152
KS
1767 new_ptl = pmd_lockptr(mm, new_pmd);
1768 if (new_ptl != old_ptl)
1769 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
8809aa2d 1770 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
eb66ae03 1771 if (pmd_present(pmd))
a2ce2666 1772 force_flush = true;
025c5b24 1773 VM_BUG_ON(!pmd_none(*new_pmd));
3592806c 1774
1dd38b6c 1775 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
b3084f4d 1776 pgtable_t pgtable;
3592806c
KS
1777 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1778 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
3592806c 1779 }
ab6e3d09
NH
1780 pmd = move_soft_dirty_pmd(pmd);
1781 set_pmd_at(mm, new_addr, new_pmd, pmd);
5d190420
AL
1782 if (force_flush)
1783 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
eb66ae03
LT
1784 if (new_ptl != old_ptl)
1785 spin_unlock(new_ptl);
bf929152 1786 spin_unlock(old_ptl);
4b471e88 1787 return true;
37a1c49a 1788 }
4b471e88 1789 return false;
37a1c49a
AA
1790}
1791
f123d74a
MG
1792/*
1793 * Returns
1794 * - 0 if PMD could not be locked
f0953a1b
IM
1795 * - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
1796 * - HPAGE_PMD_NR if protections changed and TLB flush necessary
f123d74a 1797 */
cd7548ab 1798int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
58705444 1799 unsigned long addr, pgprot_t newprot, unsigned long cp_flags)
cd7548ab
JW
1800{
1801 struct mm_struct *mm = vma->vm_mm;
bf929152 1802 spinlock_t *ptl;
0a85e51d
KS
1803 pmd_t entry;
1804 bool preserve_write;
1805 int ret;
58705444 1806 bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
292924b2
PX
1807 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1808 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
cd7548ab 1809
b6ec57f4 1810 ptl = __pmd_trans_huge_lock(pmd, vma);
0a85e51d
KS
1811 if (!ptl)
1812 return 0;
e944fd67 1813
0a85e51d
KS
1814 preserve_write = prot_numa && pmd_write(*pmd);
1815 ret = 1;
e944fd67 1816
84c3fc4e
ZY
1817#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1818 if (is_swap_pmd(*pmd)) {
1819 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1820
1821 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1822 if (is_write_migration_entry(entry)) {
1823 pmd_t newpmd;
1824 /*
1825 * A protection check is difficult so
1826 * just be safe and disable write
1827 */
1828 make_migration_entry_read(&entry);
1829 newpmd = swp_entry_to_pmd(entry);
ab6e3d09
NH
1830 if (pmd_swp_soft_dirty(*pmd))
1831 newpmd = pmd_swp_mksoft_dirty(newpmd);
84c3fc4e
ZY
1832 set_pmd_at(mm, addr, pmd, newpmd);
1833 }
1834 goto unlock;
1835 }
1836#endif
1837
0a85e51d
KS
1838 /*
1839 * Avoid trapping faults against the zero page. The read-only
1840 * data is likely to be read-cached on the local CPU and
1841 * local/remote hits to the zero page are not interesting.
1842 */
1843 if (prot_numa && is_huge_zero_pmd(*pmd))
1844 goto unlock;
025c5b24 1845
0a85e51d
KS
1846 if (prot_numa && pmd_protnone(*pmd))
1847 goto unlock;
1848
ced10803 1849 /*
3e4e28c5 1850 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
ced10803 1851 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
3e4e28c5 1852 * which is also under mmap_read_lock(mm):
ced10803
KS
1853 *
1854 * CPU0: CPU1:
1855 * change_huge_pmd(prot_numa=1)
1856 * pmdp_huge_get_and_clear_notify()
1857 * madvise_dontneed()
1858 * zap_pmd_range()
1859 * pmd_trans_huge(*pmd) == 0 (without ptl)
1860 * // skip the pmd
1861 * set_pmd_at();
1862 * // pmd is re-established
1863 *
1864 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1865 * which may break userspace.
1866 *
1867 * pmdp_invalidate() is required to make sure we don't miss
1868 * dirty/young flags set by hardware.
1869 */
a3cf988f 1870 entry = pmdp_invalidate(vma, addr, pmd);
ced10803 1871
0a85e51d
KS
1872 entry = pmd_modify(entry, newprot);
1873 if (preserve_write)
1874 entry = pmd_mk_savedwrite(entry);
292924b2
PX
1875 if (uffd_wp) {
1876 entry = pmd_wrprotect(entry);
1877 entry = pmd_mkuffd_wp(entry);
1878 } else if (uffd_wp_resolve) {
1879 /*
1880 * Leave the write bit to be handled by PF interrupt
1881 * handler, then things like COW could be properly
1882 * handled.
1883 */
1884 entry = pmd_clear_uffd_wp(entry);
1885 }
0a85e51d
KS
1886 ret = HPAGE_PMD_NR;
1887 set_pmd_at(mm, addr, pmd, entry);
1888 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1889unlock:
1890 spin_unlock(ptl);
025c5b24
NH
1891 return ret;
1892}
1893
1894/*
8f19b0c0 1895 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
025c5b24 1896 *
8f19b0c0
HY
1897 * Note that if it returns page table lock pointer, this routine returns without
1898 * unlocking page table lock. So callers must unlock it.
025c5b24 1899 */
b6ec57f4 1900spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
025c5b24 1901{
b6ec57f4
KS
1902 spinlock_t *ptl;
1903 ptl = pmd_lock(vma->vm_mm, pmd);
84c3fc4e
ZY
1904 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1905 pmd_devmap(*pmd)))
b6ec57f4
KS
1906 return ptl;
1907 spin_unlock(ptl);
1908 return NULL;
cd7548ab
JW
1909}
1910
a00cc7d9
MW
1911/*
1912 * Returns true if a given pud maps a thp, false otherwise.
1913 *
1914 * Note that if it returns true, this routine returns without unlocking page
1915 * table lock. So callers must unlock it.
1916 */
1917spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1918{
1919 spinlock_t *ptl;
1920
1921 ptl = pud_lock(vma->vm_mm, pud);
1922 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1923 return ptl;
1924 spin_unlock(ptl);
1925 return NULL;
1926}
1927
1928#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1929int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1930 pud_t *pud, unsigned long addr)
1931{
a00cc7d9
MW
1932 spinlock_t *ptl;
1933
1934 ptl = __pud_trans_huge_lock(pud, vma);
1935 if (!ptl)
1936 return 0;
1937 /*
1938 * For architectures like ppc64 we look at deposited pgtable
1939 * when calling pudp_huge_get_and_clear. So do the
1940 * pgtable_trans_huge_withdraw after finishing pudp related
1941 * operations.
1942 */
70516b93 1943 pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
a00cc7d9 1944 tlb_remove_pud_tlb_entry(tlb, pud, addr);
2484ca9b 1945 if (vma_is_special_huge(vma)) {
a00cc7d9
MW
1946 spin_unlock(ptl);
1947 /* No zero page support yet */
1948 } else {
1949 /* No support for anonymous PUD pages yet */
1950 BUG();
1951 }
1952 return 1;
1953}
1954
1955static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1956 unsigned long haddr)
1957{
1958 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1959 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1960 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1961 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1962
ce9311cf 1963 count_vm_event(THP_SPLIT_PUD);
a00cc7d9
MW
1964
1965 pudp_huge_clear_flush_notify(vma, haddr, pud);
1966}
1967
1968void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1969 unsigned long address)
1970{
1971 spinlock_t *ptl;
ac46d4f3 1972 struct mmu_notifier_range range;
a00cc7d9 1973
7269f999 1974 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1975 address & HPAGE_PUD_MASK,
ac46d4f3
JG
1976 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
1977 mmu_notifier_invalidate_range_start(&range);
1978 ptl = pud_lock(vma->vm_mm, pud);
a00cc7d9
MW
1979 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1980 goto out;
ac46d4f3 1981 __split_huge_pud_locked(vma, pud, range.start);
a00cc7d9
MW
1982
1983out:
1984 spin_unlock(ptl);
4645b9fe
JG
1985 /*
1986 * No need to double call mmu_notifier->invalidate_range() callback as
1987 * the above pudp_huge_clear_flush_notify() did already call it.
1988 */
ac46d4f3 1989 mmu_notifier_invalidate_range_only_end(&range);
a00cc7d9
MW
1990}
1991#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1992
eef1b3ba
KS
1993static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1994 unsigned long haddr, pmd_t *pmd)
1995{
1996 struct mm_struct *mm = vma->vm_mm;
1997 pgtable_t pgtable;
1998 pmd_t _pmd;
1999 int i;
2000
0f10851e
JG
2001 /*
2002 * Leave pmd empty until pte is filled note that it is fine to delay
2003 * notification until mmu_notifier_invalidate_range_end() as we are
2004 * replacing a zero pmd write protected page with a zero pte write
2005 * protected page.
2006 *
ad56b738 2007 * See Documentation/vm/mmu_notifier.rst
0f10851e
JG
2008 */
2009 pmdp_huge_clear_flush(vma, haddr, pmd);
eef1b3ba
KS
2010
2011 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2012 pmd_populate(mm, &_pmd, pgtable);
2013
2014 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2015 pte_t *pte, entry;
2016 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2017 entry = pte_mkspecial(entry);
2018 pte = pte_offset_map(&_pmd, haddr);
2019 VM_BUG_ON(!pte_none(*pte));
2020 set_pte_at(mm, haddr, pte, entry);
2021 pte_unmap(pte);
2022 }
2023 smp_wmb(); /* make pte visible before pmd */
2024 pmd_populate(mm, pmd, pgtable);
eef1b3ba
KS
2025}
2026
2027static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
ba988280 2028 unsigned long haddr, bool freeze)
eef1b3ba
KS
2029{
2030 struct mm_struct *mm = vma->vm_mm;
2031 struct page *page;
2032 pgtable_t pgtable;
423ac9af 2033 pmd_t old_pmd, _pmd;
292924b2 2034 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2ac015e2 2035 unsigned long addr;
eef1b3ba
KS
2036 int i;
2037
2038 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2039 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2040 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
84c3fc4e
ZY
2041 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2042 && !pmd_devmap(*pmd));
eef1b3ba
KS
2043
2044 count_vm_event(THP_SPLIT_PMD);
2045
d21b9e57 2046 if (!vma_is_anonymous(vma)) {
99fa8a48 2047 old_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
953c66c2
AK
2048 /*
2049 * We are going to unmap this huge page. So
2050 * just go ahead and zap it
2051 */
2052 if (arch_needs_pgtable_deposit())
2053 zap_deposited_table(mm, pmd);
2484ca9b 2054 if (vma_is_special_huge(vma))
d21b9e57 2055 return;
99fa8a48
HD
2056 if (unlikely(is_pmd_migration_entry(old_pmd))) {
2057 swp_entry_t entry;
2058
2059 entry = pmd_to_swp_entry(old_pmd);
2060 page = migration_entry_to_page(entry);
2061 } else {
2062 page = pmd_page(old_pmd);
2063 if (!PageDirty(page) && pmd_dirty(old_pmd))
2064 set_page_dirty(page);
2065 if (!PageReferenced(page) && pmd_young(old_pmd))
2066 SetPageReferenced(page);
2067 page_remove_rmap(page, true);
2068 put_page(page);
2069 }
fadae295 2070 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
eef1b3ba 2071 return;
99fa8a48
HD
2072 }
2073
2074 if (pmd_trans_huge(*pmd) && is_huge_zero_pmd(*pmd)) {
4645b9fe
JG
2075 /*
2076 * FIXME: Do we want to invalidate secondary mmu by calling
2077 * mmu_notifier_invalidate_range() see comments below inside
2078 * __split_huge_pmd() ?
2079 *
2080 * We are going from a zero huge page write protected to zero
2081 * small page also write protected so it does not seems useful
2082 * to invalidate secondary mmu at this time.
2083 */
eef1b3ba
KS
2084 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2085 }
2086
423ac9af
AK
2087 /*
2088 * Up to this point the pmd is present and huge and userland has the
2089 * whole access to the hugepage during the split (which happens in
2090 * place). If we overwrite the pmd with the not-huge version pointing
2091 * to the pte here (which of course we could if all CPUs were bug
2092 * free), userland could trigger a small page size TLB miss on the
2093 * small sized TLB while the hugepage TLB entry is still established in
2094 * the huge TLB. Some CPU doesn't like that.
42742d9b
AK
2095 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2096 * 383 on page 105. Intel should be safe but is also warns that it's
423ac9af
AK
2097 * only safe if the permission and cache attributes of the two entries
2098 * loaded in the two TLB is identical (which should be the case here).
2099 * But it is generally safer to never allow small and huge TLB entries
2100 * for the same virtual address to be loaded simultaneously. So instead
2101 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2102 * current pmd notpresent (atomically because here the pmd_trans_huge
2103 * must remain set at all times on the pmd until the split is complete
2104 * for this pmd), then we flush the SMP TLB and finally we write the
2105 * non-huge version of the pmd entry with pmd_populate.
2106 */
2107 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2108
423ac9af 2109 pmd_migration = is_pmd_migration_entry(old_pmd);
2e83ee1d 2110 if (unlikely(pmd_migration)) {
84c3fc4e
ZY
2111 swp_entry_t entry;
2112
423ac9af 2113 entry = pmd_to_swp_entry(old_pmd);
a44f89dc 2114 page = migration_entry_to_page(entry);
2e83ee1d
PX
2115 write = is_write_migration_entry(entry);
2116 young = false;
2117 soft_dirty = pmd_swp_soft_dirty(old_pmd);
f45ec5ff 2118 uffd_wp = pmd_swp_uffd_wp(old_pmd);
2e83ee1d 2119 } else {
423ac9af 2120 page = pmd_page(old_pmd);
2e83ee1d
PX
2121 if (pmd_dirty(old_pmd))
2122 SetPageDirty(page);
2123 write = pmd_write(old_pmd);
2124 young = pmd_young(old_pmd);
2125 soft_dirty = pmd_soft_dirty(old_pmd);
292924b2 2126 uffd_wp = pmd_uffd_wp(old_pmd);
2e83ee1d 2127 }
eef1b3ba 2128 VM_BUG_ON_PAGE(!page_count(page), page);
fe896d18 2129 page_ref_add(page, HPAGE_PMD_NR - 1);
eef1b3ba 2130
423ac9af
AK
2131 /*
2132 * Withdraw the table only after we mark the pmd entry invalid.
2133 * This's critical for some architectures (Power).
2134 */
eef1b3ba
KS
2135 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2136 pmd_populate(mm, &_pmd, pgtable);
2137
2ac015e2 2138 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
eef1b3ba
KS
2139 pte_t entry, *pte;
2140 /*
2141 * Note that NUMA hinting access restrictions are not
2142 * transferred to avoid any possibility of altering
2143 * permissions across VMAs.
2144 */
84c3fc4e 2145 if (freeze || pmd_migration) {
ba988280
KS
2146 swp_entry_t swp_entry;
2147 swp_entry = make_migration_entry(page + i, write);
2148 entry = swp_entry_to_pte(swp_entry);
804dd150
AA
2149 if (soft_dirty)
2150 entry = pte_swp_mksoft_dirty(entry);
f45ec5ff
PX
2151 if (uffd_wp)
2152 entry = pte_swp_mkuffd_wp(entry);
ba988280 2153 } else {
6d2329f8 2154 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
b8d3c4c3 2155 entry = maybe_mkwrite(entry, vma);
ba988280
KS
2156 if (!write)
2157 entry = pte_wrprotect(entry);
2158 if (!young)
2159 entry = pte_mkold(entry);
804dd150
AA
2160 if (soft_dirty)
2161 entry = pte_mksoft_dirty(entry);
292924b2
PX
2162 if (uffd_wp)
2163 entry = pte_mkuffd_wp(entry);
ba988280 2164 }
2ac015e2 2165 pte = pte_offset_map(&_pmd, addr);
eef1b3ba 2166 BUG_ON(!pte_none(*pte));
2ac015e2 2167 set_pte_at(mm, addr, pte, entry);
ec0abae6 2168 if (!pmd_migration)
eef1b3ba 2169 atomic_inc(&page[i]._mapcount);
ec0abae6 2170 pte_unmap(pte);
eef1b3ba
KS
2171 }
2172
ec0abae6
RC
2173 if (!pmd_migration) {
2174 /*
2175 * Set PG_double_map before dropping compound_mapcount to avoid
2176 * false-negative page_mapped().
2177 */
2178 if (compound_mapcount(page) > 1 &&
2179 !TestSetPageDoubleMap(page)) {
eef1b3ba 2180 for (i = 0; i < HPAGE_PMD_NR; i++)
ec0abae6
RC
2181 atomic_inc(&page[i]._mapcount);
2182 }
2183
2184 lock_page_memcg(page);
2185 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2186 /* Last compound_mapcount is gone. */
69473e5d
MS
2187 __mod_lruvec_page_state(page, NR_ANON_THPS,
2188 -HPAGE_PMD_NR);
ec0abae6
RC
2189 if (TestClearPageDoubleMap(page)) {
2190 /* No need in mapcount reference anymore */
2191 for (i = 0; i < HPAGE_PMD_NR; i++)
2192 atomic_dec(&page[i]._mapcount);
2193 }
eef1b3ba 2194 }
ec0abae6 2195 unlock_page_memcg(page);
eef1b3ba
KS
2196 }
2197
2198 smp_wmb(); /* make pte visible before pmd */
2199 pmd_populate(mm, pmd, pgtable);
e9b61f19
KS
2200
2201 if (freeze) {
2ac015e2 2202 for (i = 0; i < HPAGE_PMD_NR; i++) {
e9b61f19
KS
2203 page_remove_rmap(page + i, false);
2204 put_page(page + i);
2205 }
2206 }
eef1b3ba
KS
2207}
2208
2209void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
33f4751e 2210 unsigned long address, bool freeze, struct page *page)
eef1b3ba
KS
2211{
2212 spinlock_t *ptl;
ac46d4f3 2213 struct mmu_notifier_range range;
1c2f6730 2214 bool do_unlock_page = false;
c444eb56 2215 pmd_t _pmd;
eef1b3ba 2216
7269f999 2217 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 2218 address & HPAGE_PMD_MASK,
ac46d4f3
JG
2219 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2220 mmu_notifier_invalidate_range_start(&range);
2221 ptl = pmd_lock(vma->vm_mm, pmd);
33f4751e
NH
2222
2223 /*
2224 * If caller asks to setup a migration entries, we need a page to check
2225 * pmd against. Otherwise we can end up replacing wrong page.
2226 */
2227 VM_BUG_ON(freeze && !page);
c444eb56
AA
2228 if (page) {
2229 VM_WARN_ON_ONCE(!PageLocked(page));
c444eb56
AA
2230 if (page != pmd_page(*pmd))
2231 goto out;
2232 }
33f4751e 2233
c444eb56 2234repeat:
5c7fb56e 2235 if (pmd_trans_huge(*pmd)) {
c444eb56
AA
2236 if (!page) {
2237 page = pmd_page(*pmd);
1c2f6730
HD
2238 /*
2239 * An anonymous page must be locked, to ensure that a
2240 * concurrent reuse_swap_page() sees stable mapcount;
2241 * but reuse_swap_page() is not used on shmem or file,
2242 * and page lock must not be taken when zap_pmd_range()
2243 * calls __split_huge_pmd() while i_mmap_lock is held.
2244 */
2245 if (PageAnon(page)) {
2246 if (unlikely(!trylock_page(page))) {
2247 get_page(page);
2248 _pmd = *pmd;
2249 spin_unlock(ptl);
2250 lock_page(page);
2251 spin_lock(ptl);
2252 if (unlikely(!pmd_same(*pmd, _pmd))) {
2253 unlock_page(page);
2254 put_page(page);
2255 page = NULL;
2256 goto repeat;
2257 }
c444eb56 2258 put_page(page);
c444eb56 2259 }
1c2f6730 2260 do_unlock_page = true;
c444eb56
AA
2261 }
2262 }
5c7fb56e 2263 if (PageMlocked(page))
5f737714 2264 clear_page_mlock(page);
84c3fc4e 2265 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
e90309c9 2266 goto out;
ac46d4f3 2267 __split_huge_pmd_locked(vma, pmd, range.start, freeze);
e90309c9 2268out:
eef1b3ba 2269 spin_unlock(ptl);
1c2f6730 2270 if (do_unlock_page)
c444eb56 2271 unlock_page(page);
4645b9fe
JG
2272 /*
2273 * No need to double call mmu_notifier->invalidate_range() callback.
2274 * They are 3 cases to consider inside __split_huge_pmd_locked():
2275 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2276 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2277 * fault will trigger a flush_notify before pointing to a new page
2278 * (it is fine if the secondary mmu keeps pointing to the old zero
2279 * page in the meantime)
2280 * 3) Split a huge pmd into pte pointing to the same page. No need
2281 * to invalidate secondary tlb entry they are all still valid.
2282 * any further changes to individual pte will notify. So no need
2283 * to call mmu_notifier->invalidate_range()
2284 */
ac46d4f3 2285 mmu_notifier_invalidate_range_only_end(&range);
eef1b3ba
KS
2286}
2287
fec89c10
KS
2288void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2289 bool freeze, struct page *page)
94fcc585 2290{
f72e7dcd 2291 pgd_t *pgd;
c2febafc 2292 p4d_t *p4d;
f72e7dcd 2293 pud_t *pud;
94fcc585
AA
2294 pmd_t *pmd;
2295
78ddc534 2296 pgd = pgd_offset(vma->vm_mm, address);
f72e7dcd
HD
2297 if (!pgd_present(*pgd))
2298 return;
2299
c2febafc
KS
2300 p4d = p4d_offset(pgd, address);
2301 if (!p4d_present(*p4d))
2302 return;
2303
2304 pud = pud_offset(p4d, address);
f72e7dcd
HD
2305 if (!pud_present(*pud))
2306 return;
2307
2308 pmd = pmd_offset(pud, address);
fec89c10 2309
33f4751e 2310 __split_huge_pmd(vma, pmd, address, freeze, page);
94fcc585
AA
2311}
2312
71f9e58e
ML
2313static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
2314{
2315 /*
2316 * If the new address isn't hpage aligned and it could previously
2317 * contain an hugepage: check if we need to split an huge pmd.
2318 */
2319 if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
2320 range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
2321 ALIGN(address, HPAGE_PMD_SIZE)))
2322 split_huge_pmd_address(vma, address, false, NULL);
2323}
2324
e1b9996b 2325void vma_adjust_trans_huge(struct vm_area_struct *vma,
94fcc585
AA
2326 unsigned long start,
2327 unsigned long end,
2328 long adjust_next)
2329{
71f9e58e
ML
2330 /* Check if we need to split start first. */
2331 split_huge_pmd_if_needed(vma, start);
94fcc585 2332
71f9e58e
ML
2333 /* Check if we need to split end next. */
2334 split_huge_pmd_if_needed(vma, end);
94fcc585
AA
2335
2336 /*
71f9e58e
ML
2337 * If we're also updating the vma->vm_next->vm_start,
2338 * check if we need to split it.
94fcc585
AA
2339 */
2340 if (adjust_next > 0) {
2341 struct vm_area_struct *next = vma->vm_next;
2342 unsigned long nstart = next->vm_start;
f9d86a60 2343 nstart += adjust_next;
71f9e58e 2344 split_huge_pmd_if_needed(next, nstart);
94fcc585
AA
2345 }
2346}
e9b61f19 2347
906f9cdf 2348static void unmap_page(struct page *page)
e9b61f19 2349{
013339df 2350 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK |
c7ab0d2f 2351 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
666e5a40 2352 bool unmap_success;
e9b61f19
KS
2353
2354 VM_BUG_ON_PAGE(!PageHead(page), page);
2355
baa355fd 2356 if (PageAnon(page))
b5ff8161 2357 ttu_flags |= TTU_SPLIT_FREEZE;
baa355fd 2358
666e5a40
MK
2359 unmap_success = try_to_unmap(page, ttu_flags);
2360 VM_BUG_ON_PAGE(!unmap_success, page);
e9b61f19
KS
2361}
2362
8cce5475 2363static void remap_page(struct page *page, unsigned int nr)
e9b61f19 2364{
fec89c10 2365 int i;
ace71a19
KS
2366 if (PageTransHuge(page)) {
2367 remove_migration_ptes(page, page, true);
2368 } else {
8cce5475 2369 for (i = 0; i < nr; i++)
ace71a19
KS
2370 remove_migration_ptes(page + i, page + i, true);
2371 }
e9b61f19
KS
2372}
2373
94866635 2374static void lru_add_page_tail(struct page *head, struct page *tail,
88dcb9a3
AS
2375 struct lruvec *lruvec, struct list_head *list)
2376{
94866635
AS
2377 VM_BUG_ON_PAGE(!PageHead(head), head);
2378 VM_BUG_ON_PAGE(PageCompound(tail), head);
2379 VM_BUG_ON_PAGE(PageLRU(tail), head);
6168d0da 2380 lockdep_assert_held(&lruvec->lru_lock);
88dcb9a3 2381
6dbb5741 2382 if (list) {
88dcb9a3 2383 /* page reclaim is reclaiming a huge page */
6dbb5741 2384 VM_WARN_ON(PageLRU(head));
94866635
AS
2385 get_page(tail);
2386 list_add_tail(&tail->lru, list);
88dcb9a3 2387 } else {
6dbb5741
AS
2388 /* head is still on lru (and we have it frozen) */
2389 VM_WARN_ON(!PageLRU(head));
2390 SetPageLRU(tail);
2391 list_add_tail(&tail->lru, &head->lru);
88dcb9a3
AS
2392 }
2393}
2394
8df651c7 2395static void __split_huge_page_tail(struct page *head, int tail,
e9b61f19
KS
2396 struct lruvec *lruvec, struct list_head *list)
2397{
e9b61f19
KS
2398 struct page *page_tail = head + tail;
2399
8df651c7 2400 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
e9b61f19
KS
2401
2402 /*
605ca5ed
KK
2403 * Clone page flags before unfreezing refcount.
2404 *
2405 * After successful get_page_unless_zero() might follow flags change,
8958b249 2406 * for example lock_page() which set PG_waiters.
e9b61f19 2407 */
e9b61f19
KS
2408 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2409 page_tail->flags |= (head->flags &
2410 ((1L << PG_referenced) |
2411 (1L << PG_swapbacked) |
38d8b4e6 2412 (1L << PG_swapcache) |
e9b61f19
KS
2413 (1L << PG_mlocked) |
2414 (1L << PG_uptodate) |
2415 (1L << PG_active) |
1899ad18 2416 (1L << PG_workingset) |
e9b61f19 2417 (1L << PG_locked) |
b8d3c4c3 2418 (1L << PG_unevictable) |
72e6afa0
CM
2419#ifdef CONFIG_64BIT
2420 (1L << PG_arch_2) |
2421#endif
b8d3c4c3 2422 (1L << PG_dirty)));
e9b61f19 2423
173d9d9f
HD
2424 /* ->mapping in first tail page is compound_mapcount */
2425 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2426 page_tail);
2427 page_tail->mapping = head->mapping;
2428 page_tail->index = head->index + tail;
2429
605ca5ed 2430 /* Page flags must be visible before we make the page non-compound. */
e9b61f19
KS
2431 smp_wmb();
2432
605ca5ed
KK
2433 /*
2434 * Clear PageTail before unfreezing page refcount.
2435 *
2436 * After successful get_page_unless_zero() might follow put_page()
2437 * which needs correct compound_head().
2438 */
e9b61f19
KS
2439 clear_compound_head(page_tail);
2440
605ca5ed
KK
2441 /* Finally unfreeze refcount. Additional reference from page cache. */
2442 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2443 PageSwapCache(head)));
2444
e9b61f19
KS
2445 if (page_is_young(head))
2446 set_page_young(page_tail);
2447 if (page_is_idle(head))
2448 set_page_idle(page_tail);
2449
e9b61f19 2450 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
94723aaf
MH
2451
2452 /*
2453 * always add to the tail because some iterators expect new
2454 * pages to show after the currently processed elements - e.g.
2455 * migrate_pages
2456 */
e9b61f19 2457 lru_add_page_tail(head, page_tail, lruvec, list);
e9b61f19
KS
2458}
2459
baa355fd 2460static void __split_huge_page(struct page *page, struct list_head *list,
b6769834 2461 pgoff_t end)
e9b61f19
KS
2462{
2463 struct page *head = compound_head(page);
e9b61f19 2464 struct lruvec *lruvec;
4101196b
MWO
2465 struct address_space *swap_cache = NULL;
2466 unsigned long offset = 0;
8cce5475 2467 unsigned int nr = thp_nr_pages(head);
8df651c7 2468 int i;
e9b61f19 2469
e9b61f19 2470 /* complete memcg works before add pages to LRU */
be6c8982 2471 split_page_memcg(head, nr);
e9b61f19 2472
4101196b
MWO
2473 if (PageAnon(head) && PageSwapCache(head)) {
2474 swp_entry_t entry = { .val = page_private(head) };
2475
2476 offset = swp_offset(entry);
2477 swap_cache = swap_address_space(entry);
2478 xa_lock(&swap_cache->i_pages);
2479 }
2480
f0953a1b 2481 /* lock lru list/PageCompound, ref frozen by page_ref_freeze */
6168d0da 2482 lruvec = lock_page_lruvec(head);
b6769834 2483
8cce5475 2484 for (i = nr - 1; i >= 1; i--) {
8df651c7 2485 __split_huge_page_tail(head, i, lruvec, list);
baa355fd
KS
2486 /* Some pages can be beyond i_size: drop them from page cache */
2487 if (head[i].index >= end) {
2d077d4b 2488 ClearPageDirty(head + i);
baa355fd 2489 __delete_from_page_cache(head + i, NULL);
800d8c63
KS
2490 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2491 shmem_uncharge(head->mapping->host, 1);
baa355fd 2492 put_page(head + i);
4101196b
MWO
2493 } else if (!PageAnon(page)) {
2494 __xa_store(&head->mapping->i_pages, head[i].index,
2495 head + i, 0);
2496 } else if (swap_cache) {
2497 __xa_store(&swap_cache->i_pages, offset + i,
2498 head + i, 0);
baa355fd
KS
2499 }
2500 }
e9b61f19
KS
2501
2502 ClearPageCompound(head);
6168d0da 2503 unlock_page_lruvec(lruvec);
b6769834 2504 /* Caller disabled irqs, so they are still disabled here */
f7da677b 2505
8cce5475 2506 split_page_owner(head, nr);
f7da677b 2507
baa355fd
KS
2508 /* See comment in __split_huge_page_tail() */
2509 if (PageAnon(head)) {
aa5dc07f 2510 /* Additional pin to swap cache */
4101196b 2511 if (PageSwapCache(head)) {
38d8b4e6 2512 page_ref_add(head, 2);
4101196b
MWO
2513 xa_unlock(&swap_cache->i_pages);
2514 } else {
38d8b4e6 2515 page_ref_inc(head);
4101196b 2516 }
baa355fd 2517 } else {
aa5dc07f 2518 /* Additional pin to page cache */
baa355fd 2519 page_ref_add(head, 2);
b93b0163 2520 xa_unlock(&head->mapping->i_pages);
baa355fd 2521 }
b6769834 2522 local_irq_enable();
e9b61f19 2523
8cce5475 2524 remap_page(head, nr);
e9b61f19 2525
c4f9c701
HY
2526 if (PageSwapCache(head)) {
2527 swp_entry_t entry = { .val = page_private(head) };
2528
2529 split_swap_cluster(entry);
2530 }
2531
8cce5475 2532 for (i = 0; i < nr; i++) {
e9b61f19
KS
2533 struct page *subpage = head + i;
2534 if (subpage == page)
2535 continue;
2536 unlock_page(subpage);
2537
2538 /*
2539 * Subpages may be freed if there wasn't any mapping
2540 * like if add_to_swap() is running on a lru page that
2541 * had its mapping zapped. And freeing these pages
2542 * requires taking the lru_lock so we do the put_page
2543 * of the tail pages after the split is complete.
2544 */
2545 put_page(subpage);
2546 }
2547}
2548
b20ce5e0
KS
2549int total_mapcount(struct page *page)
2550{
86b562b6 2551 int i, compound, nr, ret;
b20ce5e0
KS
2552
2553 VM_BUG_ON_PAGE(PageTail(page), page);
2554
2555 if (likely(!PageCompound(page)))
2556 return atomic_read(&page->_mapcount) + 1;
2557
dd78fedd 2558 compound = compound_mapcount(page);
86b562b6 2559 nr = compound_nr(page);
b20ce5e0 2560 if (PageHuge(page))
dd78fedd
KS
2561 return compound;
2562 ret = compound;
86b562b6 2563 for (i = 0; i < nr; i++)
b20ce5e0 2564 ret += atomic_read(&page[i]._mapcount) + 1;
dd78fedd
KS
2565 /* File pages has compound_mapcount included in _mapcount */
2566 if (!PageAnon(page))
86b562b6 2567 return ret - compound * nr;
b20ce5e0 2568 if (PageDoubleMap(page))
86b562b6 2569 ret -= nr;
b20ce5e0
KS
2570 return ret;
2571}
2572
6d0a07ed
AA
2573/*
2574 * This calculates accurately how many mappings a transparent hugepage
2575 * has (unlike page_mapcount() which isn't fully accurate). This full
2576 * accuracy is primarily needed to know if copy-on-write faults can
2577 * reuse the page and change the mapping to read-write instead of
2578 * copying them. At the same time this returns the total_mapcount too.
2579 *
2580 * The function returns the highest mapcount any one of the subpages
2581 * has. If the return value is one, even if different processes are
2582 * mapping different subpages of the transparent hugepage, they can
2583 * all reuse it, because each process is reusing a different subpage.
2584 *
2585 * The total_mapcount is instead counting all virtual mappings of the
2586 * subpages. If the total_mapcount is equal to "one", it tells the
2587 * caller all mappings belong to the same "mm" and in turn the
2588 * anon_vma of the transparent hugepage can become the vma->anon_vma
2589 * local one as no other process may be mapping any of the subpages.
2590 *
2591 * It would be more accurate to replace page_mapcount() with
2592 * page_trans_huge_mapcount(), however we only use
2593 * page_trans_huge_mapcount() in the copy-on-write faults where we
2594 * need full accuracy to avoid breaking page pinning, because
2595 * page_trans_huge_mapcount() is slower than page_mapcount().
2596 */
2597int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2598{
2599 int i, ret, _total_mapcount, mapcount;
2600
2601 /* hugetlbfs shouldn't call it */
2602 VM_BUG_ON_PAGE(PageHuge(page), page);
2603
2604 if (likely(!PageTransCompound(page))) {
2605 mapcount = atomic_read(&page->_mapcount) + 1;
2606 if (total_mapcount)
2607 *total_mapcount = mapcount;
2608 return mapcount;
2609 }
2610
2611 page = compound_head(page);
2612
2613 _total_mapcount = ret = 0;
65dfe3c3 2614 for (i = 0; i < thp_nr_pages(page); i++) {
6d0a07ed
AA
2615 mapcount = atomic_read(&page[i]._mapcount) + 1;
2616 ret = max(ret, mapcount);
2617 _total_mapcount += mapcount;
2618 }
2619 if (PageDoubleMap(page)) {
2620 ret -= 1;
65dfe3c3 2621 _total_mapcount -= thp_nr_pages(page);
6d0a07ed
AA
2622 }
2623 mapcount = compound_mapcount(page);
2624 ret += mapcount;
2625 _total_mapcount += mapcount;
2626 if (total_mapcount)
2627 *total_mapcount = _total_mapcount;
2628 return ret;
2629}
2630
b8f593cd
HY
2631/* Racy check whether the huge page can be split */
2632bool can_split_huge_page(struct page *page, int *pextra_pins)
2633{
2634 int extra_pins;
2635
aa5dc07f 2636 /* Additional pins from page cache */
b8f593cd 2637 if (PageAnon(page))
e2333dad 2638 extra_pins = PageSwapCache(page) ? thp_nr_pages(page) : 0;
b8f593cd 2639 else
e2333dad 2640 extra_pins = thp_nr_pages(page);
b8f593cd
HY
2641 if (pextra_pins)
2642 *pextra_pins = extra_pins;
2643 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2644}
2645
e9b61f19
KS
2646/*
2647 * This function splits huge page into normal pages. @page can point to any
2648 * subpage of huge page to split. Split doesn't change the position of @page.
2649 *
2650 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2651 * The huge page must be locked.
2652 *
2653 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2654 *
2655 * Both head page and tail pages will inherit mapping, flags, and so on from
2656 * the hugepage.
2657 *
2658 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2659 * they are not mapped.
2660 *
2661 * Returns 0 if the hugepage is split successfully.
2662 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2663 * us.
2664 */
2665int split_huge_page_to_list(struct page *page, struct list_head *list)
2666{
2667 struct page *head = compound_head(page);
a8803e6c 2668 struct deferred_split *ds_queue = get_deferred_split_queue(head);
baa355fd
KS
2669 struct anon_vma *anon_vma = NULL;
2670 struct address_space *mapping = NULL;
2671 int count, mapcount, extra_pins, ret;
006d3ff2 2672 pgoff_t end;
e9b61f19 2673
cb829624 2674 VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
a8803e6c
WY
2675 VM_BUG_ON_PAGE(!PageLocked(head), head);
2676 VM_BUG_ON_PAGE(!PageCompound(head), head);
e9b61f19 2677
a8803e6c 2678 if (PageWriteback(head))
59807685
HY
2679 return -EBUSY;
2680
baa355fd
KS
2681 if (PageAnon(head)) {
2682 /*
c1e8d7c6 2683 * The caller does not necessarily hold an mmap_lock that would
baa355fd
KS
2684 * prevent the anon_vma disappearing so we first we take a
2685 * reference to it and then lock the anon_vma for write. This
2686 * is similar to page_lock_anon_vma_read except the write lock
2687 * is taken to serialise against parallel split or collapse
2688 * operations.
2689 */
2690 anon_vma = page_get_anon_vma(head);
2691 if (!anon_vma) {
2692 ret = -EBUSY;
2693 goto out;
2694 }
006d3ff2 2695 end = -1;
baa355fd
KS
2696 mapping = NULL;
2697 anon_vma_lock_write(anon_vma);
2698 } else {
2699 mapping = head->mapping;
2700
2701 /* Truncated ? */
2702 if (!mapping) {
2703 ret = -EBUSY;
2704 goto out;
2705 }
2706
baa355fd
KS
2707 anon_vma = NULL;
2708 i_mmap_lock_read(mapping);
006d3ff2
HD
2709
2710 /*
2711 *__split_huge_page() may need to trim off pages beyond EOF:
2712 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2713 * which cannot be nested inside the page tree lock. So note
2714 * end now: i_size itself may be changed at any moment, but
2715 * head page lock is good enough to serialize the trimming.
2716 */
2717 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
e9b61f19 2718 }
e9b61f19
KS
2719
2720 /*
906f9cdf 2721 * Racy check if we can split the page, before unmap_page() will
e9b61f19
KS
2722 * split PMDs
2723 */
b8f593cd 2724 if (!can_split_huge_page(head, &extra_pins)) {
e9b61f19
KS
2725 ret = -EBUSY;
2726 goto out_unlock;
2727 }
2728
906f9cdf 2729 unmap_page(head);
e9b61f19
KS
2730 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2731
b6769834
AS
2732 /* block interrupt reentry in xa_lock and spinlock */
2733 local_irq_disable();
baa355fd 2734 if (mapping) {
aa5dc07f 2735 XA_STATE(xas, &mapping->i_pages, page_index(head));
baa355fd 2736
baa355fd 2737 /*
aa5dc07f 2738 * Check if the head page is present in page cache.
baa355fd
KS
2739 * We assume all tail are present too, if head is there.
2740 */
aa5dc07f
MW
2741 xa_lock(&mapping->i_pages);
2742 if (xas_load(&xas) != head)
baa355fd
KS
2743 goto fail;
2744 }
2745
0139aa7b 2746 /* Prevent deferred_split_scan() touching ->_refcount */
364c1eeb 2747 spin_lock(&ds_queue->split_queue_lock);
e9b61f19
KS
2748 count = page_count(head);
2749 mapcount = total_mapcount(head);
baa355fd 2750 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
9a982250 2751 if (!list_empty(page_deferred_list(head))) {
364c1eeb 2752 ds_queue->split_queue_len--;
9a982250
KS
2753 list_del(page_deferred_list(head));
2754 }
afb97172 2755 spin_unlock(&ds_queue->split_queue_lock);
06d3eff6 2756 if (mapping) {
bf9ecead
MS
2757 int nr = thp_nr_pages(head);
2758
a8803e6c 2759 if (PageSwapBacked(head))
57b2847d
MS
2760 __mod_lruvec_page_state(head, NR_SHMEM_THPS,
2761 -nr);
06d3eff6 2762 else
bf9ecead
MS
2763 __mod_lruvec_page_state(head, NR_FILE_THPS,
2764 -nr);
06d3eff6
KS
2765 }
2766
b6769834 2767 __split_huge_page(page, list, end);
c4f9c701 2768 ret = 0;
e9b61f19 2769 } else {
baa355fd
KS
2770 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2771 pr_alert("total_mapcount: %u, page_count(): %u\n",
2772 mapcount, count);
2773 if (PageTail(page))
2774 dump_page(head, NULL);
2775 dump_page(page, "total_mapcount(head) > 0");
2776 BUG();
2777 }
364c1eeb 2778 spin_unlock(&ds_queue->split_queue_lock);
baa355fd 2779fail: if (mapping)
b93b0163 2780 xa_unlock(&mapping->i_pages);
b6769834 2781 local_irq_enable();
8cce5475 2782 remap_page(head, thp_nr_pages(head));
e9b61f19
KS
2783 ret = -EBUSY;
2784 }
2785
2786out_unlock:
baa355fd
KS
2787 if (anon_vma) {
2788 anon_vma_unlock_write(anon_vma);
2789 put_anon_vma(anon_vma);
2790 }
2791 if (mapping)
2792 i_mmap_unlock_read(mapping);
e9b61f19
KS
2793out:
2794 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2795 return ret;
2796}
9a982250
KS
2797
2798void free_transhuge_page(struct page *page)
2799{
87eaceb3 2800 struct deferred_split *ds_queue = get_deferred_split_queue(page);
9a982250
KS
2801 unsigned long flags;
2802
364c1eeb 2803 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
9a982250 2804 if (!list_empty(page_deferred_list(page))) {
364c1eeb 2805 ds_queue->split_queue_len--;
9a982250
KS
2806 list_del(page_deferred_list(page));
2807 }
364c1eeb 2808 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
9a982250
KS
2809 free_compound_page(page);
2810}
2811
2812void deferred_split_huge_page(struct page *page)
2813{
87eaceb3
YS
2814 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2815#ifdef CONFIG_MEMCG
bcfe06bf 2816 struct mem_cgroup *memcg = page_memcg(compound_head(page));
87eaceb3 2817#endif
9a982250
KS
2818 unsigned long flags;
2819
2820 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2821
87eaceb3
YS
2822 /*
2823 * The try_to_unmap() in page reclaim path might reach here too,
2824 * this may cause a race condition to corrupt deferred split queue.
2825 * And, if page reclaim is already handling the same page, it is
2826 * unnecessary to handle it again in shrinker.
2827 *
2828 * Check PageSwapCache to determine if the page is being
2829 * handled by page reclaim since THP swap would add the page into
2830 * swap cache before calling try_to_unmap().
2831 */
2832 if (PageSwapCache(page))
2833 return;
2834
364c1eeb 2835 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
9a982250 2836 if (list_empty(page_deferred_list(page))) {
f9719a03 2837 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
364c1eeb
YS
2838 list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2839 ds_queue->split_queue_len++;
87eaceb3
YS
2840#ifdef CONFIG_MEMCG
2841 if (memcg)
2bfd3637
YS
2842 set_shrinker_bit(memcg, page_to_nid(page),
2843 deferred_split_shrinker.id);
87eaceb3 2844#endif
9a982250 2845 }
364c1eeb 2846 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
9a982250
KS
2847}
2848
2849static unsigned long deferred_split_count(struct shrinker *shrink,
2850 struct shrink_control *sc)
2851{
a3d0a918 2852 struct pglist_data *pgdata = NODE_DATA(sc->nid);
364c1eeb 2853 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
87eaceb3
YS
2854
2855#ifdef CONFIG_MEMCG
2856 if (sc->memcg)
2857 ds_queue = &sc->memcg->deferred_split_queue;
2858#endif
364c1eeb 2859 return READ_ONCE(ds_queue->split_queue_len);
9a982250
KS
2860}
2861
2862static unsigned long deferred_split_scan(struct shrinker *shrink,
2863 struct shrink_control *sc)
2864{
a3d0a918 2865 struct pglist_data *pgdata = NODE_DATA(sc->nid);
364c1eeb 2866 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
9a982250
KS
2867 unsigned long flags;
2868 LIST_HEAD(list), *pos, *next;
2869 struct page *page;
2870 int split = 0;
2871
87eaceb3
YS
2872#ifdef CONFIG_MEMCG
2873 if (sc->memcg)
2874 ds_queue = &sc->memcg->deferred_split_queue;
2875#endif
2876
364c1eeb 2877 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
9a982250 2878 /* Take pin on all head pages to avoid freeing them under us */
364c1eeb 2879 list_for_each_safe(pos, next, &ds_queue->split_queue) {
9a982250
KS
2880 page = list_entry((void *)pos, struct page, mapping);
2881 page = compound_head(page);
e3ae1953
KS
2882 if (get_page_unless_zero(page)) {
2883 list_move(page_deferred_list(page), &list);
2884 } else {
2885 /* We lost race with put_compound_page() */
9a982250 2886 list_del_init(page_deferred_list(page));
364c1eeb 2887 ds_queue->split_queue_len--;
9a982250 2888 }
e3ae1953
KS
2889 if (!--sc->nr_to_scan)
2890 break;
9a982250 2891 }
364c1eeb 2892 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
9a982250
KS
2893
2894 list_for_each_safe(pos, next, &list) {
2895 page = list_entry((void *)pos, struct page, mapping);
fa41b900
KS
2896 if (!trylock_page(page))
2897 goto next;
9a982250
KS
2898 /* split_huge_page() removes page from list on success */
2899 if (!split_huge_page(page))
2900 split++;
2901 unlock_page(page);
fa41b900 2902next:
9a982250
KS
2903 put_page(page);
2904 }
2905
364c1eeb
YS
2906 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2907 list_splice_tail(&list, &ds_queue->split_queue);
2908 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
9a982250 2909
cb8d68ec
KS
2910 /*
2911 * Stop shrinker if we didn't split any page, but the queue is empty.
2912 * This can happen if pages were freed under us.
2913 */
364c1eeb 2914 if (!split && list_empty(&ds_queue->split_queue))
cb8d68ec
KS
2915 return SHRINK_STOP;
2916 return split;
9a982250
KS
2917}
2918
2919static struct shrinker deferred_split_shrinker = {
2920 .count_objects = deferred_split_count,
2921 .scan_objects = deferred_split_scan,
2922 .seeks = DEFAULT_SEEKS,
87eaceb3
YS
2923 .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2924 SHRINKER_NONSLAB,
9a982250 2925};
49071d43
KS
2926
2927#ifdef CONFIG_DEBUG_FS
fa6c0231 2928static void split_huge_pages_all(void)
49071d43
KS
2929{
2930 struct zone *zone;
2931 struct page *page;
2932 unsigned long pfn, max_zone_pfn;
2933 unsigned long total = 0, split = 0;
2934
fa6c0231 2935 pr_debug("Split all THPs\n");
49071d43
KS
2936 for_each_populated_zone(zone) {
2937 max_zone_pfn = zone_end_pfn(zone);
2938 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2939 if (!pfn_valid(pfn))
2940 continue;
2941
2942 page = pfn_to_page(pfn);
2943 if (!get_page_unless_zero(page))
2944 continue;
2945
2946 if (zone != page_zone(page))
2947 goto next;
2948
baa355fd 2949 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
49071d43
KS
2950 goto next;
2951
2952 total++;
2953 lock_page(page);
2954 if (!split_huge_page(page))
2955 split++;
2956 unlock_page(page);
2957next:
2958 put_page(page);
fa6c0231 2959 cond_resched();
49071d43
KS
2960 }
2961 }
2962
fa6c0231
ZY
2963 pr_debug("%lu of %lu THP split\n", split, total);
2964}
49071d43 2965
fa6c0231
ZY
2966static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
2967{
2968 return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
2969 is_vm_hugetlb_page(vma);
2970}
2971
2972static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
2973 unsigned long vaddr_end)
2974{
2975 int ret = 0;
2976 struct task_struct *task;
2977 struct mm_struct *mm;
2978 unsigned long total = 0, split = 0;
2979 unsigned long addr;
2980
2981 vaddr_start &= PAGE_MASK;
2982 vaddr_end &= PAGE_MASK;
2983
2984 /* Find the task_struct from pid */
2985 rcu_read_lock();
2986 task = find_task_by_vpid(pid);
2987 if (!task) {
2988 rcu_read_unlock();
2989 ret = -ESRCH;
2990 goto out;
2991 }
2992 get_task_struct(task);
2993 rcu_read_unlock();
2994
2995 /* Find the mm_struct */
2996 mm = get_task_mm(task);
2997 put_task_struct(task);
2998
2999 if (!mm) {
3000 ret = -EINVAL;
3001 goto out;
3002 }
3003
3004 pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
3005 pid, vaddr_start, vaddr_end);
3006
3007 mmap_read_lock(mm);
3008 /*
3009 * always increase addr by PAGE_SIZE, since we could have a PTE page
3010 * table filled with PTE-mapped THPs, each of which is distinct.
3011 */
3012 for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
3013 struct vm_area_struct *vma = find_vma(mm, addr);
3014 unsigned int follflags;
3015 struct page *page;
3016
3017 if (!vma || addr < vma->vm_start)
3018 break;
3019
3020 /* skip special VMA and hugetlb VMA */
3021 if (vma_not_suitable_for_thp_split(vma)) {
3022 addr = vma->vm_end;
3023 continue;
3024 }
3025
3026 /* FOLL_DUMP to ignore special (like zero) pages */
3027 follflags = FOLL_GET | FOLL_DUMP;
3028 page = follow_page(vma, addr, follflags);
3029
3030 if (IS_ERR(page))
3031 continue;
3032 if (!page)
3033 continue;
3034
3035 if (!is_transparent_hugepage(page))
3036 goto next;
3037
3038 total++;
3039 if (!can_split_huge_page(compound_head(page), NULL))
3040 goto next;
3041
3042 if (!trylock_page(page))
3043 goto next;
3044
3045 if (!split_huge_page(page))
3046 split++;
3047
3048 unlock_page(page);
3049next:
3050 put_page(page);
3051 cond_resched();
3052 }
3053 mmap_read_unlock(mm);
3054 mmput(mm);
3055
3056 pr_debug("%lu of %lu THP split\n", split, total);
3057
3058out:
3059 return ret;
49071d43 3060}
fa6c0231 3061
fbe37501
ZY
3062static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
3063 pgoff_t off_end)
3064{
3065 struct filename *file;
3066 struct file *candidate;
3067 struct address_space *mapping;
3068 int ret = -EINVAL;
3069 pgoff_t index;
3070 int nr_pages = 1;
3071 unsigned long total = 0, split = 0;
3072
3073 file = getname_kernel(file_path);
3074 if (IS_ERR(file))
3075 return ret;
3076
3077 candidate = file_open_name(file, O_RDONLY, 0);
3078 if (IS_ERR(candidate))
3079 goto out;
3080
3081 pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
3082 file_path, off_start, off_end);
3083
3084 mapping = candidate->f_mapping;
3085
3086 for (index = off_start; index < off_end; index += nr_pages) {
3087 struct page *fpage = pagecache_get_page(mapping, index,
3088 FGP_ENTRY | FGP_HEAD, 0);
3089
3090 nr_pages = 1;
3091 if (xa_is_value(fpage) || !fpage)
3092 continue;
3093
3094 if (!is_transparent_hugepage(fpage))
3095 goto next;
3096
3097 total++;
3098 nr_pages = thp_nr_pages(fpage);
3099
3100 if (!trylock_page(fpage))
3101 goto next;
3102
3103 if (!split_huge_page(fpage))
3104 split++;
3105
3106 unlock_page(fpage);
3107next:
3108 put_page(fpage);
3109 cond_resched();
3110 }
3111
3112 filp_close(candidate, NULL);
3113 ret = 0;
3114
3115 pr_debug("%lu of %lu file-backed THP split\n", split, total);
3116out:
3117 putname(file);
3118 return ret;
3119}
3120
fa6c0231
ZY
3121#define MAX_INPUT_BUF_SZ 255
3122
3123static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
3124 size_t count, loff_t *ppops)
3125{
3126 static DEFINE_MUTEX(split_debug_mutex);
3127 ssize_t ret;
fbe37501
ZY
3128 /* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
3129 char input_buf[MAX_INPUT_BUF_SZ];
fa6c0231
ZY
3130 int pid;
3131 unsigned long vaddr_start, vaddr_end;
3132
3133 ret = mutex_lock_interruptible(&split_debug_mutex);
3134 if (ret)
3135 return ret;
3136
3137 ret = -EFAULT;
3138
3139 memset(input_buf, 0, MAX_INPUT_BUF_SZ);
3140 if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
3141 goto out;
3142
3143 input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
fbe37501
ZY
3144
3145 if (input_buf[0] == '/') {
3146 char *tok;
3147 char *buf = input_buf;
3148 char file_path[MAX_INPUT_BUF_SZ];
3149 pgoff_t off_start = 0, off_end = 0;
3150 size_t input_len = strlen(input_buf);
3151
3152 tok = strsep(&buf, ",");
3153 if (tok) {
3154 strncpy(file_path, tok, MAX_INPUT_BUF_SZ);
3155 } else {
3156 ret = -EINVAL;
3157 goto out;
3158 }
3159
3160 ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
3161 if (ret != 2) {
3162 ret = -EINVAL;
3163 goto out;
3164 }
3165 ret = split_huge_pages_in_file(file_path, off_start, off_end);
3166 if (!ret)
3167 ret = input_len;
3168
3169 goto out;
3170 }
3171
fa6c0231
ZY
3172 ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
3173 if (ret == 1 && pid == 1) {
3174 split_huge_pages_all();
3175 ret = strlen(input_buf);
3176 goto out;
3177 } else if (ret != 3) {
3178 ret = -EINVAL;
3179 goto out;
3180 }
3181
3182 ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
3183 if (!ret)
3184 ret = strlen(input_buf);
3185out:
3186 mutex_unlock(&split_debug_mutex);
3187 return ret;
3188
3189}
3190
3191static const struct file_operations split_huge_pages_fops = {
3192 .owner = THIS_MODULE,
3193 .write = split_huge_pages_write,
3194 .llseek = no_llseek,
3195};
49071d43
KS
3196
3197static int __init split_huge_pages_debugfs(void)
3198{
d9f7979c
GKH
3199 debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3200 &split_huge_pages_fops);
49071d43
KS
3201 return 0;
3202}
3203late_initcall(split_huge_pages_debugfs);
3204#endif
616b8371
ZY
3205
3206#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3207void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3208 struct page *page)
3209{
3210 struct vm_area_struct *vma = pvmw->vma;
3211 struct mm_struct *mm = vma->vm_mm;
3212 unsigned long address = pvmw->address;
3213 pmd_t pmdval;
3214 swp_entry_t entry;
ab6e3d09 3215 pmd_t pmdswp;
616b8371
ZY
3216
3217 if (!(pvmw->pmd && !pvmw->pte))
3218 return;
3219
616b8371 3220 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
8a8683ad 3221 pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
616b8371
ZY
3222 if (pmd_dirty(pmdval))
3223 set_page_dirty(page);
3224 entry = make_migration_entry(page, pmd_write(pmdval));
ab6e3d09
NH
3225 pmdswp = swp_entry_to_pmd(entry);
3226 if (pmd_soft_dirty(pmdval))
3227 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3228 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
616b8371
ZY
3229 page_remove_rmap(page, true);
3230 put_page(page);
616b8371
ZY
3231}
3232
3233void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3234{
3235 struct vm_area_struct *vma = pvmw->vma;
3236 struct mm_struct *mm = vma->vm_mm;
3237 unsigned long address = pvmw->address;
3238 unsigned long mmun_start = address & HPAGE_PMD_MASK;
3239 pmd_t pmde;
3240 swp_entry_t entry;
3241
3242 if (!(pvmw->pmd && !pvmw->pte))
3243 return;
3244
3245 entry = pmd_to_swp_entry(*pvmw->pmd);
3246 get_page(new);
3247 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
ab6e3d09
NH
3248 if (pmd_swp_soft_dirty(*pvmw->pmd))
3249 pmde = pmd_mksoft_dirty(pmde);
616b8371 3250 if (is_write_migration_entry(entry))
f55e1014 3251 pmde = maybe_pmd_mkwrite(pmde, vma);
616b8371
ZY
3252
3253 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
e71769ae
NH
3254 if (PageAnon(new))
3255 page_add_anon_rmap(new, vma, mmun_start, true);
3256 else
3257 page_add_file_rmap(new, true);
616b8371 3258 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
e125fe40 3259 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
616b8371
ZY
3260 mlock_vma_page(new);
3261 update_mmu_cache_pmd(vma, address, pvmw->pmd);
3262}
3263#endif