]> git.ipfire.org Git - people/ms/linux.git/blame - mm/huge_memory.c
thp: allow mlocked THP again
[people/ms/linux.git] / mm / huge_memory.c
CommitLineData
71e3aac0
AA
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
ae3a8c1c
AM
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
71e3aac0
AA
10#include <linux/mm.h>
11#include <linux/sched.h>
12#include <linux/highmem.h>
13#include <linux/hugetlb.h>
14#include <linux/mmu_notifier.h>
15#include <linux/rmap.h>
16#include <linux/swap.h>
97ae1749 17#include <linux/shrinker.h>
ba76149f 18#include <linux/mm_inline.h>
e9b61f19 19#include <linux/swapops.h>
4897c765 20#include <linux/dax.h>
ba76149f
AA
21#include <linux/kthread.h>
22#include <linux/khugepaged.h>
878aee7d 23#include <linux/freezer.h>
a664b2d8 24#include <linux/mman.h>
325adeb5 25#include <linux/pagemap.h>
4daae3b4 26#include <linux/migrate.h>
43b5fbbd 27#include <linux/hashtable.h>
6b251fc9 28#include <linux/userfaultfd_k.h>
33c3fc71 29#include <linux/page_idle.h>
97ae1749 30
71e3aac0
AA
31#include <asm/tlb.h>
32#include <asm/pgalloc.h>
33#include "internal.h"
34
7d2eba05
EA
35enum scan_result {
36 SCAN_FAIL,
37 SCAN_SUCCEED,
38 SCAN_PMD_NULL,
39 SCAN_EXCEED_NONE_PTE,
40 SCAN_PTE_NON_PRESENT,
41 SCAN_PAGE_RO,
42 SCAN_NO_REFERENCED_PAGE,
43 SCAN_PAGE_NULL,
44 SCAN_SCAN_ABORT,
45 SCAN_PAGE_COUNT,
46 SCAN_PAGE_LRU,
47 SCAN_PAGE_LOCK,
48 SCAN_PAGE_ANON,
b1caa957 49 SCAN_PAGE_COMPOUND,
7d2eba05
EA
50 SCAN_ANY_PROCESS,
51 SCAN_VMA_NULL,
52 SCAN_VMA_CHECK,
53 SCAN_ADDRESS_RANGE,
54 SCAN_SWAP_CACHE_PAGE,
55 SCAN_DEL_PAGE_LRU,
56 SCAN_ALLOC_HUGE_PAGE_FAIL,
57 SCAN_CGROUP_CHARGE_FAIL
58};
59
60#define CREATE_TRACE_POINTS
61#include <trace/events/huge_memory.h>
62
ba76149f 63/*
8bfa3f9a
JW
64 * By default transparent hugepage support is disabled in order that avoid
65 * to risk increase the memory footprint of applications without a guaranteed
66 * benefit. When transparent hugepage support is enabled, is for all mappings,
67 * and khugepaged scans all mappings.
68 * Defrag is invoked by khugepaged hugepage allocations and by page faults
69 * for all hugepage allocations.
ba76149f 70 */
71e3aac0 71unsigned long transparent_hugepage_flags __read_mostly =
13ece886 72#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 73 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
74#endif
75#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
76 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
77#endif
d39d33c3 78 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
79da5407
KS
79 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
80 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
ba76149f
AA
81
82/* default scan 8*512 pte (or vmas) every 30 second */
83static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
84static unsigned int khugepaged_pages_collapsed;
85static unsigned int khugepaged_full_scans;
86static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
87/* during fragmentation poll the hugepage allocator once every minute */
88static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
89static struct task_struct *khugepaged_thread __read_mostly;
90static DEFINE_MUTEX(khugepaged_mutex);
91static DEFINE_SPINLOCK(khugepaged_mm_lock);
92static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
93/*
94 * default collapse hugepages if there is at least one pte mapped like
95 * it would have happened if the vma was large enough during page
96 * fault.
97 */
98static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
99
100static int khugepaged(void *none);
ba76149f 101static int khugepaged_slab_init(void);
65ebb64f 102static void khugepaged_slab_exit(void);
ba76149f 103
43b5fbbd
SL
104#define MM_SLOTS_HASH_BITS 10
105static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
106
ba76149f
AA
107static struct kmem_cache *mm_slot_cache __read_mostly;
108
109/**
110 * struct mm_slot - hash lookup from mm to mm_slot
111 * @hash: hash collision list
112 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
113 * @mm: the mm that this information is valid for
114 */
115struct mm_slot {
116 struct hlist_node hash;
117 struct list_head mm_node;
118 struct mm_struct *mm;
119};
120
121/**
122 * struct khugepaged_scan - cursor for scanning
123 * @mm_head: the head of the mm list to scan
124 * @mm_slot: the current mm_slot we are scanning
125 * @address: the next address inside that to be scanned
126 *
127 * There is only the one khugepaged_scan instance of this cursor structure.
128 */
129struct khugepaged_scan {
130 struct list_head mm_head;
131 struct mm_slot *mm_slot;
132 unsigned long address;
2f1da642
HS
133};
134static struct khugepaged_scan khugepaged_scan = {
ba76149f
AA
135 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
136};
137
9a982250
KS
138static DEFINE_SPINLOCK(split_queue_lock);
139static LIST_HEAD(split_queue);
140static unsigned long split_queue_len;
141static struct shrinker deferred_split_shrinker;
f000565a 142
2c0b80d4 143static void set_recommended_min_free_kbytes(void)
f000565a
AA
144{
145 struct zone *zone;
146 int nr_zones = 0;
147 unsigned long recommended_min;
f000565a 148
f000565a
AA
149 for_each_populated_zone(zone)
150 nr_zones++;
151
974a786e 152 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
f000565a
AA
153 recommended_min = pageblock_nr_pages * nr_zones * 2;
154
155 /*
156 * Make sure that on average at least two pageblocks are almost free
157 * of another type, one for a migratetype to fall back to and a
158 * second to avoid subsequent fallbacks of other types There are 3
159 * MIGRATE_TYPES we care about.
160 */
161 recommended_min += pageblock_nr_pages * nr_zones *
162 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
163
164 /* don't ever allow to reserve more than 5% of the lowmem */
165 recommended_min = min(recommended_min,
166 (unsigned long) nr_free_buffer_pages() / 20);
167 recommended_min <<= (PAGE_SHIFT-10);
168
42aa83cb
HP
169 if (recommended_min > min_free_kbytes) {
170 if (user_min_free_kbytes >= 0)
171 pr_info("raising min_free_kbytes from %d to %lu "
172 "to help transparent hugepage allocations\n",
173 min_free_kbytes, recommended_min);
174
f000565a 175 min_free_kbytes = recommended_min;
42aa83cb 176 }
f000565a 177 setup_per_zone_wmarks();
f000565a 178}
f000565a 179
79553da2 180static int start_stop_khugepaged(void)
ba76149f
AA
181{
182 int err = 0;
183 if (khugepaged_enabled()) {
ba76149f
AA
184 if (!khugepaged_thread)
185 khugepaged_thread = kthread_run(khugepaged, NULL,
186 "khugepaged");
18e8e5c7 187 if (IS_ERR(khugepaged_thread)) {
ae3a8c1c 188 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
ba76149f
AA
189 err = PTR_ERR(khugepaged_thread);
190 khugepaged_thread = NULL;
79553da2 191 goto fail;
ba76149f 192 }
911891af
XG
193
194 if (!list_empty(&khugepaged_scan.mm_head))
ba76149f 195 wake_up_interruptible(&khugepaged_wait);
f000565a
AA
196
197 set_recommended_min_free_kbytes();
911891af 198 } else if (khugepaged_thread) {
911891af
XG
199 kthread_stop(khugepaged_thread);
200 khugepaged_thread = NULL;
201 }
79553da2 202fail:
ba76149f
AA
203 return err;
204}
71e3aac0 205
97ae1749 206static atomic_t huge_zero_refcount;
56873f43 207struct page *huge_zero_page __read_mostly;
4a6c1297 208
fc437044 209struct page *get_huge_zero_page(void)
97ae1749
KS
210{
211 struct page *zero_page;
212retry:
213 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
4db0c3c2 214 return READ_ONCE(huge_zero_page);
97ae1749
KS
215
216 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
4a6c1297 217 HPAGE_PMD_ORDER);
d8a8e1f0
KS
218 if (!zero_page) {
219 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
5918d10a 220 return NULL;
d8a8e1f0
KS
221 }
222 count_vm_event(THP_ZERO_PAGE_ALLOC);
97ae1749 223 preempt_disable();
5918d10a 224 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97ae1749 225 preempt_enable();
5ddacbe9 226 __free_pages(zero_page, compound_order(zero_page));
97ae1749
KS
227 goto retry;
228 }
229
230 /* We take additional reference here. It will be put back by shrinker */
231 atomic_set(&huge_zero_refcount, 2);
232 preempt_enable();
4db0c3c2 233 return READ_ONCE(huge_zero_page);
4a6c1297
KS
234}
235
97ae1749 236static void put_huge_zero_page(void)
4a6c1297 237{
97ae1749
KS
238 /*
239 * Counter should never go to zero here. Only shrinker can put
240 * last reference.
241 */
242 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
4a6c1297
KS
243}
244
48896466
GC
245static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
246 struct shrink_control *sc)
4a6c1297 247{
48896466
GC
248 /* we can free zero page only if last reference remains */
249 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
250}
97ae1749 251
48896466
GC
252static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
253 struct shrink_control *sc)
254{
97ae1749 255 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
5918d10a
KS
256 struct page *zero_page = xchg(&huge_zero_page, NULL);
257 BUG_ON(zero_page == NULL);
5ddacbe9 258 __free_pages(zero_page, compound_order(zero_page));
48896466 259 return HPAGE_PMD_NR;
97ae1749
KS
260 }
261
262 return 0;
4a6c1297
KS
263}
264
97ae1749 265static struct shrinker huge_zero_page_shrinker = {
48896466
GC
266 .count_objects = shrink_huge_zero_page_count,
267 .scan_objects = shrink_huge_zero_page_scan,
97ae1749
KS
268 .seeks = DEFAULT_SEEKS,
269};
270
71e3aac0 271#ifdef CONFIG_SYSFS
ba76149f 272
71e3aac0
AA
273static ssize_t double_flag_show(struct kobject *kobj,
274 struct kobj_attribute *attr, char *buf,
275 enum transparent_hugepage_flag enabled,
276 enum transparent_hugepage_flag req_madv)
277{
278 if (test_bit(enabled, &transparent_hugepage_flags)) {
279 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
280 return sprintf(buf, "[always] madvise never\n");
281 } else if (test_bit(req_madv, &transparent_hugepage_flags))
282 return sprintf(buf, "always [madvise] never\n");
283 else
284 return sprintf(buf, "always madvise [never]\n");
285}
286static ssize_t double_flag_store(struct kobject *kobj,
287 struct kobj_attribute *attr,
288 const char *buf, size_t count,
289 enum transparent_hugepage_flag enabled,
290 enum transparent_hugepage_flag req_madv)
291{
292 if (!memcmp("always", buf,
293 min(sizeof("always")-1, count))) {
294 set_bit(enabled, &transparent_hugepage_flags);
295 clear_bit(req_madv, &transparent_hugepage_flags);
296 } else if (!memcmp("madvise", buf,
297 min(sizeof("madvise")-1, count))) {
298 clear_bit(enabled, &transparent_hugepage_flags);
299 set_bit(req_madv, &transparent_hugepage_flags);
300 } else if (!memcmp("never", buf,
301 min(sizeof("never")-1, count))) {
302 clear_bit(enabled, &transparent_hugepage_flags);
303 clear_bit(req_madv, &transparent_hugepage_flags);
304 } else
305 return -EINVAL;
306
307 return count;
308}
309
310static ssize_t enabled_show(struct kobject *kobj,
311 struct kobj_attribute *attr, char *buf)
312{
313 return double_flag_show(kobj, attr, buf,
314 TRANSPARENT_HUGEPAGE_FLAG,
315 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
316}
317static ssize_t enabled_store(struct kobject *kobj,
318 struct kobj_attribute *attr,
319 const char *buf, size_t count)
320{
ba76149f
AA
321 ssize_t ret;
322
323 ret = double_flag_store(kobj, attr, buf, count,
324 TRANSPARENT_HUGEPAGE_FLAG,
325 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
326
327 if (ret > 0) {
911891af
XG
328 int err;
329
330 mutex_lock(&khugepaged_mutex);
79553da2 331 err = start_stop_khugepaged();
911891af
XG
332 mutex_unlock(&khugepaged_mutex);
333
ba76149f
AA
334 if (err)
335 ret = err;
336 }
337
338 return ret;
71e3aac0
AA
339}
340static struct kobj_attribute enabled_attr =
341 __ATTR(enabled, 0644, enabled_show, enabled_store);
342
343static ssize_t single_flag_show(struct kobject *kobj,
344 struct kobj_attribute *attr, char *buf,
345 enum transparent_hugepage_flag flag)
346{
e27e6151
BH
347 return sprintf(buf, "%d\n",
348 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 349}
e27e6151 350
71e3aac0
AA
351static ssize_t single_flag_store(struct kobject *kobj,
352 struct kobj_attribute *attr,
353 const char *buf, size_t count,
354 enum transparent_hugepage_flag flag)
355{
e27e6151
BH
356 unsigned long value;
357 int ret;
358
359 ret = kstrtoul(buf, 10, &value);
360 if (ret < 0)
361 return ret;
362 if (value > 1)
363 return -EINVAL;
364
365 if (value)
71e3aac0 366 set_bit(flag, &transparent_hugepage_flags);
e27e6151 367 else
71e3aac0 368 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
369
370 return count;
371}
372
373/*
374 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
375 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
376 * memory just to allocate one more hugepage.
377 */
378static ssize_t defrag_show(struct kobject *kobj,
379 struct kobj_attribute *attr, char *buf)
380{
381 return double_flag_show(kobj, attr, buf,
382 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
383 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
384}
385static ssize_t defrag_store(struct kobject *kobj,
386 struct kobj_attribute *attr,
387 const char *buf, size_t count)
388{
389 return double_flag_store(kobj, attr, buf, count,
390 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
391 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
392}
393static struct kobj_attribute defrag_attr =
394 __ATTR(defrag, 0644, defrag_show, defrag_store);
395
79da5407
KS
396static ssize_t use_zero_page_show(struct kobject *kobj,
397 struct kobj_attribute *attr, char *buf)
398{
399 return single_flag_show(kobj, attr, buf,
400 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
401}
402static ssize_t use_zero_page_store(struct kobject *kobj,
403 struct kobj_attribute *attr, const char *buf, size_t count)
404{
405 return single_flag_store(kobj, attr, buf, count,
406 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
407}
408static struct kobj_attribute use_zero_page_attr =
409 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
71e3aac0
AA
410#ifdef CONFIG_DEBUG_VM
411static ssize_t debug_cow_show(struct kobject *kobj,
412 struct kobj_attribute *attr, char *buf)
413{
414 return single_flag_show(kobj, attr, buf,
415 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
416}
417static ssize_t debug_cow_store(struct kobject *kobj,
418 struct kobj_attribute *attr,
419 const char *buf, size_t count)
420{
421 return single_flag_store(kobj, attr, buf, count,
422 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
423}
424static struct kobj_attribute debug_cow_attr =
425 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
426#endif /* CONFIG_DEBUG_VM */
427
428static struct attribute *hugepage_attr[] = {
429 &enabled_attr.attr,
430 &defrag_attr.attr,
79da5407 431 &use_zero_page_attr.attr,
71e3aac0
AA
432#ifdef CONFIG_DEBUG_VM
433 &debug_cow_attr.attr,
434#endif
435 NULL,
436};
437
438static struct attribute_group hugepage_attr_group = {
439 .attrs = hugepage_attr,
ba76149f
AA
440};
441
442static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
443 struct kobj_attribute *attr,
444 char *buf)
445{
446 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
447}
448
449static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
450 struct kobj_attribute *attr,
451 const char *buf, size_t count)
452{
453 unsigned long msecs;
454 int err;
455
3dbb95f7 456 err = kstrtoul(buf, 10, &msecs);
ba76149f
AA
457 if (err || msecs > UINT_MAX)
458 return -EINVAL;
459
460 khugepaged_scan_sleep_millisecs = msecs;
461 wake_up_interruptible(&khugepaged_wait);
462
463 return count;
464}
465static struct kobj_attribute scan_sleep_millisecs_attr =
466 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
467 scan_sleep_millisecs_store);
468
469static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
470 struct kobj_attribute *attr,
471 char *buf)
472{
473 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
474}
475
476static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
477 struct kobj_attribute *attr,
478 const char *buf, size_t count)
479{
480 unsigned long msecs;
481 int err;
482
3dbb95f7 483 err = kstrtoul(buf, 10, &msecs);
ba76149f
AA
484 if (err || msecs > UINT_MAX)
485 return -EINVAL;
486
487 khugepaged_alloc_sleep_millisecs = msecs;
488 wake_up_interruptible(&khugepaged_wait);
489
490 return count;
491}
492static struct kobj_attribute alloc_sleep_millisecs_attr =
493 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
494 alloc_sleep_millisecs_store);
495
496static ssize_t pages_to_scan_show(struct kobject *kobj,
497 struct kobj_attribute *attr,
498 char *buf)
499{
500 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
501}
502static ssize_t pages_to_scan_store(struct kobject *kobj,
503 struct kobj_attribute *attr,
504 const char *buf, size_t count)
505{
506 int err;
507 unsigned long pages;
508
3dbb95f7 509 err = kstrtoul(buf, 10, &pages);
ba76149f
AA
510 if (err || !pages || pages > UINT_MAX)
511 return -EINVAL;
512
513 khugepaged_pages_to_scan = pages;
514
515 return count;
516}
517static struct kobj_attribute pages_to_scan_attr =
518 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
519 pages_to_scan_store);
520
521static ssize_t pages_collapsed_show(struct kobject *kobj,
522 struct kobj_attribute *attr,
523 char *buf)
524{
525 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
526}
527static struct kobj_attribute pages_collapsed_attr =
528 __ATTR_RO(pages_collapsed);
529
530static ssize_t full_scans_show(struct kobject *kobj,
531 struct kobj_attribute *attr,
532 char *buf)
533{
534 return sprintf(buf, "%u\n", khugepaged_full_scans);
535}
536static struct kobj_attribute full_scans_attr =
537 __ATTR_RO(full_scans);
538
539static ssize_t khugepaged_defrag_show(struct kobject *kobj,
540 struct kobj_attribute *attr, char *buf)
541{
542 return single_flag_show(kobj, attr, buf,
543 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
544}
545static ssize_t khugepaged_defrag_store(struct kobject *kobj,
546 struct kobj_attribute *attr,
547 const char *buf, size_t count)
548{
549 return single_flag_store(kobj, attr, buf, count,
550 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
551}
552static struct kobj_attribute khugepaged_defrag_attr =
553 __ATTR(defrag, 0644, khugepaged_defrag_show,
554 khugepaged_defrag_store);
555
556/*
557 * max_ptes_none controls if khugepaged should collapse hugepages over
558 * any unmapped ptes in turn potentially increasing the memory
559 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
560 * reduce the available free memory in the system as it
561 * runs. Increasing max_ptes_none will instead potentially reduce the
562 * free memory in the system during the khugepaged scan.
563 */
564static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
565 struct kobj_attribute *attr,
566 char *buf)
567{
568 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
569}
570static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
571 struct kobj_attribute *attr,
572 const char *buf, size_t count)
573{
574 int err;
575 unsigned long max_ptes_none;
576
3dbb95f7 577 err = kstrtoul(buf, 10, &max_ptes_none);
ba76149f
AA
578 if (err || max_ptes_none > HPAGE_PMD_NR-1)
579 return -EINVAL;
580
581 khugepaged_max_ptes_none = max_ptes_none;
582
583 return count;
584}
585static struct kobj_attribute khugepaged_max_ptes_none_attr =
586 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
587 khugepaged_max_ptes_none_store);
588
589static struct attribute *khugepaged_attr[] = {
590 &khugepaged_defrag_attr.attr,
591 &khugepaged_max_ptes_none_attr.attr,
592 &pages_to_scan_attr.attr,
593 &pages_collapsed_attr.attr,
594 &full_scans_attr.attr,
595 &scan_sleep_millisecs_attr.attr,
596 &alloc_sleep_millisecs_attr.attr,
597 NULL,
598};
599
600static struct attribute_group khugepaged_attr_group = {
601 .attrs = khugepaged_attr,
602 .name = "khugepaged",
71e3aac0 603};
71e3aac0 604
569e5590 605static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 606{
71e3aac0
AA
607 int err;
608
569e5590
SL
609 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
610 if (unlikely(!*hugepage_kobj)) {
ae3a8c1c 611 pr_err("failed to create transparent hugepage kobject\n");
569e5590 612 return -ENOMEM;
ba76149f
AA
613 }
614
569e5590 615 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f 616 if (err) {
ae3a8c1c 617 pr_err("failed to register transparent hugepage group\n");
569e5590 618 goto delete_obj;
ba76149f
AA
619 }
620
569e5590 621 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f 622 if (err) {
ae3a8c1c 623 pr_err("failed to register transparent hugepage group\n");
569e5590 624 goto remove_hp_group;
ba76149f 625 }
569e5590
SL
626
627 return 0;
628
629remove_hp_group:
630 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
631delete_obj:
632 kobject_put(*hugepage_kobj);
633 return err;
634}
635
636static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
637{
638 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
639 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
640 kobject_put(hugepage_kobj);
641}
642#else
643static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
644{
645 return 0;
646}
647
648static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
649{
650}
651#endif /* CONFIG_SYSFS */
652
653static int __init hugepage_init(void)
654{
655 int err;
656 struct kobject *hugepage_kobj;
657
658 if (!has_transparent_hugepage()) {
659 transparent_hugepage_flags = 0;
660 return -EINVAL;
661 }
662
663 err = hugepage_init_sysfs(&hugepage_kobj);
664 if (err)
65ebb64f 665 goto err_sysfs;
ba76149f
AA
666
667 err = khugepaged_slab_init();
668 if (err)
65ebb64f 669 goto err_slab;
ba76149f 670
65ebb64f
KS
671 err = register_shrinker(&huge_zero_page_shrinker);
672 if (err)
673 goto err_hzp_shrinker;
9a982250
KS
674 err = register_shrinker(&deferred_split_shrinker);
675 if (err)
676 goto err_split_shrinker;
97ae1749 677
97562cd2
RR
678 /*
679 * By default disable transparent hugepages on smaller systems,
680 * where the extra memory used could hurt more than TLB overhead
681 * is likely to save. The admin can still enable it through /sys.
682 */
79553da2 683 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
97562cd2 684 transparent_hugepage_flags = 0;
79553da2
KS
685 return 0;
686 }
97562cd2 687
79553da2 688 err = start_stop_khugepaged();
65ebb64f
KS
689 if (err)
690 goto err_khugepaged;
ba76149f 691
569e5590 692 return 0;
65ebb64f 693err_khugepaged:
9a982250
KS
694 unregister_shrinker(&deferred_split_shrinker);
695err_split_shrinker:
65ebb64f
KS
696 unregister_shrinker(&huge_zero_page_shrinker);
697err_hzp_shrinker:
698 khugepaged_slab_exit();
699err_slab:
569e5590 700 hugepage_exit_sysfs(hugepage_kobj);
65ebb64f 701err_sysfs:
ba76149f 702 return err;
71e3aac0 703}
a64fb3cd 704subsys_initcall(hugepage_init);
71e3aac0
AA
705
706static int __init setup_transparent_hugepage(char *str)
707{
708 int ret = 0;
709 if (!str)
710 goto out;
711 if (!strcmp(str, "always")) {
712 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
713 &transparent_hugepage_flags);
714 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
715 &transparent_hugepage_flags);
716 ret = 1;
717 } else if (!strcmp(str, "madvise")) {
718 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
719 &transparent_hugepage_flags);
720 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
721 &transparent_hugepage_flags);
722 ret = 1;
723 } else if (!strcmp(str, "never")) {
724 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
725 &transparent_hugepage_flags);
726 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
727 &transparent_hugepage_flags);
728 ret = 1;
729 }
730out:
731 if (!ret)
ae3a8c1c 732 pr_warn("transparent_hugepage= cannot parse, ignored\n");
71e3aac0
AA
733 return ret;
734}
735__setup("transparent_hugepage=", setup_transparent_hugepage);
736
b32967ff 737pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
71e3aac0
AA
738{
739 if (likely(vma->vm_flags & VM_WRITE))
740 pmd = pmd_mkwrite(pmd);
741 return pmd;
742}
743
3122359a 744static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
b3092b3b
BL
745{
746 pmd_t entry;
3122359a 747 entry = mk_pmd(page, prot);
b3092b3b
BL
748 entry = pmd_mkhuge(entry);
749 return entry;
750}
751
9a982250
KS
752static inline struct list_head *page_deferred_list(struct page *page)
753{
754 /*
755 * ->lru in the tail pages is occupied by compound_head.
756 * Let's use ->mapping + ->index in the second tail page as list_head.
757 */
758 return (struct list_head *)&page[2].mapping;
759}
760
761void prep_transhuge_page(struct page *page)
762{
763 /*
764 * we use page->mapping and page->indexlru in second tail page
765 * as list_head: assuming THP order >= 2
766 */
767 BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
768
769 INIT_LIST_HEAD(page_deferred_list(page));
770 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
771}
772
71e3aac0
AA
773static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
774 struct vm_area_struct *vma,
230c92a8 775 unsigned long address, pmd_t *pmd,
6b251fc9
AA
776 struct page *page, gfp_t gfp,
777 unsigned int flags)
71e3aac0 778{
00501b53 779 struct mem_cgroup *memcg;
71e3aac0 780 pgtable_t pgtable;
c4088ebd 781 spinlock_t *ptl;
230c92a8 782 unsigned long haddr = address & HPAGE_PMD_MASK;
71e3aac0 783
309381fe 784 VM_BUG_ON_PAGE(!PageCompound(page), page);
00501b53 785
f627c2f5 786 if (mem_cgroup_try_charge(page, mm, gfp, &memcg, true)) {
6b251fc9
AA
787 put_page(page);
788 count_vm_event(THP_FAULT_FALLBACK);
789 return VM_FAULT_FALLBACK;
790 }
00501b53 791
71e3aac0 792 pgtable = pte_alloc_one(mm, haddr);
00501b53 793 if (unlikely(!pgtable)) {
f627c2f5 794 mem_cgroup_cancel_charge(page, memcg, true);
6b251fc9 795 put_page(page);
71e3aac0 796 return VM_FAULT_OOM;
00501b53 797 }
71e3aac0
AA
798
799 clear_huge_page(page, haddr, HPAGE_PMD_NR);
52f37629
MK
800 /*
801 * The memory barrier inside __SetPageUptodate makes sure that
802 * clear_huge_page writes become visible before the set_pmd_at()
803 * write.
804 */
71e3aac0
AA
805 __SetPageUptodate(page);
806
c4088ebd 807 ptl = pmd_lock(mm, pmd);
71e3aac0 808 if (unlikely(!pmd_none(*pmd))) {
c4088ebd 809 spin_unlock(ptl);
f627c2f5 810 mem_cgroup_cancel_charge(page, memcg, true);
71e3aac0
AA
811 put_page(page);
812 pte_free(mm, pgtable);
813 } else {
814 pmd_t entry;
6b251fc9
AA
815
816 /* Deliver the page fault to userland */
817 if (userfaultfd_missing(vma)) {
818 int ret;
819
820 spin_unlock(ptl);
f627c2f5 821 mem_cgroup_cancel_charge(page, memcg, true);
6b251fc9
AA
822 put_page(page);
823 pte_free(mm, pgtable);
230c92a8 824 ret = handle_userfault(vma, address, flags,
6b251fc9
AA
825 VM_UFFD_MISSING);
826 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
827 return ret;
828 }
829
3122359a
KS
830 entry = mk_huge_pmd(page, vma->vm_page_prot);
831 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
d281ee61 832 page_add_new_anon_rmap(page, vma, haddr, true);
f627c2f5 833 mem_cgroup_commit_charge(page, memcg, false, true);
00501b53 834 lru_cache_add_active_or_unevictable(page, vma);
6b0b50b0 835 pgtable_trans_huge_deposit(mm, pmd, pgtable);
71e3aac0 836 set_pmd_at(mm, haddr, pmd, entry);
71e3aac0 837 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
e1f56c89 838 atomic_long_inc(&mm->nr_ptes);
c4088ebd 839 spin_unlock(ptl);
6b251fc9 840 count_vm_event(THP_FAULT_ALLOC);
71e3aac0
AA
841 }
842
aa2e878e 843 return 0;
71e3aac0
AA
844}
845
cc5d462f 846static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
0bbbc0b3 847{
71baba4b 848 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_RECLAIM)) | extra_gfp;
0bbbc0b3
AA
849}
850
c4088ebd 851/* Caller must hold page table lock. */
d295e341 852static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
97ae1749 853 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
5918d10a 854 struct page *zero_page)
fc9fe822
KS
855{
856 pmd_t entry;
7c414164
AM
857 if (!pmd_none(*pmd))
858 return false;
5918d10a 859 entry = mk_pmd(zero_page, vma->vm_page_prot);
fc9fe822 860 entry = pmd_mkhuge(entry);
6b0b50b0 861 pgtable_trans_huge_deposit(mm, pmd, pgtable);
fc9fe822 862 set_pmd_at(mm, haddr, pmd, entry);
e1f56c89 863 atomic_long_inc(&mm->nr_ptes);
7c414164 864 return true;
fc9fe822
KS
865}
866
71e3aac0
AA
867int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
868 unsigned long address, pmd_t *pmd,
869 unsigned int flags)
870{
077fcf11 871 gfp_t gfp;
71e3aac0
AA
872 struct page *page;
873 unsigned long haddr = address & HPAGE_PMD_MASK;
71e3aac0 874
128ec037 875 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
c0292554 876 return VM_FAULT_FALLBACK;
128ec037
KS
877 if (unlikely(anon_vma_prepare(vma)))
878 return VM_FAULT_OOM;
6d50e60c 879 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
128ec037 880 return VM_FAULT_OOM;
593befa6 881 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) &&
128ec037 882 transparent_hugepage_use_zero_page()) {
c4088ebd 883 spinlock_t *ptl;
128ec037
KS
884 pgtable_t pgtable;
885 struct page *zero_page;
886 bool set;
6b251fc9 887 int ret;
128ec037
KS
888 pgtable = pte_alloc_one(mm, haddr);
889 if (unlikely(!pgtable))
ba76149f 890 return VM_FAULT_OOM;
128ec037
KS
891 zero_page = get_huge_zero_page();
892 if (unlikely(!zero_page)) {
893 pte_free(mm, pgtable);
81ab4201 894 count_vm_event(THP_FAULT_FALLBACK);
c0292554 895 return VM_FAULT_FALLBACK;
b9bbfbe3 896 }
c4088ebd 897 ptl = pmd_lock(mm, pmd);
6b251fc9
AA
898 ret = 0;
899 set = false;
900 if (pmd_none(*pmd)) {
901 if (userfaultfd_missing(vma)) {
902 spin_unlock(ptl);
230c92a8 903 ret = handle_userfault(vma, address, flags,
6b251fc9
AA
904 VM_UFFD_MISSING);
905 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
906 } else {
907 set_huge_zero_page(pgtable, mm, vma,
908 haddr, pmd,
909 zero_page);
910 spin_unlock(ptl);
911 set = true;
912 }
913 } else
914 spin_unlock(ptl);
128ec037
KS
915 if (!set) {
916 pte_free(mm, pgtable);
917 put_huge_zero_page();
edad9d2c 918 }
6b251fc9 919 return ret;
71e3aac0 920 }
077fcf11
AK
921 gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
922 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
128ec037
KS
923 if (unlikely(!page)) {
924 count_vm_event(THP_FAULT_FALLBACK);
c0292554 925 return VM_FAULT_FALLBACK;
128ec037 926 }
9a982250 927 prep_transhuge_page(page);
230c92a8
AA
928 return __do_huge_pmd_anonymous_page(mm, vma, address, pmd, page, gfp,
929 flags);
71e3aac0
AA
930}
931
ae18d6dc 932static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
5cad465d
MW
933 pmd_t *pmd, unsigned long pfn, pgprot_t prot, bool write)
934{
935 struct mm_struct *mm = vma->vm_mm;
936 pmd_t entry;
937 spinlock_t *ptl;
938
939 ptl = pmd_lock(mm, pmd);
940 if (pmd_none(*pmd)) {
941 entry = pmd_mkhuge(pfn_pmd(pfn, prot));
942 if (write) {
943 entry = pmd_mkyoung(pmd_mkdirty(entry));
944 entry = maybe_pmd_mkwrite(entry, vma);
945 }
946 set_pmd_at(mm, addr, pmd, entry);
947 update_mmu_cache_pmd(vma, addr, pmd);
948 }
949 spin_unlock(ptl);
5cad465d
MW
950}
951
952int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
953 pmd_t *pmd, unsigned long pfn, bool write)
954{
955 pgprot_t pgprot = vma->vm_page_prot;
956 /*
957 * If we had pmd_special, we could avoid all these restrictions,
958 * but we need to be consistent with PTEs and architectures that
959 * can't support a 'special' bit.
960 */
961 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
962 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
963 (VM_PFNMAP|VM_MIXEDMAP));
964 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
965 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
966
967 if (addr < vma->vm_start || addr >= vma->vm_end)
968 return VM_FAULT_SIGBUS;
969 if (track_pfn_insert(vma, &pgprot, pfn))
970 return VM_FAULT_SIGBUS;
ae18d6dc
MW
971 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
972 return VM_FAULT_NOPAGE;
5cad465d
MW
973}
974
71e3aac0
AA
975int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
976 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
977 struct vm_area_struct *vma)
978{
c4088ebd 979 spinlock_t *dst_ptl, *src_ptl;
71e3aac0
AA
980 struct page *src_page;
981 pmd_t pmd;
982 pgtable_t pgtable;
983 int ret;
984
985 ret = -ENOMEM;
986 pgtable = pte_alloc_one(dst_mm, addr);
987 if (unlikely(!pgtable))
988 goto out;
989
c4088ebd
KS
990 dst_ptl = pmd_lock(dst_mm, dst_pmd);
991 src_ptl = pmd_lockptr(src_mm, src_pmd);
992 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
71e3aac0
AA
993
994 ret = -EAGAIN;
995 pmd = *src_pmd;
996 if (unlikely(!pmd_trans_huge(pmd))) {
997 pte_free(dst_mm, pgtable);
998 goto out_unlock;
999 }
fc9fe822 1000 /*
c4088ebd 1001 * When page table lock is held, the huge zero pmd should not be
fc9fe822
KS
1002 * under splitting since we don't split the page itself, only pmd to
1003 * a page table.
1004 */
1005 if (is_huge_zero_pmd(pmd)) {
5918d10a 1006 struct page *zero_page;
97ae1749
KS
1007 /*
1008 * get_huge_zero_page() will never allocate a new page here,
1009 * since we already have a zero page to copy. It just takes a
1010 * reference.
1011 */
5918d10a 1012 zero_page = get_huge_zero_page();
6b251fc9 1013 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
5918d10a 1014 zero_page);
fc9fe822
KS
1015 ret = 0;
1016 goto out_unlock;
1017 }
de466bd6 1018
71e3aac0 1019 src_page = pmd_page(pmd);
309381fe 1020 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
71e3aac0 1021 get_page(src_page);
53f9263b 1022 page_dup_rmap(src_page, true);
71e3aac0
AA
1023 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1024
1025 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1026 pmd = pmd_mkold(pmd_wrprotect(pmd));
6b0b50b0 1027 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
71e3aac0 1028 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
e1f56c89 1029 atomic_long_inc(&dst_mm->nr_ptes);
71e3aac0
AA
1030
1031 ret = 0;
1032out_unlock:
c4088ebd
KS
1033 spin_unlock(src_ptl);
1034 spin_unlock(dst_ptl);
71e3aac0
AA
1035out:
1036 return ret;
1037}
1038
a1dd450b
WD
1039void huge_pmd_set_accessed(struct mm_struct *mm,
1040 struct vm_area_struct *vma,
1041 unsigned long address,
1042 pmd_t *pmd, pmd_t orig_pmd,
1043 int dirty)
1044{
c4088ebd 1045 spinlock_t *ptl;
a1dd450b
WD
1046 pmd_t entry;
1047 unsigned long haddr;
1048
c4088ebd 1049 ptl = pmd_lock(mm, pmd);
a1dd450b
WD
1050 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1051 goto unlock;
1052
1053 entry = pmd_mkyoung(orig_pmd);
1054 haddr = address & HPAGE_PMD_MASK;
1055 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
1056 update_mmu_cache_pmd(vma, address, pmd);
1057
1058unlock:
c4088ebd 1059 spin_unlock(ptl);
a1dd450b
WD
1060}
1061
71e3aac0
AA
1062static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1063 struct vm_area_struct *vma,
1064 unsigned long address,
1065 pmd_t *pmd, pmd_t orig_pmd,
1066 struct page *page,
1067 unsigned long haddr)
1068{
00501b53 1069 struct mem_cgroup *memcg;
c4088ebd 1070 spinlock_t *ptl;
71e3aac0
AA
1071 pgtable_t pgtable;
1072 pmd_t _pmd;
1073 int ret = 0, i;
1074 struct page **pages;
2ec74c3e
SG
1075 unsigned long mmun_start; /* For mmu_notifiers */
1076 unsigned long mmun_end; /* For mmu_notifiers */
71e3aac0
AA
1077
1078 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1079 GFP_KERNEL);
1080 if (unlikely(!pages)) {
1081 ret |= VM_FAULT_OOM;
1082 goto out;
1083 }
1084
1085 for (i = 0; i < HPAGE_PMD_NR; i++) {
cc5d462f
AK
1086 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1087 __GFP_OTHER_NODE,
19ee151e 1088 vma, address, page_to_nid(page));
b9bbfbe3 1089 if (unlikely(!pages[i] ||
00501b53 1090 mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
f627c2f5 1091 &memcg, false))) {
b9bbfbe3 1092 if (pages[i])
71e3aac0 1093 put_page(pages[i]);
b9bbfbe3 1094 while (--i >= 0) {
00501b53
JW
1095 memcg = (void *)page_private(pages[i]);
1096 set_page_private(pages[i], 0);
f627c2f5
KS
1097 mem_cgroup_cancel_charge(pages[i], memcg,
1098 false);
b9bbfbe3
AA
1099 put_page(pages[i]);
1100 }
71e3aac0
AA
1101 kfree(pages);
1102 ret |= VM_FAULT_OOM;
1103 goto out;
1104 }
00501b53 1105 set_page_private(pages[i], (unsigned long)memcg);
71e3aac0
AA
1106 }
1107
1108 for (i = 0; i < HPAGE_PMD_NR; i++) {
1109 copy_user_highpage(pages[i], page + i,
0089e485 1110 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
1111 __SetPageUptodate(pages[i]);
1112 cond_resched();
1113 }
1114
2ec74c3e
SG
1115 mmun_start = haddr;
1116 mmun_end = haddr + HPAGE_PMD_SIZE;
1117 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1118
c4088ebd 1119 ptl = pmd_lock(mm, pmd);
71e3aac0
AA
1120 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1121 goto out_free_pages;
309381fe 1122 VM_BUG_ON_PAGE(!PageHead(page), page);
71e3aac0 1123
8809aa2d 1124 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
71e3aac0
AA
1125 /* leave pmd empty until pte is filled */
1126
6b0b50b0 1127 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
71e3aac0
AA
1128 pmd_populate(mm, &_pmd, pgtable);
1129
1130 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1131 pte_t *pte, entry;
1132 entry = mk_pte(pages[i], vma->vm_page_prot);
1133 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
00501b53
JW
1134 memcg = (void *)page_private(pages[i]);
1135 set_page_private(pages[i], 0);
d281ee61 1136 page_add_new_anon_rmap(pages[i], vma, haddr, false);
f627c2f5 1137 mem_cgroup_commit_charge(pages[i], memcg, false, false);
00501b53 1138 lru_cache_add_active_or_unevictable(pages[i], vma);
71e3aac0
AA
1139 pte = pte_offset_map(&_pmd, haddr);
1140 VM_BUG_ON(!pte_none(*pte));
1141 set_pte_at(mm, haddr, pte, entry);
1142 pte_unmap(pte);
1143 }
1144 kfree(pages);
1145
71e3aac0
AA
1146 smp_wmb(); /* make pte visible before pmd */
1147 pmd_populate(mm, pmd, pgtable);
d281ee61 1148 page_remove_rmap(page, true);
c4088ebd 1149 spin_unlock(ptl);
71e3aac0 1150
2ec74c3e
SG
1151 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1152
71e3aac0
AA
1153 ret |= VM_FAULT_WRITE;
1154 put_page(page);
1155
1156out:
1157 return ret;
1158
1159out_free_pages:
c4088ebd 1160 spin_unlock(ptl);
2ec74c3e 1161 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
b9bbfbe3 1162 for (i = 0; i < HPAGE_PMD_NR; i++) {
00501b53
JW
1163 memcg = (void *)page_private(pages[i]);
1164 set_page_private(pages[i], 0);
f627c2f5 1165 mem_cgroup_cancel_charge(pages[i], memcg, false);
71e3aac0 1166 put_page(pages[i]);
b9bbfbe3 1167 }
71e3aac0
AA
1168 kfree(pages);
1169 goto out;
1170}
1171
1172int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1173 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1174{
c4088ebd 1175 spinlock_t *ptl;
71e3aac0 1176 int ret = 0;
93b4796d 1177 struct page *page = NULL, *new_page;
00501b53 1178 struct mem_cgroup *memcg;
71e3aac0 1179 unsigned long haddr;
2ec74c3e
SG
1180 unsigned long mmun_start; /* For mmu_notifiers */
1181 unsigned long mmun_end; /* For mmu_notifiers */
3b363692 1182 gfp_t huge_gfp; /* for allocation and charge */
71e3aac0 1183
c4088ebd 1184 ptl = pmd_lockptr(mm, pmd);
81d1b09c 1185 VM_BUG_ON_VMA(!vma->anon_vma, vma);
93b4796d
KS
1186 haddr = address & HPAGE_PMD_MASK;
1187 if (is_huge_zero_pmd(orig_pmd))
1188 goto alloc;
c4088ebd 1189 spin_lock(ptl);
71e3aac0
AA
1190 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1191 goto out_unlock;
1192
1193 page = pmd_page(orig_pmd);
309381fe 1194 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1f25fe20
KS
1195 /*
1196 * We can only reuse the page if nobody else maps the huge page or it's
1197 * part. We can do it by checking page_mapcount() on each sub-page, but
1198 * it's expensive.
1199 * The cheaper way is to check page_count() to be equal 1: every
1200 * mapcount takes page reference reference, so this way we can
1201 * guarantee, that the PMD is the only mapping.
1202 * This can give false negative if somebody pinned the page, but that's
1203 * fine.
1204 */
1205 if (page_mapcount(page) == 1 && page_count(page) == 1) {
71e3aac0
AA
1206 pmd_t entry;
1207 entry = pmd_mkyoung(orig_pmd);
1208 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1209 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
b113da65 1210 update_mmu_cache_pmd(vma, address, pmd);
71e3aac0
AA
1211 ret |= VM_FAULT_WRITE;
1212 goto out_unlock;
1213 }
ddc58f27 1214 get_page(page);
c4088ebd 1215 spin_unlock(ptl);
93b4796d 1216alloc:
71e3aac0 1217 if (transparent_hugepage_enabled(vma) &&
077fcf11 1218 !transparent_hugepage_debug_cow()) {
3b363692
MH
1219 huge_gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
1220 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
077fcf11 1221 } else
71e3aac0
AA
1222 new_page = NULL;
1223
9a982250
KS
1224 if (likely(new_page)) {
1225 prep_transhuge_page(new_page);
1226 } else {
eecc1e42 1227 if (!page) {
78ddc534 1228 split_huge_pmd(vma, pmd, address);
e9b71ca9 1229 ret |= VM_FAULT_FALLBACK;
93b4796d
KS
1230 } else {
1231 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1232 pmd, orig_pmd, page, haddr);
9845cbbd 1233 if (ret & VM_FAULT_OOM) {
78ddc534 1234 split_huge_pmd(vma, pmd, address);
9845cbbd
KS
1235 ret |= VM_FAULT_FALLBACK;
1236 }
ddc58f27 1237 put_page(page);
93b4796d 1238 }
17766dde 1239 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0
AA
1240 goto out;
1241 }
1242
f627c2f5
KS
1243 if (unlikely(mem_cgroup_try_charge(new_page, mm, huge_gfp, &memcg,
1244 true))) {
b9bbfbe3 1245 put_page(new_page);
93b4796d 1246 if (page) {
78ddc534 1247 split_huge_pmd(vma, pmd, address);
ddc58f27 1248 put_page(page);
9845cbbd 1249 } else
78ddc534 1250 split_huge_pmd(vma, pmd, address);
9845cbbd 1251 ret |= VM_FAULT_FALLBACK;
17766dde 1252 count_vm_event(THP_FAULT_FALLBACK);
b9bbfbe3
AA
1253 goto out;
1254 }
1255
17766dde
DR
1256 count_vm_event(THP_FAULT_ALLOC);
1257
eecc1e42 1258 if (!page)
93b4796d
KS
1259 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1260 else
1261 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
71e3aac0
AA
1262 __SetPageUptodate(new_page);
1263
2ec74c3e
SG
1264 mmun_start = haddr;
1265 mmun_end = haddr + HPAGE_PMD_SIZE;
1266 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1267
c4088ebd 1268 spin_lock(ptl);
93b4796d 1269 if (page)
ddc58f27 1270 put_page(page);
b9bbfbe3 1271 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
c4088ebd 1272 spin_unlock(ptl);
f627c2f5 1273 mem_cgroup_cancel_charge(new_page, memcg, true);
71e3aac0 1274 put_page(new_page);
2ec74c3e 1275 goto out_mn;
b9bbfbe3 1276 } else {
71e3aac0 1277 pmd_t entry;
3122359a
KS
1278 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1279 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
8809aa2d 1280 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
d281ee61 1281 page_add_new_anon_rmap(new_page, vma, haddr, true);
f627c2f5 1282 mem_cgroup_commit_charge(new_page, memcg, false, true);
00501b53 1283 lru_cache_add_active_or_unevictable(new_page, vma);
71e3aac0 1284 set_pmd_at(mm, haddr, pmd, entry);
b113da65 1285 update_mmu_cache_pmd(vma, address, pmd);
eecc1e42 1286 if (!page) {
93b4796d 1287 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
97ae1749
KS
1288 put_huge_zero_page();
1289 } else {
309381fe 1290 VM_BUG_ON_PAGE(!PageHead(page), page);
d281ee61 1291 page_remove_rmap(page, true);
93b4796d
KS
1292 put_page(page);
1293 }
71e3aac0
AA
1294 ret |= VM_FAULT_WRITE;
1295 }
c4088ebd 1296 spin_unlock(ptl);
2ec74c3e
SG
1297out_mn:
1298 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
1299out:
1300 return ret;
2ec74c3e 1301out_unlock:
c4088ebd 1302 spin_unlock(ptl);
2ec74c3e 1303 return ret;
71e3aac0
AA
1304}
1305
b676b293 1306struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1307 unsigned long addr,
1308 pmd_t *pmd,
1309 unsigned int flags)
1310{
b676b293 1311 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1312 struct page *page = NULL;
1313
c4088ebd 1314 assert_spin_locked(pmd_lockptr(mm, pmd));
71e3aac0
AA
1315
1316 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1317 goto out;
1318
85facf25
KS
1319 /* Avoid dumping huge zero page */
1320 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1321 return ERR_PTR(-EFAULT);
1322
2b4847e7 1323 /* Full NUMA hinting faults to serialise migration in fault paths */
8a0516ed 1324 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
2b4847e7
MG
1325 goto out;
1326
71e3aac0 1327 page = pmd_page(*pmd);
309381fe 1328 VM_BUG_ON_PAGE(!PageHead(page), page);
71e3aac0
AA
1329 if (flags & FOLL_TOUCH) {
1330 pmd_t _pmd;
1331 /*
1332 * We should set the dirty bit only for FOLL_WRITE but
1333 * for now the dirty bit in the pmd is meaningless.
1334 * And if the dirty bit will become meaningful and
1335 * we'll only set it with FOLL_WRITE, an atomic
1336 * set_bit will be required on the pmd to set the
1337 * young bit, instead of the current set_pmd_at.
1338 */
1339 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
8663890a
AK
1340 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1341 pmd, _pmd, 1))
1342 update_mmu_cache_pmd(vma, addr, pmd);
71e3aac0 1343 }
de60f5f1 1344 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
1345 /*
1346 * We don't mlock() pte-mapped THPs. This way we can avoid
1347 * leaking mlocked pages into non-VM_LOCKED VMAs.
1348 *
1349 * In most cases the pmd is the only mapping of the page as we
1350 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1351 * writable private mappings in populate_vma_page_range().
1352 *
1353 * The only scenario when we have the page shared here is if we
1354 * mlocking read-only mapping shared over fork(). We skip
1355 * mlocking such pages.
1356 */
1357 if (compound_mapcount(page) == 1 && !PageDoubleMap(page) &&
1358 page->mapping && trylock_page(page)) {
b676b293
DR
1359 lru_add_drain();
1360 if (page->mapping)
1361 mlock_vma_page(page);
1362 unlock_page(page);
1363 }
1364 }
71e3aac0 1365 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
309381fe 1366 VM_BUG_ON_PAGE(!PageCompound(page), page);
71e3aac0 1367 if (flags & FOLL_GET)
ddc58f27 1368 get_page(page);
71e3aac0
AA
1369
1370out:
1371 return page;
1372}
1373
d10e63f2 1374/* NUMA hinting page fault entry point for trans huge pmds */
4daae3b4
MG
1375int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1376 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
d10e63f2 1377{
c4088ebd 1378 spinlock_t *ptl;
b8916634 1379 struct anon_vma *anon_vma = NULL;
b32967ff 1380 struct page *page;
d10e63f2 1381 unsigned long haddr = addr & HPAGE_PMD_MASK;
8191acbd 1382 int page_nid = -1, this_nid = numa_node_id();
90572890 1383 int target_nid, last_cpupid = -1;
8191acbd
MG
1384 bool page_locked;
1385 bool migrated = false;
b191f9b1 1386 bool was_writable;
6688cc05 1387 int flags = 0;
d10e63f2 1388
c0e7cad9
MG
1389 /* A PROT_NONE fault should not end up here */
1390 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
1391
c4088ebd 1392 ptl = pmd_lock(mm, pmdp);
d10e63f2
MG
1393 if (unlikely(!pmd_same(pmd, *pmdp)))
1394 goto out_unlock;
1395
de466bd6
MG
1396 /*
1397 * If there are potential migrations, wait for completion and retry
1398 * without disrupting NUMA hinting information. Do not relock and
1399 * check_same as the page may no longer be mapped.
1400 */
1401 if (unlikely(pmd_trans_migrating(*pmdp))) {
5d833062 1402 page = pmd_page(*pmdp);
de466bd6 1403 spin_unlock(ptl);
5d833062 1404 wait_on_page_locked(page);
de466bd6
MG
1405 goto out;
1406 }
1407
d10e63f2 1408 page = pmd_page(pmd);
a1a46184 1409 BUG_ON(is_huge_zero_page(page));
8191acbd 1410 page_nid = page_to_nid(page);
90572890 1411 last_cpupid = page_cpupid_last(page);
03c5a6e1 1412 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 1413 if (page_nid == this_nid) {
03c5a6e1 1414 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
1415 flags |= TNF_FAULT_LOCAL;
1416 }
4daae3b4 1417
bea66fbd
MG
1418 /* See similar comment in do_numa_page for explanation */
1419 if (!(vma->vm_flags & VM_WRITE))
6688cc05
PZ
1420 flags |= TNF_NO_GROUP;
1421
ff9042b1
MG
1422 /*
1423 * Acquire the page lock to serialise THP migrations but avoid dropping
1424 * page_table_lock if at all possible
1425 */
b8916634
MG
1426 page_locked = trylock_page(page);
1427 target_nid = mpol_misplaced(page, vma, haddr);
1428 if (target_nid == -1) {
1429 /* If the page was locked, there are no parallel migrations */
a54a407f 1430 if (page_locked)
b8916634 1431 goto clear_pmdnuma;
2b4847e7 1432 }
4daae3b4 1433
de466bd6 1434 /* Migration could have started since the pmd_trans_migrating check */
2b4847e7 1435 if (!page_locked) {
c4088ebd 1436 spin_unlock(ptl);
b8916634 1437 wait_on_page_locked(page);
a54a407f 1438 page_nid = -1;
b8916634
MG
1439 goto out;
1440 }
1441
2b4847e7
MG
1442 /*
1443 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1444 * to serialises splits
1445 */
b8916634 1446 get_page(page);
c4088ebd 1447 spin_unlock(ptl);
b8916634 1448 anon_vma = page_lock_anon_vma_read(page);
4daae3b4 1449
c69307d5 1450 /* Confirm the PMD did not change while page_table_lock was released */
c4088ebd 1451 spin_lock(ptl);
b32967ff
MG
1452 if (unlikely(!pmd_same(pmd, *pmdp))) {
1453 unlock_page(page);
1454 put_page(page);
a54a407f 1455 page_nid = -1;
4daae3b4 1456 goto out_unlock;
b32967ff 1457 }
ff9042b1 1458
c3a489ca
MG
1459 /* Bail if we fail to protect against THP splits for any reason */
1460 if (unlikely(!anon_vma)) {
1461 put_page(page);
1462 page_nid = -1;
1463 goto clear_pmdnuma;
1464 }
1465
a54a407f
MG
1466 /*
1467 * Migrate the THP to the requested node, returns with page unlocked
8a0516ed 1468 * and access rights restored.
a54a407f 1469 */
c4088ebd 1470 spin_unlock(ptl);
b32967ff 1471 migrated = migrate_misplaced_transhuge_page(mm, vma,
340ef390 1472 pmdp, pmd, addr, page, target_nid);
6688cc05
PZ
1473 if (migrated) {
1474 flags |= TNF_MIGRATED;
8191acbd 1475 page_nid = target_nid;
074c2381
MG
1476 } else
1477 flags |= TNF_MIGRATE_FAIL;
b32967ff 1478
8191acbd 1479 goto out;
b32967ff 1480clear_pmdnuma:
a54a407f 1481 BUG_ON(!PageLocked(page));
b191f9b1 1482 was_writable = pmd_write(pmd);
4d942466 1483 pmd = pmd_modify(pmd, vma->vm_page_prot);
b7b04004 1484 pmd = pmd_mkyoung(pmd);
b191f9b1
MG
1485 if (was_writable)
1486 pmd = pmd_mkwrite(pmd);
d10e63f2 1487 set_pmd_at(mm, haddr, pmdp, pmd);
d10e63f2 1488 update_mmu_cache_pmd(vma, addr, pmdp);
a54a407f 1489 unlock_page(page);
d10e63f2 1490out_unlock:
c4088ebd 1491 spin_unlock(ptl);
b8916634
MG
1492
1493out:
1494 if (anon_vma)
1495 page_unlock_anon_vma_read(anon_vma);
1496
8191acbd 1497 if (page_nid != -1)
6688cc05 1498 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
8191acbd 1499
d10e63f2
MG
1500 return 0;
1501}
1502
71e3aac0 1503int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1504 pmd_t *pmd, unsigned long addr)
71e3aac0 1505{
da146769 1506 pmd_t orig_pmd;
bf929152 1507 spinlock_t *ptl;
71e3aac0 1508
4b471e88 1509 if (!__pmd_trans_huge_lock(pmd, vma, &ptl))
da146769
KS
1510 return 0;
1511 /*
1512 * For architectures like ppc64 we look at deposited pgtable
1513 * when calling pmdp_huge_get_and_clear. So do the
1514 * pgtable_trans_huge_withdraw after finishing pmdp related
1515 * operations.
1516 */
1517 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1518 tlb->fullmm);
1519 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1520 if (vma_is_dax(vma)) {
1521 spin_unlock(ptl);
1522 if (is_huge_zero_pmd(orig_pmd))
97ae1749 1523 put_huge_zero_page();
da146769
KS
1524 } else if (is_huge_zero_pmd(orig_pmd)) {
1525 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1526 atomic_long_dec(&tlb->mm->nr_ptes);
1527 spin_unlock(ptl);
1528 put_huge_zero_page();
1529 } else {
1530 struct page *page = pmd_page(orig_pmd);
d281ee61 1531 page_remove_rmap(page, true);
da146769
KS
1532 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1533 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1534 VM_BUG_ON_PAGE(!PageHead(page), page);
1535 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1536 atomic_long_dec(&tlb->mm->nr_ptes);
1537 spin_unlock(ptl);
1538 tlb_remove_page(tlb, page);
025c5b24 1539 }
da146769 1540 return 1;
71e3aac0
AA
1541}
1542
4b471e88 1543bool move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
37a1c49a
AA
1544 unsigned long old_addr,
1545 unsigned long new_addr, unsigned long old_end,
1546 pmd_t *old_pmd, pmd_t *new_pmd)
1547{
bf929152 1548 spinlock_t *old_ptl, *new_ptl;
37a1c49a
AA
1549 pmd_t pmd;
1550
1551 struct mm_struct *mm = vma->vm_mm;
1552
1553 if ((old_addr & ~HPAGE_PMD_MASK) ||
1554 (new_addr & ~HPAGE_PMD_MASK) ||
1555 old_end - old_addr < HPAGE_PMD_SIZE ||
1556 (new_vma->vm_flags & VM_NOHUGEPAGE))
4b471e88 1557 return false;
37a1c49a
AA
1558
1559 /*
1560 * The destination pmd shouldn't be established, free_pgtables()
1561 * should have release it.
1562 */
1563 if (WARN_ON(!pmd_none(*new_pmd))) {
1564 VM_BUG_ON(pmd_trans_huge(*new_pmd));
4b471e88 1565 return false;
37a1c49a
AA
1566 }
1567
bf929152
KS
1568 /*
1569 * We don't have to worry about the ordering of src and dst
1570 * ptlocks because exclusive mmap_sem prevents deadlock.
1571 */
4b471e88 1572 if (__pmd_trans_huge_lock(old_pmd, vma, &old_ptl)) {
bf929152
KS
1573 new_ptl = pmd_lockptr(mm, new_pmd);
1574 if (new_ptl != old_ptl)
1575 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
8809aa2d 1576 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
025c5b24 1577 VM_BUG_ON(!pmd_none(*new_pmd));
3592806c 1578
b3084f4d
AK
1579 if (pmd_move_must_withdraw(new_ptl, old_ptl)) {
1580 pgtable_t pgtable;
3592806c
KS
1581 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1582 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
3592806c 1583 }
b3084f4d
AK
1584 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1585 if (new_ptl != old_ptl)
1586 spin_unlock(new_ptl);
bf929152 1587 spin_unlock(old_ptl);
4b471e88 1588 return true;
37a1c49a 1589 }
4b471e88 1590 return false;
37a1c49a
AA
1591}
1592
f123d74a
MG
1593/*
1594 * Returns
1595 * - 0 if PMD could not be locked
1596 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1597 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1598 */
cd7548ab 1599int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
e944fd67 1600 unsigned long addr, pgprot_t newprot, int prot_numa)
cd7548ab
JW
1601{
1602 struct mm_struct *mm = vma->vm_mm;
bf929152 1603 spinlock_t *ptl;
cd7548ab
JW
1604 int ret = 0;
1605
4b471e88 1606 if (__pmd_trans_huge_lock(pmd, vma, &ptl)) {
025c5b24 1607 pmd_t entry;
b191f9b1 1608 bool preserve_write = prot_numa && pmd_write(*pmd);
ba68bc01 1609 ret = 1;
e944fd67
MG
1610
1611 /*
1612 * Avoid trapping faults against the zero page. The read-only
1613 * data is likely to be read-cached on the local CPU and
1614 * local/remote hits to the zero page are not interesting.
1615 */
1616 if (prot_numa && is_huge_zero_pmd(*pmd)) {
1617 spin_unlock(ptl);
ba68bc01 1618 return ret;
e944fd67
MG
1619 }
1620
10c1045f 1621 if (!prot_numa || !pmd_protnone(*pmd)) {
8809aa2d 1622 entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
10c1045f 1623 entry = pmd_modify(entry, newprot);
b191f9b1
MG
1624 if (preserve_write)
1625 entry = pmd_mkwrite(entry);
10c1045f
MG
1626 ret = HPAGE_PMD_NR;
1627 set_pmd_at(mm, addr, pmd, entry);
b191f9b1 1628 BUG_ON(!preserve_write && pmd_write(entry));
10c1045f 1629 }
bf929152 1630 spin_unlock(ptl);
025c5b24
NH
1631 }
1632
1633 return ret;
1634}
1635
1636/*
4b471e88 1637 * Returns true if a given pmd maps a thp, false otherwise.
025c5b24 1638 *
4b471e88
KS
1639 * Note that if it returns true, this routine returns without unlocking page
1640 * table lock. So callers must unlock it.
025c5b24 1641 */
4b471e88 1642bool __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
bf929152 1643 spinlock_t **ptl)
025c5b24 1644{
bf929152 1645 *ptl = pmd_lock(vma->vm_mm, pmd);
4b471e88
KS
1646 if (likely(pmd_trans_huge(*pmd)))
1647 return true;
bf929152 1648 spin_unlock(*ptl);
4b471e88 1649 return false;
cd7548ab
JW
1650}
1651
117b0791
KS
1652/*
1653 * This function returns whether a given @page is mapped onto the @address
1654 * in the virtual space of @mm.
1655 *
1656 * When it's true, this function returns *pmd with holding the page table lock
1657 * and passing it back to the caller via @ptl.
1658 * If it's false, returns NULL without holding the page table lock.
1659 */
71e3aac0
AA
1660pmd_t *page_check_address_pmd(struct page *page,
1661 struct mm_struct *mm,
1662 unsigned long address,
117b0791 1663 spinlock_t **ptl)
71e3aac0 1664{
b5a8cad3
KS
1665 pgd_t *pgd;
1666 pud_t *pud;
117b0791 1667 pmd_t *pmd;
71e3aac0
AA
1668
1669 if (address & ~HPAGE_PMD_MASK)
117b0791 1670 return NULL;
71e3aac0 1671
b5a8cad3
KS
1672 pgd = pgd_offset(mm, address);
1673 if (!pgd_present(*pgd))
117b0791 1674 return NULL;
b5a8cad3
KS
1675 pud = pud_offset(pgd, address);
1676 if (!pud_present(*pud))
1677 return NULL;
1678 pmd = pmd_offset(pud, address);
1679
117b0791 1680 *ptl = pmd_lock(mm, pmd);
b5a8cad3 1681 if (!pmd_present(*pmd))
117b0791 1682 goto unlock;
71e3aac0 1683 if (pmd_page(*pmd) != page)
117b0791 1684 goto unlock;
4b471e88 1685 if (pmd_trans_huge(*pmd))
117b0791 1686 return pmd;
117b0791
KS
1687unlock:
1688 spin_unlock(*ptl);
1689 return NULL;
71e3aac0
AA
1690}
1691
9050d7eb 1692#define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
78f11a25 1693
60ab3244
AA
1694int hugepage_madvise(struct vm_area_struct *vma,
1695 unsigned long *vm_flags, int advice)
0af4e98b 1696{
a664b2d8
AA
1697 switch (advice) {
1698 case MADV_HUGEPAGE:
1e1836e8
AT
1699#ifdef CONFIG_S390
1700 /*
1701 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1702 * can't handle this properly after s390_enable_sie, so we simply
1703 * ignore the madvise to prevent qemu from causing a SIGSEGV.
1704 */
1705 if (mm_has_pgste(vma->vm_mm))
1706 return 0;
1707#endif
a664b2d8
AA
1708 /*
1709 * Be somewhat over-protective like KSM for now!
1710 */
1a763615 1711 if (*vm_flags & VM_NO_THP)
a664b2d8
AA
1712 return -EINVAL;
1713 *vm_flags &= ~VM_NOHUGEPAGE;
1714 *vm_flags |= VM_HUGEPAGE;
60ab3244
AA
1715 /*
1716 * If the vma become good for khugepaged to scan,
1717 * register it here without waiting a page fault that
1718 * may not happen any time soon.
1719 */
6d50e60c 1720 if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
60ab3244 1721 return -ENOMEM;
a664b2d8
AA
1722 break;
1723 case MADV_NOHUGEPAGE:
1724 /*
1725 * Be somewhat over-protective like KSM for now!
1726 */
1a763615 1727 if (*vm_flags & VM_NO_THP)
a664b2d8
AA
1728 return -EINVAL;
1729 *vm_flags &= ~VM_HUGEPAGE;
1730 *vm_flags |= VM_NOHUGEPAGE;
60ab3244
AA
1731 /*
1732 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1733 * this vma even if we leave the mm registered in khugepaged if
1734 * it got registered before VM_NOHUGEPAGE was set.
1735 */
a664b2d8
AA
1736 break;
1737 }
0af4e98b
AA
1738
1739 return 0;
1740}
1741
ba76149f
AA
1742static int __init khugepaged_slab_init(void)
1743{
1744 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1745 sizeof(struct mm_slot),
1746 __alignof__(struct mm_slot), 0, NULL);
1747 if (!mm_slot_cache)
1748 return -ENOMEM;
1749
1750 return 0;
1751}
1752
65ebb64f
KS
1753static void __init khugepaged_slab_exit(void)
1754{
1755 kmem_cache_destroy(mm_slot_cache);
1756}
1757
ba76149f
AA
1758static inline struct mm_slot *alloc_mm_slot(void)
1759{
1760 if (!mm_slot_cache) /* initialization failed */
1761 return NULL;
1762 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1763}
1764
1765static inline void free_mm_slot(struct mm_slot *mm_slot)
1766{
1767 kmem_cache_free(mm_slot_cache, mm_slot);
1768}
1769
ba76149f
AA
1770static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1771{
1772 struct mm_slot *mm_slot;
ba76149f 1773
b67bfe0d 1774 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
ba76149f
AA
1775 if (mm == mm_slot->mm)
1776 return mm_slot;
43b5fbbd 1777
ba76149f
AA
1778 return NULL;
1779}
1780
1781static void insert_to_mm_slots_hash(struct mm_struct *mm,
1782 struct mm_slot *mm_slot)
1783{
ba76149f 1784 mm_slot->mm = mm;
43b5fbbd 1785 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
ba76149f
AA
1786}
1787
1788static inline int khugepaged_test_exit(struct mm_struct *mm)
1789{
1790 return atomic_read(&mm->mm_users) == 0;
1791}
1792
1793int __khugepaged_enter(struct mm_struct *mm)
1794{
1795 struct mm_slot *mm_slot;
1796 int wakeup;
1797
1798 mm_slot = alloc_mm_slot();
1799 if (!mm_slot)
1800 return -ENOMEM;
1801
1802 /* __khugepaged_exit() must not run from under us */
96dad67f 1803 VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
ba76149f
AA
1804 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1805 free_mm_slot(mm_slot);
1806 return 0;
1807 }
1808
1809 spin_lock(&khugepaged_mm_lock);
1810 insert_to_mm_slots_hash(mm, mm_slot);
1811 /*
1812 * Insert just behind the scanning cursor, to let the area settle
1813 * down a little.
1814 */
1815 wakeup = list_empty(&khugepaged_scan.mm_head);
1816 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1817 spin_unlock(&khugepaged_mm_lock);
1818
1819 atomic_inc(&mm->mm_count);
1820 if (wakeup)
1821 wake_up_interruptible(&khugepaged_wait);
1822
1823 return 0;
1824}
1825
6d50e60c
DR
1826int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
1827 unsigned long vm_flags)
ba76149f
AA
1828{
1829 unsigned long hstart, hend;
1830 if (!vma->anon_vma)
1831 /*
1832 * Not yet faulted in so we will register later in the
1833 * page fault if needed.
1834 */
1835 return 0;
78f11a25 1836 if (vma->vm_ops)
ba76149f
AA
1837 /* khugepaged not yet working on file or special mappings */
1838 return 0;
6d50e60c 1839 VM_BUG_ON_VMA(vm_flags & VM_NO_THP, vma);
ba76149f
AA
1840 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1841 hend = vma->vm_end & HPAGE_PMD_MASK;
1842 if (hstart < hend)
6d50e60c 1843 return khugepaged_enter(vma, vm_flags);
ba76149f
AA
1844 return 0;
1845}
1846
1847void __khugepaged_exit(struct mm_struct *mm)
1848{
1849 struct mm_slot *mm_slot;
1850 int free = 0;
1851
1852 spin_lock(&khugepaged_mm_lock);
1853 mm_slot = get_mm_slot(mm);
1854 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
43b5fbbd 1855 hash_del(&mm_slot->hash);
ba76149f
AA
1856 list_del(&mm_slot->mm_node);
1857 free = 1;
1858 }
d788e80a 1859 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
1860
1861 if (free) {
ba76149f
AA
1862 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1863 free_mm_slot(mm_slot);
1864 mmdrop(mm);
1865 } else if (mm_slot) {
ba76149f
AA
1866 /*
1867 * This is required to serialize against
1868 * khugepaged_test_exit() (which is guaranteed to run
1869 * under mmap sem read mode). Stop here (after we
1870 * return all pagetables will be destroyed) until
1871 * khugepaged has finished working on the pagetables
1872 * under the mmap_sem.
1873 */
1874 down_write(&mm->mmap_sem);
1875 up_write(&mm->mmap_sem);
d788e80a 1876 }
ba76149f
AA
1877}
1878
1879static void release_pte_page(struct page *page)
1880{
1881 /* 0 stands for page_is_file_cache(page) == false */
1882 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1883 unlock_page(page);
1884 putback_lru_page(page);
1885}
1886
1887static void release_pte_pages(pte_t *pte, pte_t *_pte)
1888{
1889 while (--_pte >= pte) {
1890 pte_t pteval = *_pte;
ca0984ca 1891 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
ba76149f
AA
1892 release_pte_page(pte_page(pteval));
1893 }
1894}
1895
ba76149f
AA
1896static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1897 unsigned long address,
1898 pte_t *pte)
1899{
7d2eba05 1900 struct page *page = NULL;
ba76149f 1901 pte_t *_pte;
7d2eba05 1902 int none_or_zero = 0, result = 0;
10359213 1903 bool referenced = false, writable = false;
7d2eba05 1904
ba76149f
AA
1905 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1906 _pte++, address += PAGE_SIZE) {
1907 pte_t pteval = *_pte;
47aee4d8
MK
1908 if (pte_none(pteval) || (pte_present(pteval) &&
1909 is_zero_pfn(pte_pfn(pteval)))) {
c1294d05 1910 if (!userfaultfd_armed(vma) &&
7d2eba05 1911 ++none_or_zero <= khugepaged_max_ptes_none) {
ba76149f 1912 continue;
7d2eba05
EA
1913 } else {
1914 result = SCAN_EXCEED_NONE_PTE;
ba76149f 1915 goto out;
7d2eba05 1916 }
ba76149f 1917 }
7d2eba05
EA
1918 if (!pte_present(pteval)) {
1919 result = SCAN_PTE_NON_PRESENT;
ba76149f 1920 goto out;
7d2eba05 1921 }
ba76149f 1922 page = vm_normal_page(vma, address, pteval);
7d2eba05
EA
1923 if (unlikely(!page)) {
1924 result = SCAN_PAGE_NULL;
ba76149f 1925 goto out;
7d2eba05 1926 }
344aa35c 1927
309381fe
SL
1928 VM_BUG_ON_PAGE(PageCompound(page), page);
1929 VM_BUG_ON_PAGE(!PageAnon(page), page);
1930 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
ba76149f 1931
ba76149f
AA
1932 /*
1933 * We can do it before isolate_lru_page because the
1934 * page can't be freed from under us. NOTE: PG_lock
1935 * is needed to serialize against split_huge_page
1936 * when invoked from the VM.
1937 */
7d2eba05
EA
1938 if (!trylock_page(page)) {
1939 result = SCAN_PAGE_LOCK;
ba76149f 1940 goto out;
7d2eba05 1941 }
10359213
EA
1942
1943 /*
1944 * cannot use mapcount: can't collapse if there's a gup pin.
1945 * The page must only be referenced by the scanned process
1946 * and page swap cache.
1947 */
1948 if (page_count(page) != 1 + !!PageSwapCache(page)) {
1949 unlock_page(page);
7d2eba05 1950 result = SCAN_PAGE_COUNT;
10359213
EA
1951 goto out;
1952 }
1953 if (pte_write(pteval)) {
1954 writable = true;
1955 } else {
1956 if (PageSwapCache(page) && !reuse_swap_page(page)) {
1957 unlock_page(page);
7d2eba05 1958 result = SCAN_SWAP_CACHE_PAGE;
10359213
EA
1959 goto out;
1960 }
1961 /*
1962 * Page is not in the swap cache. It can be collapsed
1963 * into a THP.
1964 */
1965 }
1966
ba76149f
AA
1967 /*
1968 * Isolate the page to avoid collapsing an hugepage
1969 * currently in use by the VM.
1970 */
1971 if (isolate_lru_page(page)) {
1972 unlock_page(page);
7d2eba05 1973 result = SCAN_DEL_PAGE_LRU;
ba76149f
AA
1974 goto out;
1975 }
1976 /* 0 stands for page_is_file_cache(page) == false */
1977 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
309381fe
SL
1978 VM_BUG_ON_PAGE(!PageLocked(page), page);
1979 VM_BUG_ON_PAGE(PageLRU(page), page);
ba76149f
AA
1980
1981 /* If there is no mapped pte young don't collapse the page */
33c3fc71
VD
1982 if (pte_young(pteval) ||
1983 page_is_young(page) || PageReferenced(page) ||
8ee53820 1984 mmu_notifier_test_young(vma->vm_mm, address))
10359213 1985 referenced = true;
ba76149f 1986 }
7d2eba05
EA
1987 if (likely(writable)) {
1988 if (likely(referenced)) {
1989 result = SCAN_SUCCEED;
1990 trace_mm_collapse_huge_page_isolate(page_to_pfn(page), none_or_zero,
1991 referenced, writable, result);
1992 return 1;
1993 }
1994 } else {
1995 result = SCAN_PAGE_RO;
1996 }
1997
ba76149f 1998out:
344aa35c 1999 release_pte_pages(pte, _pte);
7d2eba05
EA
2000 trace_mm_collapse_huge_page_isolate(page_to_pfn(page), none_or_zero,
2001 referenced, writable, result);
344aa35c 2002 return 0;
ba76149f
AA
2003}
2004
2005static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2006 struct vm_area_struct *vma,
2007 unsigned long address,
2008 spinlock_t *ptl)
2009{
2010 pte_t *_pte;
2011 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2012 pte_t pteval = *_pte;
2013 struct page *src_page;
2014
ca0984ca 2015 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
ba76149f
AA
2016 clear_user_highpage(page, address);
2017 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
ca0984ca
EA
2018 if (is_zero_pfn(pte_pfn(pteval))) {
2019 /*
2020 * ptl mostly unnecessary.
2021 */
2022 spin_lock(ptl);
2023 /*
2024 * paravirt calls inside pte_clear here are
2025 * superfluous.
2026 */
2027 pte_clear(vma->vm_mm, address, _pte);
2028 spin_unlock(ptl);
2029 }
ba76149f
AA
2030 } else {
2031 src_page = pte_page(pteval);
2032 copy_user_highpage(page, src_page, address, vma);
309381fe 2033 VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
ba76149f
AA
2034 release_pte_page(src_page);
2035 /*
2036 * ptl mostly unnecessary, but preempt has to
2037 * be disabled to update the per-cpu stats
2038 * inside page_remove_rmap().
2039 */
2040 spin_lock(ptl);
2041 /*
2042 * paravirt calls inside pte_clear here are
2043 * superfluous.
2044 */
2045 pte_clear(vma->vm_mm, address, _pte);
d281ee61 2046 page_remove_rmap(src_page, false);
ba76149f
AA
2047 spin_unlock(ptl);
2048 free_page_and_swap_cache(src_page);
2049 }
2050
2051 address += PAGE_SIZE;
2052 page++;
2053 }
2054}
2055
26234f36 2056static void khugepaged_alloc_sleep(void)
ba76149f 2057{
bde43c6c
PM
2058 DEFINE_WAIT(wait);
2059
2060 add_wait_queue(&khugepaged_wait, &wait);
2061 freezable_schedule_timeout_interruptible(
2062 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2063 remove_wait_queue(&khugepaged_wait, &wait);
26234f36 2064}
ba76149f 2065
9f1b868a
BL
2066static int khugepaged_node_load[MAX_NUMNODES];
2067
14a4e214
DR
2068static bool khugepaged_scan_abort(int nid)
2069{
2070 int i;
2071
2072 /*
2073 * If zone_reclaim_mode is disabled, then no extra effort is made to
2074 * allocate memory locally.
2075 */
2076 if (!zone_reclaim_mode)
2077 return false;
2078
2079 /* If there is a count for this node already, it must be acceptable */
2080 if (khugepaged_node_load[nid])
2081 return false;
2082
2083 for (i = 0; i < MAX_NUMNODES; i++) {
2084 if (!khugepaged_node_load[i])
2085 continue;
2086 if (node_distance(nid, i) > RECLAIM_DISTANCE)
2087 return true;
2088 }
2089 return false;
2090}
2091
26234f36 2092#ifdef CONFIG_NUMA
9f1b868a
BL
2093static int khugepaged_find_target_node(void)
2094{
2095 static int last_khugepaged_target_node = NUMA_NO_NODE;
2096 int nid, target_node = 0, max_value = 0;
2097
2098 /* find first node with max normal pages hit */
2099 for (nid = 0; nid < MAX_NUMNODES; nid++)
2100 if (khugepaged_node_load[nid] > max_value) {
2101 max_value = khugepaged_node_load[nid];
2102 target_node = nid;
2103 }
2104
2105 /* do some balance if several nodes have the same hit record */
2106 if (target_node <= last_khugepaged_target_node)
2107 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2108 nid++)
2109 if (max_value == khugepaged_node_load[nid]) {
2110 target_node = nid;
2111 break;
2112 }
2113
2114 last_khugepaged_target_node = target_node;
2115 return target_node;
2116}
2117
26234f36
XG
2118static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2119{
2120 if (IS_ERR(*hpage)) {
2121 if (!*wait)
2122 return false;
2123
2124 *wait = false;
e3b4126c 2125 *hpage = NULL;
26234f36
XG
2126 khugepaged_alloc_sleep();
2127 } else if (*hpage) {
2128 put_page(*hpage);
2129 *hpage = NULL;
2130 }
2131
2132 return true;
2133}
2134
3b363692
MH
2135static struct page *
2136khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
d6669d68 2137 unsigned long address, int node)
26234f36 2138{
309381fe 2139 VM_BUG_ON_PAGE(*hpage, *hpage);
8b164568 2140
ce83d217 2141 /*
8b164568
VB
2142 * Before allocating the hugepage, release the mmap_sem read lock.
2143 * The allocation can take potentially a long time if it involves
2144 * sync compaction, and we do not need to hold the mmap_sem during
2145 * that. We will recheck the vma after taking it again in write mode.
ce83d217 2146 */
8b164568
VB
2147 up_read(&mm->mmap_sem);
2148
96db800f 2149 *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
26234f36 2150 if (unlikely(!*hpage)) {
81ab4201 2151 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
ce83d217 2152 *hpage = ERR_PTR(-ENOMEM);
26234f36 2153 return NULL;
ce83d217 2154 }
26234f36 2155
9a982250 2156 prep_transhuge_page(*hpage);
65b3c07b 2157 count_vm_event(THP_COLLAPSE_ALLOC);
26234f36
XG
2158 return *hpage;
2159}
2160#else
9f1b868a
BL
2161static int khugepaged_find_target_node(void)
2162{
2163 return 0;
2164}
2165
10dc4155
BL
2166static inline struct page *alloc_hugepage(int defrag)
2167{
9a982250
KS
2168 struct page *page;
2169
2170 page = alloc_pages(alloc_hugepage_gfpmask(defrag, 0), HPAGE_PMD_ORDER);
2171 if (page)
2172 prep_transhuge_page(page);
2173 return page;
10dc4155
BL
2174}
2175
26234f36
XG
2176static struct page *khugepaged_alloc_hugepage(bool *wait)
2177{
2178 struct page *hpage;
2179
2180 do {
2181 hpage = alloc_hugepage(khugepaged_defrag());
2182 if (!hpage) {
2183 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2184 if (!*wait)
2185 return NULL;
2186
2187 *wait = false;
2188 khugepaged_alloc_sleep();
2189 } else
2190 count_vm_event(THP_COLLAPSE_ALLOC);
2191 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2192
2193 return hpage;
2194}
2195
2196static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2197{
2198 if (!*hpage)
2199 *hpage = khugepaged_alloc_hugepage(wait);
2200
2201 if (unlikely(!*hpage))
2202 return false;
2203
2204 return true;
2205}
2206
3b363692
MH
2207static struct page *
2208khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
d6669d68 2209 unsigned long address, int node)
26234f36
XG
2210{
2211 up_read(&mm->mmap_sem);
2212 VM_BUG_ON(!*hpage);
3b363692 2213
26234f36
XG
2214 return *hpage;
2215}
692e0b35
AA
2216#endif
2217
fa475e51
BL
2218static bool hugepage_vma_check(struct vm_area_struct *vma)
2219{
2220 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2221 (vma->vm_flags & VM_NOHUGEPAGE))
2222 return false;
fa475e51
BL
2223 if (!vma->anon_vma || vma->vm_ops)
2224 return false;
2225 if (is_vma_temporary_stack(vma))
2226 return false;
81d1b09c 2227 VM_BUG_ON_VMA(vma->vm_flags & VM_NO_THP, vma);
fa475e51
BL
2228 return true;
2229}
2230
26234f36
XG
2231static void collapse_huge_page(struct mm_struct *mm,
2232 unsigned long address,
2233 struct page **hpage,
2234 struct vm_area_struct *vma,
2235 int node)
2236{
26234f36
XG
2237 pmd_t *pmd, _pmd;
2238 pte_t *pte;
2239 pgtable_t pgtable;
2240 struct page *new_page;
c4088ebd 2241 spinlock_t *pmd_ptl, *pte_ptl;
7d2eba05 2242 int isolated, result = 0;
26234f36 2243 unsigned long hstart, hend;
00501b53 2244 struct mem_cgroup *memcg;
2ec74c3e
SG
2245 unsigned long mmun_start; /* For mmu_notifiers */
2246 unsigned long mmun_end; /* For mmu_notifiers */
3b363692 2247 gfp_t gfp;
26234f36
XG
2248
2249 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2250
3b363692
MH
2251 /* Only allocate from the target node */
2252 gfp = alloc_hugepage_gfpmask(khugepaged_defrag(), __GFP_OTHER_NODE) |
2253 __GFP_THISNODE;
2254
26234f36 2255 /* release the mmap_sem read lock. */
d6669d68 2256 new_page = khugepaged_alloc_page(hpage, gfp, mm, address, node);
7d2eba05
EA
2257 if (!new_page) {
2258 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
2259 goto out_nolock;
2260 }
26234f36 2261
f627c2f5 2262 if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
7d2eba05
EA
2263 result = SCAN_CGROUP_CHARGE_FAIL;
2264 goto out_nolock;
2265 }
ba76149f
AA
2266
2267 /*
2268 * Prevent all access to pagetables with the exception of
2269 * gup_fast later hanlded by the ptep_clear_flush and the VM
2270 * handled by the anon_vma lock + PG_lock.
2271 */
2272 down_write(&mm->mmap_sem);
7d2eba05
EA
2273 if (unlikely(khugepaged_test_exit(mm))) {
2274 result = SCAN_ANY_PROCESS;
ba76149f 2275 goto out;
7d2eba05 2276 }
ba76149f
AA
2277
2278 vma = find_vma(mm, address);
7d2eba05
EA
2279 if (!vma) {
2280 result = SCAN_VMA_NULL;
a8f531eb 2281 goto out;
7d2eba05 2282 }
ba76149f
AA
2283 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2284 hend = vma->vm_end & HPAGE_PMD_MASK;
7d2eba05
EA
2285 if (address < hstart || address + HPAGE_PMD_SIZE > hend) {
2286 result = SCAN_ADDRESS_RANGE;
ba76149f 2287 goto out;
7d2eba05
EA
2288 }
2289 if (!hugepage_vma_check(vma)) {
2290 result = SCAN_VMA_CHECK;
a7d6e4ec 2291 goto out;
7d2eba05 2292 }
6219049a 2293 pmd = mm_find_pmd(mm, address);
7d2eba05
EA
2294 if (!pmd) {
2295 result = SCAN_PMD_NULL;
ba76149f 2296 goto out;
7d2eba05 2297 }
ba76149f 2298
4fc3f1d6 2299 anon_vma_lock_write(vma->anon_vma);
ba76149f
AA
2300
2301 pte = pte_offset_map(pmd, address);
c4088ebd 2302 pte_ptl = pte_lockptr(mm, pmd);
ba76149f 2303
2ec74c3e
SG
2304 mmun_start = address;
2305 mmun_end = address + HPAGE_PMD_SIZE;
2306 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
c4088ebd 2307 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
ba76149f
AA
2308 /*
2309 * After this gup_fast can't run anymore. This also removes
2310 * any huge TLB entry from the CPU so we won't allow
2311 * huge and small TLB entries for the same virtual address
2312 * to avoid the risk of CPU bugs in that area.
2313 */
15a25b2e 2314 _pmd = pmdp_collapse_flush(vma, address, pmd);
c4088ebd 2315 spin_unlock(pmd_ptl);
2ec74c3e 2316 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
ba76149f 2317
c4088ebd 2318 spin_lock(pte_ptl);
ba76149f 2319 isolated = __collapse_huge_page_isolate(vma, address, pte);
c4088ebd 2320 spin_unlock(pte_ptl);
ba76149f
AA
2321
2322 if (unlikely(!isolated)) {
453c7192 2323 pte_unmap(pte);
c4088ebd 2324 spin_lock(pmd_ptl);
ba76149f 2325 BUG_ON(!pmd_none(*pmd));
7c342512
AK
2326 /*
2327 * We can only use set_pmd_at when establishing
2328 * hugepmds and never for establishing regular pmds that
2329 * points to regular pagetables. Use pmd_populate for that
2330 */
2331 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
c4088ebd 2332 spin_unlock(pmd_ptl);
08b52706 2333 anon_vma_unlock_write(vma->anon_vma);
7d2eba05 2334 result = SCAN_FAIL;
ce83d217 2335 goto out;
ba76149f
AA
2336 }
2337
2338 /*
2339 * All pages are isolated and locked so anon_vma rmap
2340 * can't run anymore.
2341 */
08b52706 2342 anon_vma_unlock_write(vma->anon_vma);
ba76149f 2343
c4088ebd 2344 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
453c7192 2345 pte_unmap(pte);
ba76149f
AA
2346 __SetPageUptodate(new_page);
2347 pgtable = pmd_pgtable(_pmd);
ba76149f 2348
3122359a
KS
2349 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2350 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
ba76149f
AA
2351
2352 /*
2353 * spin_lock() below is not the equivalent of smp_wmb(), so
2354 * this is needed to avoid the copy_huge_page writes to become
2355 * visible after the set_pmd_at() write.
2356 */
2357 smp_wmb();
2358
c4088ebd 2359 spin_lock(pmd_ptl);
ba76149f 2360 BUG_ON(!pmd_none(*pmd));
d281ee61 2361 page_add_new_anon_rmap(new_page, vma, address, true);
f627c2f5 2362 mem_cgroup_commit_charge(new_page, memcg, false, true);
00501b53 2363 lru_cache_add_active_or_unevictable(new_page, vma);
fce144b4 2364 pgtable_trans_huge_deposit(mm, pmd, pgtable);
ba76149f 2365 set_pmd_at(mm, address, pmd, _pmd);
b113da65 2366 update_mmu_cache_pmd(vma, address, pmd);
c4088ebd 2367 spin_unlock(pmd_ptl);
ba76149f
AA
2368
2369 *hpage = NULL;
420256ef 2370
ba76149f 2371 khugepaged_pages_collapsed++;
7d2eba05 2372 result = SCAN_SUCCEED;
ce83d217 2373out_up_write:
ba76149f 2374 up_write(&mm->mmap_sem);
7d2eba05 2375 trace_mm_collapse_huge_page(mm, isolated, result);
0bbbc0b3
AA
2376 return;
2377
7d2eba05
EA
2378out_nolock:
2379 trace_mm_collapse_huge_page(mm, isolated, result);
2380 return;
ce83d217 2381out:
f627c2f5 2382 mem_cgroup_cancel_charge(new_page, memcg, true);
ce83d217 2383 goto out_up_write;
ba76149f
AA
2384}
2385
2386static int khugepaged_scan_pmd(struct mm_struct *mm,
2387 struct vm_area_struct *vma,
2388 unsigned long address,
2389 struct page **hpage)
2390{
ba76149f
AA
2391 pmd_t *pmd;
2392 pte_t *pte, *_pte;
7d2eba05
EA
2393 int ret = 0, none_or_zero = 0, result = 0;
2394 struct page *page = NULL;
ba76149f
AA
2395 unsigned long _address;
2396 spinlock_t *ptl;
00ef2d2f 2397 int node = NUMA_NO_NODE;
10359213 2398 bool writable = false, referenced = false;
ba76149f
AA
2399
2400 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2401
6219049a 2402 pmd = mm_find_pmd(mm, address);
7d2eba05
EA
2403 if (!pmd) {
2404 result = SCAN_PMD_NULL;
ba76149f 2405 goto out;
7d2eba05 2406 }
ba76149f 2407
9f1b868a 2408 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
ba76149f
AA
2409 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2410 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2411 _pte++, _address += PAGE_SIZE) {
2412 pte_t pteval = *_pte;
ca0984ca 2413 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
c1294d05 2414 if (!userfaultfd_armed(vma) &&
7d2eba05 2415 ++none_or_zero <= khugepaged_max_ptes_none) {
ba76149f 2416 continue;
7d2eba05
EA
2417 } else {
2418 result = SCAN_EXCEED_NONE_PTE;
ba76149f 2419 goto out_unmap;
7d2eba05 2420 }
ba76149f 2421 }
7d2eba05
EA
2422 if (!pte_present(pteval)) {
2423 result = SCAN_PTE_NON_PRESENT;
ba76149f 2424 goto out_unmap;
7d2eba05 2425 }
10359213
EA
2426 if (pte_write(pteval))
2427 writable = true;
2428
ba76149f 2429 page = vm_normal_page(vma, _address, pteval);
7d2eba05
EA
2430 if (unlikely(!page)) {
2431 result = SCAN_PAGE_NULL;
ba76149f 2432 goto out_unmap;
7d2eba05 2433 }
b1caa957
KS
2434
2435 /* TODO: teach khugepaged to collapse THP mapped with pte */
2436 if (PageCompound(page)) {
2437 result = SCAN_PAGE_COMPOUND;
2438 goto out_unmap;
2439 }
2440
5c4b4be3 2441 /*
9f1b868a
BL
2442 * Record which node the original page is from and save this
2443 * information to khugepaged_node_load[].
2444 * Khupaged will allocate hugepage from the node has the max
2445 * hit record.
5c4b4be3 2446 */
9f1b868a 2447 node = page_to_nid(page);
7d2eba05
EA
2448 if (khugepaged_scan_abort(node)) {
2449 result = SCAN_SCAN_ABORT;
14a4e214 2450 goto out_unmap;
7d2eba05 2451 }
9f1b868a 2452 khugepaged_node_load[node]++;
7d2eba05
EA
2453 if (!PageLRU(page)) {
2454 result = SCAN_SCAN_ABORT;
2455 goto out_unmap;
2456 }
2457 if (PageLocked(page)) {
2458 result = SCAN_PAGE_LOCK;
ba76149f 2459 goto out_unmap;
7d2eba05
EA
2460 }
2461 if (!PageAnon(page)) {
2462 result = SCAN_PAGE_ANON;
2463 goto out_unmap;
2464 }
2465
10359213
EA
2466 /*
2467 * cannot use mapcount: can't collapse if there's a gup pin.
2468 * The page must only be referenced by the scanned process
2469 * and page swap cache.
2470 */
7d2eba05
EA
2471 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2472 result = SCAN_PAGE_COUNT;
ba76149f 2473 goto out_unmap;
7d2eba05 2474 }
33c3fc71
VD
2475 if (pte_young(pteval) ||
2476 page_is_young(page) || PageReferenced(page) ||
8ee53820 2477 mmu_notifier_test_young(vma->vm_mm, address))
10359213 2478 referenced = true;
ba76149f 2479 }
7d2eba05
EA
2480 if (writable) {
2481 if (referenced) {
2482 result = SCAN_SUCCEED;
2483 ret = 1;
2484 } else {
2485 result = SCAN_NO_REFERENCED_PAGE;
2486 }
2487 } else {
2488 result = SCAN_PAGE_RO;
2489 }
ba76149f
AA
2490out_unmap:
2491 pte_unmap_unlock(pte, ptl);
9f1b868a
BL
2492 if (ret) {
2493 node = khugepaged_find_target_node();
ce83d217 2494 /* collapse_huge_page will return with the mmap_sem released */
5c4b4be3 2495 collapse_huge_page(mm, address, hpage, vma, node);
9f1b868a 2496 }
ba76149f 2497out:
7d2eba05
EA
2498 trace_mm_khugepaged_scan_pmd(mm, page_to_pfn(page), writable, referenced,
2499 none_or_zero, result);
ba76149f
AA
2500 return ret;
2501}
2502
2503static void collect_mm_slot(struct mm_slot *mm_slot)
2504{
2505 struct mm_struct *mm = mm_slot->mm;
2506
b9980cdc 2507 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2508
2509 if (khugepaged_test_exit(mm)) {
2510 /* free mm_slot */
43b5fbbd 2511 hash_del(&mm_slot->hash);
ba76149f
AA
2512 list_del(&mm_slot->mm_node);
2513
2514 /*
2515 * Not strictly needed because the mm exited already.
2516 *
2517 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2518 */
2519
2520 /* khugepaged_mm_lock actually not necessary for the below */
2521 free_mm_slot(mm_slot);
2522 mmdrop(mm);
2523 }
2524}
2525
2526static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2527 struct page **hpage)
2f1da642
HS
2528 __releases(&khugepaged_mm_lock)
2529 __acquires(&khugepaged_mm_lock)
ba76149f
AA
2530{
2531 struct mm_slot *mm_slot;
2532 struct mm_struct *mm;
2533 struct vm_area_struct *vma;
2534 int progress = 0;
2535
2536 VM_BUG_ON(!pages);
b9980cdc 2537 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2538
2539 if (khugepaged_scan.mm_slot)
2540 mm_slot = khugepaged_scan.mm_slot;
2541 else {
2542 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2543 struct mm_slot, mm_node);
2544 khugepaged_scan.address = 0;
2545 khugepaged_scan.mm_slot = mm_slot;
2546 }
2547 spin_unlock(&khugepaged_mm_lock);
2548
2549 mm = mm_slot->mm;
2550 down_read(&mm->mmap_sem);
2551 if (unlikely(khugepaged_test_exit(mm)))
2552 vma = NULL;
2553 else
2554 vma = find_vma(mm, khugepaged_scan.address);
2555
2556 progress++;
2557 for (; vma; vma = vma->vm_next) {
2558 unsigned long hstart, hend;
2559
2560 cond_resched();
2561 if (unlikely(khugepaged_test_exit(mm))) {
2562 progress++;
2563 break;
2564 }
fa475e51
BL
2565 if (!hugepage_vma_check(vma)) {
2566skip:
ba76149f
AA
2567 progress++;
2568 continue;
2569 }
ba76149f
AA
2570 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2571 hend = vma->vm_end & HPAGE_PMD_MASK;
a7d6e4ec
AA
2572 if (hstart >= hend)
2573 goto skip;
2574 if (khugepaged_scan.address > hend)
2575 goto skip;
ba76149f
AA
2576 if (khugepaged_scan.address < hstart)
2577 khugepaged_scan.address = hstart;
a7d6e4ec 2578 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
ba76149f
AA
2579
2580 while (khugepaged_scan.address < hend) {
2581 int ret;
2582 cond_resched();
2583 if (unlikely(khugepaged_test_exit(mm)))
2584 goto breakouterloop;
2585
2586 VM_BUG_ON(khugepaged_scan.address < hstart ||
2587 khugepaged_scan.address + HPAGE_PMD_SIZE >
2588 hend);
2589 ret = khugepaged_scan_pmd(mm, vma,
2590 khugepaged_scan.address,
2591 hpage);
2592 /* move to next address */
2593 khugepaged_scan.address += HPAGE_PMD_SIZE;
2594 progress += HPAGE_PMD_NR;
2595 if (ret)
2596 /* we released mmap_sem so break loop */
2597 goto breakouterloop_mmap_sem;
2598 if (progress >= pages)
2599 goto breakouterloop;
2600 }
2601 }
2602breakouterloop:
2603 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2604breakouterloop_mmap_sem:
2605
2606 spin_lock(&khugepaged_mm_lock);
a7d6e4ec 2607 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
ba76149f
AA
2608 /*
2609 * Release the current mm_slot if this mm is about to die, or
2610 * if we scanned all vmas of this mm.
2611 */
2612 if (khugepaged_test_exit(mm) || !vma) {
2613 /*
2614 * Make sure that if mm_users is reaching zero while
2615 * khugepaged runs here, khugepaged_exit will find
2616 * mm_slot not pointing to the exiting mm.
2617 */
2618 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2619 khugepaged_scan.mm_slot = list_entry(
2620 mm_slot->mm_node.next,
2621 struct mm_slot, mm_node);
2622 khugepaged_scan.address = 0;
2623 } else {
2624 khugepaged_scan.mm_slot = NULL;
2625 khugepaged_full_scans++;
2626 }
2627
2628 collect_mm_slot(mm_slot);
2629 }
2630
2631 return progress;
2632}
2633
2634static int khugepaged_has_work(void)
2635{
2636 return !list_empty(&khugepaged_scan.mm_head) &&
2637 khugepaged_enabled();
2638}
2639
2640static int khugepaged_wait_event(void)
2641{
2642 return !list_empty(&khugepaged_scan.mm_head) ||
2017c0bf 2643 kthread_should_stop();
ba76149f
AA
2644}
2645
d516904b 2646static void khugepaged_do_scan(void)
ba76149f 2647{
d516904b 2648 struct page *hpage = NULL;
ba76149f
AA
2649 unsigned int progress = 0, pass_through_head = 0;
2650 unsigned int pages = khugepaged_pages_to_scan;
d516904b 2651 bool wait = true;
ba76149f
AA
2652
2653 barrier(); /* write khugepaged_pages_to_scan to local stack */
2654
2655 while (progress < pages) {
26234f36 2656 if (!khugepaged_prealloc_page(&hpage, &wait))
d516904b 2657 break;
26234f36 2658
420256ef 2659 cond_resched();
ba76149f 2660
cd092411 2661 if (unlikely(kthread_should_stop() || try_to_freeze()))
878aee7d
AA
2662 break;
2663
ba76149f
AA
2664 spin_lock(&khugepaged_mm_lock);
2665 if (!khugepaged_scan.mm_slot)
2666 pass_through_head++;
2667 if (khugepaged_has_work() &&
2668 pass_through_head < 2)
2669 progress += khugepaged_scan_mm_slot(pages - progress,
d516904b 2670 &hpage);
ba76149f
AA
2671 else
2672 progress = pages;
2673 spin_unlock(&khugepaged_mm_lock);
2674 }
ba76149f 2675
d516904b
XG
2676 if (!IS_ERR_OR_NULL(hpage))
2677 put_page(hpage);
0bbbc0b3
AA
2678}
2679
2017c0bf
XG
2680static void khugepaged_wait_work(void)
2681{
2017c0bf
XG
2682 if (khugepaged_has_work()) {
2683 if (!khugepaged_scan_sleep_millisecs)
2684 return;
2685
2686 wait_event_freezable_timeout(khugepaged_wait,
2687 kthread_should_stop(),
2688 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2689 return;
2690 }
2691
2692 if (khugepaged_enabled())
2693 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2694}
2695
ba76149f
AA
2696static int khugepaged(void *none)
2697{
2698 struct mm_slot *mm_slot;
2699
878aee7d 2700 set_freezable();
8698a745 2701 set_user_nice(current, MAX_NICE);
ba76149f 2702
b7231789
XG
2703 while (!kthread_should_stop()) {
2704 khugepaged_do_scan();
2705 khugepaged_wait_work();
2706 }
ba76149f
AA
2707
2708 spin_lock(&khugepaged_mm_lock);
2709 mm_slot = khugepaged_scan.mm_slot;
2710 khugepaged_scan.mm_slot = NULL;
2711 if (mm_slot)
2712 collect_mm_slot(mm_slot);
2713 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
2714 return 0;
2715}
2716
eef1b3ba
KS
2717static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2718 unsigned long haddr, pmd_t *pmd)
2719{
2720 struct mm_struct *mm = vma->vm_mm;
2721 pgtable_t pgtable;
2722 pmd_t _pmd;
2723 int i;
2724
2725 /* leave pmd empty until pte is filled */
2726 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2727
2728 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2729 pmd_populate(mm, &_pmd, pgtable);
2730
2731 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2732 pte_t *pte, entry;
2733 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2734 entry = pte_mkspecial(entry);
2735 pte = pte_offset_map(&_pmd, haddr);
2736 VM_BUG_ON(!pte_none(*pte));
2737 set_pte_at(mm, haddr, pte, entry);
2738 pte_unmap(pte);
2739 }
2740 smp_wmb(); /* make pte visible before pmd */
2741 pmd_populate(mm, pmd, pgtable);
2742 put_huge_zero_page();
2743}
2744
2745static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
ba988280 2746 unsigned long haddr, bool freeze)
eef1b3ba
KS
2747{
2748 struct mm_struct *mm = vma->vm_mm;
2749 struct page *page;
2750 pgtable_t pgtable;
2751 pmd_t _pmd;
2752 bool young, write;
2753 int i;
2754
2755 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2756 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2757 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2758 VM_BUG_ON(!pmd_trans_huge(*pmd));
2759
2760 count_vm_event(THP_SPLIT_PMD);
2761
2762 if (vma_is_dax(vma)) {
2763 pmd_t _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2764 if (is_huge_zero_pmd(_pmd))
2765 put_huge_zero_page();
2766 return;
2767 } else if (is_huge_zero_pmd(*pmd)) {
2768 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2769 }
2770
2771 page = pmd_page(*pmd);
2772 VM_BUG_ON_PAGE(!page_count(page), page);
2773 atomic_add(HPAGE_PMD_NR - 1, &page->_count);
2774 write = pmd_write(*pmd);
2775 young = pmd_young(*pmd);
2776
eef1b3ba
KS
2777 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2778 pmd_populate(mm, &_pmd, pgtable);
2779
2780 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2781 pte_t entry, *pte;
2782 /*
2783 * Note that NUMA hinting access restrictions are not
2784 * transferred to avoid any possibility of altering
2785 * permissions across VMAs.
2786 */
ba988280
KS
2787 if (freeze) {
2788 swp_entry_t swp_entry;
2789 swp_entry = make_migration_entry(page + i, write);
2790 entry = swp_entry_to_pte(swp_entry);
2791 } else {
2792 entry = mk_pte(page + i, vma->vm_page_prot);
2793 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2794 if (!write)
2795 entry = pte_wrprotect(entry);
2796 if (!young)
2797 entry = pte_mkold(entry);
2798 }
eef1b3ba
KS
2799 pte = pte_offset_map(&_pmd, haddr);
2800 BUG_ON(!pte_none(*pte));
2801 set_pte_at(mm, haddr, pte, entry);
2802 atomic_inc(&page[i]._mapcount);
2803 pte_unmap(pte);
2804 }
2805
2806 /*
2807 * Set PG_double_map before dropping compound_mapcount to avoid
2808 * false-negative page_mapped().
2809 */
2810 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2811 for (i = 0; i < HPAGE_PMD_NR; i++)
2812 atomic_inc(&page[i]._mapcount);
2813 }
2814
2815 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2816 /* Last compound_mapcount is gone. */
2817 __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
2818 if (TestClearPageDoubleMap(page)) {
2819 /* No need in mapcount reference anymore */
2820 for (i = 0; i < HPAGE_PMD_NR; i++)
2821 atomic_dec(&page[i]._mapcount);
2822 }
2823 }
2824
2825 smp_wmb(); /* make pte visible before pmd */
e9b61f19
KS
2826 /*
2827 * Up to this point the pmd is present and huge and userland has the
2828 * whole access to the hugepage during the split (which happens in
2829 * place). If we overwrite the pmd with the not-huge version pointing
2830 * to the pte here (which of course we could if all CPUs were bug
2831 * free), userland could trigger a small page size TLB miss on the
2832 * small sized TLB while the hugepage TLB entry is still established in
2833 * the huge TLB. Some CPU doesn't like that.
2834 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2835 * 383 on page 93. Intel should be safe but is also warns that it's
2836 * only safe if the permission and cache attributes of the two entries
2837 * loaded in the two TLB is identical (which should be the case here).
2838 * But it is generally safer to never allow small and huge TLB entries
2839 * for the same virtual address to be loaded simultaneously. So instead
2840 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2841 * current pmd notpresent (atomically because here the pmd_trans_huge
2842 * and pmd_trans_splitting must remain set at all times on the pmd
2843 * until the split is complete for this pmd), then we flush the SMP TLB
2844 * and finally we write the non-huge version of the pmd entry with
2845 * pmd_populate.
2846 */
2847 pmdp_invalidate(vma, haddr, pmd);
eef1b3ba 2848 pmd_populate(mm, pmd, pgtable);
e9b61f19
KS
2849
2850 if (freeze) {
2851 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2852 page_remove_rmap(page + i, false);
2853 put_page(page + i);
2854 }
2855 }
eef1b3ba
KS
2856}
2857
2858void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2859 unsigned long address)
2860{
2861 spinlock_t *ptl;
2862 struct mm_struct *mm = vma->vm_mm;
e90309c9 2863 struct page *page = NULL;
eef1b3ba
KS
2864 unsigned long haddr = address & HPAGE_PMD_MASK;
2865
2866 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2867 ptl = pmd_lock(mm, pmd);
e90309c9
KS
2868 if (unlikely(!pmd_trans_huge(*pmd)))
2869 goto out;
2870 page = pmd_page(*pmd);
2871 __split_huge_pmd_locked(vma, pmd, haddr, false);
2872 if (PageMlocked(page))
2873 get_page(page);
2874 else
2875 page = NULL;
2876out:
eef1b3ba
KS
2877 spin_unlock(ptl);
2878 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
e90309c9
KS
2879 if (page) {
2880 lock_page(page);
2881 munlock_vma_page(page);
2882 unlock_page(page);
2883 put_page(page);
2884 }
eef1b3ba
KS
2885}
2886
78ddc534 2887static void split_huge_pmd_address(struct vm_area_struct *vma,
94fcc585
AA
2888 unsigned long address)
2889{
f72e7dcd
HD
2890 pgd_t *pgd;
2891 pud_t *pud;
94fcc585
AA
2892 pmd_t *pmd;
2893
2894 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2895
78ddc534 2896 pgd = pgd_offset(vma->vm_mm, address);
f72e7dcd
HD
2897 if (!pgd_present(*pgd))
2898 return;
2899
2900 pud = pud_offset(pgd, address);
2901 if (!pud_present(*pud))
2902 return;
2903
2904 pmd = pmd_offset(pud, address);
78ddc534 2905 if (!pmd_present(*pmd) || !pmd_trans_huge(*pmd))
94fcc585
AA
2906 return;
2907 /*
2908 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2909 * materialize from under us.
2910 */
ad0bed24 2911 split_huge_pmd(vma, pmd, address);
94fcc585
AA
2912}
2913
e1b9996b 2914void vma_adjust_trans_huge(struct vm_area_struct *vma,
94fcc585
AA
2915 unsigned long start,
2916 unsigned long end,
2917 long adjust_next)
2918{
2919 /*
2920 * If the new start address isn't hpage aligned and it could
2921 * previously contain an hugepage: check if we need to split
2922 * an huge pmd.
2923 */
2924 if (start & ~HPAGE_PMD_MASK &&
2925 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2926 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
78ddc534 2927 split_huge_pmd_address(vma, start);
94fcc585
AA
2928
2929 /*
2930 * If the new end address isn't hpage aligned and it could
2931 * previously contain an hugepage: check if we need to split
2932 * an huge pmd.
2933 */
2934 if (end & ~HPAGE_PMD_MASK &&
2935 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2936 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
78ddc534 2937 split_huge_pmd_address(vma, end);
94fcc585
AA
2938
2939 /*
2940 * If we're also updating the vma->vm_next->vm_start, if the new
2941 * vm_next->vm_start isn't page aligned and it could previously
2942 * contain an hugepage: check if we need to split an huge pmd.
2943 */
2944 if (adjust_next > 0) {
2945 struct vm_area_struct *next = vma->vm_next;
2946 unsigned long nstart = next->vm_start;
2947 nstart += adjust_next << PAGE_SHIFT;
2948 if (nstart & ~HPAGE_PMD_MASK &&
2949 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2950 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
78ddc534 2951 split_huge_pmd_address(next, nstart);
94fcc585
AA
2952 }
2953}
e9b61f19
KS
2954
2955static void freeze_page_vma(struct vm_area_struct *vma, struct page *page,
2956 unsigned long address)
2957{
2958 spinlock_t *ptl;
2959 pgd_t *pgd;
2960 pud_t *pud;
2961 pmd_t *pmd;
2962 pte_t *pte;
2963 int i, nr = HPAGE_PMD_NR;
2964
2965 /* Skip pages which doesn't belong to the VMA */
2966 if (address < vma->vm_start) {
2967 int off = (vma->vm_start - address) >> PAGE_SHIFT;
2968 page += off;
2969 nr -= off;
2970 address = vma->vm_start;
2971 }
2972
2973 pgd = pgd_offset(vma->vm_mm, address);
2974 if (!pgd_present(*pgd))
2975 return;
2976 pud = pud_offset(pgd, address);
2977 if (!pud_present(*pud))
2978 return;
2979 pmd = pmd_offset(pud, address);
2980 ptl = pmd_lock(vma->vm_mm, pmd);
2981 if (!pmd_present(*pmd)) {
2982 spin_unlock(ptl);
2983 return;
2984 }
2985 if (pmd_trans_huge(*pmd)) {
2986 if (page == pmd_page(*pmd))
2987 __split_huge_pmd_locked(vma, pmd, address, true);
2988 spin_unlock(ptl);
2989 return;
2990 }
2991 spin_unlock(ptl);
2992
2993 pte = pte_offset_map_lock(vma->vm_mm, pmd, address, &ptl);
2994 for (i = 0; i < nr; i++, address += PAGE_SIZE, page++) {
2995 pte_t entry, swp_pte;
2996 swp_entry_t swp_entry;
2997
2998 if (!pte_present(pte[i]))
2999 continue;
3000 if (page_to_pfn(page) != pte_pfn(pte[i]))
3001 continue;
3002 flush_cache_page(vma, address, page_to_pfn(page));
3003 entry = ptep_clear_flush(vma, address, pte + i);
3004 swp_entry = make_migration_entry(page, pte_write(entry));
3005 swp_pte = swp_entry_to_pte(swp_entry);
3006 if (pte_soft_dirty(entry))
3007 swp_pte = pte_swp_mksoft_dirty(swp_pte);
3008 set_pte_at(vma->vm_mm, address, pte + i, swp_pte);
3009 page_remove_rmap(page, false);
3010 put_page(page);
3011 }
3012 pte_unmap_unlock(pte, ptl);
3013}
3014
3015static void freeze_page(struct anon_vma *anon_vma, struct page *page)
3016{
3017 struct anon_vma_chain *avc;
3018 pgoff_t pgoff = page_to_pgoff(page);
3019
3020 VM_BUG_ON_PAGE(!PageHead(page), page);
3021
3022 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff,
3023 pgoff + HPAGE_PMD_NR - 1) {
3024 unsigned long haddr;
3025
3026 haddr = __vma_address(page, avc->vma) & HPAGE_PMD_MASK;
3027 mmu_notifier_invalidate_range_start(avc->vma->vm_mm,
3028 haddr, haddr + HPAGE_PMD_SIZE);
3029 freeze_page_vma(avc->vma, page, haddr);
3030 mmu_notifier_invalidate_range_end(avc->vma->vm_mm,
3031 haddr, haddr + HPAGE_PMD_SIZE);
3032 }
3033}
3034
3035static void unfreeze_page_vma(struct vm_area_struct *vma, struct page *page,
3036 unsigned long address)
3037{
3038 spinlock_t *ptl;
3039 pmd_t *pmd;
3040 pte_t *pte, entry;
3041 swp_entry_t swp_entry;
3042 int i, nr = HPAGE_PMD_NR;
3043
3044 /* Skip pages which doesn't belong to the VMA */
3045 if (address < vma->vm_start) {
3046 int off = (vma->vm_start - address) >> PAGE_SHIFT;
3047 page += off;
3048 nr -= off;
3049 address = vma->vm_start;
3050 }
3051
3052 pmd = mm_find_pmd(vma->vm_mm, address);
3053 if (!pmd)
3054 return;
3055 pte = pte_offset_map_lock(vma->vm_mm, pmd, address, &ptl);
3056 for (i = 0; i < nr; i++, address += PAGE_SIZE, page++) {
3057 if (!is_swap_pte(pte[i]))
3058 continue;
3059
3060 swp_entry = pte_to_swp_entry(pte[i]);
3061 if (!is_migration_entry(swp_entry))
3062 continue;
3063 if (migration_entry_to_page(swp_entry) != page)
3064 continue;
3065
3066 get_page(page);
3067 page_add_anon_rmap(page, vma, address, false);
3068
3069 entry = pte_mkold(mk_pte(page, vma->vm_page_prot));
3070 entry = pte_mkdirty(entry);
3071 if (is_write_migration_entry(swp_entry))
3072 entry = maybe_mkwrite(entry, vma);
3073
3074 flush_dcache_page(page);
3075 set_pte_at(vma->vm_mm, address, pte + i, entry);
3076
3077 /* No need to invalidate - it was non-present before */
3078 update_mmu_cache(vma, address, pte + i);
3079 }
3080 pte_unmap_unlock(pte, ptl);
3081}
3082
3083static void unfreeze_page(struct anon_vma *anon_vma, struct page *page)
3084{
3085 struct anon_vma_chain *avc;
3086 pgoff_t pgoff = page_to_pgoff(page);
3087
3088 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
3089 pgoff, pgoff + HPAGE_PMD_NR - 1) {
3090 unsigned long address = __vma_address(page, avc->vma);
3091
3092 mmu_notifier_invalidate_range_start(avc->vma->vm_mm,
3093 address, address + HPAGE_PMD_SIZE);
3094 unfreeze_page_vma(avc->vma, page, address);
3095 mmu_notifier_invalidate_range_end(avc->vma->vm_mm,
3096 address, address + HPAGE_PMD_SIZE);
3097 }
3098}
3099
3100static int total_mapcount(struct page *page)
3101{
3102 int i, ret;
3103
3104 ret = compound_mapcount(page);
3105 for (i = 0; i < HPAGE_PMD_NR; i++)
3106 ret += atomic_read(&page[i]._mapcount) + 1;
3107
3108 if (PageDoubleMap(page))
3109 ret -= HPAGE_PMD_NR;
3110
3111 return ret;
3112}
3113
3114static int __split_huge_page_tail(struct page *head, int tail,
3115 struct lruvec *lruvec, struct list_head *list)
3116{
3117 int mapcount;
3118 struct page *page_tail = head + tail;
3119
3120 mapcount = atomic_read(&page_tail->_mapcount) + 1;
3121 VM_BUG_ON_PAGE(atomic_read(&page_tail->_count) != 0, page_tail);
3122
3123 /*
3124 * tail_page->_count is zero and not changing from under us. But
3125 * get_page_unless_zero() may be running from under us on the
3126 * tail_page. If we used atomic_set() below instead of atomic_add(), we
3127 * would then run atomic_set() concurrently with
3128 * get_page_unless_zero(), and atomic_set() is implemented in C not
3129 * using locked ops. spin_unlock on x86 sometime uses locked ops
3130 * because of PPro errata 66, 92, so unless somebody can guarantee
3131 * atomic_set() here would be safe on all archs (and not only on x86),
3132 * it's safer to use atomic_add().
3133 */
3134 atomic_add(mapcount + 1, &page_tail->_count);
3135
3136
3137 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
3138 page_tail->flags |= (head->flags &
3139 ((1L << PG_referenced) |
3140 (1L << PG_swapbacked) |
3141 (1L << PG_mlocked) |
3142 (1L << PG_uptodate) |
3143 (1L << PG_active) |
3144 (1L << PG_locked) |
3145 (1L << PG_unevictable)));
3146 page_tail->flags |= (1L << PG_dirty);
3147
3148 /*
3149 * After clearing PageTail the gup refcount can be released.
3150 * Page flags also must be visible before we make the page non-compound.
3151 */
3152 smp_wmb();
3153
3154 clear_compound_head(page_tail);
3155
3156 if (page_is_young(head))
3157 set_page_young(page_tail);
3158 if (page_is_idle(head))
3159 set_page_idle(page_tail);
3160
3161 /* ->mapping in first tail page is compound_mapcount */
9a982250 3162 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
e9b61f19
KS
3163 page_tail);
3164 page_tail->mapping = head->mapping;
3165
3166 page_tail->index = head->index + tail;
3167 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
3168 lru_add_page_tail(head, page_tail, lruvec, list);
3169
3170 return mapcount;
3171}
3172
3173static void __split_huge_page(struct page *page, struct list_head *list)
3174{
3175 struct page *head = compound_head(page);
3176 struct zone *zone = page_zone(head);
3177 struct lruvec *lruvec;
3178 int i, tail_mapcount;
3179
3180 /* prevent PageLRU to go away from under us, and freeze lru stats */
3181 spin_lock_irq(&zone->lru_lock);
3182 lruvec = mem_cgroup_page_lruvec(head, zone);
3183
3184 /* complete memcg works before add pages to LRU */
3185 mem_cgroup_split_huge_fixup(head);
3186
3187 tail_mapcount = 0;
3188 for (i = HPAGE_PMD_NR - 1; i >= 1; i--)
3189 tail_mapcount += __split_huge_page_tail(head, i, lruvec, list);
3190 atomic_sub(tail_mapcount, &head->_count);
3191
3192 ClearPageCompound(head);
3193 spin_unlock_irq(&zone->lru_lock);
3194
3195 unfreeze_page(page_anon_vma(head), head);
3196
3197 for (i = 0; i < HPAGE_PMD_NR; i++) {
3198 struct page *subpage = head + i;
3199 if (subpage == page)
3200 continue;
3201 unlock_page(subpage);
3202
3203 /*
3204 * Subpages may be freed if there wasn't any mapping
3205 * like if add_to_swap() is running on a lru page that
3206 * had its mapping zapped. And freeing these pages
3207 * requires taking the lru_lock so we do the put_page
3208 * of the tail pages after the split is complete.
3209 */
3210 put_page(subpage);
3211 }
3212}
3213
3214/*
3215 * This function splits huge page into normal pages. @page can point to any
3216 * subpage of huge page to split. Split doesn't change the position of @page.
3217 *
3218 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
3219 * The huge page must be locked.
3220 *
3221 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
3222 *
3223 * Both head page and tail pages will inherit mapping, flags, and so on from
3224 * the hugepage.
3225 *
3226 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
3227 * they are not mapped.
3228 *
3229 * Returns 0 if the hugepage is split successfully.
3230 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
3231 * us.
3232 */
3233int split_huge_page_to_list(struct page *page, struct list_head *list)
3234{
3235 struct page *head = compound_head(page);
3236 struct anon_vma *anon_vma;
3237 int count, mapcount, ret;
3238
3239 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
3240 VM_BUG_ON_PAGE(!PageAnon(page), page);
3241 VM_BUG_ON_PAGE(!PageLocked(page), page);
3242 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
3243 VM_BUG_ON_PAGE(!PageCompound(page), page);
3244
3245 /*
3246 * The caller does not necessarily hold an mmap_sem that would prevent
3247 * the anon_vma disappearing so we first we take a reference to it
3248 * and then lock the anon_vma for write. This is similar to
3249 * page_lock_anon_vma_read except the write lock is taken to serialise
3250 * against parallel split or collapse operations.
3251 */
3252 anon_vma = page_get_anon_vma(head);
3253 if (!anon_vma) {
3254 ret = -EBUSY;
3255 goto out;
3256 }
3257 anon_vma_lock_write(anon_vma);
3258
3259 /*
3260 * Racy check if we can split the page, before freeze_page() will
3261 * split PMDs
3262 */
3263 if (total_mapcount(head) != page_count(head) - 1) {
3264 ret = -EBUSY;
3265 goto out_unlock;
3266 }
3267
3268 freeze_page(anon_vma, head);
3269 VM_BUG_ON_PAGE(compound_mapcount(head), head);
3270
9a982250
KS
3271 /* Prevent deferred_split_scan() touching ->_count */
3272 spin_lock(&split_queue_lock);
e9b61f19
KS
3273 count = page_count(head);
3274 mapcount = total_mapcount(head);
3275 if (mapcount == count - 1) {
9a982250
KS
3276 if (!list_empty(page_deferred_list(head))) {
3277 split_queue_len--;
3278 list_del(page_deferred_list(head));
3279 }
3280 spin_unlock(&split_queue_lock);
e9b61f19
KS
3281 __split_huge_page(page, list);
3282 ret = 0;
3283 } else if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount > count - 1) {
9a982250 3284 spin_unlock(&split_queue_lock);
e9b61f19
KS
3285 pr_alert("total_mapcount: %u, page_count(): %u\n",
3286 mapcount, count);
3287 if (PageTail(page))
3288 dump_page(head, NULL);
3289 dump_page(page, "total_mapcount(head) > page_count(head) - 1");
3290 BUG();
3291 } else {
9a982250 3292 spin_unlock(&split_queue_lock);
e9b61f19
KS
3293 unfreeze_page(anon_vma, head);
3294 ret = -EBUSY;
3295 }
3296
3297out_unlock:
3298 anon_vma_unlock_write(anon_vma);
3299 put_anon_vma(anon_vma);
3300out:
3301 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
3302 return ret;
3303}
9a982250
KS
3304
3305void free_transhuge_page(struct page *page)
3306{
3307 unsigned long flags;
3308
3309 spin_lock_irqsave(&split_queue_lock, flags);
3310 if (!list_empty(page_deferred_list(page))) {
3311 split_queue_len--;
3312 list_del(page_deferred_list(page));
3313 }
3314 spin_unlock_irqrestore(&split_queue_lock, flags);
3315 free_compound_page(page);
3316}
3317
3318void deferred_split_huge_page(struct page *page)
3319{
3320 unsigned long flags;
3321
3322 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3323
3324 spin_lock_irqsave(&split_queue_lock, flags);
3325 if (list_empty(page_deferred_list(page))) {
3326 list_add_tail(page_deferred_list(page), &split_queue);
3327 split_queue_len++;
3328 }
3329 spin_unlock_irqrestore(&split_queue_lock, flags);
3330}
3331
3332static unsigned long deferred_split_count(struct shrinker *shrink,
3333 struct shrink_control *sc)
3334{
3335 /*
3336 * Split a page from split_queue will free up at least one page,
3337 * at most HPAGE_PMD_NR - 1. We don't track exact number.
3338 * Let's use HPAGE_PMD_NR / 2 as ballpark.
3339 */
3340 return ACCESS_ONCE(split_queue_len) * HPAGE_PMD_NR / 2;
3341}
3342
3343static unsigned long deferred_split_scan(struct shrinker *shrink,
3344 struct shrink_control *sc)
3345{
3346 unsigned long flags;
3347 LIST_HEAD(list), *pos, *next;
3348 struct page *page;
3349 int split = 0;
3350
3351 spin_lock_irqsave(&split_queue_lock, flags);
3352 list_splice_init(&split_queue, &list);
3353
3354 /* Take pin on all head pages to avoid freeing them under us */
3355 list_for_each_safe(pos, next, &list) {
3356 page = list_entry((void *)pos, struct page, mapping);
3357 page = compound_head(page);
3358 /* race with put_compound_page() */
3359 if (!get_page_unless_zero(page)) {
3360 list_del_init(page_deferred_list(page));
3361 split_queue_len--;
3362 }
3363 }
3364 spin_unlock_irqrestore(&split_queue_lock, flags);
3365
3366 list_for_each_safe(pos, next, &list) {
3367 page = list_entry((void *)pos, struct page, mapping);
3368 lock_page(page);
3369 /* split_huge_page() removes page from list on success */
3370 if (!split_huge_page(page))
3371 split++;
3372 unlock_page(page);
3373 put_page(page);
3374 }
3375
3376 spin_lock_irqsave(&split_queue_lock, flags);
3377 list_splice_tail(&list, &split_queue);
3378 spin_unlock_irqrestore(&split_queue_lock, flags);
3379
3380 return split * HPAGE_PMD_NR / 2;
3381}
3382
3383static struct shrinker deferred_split_shrinker = {
3384 .count_objects = deferred_split_count,
3385 .scan_objects = deferred_split_scan,
3386 .seeks = DEFAULT_SEEKS,
3387};