]> git.ipfire.org Git - people/ms/linux.git/blame - mm/huge_memory.c
Revert "Revert "mm, thp: restore node-local hugepage allocations""
[people/ms/linux.git] / mm / huge_memory.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
71e3aac0
AA
2/*
3 * Copyright (C) 2009 Red Hat, Inc.
71e3aac0
AA
4 */
5
ae3a8c1c
AM
6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
71e3aac0
AA
8#include <linux/mm.h>
9#include <linux/sched.h>
f7ccbae4 10#include <linux/sched/coredump.h>
6a3827d7 11#include <linux/sched/numa_balancing.h>
71e3aac0
AA
12#include <linux/highmem.h>
13#include <linux/hugetlb.h>
14#include <linux/mmu_notifier.h>
15#include <linux/rmap.h>
16#include <linux/swap.h>
97ae1749 17#include <linux/shrinker.h>
ba76149f 18#include <linux/mm_inline.h>
e9b61f19 19#include <linux/swapops.h>
4897c765 20#include <linux/dax.h>
ba76149f 21#include <linux/khugepaged.h>
878aee7d 22#include <linux/freezer.h>
f25748e3 23#include <linux/pfn_t.h>
a664b2d8 24#include <linux/mman.h>
3565fce3 25#include <linux/memremap.h>
325adeb5 26#include <linux/pagemap.h>
49071d43 27#include <linux/debugfs.h>
4daae3b4 28#include <linux/migrate.h>
43b5fbbd 29#include <linux/hashtable.h>
6b251fc9 30#include <linux/userfaultfd_k.h>
33c3fc71 31#include <linux/page_idle.h>
baa355fd 32#include <linux/shmem_fs.h>
6b31d595 33#include <linux/oom.h>
98fa15f3 34#include <linux/numa.h>
f7da677b 35#include <linux/page_owner.h>
97ae1749 36
71e3aac0
AA
37#include <asm/tlb.h>
38#include <asm/pgalloc.h>
39#include "internal.h"
40
ba76149f 41/*
b14d595a
MD
42 * By default, transparent hugepage support is disabled in order to avoid
43 * risking an increased memory footprint for applications that are not
44 * guaranteed to benefit from it. When transparent hugepage support is
45 * enabled, it is for all mappings, and khugepaged scans all mappings.
8bfa3f9a
JW
46 * Defrag is invoked by khugepaged hugepage allocations and by page faults
47 * for all hugepage allocations.
ba76149f 48 */
71e3aac0 49unsigned long transparent_hugepage_flags __read_mostly =
13ece886 50#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 51 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
52#endif
53#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55#endif
444eb2a4 56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
79da5407
KS
57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
ba76149f 59
9a982250 60static struct shrinker deferred_split_shrinker;
f000565a 61
97ae1749 62static atomic_t huge_zero_refcount;
56873f43 63struct page *huge_zero_page __read_mostly;
4a6c1297 64
7635d9cb
MH
65bool transparent_hugepage_enabled(struct vm_area_struct *vma)
66{
c0630669
YS
67 /* The addr is used to check if the vma size fits */
68 unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
69
70 if (!transhuge_vma_suitable(vma, addr))
71 return false;
7635d9cb
MH
72 if (vma_is_anonymous(vma))
73 return __transparent_hugepage_enabled(vma);
c0630669
YS
74 if (vma_is_shmem(vma))
75 return shmem_huge_enabled(vma);
7635d9cb
MH
76
77 return false;
78}
79
6fcb52a5 80static struct page *get_huge_zero_page(void)
97ae1749
KS
81{
82 struct page *zero_page;
83retry:
84 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
4db0c3c2 85 return READ_ONCE(huge_zero_page);
97ae1749
KS
86
87 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
4a6c1297 88 HPAGE_PMD_ORDER);
d8a8e1f0
KS
89 if (!zero_page) {
90 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
5918d10a 91 return NULL;
d8a8e1f0
KS
92 }
93 count_vm_event(THP_ZERO_PAGE_ALLOC);
97ae1749 94 preempt_disable();
5918d10a 95 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97ae1749 96 preempt_enable();
5ddacbe9 97 __free_pages(zero_page, compound_order(zero_page));
97ae1749
KS
98 goto retry;
99 }
100
101 /* We take additional reference here. It will be put back by shrinker */
102 atomic_set(&huge_zero_refcount, 2);
103 preempt_enable();
4db0c3c2 104 return READ_ONCE(huge_zero_page);
4a6c1297
KS
105}
106
6fcb52a5 107static void put_huge_zero_page(void)
4a6c1297 108{
97ae1749
KS
109 /*
110 * Counter should never go to zero here. Only shrinker can put
111 * last reference.
112 */
113 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
4a6c1297
KS
114}
115
6fcb52a5
AL
116struct page *mm_get_huge_zero_page(struct mm_struct *mm)
117{
118 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
119 return READ_ONCE(huge_zero_page);
120
121 if (!get_huge_zero_page())
122 return NULL;
123
124 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
125 put_huge_zero_page();
126
127 return READ_ONCE(huge_zero_page);
128}
129
130void mm_put_huge_zero_page(struct mm_struct *mm)
131{
132 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
133 put_huge_zero_page();
134}
135
48896466
GC
136static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
137 struct shrink_control *sc)
4a6c1297 138{
48896466
GC
139 /* we can free zero page only if last reference remains */
140 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
141}
97ae1749 142
48896466
GC
143static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
144 struct shrink_control *sc)
145{
97ae1749 146 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
5918d10a
KS
147 struct page *zero_page = xchg(&huge_zero_page, NULL);
148 BUG_ON(zero_page == NULL);
5ddacbe9 149 __free_pages(zero_page, compound_order(zero_page));
48896466 150 return HPAGE_PMD_NR;
97ae1749
KS
151 }
152
153 return 0;
4a6c1297
KS
154}
155
97ae1749 156static struct shrinker huge_zero_page_shrinker = {
48896466
GC
157 .count_objects = shrink_huge_zero_page_count,
158 .scan_objects = shrink_huge_zero_page_scan,
97ae1749
KS
159 .seeks = DEFAULT_SEEKS,
160};
161
71e3aac0 162#ifdef CONFIG_SYSFS
71e3aac0
AA
163static ssize_t enabled_show(struct kobject *kobj,
164 struct kobj_attribute *attr, char *buf)
165{
444eb2a4
MG
166 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
167 return sprintf(buf, "[always] madvise never\n");
168 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
169 return sprintf(buf, "always [madvise] never\n");
170 else
171 return sprintf(buf, "always madvise [never]\n");
71e3aac0 172}
444eb2a4 173
71e3aac0
AA
174static ssize_t enabled_store(struct kobject *kobj,
175 struct kobj_attribute *attr,
176 const char *buf, size_t count)
177{
21440d7e 178 ssize_t ret = count;
ba76149f 179
21440d7e
DR
180 if (!memcmp("always", buf,
181 min(sizeof("always")-1, count))) {
182 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
183 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
184 } else if (!memcmp("madvise", buf,
185 min(sizeof("madvise")-1, count))) {
186 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
187 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
188 } else if (!memcmp("never", buf,
189 min(sizeof("never")-1, count))) {
190 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
191 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
192 } else
193 ret = -EINVAL;
ba76149f
AA
194
195 if (ret > 0) {
b46e756f 196 int err = start_stop_khugepaged();
ba76149f
AA
197 if (err)
198 ret = err;
199 }
ba76149f 200 return ret;
71e3aac0
AA
201}
202static struct kobj_attribute enabled_attr =
203 __ATTR(enabled, 0644, enabled_show, enabled_store);
204
b46e756f 205ssize_t single_hugepage_flag_show(struct kobject *kobj,
71e3aac0
AA
206 struct kobj_attribute *attr, char *buf,
207 enum transparent_hugepage_flag flag)
208{
e27e6151
BH
209 return sprintf(buf, "%d\n",
210 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 211}
e27e6151 212
b46e756f 213ssize_t single_hugepage_flag_store(struct kobject *kobj,
71e3aac0
AA
214 struct kobj_attribute *attr,
215 const char *buf, size_t count,
216 enum transparent_hugepage_flag flag)
217{
e27e6151
BH
218 unsigned long value;
219 int ret;
220
221 ret = kstrtoul(buf, 10, &value);
222 if (ret < 0)
223 return ret;
224 if (value > 1)
225 return -EINVAL;
226
227 if (value)
71e3aac0 228 set_bit(flag, &transparent_hugepage_flags);
e27e6151 229 else
71e3aac0 230 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
231
232 return count;
233}
234
71e3aac0
AA
235static ssize_t defrag_show(struct kobject *kobj,
236 struct kobj_attribute *attr, char *buf)
237{
444eb2a4 238 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
21440d7e 239 return sprintf(buf, "[always] defer defer+madvise madvise never\n");
444eb2a4 240 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
21440d7e
DR
241 return sprintf(buf, "always [defer] defer+madvise madvise never\n");
242 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
243 return sprintf(buf, "always defer [defer+madvise] madvise never\n");
244 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
245 return sprintf(buf, "always defer defer+madvise [madvise] never\n");
246 return sprintf(buf, "always defer defer+madvise madvise [never]\n");
71e3aac0 247}
21440d7e 248
71e3aac0
AA
249static ssize_t defrag_store(struct kobject *kobj,
250 struct kobj_attribute *attr,
251 const char *buf, size_t count)
252{
21440d7e
DR
253 if (!memcmp("always", buf,
254 min(sizeof("always")-1, count))) {
255 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
256 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
257 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
258 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
21440d7e
DR
259 } else if (!memcmp("defer+madvise", buf,
260 min(sizeof("defer+madvise")-1, count))) {
261 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
262 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
263 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
264 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
4fad7fb6
DR
265 } else if (!memcmp("defer", buf,
266 min(sizeof("defer")-1, count))) {
267 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
268 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
269 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
270 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
21440d7e
DR
271 } else if (!memcmp("madvise", buf,
272 min(sizeof("madvise")-1, count))) {
273 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
274 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
275 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
276 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
277 } else if (!memcmp("never", buf,
278 min(sizeof("never")-1, count))) {
279 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
280 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
281 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
282 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
283 } else
284 return -EINVAL;
285
286 return count;
71e3aac0
AA
287}
288static struct kobj_attribute defrag_attr =
289 __ATTR(defrag, 0644, defrag_show, defrag_store);
290
79da5407
KS
291static ssize_t use_zero_page_show(struct kobject *kobj,
292 struct kobj_attribute *attr, char *buf)
293{
b46e756f 294 return single_hugepage_flag_show(kobj, attr, buf,
79da5407
KS
295 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
296}
297static ssize_t use_zero_page_store(struct kobject *kobj,
298 struct kobj_attribute *attr, const char *buf, size_t count)
299{
b46e756f 300 return single_hugepage_flag_store(kobj, attr, buf, count,
79da5407
KS
301 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
302}
303static struct kobj_attribute use_zero_page_attr =
304 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
49920d28
HD
305
306static ssize_t hpage_pmd_size_show(struct kobject *kobj,
307 struct kobj_attribute *attr, char *buf)
308{
309 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
310}
311static struct kobj_attribute hpage_pmd_size_attr =
312 __ATTR_RO(hpage_pmd_size);
313
71e3aac0
AA
314#ifdef CONFIG_DEBUG_VM
315static ssize_t debug_cow_show(struct kobject *kobj,
316 struct kobj_attribute *attr, char *buf)
317{
b46e756f 318 return single_hugepage_flag_show(kobj, attr, buf,
71e3aac0
AA
319 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
320}
321static ssize_t debug_cow_store(struct kobject *kobj,
322 struct kobj_attribute *attr,
323 const char *buf, size_t count)
324{
b46e756f 325 return single_hugepage_flag_store(kobj, attr, buf, count,
71e3aac0
AA
326 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
327}
328static struct kobj_attribute debug_cow_attr =
329 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
330#endif /* CONFIG_DEBUG_VM */
331
332static struct attribute *hugepage_attr[] = {
333 &enabled_attr.attr,
334 &defrag_attr.attr,
79da5407 335 &use_zero_page_attr.attr,
49920d28 336 &hpage_pmd_size_attr.attr,
e496cf3d 337#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
5a6e75f8
KS
338 &shmem_enabled_attr.attr,
339#endif
71e3aac0
AA
340#ifdef CONFIG_DEBUG_VM
341 &debug_cow_attr.attr,
342#endif
343 NULL,
344};
345
8aa95a21 346static const struct attribute_group hugepage_attr_group = {
71e3aac0 347 .attrs = hugepage_attr,
ba76149f
AA
348};
349
569e5590 350static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 351{
71e3aac0
AA
352 int err;
353
569e5590
SL
354 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
355 if (unlikely(!*hugepage_kobj)) {
ae3a8c1c 356 pr_err("failed to create transparent hugepage kobject\n");
569e5590 357 return -ENOMEM;
ba76149f
AA
358 }
359
569e5590 360 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f 361 if (err) {
ae3a8c1c 362 pr_err("failed to register transparent hugepage group\n");
569e5590 363 goto delete_obj;
ba76149f
AA
364 }
365
569e5590 366 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f 367 if (err) {
ae3a8c1c 368 pr_err("failed to register transparent hugepage group\n");
569e5590 369 goto remove_hp_group;
ba76149f 370 }
569e5590
SL
371
372 return 0;
373
374remove_hp_group:
375 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
376delete_obj:
377 kobject_put(*hugepage_kobj);
378 return err;
379}
380
381static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
382{
383 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
384 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
385 kobject_put(hugepage_kobj);
386}
387#else
388static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
389{
390 return 0;
391}
392
393static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
394{
395}
396#endif /* CONFIG_SYSFS */
397
398static int __init hugepage_init(void)
399{
400 int err;
401 struct kobject *hugepage_kobj;
402
403 if (!has_transparent_hugepage()) {
404 transparent_hugepage_flags = 0;
405 return -EINVAL;
406 }
407
ff20c2e0
KS
408 /*
409 * hugepages can't be allocated by the buddy allocator
410 */
411 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
412 /*
413 * we use page->mapping and page->index in second tail page
414 * as list_head: assuming THP order >= 2
415 */
416 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
417
569e5590
SL
418 err = hugepage_init_sysfs(&hugepage_kobj);
419 if (err)
65ebb64f 420 goto err_sysfs;
ba76149f 421
b46e756f 422 err = khugepaged_init();
ba76149f 423 if (err)
65ebb64f 424 goto err_slab;
ba76149f 425
65ebb64f
KS
426 err = register_shrinker(&huge_zero_page_shrinker);
427 if (err)
428 goto err_hzp_shrinker;
9a982250
KS
429 err = register_shrinker(&deferred_split_shrinker);
430 if (err)
431 goto err_split_shrinker;
97ae1749 432
97562cd2
RR
433 /*
434 * By default disable transparent hugepages on smaller systems,
435 * where the extra memory used could hurt more than TLB overhead
436 * is likely to save. The admin can still enable it through /sys.
437 */
ca79b0c2 438 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
97562cd2 439 transparent_hugepage_flags = 0;
79553da2
KS
440 return 0;
441 }
97562cd2 442
79553da2 443 err = start_stop_khugepaged();
65ebb64f
KS
444 if (err)
445 goto err_khugepaged;
ba76149f 446
569e5590 447 return 0;
65ebb64f 448err_khugepaged:
9a982250
KS
449 unregister_shrinker(&deferred_split_shrinker);
450err_split_shrinker:
65ebb64f
KS
451 unregister_shrinker(&huge_zero_page_shrinker);
452err_hzp_shrinker:
b46e756f 453 khugepaged_destroy();
65ebb64f 454err_slab:
569e5590 455 hugepage_exit_sysfs(hugepage_kobj);
65ebb64f 456err_sysfs:
ba76149f 457 return err;
71e3aac0 458}
a64fb3cd 459subsys_initcall(hugepage_init);
71e3aac0
AA
460
461static int __init setup_transparent_hugepage(char *str)
462{
463 int ret = 0;
464 if (!str)
465 goto out;
466 if (!strcmp(str, "always")) {
467 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
468 &transparent_hugepage_flags);
469 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
470 &transparent_hugepage_flags);
471 ret = 1;
472 } else if (!strcmp(str, "madvise")) {
473 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
474 &transparent_hugepage_flags);
475 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
476 &transparent_hugepage_flags);
477 ret = 1;
478 } else if (!strcmp(str, "never")) {
479 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
480 &transparent_hugepage_flags);
481 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
482 &transparent_hugepage_flags);
483 ret = 1;
484 }
485out:
486 if (!ret)
ae3a8c1c 487 pr_warn("transparent_hugepage= cannot parse, ignored\n");
71e3aac0
AA
488 return ret;
489}
490__setup("transparent_hugepage=", setup_transparent_hugepage);
491
f55e1014 492pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
71e3aac0 493{
f55e1014 494 if (likely(vma->vm_flags & VM_WRITE))
71e3aac0
AA
495 pmd = pmd_mkwrite(pmd);
496 return pmd;
497}
498
9a982250
KS
499static inline struct list_head *page_deferred_list(struct page *page)
500{
fa3015b7
MW
501 /* ->lru in the tail pages is occupied by compound_head. */
502 return &page[2].deferred_list;
9a982250
KS
503}
504
505void prep_transhuge_page(struct page *page)
506{
507 /*
508 * we use page->mapping and page->indexlru in second tail page
509 * as list_head: assuming THP order >= 2
510 */
9a982250
KS
511
512 INIT_LIST_HEAD(page_deferred_list(page));
513 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
514}
515
b3b07077 516static unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
74d2fad1
TK
517 loff_t off, unsigned long flags, unsigned long size)
518{
519 unsigned long addr;
520 loff_t off_end = off + len;
521 loff_t off_align = round_up(off, size);
522 unsigned long len_pad;
523
524 if (off_end <= off_align || (off_end - off_align) < size)
525 return 0;
526
527 len_pad = len + size;
528 if (len_pad < len || (off + len_pad) < off)
529 return 0;
530
531 addr = current->mm->get_unmapped_area(filp, 0, len_pad,
532 off >> PAGE_SHIFT, flags);
533 if (IS_ERR_VALUE(addr))
534 return 0;
535
536 addr += (off - addr) & (size - 1);
537 return addr;
538}
539
540unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
541 unsigned long len, unsigned long pgoff, unsigned long flags)
542{
543 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
544
545 if (addr)
546 goto out;
547 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
548 goto out;
549
550 addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
551 if (addr)
552 return addr;
553
554 out:
555 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
556}
557EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
558
2b740303
SJ
559static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
560 struct page *page, gfp_t gfp)
71e3aac0 561{
82b0f8c3 562 struct vm_area_struct *vma = vmf->vma;
00501b53 563 struct mem_cgroup *memcg;
71e3aac0 564 pgtable_t pgtable;
82b0f8c3 565 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
2b740303 566 vm_fault_t ret = 0;
71e3aac0 567
309381fe 568 VM_BUG_ON_PAGE(!PageCompound(page), page);
00501b53 569
2cf85583 570 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg, true)) {
6b251fc9
AA
571 put_page(page);
572 count_vm_event(THP_FAULT_FALLBACK);
573 return VM_FAULT_FALLBACK;
574 }
00501b53 575
4cf58924 576 pgtable = pte_alloc_one(vma->vm_mm);
00501b53 577 if (unlikely(!pgtable)) {
6b31d595
MH
578 ret = VM_FAULT_OOM;
579 goto release;
00501b53 580 }
71e3aac0 581
c79b57e4 582 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
52f37629
MK
583 /*
584 * The memory barrier inside __SetPageUptodate makes sure that
585 * clear_huge_page writes become visible before the set_pmd_at()
586 * write.
587 */
71e3aac0
AA
588 __SetPageUptodate(page);
589
82b0f8c3
JK
590 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
591 if (unlikely(!pmd_none(*vmf->pmd))) {
6b31d595 592 goto unlock_release;
71e3aac0
AA
593 } else {
594 pmd_t entry;
6b251fc9 595
6b31d595
MH
596 ret = check_stable_address_space(vma->vm_mm);
597 if (ret)
598 goto unlock_release;
599
6b251fc9
AA
600 /* Deliver the page fault to userland */
601 if (userfaultfd_missing(vma)) {
2b740303 602 vm_fault_t ret2;
6b251fc9 603
82b0f8c3 604 spin_unlock(vmf->ptl);
f627c2f5 605 mem_cgroup_cancel_charge(page, memcg, true);
6b251fc9 606 put_page(page);
bae473a4 607 pte_free(vma->vm_mm, pgtable);
2b740303
SJ
608 ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
609 VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
610 return ret2;
6b251fc9
AA
611 }
612
3122359a 613 entry = mk_huge_pmd(page, vma->vm_page_prot);
f55e1014 614 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
d281ee61 615 page_add_new_anon_rmap(page, vma, haddr, true);
f627c2f5 616 mem_cgroup_commit_charge(page, memcg, false, true);
00501b53 617 lru_cache_add_active_or_unevictable(page, vma);
82b0f8c3
JK
618 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
619 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
bae473a4 620 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
c4812909 621 mm_inc_nr_ptes(vma->vm_mm);
82b0f8c3 622 spin_unlock(vmf->ptl);
6b251fc9 623 count_vm_event(THP_FAULT_ALLOC);
1ff9e6e1 624 count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
71e3aac0
AA
625 }
626
aa2e878e 627 return 0;
6b31d595
MH
628unlock_release:
629 spin_unlock(vmf->ptl);
630release:
631 if (pgtable)
632 pte_free(vma->vm_mm, pgtable);
633 mem_cgroup_cancel_charge(page, memcg, true);
634 put_page(page);
635 return ret;
636
71e3aac0
AA
637}
638
444eb2a4 639/*
21440d7e
DR
640 * always: directly stall for all thp allocations
641 * defer: wake kswapd and fail if not immediately available
642 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
643 * fail if not immediately available
644 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
645 * available
646 * never: never stall for any thp allocation
444eb2a4 647 */
92717d42 648static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma, unsigned long addr)
444eb2a4 649{
21440d7e 650 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
ac79f78d 651 const gfp_t gfp_mask = GFP_TRANSHUGE_LIGHT | __GFP_THISNODE;
2f0799a0 652
ac79f78d 653 /* Always do synchronous compaction */
a8282608 654 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
ac79f78d
DR
655 return GFP_TRANSHUGE | __GFP_THISNODE |
656 (vma_madvised ? 0 : __GFP_NORETRY);
657
658 /* Kick kcompactd and fail quickly */
21440d7e 659 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
ac79f78d
DR
660 return gfp_mask | __GFP_KSWAPD_RECLAIM;
661
662 /* Synchronous compaction if madvised, otherwise kick kcompactd */
21440d7e 663 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
ac79f78d
DR
664 return gfp_mask | (vma_madvised ? __GFP_DIRECT_RECLAIM :
665 __GFP_KSWAPD_RECLAIM);
666
667 /* Only do synchronous compaction if madvised */
21440d7e 668 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
ac79f78d
DR
669 return gfp_mask | (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
670
671 return gfp_mask;
444eb2a4
MG
672}
673
c4088ebd 674/* Caller must hold page table lock. */
d295e341 675static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
97ae1749 676 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
5918d10a 677 struct page *zero_page)
fc9fe822
KS
678{
679 pmd_t entry;
7c414164
AM
680 if (!pmd_none(*pmd))
681 return false;
5918d10a 682 entry = mk_pmd(zero_page, vma->vm_page_prot);
fc9fe822 683 entry = pmd_mkhuge(entry);
12c9d70b
MW
684 if (pgtable)
685 pgtable_trans_huge_deposit(mm, pmd, pgtable);
fc9fe822 686 set_pmd_at(mm, haddr, pmd, entry);
c4812909 687 mm_inc_nr_ptes(mm);
7c414164 688 return true;
fc9fe822
KS
689}
690
2b740303 691vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
71e3aac0 692{
82b0f8c3 693 struct vm_area_struct *vma = vmf->vma;
077fcf11 694 gfp_t gfp;
71e3aac0 695 struct page *page;
82b0f8c3 696 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
71e3aac0 697
43675e6f 698 if (!transhuge_vma_suitable(vma, haddr))
c0292554 699 return VM_FAULT_FALLBACK;
128ec037
KS
700 if (unlikely(anon_vma_prepare(vma)))
701 return VM_FAULT_OOM;
6d50e60c 702 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
128ec037 703 return VM_FAULT_OOM;
82b0f8c3 704 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 705 !mm_forbids_zeropage(vma->vm_mm) &&
128ec037
KS
706 transparent_hugepage_use_zero_page()) {
707 pgtable_t pgtable;
708 struct page *zero_page;
709 bool set;
2b740303 710 vm_fault_t ret;
4cf58924 711 pgtable = pte_alloc_one(vma->vm_mm);
128ec037 712 if (unlikely(!pgtable))
ba76149f 713 return VM_FAULT_OOM;
6fcb52a5 714 zero_page = mm_get_huge_zero_page(vma->vm_mm);
128ec037 715 if (unlikely(!zero_page)) {
bae473a4 716 pte_free(vma->vm_mm, pgtable);
81ab4201 717 count_vm_event(THP_FAULT_FALLBACK);
c0292554 718 return VM_FAULT_FALLBACK;
b9bbfbe3 719 }
82b0f8c3 720 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
6b251fc9
AA
721 ret = 0;
722 set = false;
82b0f8c3 723 if (pmd_none(*vmf->pmd)) {
6b31d595
MH
724 ret = check_stable_address_space(vma->vm_mm);
725 if (ret) {
726 spin_unlock(vmf->ptl);
727 } else if (userfaultfd_missing(vma)) {
82b0f8c3
JK
728 spin_unlock(vmf->ptl);
729 ret = handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
730 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
731 } else {
bae473a4 732 set_huge_zero_page(pgtable, vma->vm_mm, vma,
82b0f8c3
JK
733 haddr, vmf->pmd, zero_page);
734 spin_unlock(vmf->ptl);
6b251fc9
AA
735 set = true;
736 }
737 } else
82b0f8c3 738 spin_unlock(vmf->ptl);
6fcb52a5 739 if (!set)
bae473a4 740 pte_free(vma->vm_mm, pgtable);
6b251fc9 741 return ret;
71e3aac0 742 }
92717d42
AA
743 gfp = alloc_hugepage_direct_gfpmask(vma, haddr);
744 page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, vma, haddr, numa_node_id());
128ec037
KS
745 if (unlikely(!page)) {
746 count_vm_event(THP_FAULT_FALLBACK);
c0292554 747 return VM_FAULT_FALLBACK;
128ec037 748 }
9a982250 749 prep_transhuge_page(page);
82b0f8c3 750 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
71e3aac0
AA
751}
752
ae18d6dc 753static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
3b6521f5
OH
754 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
755 pgtable_t pgtable)
5cad465d
MW
756{
757 struct mm_struct *mm = vma->vm_mm;
758 pmd_t entry;
759 spinlock_t *ptl;
760
761 ptl = pmd_lock(mm, pmd);
c6f3c5ee
AK
762 if (!pmd_none(*pmd)) {
763 if (write) {
764 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
765 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
766 goto out_unlock;
767 }
768 entry = pmd_mkyoung(*pmd);
769 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
770 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
771 update_mmu_cache_pmd(vma, addr, pmd);
772 }
773
774 goto out_unlock;
775 }
776
f25748e3
DW
777 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
778 if (pfn_t_devmap(pfn))
779 entry = pmd_mkdevmap(entry);
01871e59 780 if (write) {
f55e1014
LT
781 entry = pmd_mkyoung(pmd_mkdirty(entry));
782 entry = maybe_pmd_mkwrite(entry, vma);
5cad465d 783 }
3b6521f5
OH
784
785 if (pgtable) {
786 pgtable_trans_huge_deposit(mm, pmd, pgtable);
c4812909 787 mm_inc_nr_ptes(mm);
c6f3c5ee 788 pgtable = NULL;
3b6521f5
OH
789 }
790
01871e59
RZ
791 set_pmd_at(mm, addr, pmd, entry);
792 update_mmu_cache_pmd(vma, addr, pmd);
c6f3c5ee
AK
793
794out_unlock:
5cad465d 795 spin_unlock(ptl);
c6f3c5ee
AK
796 if (pgtable)
797 pte_free(mm, pgtable);
5cad465d
MW
798}
799
fce86ff5 800vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
5cad465d 801{
fce86ff5
DW
802 unsigned long addr = vmf->address & PMD_MASK;
803 struct vm_area_struct *vma = vmf->vma;
5cad465d 804 pgprot_t pgprot = vma->vm_page_prot;
3b6521f5 805 pgtable_t pgtable = NULL;
fce86ff5 806
5cad465d
MW
807 /*
808 * If we had pmd_special, we could avoid all these restrictions,
809 * but we need to be consistent with PTEs and architectures that
810 * can't support a 'special' bit.
811 */
e1fb4a08
DJ
812 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
813 !pfn_t_devmap(pfn));
5cad465d
MW
814 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
815 (VM_PFNMAP|VM_MIXEDMAP));
816 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
5cad465d
MW
817
818 if (addr < vma->vm_start || addr >= vma->vm_end)
819 return VM_FAULT_SIGBUS;
308a047c 820
3b6521f5 821 if (arch_needs_pgtable_deposit()) {
4cf58924 822 pgtable = pte_alloc_one(vma->vm_mm);
3b6521f5
OH
823 if (!pgtable)
824 return VM_FAULT_OOM;
825 }
826
308a047c
BP
827 track_pfn_insert(vma, &pgprot, pfn);
828
fce86ff5 829 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
ae18d6dc 830 return VM_FAULT_NOPAGE;
5cad465d 831}
dee41079 832EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
5cad465d 833
a00cc7d9 834#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
f55e1014 835static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
a00cc7d9 836{
f55e1014 837 if (likely(vma->vm_flags & VM_WRITE))
a00cc7d9
MW
838 pud = pud_mkwrite(pud);
839 return pud;
840}
841
842static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
843 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
844{
845 struct mm_struct *mm = vma->vm_mm;
846 pud_t entry;
847 spinlock_t *ptl;
848
849 ptl = pud_lock(mm, pud);
c6f3c5ee
AK
850 if (!pud_none(*pud)) {
851 if (write) {
852 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
853 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
854 goto out_unlock;
855 }
856 entry = pud_mkyoung(*pud);
857 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
858 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
859 update_mmu_cache_pud(vma, addr, pud);
860 }
861 goto out_unlock;
862 }
863
a00cc7d9
MW
864 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
865 if (pfn_t_devmap(pfn))
866 entry = pud_mkdevmap(entry);
867 if (write) {
f55e1014
LT
868 entry = pud_mkyoung(pud_mkdirty(entry));
869 entry = maybe_pud_mkwrite(entry, vma);
a00cc7d9
MW
870 }
871 set_pud_at(mm, addr, pud, entry);
872 update_mmu_cache_pud(vma, addr, pud);
c6f3c5ee
AK
873
874out_unlock:
a00cc7d9
MW
875 spin_unlock(ptl);
876}
877
fce86ff5 878vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
a00cc7d9 879{
fce86ff5
DW
880 unsigned long addr = vmf->address & PUD_MASK;
881 struct vm_area_struct *vma = vmf->vma;
a00cc7d9 882 pgprot_t pgprot = vma->vm_page_prot;
fce86ff5 883
a00cc7d9
MW
884 /*
885 * If we had pud_special, we could avoid all these restrictions,
886 * but we need to be consistent with PTEs and architectures that
887 * can't support a 'special' bit.
888 */
62ec0d8c
DJ
889 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
890 !pfn_t_devmap(pfn));
a00cc7d9
MW
891 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
892 (VM_PFNMAP|VM_MIXEDMAP));
893 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
a00cc7d9
MW
894
895 if (addr < vma->vm_start || addr >= vma->vm_end)
896 return VM_FAULT_SIGBUS;
897
898 track_pfn_insert(vma, &pgprot, pfn);
899
fce86ff5 900 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
a00cc7d9
MW
901 return VM_FAULT_NOPAGE;
902}
903EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
904#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
905
3565fce3 906static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
a8f97366 907 pmd_t *pmd, int flags)
3565fce3
DW
908{
909 pmd_t _pmd;
910
a8f97366
KS
911 _pmd = pmd_mkyoung(*pmd);
912 if (flags & FOLL_WRITE)
913 _pmd = pmd_mkdirty(_pmd);
3565fce3 914 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
a8f97366 915 pmd, _pmd, flags & FOLL_WRITE))
3565fce3
DW
916 update_mmu_cache_pmd(vma, addr, pmd);
917}
918
919struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
df06b37f 920 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
3565fce3
DW
921{
922 unsigned long pfn = pmd_pfn(*pmd);
923 struct mm_struct *mm = vma->vm_mm;
3565fce3
DW
924 struct page *page;
925
926 assert_spin_locked(pmd_lockptr(mm, pmd));
927
8310d48b
KF
928 /*
929 * When we COW a devmap PMD entry, we split it into PTEs, so we should
930 * not be in this function with `flags & FOLL_COW` set.
931 */
932 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
933
f6f37321 934 if (flags & FOLL_WRITE && !pmd_write(*pmd))
3565fce3
DW
935 return NULL;
936
937 if (pmd_present(*pmd) && pmd_devmap(*pmd))
938 /* pass */;
939 else
940 return NULL;
941
942 if (flags & FOLL_TOUCH)
a8f97366 943 touch_pmd(vma, addr, pmd, flags);
3565fce3
DW
944
945 /*
946 * device mapped pages can only be returned if the
947 * caller will manage the page reference count.
948 */
949 if (!(flags & FOLL_GET))
950 return ERR_PTR(-EEXIST);
951
952 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
df06b37f
KB
953 *pgmap = get_dev_pagemap(pfn, *pgmap);
954 if (!*pgmap)
3565fce3
DW
955 return ERR_PTR(-EFAULT);
956 page = pfn_to_page(pfn);
957 get_page(page);
3565fce3
DW
958
959 return page;
960}
961
71e3aac0
AA
962int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
963 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
964 struct vm_area_struct *vma)
965{
c4088ebd 966 spinlock_t *dst_ptl, *src_ptl;
71e3aac0
AA
967 struct page *src_page;
968 pmd_t pmd;
12c9d70b 969 pgtable_t pgtable = NULL;
628d47ce 970 int ret = -ENOMEM;
71e3aac0 971
628d47ce
KS
972 /* Skip if can be re-fill on fault */
973 if (!vma_is_anonymous(vma))
974 return 0;
975
4cf58924 976 pgtable = pte_alloc_one(dst_mm);
628d47ce
KS
977 if (unlikely(!pgtable))
978 goto out;
71e3aac0 979
c4088ebd
KS
980 dst_ptl = pmd_lock(dst_mm, dst_pmd);
981 src_ptl = pmd_lockptr(src_mm, src_pmd);
982 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
71e3aac0
AA
983
984 ret = -EAGAIN;
985 pmd = *src_pmd;
84c3fc4e
ZY
986
987#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
988 if (unlikely(is_swap_pmd(pmd))) {
989 swp_entry_t entry = pmd_to_swp_entry(pmd);
990
991 VM_BUG_ON(!is_pmd_migration_entry(pmd));
992 if (is_write_migration_entry(entry)) {
993 make_migration_entry_read(&entry);
994 pmd = swp_entry_to_pmd(entry);
ab6e3d09
NH
995 if (pmd_swp_soft_dirty(*src_pmd))
996 pmd = pmd_swp_mksoft_dirty(pmd);
84c3fc4e
ZY
997 set_pmd_at(src_mm, addr, src_pmd, pmd);
998 }
dd8a67f9 999 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
af5b0f6a 1000 mm_inc_nr_ptes(dst_mm);
dd8a67f9 1001 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
84c3fc4e
ZY
1002 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1003 ret = 0;
1004 goto out_unlock;
1005 }
1006#endif
1007
628d47ce 1008 if (unlikely(!pmd_trans_huge(pmd))) {
71e3aac0
AA
1009 pte_free(dst_mm, pgtable);
1010 goto out_unlock;
1011 }
fc9fe822 1012 /*
c4088ebd 1013 * When page table lock is held, the huge zero pmd should not be
fc9fe822
KS
1014 * under splitting since we don't split the page itself, only pmd to
1015 * a page table.
1016 */
1017 if (is_huge_zero_pmd(pmd)) {
5918d10a 1018 struct page *zero_page;
97ae1749
KS
1019 /*
1020 * get_huge_zero_page() will never allocate a new page here,
1021 * since we already have a zero page to copy. It just takes a
1022 * reference.
1023 */
6fcb52a5 1024 zero_page = mm_get_huge_zero_page(dst_mm);
6b251fc9 1025 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
5918d10a 1026 zero_page);
fc9fe822
KS
1027 ret = 0;
1028 goto out_unlock;
1029 }
de466bd6 1030
628d47ce
KS
1031 src_page = pmd_page(pmd);
1032 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1033 get_page(src_page);
1034 page_dup_rmap(src_page, true);
1035 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
c4812909 1036 mm_inc_nr_ptes(dst_mm);
628d47ce 1037 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
71e3aac0
AA
1038
1039 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1040 pmd = pmd_mkold(pmd_wrprotect(pmd));
1041 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
71e3aac0
AA
1042
1043 ret = 0;
1044out_unlock:
c4088ebd
KS
1045 spin_unlock(src_ptl);
1046 spin_unlock(dst_ptl);
71e3aac0
AA
1047out:
1048 return ret;
1049}
1050
a00cc7d9
MW
1051#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1052static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
a8f97366 1053 pud_t *pud, int flags)
a00cc7d9
MW
1054{
1055 pud_t _pud;
1056
a8f97366
KS
1057 _pud = pud_mkyoung(*pud);
1058 if (flags & FOLL_WRITE)
1059 _pud = pud_mkdirty(_pud);
a00cc7d9 1060 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
a8f97366 1061 pud, _pud, flags & FOLL_WRITE))
a00cc7d9
MW
1062 update_mmu_cache_pud(vma, addr, pud);
1063}
1064
1065struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
df06b37f 1066 pud_t *pud, int flags, struct dev_pagemap **pgmap)
a00cc7d9
MW
1067{
1068 unsigned long pfn = pud_pfn(*pud);
1069 struct mm_struct *mm = vma->vm_mm;
a00cc7d9
MW
1070 struct page *page;
1071
1072 assert_spin_locked(pud_lockptr(mm, pud));
1073
f6f37321 1074 if (flags & FOLL_WRITE && !pud_write(*pud))
a00cc7d9
MW
1075 return NULL;
1076
1077 if (pud_present(*pud) && pud_devmap(*pud))
1078 /* pass */;
1079 else
1080 return NULL;
1081
1082 if (flags & FOLL_TOUCH)
a8f97366 1083 touch_pud(vma, addr, pud, flags);
a00cc7d9
MW
1084
1085 /*
1086 * device mapped pages can only be returned if the
1087 * caller will manage the page reference count.
1088 */
1089 if (!(flags & FOLL_GET))
1090 return ERR_PTR(-EEXIST);
1091
1092 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
df06b37f
KB
1093 *pgmap = get_dev_pagemap(pfn, *pgmap);
1094 if (!*pgmap)
a00cc7d9
MW
1095 return ERR_PTR(-EFAULT);
1096 page = pfn_to_page(pfn);
1097 get_page(page);
a00cc7d9
MW
1098
1099 return page;
1100}
1101
1102int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1103 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1104 struct vm_area_struct *vma)
1105{
1106 spinlock_t *dst_ptl, *src_ptl;
1107 pud_t pud;
1108 int ret;
1109
1110 dst_ptl = pud_lock(dst_mm, dst_pud);
1111 src_ptl = pud_lockptr(src_mm, src_pud);
1112 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1113
1114 ret = -EAGAIN;
1115 pud = *src_pud;
1116 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1117 goto out_unlock;
1118
1119 /*
1120 * When page table lock is held, the huge zero pud should not be
1121 * under splitting since we don't split the page itself, only pud to
1122 * a page table.
1123 */
1124 if (is_huge_zero_pud(pud)) {
1125 /* No huge zero pud yet */
1126 }
1127
1128 pudp_set_wrprotect(src_mm, addr, src_pud);
1129 pud = pud_mkold(pud_wrprotect(pud));
1130 set_pud_at(dst_mm, addr, dst_pud, pud);
1131
1132 ret = 0;
1133out_unlock:
1134 spin_unlock(src_ptl);
1135 spin_unlock(dst_ptl);
1136 return ret;
1137}
1138
1139void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1140{
1141 pud_t entry;
1142 unsigned long haddr;
1143 bool write = vmf->flags & FAULT_FLAG_WRITE;
1144
1145 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1146 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1147 goto unlock;
1148
1149 entry = pud_mkyoung(orig_pud);
1150 if (write)
1151 entry = pud_mkdirty(entry);
1152 haddr = vmf->address & HPAGE_PUD_MASK;
1153 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1154 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1155
1156unlock:
1157 spin_unlock(vmf->ptl);
1158}
1159#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1160
82b0f8c3 1161void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
a1dd450b
WD
1162{
1163 pmd_t entry;
1164 unsigned long haddr;
20f664aa 1165 bool write = vmf->flags & FAULT_FLAG_WRITE;
a1dd450b 1166
82b0f8c3
JK
1167 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1168 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
a1dd450b
WD
1169 goto unlock;
1170
1171 entry = pmd_mkyoung(orig_pmd);
20f664aa
MK
1172 if (write)
1173 entry = pmd_mkdirty(entry);
82b0f8c3 1174 haddr = vmf->address & HPAGE_PMD_MASK;
20f664aa 1175 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
82b0f8c3 1176 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
a1dd450b
WD
1177
1178unlock:
82b0f8c3 1179 spin_unlock(vmf->ptl);
a1dd450b
WD
1180}
1181
2b740303
SJ
1182static vm_fault_t do_huge_pmd_wp_page_fallback(struct vm_fault *vmf,
1183 pmd_t orig_pmd, struct page *page)
71e3aac0 1184{
82b0f8c3
JK
1185 struct vm_area_struct *vma = vmf->vma;
1186 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
00501b53 1187 struct mem_cgroup *memcg;
71e3aac0
AA
1188 pgtable_t pgtable;
1189 pmd_t _pmd;
2b740303
SJ
1190 int i;
1191 vm_fault_t ret = 0;
71e3aac0 1192 struct page **pages;
ac46d4f3 1193 struct mmu_notifier_range range;
71e3aac0 1194
6da2ec56
KC
1195 pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *),
1196 GFP_KERNEL);
71e3aac0
AA
1197 if (unlikely(!pages)) {
1198 ret |= VM_FAULT_OOM;
1199 goto out;
1200 }
1201
1202 for (i = 0; i < HPAGE_PMD_NR; i++) {
41b6167e 1203 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 1204 vmf->address, page_to_nid(page));
b9bbfbe3 1205 if (unlikely(!pages[i] ||
2cf85583 1206 mem_cgroup_try_charge_delay(pages[i], vma->vm_mm,
bae473a4 1207 GFP_KERNEL, &memcg, false))) {
b9bbfbe3 1208 if (pages[i])
71e3aac0 1209 put_page(pages[i]);
b9bbfbe3 1210 while (--i >= 0) {
00501b53
JW
1211 memcg = (void *)page_private(pages[i]);
1212 set_page_private(pages[i], 0);
f627c2f5
KS
1213 mem_cgroup_cancel_charge(pages[i], memcg,
1214 false);
b9bbfbe3
AA
1215 put_page(pages[i]);
1216 }
71e3aac0
AA
1217 kfree(pages);
1218 ret |= VM_FAULT_OOM;
1219 goto out;
1220 }
00501b53 1221 set_page_private(pages[i], (unsigned long)memcg);
71e3aac0
AA
1222 }
1223
1224 for (i = 0; i < HPAGE_PMD_NR; i++) {
1225 copy_user_highpage(pages[i], page + i,
0089e485 1226 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
1227 __SetPageUptodate(pages[i]);
1228 cond_resched();
1229 }
1230
7269f999
JG
1231 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1232 haddr, haddr + HPAGE_PMD_SIZE);
ac46d4f3 1233 mmu_notifier_invalidate_range_start(&range);
2ec74c3e 1234
82b0f8c3
JK
1235 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1236 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
71e3aac0 1237 goto out_free_pages;
309381fe 1238 VM_BUG_ON_PAGE(!PageHead(page), page);
71e3aac0 1239
0f10851e
JG
1240 /*
1241 * Leave pmd empty until pte is filled note we must notify here as
1242 * concurrent CPU thread might write to new page before the call to
1243 * mmu_notifier_invalidate_range_end() happens which can lead to a
1244 * device seeing memory write in different order than CPU.
1245 *
ad56b738 1246 * See Documentation/vm/mmu_notifier.rst
0f10851e 1247 */
82b0f8c3 1248 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
71e3aac0 1249
82b0f8c3 1250 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
bae473a4 1251 pmd_populate(vma->vm_mm, &_pmd, pgtable);
71e3aac0
AA
1252
1253 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
bae473a4 1254 pte_t entry;
71e3aac0
AA
1255 entry = mk_pte(pages[i], vma->vm_page_prot);
1256 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
00501b53
JW
1257 memcg = (void *)page_private(pages[i]);
1258 set_page_private(pages[i], 0);
82b0f8c3 1259 page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
f627c2f5 1260 mem_cgroup_commit_charge(pages[i], memcg, false, false);
00501b53 1261 lru_cache_add_active_or_unevictable(pages[i], vma);
82b0f8c3
JK
1262 vmf->pte = pte_offset_map(&_pmd, haddr);
1263 VM_BUG_ON(!pte_none(*vmf->pte));
1264 set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1265 pte_unmap(vmf->pte);
71e3aac0
AA
1266 }
1267 kfree(pages);
1268
71e3aac0 1269 smp_wmb(); /* make pte visible before pmd */
82b0f8c3 1270 pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
d281ee61 1271 page_remove_rmap(page, true);
82b0f8c3 1272 spin_unlock(vmf->ptl);
71e3aac0 1273
4645b9fe
JG
1274 /*
1275 * No need to double call mmu_notifier->invalidate_range() callback as
1276 * the above pmdp_huge_clear_flush_notify() did already call it.
1277 */
ac46d4f3 1278 mmu_notifier_invalidate_range_only_end(&range);
2ec74c3e 1279
71e3aac0
AA
1280 ret |= VM_FAULT_WRITE;
1281 put_page(page);
1282
1283out:
1284 return ret;
1285
1286out_free_pages:
82b0f8c3 1287 spin_unlock(vmf->ptl);
ac46d4f3 1288 mmu_notifier_invalidate_range_end(&range);
b9bbfbe3 1289 for (i = 0; i < HPAGE_PMD_NR; i++) {
00501b53
JW
1290 memcg = (void *)page_private(pages[i]);
1291 set_page_private(pages[i], 0);
f627c2f5 1292 mem_cgroup_cancel_charge(pages[i], memcg, false);
71e3aac0 1293 put_page(pages[i]);
b9bbfbe3 1294 }
71e3aac0
AA
1295 kfree(pages);
1296 goto out;
1297}
1298
2b740303 1299vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
71e3aac0 1300{
82b0f8c3 1301 struct vm_area_struct *vma = vmf->vma;
93b4796d 1302 struct page *page = NULL, *new_page;
00501b53 1303 struct mem_cgroup *memcg;
82b0f8c3 1304 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
ac46d4f3 1305 struct mmu_notifier_range range;
3b363692 1306 gfp_t huge_gfp; /* for allocation and charge */
2b740303 1307 vm_fault_t ret = 0;
71e3aac0 1308
82b0f8c3 1309 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
81d1b09c 1310 VM_BUG_ON_VMA(!vma->anon_vma, vma);
93b4796d
KS
1311 if (is_huge_zero_pmd(orig_pmd))
1312 goto alloc;
82b0f8c3
JK
1313 spin_lock(vmf->ptl);
1314 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
71e3aac0
AA
1315 goto out_unlock;
1316
1317 page = pmd_page(orig_pmd);
309381fe 1318 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1f25fe20
KS
1319 /*
1320 * We can only reuse the page if nobody else maps the huge page or it's
6d0a07ed 1321 * part.
1f25fe20 1322 */
ba3c4ce6
HY
1323 if (!trylock_page(page)) {
1324 get_page(page);
1325 spin_unlock(vmf->ptl);
1326 lock_page(page);
1327 spin_lock(vmf->ptl);
1328 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1329 unlock_page(page);
1330 put_page(page);
1331 goto out_unlock;
1332 }
1333 put_page(page);
1334 }
1335 if (reuse_swap_page(page, NULL)) {
71e3aac0
AA
1336 pmd_t entry;
1337 entry = pmd_mkyoung(orig_pmd);
f55e1014 1338 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
82b0f8c3
JK
1339 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1340 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
71e3aac0 1341 ret |= VM_FAULT_WRITE;
ba3c4ce6 1342 unlock_page(page);
71e3aac0
AA
1343 goto out_unlock;
1344 }
ba3c4ce6 1345 unlock_page(page);
ddc58f27 1346 get_page(page);
82b0f8c3 1347 spin_unlock(vmf->ptl);
93b4796d 1348alloc:
7635d9cb 1349 if (__transparent_hugepage_enabled(vma) &&
077fcf11 1350 !transparent_hugepage_debug_cow()) {
92717d42
AA
1351 huge_gfp = alloc_hugepage_direct_gfpmask(vma, haddr);
1352 new_page = alloc_pages_vma(huge_gfp, HPAGE_PMD_ORDER, vma,
1353 haddr, numa_node_id());
077fcf11 1354 } else
71e3aac0
AA
1355 new_page = NULL;
1356
9a982250
KS
1357 if (likely(new_page)) {
1358 prep_transhuge_page(new_page);
1359 } else {
eecc1e42 1360 if (!page) {
82b0f8c3 1361 split_huge_pmd(vma, vmf->pmd, vmf->address);
e9b71ca9 1362 ret |= VM_FAULT_FALLBACK;
93b4796d 1363 } else {
82b0f8c3 1364 ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
9845cbbd 1365 if (ret & VM_FAULT_OOM) {
82b0f8c3 1366 split_huge_pmd(vma, vmf->pmd, vmf->address);
9845cbbd
KS
1367 ret |= VM_FAULT_FALLBACK;
1368 }
ddc58f27 1369 put_page(page);
93b4796d 1370 }
17766dde 1371 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0
AA
1372 goto out;
1373 }
1374
2cf85583 1375 if (unlikely(mem_cgroup_try_charge_delay(new_page, vma->vm_mm,
2a70f6a7 1376 huge_gfp, &memcg, true))) {
b9bbfbe3 1377 put_page(new_page);
82b0f8c3 1378 split_huge_pmd(vma, vmf->pmd, vmf->address);
bae473a4 1379 if (page)
ddc58f27 1380 put_page(page);
9845cbbd 1381 ret |= VM_FAULT_FALLBACK;
17766dde 1382 count_vm_event(THP_FAULT_FALLBACK);
b9bbfbe3
AA
1383 goto out;
1384 }
1385
17766dde 1386 count_vm_event(THP_FAULT_ALLOC);
1ff9e6e1 1387 count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
17766dde 1388
eecc1e42 1389 if (!page)
c79b57e4 1390 clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
93b4796d 1391 else
c9f4cd71
HY
1392 copy_user_huge_page(new_page, page, vmf->address,
1393 vma, HPAGE_PMD_NR);
71e3aac0
AA
1394 __SetPageUptodate(new_page);
1395
7269f999
JG
1396 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1397 haddr, haddr + HPAGE_PMD_SIZE);
ac46d4f3 1398 mmu_notifier_invalidate_range_start(&range);
2ec74c3e 1399
82b0f8c3 1400 spin_lock(vmf->ptl);
93b4796d 1401 if (page)
ddc58f27 1402 put_page(page);
82b0f8c3
JK
1403 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1404 spin_unlock(vmf->ptl);
f627c2f5 1405 mem_cgroup_cancel_charge(new_page, memcg, true);
71e3aac0 1406 put_page(new_page);
2ec74c3e 1407 goto out_mn;
b9bbfbe3 1408 } else {
71e3aac0 1409 pmd_t entry;
3122359a 1410 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
f55e1014 1411 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
82b0f8c3 1412 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
d281ee61 1413 page_add_new_anon_rmap(new_page, vma, haddr, true);
f627c2f5 1414 mem_cgroup_commit_charge(new_page, memcg, false, true);
00501b53 1415 lru_cache_add_active_or_unevictable(new_page, vma);
82b0f8c3
JK
1416 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1417 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
eecc1e42 1418 if (!page) {
bae473a4 1419 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
97ae1749 1420 } else {
309381fe 1421 VM_BUG_ON_PAGE(!PageHead(page), page);
d281ee61 1422 page_remove_rmap(page, true);
93b4796d
KS
1423 put_page(page);
1424 }
71e3aac0
AA
1425 ret |= VM_FAULT_WRITE;
1426 }
82b0f8c3 1427 spin_unlock(vmf->ptl);
2ec74c3e 1428out_mn:
4645b9fe
JG
1429 /*
1430 * No need to double call mmu_notifier->invalidate_range() callback as
1431 * the above pmdp_huge_clear_flush_notify() did already call it.
1432 */
ac46d4f3 1433 mmu_notifier_invalidate_range_only_end(&range);
71e3aac0
AA
1434out:
1435 return ret;
2ec74c3e 1436out_unlock:
82b0f8c3 1437 spin_unlock(vmf->ptl);
2ec74c3e 1438 return ret;
71e3aac0
AA
1439}
1440
8310d48b
KF
1441/*
1442 * FOLL_FORCE can write to even unwritable pmd's, but only
1443 * after we've gone through a COW cycle and they are dirty.
1444 */
1445static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1446{
f6f37321 1447 return pmd_write(pmd) ||
8310d48b
KF
1448 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1449}
1450
b676b293 1451struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1452 unsigned long addr,
1453 pmd_t *pmd,
1454 unsigned int flags)
1455{
b676b293 1456 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1457 struct page *page = NULL;
1458
c4088ebd 1459 assert_spin_locked(pmd_lockptr(mm, pmd));
71e3aac0 1460
8310d48b 1461 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
71e3aac0
AA
1462 goto out;
1463
85facf25
KS
1464 /* Avoid dumping huge zero page */
1465 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1466 return ERR_PTR(-EFAULT);
1467
2b4847e7 1468 /* Full NUMA hinting faults to serialise migration in fault paths */
8a0516ed 1469 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
2b4847e7
MG
1470 goto out;
1471
71e3aac0 1472 page = pmd_page(*pmd);
ca120cf6 1473 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
3565fce3 1474 if (flags & FOLL_TOUCH)
a8f97366 1475 touch_pmd(vma, addr, pmd, flags);
de60f5f1 1476 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
1477 /*
1478 * We don't mlock() pte-mapped THPs. This way we can avoid
1479 * leaking mlocked pages into non-VM_LOCKED VMAs.
1480 *
9a73f61b
KS
1481 * For anon THP:
1482 *
e90309c9
KS
1483 * In most cases the pmd is the only mapping of the page as we
1484 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1485 * writable private mappings in populate_vma_page_range().
1486 *
1487 * The only scenario when we have the page shared here is if we
1488 * mlocking read-only mapping shared over fork(). We skip
1489 * mlocking such pages.
9a73f61b
KS
1490 *
1491 * For file THP:
1492 *
1493 * We can expect PageDoubleMap() to be stable under page lock:
1494 * for file pages we set it in page_add_file_rmap(), which
1495 * requires page to be locked.
e90309c9 1496 */
9a73f61b
KS
1497
1498 if (PageAnon(page) && compound_mapcount(page) != 1)
1499 goto skip_mlock;
1500 if (PageDoubleMap(page) || !page->mapping)
1501 goto skip_mlock;
1502 if (!trylock_page(page))
1503 goto skip_mlock;
1504 lru_add_drain();
1505 if (page->mapping && !PageDoubleMap(page))
1506 mlock_vma_page(page);
1507 unlock_page(page);
b676b293 1508 }
9a73f61b 1509skip_mlock:
71e3aac0 1510 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
ca120cf6 1511 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
71e3aac0 1512 if (flags & FOLL_GET)
ddc58f27 1513 get_page(page);
71e3aac0
AA
1514
1515out:
1516 return page;
1517}
1518
d10e63f2 1519/* NUMA hinting page fault entry point for trans huge pmds */
2b740303 1520vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
d10e63f2 1521{
82b0f8c3 1522 struct vm_area_struct *vma = vmf->vma;
b8916634 1523 struct anon_vma *anon_vma = NULL;
b32967ff 1524 struct page *page;
82b0f8c3 1525 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
98fa15f3 1526 int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
90572890 1527 int target_nid, last_cpupid = -1;
8191acbd
MG
1528 bool page_locked;
1529 bool migrated = false;
b191f9b1 1530 bool was_writable;
6688cc05 1531 int flags = 0;
d10e63f2 1532
82b0f8c3
JK
1533 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1534 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
d10e63f2
MG
1535 goto out_unlock;
1536
de466bd6
MG
1537 /*
1538 * If there are potential migrations, wait for completion and retry
1539 * without disrupting NUMA hinting information. Do not relock and
1540 * check_same as the page may no longer be mapped.
1541 */
82b0f8c3
JK
1542 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1543 page = pmd_page(*vmf->pmd);
3c226c63
MR
1544 if (!get_page_unless_zero(page))
1545 goto out_unlock;
82b0f8c3 1546 spin_unlock(vmf->ptl);
9a1ea439 1547 put_and_wait_on_page_locked(page);
de466bd6
MG
1548 goto out;
1549 }
1550
d10e63f2 1551 page = pmd_page(pmd);
a1a46184 1552 BUG_ON(is_huge_zero_page(page));
8191acbd 1553 page_nid = page_to_nid(page);
90572890 1554 last_cpupid = page_cpupid_last(page);
03c5a6e1 1555 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 1556 if (page_nid == this_nid) {
03c5a6e1 1557 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
1558 flags |= TNF_FAULT_LOCAL;
1559 }
4daae3b4 1560
bea66fbd 1561 /* See similar comment in do_numa_page for explanation */
288bc549 1562 if (!pmd_savedwrite(pmd))
6688cc05
PZ
1563 flags |= TNF_NO_GROUP;
1564
ff9042b1
MG
1565 /*
1566 * Acquire the page lock to serialise THP migrations but avoid dropping
1567 * page_table_lock if at all possible
1568 */
b8916634
MG
1569 page_locked = trylock_page(page);
1570 target_nid = mpol_misplaced(page, vma, haddr);
98fa15f3 1571 if (target_nid == NUMA_NO_NODE) {
b8916634 1572 /* If the page was locked, there are no parallel migrations */
a54a407f 1573 if (page_locked)
b8916634 1574 goto clear_pmdnuma;
2b4847e7 1575 }
4daae3b4 1576
de466bd6 1577 /* Migration could have started since the pmd_trans_migrating check */
2b4847e7 1578 if (!page_locked) {
98fa15f3 1579 page_nid = NUMA_NO_NODE;
3c226c63
MR
1580 if (!get_page_unless_zero(page))
1581 goto out_unlock;
82b0f8c3 1582 spin_unlock(vmf->ptl);
9a1ea439 1583 put_and_wait_on_page_locked(page);
b8916634
MG
1584 goto out;
1585 }
1586
2b4847e7
MG
1587 /*
1588 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1589 * to serialises splits
1590 */
b8916634 1591 get_page(page);
82b0f8c3 1592 spin_unlock(vmf->ptl);
b8916634 1593 anon_vma = page_lock_anon_vma_read(page);
4daae3b4 1594
c69307d5 1595 /* Confirm the PMD did not change while page_table_lock was released */
82b0f8c3
JK
1596 spin_lock(vmf->ptl);
1597 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
b32967ff
MG
1598 unlock_page(page);
1599 put_page(page);
98fa15f3 1600 page_nid = NUMA_NO_NODE;
4daae3b4 1601 goto out_unlock;
b32967ff 1602 }
ff9042b1 1603
c3a489ca
MG
1604 /* Bail if we fail to protect against THP splits for any reason */
1605 if (unlikely(!anon_vma)) {
1606 put_page(page);
98fa15f3 1607 page_nid = NUMA_NO_NODE;
c3a489ca
MG
1608 goto clear_pmdnuma;
1609 }
1610
8b1b436d
PZ
1611 /*
1612 * Since we took the NUMA fault, we must have observed the !accessible
1613 * bit. Make sure all other CPUs agree with that, to avoid them
1614 * modifying the page we're about to migrate.
1615 *
1616 * Must be done under PTL such that we'll observe the relevant
ccde85ba
PZ
1617 * inc_tlb_flush_pending().
1618 *
1619 * We are not sure a pending tlb flush here is for a huge page
1620 * mapping or not. Hence use the tlb range variant
8b1b436d 1621 */
7066f0f9 1622 if (mm_tlb_flush_pending(vma->vm_mm)) {
ccde85ba 1623 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
7066f0f9
AA
1624 /*
1625 * change_huge_pmd() released the pmd lock before
1626 * invalidating the secondary MMUs sharing the primary
1627 * MMU pagetables (with ->invalidate_range()). The
1628 * mmu_notifier_invalidate_range_end() (which
1629 * internally calls ->invalidate_range()) in
1630 * change_pmd_range() will run after us, so we can't
1631 * rely on it here and we need an explicit invalidate.
1632 */
1633 mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1634 haddr + HPAGE_PMD_SIZE);
1635 }
8b1b436d 1636
a54a407f
MG
1637 /*
1638 * Migrate the THP to the requested node, returns with page unlocked
8a0516ed 1639 * and access rights restored.
a54a407f 1640 */
82b0f8c3 1641 spin_unlock(vmf->ptl);
8b1b436d 1642
bae473a4 1643 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
82b0f8c3 1644 vmf->pmd, pmd, vmf->address, page, target_nid);
6688cc05
PZ
1645 if (migrated) {
1646 flags |= TNF_MIGRATED;
8191acbd 1647 page_nid = target_nid;
074c2381
MG
1648 } else
1649 flags |= TNF_MIGRATE_FAIL;
b32967ff 1650
8191acbd 1651 goto out;
b32967ff 1652clear_pmdnuma:
a54a407f 1653 BUG_ON(!PageLocked(page));
288bc549 1654 was_writable = pmd_savedwrite(pmd);
4d942466 1655 pmd = pmd_modify(pmd, vma->vm_page_prot);
b7b04004 1656 pmd = pmd_mkyoung(pmd);
b191f9b1
MG
1657 if (was_writable)
1658 pmd = pmd_mkwrite(pmd);
82b0f8c3
JK
1659 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1660 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
a54a407f 1661 unlock_page(page);
d10e63f2 1662out_unlock:
82b0f8c3 1663 spin_unlock(vmf->ptl);
b8916634
MG
1664
1665out:
1666 if (anon_vma)
1667 page_unlock_anon_vma_read(anon_vma);
1668
98fa15f3 1669 if (page_nid != NUMA_NO_NODE)
82b0f8c3 1670 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
9a8b300f 1671 flags);
8191acbd 1672
d10e63f2
MG
1673 return 0;
1674}
1675
319904ad
HY
1676/*
1677 * Return true if we do MADV_FREE successfully on entire pmd page.
1678 * Otherwise, return false.
1679 */
1680bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
b8d3c4c3 1681 pmd_t *pmd, unsigned long addr, unsigned long next)
b8d3c4c3
MK
1682{
1683 spinlock_t *ptl;
1684 pmd_t orig_pmd;
1685 struct page *page;
1686 struct mm_struct *mm = tlb->mm;
319904ad 1687 bool ret = false;
b8d3c4c3 1688
ed6a7935 1689 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
07e32661 1690
b6ec57f4
KS
1691 ptl = pmd_trans_huge_lock(pmd, vma);
1692 if (!ptl)
25eedabe 1693 goto out_unlocked;
b8d3c4c3
MK
1694
1695 orig_pmd = *pmd;
319904ad 1696 if (is_huge_zero_pmd(orig_pmd))
b8d3c4c3 1697 goto out;
b8d3c4c3 1698
84c3fc4e
ZY
1699 if (unlikely(!pmd_present(orig_pmd))) {
1700 VM_BUG_ON(thp_migration_supported() &&
1701 !is_pmd_migration_entry(orig_pmd));
1702 goto out;
1703 }
1704
b8d3c4c3
MK
1705 page = pmd_page(orig_pmd);
1706 /*
1707 * If other processes are mapping this page, we couldn't discard
1708 * the page unless they all do MADV_FREE so let's skip the page.
1709 */
1710 if (page_mapcount(page) != 1)
1711 goto out;
1712
1713 if (!trylock_page(page))
1714 goto out;
1715
1716 /*
1717 * If user want to discard part-pages of THP, split it so MADV_FREE
1718 * will deactivate only them.
1719 */
1720 if (next - addr != HPAGE_PMD_SIZE) {
1721 get_page(page);
1722 spin_unlock(ptl);
9818b8cd 1723 split_huge_page(page);
b8d3c4c3 1724 unlock_page(page);
bbf29ffc 1725 put_page(page);
b8d3c4c3
MK
1726 goto out_unlocked;
1727 }
1728
1729 if (PageDirty(page))
1730 ClearPageDirty(page);
1731 unlock_page(page);
1732
b8d3c4c3 1733 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
58ceeb6b 1734 pmdp_invalidate(vma, addr, pmd);
b8d3c4c3
MK
1735 orig_pmd = pmd_mkold(orig_pmd);
1736 orig_pmd = pmd_mkclean(orig_pmd);
1737
1738 set_pmd_at(mm, addr, pmd, orig_pmd);
1739 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1740 }
802a3a92
SL
1741
1742 mark_page_lazyfree(page);
319904ad 1743 ret = true;
b8d3c4c3
MK
1744out:
1745 spin_unlock(ptl);
1746out_unlocked:
1747 return ret;
1748}
1749
953c66c2
AK
1750static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1751{
1752 pgtable_t pgtable;
1753
1754 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1755 pte_free(mm, pgtable);
c4812909 1756 mm_dec_nr_ptes(mm);
953c66c2
AK
1757}
1758
71e3aac0 1759int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1760 pmd_t *pmd, unsigned long addr)
71e3aac0 1761{
da146769 1762 pmd_t orig_pmd;
bf929152 1763 spinlock_t *ptl;
71e3aac0 1764
ed6a7935 1765 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
07e32661 1766
b6ec57f4
KS
1767 ptl = __pmd_trans_huge_lock(pmd, vma);
1768 if (!ptl)
da146769
KS
1769 return 0;
1770 /*
1771 * For architectures like ppc64 we look at deposited pgtable
1772 * when calling pmdp_huge_get_and_clear. So do the
1773 * pgtable_trans_huge_withdraw after finishing pmdp related
1774 * operations.
1775 */
1776 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1777 tlb->fullmm);
1778 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1779 if (vma_is_dax(vma)) {
3b6521f5
OH
1780 if (arch_needs_pgtable_deposit())
1781 zap_deposited_table(tlb->mm, pmd);
da146769
KS
1782 spin_unlock(ptl);
1783 if (is_huge_zero_pmd(orig_pmd))
c0f2e176 1784 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769 1785 } else if (is_huge_zero_pmd(orig_pmd)) {
c14a6eb4 1786 zap_deposited_table(tlb->mm, pmd);
da146769 1787 spin_unlock(ptl);
c0f2e176 1788 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769 1789 } else {
616b8371
ZY
1790 struct page *page = NULL;
1791 int flush_needed = 1;
1792
1793 if (pmd_present(orig_pmd)) {
1794 page = pmd_page(orig_pmd);
1795 page_remove_rmap(page, true);
1796 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1797 VM_BUG_ON_PAGE(!PageHead(page), page);
1798 } else if (thp_migration_supported()) {
1799 swp_entry_t entry;
1800
1801 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1802 entry = pmd_to_swp_entry(orig_pmd);
1803 page = pfn_to_page(swp_offset(entry));
1804 flush_needed = 0;
1805 } else
1806 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1807
b5072380 1808 if (PageAnon(page)) {
c14a6eb4 1809 zap_deposited_table(tlb->mm, pmd);
b5072380
KS
1810 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1811 } else {
953c66c2
AK
1812 if (arch_needs_pgtable_deposit())
1813 zap_deposited_table(tlb->mm, pmd);
fadae295 1814 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
b5072380 1815 }
616b8371 1816
da146769 1817 spin_unlock(ptl);
616b8371
ZY
1818 if (flush_needed)
1819 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
025c5b24 1820 }
da146769 1821 return 1;
71e3aac0
AA
1822}
1823
1dd38b6c
AK
1824#ifndef pmd_move_must_withdraw
1825static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1826 spinlock_t *old_pmd_ptl,
1827 struct vm_area_struct *vma)
1828{
1829 /*
1830 * With split pmd lock we also need to move preallocated
1831 * PTE page table if new_pmd is on different PMD page table.
1832 *
1833 * We also don't deposit and withdraw tables for file pages.
1834 */
1835 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1836}
1837#endif
1838
ab6e3d09
NH
1839static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1840{
1841#ifdef CONFIG_MEM_SOFT_DIRTY
1842 if (unlikely(is_pmd_migration_entry(pmd)))
1843 pmd = pmd_swp_mksoft_dirty(pmd);
1844 else if (pmd_present(pmd))
1845 pmd = pmd_mksoft_dirty(pmd);
1846#endif
1847 return pmd;
1848}
1849
bf8616d5 1850bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
37a1c49a 1851 unsigned long new_addr, unsigned long old_end,
eb66ae03 1852 pmd_t *old_pmd, pmd_t *new_pmd)
37a1c49a 1853{
bf929152 1854 spinlock_t *old_ptl, *new_ptl;
37a1c49a 1855 pmd_t pmd;
37a1c49a 1856 struct mm_struct *mm = vma->vm_mm;
5d190420 1857 bool force_flush = false;
37a1c49a
AA
1858
1859 if ((old_addr & ~HPAGE_PMD_MASK) ||
1860 (new_addr & ~HPAGE_PMD_MASK) ||
bf8616d5 1861 old_end - old_addr < HPAGE_PMD_SIZE)
4b471e88 1862 return false;
37a1c49a
AA
1863
1864 /*
1865 * The destination pmd shouldn't be established, free_pgtables()
1866 * should have release it.
1867 */
1868 if (WARN_ON(!pmd_none(*new_pmd))) {
1869 VM_BUG_ON(pmd_trans_huge(*new_pmd));
4b471e88 1870 return false;
37a1c49a
AA
1871 }
1872
bf929152
KS
1873 /*
1874 * We don't have to worry about the ordering of src and dst
1875 * ptlocks because exclusive mmap_sem prevents deadlock.
1876 */
b6ec57f4
KS
1877 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1878 if (old_ptl) {
bf929152
KS
1879 new_ptl = pmd_lockptr(mm, new_pmd);
1880 if (new_ptl != old_ptl)
1881 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
8809aa2d 1882 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
eb66ae03 1883 if (pmd_present(pmd))
a2ce2666 1884 force_flush = true;
025c5b24 1885 VM_BUG_ON(!pmd_none(*new_pmd));
3592806c 1886
1dd38b6c 1887 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
b3084f4d 1888 pgtable_t pgtable;
3592806c
KS
1889 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1890 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
3592806c 1891 }
ab6e3d09
NH
1892 pmd = move_soft_dirty_pmd(pmd);
1893 set_pmd_at(mm, new_addr, new_pmd, pmd);
5d190420
AL
1894 if (force_flush)
1895 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
eb66ae03
LT
1896 if (new_ptl != old_ptl)
1897 spin_unlock(new_ptl);
bf929152 1898 spin_unlock(old_ptl);
4b471e88 1899 return true;
37a1c49a 1900 }
4b471e88 1901 return false;
37a1c49a
AA
1902}
1903
f123d74a
MG
1904/*
1905 * Returns
1906 * - 0 if PMD could not be locked
1907 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1908 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1909 */
cd7548ab 1910int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
e944fd67 1911 unsigned long addr, pgprot_t newprot, int prot_numa)
cd7548ab
JW
1912{
1913 struct mm_struct *mm = vma->vm_mm;
bf929152 1914 spinlock_t *ptl;
0a85e51d
KS
1915 pmd_t entry;
1916 bool preserve_write;
1917 int ret;
cd7548ab 1918
b6ec57f4 1919 ptl = __pmd_trans_huge_lock(pmd, vma);
0a85e51d
KS
1920 if (!ptl)
1921 return 0;
e944fd67 1922
0a85e51d
KS
1923 preserve_write = prot_numa && pmd_write(*pmd);
1924 ret = 1;
e944fd67 1925
84c3fc4e
ZY
1926#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1927 if (is_swap_pmd(*pmd)) {
1928 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1929
1930 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1931 if (is_write_migration_entry(entry)) {
1932 pmd_t newpmd;
1933 /*
1934 * A protection check is difficult so
1935 * just be safe and disable write
1936 */
1937 make_migration_entry_read(&entry);
1938 newpmd = swp_entry_to_pmd(entry);
ab6e3d09
NH
1939 if (pmd_swp_soft_dirty(*pmd))
1940 newpmd = pmd_swp_mksoft_dirty(newpmd);
84c3fc4e
ZY
1941 set_pmd_at(mm, addr, pmd, newpmd);
1942 }
1943 goto unlock;
1944 }
1945#endif
1946
0a85e51d
KS
1947 /*
1948 * Avoid trapping faults against the zero page. The read-only
1949 * data is likely to be read-cached on the local CPU and
1950 * local/remote hits to the zero page are not interesting.
1951 */
1952 if (prot_numa && is_huge_zero_pmd(*pmd))
1953 goto unlock;
025c5b24 1954
0a85e51d
KS
1955 if (prot_numa && pmd_protnone(*pmd))
1956 goto unlock;
1957
ced10803
KS
1958 /*
1959 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1960 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1961 * which is also under down_read(mmap_sem):
1962 *
1963 * CPU0: CPU1:
1964 * change_huge_pmd(prot_numa=1)
1965 * pmdp_huge_get_and_clear_notify()
1966 * madvise_dontneed()
1967 * zap_pmd_range()
1968 * pmd_trans_huge(*pmd) == 0 (without ptl)
1969 * // skip the pmd
1970 * set_pmd_at();
1971 * // pmd is re-established
1972 *
1973 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1974 * which may break userspace.
1975 *
1976 * pmdp_invalidate() is required to make sure we don't miss
1977 * dirty/young flags set by hardware.
1978 */
a3cf988f 1979 entry = pmdp_invalidate(vma, addr, pmd);
ced10803 1980
0a85e51d
KS
1981 entry = pmd_modify(entry, newprot);
1982 if (preserve_write)
1983 entry = pmd_mk_savedwrite(entry);
1984 ret = HPAGE_PMD_NR;
1985 set_pmd_at(mm, addr, pmd, entry);
1986 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1987unlock:
1988 spin_unlock(ptl);
025c5b24
NH
1989 return ret;
1990}
1991
1992/*
8f19b0c0 1993 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
025c5b24 1994 *
8f19b0c0
HY
1995 * Note that if it returns page table lock pointer, this routine returns without
1996 * unlocking page table lock. So callers must unlock it.
025c5b24 1997 */
b6ec57f4 1998spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
025c5b24 1999{
b6ec57f4
KS
2000 spinlock_t *ptl;
2001 ptl = pmd_lock(vma->vm_mm, pmd);
84c3fc4e
ZY
2002 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
2003 pmd_devmap(*pmd)))
b6ec57f4
KS
2004 return ptl;
2005 spin_unlock(ptl);
2006 return NULL;
cd7548ab
JW
2007}
2008
a00cc7d9
MW
2009/*
2010 * Returns true if a given pud maps a thp, false otherwise.
2011 *
2012 * Note that if it returns true, this routine returns without unlocking page
2013 * table lock. So callers must unlock it.
2014 */
2015spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
2016{
2017 spinlock_t *ptl;
2018
2019 ptl = pud_lock(vma->vm_mm, pud);
2020 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
2021 return ptl;
2022 spin_unlock(ptl);
2023 return NULL;
2024}
2025
2026#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2027int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2028 pud_t *pud, unsigned long addr)
2029{
a00cc7d9
MW
2030 spinlock_t *ptl;
2031
2032 ptl = __pud_trans_huge_lock(pud, vma);
2033 if (!ptl)
2034 return 0;
2035 /*
2036 * For architectures like ppc64 we look at deposited pgtable
2037 * when calling pudp_huge_get_and_clear. So do the
2038 * pgtable_trans_huge_withdraw after finishing pudp related
2039 * operations.
2040 */
70516b93 2041 pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
a00cc7d9
MW
2042 tlb_remove_pud_tlb_entry(tlb, pud, addr);
2043 if (vma_is_dax(vma)) {
2044 spin_unlock(ptl);
2045 /* No zero page support yet */
2046 } else {
2047 /* No support for anonymous PUD pages yet */
2048 BUG();
2049 }
2050 return 1;
2051}
2052
2053static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2054 unsigned long haddr)
2055{
2056 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2057 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2058 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2059 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2060
ce9311cf 2061 count_vm_event(THP_SPLIT_PUD);
a00cc7d9
MW
2062
2063 pudp_huge_clear_flush_notify(vma, haddr, pud);
2064}
2065
2066void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2067 unsigned long address)
2068{
2069 spinlock_t *ptl;
ac46d4f3 2070 struct mmu_notifier_range range;
a00cc7d9 2071
7269f999 2072 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 2073 address & HPAGE_PUD_MASK,
ac46d4f3
JG
2074 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2075 mmu_notifier_invalidate_range_start(&range);
2076 ptl = pud_lock(vma->vm_mm, pud);
a00cc7d9
MW
2077 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2078 goto out;
ac46d4f3 2079 __split_huge_pud_locked(vma, pud, range.start);
a00cc7d9
MW
2080
2081out:
2082 spin_unlock(ptl);
4645b9fe
JG
2083 /*
2084 * No need to double call mmu_notifier->invalidate_range() callback as
2085 * the above pudp_huge_clear_flush_notify() did already call it.
2086 */
ac46d4f3 2087 mmu_notifier_invalidate_range_only_end(&range);
a00cc7d9
MW
2088}
2089#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2090
eef1b3ba
KS
2091static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2092 unsigned long haddr, pmd_t *pmd)
2093{
2094 struct mm_struct *mm = vma->vm_mm;
2095 pgtable_t pgtable;
2096 pmd_t _pmd;
2097 int i;
2098
0f10851e
JG
2099 /*
2100 * Leave pmd empty until pte is filled note that it is fine to delay
2101 * notification until mmu_notifier_invalidate_range_end() as we are
2102 * replacing a zero pmd write protected page with a zero pte write
2103 * protected page.
2104 *
ad56b738 2105 * See Documentation/vm/mmu_notifier.rst
0f10851e
JG
2106 */
2107 pmdp_huge_clear_flush(vma, haddr, pmd);
eef1b3ba
KS
2108
2109 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2110 pmd_populate(mm, &_pmd, pgtable);
2111
2112 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2113 pte_t *pte, entry;
2114 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2115 entry = pte_mkspecial(entry);
2116 pte = pte_offset_map(&_pmd, haddr);
2117 VM_BUG_ON(!pte_none(*pte));
2118 set_pte_at(mm, haddr, pte, entry);
2119 pte_unmap(pte);
2120 }
2121 smp_wmb(); /* make pte visible before pmd */
2122 pmd_populate(mm, pmd, pgtable);
eef1b3ba
KS
2123}
2124
2125static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
ba988280 2126 unsigned long haddr, bool freeze)
eef1b3ba
KS
2127{
2128 struct mm_struct *mm = vma->vm_mm;
2129 struct page *page;
2130 pgtable_t pgtable;
423ac9af 2131 pmd_t old_pmd, _pmd;
a3cf988f 2132 bool young, write, soft_dirty, pmd_migration = false;
2ac015e2 2133 unsigned long addr;
eef1b3ba
KS
2134 int i;
2135
2136 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2137 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2138 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
84c3fc4e
ZY
2139 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2140 && !pmd_devmap(*pmd));
eef1b3ba
KS
2141
2142 count_vm_event(THP_SPLIT_PMD);
2143
d21b9e57
KS
2144 if (!vma_is_anonymous(vma)) {
2145 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
953c66c2
AK
2146 /*
2147 * We are going to unmap this huge page. So
2148 * just go ahead and zap it
2149 */
2150 if (arch_needs_pgtable_deposit())
2151 zap_deposited_table(mm, pmd);
d21b9e57
KS
2152 if (vma_is_dax(vma))
2153 return;
2154 page = pmd_page(_pmd);
e1f1b157
HD
2155 if (!PageDirty(page) && pmd_dirty(_pmd))
2156 set_page_dirty(page);
d21b9e57
KS
2157 if (!PageReferenced(page) && pmd_young(_pmd))
2158 SetPageReferenced(page);
2159 page_remove_rmap(page, true);
2160 put_page(page);
fadae295 2161 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
eef1b3ba
KS
2162 return;
2163 } else if (is_huge_zero_pmd(*pmd)) {
4645b9fe
JG
2164 /*
2165 * FIXME: Do we want to invalidate secondary mmu by calling
2166 * mmu_notifier_invalidate_range() see comments below inside
2167 * __split_huge_pmd() ?
2168 *
2169 * We are going from a zero huge page write protected to zero
2170 * small page also write protected so it does not seems useful
2171 * to invalidate secondary mmu at this time.
2172 */
eef1b3ba
KS
2173 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2174 }
2175
423ac9af
AK
2176 /*
2177 * Up to this point the pmd is present and huge and userland has the
2178 * whole access to the hugepage during the split (which happens in
2179 * place). If we overwrite the pmd with the not-huge version pointing
2180 * to the pte here (which of course we could if all CPUs were bug
2181 * free), userland could trigger a small page size TLB miss on the
2182 * small sized TLB while the hugepage TLB entry is still established in
2183 * the huge TLB. Some CPU doesn't like that.
2184 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2185 * 383 on page 93. Intel should be safe but is also warns that it's
2186 * only safe if the permission and cache attributes of the two entries
2187 * loaded in the two TLB is identical (which should be the case here).
2188 * But it is generally safer to never allow small and huge TLB entries
2189 * for the same virtual address to be loaded simultaneously. So instead
2190 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2191 * current pmd notpresent (atomically because here the pmd_trans_huge
2192 * must remain set at all times on the pmd until the split is complete
2193 * for this pmd), then we flush the SMP TLB and finally we write the
2194 * non-huge version of the pmd entry with pmd_populate.
2195 */
2196 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2197
423ac9af 2198 pmd_migration = is_pmd_migration_entry(old_pmd);
2e83ee1d 2199 if (unlikely(pmd_migration)) {
84c3fc4e
ZY
2200 swp_entry_t entry;
2201
423ac9af 2202 entry = pmd_to_swp_entry(old_pmd);
84c3fc4e 2203 page = pfn_to_page(swp_offset(entry));
2e83ee1d
PX
2204 write = is_write_migration_entry(entry);
2205 young = false;
2206 soft_dirty = pmd_swp_soft_dirty(old_pmd);
2207 } else {
423ac9af 2208 page = pmd_page(old_pmd);
2e83ee1d
PX
2209 if (pmd_dirty(old_pmd))
2210 SetPageDirty(page);
2211 write = pmd_write(old_pmd);
2212 young = pmd_young(old_pmd);
2213 soft_dirty = pmd_soft_dirty(old_pmd);
2214 }
eef1b3ba 2215 VM_BUG_ON_PAGE(!page_count(page), page);
fe896d18 2216 page_ref_add(page, HPAGE_PMD_NR - 1);
eef1b3ba 2217
423ac9af
AK
2218 /*
2219 * Withdraw the table only after we mark the pmd entry invalid.
2220 * This's critical for some architectures (Power).
2221 */
eef1b3ba
KS
2222 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2223 pmd_populate(mm, &_pmd, pgtable);
2224
2ac015e2 2225 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
eef1b3ba
KS
2226 pte_t entry, *pte;
2227 /*
2228 * Note that NUMA hinting access restrictions are not
2229 * transferred to avoid any possibility of altering
2230 * permissions across VMAs.
2231 */
84c3fc4e 2232 if (freeze || pmd_migration) {
ba988280
KS
2233 swp_entry_t swp_entry;
2234 swp_entry = make_migration_entry(page + i, write);
2235 entry = swp_entry_to_pte(swp_entry);
804dd150
AA
2236 if (soft_dirty)
2237 entry = pte_swp_mksoft_dirty(entry);
ba988280 2238 } else {
6d2329f8 2239 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
b8d3c4c3 2240 entry = maybe_mkwrite(entry, vma);
ba988280
KS
2241 if (!write)
2242 entry = pte_wrprotect(entry);
2243 if (!young)
2244 entry = pte_mkold(entry);
804dd150
AA
2245 if (soft_dirty)
2246 entry = pte_mksoft_dirty(entry);
ba988280 2247 }
2ac015e2 2248 pte = pte_offset_map(&_pmd, addr);
eef1b3ba 2249 BUG_ON(!pte_none(*pte));
2ac015e2 2250 set_pte_at(mm, addr, pte, entry);
eef1b3ba
KS
2251 atomic_inc(&page[i]._mapcount);
2252 pte_unmap(pte);
2253 }
2254
2255 /*
2256 * Set PG_double_map before dropping compound_mapcount to avoid
2257 * false-negative page_mapped().
2258 */
2259 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2260 for (i = 0; i < HPAGE_PMD_NR; i++)
2261 atomic_inc(&page[i]._mapcount);
2262 }
2263
2264 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2265 /* Last compound_mapcount is gone. */
11fb9989 2266 __dec_node_page_state(page, NR_ANON_THPS);
eef1b3ba
KS
2267 if (TestClearPageDoubleMap(page)) {
2268 /* No need in mapcount reference anymore */
2269 for (i = 0; i < HPAGE_PMD_NR; i++)
2270 atomic_dec(&page[i]._mapcount);
2271 }
2272 }
2273
2274 smp_wmb(); /* make pte visible before pmd */
2275 pmd_populate(mm, pmd, pgtable);
e9b61f19
KS
2276
2277 if (freeze) {
2ac015e2 2278 for (i = 0; i < HPAGE_PMD_NR; i++) {
e9b61f19
KS
2279 page_remove_rmap(page + i, false);
2280 put_page(page + i);
2281 }
2282 }
eef1b3ba
KS
2283}
2284
2285void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
33f4751e 2286 unsigned long address, bool freeze, struct page *page)
eef1b3ba
KS
2287{
2288 spinlock_t *ptl;
ac46d4f3 2289 struct mmu_notifier_range range;
eef1b3ba 2290
7269f999 2291 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 2292 address & HPAGE_PMD_MASK,
ac46d4f3
JG
2293 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2294 mmu_notifier_invalidate_range_start(&range);
2295 ptl = pmd_lock(vma->vm_mm, pmd);
33f4751e
NH
2296
2297 /*
2298 * If caller asks to setup a migration entries, we need a page to check
2299 * pmd against. Otherwise we can end up replacing wrong page.
2300 */
2301 VM_BUG_ON(freeze && !page);
2302 if (page && page != pmd_page(*pmd))
2303 goto out;
2304
5c7fb56e 2305 if (pmd_trans_huge(*pmd)) {
33f4751e 2306 page = pmd_page(*pmd);
5c7fb56e 2307 if (PageMlocked(page))
5f737714 2308 clear_page_mlock(page);
84c3fc4e 2309 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
e90309c9 2310 goto out;
ac46d4f3 2311 __split_huge_pmd_locked(vma, pmd, range.start, freeze);
e90309c9 2312out:
eef1b3ba 2313 spin_unlock(ptl);
4645b9fe
JG
2314 /*
2315 * No need to double call mmu_notifier->invalidate_range() callback.
2316 * They are 3 cases to consider inside __split_huge_pmd_locked():
2317 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2318 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2319 * fault will trigger a flush_notify before pointing to a new page
2320 * (it is fine if the secondary mmu keeps pointing to the old zero
2321 * page in the meantime)
2322 * 3) Split a huge pmd into pte pointing to the same page. No need
2323 * to invalidate secondary tlb entry they are all still valid.
2324 * any further changes to individual pte will notify. So no need
2325 * to call mmu_notifier->invalidate_range()
2326 */
ac46d4f3 2327 mmu_notifier_invalidate_range_only_end(&range);
eef1b3ba
KS
2328}
2329
fec89c10
KS
2330void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2331 bool freeze, struct page *page)
94fcc585 2332{
f72e7dcd 2333 pgd_t *pgd;
c2febafc 2334 p4d_t *p4d;
f72e7dcd 2335 pud_t *pud;
94fcc585
AA
2336 pmd_t *pmd;
2337
78ddc534 2338 pgd = pgd_offset(vma->vm_mm, address);
f72e7dcd
HD
2339 if (!pgd_present(*pgd))
2340 return;
2341
c2febafc
KS
2342 p4d = p4d_offset(pgd, address);
2343 if (!p4d_present(*p4d))
2344 return;
2345
2346 pud = pud_offset(p4d, address);
f72e7dcd
HD
2347 if (!pud_present(*pud))
2348 return;
2349
2350 pmd = pmd_offset(pud, address);
fec89c10 2351
33f4751e 2352 __split_huge_pmd(vma, pmd, address, freeze, page);
94fcc585
AA
2353}
2354
e1b9996b 2355void vma_adjust_trans_huge(struct vm_area_struct *vma,
94fcc585
AA
2356 unsigned long start,
2357 unsigned long end,
2358 long adjust_next)
2359{
2360 /*
2361 * If the new start address isn't hpage aligned and it could
2362 * previously contain an hugepage: check if we need to split
2363 * an huge pmd.
2364 */
2365 if (start & ~HPAGE_PMD_MASK &&
2366 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2367 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 2368 split_huge_pmd_address(vma, start, false, NULL);
94fcc585
AA
2369
2370 /*
2371 * If the new end address isn't hpage aligned and it could
2372 * previously contain an hugepage: check if we need to split
2373 * an huge pmd.
2374 */
2375 if (end & ~HPAGE_PMD_MASK &&
2376 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2377 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 2378 split_huge_pmd_address(vma, end, false, NULL);
94fcc585
AA
2379
2380 /*
2381 * If we're also updating the vma->vm_next->vm_start, if the new
2382 * vm_next->vm_start isn't page aligned and it could previously
2383 * contain an hugepage: check if we need to split an huge pmd.
2384 */
2385 if (adjust_next > 0) {
2386 struct vm_area_struct *next = vma->vm_next;
2387 unsigned long nstart = next->vm_start;
2388 nstart += adjust_next << PAGE_SHIFT;
2389 if (nstart & ~HPAGE_PMD_MASK &&
2390 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2391 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
fec89c10 2392 split_huge_pmd_address(next, nstart, false, NULL);
94fcc585
AA
2393 }
2394}
e9b61f19 2395
906f9cdf 2396static void unmap_page(struct page *page)
e9b61f19 2397{
baa355fd 2398 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
c7ab0d2f 2399 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
666e5a40 2400 bool unmap_success;
e9b61f19
KS
2401
2402 VM_BUG_ON_PAGE(!PageHead(page), page);
2403
baa355fd 2404 if (PageAnon(page))
b5ff8161 2405 ttu_flags |= TTU_SPLIT_FREEZE;
baa355fd 2406
666e5a40
MK
2407 unmap_success = try_to_unmap(page, ttu_flags);
2408 VM_BUG_ON_PAGE(!unmap_success, page);
e9b61f19
KS
2409}
2410
906f9cdf 2411static void remap_page(struct page *page)
e9b61f19 2412{
fec89c10 2413 int i;
ace71a19
KS
2414 if (PageTransHuge(page)) {
2415 remove_migration_ptes(page, page, true);
2416 } else {
2417 for (i = 0; i < HPAGE_PMD_NR; i++)
2418 remove_migration_ptes(page + i, page + i, true);
2419 }
e9b61f19
KS
2420}
2421
8df651c7 2422static void __split_huge_page_tail(struct page *head, int tail,
e9b61f19
KS
2423 struct lruvec *lruvec, struct list_head *list)
2424{
e9b61f19
KS
2425 struct page *page_tail = head + tail;
2426
8df651c7 2427 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
e9b61f19
KS
2428
2429 /*
605ca5ed
KK
2430 * Clone page flags before unfreezing refcount.
2431 *
2432 * After successful get_page_unless_zero() might follow flags change,
2433 * for exmaple lock_page() which set PG_waiters.
e9b61f19 2434 */
e9b61f19
KS
2435 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2436 page_tail->flags |= (head->flags &
2437 ((1L << PG_referenced) |
2438 (1L << PG_swapbacked) |
38d8b4e6 2439 (1L << PG_swapcache) |
e9b61f19
KS
2440 (1L << PG_mlocked) |
2441 (1L << PG_uptodate) |
2442 (1L << PG_active) |
1899ad18 2443 (1L << PG_workingset) |
e9b61f19 2444 (1L << PG_locked) |
b8d3c4c3
MK
2445 (1L << PG_unevictable) |
2446 (1L << PG_dirty)));
e9b61f19 2447
173d9d9f
HD
2448 /* ->mapping in first tail page is compound_mapcount */
2449 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2450 page_tail);
2451 page_tail->mapping = head->mapping;
2452 page_tail->index = head->index + tail;
2453
605ca5ed 2454 /* Page flags must be visible before we make the page non-compound. */
e9b61f19
KS
2455 smp_wmb();
2456
605ca5ed
KK
2457 /*
2458 * Clear PageTail before unfreezing page refcount.
2459 *
2460 * After successful get_page_unless_zero() might follow put_page()
2461 * which needs correct compound_head().
2462 */
e9b61f19
KS
2463 clear_compound_head(page_tail);
2464
605ca5ed
KK
2465 /* Finally unfreeze refcount. Additional reference from page cache. */
2466 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2467 PageSwapCache(head)));
2468
e9b61f19
KS
2469 if (page_is_young(head))
2470 set_page_young(page_tail);
2471 if (page_is_idle(head))
2472 set_page_idle(page_tail);
2473
e9b61f19 2474 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
94723aaf
MH
2475
2476 /*
2477 * always add to the tail because some iterators expect new
2478 * pages to show after the currently processed elements - e.g.
2479 * migrate_pages
2480 */
e9b61f19 2481 lru_add_page_tail(head, page_tail, lruvec, list);
e9b61f19
KS
2482}
2483
baa355fd 2484static void __split_huge_page(struct page *page, struct list_head *list,
006d3ff2 2485 pgoff_t end, unsigned long flags)
e9b61f19
KS
2486{
2487 struct page *head = compound_head(page);
f4b7e272 2488 pg_data_t *pgdat = page_pgdat(head);
e9b61f19 2489 struct lruvec *lruvec;
8df651c7 2490 int i;
e9b61f19 2491
f4b7e272 2492 lruvec = mem_cgroup_page_lruvec(head, pgdat);
e9b61f19
KS
2493
2494 /* complete memcg works before add pages to LRU */
2495 mem_cgroup_split_huge_fixup(head);
2496
baa355fd 2497 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
8df651c7 2498 __split_huge_page_tail(head, i, lruvec, list);
baa355fd
KS
2499 /* Some pages can be beyond i_size: drop them from page cache */
2500 if (head[i].index >= end) {
2d077d4b 2501 ClearPageDirty(head + i);
baa355fd 2502 __delete_from_page_cache(head + i, NULL);
800d8c63
KS
2503 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2504 shmem_uncharge(head->mapping->host, 1);
baa355fd
KS
2505 put_page(head + i);
2506 }
2507 }
e9b61f19
KS
2508
2509 ClearPageCompound(head);
f7da677b
VB
2510
2511 split_page_owner(head, HPAGE_PMD_ORDER);
2512
baa355fd
KS
2513 /* See comment in __split_huge_page_tail() */
2514 if (PageAnon(head)) {
aa5dc07f 2515 /* Additional pin to swap cache */
38d8b4e6
HY
2516 if (PageSwapCache(head))
2517 page_ref_add(head, 2);
2518 else
2519 page_ref_inc(head);
baa355fd 2520 } else {
aa5dc07f 2521 /* Additional pin to page cache */
baa355fd 2522 page_ref_add(head, 2);
b93b0163 2523 xa_unlock(&head->mapping->i_pages);
baa355fd
KS
2524 }
2525
f4b7e272 2526 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
e9b61f19 2527
906f9cdf 2528 remap_page(head);
e9b61f19
KS
2529
2530 for (i = 0; i < HPAGE_PMD_NR; i++) {
2531 struct page *subpage = head + i;
2532 if (subpage == page)
2533 continue;
2534 unlock_page(subpage);
2535
2536 /*
2537 * Subpages may be freed if there wasn't any mapping
2538 * like if add_to_swap() is running on a lru page that
2539 * had its mapping zapped. And freeing these pages
2540 * requires taking the lru_lock so we do the put_page
2541 * of the tail pages after the split is complete.
2542 */
2543 put_page(subpage);
2544 }
2545}
2546
b20ce5e0
KS
2547int total_mapcount(struct page *page)
2548{
dd78fedd 2549 int i, compound, ret;
b20ce5e0
KS
2550
2551 VM_BUG_ON_PAGE(PageTail(page), page);
2552
2553 if (likely(!PageCompound(page)))
2554 return atomic_read(&page->_mapcount) + 1;
2555
dd78fedd 2556 compound = compound_mapcount(page);
b20ce5e0 2557 if (PageHuge(page))
dd78fedd
KS
2558 return compound;
2559 ret = compound;
b20ce5e0
KS
2560 for (i = 0; i < HPAGE_PMD_NR; i++)
2561 ret += atomic_read(&page[i]._mapcount) + 1;
dd78fedd
KS
2562 /* File pages has compound_mapcount included in _mapcount */
2563 if (!PageAnon(page))
2564 return ret - compound * HPAGE_PMD_NR;
b20ce5e0
KS
2565 if (PageDoubleMap(page))
2566 ret -= HPAGE_PMD_NR;
2567 return ret;
2568}
2569
6d0a07ed
AA
2570/*
2571 * This calculates accurately how many mappings a transparent hugepage
2572 * has (unlike page_mapcount() which isn't fully accurate). This full
2573 * accuracy is primarily needed to know if copy-on-write faults can
2574 * reuse the page and change the mapping to read-write instead of
2575 * copying them. At the same time this returns the total_mapcount too.
2576 *
2577 * The function returns the highest mapcount any one of the subpages
2578 * has. If the return value is one, even if different processes are
2579 * mapping different subpages of the transparent hugepage, they can
2580 * all reuse it, because each process is reusing a different subpage.
2581 *
2582 * The total_mapcount is instead counting all virtual mappings of the
2583 * subpages. If the total_mapcount is equal to "one", it tells the
2584 * caller all mappings belong to the same "mm" and in turn the
2585 * anon_vma of the transparent hugepage can become the vma->anon_vma
2586 * local one as no other process may be mapping any of the subpages.
2587 *
2588 * It would be more accurate to replace page_mapcount() with
2589 * page_trans_huge_mapcount(), however we only use
2590 * page_trans_huge_mapcount() in the copy-on-write faults where we
2591 * need full accuracy to avoid breaking page pinning, because
2592 * page_trans_huge_mapcount() is slower than page_mapcount().
2593 */
2594int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2595{
2596 int i, ret, _total_mapcount, mapcount;
2597
2598 /* hugetlbfs shouldn't call it */
2599 VM_BUG_ON_PAGE(PageHuge(page), page);
2600
2601 if (likely(!PageTransCompound(page))) {
2602 mapcount = atomic_read(&page->_mapcount) + 1;
2603 if (total_mapcount)
2604 *total_mapcount = mapcount;
2605 return mapcount;
2606 }
2607
2608 page = compound_head(page);
2609
2610 _total_mapcount = ret = 0;
2611 for (i = 0; i < HPAGE_PMD_NR; i++) {
2612 mapcount = atomic_read(&page[i]._mapcount) + 1;
2613 ret = max(ret, mapcount);
2614 _total_mapcount += mapcount;
2615 }
2616 if (PageDoubleMap(page)) {
2617 ret -= 1;
2618 _total_mapcount -= HPAGE_PMD_NR;
2619 }
2620 mapcount = compound_mapcount(page);
2621 ret += mapcount;
2622 _total_mapcount += mapcount;
2623 if (total_mapcount)
2624 *total_mapcount = _total_mapcount;
2625 return ret;
2626}
2627
b8f593cd
HY
2628/* Racy check whether the huge page can be split */
2629bool can_split_huge_page(struct page *page, int *pextra_pins)
2630{
2631 int extra_pins;
2632
aa5dc07f 2633 /* Additional pins from page cache */
b8f593cd
HY
2634 if (PageAnon(page))
2635 extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2636 else
2637 extra_pins = HPAGE_PMD_NR;
2638 if (pextra_pins)
2639 *pextra_pins = extra_pins;
2640 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2641}
2642
e9b61f19
KS
2643/*
2644 * This function splits huge page into normal pages. @page can point to any
2645 * subpage of huge page to split. Split doesn't change the position of @page.
2646 *
2647 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2648 * The huge page must be locked.
2649 *
2650 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2651 *
2652 * Both head page and tail pages will inherit mapping, flags, and so on from
2653 * the hugepage.
2654 *
2655 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2656 * they are not mapped.
2657 *
2658 * Returns 0 if the hugepage is split successfully.
2659 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2660 * us.
2661 */
2662int split_huge_page_to_list(struct page *page, struct list_head *list)
2663{
2664 struct page *head = compound_head(page);
a3d0a918 2665 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
baa355fd
KS
2666 struct anon_vma *anon_vma = NULL;
2667 struct address_space *mapping = NULL;
2668 int count, mapcount, extra_pins, ret;
d9654322 2669 bool mlocked;
0b9b6fff 2670 unsigned long flags;
006d3ff2 2671 pgoff_t end;
e9b61f19
KS
2672
2673 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
e9b61f19 2674 VM_BUG_ON_PAGE(!PageLocked(page), page);
e9b61f19
KS
2675 VM_BUG_ON_PAGE(!PageCompound(page), page);
2676
59807685
HY
2677 if (PageWriteback(page))
2678 return -EBUSY;
2679
baa355fd
KS
2680 if (PageAnon(head)) {
2681 /*
2682 * The caller does not necessarily hold an mmap_sem that would
2683 * prevent the anon_vma disappearing so we first we take a
2684 * reference to it and then lock the anon_vma for write. This
2685 * is similar to page_lock_anon_vma_read except the write lock
2686 * is taken to serialise against parallel split or collapse
2687 * operations.
2688 */
2689 anon_vma = page_get_anon_vma(head);
2690 if (!anon_vma) {
2691 ret = -EBUSY;
2692 goto out;
2693 }
006d3ff2 2694 end = -1;
baa355fd
KS
2695 mapping = NULL;
2696 anon_vma_lock_write(anon_vma);
2697 } else {
2698 mapping = head->mapping;
2699
2700 /* Truncated ? */
2701 if (!mapping) {
2702 ret = -EBUSY;
2703 goto out;
2704 }
2705
baa355fd
KS
2706 anon_vma = NULL;
2707 i_mmap_lock_read(mapping);
006d3ff2
HD
2708
2709 /*
2710 *__split_huge_page() may need to trim off pages beyond EOF:
2711 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2712 * which cannot be nested inside the page tree lock. So note
2713 * end now: i_size itself may be changed at any moment, but
2714 * head page lock is good enough to serialize the trimming.
2715 */
2716 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
e9b61f19 2717 }
e9b61f19
KS
2718
2719 /*
906f9cdf 2720 * Racy check if we can split the page, before unmap_page() will
e9b61f19
KS
2721 * split PMDs
2722 */
b8f593cd 2723 if (!can_split_huge_page(head, &extra_pins)) {
e9b61f19
KS
2724 ret = -EBUSY;
2725 goto out_unlock;
2726 }
2727
d9654322 2728 mlocked = PageMlocked(page);
906f9cdf 2729 unmap_page(head);
e9b61f19
KS
2730 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2731
d9654322
KS
2732 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2733 if (mlocked)
2734 lru_add_drain();
2735
baa355fd 2736 /* prevent PageLRU to go away from under us, and freeze lru stats */
f4b7e272 2737 spin_lock_irqsave(&pgdata->lru_lock, flags);
baa355fd
KS
2738
2739 if (mapping) {
aa5dc07f 2740 XA_STATE(xas, &mapping->i_pages, page_index(head));
baa355fd 2741
baa355fd 2742 /*
aa5dc07f 2743 * Check if the head page is present in page cache.
baa355fd
KS
2744 * We assume all tail are present too, if head is there.
2745 */
aa5dc07f
MW
2746 xa_lock(&mapping->i_pages);
2747 if (xas_load(&xas) != head)
baa355fd
KS
2748 goto fail;
2749 }
2750
0139aa7b 2751 /* Prevent deferred_split_scan() touching ->_refcount */
baa355fd 2752 spin_lock(&pgdata->split_queue_lock);
e9b61f19
KS
2753 count = page_count(head);
2754 mapcount = total_mapcount(head);
baa355fd 2755 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
9a982250 2756 if (!list_empty(page_deferred_list(head))) {
a3d0a918 2757 pgdata->split_queue_len--;
9a982250
KS
2758 list_del(page_deferred_list(head));
2759 }
65c45377 2760 if (mapping)
11fb9989 2761 __dec_node_page_state(page, NR_SHMEM_THPS);
baa355fd 2762 spin_unlock(&pgdata->split_queue_lock);
006d3ff2 2763 __split_huge_page(page, list, end, flags);
59807685
HY
2764 if (PageSwapCache(head)) {
2765 swp_entry_t entry = { .val = page_private(head) };
2766
2767 ret = split_swap_cluster(entry);
2768 } else
2769 ret = 0;
e9b61f19 2770 } else {
baa355fd
KS
2771 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2772 pr_alert("total_mapcount: %u, page_count(): %u\n",
2773 mapcount, count);
2774 if (PageTail(page))
2775 dump_page(head, NULL);
2776 dump_page(page, "total_mapcount(head) > 0");
2777 BUG();
2778 }
2779 spin_unlock(&pgdata->split_queue_lock);
2780fail: if (mapping)
b93b0163 2781 xa_unlock(&mapping->i_pages);
f4b7e272 2782 spin_unlock_irqrestore(&pgdata->lru_lock, flags);
906f9cdf 2783 remap_page(head);
e9b61f19
KS
2784 ret = -EBUSY;
2785 }
2786
2787out_unlock:
baa355fd
KS
2788 if (anon_vma) {
2789 anon_vma_unlock_write(anon_vma);
2790 put_anon_vma(anon_vma);
2791 }
2792 if (mapping)
2793 i_mmap_unlock_read(mapping);
e9b61f19
KS
2794out:
2795 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2796 return ret;
2797}
9a982250
KS
2798
2799void free_transhuge_page(struct page *page)
2800{
a3d0a918 2801 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
9a982250
KS
2802 unsigned long flags;
2803
a3d0a918 2804 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2805 if (!list_empty(page_deferred_list(page))) {
a3d0a918 2806 pgdata->split_queue_len--;
9a982250
KS
2807 list_del(page_deferred_list(page));
2808 }
a3d0a918 2809 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2810 free_compound_page(page);
2811}
2812
2813void deferred_split_huge_page(struct page *page)
2814{
a3d0a918 2815 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
9a982250
KS
2816 unsigned long flags;
2817
2818 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2819
a3d0a918 2820 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2821 if (list_empty(page_deferred_list(page))) {
f9719a03 2822 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
a3d0a918
KS
2823 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2824 pgdata->split_queue_len++;
9a982250 2825 }
a3d0a918 2826 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2827}
2828
2829static unsigned long deferred_split_count(struct shrinker *shrink,
2830 struct shrink_control *sc)
2831{
a3d0a918 2832 struct pglist_data *pgdata = NODE_DATA(sc->nid);
6aa7de05 2833 return READ_ONCE(pgdata->split_queue_len);
9a982250
KS
2834}
2835
2836static unsigned long deferred_split_scan(struct shrinker *shrink,
2837 struct shrink_control *sc)
2838{
a3d0a918 2839 struct pglist_data *pgdata = NODE_DATA(sc->nid);
9a982250
KS
2840 unsigned long flags;
2841 LIST_HEAD(list), *pos, *next;
2842 struct page *page;
2843 int split = 0;
2844
a3d0a918 2845 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2846 /* Take pin on all head pages to avoid freeing them under us */
ae026204 2847 list_for_each_safe(pos, next, &pgdata->split_queue) {
9a982250
KS
2848 page = list_entry((void *)pos, struct page, mapping);
2849 page = compound_head(page);
e3ae1953
KS
2850 if (get_page_unless_zero(page)) {
2851 list_move(page_deferred_list(page), &list);
2852 } else {
2853 /* We lost race with put_compound_page() */
9a982250 2854 list_del_init(page_deferred_list(page));
a3d0a918 2855 pgdata->split_queue_len--;
9a982250 2856 }
e3ae1953
KS
2857 if (!--sc->nr_to_scan)
2858 break;
9a982250 2859 }
a3d0a918 2860 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2861
2862 list_for_each_safe(pos, next, &list) {
2863 page = list_entry((void *)pos, struct page, mapping);
fa41b900
KS
2864 if (!trylock_page(page))
2865 goto next;
9a982250
KS
2866 /* split_huge_page() removes page from list on success */
2867 if (!split_huge_page(page))
2868 split++;
2869 unlock_page(page);
fa41b900 2870next:
9a982250
KS
2871 put_page(page);
2872 }
2873
a3d0a918
KS
2874 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2875 list_splice_tail(&list, &pgdata->split_queue);
2876 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250 2877
cb8d68ec
KS
2878 /*
2879 * Stop shrinker if we didn't split any page, but the queue is empty.
2880 * This can happen if pages were freed under us.
2881 */
2882 if (!split && list_empty(&pgdata->split_queue))
2883 return SHRINK_STOP;
2884 return split;
9a982250
KS
2885}
2886
2887static struct shrinker deferred_split_shrinker = {
2888 .count_objects = deferred_split_count,
2889 .scan_objects = deferred_split_scan,
2890 .seeks = DEFAULT_SEEKS,
a3d0a918 2891 .flags = SHRINKER_NUMA_AWARE,
9a982250 2892};
49071d43
KS
2893
2894#ifdef CONFIG_DEBUG_FS
2895static int split_huge_pages_set(void *data, u64 val)
2896{
2897 struct zone *zone;
2898 struct page *page;
2899 unsigned long pfn, max_zone_pfn;
2900 unsigned long total = 0, split = 0;
2901
2902 if (val != 1)
2903 return -EINVAL;
2904
2905 for_each_populated_zone(zone) {
2906 max_zone_pfn = zone_end_pfn(zone);
2907 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2908 if (!pfn_valid(pfn))
2909 continue;
2910
2911 page = pfn_to_page(pfn);
2912 if (!get_page_unless_zero(page))
2913 continue;
2914
2915 if (zone != page_zone(page))
2916 goto next;
2917
baa355fd 2918 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
49071d43
KS
2919 goto next;
2920
2921 total++;
2922 lock_page(page);
2923 if (!split_huge_page(page))
2924 split++;
2925 unlock_page(page);
2926next:
2927 put_page(page);
2928 }
2929 }
2930
145bdaa1 2931 pr_info("%lu of %lu THP split\n", split, total);
49071d43
KS
2932
2933 return 0;
2934}
2935DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2936 "%llu\n");
2937
2938static int __init split_huge_pages_debugfs(void)
2939{
d9f7979c
GKH
2940 debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2941 &split_huge_pages_fops);
49071d43
KS
2942 return 0;
2943}
2944late_initcall(split_huge_pages_debugfs);
2945#endif
616b8371
ZY
2946
2947#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2948void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2949 struct page *page)
2950{
2951 struct vm_area_struct *vma = pvmw->vma;
2952 struct mm_struct *mm = vma->vm_mm;
2953 unsigned long address = pvmw->address;
2954 pmd_t pmdval;
2955 swp_entry_t entry;
ab6e3d09 2956 pmd_t pmdswp;
616b8371
ZY
2957
2958 if (!(pvmw->pmd && !pvmw->pte))
2959 return;
2960
616b8371
ZY
2961 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2962 pmdval = *pvmw->pmd;
2963 pmdp_invalidate(vma, address, pvmw->pmd);
2964 if (pmd_dirty(pmdval))
2965 set_page_dirty(page);
2966 entry = make_migration_entry(page, pmd_write(pmdval));
ab6e3d09
NH
2967 pmdswp = swp_entry_to_pmd(entry);
2968 if (pmd_soft_dirty(pmdval))
2969 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2970 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
616b8371
ZY
2971 page_remove_rmap(page, true);
2972 put_page(page);
616b8371
ZY
2973}
2974
2975void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2976{
2977 struct vm_area_struct *vma = pvmw->vma;
2978 struct mm_struct *mm = vma->vm_mm;
2979 unsigned long address = pvmw->address;
2980 unsigned long mmun_start = address & HPAGE_PMD_MASK;
2981 pmd_t pmde;
2982 swp_entry_t entry;
2983
2984 if (!(pvmw->pmd && !pvmw->pte))
2985 return;
2986
2987 entry = pmd_to_swp_entry(*pvmw->pmd);
2988 get_page(new);
2989 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
ab6e3d09
NH
2990 if (pmd_swp_soft_dirty(*pvmw->pmd))
2991 pmde = pmd_mksoft_dirty(pmde);
616b8371 2992 if (is_write_migration_entry(entry))
f55e1014 2993 pmde = maybe_pmd_mkwrite(pmde, vma);
616b8371
ZY
2994
2995 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
e71769ae
NH
2996 if (PageAnon(new))
2997 page_add_anon_rmap(new, vma, mmun_start, true);
2998 else
2999 page_add_file_rmap(new, true);
616b8371 3000 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
e125fe40 3001 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
616b8371
ZY
3002 mlock_vma_page(new);
3003 update_mmu_cache_pmd(vma, address, pvmw->pmd);
3004}
3005#endif