]> git.ipfire.org Git - people/ms/linux.git/blame - mm/huge_memory.c
mm: fix kernel-doc markups
[people/ms/linux.git] / mm / huge_memory.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
71e3aac0
AA
2/*
3 * Copyright (C) 2009 Red Hat, Inc.
71e3aac0
AA
4 */
5
ae3a8c1c
AM
6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
71e3aac0
AA
8#include <linux/mm.h>
9#include <linux/sched.h>
f7ccbae4 10#include <linux/sched/coredump.h>
6a3827d7 11#include <linux/sched/numa_balancing.h>
71e3aac0
AA
12#include <linux/highmem.h>
13#include <linux/hugetlb.h>
14#include <linux/mmu_notifier.h>
15#include <linux/rmap.h>
16#include <linux/swap.h>
97ae1749 17#include <linux/shrinker.h>
ba76149f 18#include <linux/mm_inline.h>
e9b61f19 19#include <linux/swapops.h>
4897c765 20#include <linux/dax.h>
ba76149f 21#include <linux/khugepaged.h>
878aee7d 22#include <linux/freezer.h>
f25748e3 23#include <linux/pfn_t.h>
a664b2d8 24#include <linux/mman.h>
3565fce3 25#include <linux/memremap.h>
325adeb5 26#include <linux/pagemap.h>
49071d43 27#include <linux/debugfs.h>
4daae3b4 28#include <linux/migrate.h>
43b5fbbd 29#include <linux/hashtable.h>
6b251fc9 30#include <linux/userfaultfd_k.h>
33c3fc71 31#include <linux/page_idle.h>
baa355fd 32#include <linux/shmem_fs.h>
6b31d595 33#include <linux/oom.h>
98fa15f3 34#include <linux/numa.h>
f7da677b 35#include <linux/page_owner.h>
97ae1749 36
71e3aac0
AA
37#include <asm/tlb.h>
38#include <asm/pgalloc.h>
39#include "internal.h"
40
ba76149f 41/*
b14d595a
MD
42 * By default, transparent hugepage support is disabled in order to avoid
43 * risking an increased memory footprint for applications that are not
44 * guaranteed to benefit from it. When transparent hugepage support is
45 * enabled, it is for all mappings, and khugepaged scans all mappings.
8bfa3f9a
JW
46 * Defrag is invoked by khugepaged hugepage allocations and by page faults
47 * for all hugepage allocations.
ba76149f 48 */
71e3aac0 49unsigned long transparent_hugepage_flags __read_mostly =
13ece886 50#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 51 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
52#endif
53#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55#endif
444eb2a4 56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
79da5407
KS
57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
ba76149f 59
9a982250 60static struct shrinker deferred_split_shrinker;
f000565a 61
97ae1749 62static atomic_t huge_zero_refcount;
56873f43 63struct page *huge_zero_page __read_mostly;
4a6c1297 64
7635d9cb
MH
65bool transparent_hugepage_enabled(struct vm_area_struct *vma)
66{
c0630669
YS
67 /* The addr is used to check if the vma size fits */
68 unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
69
70 if (!transhuge_vma_suitable(vma, addr))
71 return false;
7635d9cb
MH
72 if (vma_is_anonymous(vma))
73 return __transparent_hugepage_enabled(vma);
c0630669
YS
74 if (vma_is_shmem(vma))
75 return shmem_huge_enabled(vma);
7635d9cb
MH
76
77 return false;
78}
79
6fcb52a5 80static struct page *get_huge_zero_page(void)
97ae1749
KS
81{
82 struct page *zero_page;
83retry:
84 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
4db0c3c2 85 return READ_ONCE(huge_zero_page);
97ae1749
KS
86
87 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
4a6c1297 88 HPAGE_PMD_ORDER);
d8a8e1f0
KS
89 if (!zero_page) {
90 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
5918d10a 91 return NULL;
d8a8e1f0
KS
92 }
93 count_vm_event(THP_ZERO_PAGE_ALLOC);
97ae1749 94 preempt_disable();
5918d10a 95 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97ae1749 96 preempt_enable();
5ddacbe9 97 __free_pages(zero_page, compound_order(zero_page));
97ae1749
KS
98 goto retry;
99 }
100
101 /* We take additional reference here. It will be put back by shrinker */
102 atomic_set(&huge_zero_refcount, 2);
103 preempt_enable();
4db0c3c2 104 return READ_ONCE(huge_zero_page);
4a6c1297
KS
105}
106
6fcb52a5 107static void put_huge_zero_page(void)
4a6c1297 108{
97ae1749
KS
109 /*
110 * Counter should never go to zero here. Only shrinker can put
111 * last reference.
112 */
113 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
4a6c1297
KS
114}
115
6fcb52a5
AL
116struct page *mm_get_huge_zero_page(struct mm_struct *mm)
117{
118 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
119 return READ_ONCE(huge_zero_page);
120
121 if (!get_huge_zero_page())
122 return NULL;
123
124 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
125 put_huge_zero_page();
126
127 return READ_ONCE(huge_zero_page);
128}
129
130void mm_put_huge_zero_page(struct mm_struct *mm)
131{
132 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
133 put_huge_zero_page();
134}
135
48896466
GC
136static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
137 struct shrink_control *sc)
4a6c1297 138{
48896466
GC
139 /* we can free zero page only if last reference remains */
140 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
141}
97ae1749 142
48896466
GC
143static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
144 struct shrink_control *sc)
145{
97ae1749 146 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
5918d10a
KS
147 struct page *zero_page = xchg(&huge_zero_page, NULL);
148 BUG_ON(zero_page == NULL);
5ddacbe9 149 __free_pages(zero_page, compound_order(zero_page));
48896466 150 return HPAGE_PMD_NR;
97ae1749
KS
151 }
152
153 return 0;
4a6c1297
KS
154}
155
97ae1749 156static struct shrinker huge_zero_page_shrinker = {
48896466
GC
157 .count_objects = shrink_huge_zero_page_count,
158 .scan_objects = shrink_huge_zero_page_scan,
97ae1749
KS
159 .seeks = DEFAULT_SEEKS,
160};
161
71e3aac0 162#ifdef CONFIG_SYSFS
71e3aac0
AA
163static ssize_t enabled_show(struct kobject *kobj,
164 struct kobj_attribute *attr, char *buf)
165{
444eb2a4
MG
166 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
167 return sprintf(buf, "[always] madvise never\n");
168 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
169 return sprintf(buf, "always [madvise] never\n");
170 else
171 return sprintf(buf, "always madvise [never]\n");
71e3aac0 172}
444eb2a4 173
71e3aac0
AA
174static ssize_t enabled_store(struct kobject *kobj,
175 struct kobj_attribute *attr,
176 const char *buf, size_t count)
177{
21440d7e 178 ssize_t ret = count;
ba76149f 179
f42f2552 180 if (sysfs_streq(buf, "always")) {
21440d7e
DR
181 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
182 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
f42f2552 183 } else if (sysfs_streq(buf, "madvise")) {
21440d7e
DR
184 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
185 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
f42f2552 186 } else if (sysfs_streq(buf, "never")) {
21440d7e
DR
187 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
188 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
189 } else
190 ret = -EINVAL;
ba76149f
AA
191
192 if (ret > 0) {
b46e756f 193 int err = start_stop_khugepaged();
ba76149f
AA
194 if (err)
195 ret = err;
196 }
ba76149f 197 return ret;
71e3aac0
AA
198}
199static struct kobj_attribute enabled_attr =
200 __ATTR(enabled, 0644, enabled_show, enabled_store);
201
b46e756f 202ssize_t single_hugepage_flag_show(struct kobject *kobj,
71e3aac0
AA
203 struct kobj_attribute *attr, char *buf,
204 enum transparent_hugepage_flag flag)
205{
e27e6151
BH
206 return sprintf(buf, "%d\n",
207 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 208}
e27e6151 209
b46e756f 210ssize_t single_hugepage_flag_store(struct kobject *kobj,
71e3aac0
AA
211 struct kobj_attribute *attr,
212 const char *buf, size_t count,
213 enum transparent_hugepage_flag flag)
214{
e27e6151
BH
215 unsigned long value;
216 int ret;
217
218 ret = kstrtoul(buf, 10, &value);
219 if (ret < 0)
220 return ret;
221 if (value > 1)
222 return -EINVAL;
223
224 if (value)
71e3aac0 225 set_bit(flag, &transparent_hugepage_flags);
e27e6151 226 else
71e3aac0 227 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
228
229 return count;
230}
231
71e3aac0
AA
232static ssize_t defrag_show(struct kobject *kobj,
233 struct kobj_attribute *attr, char *buf)
234{
444eb2a4 235 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
21440d7e 236 return sprintf(buf, "[always] defer defer+madvise madvise never\n");
444eb2a4 237 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
21440d7e
DR
238 return sprintf(buf, "always [defer] defer+madvise madvise never\n");
239 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
240 return sprintf(buf, "always defer [defer+madvise] madvise never\n");
241 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
242 return sprintf(buf, "always defer defer+madvise [madvise] never\n");
243 return sprintf(buf, "always defer defer+madvise madvise [never]\n");
71e3aac0 244}
21440d7e 245
71e3aac0
AA
246static ssize_t defrag_store(struct kobject *kobj,
247 struct kobj_attribute *attr,
248 const char *buf, size_t count)
249{
f42f2552 250 if (sysfs_streq(buf, "always")) {
21440d7e
DR
251 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
252 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
253 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
254 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
f42f2552 255 } else if (sysfs_streq(buf, "defer+madvise")) {
21440d7e
DR
256 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
257 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
258 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
259 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
f42f2552 260 } else if (sysfs_streq(buf, "defer")) {
4fad7fb6
DR
261 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
262 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
263 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
264 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
f42f2552 265 } else if (sysfs_streq(buf, "madvise")) {
21440d7e
DR
266 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
267 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
268 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
269 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
f42f2552 270 } else if (sysfs_streq(buf, "never")) {
21440d7e
DR
271 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
272 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
273 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
274 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
275 } else
276 return -EINVAL;
277
278 return count;
71e3aac0
AA
279}
280static struct kobj_attribute defrag_attr =
281 __ATTR(defrag, 0644, defrag_show, defrag_store);
282
79da5407
KS
283static ssize_t use_zero_page_show(struct kobject *kobj,
284 struct kobj_attribute *attr, char *buf)
285{
b46e756f 286 return single_hugepage_flag_show(kobj, attr, buf,
79da5407
KS
287 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
288}
289static ssize_t use_zero_page_store(struct kobject *kobj,
290 struct kobj_attribute *attr, const char *buf, size_t count)
291{
b46e756f 292 return single_hugepage_flag_store(kobj, attr, buf, count,
79da5407
KS
293 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
294}
295static struct kobj_attribute use_zero_page_attr =
296 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
49920d28
HD
297
298static ssize_t hpage_pmd_size_show(struct kobject *kobj,
299 struct kobj_attribute *attr, char *buf)
300{
301 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
302}
303static struct kobj_attribute hpage_pmd_size_attr =
304 __ATTR_RO(hpage_pmd_size);
305
71e3aac0
AA
306static struct attribute *hugepage_attr[] = {
307 &enabled_attr.attr,
308 &defrag_attr.attr,
79da5407 309 &use_zero_page_attr.attr,
49920d28 310 &hpage_pmd_size_attr.attr,
396bcc52 311#ifdef CONFIG_SHMEM
5a6e75f8 312 &shmem_enabled_attr.attr,
71e3aac0
AA
313#endif
314 NULL,
315};
316
8aa95a21 317static const struct attribute_group hugepage_attr_group = {
71e3aac0 318 .attrs = hugepage_attr,
ba76149f
AA
319};
320
569e5590 321static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 322{
71e3aac0
AA
323 int err;
324
569e5590
SL
325 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
326 if (unlikely(!*hugepage_kobj)) {
ae3a8c1c 327 pr_err("failed to create transparent hugepage kobject\n");
569e5590 328 return -ENOMEM;
ba76149f
AA
329 }
330
569e5590 331 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f 332 if (err) {
ae3a8c1c 333 pr_err("failed to register transparent hugepage group\n");
569e5590 334 goto delete_obj;
ba76149f
AA
335 }
336
569e5590 337 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f 338 if (err) {
ae3a8c1c 339 pr_err("failed to register transparent hugepage group\n");
569e5590 340 goto remove_hp_group;
ba76149f 341 }
569e5590
SL
342
343 return 0;
344
345remove_hp_group:
346 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
347delete_obj:
348 kobject_put(*hugepage_kobj);
349 return err;
350}
351
352static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
353{
354 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
355 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
356 kobject_put(hugepage_kobj);
357}
358#else
359static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
360{
361 return 0;
362}
363
364static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
365{
366}
367#endif /* CONFIG_SYSFS */
368
369static int __init hugepage_init(void)
370{
371 int err;
372 struct kobject *hugepage_kobj;
373
374 if (!has_transparent_hugepage()) {
375 transparent_hugepage_flags = 0;
376 return -EINVAL;
377 }
378
ff20c2e0
KS
379 /*
380 * hugepages can't be allocated by the buddy allocator
381 */
382 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
383 /*
384 * we use page->mapping and page->index in second tail page
385 * as list_head: assuming THP order >= 2
386 */
387 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
388
569e5590
SL
389 err = hugepage_init_sysfs(&hugepage_kobj);
390 if (err)
65ebb64f 391 goto err_sysfs;
ba76149f 392
b46e756f 393 err = khugepaged_init();
ba76149f 394 if (err)
65ebb64f 395 goto err_slab;
ba76149f 396
65ebb64f
KS
397 err = register_shrinker(&huge_zero_page_shrinker);
398 if (err)
399 goto err_hzp_shrinker;
9a982250
KS
400 err = register_shrinker(&deferred_split_shrinker);
401 if (err)
402 goto err_split_shrinker;
97ae1749 403
97562cd2
RR
404 /*
405 * By default disable transparent hugepages on smaller systems,
406 * where the extra memory used could hurt more than TLB overhead
407 * is likely to save. The admin can still enable it through /sys.
408 */
ca79b0c2 409 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
97562cd2 410 transparent_hugepage_flags = 0;
79553da2
KS
411 return 0;
412 }
97562cd2 413
79553da2 414 err = start_stop_khugepaged();
65ebb64f
KS
415 if (err)
416 goto err_khugepaged;
ba76149f 417
569e5590 418 return 0;
65ebb64f 419err_khugepaged:
9a982250
KS
420 unregister_shrinker(&deferred_split_shrinker);
421err_split_shrinker:
65ebb64f
KS
422 unregister_shrinker(&huge_zero_page_shrinker);
423err_hzp_shrinker:
b46e756f 424 khugepaged_destroy();
65ebb64f 425err_slab:
569e5590 426 hugepage_exit_sysfs(hugepage_kobj);
65ebb64f 427err_sysfs:
ba76149f 428 return err;
71e3aac0 429}
a64fb3cd 430subsys_initcall(hugepage_init);
71e3aac0
AA
431
432static int __init setup_transparent_hugepage(char *str)
433{
434 int ret = 0;
435 if (!str)
436 goto out;
437 if (!strcmp(str, "always")) {
438 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
439 &transparent_hugepage_flags);
440 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
441 &transparent_hugepage_flags);
442 ret = 1;
443 } else if (!strcmp(str, "madvise")) {
444 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
445 &transparent_hugepage_flags);
446 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
447 &transparent_hugepage_flags);
448 ret = 1;
449 } else if (!strcmp(str, "never")) {
450 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
451 &transparent_hugepage_flags);
452 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
453 &transparent_hugepage_flags);
454 ret = 1;
455 }
456out:
457 if (!ret)
ae3a8c1c 458 pr_warn("transparent_hugepage= cannot parse, ignored\n");
71e3aac0
AA
459 return ret;
460}
461__setup("transparent_hugepage=", setup_transparent_hugepage);
462
f55e1014 463pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
71e3aac0 464{
f55e1014 465 if (likely(vma->vm_flags & VM_WRITE))
71e3aac0
AA
466 pmd = pmd_mkwrite(pmd);
467 return pmd;
468}
469
87eaceb3
YS
470#ifdef CONFIG_MEMCG
471static inline struct deferred_split *get_deferred_split_queue(struct page *page)
9a982250 472{
87eaceb3
YS
473 struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
474 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
475
476 if (memcg)
477 return &memcg->deferred_split_queue;
478 else
479 return &pgdat->deferred_split_queue;
9a982250 480}
87eaceb3
YS
481#else
482static inline struct deferred_split *get_deferred_split_queue(struct page *page)
483{
484 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
485
486 return &pgdat->deferred_split_queue;
487}
488#endif
9a982250
KS
489
490void prep_transhuge_page(struct page *page)
491{
492 /*
493 * we use page->mapping and page->indexlru in second tail page
494 * as list_head: assuming THP order >= 2
495 */
9a982250
KS
496
497 INIT_LIST_HEAD(page_deferred_list(page));
498 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
499}
500
005ba37c
SC
501bool is_transparent_hugepage(struct page *page)
502{
503 if (!PageCompound(page))
fa1f68cc 504 return false;
005ba37c
SC
505
506 page = compound_head(page);
507 return is_huge_zero_page(page) ||
508 page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
509}
510EXPORT_SYMBOL_GPL(is_transparent_hugepage);
511
97d3d0f9
KS
512static unsigned long __thp_get_unmapped_area(struct file *filp,
513 unsigned long addr, unsigned long len,
74d2fad1
TK
514 loff_t off, unsigned long flags, unsigned long size)
515{
74d2fad1
TK
516 loff_t off_end = off + len;
517 loff_t off_align = round_up(off, size);
97d3d0f9 518 unsigned long len_pad, ret;
74d2fad1
TK
519
520 if (off_end <= off_align || (off_end - off_align) < size)
521 return 0;
522
523 len_pad = len + size;
524 if (len_pad < len || (off + len_pad) < off)
525 return 0;
526
97d3d0f9 527 ret = current->mm->get_unmapped_area(filp, addr, len_pad,
74d2fad1 528 off >> PAGE_SHIFT, flags);
97d3d0f9
KS
529
530 /*
531 * The failure might be due to length padding. The caller will retry
532 * without the padding.
533 */
534 if (IS_ERR_VALUE(ret))
74d2fad1
TK
535 return 0;
536
97d3d0f9
KS
537 /*
538 * Do not try to align to THP boundary if allocation at the address
539 * hint succeeds.
540 */
541 if (ret == addr)
542 return addr;
543
544 ret += (off - ret) & (size - 1);
545 return ret;
74d2fad1
TK
546}
547
548unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
549 unsigned long len, unsigned long pgoff, unsigned long flags)
550{
97d3d0f9 551 unsigned long ret;
74d2fad1
TK
552 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
553
74d2fad1
TK
554 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
555 goto out;
556
97d3d0f9
KS
557 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
558 if (ret)
559 return ret;
560out:
74d2fad1
TK
561 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
562}
563EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
564
2b740303
SJ
565static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
566 struct page *page, gfp_t gfp)
71e3aac0 567{
82b0f8c3 568 struct vm_area_struct *vma = vmf->vma;
71e3aac0 569 pgtable_t pgtable;
82b0f8c3 570 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
2b740303 571 vm_fault_t ret = 0;
71e3aac0 572
309381fe 573 VM_BUG_ON_PAGE(!PageCompound(page), page);
00501b53 574
d9eb1ea2 575 if (mem_cgroup_charge(page, vma->vm_mm, gfp)) {
6b251fc9
AA
576 put_page(page);
577 count_vm_event(THP_FAULT_FALLBACK);
85b9f46e 578 count_vm_event(THP_FAULT_FALLBACK_CHARGE);
6b251fc9
AA
579 return VM_FAULT_FALLBACK;
580 }
9d82c694 581 cgroup_throttle_swaprate(page, gfp);
00501b53 582
4cf58924 583 pgtable = pte_alloc_one(vma->vm_mm);
00501b53 584 if (unlikely(!pgtable)) {
6b31d595
MH
585 ret = VM_FAULT_OOM;
586 goto release;
00501b53 587 }
71e3aac0 588
c79b57e4 589 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
52f37629
MK
590 /*
591 * The memory barrier inside __SetPageUptodate makes sure that
592 * clear_huge_page writes become visible before the set_pmd_at()
593 * write.
594 */
71e3aac0
AA
595 __SetPageUptodate(page);
596
82b0f8c3
JK
597 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
598 if (unlikely(!pmd_none(*vmf->pmd))) {
6b31d595 599 goto unlock_release;
71e3aac0
AA
600 } else {
601 pmd_t entry;
6b251fc9 602
6b31d595
MH
603 ret = check_stable_address_space(vma->vm_mm);
604 if (ret)
605 goto unlock_release;
606
6b251fc9
AA
607 /* Deliver the page fault to userland */
608 if (userfaultfd_missing(vma)) {
2b740303 609 vm_fault_t ret2;
6b251fc9 610
82b0f8c3 611 spin_unlock(vmf->ptl);
6b251fc9 612 put_page(page);
bae473a4 613 pte_free(vma->vm_mm, pgtable);
2b740303
SJ
614 ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
615 VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
616 return ret2;
6b251fc9
AA
617 }
618
3122359a 619 entry = mk_huge_pmd(page, vma->vm_page_prot);
f55e1014 620 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
d281ee61 621 page_add_new_anon_rmap(page, vma, haddr, true);
b518154e 622 lru_cache_add_inactive_or_unevictable(page, vma);
82b0f8c3
JK
623 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
624 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
bae473a4 625 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
c4812909 626 mm_inc_nr_ptes(vma->vm_mm);
82b0f8c3 627 spin_unlock(vmf->ptl);
6b251fc9 628 count_vm_event(THP_FAULT_ALLOC);
9d82c694 629 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
71e3aac0
AA
630 }
631
aa2e878e 632 return 0;
6b31d595
MH
633unlock_release:
634 spin_unlock(vmf->ptl);
635release:
636 if (pgtable)
637 pte_free(vma->vm_mm, pgtable);
6b31d595
MH
638 put_page(page);
639 return ret;
640
71e3aac0
AA
641}
642
444eb2a4 643/*
21440d7e
DR
644 * always: directly stall for all thp allocations
645 * defer: wake kswapd and fail if not immediately available
646 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
647 * fail if not immediately available
648 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
649 * available
650 * never: never stall for any thp allocation
444eb2a4 651 */
19deb769 652static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
444eb2a4 653{
21440d7e 654 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
2f0799a0 655
ac79f78d 656 /* Always do synchronous compaction */
a8282608
AA
657 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
658 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
ac79f78d
DR
659
660 /* Kick kcompactd and fail quickly */
21440d7e 661 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
19deb769 662 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
ac79f78d
DR
663
664 /* Synchronous compaction if madvised, otherwise kick kcompactd */
21440d7e 665 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
19deb769
DR
666 return GFP_TRANSHUGE_LIGHT |
667 (vma_madvised ? __GFP_DIRECT_RECLAIM :
668 __GFP_KSWAPD_RECLAIM);
ac79f78d
DR
669
670 /* Only do synchronous compaction if madvised */
21440d7e 671 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
19deb769
DR
672 return GFP_TRANSHUGE_LIGHT |
673 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
ac79f78d 674
19deb769 675 return GFP_TRANSHUGE_LIGHT;
444eb2a4
MG
676}
677
c4088ebd 678/* Caller must hold page table lock. */
d295e341 679static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
97ae1749 680 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
5918d10a 681 struct page *zero_page)
fc9fe822
KS
682{
683 pmd_t entry;
7c414164
AM
684 if (!pmd_none(*pmd))
685 return false;
5918d10a 686 entry = mk_pmd(zero_page, vma->vm_page_prot);
fc9fe822 687 entry = pmd_mkhuge(entry);
12c9d70b
MW
688 if (pgtable)
689 pgtable_trans_huge_deposit(mm, pmd, pgtable);
fc9fe822 690 set_pmd_at(mm, haddr, pmd, entry);
c4812909 691 mm_inc_nr_ptes(mm);
7c414164 692 return true;
fc9fe822
KS
693}
694
2b740303 695vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
71e3aac0 696{
82b0f8c3 697 struct vm_area_struct *vma = vmf->vma;
077fcf11 698 gfp_t gfp;
71e3aac0 699 struct page *page;
82b0f8c3 700 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
71e3aac0 701
43675e6f 702 if (!transhuge_vma_suitable(vma, haddr))
c0292554 703 return VM_FAULT_FALLBACK;
128ec037
KS
704 if (unlikely(anon_vma_prepare(vma)))
705 return VM_FAULT_OOM;
6d50e60c 706 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
128ec037 707 return VM_FAULT_OOM;
82b0f8c3 708 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 709 !mm_forbids_zeropage(vma->vm_mm) &&
128ec037
KS
710 transparent_hugepage_use_zero_page()) {
711 pgtable_t pgtable;
712 struct page *zero_page;
2b740303 713 vm_fault_t ret;
4cf58924 714 pgtable = pte_alloc_one(vma->vm_mm);
128ec037 715 if (unlikely(!pgtable))
ba76149f 716 return VM_FAULT_OOM;
6fcb52a5 717 zero_page = mm_get_huge_zero_page(vma->vm_mm);
128ec037 718 if (unlikely(!zero_page)) {
bae473a4 719 pte_free(vma->vm_mm, pgtable);
81ab4201 720 count_vm_event(THP_FAULT_FALLBACK);
c0292554 721 return VM_FAULT_FALLBACK;
b9bbfbe3 722 }
82b0f8c3 723 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
6b251fc9 724 ret = 0;
82b0f8c3 725 if (pmd_none(*vmf->pmd)) {
6b31d595
MH
726 ret = check_stable_address_space(vma->vm_mm);
727 if (ret) {
728 spin_unlock(vmf->ptl);
bfe8cc1d 729 pte_free(vma->vm_mm, pgtable);
6b31d595 730 } else if (userfaultfd_missing(vma)) {
82b0f8c3 731 spin_unlock(vmf->ptl);
bfe8cc1d 732 pte_free(vma->vm_mm, pgtable);
82b0f8c3 733 ret = handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
734 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
735 } else {
bae473a4 736 set_huge_zero_page(pgtable, vma->vm_mm, vma,
82b0f8c3
JK
737 haddr, vmf->pmd, zero_page);
738 spin_unlock(vmf->ptl);
6b251fc9 739 }
bfe8cc1d 740 } else {
82b0f8c3 741 spin_unlock(vmf->ptl);
bae473a4 742 pte_free(vma->vm_mm, pgtable);
bfe8cc1d 743 }
6b251fc9 744 return ret;
71e3aac0 745 }
19deb769
DR
746 gfp = alloc_hugepage_direct_gfpmask(vma);
747 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
128ec037
KS
748 if (unlikely(!page)) {
749 count_vm_event(THP_FAULT_FALLBACK);
c0292554 750 return VM_FAULT_FALLBACK;
128ec037 751 }
9a982250 752 prep_transhuge_page(page);
82b0f8c3 753 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
71e3aac0
AA
754}
755
ae18d6dc 756static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
3b6521f5
OH
757 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
758 pgtable_t pgtable)
5cad465d
MW
759{
760 struct mm_struct *mm = vma->vm_mm;
761 pmd_t entry;
762 spinlock_t *ptl;
763
764 ptl = pmd_lock(mm, pmd);
c6f3c5ee
AK
765 if (!pmd_none(*pmd)) {
766 if (write) {
767 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
768 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
769 goto out_unlock;
770 }
771 entry = pmd_mkyoung(*pmd);
772 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
773 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
774 update_mmu_cache_pmd(vma, addr, pmd);
775 }
776
777 goto out_unlock;
778 }
779
f25748e3
DW
780 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
781 if (pfn_t_devmap(pfn))
782 entry = pmd_mkdevmap(entry);
01871e59 783 if (write) {
f55e1014
LT
784 entry = pmd_mkyoung(pmd_mkdirty(entry));
785 entry = maybe_pmd_mkwrite(entry, vma);
5cad465d 786 }
3b6521f5
OH
787
788 if (pgtable) {
789 pgtable_trans_huge_deposit(mm, pmd, pgtable);
c4812909 790 mm_inc_nr_ptes(mm);
c6f3c5ee 791 pgtable = NULL;
3b6521f5
OH
792 }
793
01871e59
RZ
794 set_pmd_at(mm, addr, pmd, entry);
795 update_mmu_cache_pmd(vma, addr, pmd);
c6f3c5ee
AK
796
797out_unlock:
5cad465d 798 spin_unlock(ptl);
c6f3c5ee
AK
799 if (pgtable)
800 pte_free(mm, pgtable);
5cad465d
MW
801}
802
9a9731b1
THV
803/**
804 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
805 * @vmf: Structure describing the fault
806 * @pfn: pfn to insert
807 * @pgprot: page protection to use
808 * @write: whether it's a write fault
809 *
810 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
811 * also consult the vmf_insert_mixed_prot() documentation when
812 * @pgprot != @vmf->vma->vm_page_prot.
813 *
814 * Return: vm_fault_t value.
815 */
816vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
817 pgprot_t pgprot, bool write)
5cad465d 818{
fce86ff5
DW
819 unsigned long addr = vmf->address & PMD_MASK;
820 struct vm_area_struct *vma = vmf->vma;
3b6521f5 821 pgtable_t pgtable = NULL;
fce86ff5 822
5cad465d
MW
823 /*
824 * If we had pmd_special, we could avoid all these restrictions,
825 * but we need to be consistent with PTEs and architectures that
826 * can't support a 'special' bit.
827 */
e1fb4a08
DJ
828 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
829 !pfn_t_devmap(pfn));
5cad465d
MW
830 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
831 (VM_PFNMAP|VM_MIXEDMAP));
832 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
5cad465d
MW
833
834 if (addr < vma->vm_start || addr >= vma->vm_end)
835 return VM_FAULT_SIGBUS;
308a047c 836
3b6521f5 837 if (arch_needs_pgtable_deposit()) {
4cf58924 838 pgtable = pte_alloc_one(vma->vm_mm);
3b6521f5
OH
839 if (!pgtable)
840 return VM_FAULT_OOM;
841 }
842
308a047c
BP
843 track_pfn_insert(vma, &pgprot, pfn);
844
fce86ff5 845 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
ae18d6dc 846 return VM_FAULT_NOPAGE;
5cad465d 847}
9a9731b1 848EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
5cad465d 849
a00cc7d9 850#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
f55e1014 851static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
a00cc7d9 852{
f55e1014 853 if (likely(vma->vm_flags & VM_WRITE))
a00cc7d9
MW
854 pud = pud_mkwrite(pud);
855 return pud;
856}
857
858static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
859 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
860{
861 struct mm_struct *mm = vma->vm_mm;
862 pud_t entry;
863 spinlock_t *ptl;
864
865 ptl = pud_lock(mm, pud);
c6f3c5ee
AK
866 if (!pud_none(*pud)) {
867 if (write) {
868 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
869 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
870 goto out_unlock;
871 }
872 entry = pud_mkyoung(*pud);
873 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
874 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
875 update_mmu_cache_pud(vma, addr, pud);
876 }
877 goto out_unlock;
878 }
879
a00cc7d9
MW
880 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
881 if (pfn_t_devmap(pfn))
882 entry = pud_mkdevmap(entry);
883 if (write) {
f55e1014
LT
884 entry = pud_mkyoung(pud_mkdirty(entry));
885 entry = maybe_pud_mkwrite(entry, vma);
a00cc7d9
MW
886 }
887 set_pud_at(mm, addr, pud, entry);
888 update_mmu_cache_pud(vma, addr, pud);
c6f3c5ee
AK
889
890out_unlock:
a00cc7d9
MW
891 spin_unlock(ptl);
892}
893
9a9731b1
THV
894/**
895 * vmf_insert_pfn_pud_prot - insert a pud size pfn
896 * @vmf: Structure describing the fault
897 * @pfn: pfn to insert
898 * @pgprot: page protection to use
899 * @write: whether it's a write fault
900 *
901 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
902 * also consult the vmf_insert_mixed_prot() documentation when
903 * @pgprot != @vmf->vma->vm_page_prot.
904 *
905 * Return: vm_fault_t value.
906 */
907vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
908 pgprot_t pgprot, bool write)
a00cc7d9 909{
fce86ff5
DW
910 unsigned long addr = vmf->address & PUD_MASK;
911 struct vm_area_struct *vma = vmf->vma;
fce86ff5 912
a00cc7d9
MW
913 /*
914 * If we had pud_special, we could avoid all these restrictions,
915 * but we need to be consistent with PTEs and architectures that
916 * can't support a 'special' bit.
917 */
62ec0d8c
DJ
918 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
919 !pfn_t_devmap(pfn));
a00cc7d9
MW
920 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
921 (VM_PFNMAP|VM_MIXEDMAP));
922 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
a00cc7d9
MW
923
924 if (addr < vma->vm_start || addr >= vma->vm_end)
925 return VM_FAULT_SIGBUS;
926
927 track_pfn_insert(vma, &pgprot, pfn);
928
fce86ff5 929 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
a00cc7d9
MW
930 return VM_FAULT_NOPAGE;
931}
9a9731b1 932EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
a00cc7d9
MW
933#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
934
3565fce3 935static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
a8f97366 936 pmd_t *pmd, int flags)
3565fce3
DW
937{
938 pmd_t _pmd;
939
a8f97366
KS
940 _pmd = pmd_mkyoung(*pmd);
941 if (flags & FOLL_WRITE)
942 _pmd = pmd_mkdirty(_pmd);
3565fce3 943 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
a8f97366 944 pmd, _pmd, flags & FOLL_WRITE))
3565fce3
DW
945 update_mmu_cache_pmd(vma, addr, pmd);
946}
947
948struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
df06b37f 949 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
3565fce3
DW
950{
951 unsigned long pfn = pmd_pfn(*pmd);
952 struct mm_struct *mm = vma->vm_mm;
3565fce3
DW
953 struct page *page;
954
955 assert_spin_locked(pmd_lockptr(mm, pmd));
956
8310d48b
KF
957 /*
958 * When we COW a devmap PMD entry, we split it into PTEs, so we should
959 * not be in this function with `flags & FOLL_COW` set.
960 */
961 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
962
3faa52c0
JH
963 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
964 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
965 (FOLL_PIN | FOLL_GET)))
966 return NULL;
967
f6f37321 968 if (flags & FOLL_WRITE && !pmd_write(*pmd))
3565fce3
DW
969 return NULL;
970
971 if (pmd_present(*pmd) && pmd_devmap(*pmd))
972 /* pass */;
973 else
974 return NULL;
975
976 if (flags & FOLL_TOUCH)
a8f97366 977 touch_pmd(vma, addr, pmd, flags);
3565fce3
DW
978
979 /*
980 * device mapped pages can only be returned if the
981 * caller will manage the page reference count.
982 */
3faa52c0 983 if (!(flags & (FOLL_GET | FOLL_PIN)))
3565fce3
DW
984 return ERR_PTR(-EEXIST);
985
986 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
df06b37f
KB
987 *pgmap = get_dev_pagemap(pfn, *pgmap);
988 if (!*pgmap)
3565fce3
DW
989 return ERR_PTR(-EFAULT);
990 page = pfn_to_page(pfn);
3faa52c0
JH
991 if (!try_grab_page(page, flags))
992 page = ERR_PTR(-ENOMEM);
3565fce3
DW
993
994 return page;
995}
996
71e3aac0
AA
997int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
998 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
999 struct vm_area_struct *vma)
1000{
c4088ebd 1001 spinlock_t *dst_ptl, *src_ptl;
71e3aac0
AA
1002 struct page *src_page;
1003 pmd_t pmd;
12c9d70b 1004 pgtable_t pgtable = NULL;
628d47ce 1005 int ret = -ENOMEM;
71e3aac0 1006
628d47ce
KS
1007 /* Skip if can be re-fill on fault */
1008 if (!vma_is_anonymous(vma))
1009 return 0;
1010
4cf58924 1011 pgtable = pte_alloc_one(dst_mm);
628d47ce
KS
1012 if (unlikely(!pgtable))
1013 goto out;
71e3aac0 1014
c4088ebd
KS
1015 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1016 src_ptl = pmd_lockptr(src_mm, src_pmd);
1017 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
71e3aac0
AA
1018
1019 ret = -EAGAIN;
1020 pmd = *src_pmd;
84c3fc4e 1021
b569a176
PX
1022 /*
1023 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
1024 * does not have the VM_UFFD_WP, which means that the uffd
1025 * fork event is not enabled.
1026 */
1027 if (!(vma->vm_flags & VM_UFFD_WP))
1028 pmd = pmd_clear_uffd_wp(pmd);
1029
84c3fc4e
ZY
1030#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1031 if (unlikely(is_swap_pmd(pmd))) {
1032 swp_entry_t entry = pmd_to_swp_entry(pmd);
1033
1034 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1035 if (is_write_migration_entry(entry)) {
1036 make_migration_entry_read(&entry);
1037 pmd = swp_entry_to_pmd(entry);
ab6e3d09
NH
1038 if (pmd_swp_soft_dirty(*src_pmd))
1039 pmd = pmd_swp_mksoft_dirty(pmd);
84c3fc4e
ZY
1040 set_pmd_at(src_mm, addr, src_pmd, pmd);
1041 }
dd8a67f9 1042 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
af5b0f6a 1043 mm_inc_nr_ptes(dst_mm);
dd8a67f9 1044 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
84c3fc4e
ZY
1045 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1046 ret = 0;
1047 goto out_unlock;
1048 }
1049#endif
1050
628d47ce 1051 if (unlikely(!pmd_trans_huge(pmd))) {
71e3aac0
AA
1052 pte_free(dst_mm, pgtable);
1053 goto out_unlock;
1054 }
fc9fe822 1055 /*
c4088ebd 1056 * When page table lock is held, the huge zero pmd should not be
fc9fe822
KS
1057 * under splitting since we don't split the page itself, only pmd to
1058 * a page table.
1059 */
1060 if (is_huge_zero_pmd(pmd)) {
5918d10a 1061 struct page *zero_page;
97ae1749
KS
1062 /*
1063 * get_huge_zero_page() will never allocate a new page here,
1064 * since we already have a zero page to copy. It just takes a
1065 * reference.
1066 */
6fcb52a5 1067 zero_page = mm_get_huge_zero_page(dst_mm);
6b251fc9 1068 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
5918d10a 1069 zero_page);
fc9fe822
KS
1070 ret = 0;
1071 goto out_unlock;
1072 }
de466bd6 1073
628d47ce
KS
1074 src_page = pmd_page(pmd);
1075 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
d042035e
PX
1076
1077 /*
1078 * If this page is a potentially pinned page, split and retry the fault
1079 * with smaller page size. Normally this should not happen because the
1080 * userspace should use MADV_DONTFORK upon pinned regions. This is a
1081 * best effort that the pinned pages won't be replaced by another
1082 * random page during the coming copy-on-write.
1083 */
1084 if (unlikely(is_cow_mapping(vma->vm_flags) &&
1085 atomic_read(&src_mm->has_pinned) &&
1086 page_maybe_dma_pinned(src_page))) {
1087 pte_free(dst_mm, pgtable);
1088 spin_unlock(src_ptl);
1089 spin_unlock(dst_ptl);
1090 __split_huge_pmd(vma, src_pmd, addr, false, NULL);
1091 return -EAGAIN;
1092 }
1093
628d47ce
KS
1094 get_page(src_page);
1095 page_dup_rmap(src_page, true);
1096 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
c4812909 1097 mm_inc_nr_ptes(dst_mm);
628d47ce 1098 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
71e3aac0
AA
1099
1100 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1101 pmd = pmd_mkold(pmd_wrprotect(pmd));
1102 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
71e3aac0
AA
1103
1104 ret = 0;
1105out_unlock:
c4088ebd
KS
1106 spin_unlock(src_ptl);
1107 spin_unlock(dst_ptl);
71e3aac0
AA
1108out:
1109 return ret;
1110}
1111
a00cc7d9
MW
1112#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1113static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
a8f97366 1114 pud_t *pud, int flags)
a00cc7d9
MW
1115{
1116 pud_t _pud;
1117
a8f97366
KS
1118 _pud = pud_mkyoung(*pud);
1119 if (flags & FOLL_WRITE)
1120 _pud = pud_mkdirty(_pud);
a00cc7d9 1121 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
a8f97366 1122 pud, _pud, flags & FOLL_WRITE))
a00cc7d9
MW
1123 update_mmu_cache_pud(vma, addr, pud);
1124}
1125
1126struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
df06b37f 1127 pud_t *pud, int flags, struct dev_pagemap **pgmap)
a00cc7d9
MW
1128{
1129 unsigned long pfn = pud_pfn(*pud);
1130 struct mm_struct *mm = vma->vm_mm;
a00cc7d9
MW
1131 struct page *page;
1132
1133 assert_spin_locked(pud_lockptr(mm, pud));
1134
f6f37321 1135 if (flags & FOLL_WRITE && !pud_write(*pud))
a00cc7d9
MW
1136 return NULL;
1137
3faa52c0
JH
1138 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
1139 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1140 (FOLL_PIN | FOLL_GET)))
1141 return NULL;
1142
a00cc7d9
MW
1143 if (pud_present(*pud) && pud_devmap(*pud))
1144 /* pass */;
1145 else
1146 return NULL;
1147
1148 if (flags & FOLL_TOUCH)
a8f97366 1149 touch_pud(vma, addr, pud, flags);
a00cc7d9
MW
1150
1151 /*
1152 * device mapped pages can only be returned if the
1153 * caller will manage the page reference count.
3faa52c0
JH
1154 *
1155 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
a00cc7d9 1156 */
3faa52c0 1157 if (!(flags & (FOLL_GET | FOLL_PIN)))
a00cc7d9
MW
1158 return ERR_PTR(-EEXIST);
1159
1160 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
df06b37f
KB
1161 *pgmap = get_dev_pagemap(pfn, *pgmap);
1162 if (!*pgmap)
a00cc7d9
MW
1163 return ERR_PTR(-EFAULT);
1164 page = pfn_to_page(pfn);
3faa52c0
JH
1165 if (!try_grab_page(page, flags))
1166 page = ERR_PTR(-ENOMEM);
a00cc7d9
MW
1167
1168 return page;
1169}
1170
1171int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1172 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1173 struct vm_area_struct *vma)
1174{
1175 spinlock_t *dst_ptl, *src_ptl;
1176 pud_t pud;
1177 int ret;
1178
1179 dst_ptl = pud_lock(dst_mm, dst_pud);
1180 src_ptl = pud_lockptr(src_mm, src_pud);
1181 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1182
1183 ret = -EAGAIN;
1184 pud = *src_pud;
1185 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1186 goto out_unlock;
1187
1188 /*
1189 * When page table lock is held, the huge zero pud should not be
1190 * under splitting since we don't split the page itself, only pud to
1191 * a page table.
1192 */
1193 if (is_huge_zero_pud(pud)) {
1194 /* No huge zero pud yet */
1195 }
1196
d042035e
PX
1197 /* Please refer to comments in copy_huge_pmd() */
1198 if (unlikely(is_cow_mapping(vma->vm_flags) &&
1199 atomic_read(&src_mm->has_pinned) &&
1200 page_maybe_dma_pinned(pud_page(pud)))) {
1201 spin_unlock(src_ptl);
1202 spin_unlock(dst_ptl);
1203 __split_huge_pud(vma, src_pud, addr);
1204 return -EAGAIN;
1205 }
1206
a00cc7d9
MW
1207 pudp_set_wrprotect(src_mm, addr, src_pud);
1208 pud = pud_mkold(pud_wrprotect(pud));
1209 set_pud_at(dst_mm, addr, dst_pud, pud);
1210
1211 ret = 0;
1212out_unlock:
1213 spin_unlock(src_ptl);
1214 spin_unlock(dst_ptl);
1215 return ret;
1216}
1217
1218void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1219{
1220 pud_t entry;
1221 unsigned long haddr;
1222 bool write = vmf->flags & FAULT_FLAG_WRITE;
1223
1224 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1225 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1226 goto unlock;
1227
1228 entry = pud_mkyoung(orig_pud);
1229 if (write)
1230 entry = pud_mkdirty(entry);
1231 haddr = vmf->address & HPAGE_PUD_MASK;
1232 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1233 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1234
1235unlock:
1236 spin_unlock(vmf->ptl);
1237}
1238#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1239
82b0f8c3 1240void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
a1dd450b
WD
1241{
1242 pmd_t entry;
1243 unsigned long haddr;
20f664aa 1244 bool write = vmf->flags & FAULT_FLAG_WRITE;
a1dd450b 1245
82b0f8c3
JK
1246 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1247 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
a1dd450b
WD
1248 goto unlock;
1249
1250 entry = pmd_mkyoung(orig_pmd);
20f664aa
MK
1251 if (write)
1252 entry = pmd_mkdirty(entry);
82b0f8c3 1253 haddr = vmf->address & HPAGE_PMD_MASK;
20f664aa 1254 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
82b0f8c3 1255 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
a1dd450b
WD
1256
1257unlock:
82b0f8c3 1258 spin_unlock(vmf->ptl);
a1dd450b
WD
1259}
1260
2b740303 1261vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
71e3aac0 1262{
82b0f8c3 1263 struct vm_area_struct *vma = vmf->vma;
3917c802 1264 struct page *page;
82b0f8c3 1265 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
71e3aac0 1266
82b0f8c3 1267 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
81d1b09c 1268 VM_BUG_ON_VMA(!vma->anon_vma, vma);
3917c802 1269
93b4796d 1270 if (is_huge_zero_pmd(orig_pmd))
3917c802
KS
1271 goto fallback;
1272
82b0f8c3 1273 spin_lock(vmf->ptl);
3917c802
KS
1274
1275 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1276 spin_unlock(vmf->ptl);
1277 return 0;
1278 }
71e3aac0
AA
1279
1280 page = pmd_page(orig_pmd);
309381fe 1281 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
3917c802
KS
1282
1283 /* Lock page for reuse_swap_page() */
ba3c4ce6
HY
1284 if (!trylock_page(page)) {
1285 get_page(page);
1286 spin_unlock(vmf->ptl);
1287 lock_page(page);
1288 spin_lock(vmf->ptl);
1289 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
3917c802 1290 spin_unlock(vmf->ptl);
ba3c4ce6
HY
1291 unlock_page(page);
1292 put_page(page);
3917c802 1293 return 0;
ba3c4ce6
HY
1294 }
1295 put_page(page);
1296 }
3917c802
KS
1297
1298 /*
1299 * We can only reuse the page if nobody else maps the huge page or it's
1300 * part.
1301 */
ba3c4ce6 1302 if (reuse_swap_page(page, NULL)) {
71e3aac0
AA
1303 pmd_t entry;
1304 entry = pmd_mkyoung(orig_pmd);
f55e1014 1305 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3917c802 1306 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
82b0f8c3 1307 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
ba3c4ce6 1308 unlock_page(page);
82b0f8c3 1309 spin_unlock(vmf->ptl);
3917c802 1310 return VM_FAULT_WRITE;
71e3aac0 1311 }
3917c802
KS
1312
1313 unlock_page(page);
82b0f8c3 1314 spin_unlock(vmf->ptl);
3917c802
KS
1315fallback:
1316 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1317 return VM_FAULT_FALLBACK;
71e3aac0
AA
1318}
1319
8310d48b 1320/*
a308c71b
PX
1321 * FOLL_FORCE can write to even unwritable pmd's, but only
1322 * after we've gone through a COW cycle and they are dirty.
8310d48b
KF
1323 */
1324static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1325{
a308c71b
PX
1326 return pmd_write(pmd) ||
1327 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
8310d48b
KF
1328}
1329
b676b293 1330struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1331 unsigned long addr,
1332 pmd_t *pmd,
1333 unsigned int flags)
1334{
b676b293 1335 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1336 struct page *page = NULL;
1337
c4088ebd 1338 assert_spin_locked(pmd_lockptr(mm, pmd));
71e3aac0 1339
8310d48b 1340 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
71e3aac0
AA
1341 goto out;
1342
85facf25
KS
1343 /* Avoid dumping huge zero page */
1344 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1345 return ERR_PTR(-EFAULT);
1346
2b4847e7 1347 /* Full NUMA hinting faults to serialise migration in fault paths */
8a0516ed 1348 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
2b4847e7
MG
1349 goto out;
1350
71e3aac0 1351 page = pmd_page(*pmd);
ca120cf6 1352 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
3faa52c0
JH
1353
1354 if (!try_grab_page(page, flags))
1355 return ERR_PTR(-ENOMEM);
1356
3565fce3 1357 if (flags & FOLL_TOUCH)
a8f97366 1358 touch_pmd(vma, addr, pmd, flags);
3faa52c0 1359
de60f5f1 1360 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
1361 /*
1362 * We don't mlock() pte-mapped THPs. This way we can avoid
1363 * leaking mlocked pages into non-VM_LOCKED VMAs.
1364 *
9a73f61b
KS
1365 * For anon THP:
1366 *
e90309c9
KS
1367 * In most cases the pmd is the only mapping of the page as we
1368 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1369 * writable private mappings in populate_vma_page_range().
1370 *
1371 * The only scenario when we have the page shared here is if we
1372 * mlocking read-only mapping shared over fork(). We skip
1373 * mlocking such pages.
9a73f61b
KS
1374 *
1375 * For file THP:
1376 *
1377 * We can expect PageDoubleMap() to be stable under page lock:
1378 * for file pages we set it in page_add_file_rmap(), which
1379 * requires page to be locked.
e90309c9 1380 */
9a73f61b
KS
1381
1382 if (PageAnon(page) && compound_mapcount(page) != 1)
1383 goto skip_mlock;
1384 if (PageDoubleMap(page) || !page->mapping)
1385 goto skip_mlock;
1386 if (!trylock_page(page))
1387 goto skip_mlock;
9a73f61b
KS
1388 if (page->mapping && !PageDoubleMap(page))
1389 mlock_vma_page(page);
1390 unlock_page(page);
b676b293 1391 }
9a73f61b 1392skip_mlock:
71e3aac0 1393 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
ca120cf6 1394 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
71e3aac0
AA
1395
1396out:
1397 return page;
1398}
1399
d10e63f2 1400/* NUMA hinting page fault entry point for trans huge pmds */
2b740303 1401vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
d10e63f2 1402{
82b0f8c3 1403 struct vm_area_struct *vma = vmf->vma;
b8916634 1404 struct anon_vma *anon_vma = NULL;
b32967ff 1405 struct page *page;
82b0f8c3 1406 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
98fa15f3 1407 int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
90572890 1408 int target_nid, last_cpupid = -1;
8191acbd
MG
1409 bool page_locked;
1410 bool migrated = false;
b191f9b1 1411 bool was_writable;
6688cc05 1412 int flags = 0;
d10e63f2 1413
82b0f8c3
JK
1414 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1415 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
d10e63f2
MG
1416 goto out_unlock;
1417
de466bd6
MG
1418 /*
1419 * If there are potential migrations, wait for completion and retry
1420 * without disrupting NUMA hinting information. Do not relock and
1421 * check_same as the page may no longer be mapped.
1422 */
82b0f8c3
JK
1423 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1424 page = pmd_page(*vmf->pmd);
3c226c63
MR
1425 if (!get_page_unless_zero(page))
1426 goto out_unlock;
82b0f8c3 1427 spin_unlock(vmf->ptl);
9a1ea439 1428 put_and_wait_on_page_locked(page);
de466bd6
MG
1429 goto out;
1430 }
1431
d10e63f2 1432 page = pmd_page(pmd);
a1a46184 1433 BUG_ON(is_huge_zero_page(page));
8191acbd 1434 page_nid = page_to_nid(page);
90572890 1435 last_cpupid = page_cpupid_last(page);
03c5a6e1 1436 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 1437 if (page_nid == this_nid) {
03c5a6e1 1438 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
1439 flags |= TNF_FAULT_LOCAL;
1440 }
4daae3b4 1441
bea66fbd 1442 /* See similar comment in do_numa_page for explanation */
288bc549 1443 if (!pmd_savedwrite(pmd))
6688cc05
PZ
1444 flags |= TNF_NO_GROUP;
1445
ff9042b1
MG
1446 /*
1447 * Acquire the page lock to serialise THP migrations but avoid dropping
1448 * page_table_lock if at all possible
1449 */
b8916634
MG
1450 page_locked = trylock_page(page);
1451 target_nid = mpol_misplaced(page, vma, haddr);
98fa15f3 1452 if (target_nid == NUMA_NO_NODE) {
b8916634 1453 /* If the page was locked, there are no parallel migrations */
a54a407f 1454 if (page_locked)
b8916634 1455 goto clear_pmdnuma;
2b4847e7 1456 }
4daae3b4 1457
de466bd6 1458 /* Migration could have started since the pmd_trans_migrating check */
2b4847e7 1459 if (!page_locked) {
98fa15f3 1460 page_nid = NUMA_NO_NODE;
3c226c63
MR
1461 if (!get_page_unless_zero(page))
1462 goto out_unlock;
82b0f8c3 1463 spin_unlock(vmf->ptl);
9a1ea439 1464 put_and_wait_on_page_locked(page);
b8916634
MG
1465 goto out;
1466 }
1467
2b4847e7
MG
1468 /*
1469 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1470 * to serialises splits
1471 */
b8916634 1472 get_page(page);
82b0f8c3 1473 spin_unlock(vmf->ptl);
b8916634 1474 anon_vma = page_lock_anon_vma_read(page);
4daae3b4 1475
c69307d5 1476 /* Confirm the PMD did not change while page_table_lock was released */
82b0f8c3
JK
1477 spin_lock(vmf->ptl);
1478 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
b32967ff
MG
1479 unlock_page(page);
1480 put_page(page);
98fa15f3 1481 page_nid = NUMA_NO_NODE;
4daae3b4 1482 goto out_unlock;
b32967ff 1483 }
ff9042b1 1484
c3a489ca
MG
1485 /* Bail if we fail to protect against THP splits for any reason */
1486 if (unlikely(!anon_vma)) {
1487 put_page(page);
98fa15f3 1488 page_nid = NUMA_NO_NODE;
c3a489ca
MG
1489 goto clear_pmdnuma;
1490 }
1491
8b1b436d
PZ
1492 /*
1493 * Since we took the NUMA fault, we must have observed the !accessible
1494 * bit. Make sure all other CPUs agree with that, to avoid them
1495 * modifying the page we're about to migrate.
1496 *
1497 * Must be done under PTL such that we'll observe the relevant
ccde85ba
PZ
1498 * inc_tlb_flush_pending().
1499 *
1500 * We are not sure a pending tlb flush here is for a huge page
1501 * mapping or not. Hence use the tlb range variant
8b1b436d 1502 */
7066f0f9 1503 if (mm_tlb_flush_pending(vma->vm_mm)) {
ccde85ba 1504 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
7066f0f9
AA
1505 /*
1506 * change_huge_pmd() released the pmd lock before
1507 * invalidating the secondary MMUs sharing the primary
1508 * MMU pagetables (with ->invalidate_range()). The
1509 * mmu_notifier_invalidate_range_end() (which
1510 * internally calls ->invalidate_range()) in
1511 * change_pmd_range() will run after us, so we can't
1512 * rely on it here and we need an explicit invalidate.
1513 */
1514 mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1515 haddr + HPAGE_PMD_SIZE);
1516 }
8b1b436d 1517
a54a407f
MG
1518 /*
1519 * Migrate the THP to the requested node, returns with page unlocked
8a0516ed 1520 * and access rights restored.
a54a407f 1521 */
82b0f8c3 1522 spin_unlock(vmf->ptl);
8b1b436d 1523
bae473a4 1524 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
82b0f8c3 1525 vmf->pmd, pmd, vmf->address, page, target_nid);
6688cc05
PZ
1526 if (migrated) {
1527 flags |= TNF_MIGRATED;
8191acbd 1528 page_nid = target_nid;
074c2381
MG
1529 } else
1530 flags |= TNF_MIGRATE_FAIL;
b32967ff 1531
8191acbd 1532 goto out;
b32967ff 1533clear_pmdnuma:
a54a407f 1534 BUG_ON(!PageLocked(page));
288bc549 1535 was_writable = pmd_savedwrite(pmd);
4d942466 1536 pmd = pmd_modify(pmd, vma->vm_page_prot);
b7b04004 1537 pmd = pmd_mkyoung(pmd);
b191f9b1
MG
1538 if (was_writable)
1539 pmd = pmd_mkwrite(pmd);
82b0f8c3
JK
1540 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1541 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
a54a407f 1542 unlock_page(page);
d10e63f2 1543out_unlock:
82b0f8c3 1544 spin_unlock(vmf->ptl);
b8916634
MG
1545
1546out:
1547 if (anon_vma)
1548 page_unlock_anon_vma_read(anon_vma);
1549
98fa15f3 1550 if (page_nid != NUMA_NO_NODE)
82b0f8c3 1551 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
9a8b300f 1552 flags);
8191acbd 1553
d10e63f2
MG
1554 return 0;
1555}
1556
319904ad
HY
1557/*
1558 * Return true if we do MADV_FREE successfully on entire pmd page.
1559 * Otherwise, return false.
1560 */
1561bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
b8d3c4c3 1562 pmd_t *pmd, unsigned long addr, unsigned long next)
b8d3c4c3
MK
1563{
1564 spinlock_t *ptl;
1565 pmd_t orig_pmd;
1566 struct page *page;
1567 struct mm_struct *mm = tlb->mm;
319904ad 1568 bool ret = false;
b8d3c4c3 1569
ed6a7935 1570 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
07e32661 1571
b6ec57f4
KS
1572 ptl = pmd_trans_huge_lock(pmd, vma);
1573 if (!ptl)
25eedabe 1574 goto out_unlocked;
b8d3c4c3
MK
1575
1576 orig_pmd = *pmd;
319904ad 1577 if (is_huge_zero_pmd(orig_pmd))
b8d3c4c3 1578 goto out;
b8d3c4c3 1579
84c3fc4e
ZY
1580 if (unlikely(!pmd_present(orig_pmd))) {
1581 VM_BUG_ON(thp_migration_supported() &&
1582 !is_pmd_migration_entry(orig_pmd));
1583 goto out;
1584 }
1585
b8d3c4c3
MK
1586 page = pmd_page(orig_pmd);
1587 /*
1588 * If other processes are mapping this page, we couldn't discard
1589 * the page unless they all do MADV_FREE so let's skip the page.
1590 */
1591 if (page_mapcount(page) != 1)
1592 goto out;
1593
1594 if (!trylock_page(page))
1595 goto out;
1596
1597 /*
1598 * If user want to discard part-pages of THP, split it so MADV_FREE
1599 * will deactivate only them.
1600 */
1601 if (next - addr != HPAGE_PMD_SIZE) {
1602 get_page(page);
1603 spin_unlock(ptl);
9818b8cd 1604 split_huge_page(page);
b8d3c4c3 1605 unlock_page(page);
bbf29ffc 1606 put_page(page);
b8d3c4c3
MK
1607 goto out_unlocked;
1608 }
1609
1610 if (PageDirty(page))
1611 ClearPageDirty(page);
1612 unlock_page(page);
1613
b8d3c4c3 1614 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
58ceeb6b 1615 pmdp_invalidate(vma, addr, pmd);
b8d3c4c3
MK
1616 orig_pmd = pmd_mkold(orig_pmd);
1617 orig_pmd = pmd_mkclean(orig_pmd);
1618
1619 set_pmd_at(mm, addr, pmd, orig_pmd);
1620 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1621 }
802a3a92
SL
1622
1623 mark_page_lazyfree(page);
319904ad 1624 ret = true;
b8d3c4c3
MK
1625out:
1626 spin_unlock(ptl);
1627out_unlocked:
1628 return ret;
1629}
1630
953c66c2
AK
1631static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1632{
1633 pgtable_t pgtable;
1634
1635 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1636 pte_free(mm, pgtable);
c4812909 1637 mm_dec_nr_ptes(mm);
953c66c2
AK
1638}
1639
71e3aac0 1640int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1641 pmd_t *pmd, unsigned long addr)
71e3aac0 1642{
da146769 1643 pmd_t orig_pmd;
bf929152 1644 spinlock_t *ptl;
71e3aac0 1645
ed6a7935 1646 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
07e32661 1647
b6ec57f4
KS
1648 ptl = __pmd_trans_huge_lock(pmd, vma);
1649 if (!ptl)
da146769
KS
1650 return 0;
1651 /*
1652 * For architectures like ppc64 we look at deposited pgtable
1653 * when calling pmdp_huge_get_and_clear. So do the
1654 * pgtable_trans_huge_withdraw after finishing pmdp related
1655 * operations.
1656 */
93a98695
AK
1657 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1658 tlb->fullmm);
da146769 1659 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
2484ca9b 1660 if (vma_is_special_huge(vma)) {
3b6521f5
OH
1661 if (arch_needs_pgtable_deposit())
1662 zap_deposited_table(tlb->mm, pmd);
da146769
KS
1663 spin_unlock(ptl);
1664 if (is_huge_zero_pmd(orig_pmd))
c0f2e176 1665 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769 1666 } else if (is_huge_zero_pmd(orig_pmd)) {
c14a6eb4 1667 zap_deposited_table(tlb->mm, pmd);
da146769 1668 spin_unlock(ptl);
c0f2e176 1669 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769 1670 } else {
616b8371
ZY
1671 struct page *page = NULL;
1672 int flush_needed = 1;
1673
1674 if (pmd_present(orig_pmd)) {
1675 page = pmd_page(orig_pmd);
1676 page_remove_rmap(page, true);
1677 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1678 VM_BUG_ON_PAGE(!PageHead(page), page);
1679 } else if (thp_migration_supported()) {
1680 swp_entry_t entry;
1681
1682 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1683 entry = pmd_to_swp_entry(orig_pmd);
1684 page = pfn_to_page(swp_offset(entry));
1685 flush_needed = 0;
1686 } else
1687 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1688
b5072380 1689 if (PageAnon(page)) {
c14a6eb4 1690 zap_deposited_table(tlb->mm, pmd);
b5072380
KS
1691 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1692 } else {
953c66c2
AK
1693 if (arch_needs_pgtable_deposit())
1694 zap_deposited_table(tlb->mm, pmd);
fadae295 1695 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
b5072380 1696 }
616b8371 1697
da146769 1698 spin_unlock(ptl);
616b8371
ZY
1699 if (flush_needed)
1700 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
025c5b24 1701 }
da146769 1702 return 1;
71e3aac0
AA
1703}
1704
1dd38b6c
AK
1705#ifndef pmd_move_must_withdraw
1706static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1707 spinlock_t *old_pmd_ptl,
1708 struct vm_area_struct *vma)
1709{
1710 /*
1711 * With split pmd lock we also need to move preallocated
1712 * PTE page table if new_pmd is on different PMD page table.
1713 *
1714 * We also don't deposit and withdraw tables for file pages.
1715 */
1716 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1717}
1718#endif
1719
ab6e3d09
NH
1720static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1721{
1722#ifdef CONFIG_MEM_SOFT_DIRTY
1723 if (unlikely(is_pmd_migration_entry(pmd)))
1724 pmd = pmd_swp_mksoft_dirty(pmd);
1725 else if (pmd_present(pmd))
1726 pmd = pmd_mksoft_dirty(pmd);
1727#endif
1728 return pmd;
1729}
1730
bf8616d5 1731bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
b8aa9d9d 1732 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
37a1c49a 1733{
bf929152 1734 spinlock_t *old_ptl, *new_ptl;
37a1c49a 1735 pmd_t pmd;
37a1c49a 1736 struct mm_struct *mm = vma->vm_mm;
5d190420 1737 bool force_flush = false;
37a1c49a 1738
37a1c49a
AA
1739 /*
1740 * The destination pmd shouldn't be established, free_pgtables()
1741 * should have release it.
1742 */
1743 if (WARN_ON(!pmd_none(*new_pmd))) {
1744 VM_BUG_ON(pmd_trans_huge(*new_pmd));
4b471e88 1745 return false;
37a1c49a
AA
1746 }
1747
bf929152
KS
1748 /*
1749 * We don't have to worry about the ordering of src and dst
c1e8d7c6 1750 * ptlocks because exclusive mmap_lock prevents deadlock.
bf929152 1751 */
b6ec57f4
KS
1752 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1753 if (old_ptl) {
bf929152
KS
1754 new_ptl = pmd_lockptr(mm, new_pmd);
1755 if (new_ptl != old_ptl)
1756 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
8809aa2d 1757 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
eb66ae03 1758 if (pmd_present(pmd))
a2ce2666 1759 force_flush = true;
025c5b24 1760 VM_BUG_ON(!pmd_none(*new_pmd));
3592806c 1761
1dd38b6c 1762 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
b3084f4d 1763 pgtable_t pgtable;
3592806c
KS
1764 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1765 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
3592806c 1766 }
ab6e3d09
NH
1767 pmd = move_soft_dirty_pmd(pmd);
1768 set_pmd_at(mm, new_addr, new_pmd, pmd);
5d190420
AL
1769 if (force_flush)
1770 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
eb66ae03
LT
1771 if (new_ptl != old_ptl)
1772 spin_unlock(new_ptl);
bf929152 1773 spin_unlock(old_ptl);
4b471e88 1774 return true;
37a1c49a 1775 }
4b471e88 1776 return false;
37a1c49a
AA
1777}
1778
f123d74a
MG
1779/*
1780 * Returns
1781 * - 0 if PMD could not be locked
1782 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1783 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1784 */
cd7548ab 1785int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
58705444 1786 unsigned long addr, pgprot_t newprot, unsigned long cp_flags)
cd7548ab
JW
1787{
1788 struct mm_struct *mm = vma->vm_mm;
bf929152 1789 spinlock_t *ptl;
0a85e51d
KS
1790 pmd_t entry;
1791 bool preserve_write;
1792 int ret;
58705444 1793 bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
292924b2
PX
1794 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1795 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
cd7548ab 1796
b6ec57f4 1797 ptl = __pmd_trans_huge_lock(pmd, vma);
0a85e51d
KS
1798 if (!ptl)
1799 return 0;
e944fd67 1800
0a85e51d
KS
1801 preserve_write = prot_numa && pmd_write(*pmd);
1802 ret = 1;
e944fd67 1803
84c3fc4e
ZY
1804#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1805 if (is_swap_pmd(*pmd)) {
1806 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1807
1808 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1809 if (is_write_migration_entry(entry)) {
1810 pmd_t newpmd;
1811 /*
1812 * A protection check is difficult so
1813 * just be safe and disable write
1814 */
1815 make_migration_entry_read(&entry);
1816 newpmd = swp_entry_to_pmd(entry);
ab6e3d09
NH
1817 if (pmd_swp_soft_dirty(*pmd))
1818 newpmd = pmd_swp_mksoft_dirty(newpmd);
84c3fc4e
ZY
1819 set_pmd_at(mm, addr, pmd, newpmd);
1820 }
1821 goto unlock;
1822 }
1823#endif
1824
0a85e51d
KS
1825 /*
1826 * Avoid trapping faults against the zero page. The read-only
1827 * data is likely to be read-cached on the local CPU and
1828 * local/remote hits to the zero page are not interesting.
1829 */
1830 if (prot_numa && is_huge_zero_pmd(*pmd))
1831 goto unlock;
025c5b24 1832
0a85e51d
KS
1833 if (prot_numa && pmd_protnone(*pmd))
1834 goto unlock;
1835
ced10803 1836 /*
3e4e28c5 1837 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
ced10803 1838 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
3e4e28c5 1839 * which is also under mmap_read_lock(mm):
ced10803
KS
1840 *
1841 * CPU0: CPU1:
1842 * change_huge_pmd(prot_numa=1)
1843 * pmdp_huge_get_and_clear_notify()
1844 * madvise_dontneed()
1845 * zap_pmd_range()
1846 * pmd_trans_huge(*pmd) == 0 (without ptl)
1847 * // skip the pmd
1848 * set_pmd_at();
1849 * // pmd is re-established
1850 *
1851 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1852 * which may break userspace.
1853 *
1854 * pmdp_invalidate() is required to make sure we don't miss
1855 * dirty/young flags set by hardware.
1856 */
a3cf988f 1857 entry = pmdp_invalidate(vma, addr, pmd);
ced10803 1858
0a85e51d
KS
1859 entry = pmd_modify(entry, newprot);
1860 if (preserve_write)
1861 entry = pmd_mk_savedwrite(entry);
292924b2
PX
1862 if (uffd_wp) {
1863 entry = pmd_wrprotect(entry);
1864 entry = pmd_mkuffd_wp(entry);
1865 } else if (uffd_wp_resolve) {
1866 /*
1867 * Leave the write bit to be handled by PF interrupt
1868 * handler, then things like COW could be properly
1869 * handled.
1870 */
1871 entry = pmd_clear_uffd_wp(entry);
1872 }
0a85e51d
KS
1873 ret = HPAGE_PMD_NR;
1874 set_pmd_at(mm, addr, pmd, entry);
1875 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1876unlock:
1877 spin_unlock(ptl);
025c5b24
NH
1878 return ret;
1879}
1880
1881/*
8f19b0c0 1882 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
025c5b24 1883 *
8f19b0c0
HY
1884 * Note that if it returns page table lock pointer, this routine returns without
1885 * unlocking page table lock. So callers must unlock it.
025c5b24 1886 */
b6ec57f4 1887spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
025c5b24 1888{
b6ec57f4
KS
1889 spinlock_t *ptl;
1890 ptl = pmd_lock(vma->vm_mm, pmd);
84c3fc4e
ZY
1891 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1892 pmd_devmap(*pmd)))
b6ec57f4
KS
1893 return ptl;
1894 spin_unlock(ptl);
1895 return NULL;
cd7548ab
JW
1896}
1897
a00cc7d9
MW
1898/*
1899 * Returns true if a given pud maps a thp, false otherwise.
1900 *
1901 * Note that if it returns true, this routine returns without unlocking page
1902 * table lock. So callers must unlock it.
1903 */
1904spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1905{
1906 spinlock_t *ptl;
1907
1908 ptl = pud_lock(vma->vm_mm, pud);
1909 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1910 return ptl;
1911 spin_unlock(ptl);
1912 return NULL;
1913}
1914
1915#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1916int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1917 pud_t *pud, unsigned long addr)
1918{
a00cc7d9
MW
1919 spinlock_t *ptl;
1920
1921 ptl = __pud_trans_huge_lock(pud, vma);
1922 if (!ptl)
1923 return 0;
1924 /*
1925 * For architectures like ppc64 we look at deposited pgtable
1926 * when calling pudp_huge_get_and_clear. So do the
1927 * pgtable_trans_huge_withdraw after finishing pudp related
1928 * operations.
1929 */
70516b93 1930 pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
a00cc7d9 1931 tlb_remove_pud_tlb_entry(tlb, pud, addr);
2484ca9b 1932 if (vma_is_special_huge(vma)) {
a00cc7d9
MW
1933 spin_unlock(ptl);
1934 /* No zero page support yet */
1935 } else {
1936 /* No support for anonymous PUD pages yet */
1937 BUG();
1938 }
1939 return 1;
1940}
1941
1942static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1943 unsigned long haddr)
1944{
1945 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1946 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1947 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1948 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1949
ce9311cf 1950 count_vm_event(THP_SPLIT_PUD);
a00cc7d9
MW
1951
1952 pudp_huge_clear_flush_notify(vma, haddr, pud);
1953}
1954
1955void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1956 unsigned long address)
1957{
1958 spinlock_t *ptl;
ac46d4f3 1959 struct mmu_notifier_range range;
a00cc7d9 1960
7269f999 1961 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1962 address & HPAGE_PUD_MASK,
ac46d4f3
JG
1963 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
1964 mmu_notifier_invalidate_range_start(&range);
1965 ptl = pud_lock(vma->vm_mm, pud);
a00cc7d9
MW
1966 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1967 goto out;
ac46d4f3 1968 __split_huge_pud_locked(vma, pud, range.start);
a00cc7d9
MW
1969
1970out:
1971 spin_unlock(ptl);
4645b9fe
JG
1972 /*
1973 * No need to double call mmu_notifier->invalidate_range() callback as
1974 * the above pudp_huge_clear_flush_notify() did already call it.
1975 */
ac46d4f3 1976 mmu_notifier_invalidate_range_only_end(&range);
a00cc7d9
MW
1977}
1978#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1979
eef1b3ba
KS
1980static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1981 unsigned long haddr, pmd_t *pmd)
1982{
1983 struct mm_struct *mm = vma->vm_mm;
1984 pgtable_t pgtable;
1985 pmd_t _pmd;
1986 int i;
1987
0f10851e
JG
1988 /*
1989 * Leave pmd empty until pte is filled note that it is fine to delay
1990 * notification until mmu_notifier_invalidate_range_end() as we are
1991 * replacing a zero pmd write protected page with a zero pte write
1992 * protected page.
1993 *
ad56b738 1994 * See Documentation/vm/mmu_notifier.rst
0f10851e
JG
1995 */
1996 pmdp_huge_clear_flush(vma, haddr, pmd);
eef1b3ba
KS
1997
1998 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1999 pmd_populate(mm, &_pmd, pgtable);
2000
2001 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2002 pte_t *pte, entry;
2003 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2004 entry = pte_mkspecial(entry);
2005 pte = pte_offset_map(&_pmd, haddr);
2006 VM_BUG_ON(!pte_none(*pte));
2007 set_pte_at(mm, haddr, pte, entry);
2008 pte_unmap(pte);
2009 }
2010 smp_wmb(); /* make pte visible before pmd */
2011 pmd_populate(mm, pmd, pgtable);
eef1b3ba
KS
2012}
2013
2014static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
ba988280 2015 unsigned long haddr, bool freeze)
eef1b3ba
KS
2016{
2017 struct mm_struct *mm = vma->vm_mm;
2018 struct page *page;
2019 pgtable_t pgtable;
423ac9af 2020 pmd_t old_pmd, _pmd;
292924b2 2021 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2ac015e2 2022 unsigned long addr;
eef1b3ba
KS
2023 int i;
2024
2025 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2026 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2027 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
84c3fc4e
ZY
2028 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2029 && !pmd_devmap(*pmd));
eef1b3ba
KS
2030
2031 count_vm_event(THP_SPLIT_PMD);
2032
d21b9e57
KS
2033 if (!vma_is_anonymous(vma)) {
2034 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
953c66c2
AK
2035 /*
2036 * We are going to unmap this huge page. So
2037 * just go ahead and zap it
2038 */
2039 if (arch_needs_pgtable_deposit())
2040 zap_deposited_table(mm, pmd);
2484ca9b 2041 if (vma_is_special_huge(vma))
d21b9e57
KS
2042 return;
2043 page = pmd_page(_pmd);
e1f1b157
HD
2044 if (!PageDirty(page) && pmd_dirty(_pmd))
2045 set_page_dirty(page);
d21b9e57
KS
2046 if (!PageReferenced(page) && pmd_young(_pmd))
2047 SetPageReferenced(page);
2048 page_remove_rmap(page, true);
2049 put_page(page);
fadae295 2050 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
eef1b3ba 2051 return;
ec0abae6 2052 } else if (pmd_trans_huge(*pmd) && is_huge_zero_pmd(*pmd)) {
4645b9fe
JG
2053 /*
2054 * FIXME: Do we want to invalidate secondary mmu by calling
2055 * mmu_notifier_invalidate_range() see comments below inside
2056 * __split_huge_pmd() ?
2057 *
2058 * We are going from a zero huge page write protected to zero
2059 * small page also write protected so it does not seems useful
2060 * to invalidate secondary mmu at this time.
2061 */
eef1b3ba
KS
2062 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2063 }
2064
423ac9af
AK
2065 /*
2066 * Up to this point the pmd is present and huge and userland has the
2067 * whole access to the hugepage during the split (which happens in
2068 * place). If we overwrite the pmd with the not-huge version pointing
2069 * to the pte here (which of course we could if all CPUs were bug
2070 * free), userland could trigger a small page size TLB miss on the
2071 * small sized TLB while the hugepage TLB entry is still established in
2072 * the huge TLB. Some CPU doesn't like that.
42742d9b
AK
2073 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2074 * 383 on page 105. Intel should be safe but is also warns that it's
423ac9af
AK
2075 * only safe if the permission and cache attributes of the two entries
2076 * loaded in the two TLB is identical (which should be the case here).
2077 * But it is generally safer to never allow small and huge TLB entries
2078 * for the same virtual address to be loaded simultaneously. So instead
2079 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2080 * current pmd notpresent (atomically because here the pmd_trans_huge
2081 * must remain set at all times on the pmd until the split is complete
2082 * for this pmd), then we flush the SMP TLB and finally we write the
2083 * non-huge version of the pmd entry with pmd_populate.
2084 */
2085 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2086
423ac9af 2087 pmd_migration = is_pmd_migration_entry(old_pmd);
2e83ee1d 2088 if (unlikely(pmd_migration)) {
84c3fc4e
ZY
2089 swp_entry_t entry;
2090
423ac9af 2091 entry = pmd_to_swp_entry(old_pmd);
84c3fc4e 2092 page = pfn_to_page(swp_offset(entry));
2e83ee1d
PX
2093 write = is_write_migration_entry(entry);
2094 young = false;
2095 soft_dirty = pmd_swp_soft_dirty(old_pmd);
f45ec5ff 2096 uffd_wp = pmd_swp_uffd_wp(old_pmd);
2e83ee1d 2097 } else {
423ac9af 2098 page = pmd_page(old_pmd);
2e83ee1d
PX
2099 if (pmd_dirty(old_pmd))
2100 SetPageDirty(page);
2101 write = pmd_write(old_pmd);
2102 young = pmd_young(old_pmd);
2103 soft_dirty = pmd_soft_dirty(old_pmd);
292924b2 2104 uffd_wp = pmd_uffd_wp(old_pmd);
2e83ee1d 2105 }
eef1b3ba 2106 VM_BUG_ON_PAGE(!page_count(page), page);
fe896d18 2107 page_ref_add(page, HPAGE_PMD_NR - 1);
eef1b3ba 2108
423ac9af
AK
2109 /*
2110 * Withdraw the table only after we mark the pmd entry invalid.
2111 * This's critical for some architectures (Power).
2112 */
eef1b3ba
KS
2113 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2114 pmd_populate(mm, &_pmd, pgtable);
2115
2ac015e2 2116 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
eef1b3ba
KS
2117 pte_t entry, *pte;
2118 /*
2119 * Note that NUMA hinting access restrictions are not
2120 * transferred to avoid any possibility of altering
2121 * permissions across VMAs.
2122 */
84c3fc4e 2123 if (freeze || pmd_migration) {
ba988280
KS
2124 swp_entry_t swp_entry;
2125 swp_entry = make_migration_entry(page + i, write);
2126 entry = swp_entry_to_pte(swp_entry);
804dd150
AA
2127 if (soft_dirty)
2128 entry = pte_swp_mksoft_dirty(entry);
f45ec5ff
PX
2129 if (uffd_wp)
2130 entry = pte_swp_mkuffd_wp(entry);
ba988280 2131 } else {
6d2329f8 2132 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
b8d3c4c3 2133 entry = maybe_mkwrite(entry, vma);
ba988280
KS
2134 if (!write)
2135 entry = pte_wrprotect(entry);
2136 if (!young)
2137 entry = pte_mkold(entry);
804dd150
AA
2138 if (soft_dirty)
2139 entry = pte_mksoft_dirty(entry);
292924b2
PX
2140 if (uffd_wp)
2141 entry = pte_mkuffd_wp(entry);
ba988280 2142 }
2ac015e2 2143 pte = pte_offset_map(&_pmd, addr);
eef1b3ba 2144 BUG_ON(!pte_none(*pte));
2ac015e2 2145 set_pte_at(mm, addr, pte, entry);
ec0abae6 2146 if (!pmd_migration)
eef1b3ba 2147 atomic_inc(&page[i]._mapcount);
ec0abae6 2148 pte_unmap(pte);
eef1b3ba
KS
2149 }
2150
ec0abae6
RC
2151 if (!pmd_migration) {
2152 /*
2153 * Set PG_double_map before dropping compound_mapcount to avoid
2154 * false-negative page_mapped().
2155 */
2156 if (compound_mapcount(page) > 1 &&
2157 !TestSetPageDoubleMap(page)) {
eef1b3ba 2158 for (i = 0; i < HPAGE_PMD_NR; i++)
ec0abae6
RC
2159 atomic_inc(&page[i]._mapcount);
2160 }
2161
2162 lock_page_memcg(page);
2163 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2164 /* Last compound_mapcount is gone. */
2165 __dec_lruvec_page_state(page, NR_ANON_THPS);
2166 if (TestClearPageDoubleMap(page)) {
2167 /* No need in mapcount reference anymore */
2168 for (i = 0; i < HPAGE_PMD_NR; i++)
2169 atomic_dec(&page[i]._mapcount);
2170 }
eef1b3ba 2171 }
ec0abae6 2172 unlock_page_memcg(page);
eef1b3ba
KS
2173 }
2174
2175 smp_wmb(); /* make pte visible before pmd */
2176 pmd_populate(mm, pmd, pgtable);
e9b61f19
KS
2177
2178 if (freeze) {
2ac015e2 2179 for (i = 0; i < HPAGE_PMD_NR; i++) {
e9b61f19
KS
2180 page_remove_rmap(page + i, false);
2181 put_page(page + i);
2182 }
2183 }
eef1b3ba
KS
2184}
2185
2186void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
33f4751e 2187 unsigned long address, bool freeze, struct page *page)
eef1b3ba
KS
2188{
2189 spinlock_t *ptl;
ac46d4f3 2190 struct mmu_notifier_range range;
c444eb56
AA
2191 bool was_locked = false;
2192 pmd_t _pmd;
eef1b3ba 2193
7269f999 2194 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 2195 address & HPAGE_PMD_MASK,
ac46d4f3
JG
2196 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2197 mmu_notifier_invalidate_range_start(&range);
2198 ptl = pmd_lock(vma->vm_mm, pmd);
33f4751e
NH
2199
2200 /*
2201 * If caller asks to setup a migration entries, we need a page to check
2202 * pmd against. Otherwise we can end up replacing wrong page.
2203 */
2204 VM_BUG_ON(freeze && !page);
c444eb56
AA
2205 if (page) {
2206 VM_WARN_ON_ONCE(!PageLocked(page));
2207 was_locked = true;
2208 if (page != pmd_page(*pmd))
2209 goto out;
2210 }
33f4751e 2211
c444eb56 2212repeat:
5c7fb56e 2213 if (pmd_trans_huge(*pmd)) {
c444eb56
AA
2214 if (!page) {
2215 page = pmd_page(*pmd);
2216 if (unlikely(!trylock_page(page))) {
2217 get_page(page);
2218 _pmd = *pmd;
2219 spin_unlock(ptl);
2220 lock_page(page);
2221 spin_lock(ptl);
2222 if (unlikely(!pmd_same(*pmd, _pmd))) {
2223 unlock_page(page);
2224 put_page(page);
2225 page = NULL;
2226 goto repeat;
2227 }
2228 put_page(page);
2229 }
2230 }
5c7fb56e 2231 if (PageMlocked(page))
5f737714 2232 clear_page_mlock(page);
84c3fc4e 2233 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
e90309c9 2234 goto out;
ac46d4f3 2235 __split_huge_pmd_locked(vma, pmd, range.start, freeze);
e90309c9 2236out:
eef1b3ba 2237 spin_unlock(ptl);
c444eb56
AA
2238 if (!was_locked && page)
2239 unlock_page(page);
4645b9fe
JG
2240 /*
2241 * No need to double call mmu_notifier->invalidate_range() callback.
2242 * They are 3 cases to consider inside __split_huge_pmd_locked():
2243 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2244 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2245 * fault will trigger a flush_notify before pointing to a new page
2246 * (it is fine if the secondary mmu keeps pointing to the old zero
2247 * page in the meantime)
2248 * 3) Split a huge pmd into pte pointing to the same page. No need
2249 * to invalidate secondary tlb entry they are all still valid.
2250 * any further changes to individual pte will notify. So no need
2251 * to call mmu_notifier->invalidate_range()
2252 */
ac46d4f3 2253 mmu_notifier_invalidate_range_only_end(&range);
eef1b3ba
KS
2254}
2255
fec89c10
KS
2256void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2257 bool freeze, struct page *page)
94fcc585 2258{
f72e7dcd 2259 pgd_t *pgd;
c2febafc 2260 p4d_t *p4d;
f72e7dcd 2261 pud_t *pud;
94fcc585
AA
2262 pmd_t *pmd;
2263
78ddc534 2264 pgd = pgd_offset(vma->vm_mm, address);
f72e7dcd
HD
2265 if (!pgd_present(*pgd))
2266 return;
2267
c2febafc
KS
2268 p4d = p4d_offset(pgd, address);
2269 if (!p4d_present(*p4d))
2270 return;
2271
2272 pud = pud_offset(p4d, address);
f72e7dcd
HD
2273 if (!pud_present(*pud))
2274 return;
2275
2276 pmd = pmd_offset(pud, address);
fec89c10 2277
33f4751e 2278 __split_huge_pmd(vma, pmd, address, freeze, page);
94fcc585
AA
2279}
2280
e1b9996b 2281void vma_adjust_trans_huge(struct vm_area_struct *vma,
94fcc585
AA
2282 unsigned long start,
2283 unsigned long end,
2284 long adjust_next)
2285{
2286 /*
2287 * If the new start address isn't hpage aligned and it could
2288 * previously contain an hugepage: check if we need to split
2289 * an huge pmd.
2290 */
2291 if (start & ~HPAGE_PMD_MASK &&
2292 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2293 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 2294 split_huge_pmd_address(vma, start, false, NULL);
94fcc585
AA
2295
2296 /*
2297 * If the new end address isn't hpage aligned and it could
2298 * previously contain an hugepage: check if we need to split
2299 * an huge pmd.
2300 */
2301 if (end & ~HPAGE_PMD_MASK &&
2302 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2303 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 2304 split_huge_pmd_address(vma, end, false, NULL);
94fcc585
AA
2305
2306 /*
2307 * If we're also updating the vma->vm_next->vm_start, if the new
f9d86a60 2308 * vm_next->vm_start isn't hpage aligned and it could previously
94fcc585
AA
2309 * contain an hugepage: check if we need to split an huge pmd.
2310 */
2311 if (adjust_next > 0) {
2312 struct vm_area_struct *next = vma->vm_next;
2313 unsigned long nstart = next->vm_start;
f9d86a60 2314 nstart += adjust_next;
94fcc585
AA
2315 if (nstart & ~HPAGE_PMD_MASK &&
2316 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2317 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
fec89c10 2318 split_huge_pmd_address(next, nstart, false, NULL);
94fcc585
AA
2319 }
2320}
e9b61f19 2321
906f9cdf 2322static void unmap_page(struct page *page)
e9b61f19 2323{
013339df 2324 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK |
c7ab0d2f 2325 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
666e5a40 2326 bool unmap_success;
e9b61f19
KS
2327
2328 VM_BUG_ON_PAGE(!PageHead(page), page);
2329
baa355fd 2330 if (PageAnon(page))
b5ff8161 2331 ttu_flags |= TTU_SPLIT_FREEZE;
baa355fd 2332
666e5a40
MK
2333 unmap_success = try_to_unmap(page, ttu_flags);
2334 VM_BUG_ON_PAGE(!unmap_success, page);
e9b61f19
KS
2335}
2336
8cce5475 2337static void remap_page(struct page *page, unsigned int nr)
e9b61f19 2338{
fec89c10 2339 int i;
ace71a19
KS
2340 if (PageTransHuge(page)) {
2341 remove_migration_ptes(page, page, true);
2342 } else {
8cce5475 2343 for (i = 0; i < nr; i++)
ace71a19
KS
2344 remove_migration_ptes(page + i, page + i, true);
2345 }
e9b61f19
KS
2346}
2347
8df651c7 2348static void __split_huge_page_tail(struct page *head, int tail,
e9b61f19
KS
2349 struct lruvec *lruvec, struct list_head *list)
2350{
e9b61f19
KS
2351 struct page *page_tail = head + tail;
2352
8df651c7 2353 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
e9b61f19
KS
2354
2355 /*
605ca5ed
KK
2356 * Clone page flags before unfreezing refcount.
2357 *
2358 * After successful get_page_unless_zero() might follow flags change,
2359 * for exmaple lock_page() which set PG_waiters.
e9b61f19 2360 */
e9b61f19
KS
2361 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2362 page_tail->flags |= (head->flags &
2363 ((1L << PG_referenced) |
2364 (1L << PG_swapbacked) |
38d8b4e6 2365 (1L << PG_swapcache) |
e9b61f19
KS
2366 (1L << PG_mlocked) |
2367 (1L << PG_uptodate) |
2368 (1L << PG_active) |
1899ad18 2369 (1L << PG_workingset) |
e9b61f19 2370 (1L << PG_locked) |
b8d3c4c3 2371 (1L << PG_unevictable) |
72e6afa0
CM
2372#ifdef CONFIG_64BIT
2373 (1L << PG_arch_2) |
2374#endif
b8d3c4c3 2375 (1L << PG_dirty)));
e9b61f19 2376
173d9d9f
HD
2377 /* ->mapping in first tail page is compound_mapcount */
2378 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2379 page_tail);
2380 page_tail->mapping = head->mapping;
2381 page_tail->index = head->index + tail;
2382
605ca5ed 2383 /* Page flags must be visible before we make the page non-compound. */
e9b61f19
KS
2384 smp_wmb();
2385
605ca5ed
KK
2386 /*
2387 * Clear PageTail before unfreezing page refcount.
2388 *
2389 * After successful get_page_unless_zero() might follow put_page()
2390 * which needs correct compound_head().
2391 */
e9b61f19
KS
2392 clear_compound_head(page_tail);
2393
605ca5ed
KK
2394 /* Finally unfreeze refcount. Additional reference from page cache. */
2395 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2396 PageSwapCache(head)));
2397
e9b61f19
KS
2398 if (page_is_young(head))
2399 set_page_young(page_tail);
2400 if (page_is_idle(head))
2401 set_page_idle(page_tail);
2402
e9b61f19 2403 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
94723aaf
MH
2404
2405 /*
2406 * always add to the tail because some iterators expect new
2407 * pages to show after the currently processed elements - e.g.
2408 * migrate_pages
2409 */
e9b61f19 2410 lru_add_page_tail(head, page_tail, lruvec, list);
e9b61f19
KS
2411}
2412
baa355fd 2413static void __split_huge_page(struct page *page, struct list_head *list,
006d3ff2 2414 pgoff_t end, unsigned long flags)
e9b61f19
KS
2415{
2416 struct page *head = compound_head(page);
f4b7e272 2417 pg_data_t *pgdat = page_pgdat(head);
e9b61f19 2418 struct lruvec *lruvec;
4101196b
MWO
2419 struct address_space *swap_cache = NULL;
2420 unsigned long offset = 0;
8cce5475 2421 unsigned int nr = thp_nr_pages(head);
8df651c7 2422 int i;
e9b61f19 2423
f4b7e272 2424 lruvec = mem_cgroup_page_lruvec(head, pgdat);
e9b61f19
KS
2425
2426 /* complete memcg works before add pages to LRU */
2427 mem_cgroup_split_huge_fixup(head);
2428
4101196b
MWO
2429 if (PageAnon(head) && PageSwapCache(head)) {
2430 swp_entry_t entry = { .val = page_private(head) };
2431
2432 offset = swp_offset(entry);
2433 swap_cache = swap_address_space(entry);
2434 xa_lock(&swap_cache->i_pages);
2435 }
2436
8cce5475 2437 for (i = nr - 1; i >= 1; i--) {
8df651c7 2438 __split_huge_page_tail(head, i, lruvec, list);
baa355fd
KS
2439 /* Some pages can be beyond i_size: drop them from page cache */
2440 if (head[i].index >= end) {
2d077d4b 2441 ClearPageDirty(head + i);
baa355fd 2442 __delete_from_page_cache(head + i, NULL);
800d8c63
KS
2443 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2444 shmem_uncharge(head->mapping->host, 1);
baa355fd 2445 put_page(head + i);
4101196b
MWO
2446 } else if (!PageAnon(page)) {
2447 __xa_store(&head->mapping->i_pages, head[i].index,
2448 head + i, 0);
2449 } else if (swap_cache) {
2450 __xa_store(&swap_cache->i_pages, offset + i,
2451 head + i, 0);
baa355fd
KS
2452 }
2453 }
e9b61f19
KS
2454
2455 ClearPageCompound(head);
f7da677b 2456
8cce5475 2457 split_page_owner(head, nr);
f7da677b 2458
baa355fd
KS
2459 /* See comment in __split_huge_page_tail() */
2460 if (PageAnon(head)) {
aa5dc07f 2461 /* Additional pin to swap cache */
4101196b 2462 if (PageSwapCache(head)) {
38d8b4e6 2463 page_ref_add(head, 2);
4101196b
MWO
2464 xa_unlock(&swap_cache->i_pages);
2465 } else {
38d8b4e6 2466 page_ref_inc(head);
4101196b 2467 }
baa355fd 2468 } else {
aa5dc07f 2469 /* Additional pin to page cache */
baa355fd 2470 page_ref_add(head, 2);
b93b0163 2471 xa_unlock(&head->mapping->i_pages);
baa355fd
KS
2472 }
2473
f4b7e272 2474 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
e9b61f19 2475
8cce5475 2476 remap_page(head, nr);
e9b61f19 2477
c4f9c701
HY
2478 if (PageSwapCache(head)) {
2479 swp_entry_t entry = { .val = page_private(head) };
2480
2481 split_swap_cluster(entry);
2482 }
2483
8cce5475 2484 for (i = 0; i < nr; i++) {
e9b61f19
KS
2485 struct page *subpage = head + i;
2486 if (subpage == page)
2487 continue;
2488 unlock_page(subpage);
2489
2490 /*
2491 * Subpages may be freed if there wasn't any mapping
2492 * like if add_to_swap() is running on a lru page that
2493 * had its mapping zapped. And freeing these pages
2494 * requires taking the lru_lock so we do the put_page
2495 * of the tail pages after the split is complete.
2496 */
2497 put_page(subpage);
2498 }
2499}
2500
b20ce5e0
KS
2501int total_mapcount(struct page *page)
2502{
86b562b6 2503 int i, compound, nr, ret;
b20ce5e0
KS
2504
2505 VM_BUG_ON_PAGE(PageTail(page), page);
2506
2507 if (likely(!PageCompound(page)))
2508 return atomic_read(&page->_mapcount) + 1;
2509
dd78fedd 2510 compound = compound_mapcount(page);
86b562b6 2511 nr = compound_nr(page);
b20ce5e0 2512 if (PageHuge(page))
dd78fedd
KS
2513 return compound;
2514 ret = compound;
86b562b6 2515 for (i = 0; i < nr; i++)
b20ce5e0 2516 ret += atomic_read(&page[i]._mapcount) + 1;
dd78fedd
KS
2517 /* File pages has compound_mapcount included in _mapcount */
2518 if (!PageAnon(page))
86b562b6 2519 return ret - compound * nr;
b20ce5e0 2520 if (PageDoubleMap(page))
86b562b6 2521 ret -= nr;
b20ce5e0
KS
2522 return ret;
2523}
2524
6d0a07ed
AA
2525/*
2526 * This calculates accurately how many mappings a transparent hugepage
2527 * has (unlike page_mapcount() which isn't fully accurate). This full
2528 * accuracy is primarily needed to know if copy-on-write faults can
2529 * reuse the page and change the mapping to read-write instead of
2530 * copying them. At the same time this returns the total_mapcount too.
2531 *
2532 * The function returns the highest mapcount any one of the subpages
2533 * has. If the return value is one, even if different processes are
2534 * mapping different subpages of the transparent hugepage, they can
2535 * all reuse it, because each process is reusing a different subpage.
2536 *
2537 * The total_mapcount is instead counting all virtual mappings of the
2538 * subpages. If the total_mapcount is equal to "one", it tells the
2539 * caller all mappings belong to the same "mm" and in turn the
2540 * anon_vma of the transparent hugepage can become the vma->anon_vma
2541 * local one as no other process may be mapping any of the subpages.
2542 *
2543 * It would be more accurate to replace page_mapcount() with
2544 * page_trans_huge_mapcount(), however we only use
2545 * page_trans_huge_mapcount() in the copy-on-write faults where we
2546 * need full accuracy to avoid breaking page pinning, because
2547 * page_trans_huge_mapcount() is slower than page_mapcount().
2548 */
2549int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2550{
2551 int i, ret, _total_mapcount, mapcount;
2552
2553 /* hugetlbfs shouldn't call it */
2554 VM_BUG_ON_PAGE(PageHuge(page), page);
2555
2556 if (likely(!PageTransCompound(page))) {
2557 mapcount = atomic_read(&page->_mapcount) + 1;
2558 if (total_mapcount)
2559 *total_mapcount = mapcount;
2560 return mapcount;
2561 }
2562
2563 page = compound_head(page);
2564
2565 _total_mapcount = ret = 0;
65dfe3c3 2566 for (i = 0; i < thp_nr_pages(page); i++) {
6d0a07ed
AA
2567 mapcount = atomic_read(&page[i]._mapcount) + 1;
2568 ret = max(ret, mapcount);
2569 _total_mapcount += mapcount;
2570 }
2571 if (PageDoubleMap(page)) {
2572 ret -= 1;
65dfe3c3 2573 _total_mapcount -= thp_nr_pages(page);
6d0a07ed
AA
2574 }
2575 mapcount = compound_mapcount(page);
2576 ret += mapcount;
2577 _total_mapcount += mapcount;
2578 if (total_mapcount)
2579 *total_mapcount = _total_mapcount;
2580 return ret;
2581}
2582
b8f593cd
HY
2583/* Racy check whether the huge page can be split */
2584bool can_split_huge_page(struct page *page, int *pextra_pins)
2585{
2586 int extra_pins;
2587
aa5dc07f 2588 /* Additional pins from page cache */
b8f593cd 2589 if (PageAnon(page))
e2333dad 2590 extra_pins = PageSwapCache(page) ? thp_nr_pages(page) : 0;
b8f593cd 2591 else
e2333dad 2592 extra_pins = thp_nr_pages(page);
b8f593cd
HY
2593 if (pextra_pins)
2594 *pextra_pins = extra_pins;
2595 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2596}
2597
e9b61f19
KS
2598/*
2599 * This function splits huge page into normal pages. @page can point to any
2600 * subpage of huge page to split. Split doesn't change the position of @page.
2601 *
2602 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2603 * The huge page must be locked.
2604 *
2605 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2606 *
2607 * Both head page and tail pages will inherit mapping, flags, and so on from
2608 * the hugepage.
2609 *
2610 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2611 * they are not mapped.
2612 *
2613 * Returns 0 if the hugepage is split successfully.
2614 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2615 * us.
2616 */
2617int split_huge_page_to_list(struct page *page, struct list_head *list)
2618{
2619 struct page *head = compound_head(page);
a3d0a918 2620 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
a8803e6c 2621 struct deferred_split *ds_queue = get_deferred_split_queue(head);
baa355fd
KS
2622 struct anon_vma *anon_vma = NULL;
2623 struct address_space *mapping = NULL;
2624 int count, mapcount, extra_pins, ret;
0b9b6fff 2625 unsigned long flags;
006d3ff2 2626 pgoff_t end;
e9b61f19 2627
cb829624 2628 VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
a8803e6c
WY
2629 VM_BUG_ON_PAGE(!PageLocked(head), head);
2630 VM_BUG_ON_PAGE(!PageCompound(head), head);
e9b61f19 2631
a8803e6c 2632 if (PageWriteback(head))
59807685
HY
2633 return -EBUSY;
2634
baa355fd
KS
2635 if (PageAnon(head)) {
2636 /*
c1e8d7c6 2637 * The caller does not necessarily hold an mmap_lock that would
baa355fd
KS
2638 * prevent the anon_vma disappearing so we first we take a
2639 * reference to it and then lock the anon_vma for write. This
2640 * is similar to page_lock_anon_vma_read except the write lock
2641 * is taken to serialise against parallel split or collapse
2642 * operations.
2643 */
2644 anon_vma = page_get_anon_vma(head);
2645 if (!anon_vma) {
2646 ret = -EBUSY;
2647 goto out;
2648 }
006d3ff2 2649 end = -1;
baa355fd
KS
2650 mapping = NULL;
2651 anon_vma_lock_write(anon_vma);
2652 } else {
2653 mapping = head->mapping;
2654
2655 /* Truncated ? */
2656 if (!mapping) {
2657 ret = -EBUSY;
2658 goto out;
2659 }
2660
baa355fd
KS
2661 anon_vma = NULL;
2662 i_mmap_lock_read(mapping);
006d3ff2
HD
2663
2664 /*
2665 *__split_huge_page() may need to trim off pages beyond EOF:
2666 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2667 * which cannot be nested inside the page tree lock. So note
2668 * end now: i_size itself may be changed at any moment, but
2669 * head page lock is good enough to serialize the trimming.
2670 */
2671 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
e9b61f19 2672 }
e9b61f19
KS
2673
2674 /*
906f9cdf 2675 * Racy check if we can split the page, before unmap_page() will
e9b61f19
KS
2676 * split PMDs
2677 */
b8f593cd 2678 if (!can_split_huge_page(head, &extra_pins)) {
e9b61f19
KS
2679 ret = -EBUSY;
2680 goto out_unlock;
2681 }
2682
906f9cdf 2683 unmap_page(head);
e9b61f19
KS
2684 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2685
baa355fd 2686 /* prevent PageLRU to go away from under us, and freeze lru stats */
f4b7e272 2687 spin_lock_irqsave(&pgdata->lru_lock, flags);
baa355fd
KS
2688
2689 if (mapping) {
aa5dc07f 2690 XA_STATE(xas, &mapping->i_pages, page_index(head));
baa355fd 2691
baa355fd 2692 /*
aa5dc07f 2693 * Check if the head page is present in page cache.
baa355fd
KS
2694 * We assume all tail are present too, if head is there.
2695 */
aa5dc07f
MW
2696 xa_lock(&mapping->i_pages);
2697 if (xas_load(&xas) != head)
baa355fd
KS
2698 goto fail;
2699 }
2700
0139aa7b 2701 /* Prevent deferred_split_scan() touching ->_refcount */
364c1eeb 2702 spin_lock(&ds_queue->split_queue_lock);
e9b61f19
KS
2703 count = page_count(head);
2704 mapcount = total_mapcount(head);
baa355fd 2705 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
9a982250 2706 if (!list_empty(page_deferred_list(head))) {
364c1eeb 2707 ds_queue->split_queue_len--;
9a982250
KS
2708 list_del(page_deferred_list(head));
2709 }
afb97172 2710 spin_unlock(&ds_queue->split_queue_lock);
06d3eff6 2711 if (mapping) {
a8803e6c 2712 if (PageSwapBacked(head))
b8eddff8 2713 __dec_lruvec_page_state(head, NR_SHMEM_THPS);
06d3eff6 2714 else
b8eddff8 2715 __dec_lruvec_page_state(head, NR_FILE_THPS);
06d3eff6
KS
2716 }
2717
006d3ff2 2718 __split_huge_page(page, list, end, flags);
c4f9c701 2719 ret = 0;
e9b61f19 2720 } else {
baa355fd
KS
2721 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2722 pr_alert("total_mapcount: %u, page_count(): %u\n",
2723 mapcount, count);
2724 if (PageTail(page))
2725 dump_page(head, NULL);
2726 dump_page(page, "total_mapcount(head) > 0");
2727 BUG();
2728 }
364c1eeb 2729 spin_unlock(&ds_queue->split_queue_lock);
baa355fd 2730fail: if (mapping)
b93b0163 2731 xa_unlock(&mapping->i_pages);
f4b7e272 2732 spin_unlock_irqrestore(&pgdata->lru_lock, flags);
8cce5475 2733 remap_page(head, thp_nr_pages(head));
e9b61f19
KS
2734 ret = -EBUSY;
2735 }
2736
2737out_unlock:
baa355fd
KS
2738 if (anon_vma) {
2739 anon_vma_unlock_write(anon_vma);
2740 put_anon_vma(anon_vma);
2741 }
2742 if (mapping)
2743 i_mmap_unlock_read(mapping);
e9b61f19
KS
2744out:
2745 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2746 return ret;
2747}
9a982250
KS
2748
2749void free_transhuge_page(struct page *page)
2750{
87eaceb3 2751 struct deferred_split *ds_queue = get_deferred_split_queue(page);
9a982250
KS
2752 unsigned long flags;
2753
364c1eeb 2754 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
9a982250 2755 if (!list_empty(page_deferred_list(page))) {
364c1eeb 2756 ds_queue->split_queue_len--;
9a982250
KS
2757 list_del(page_deferred_list(page));
2758 }
364c1eeb 2759 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
9a982250
KS
2760 free_compound_page(page);
2761}
2762
2763void deferred_split_huge_page(struct page *page)
2764{
87eaceb3
YS
2765 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2766#ifdef CONFIG_MEMCG
2767 struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
2768#endif
9a982250
KS
2769 unsigned long flags;
2770
2771 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2772
87eaceb3
YS
2773 /*
2774 * The try_to_unmap() in page reclaim path might reach here too,
2775 * this may cause a race condition to corrupt deferred split queue.
2776 * And, if page reclaim is already handling the same page, it is
2777 * unnecessary to handle it again in shrinker.
2778 *
2779 * Check PageSwapCache to determine if the page is being
2780 * handled by page reclaim since THP swap would add the page into
2781 * swap cache before calling try_to_unmap().
2782 */
2783 if (PageSwapCache(page))
2784 return;
2785
364c1eeb 2786 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
9a982250 2787 if (list_empty(page_deferred_list(page))) {
f9719a03 2788 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
364c1eeb
YS
2789 list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2790 ds_queue->split_queue_len++;
87eaceb3
YS
2791#ifdef CONFIG_MEMCG
2792 if (memcg)
2793 memcg_set_shrinker_bit(memcg, page_to_nid(page),
2794 deferred_split_shrinker.id);
2795#endif
9a982250 2796 }
364c1eeb 2797 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
9a982250
KS
2798}
2799
2800static unsigned long deferred_split_count(struct shrinker *shrink,
2801 struct shrink_control *sc)
2802{
a3d0a918 2803 struct pglist_data *pgdata = NODE_DATA(sc->nid);
364c1eeb 2804 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
87eaceb3
YS
2805
2806#ifdef CONFIG_MEMCG
2807 if (sc->memcg)
2808 ds_queue = &sc->memcg->deferred_split_queue;
2809#endif
364c1eeb 2810 return READ_ONCE(ds_queue->split_queue_len);
9a982250
KS
2811}
2812
2813static unsigned long deferred_split_scan(struct shrinker *shrink,
2814 struct shrink_control *sc)
2815{
a3d0a918 2816 struct pglist_data *pgdata = NODE_DATA(sc->nid);
364c1eeb 2817 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
9a982250
KS
2818 unsigned long flags;
2819 LIST_HEAD(list), *pos, *next;
2820 struct page *page;
2821 int split = 0;
2822
87eaceb3
YS
2823#ifdef CONFIG_MEMCG
2824 if (sc->memcg)
2825 ds_queue = &sc->memcg->deferred_split_queue;
2826#endif
2827
364c1eeb 2828 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
9a982250 2829 /* Take pin on all head pages to avoid freeing them under us */
364c1eeb 2830 list_for_each_safe(pos, next, &ds_queue->split_queue) {
9a982250
KS
2831 page = list_entry((void *)pos, struct page, mapping);
2832 page = compound_head(page);
e3ae1953
KS
2833 if (get_page_unless_zero(page)) {
2834 list_move(page_deferred_list(page), &list);
2835 } else {
2836 /* We lost race with put_compound_page() */
9a982250 2837 list_del_init(page_deferred_list(page));
364c1eeb 2838 ds_queue->split_queue_len--;
9a982250 2839 }
e3ae1953
KS
2840 if (!--sc->nr_to_scan)
2841 break;
9a982250 2842 }
364c1eeb 2843 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
9a982250
KS
2844
2845 list_for_each_safe(pos, next, &list) {
2846 page = list_entry((void *)pos, struct page, mapping);
fa41b900
KS
2847 if (!trylock_page(page))
2848 goto next;
9a982250
KS
2849 /* split_huge_page() removes page from list on success */
2850 if (!split_huge_page(page))
2851 split++;
2852 unlock_page(page);
fa41b900 2853next:
9a982250
KS
2854 put_page(page);
2855 }
2856
364c1eeb
YS
2857 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2858 list_splice_tail(&list, &ds_queue->split_queue);
2859 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
9a982250 2860
cb8d68ec
KS
2861 /*
2862 * Stop shrinker if we didn't split any page, but the queue is empty.
2863 * This can happen if pages were freed under us.
2864 */
364c1eeb 2865 if (!split && list_empty(&ds_queue->split_queue))
cb8d68ec
KS
2866 return SHRINK_STOP;
2867 return split;
9a982250
KS
2868}
2869
2870static struct shrinker deferred_split_shrinker = {
2871 .count_objects = deferred_split_count,
2872 .scan_objects = deferred_split_scan,
2873 .seeks = DEFAULT_SEEKS,
87eaceb3
YS
2874 .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2875 SHRINKER_NONSLAB,
9a982250 2876};
49071d43
KS
2877
2878#ifdef CONFIG_DEBUG_FS
2879static int split_huge_pages_set(void *data, u64 val)
2880{
2881 struct zone *zone;
2882 struct page *page;
2883 unsigned long pfn, max_zone_pfn;
2884 unsigned long total = 0, split = 0;
2885
2886 if (val != 1)
2887 return -EINVAL;
2888
2889 for_each_populated_zone(zone) {
2890 max_zone_pfn = zone_end_pfn(zone);
2891 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2892 if (!pfn_valid(pfn))
2893 continue;
2894
2895 page = pfn_to_page(pfn);
2896 if (!get_page_unless_zero(page))
2897 continue;
2898
2899 if (zone != page_zone(page))
2900 goto next;
2901
baa355fd 2902 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
49071d43
KS
2903 goto next;
2904
2905 total++;
2906 lock_page(page);
2907 if (!split_huge_page(page))
2908 split++;
2909 unlock_page(page);
2910next:
2911 put_page(page);
2912 }
2913 }
2914
145bdaa1 2915 pr_info("%lu of %lu THP split\n", split, total);
49071d43
KS
2916
2917 return 0;
2918}
f1287869 2919DEFINE_DEBUGFS_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
49071d43
KS
2920 "%llu\n");
2921
2922static int __init split_huge_pages_debugfs(void)
2923{
d9f7979c
GKH
2924 debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2925 &split_huge_pages_fops);
49071d43
KS
2926 return 0;
2927}
2928late_initcall(split_huge_pages_debugfs);
2929#endif
616b8371
ZY
2930
2931#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2932void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2933 struct page *page)
2934{
2935 struct vm_area_struct *vma = pvmw->vma;
2936 struct mm_struct *mm = vma->vm_mm;
2937 unsigned long address = pvmw->address;
2938 pmd_t pmdval;
2939 swp_entry_t entry;
ab6e3d09 2940 pmd_t pmdswp;
616b8371
ZY
2941
2942 if (!(pvmw->pmd && !pvmw->pte))
2943 return;
2944
616b8371 2945 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
8a8683ad 2946 pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
616b8371
ZY
2947 if (pmd_dirty(pmdval))
2948 set_page_dirty(page);
2949 entry = make_migration_entry(page, pmd_write(pmdval));
ab6e3d09
NH
2950 pmdswp = swp_entry_to_pmd(entry);
2951 if (pmd_soft_dirty(pmdval))
2952 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2953 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
616b8371
ZY
2954 page_remove_rmap(page, true);
2955 put_page(page);
616b8371
ZY
2956}
2957
2958void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2959{
2960 struct vm_area_struct *vma = pvmw->vma;
2961 struct mm_struct *mm = vma->vm_mm;
2962 unsigned long address = pvmw->address;
2963 unsigned long mmun_start = address & HPAGE_PMD_MASK;
2964 pmd_t pmde;
2965 swp_entry_t entry;
2966
2967 if (!(pvmw->pmd && !pvmw->pte))
2968 return;
2969
2970 entry = pmd_to_swp_entry(*pvmw->pmd);
2971 get_page(new);
2972 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
ab6e3d09
NH
2973 if (pmd_swp_soft_dirty(*pvmw->pmd))
2974 pmde = pmd_mksoft_dirty(pmde);
616b8371 2975 if (is_write_migration_entry(entry))
f55e1014 2976 pmde = maybe_pmd_mkwrite(pmde, vma);
616b8371
ZY
2977
2978 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
e71769ae
NH
2979 if (PageAnon(new))
2980 page_add_anon_rmap(new, vma, mmun_start, true);
2981 else
2982 page_add_file_rmap(new, true);
616b8371 2983 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
e125fe40 2984 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
616b8371
ZY
2985 mlock_vma_page(new);
2986 update_mmu_cache_pmd(vma, address, pvmw->pmd);
2987}
2988#endif