]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - mm/kmsan/hooks.c
Merge tag 'mm-nonmm-stable-2024-05-19-11-56' of git://git.kernel.org/pub/scm/linux...
[thirdparty/kernel/stable.git] / mm / kmsan / hooks.c
CommitLineData
f80be457
AP
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * KMSAN hooks for kernel subsystems.
4 *
5 * These functions handle creation of KMSAN metadata for memory allocations.
6 *
7 * Copyright (C) 2018-2022 Google LLC
8 * Author: Alexander Potapenko <glider@google.com>
9 *
10 */
11
12#include <linux/cacheflush.h>
7ade4f10 13#include <linux/dma-direction.h>
f80be457 14#include <linux/gfp.h>
b073d7f8 15#include <linux/kmsan.h>
f80be457
AP
16#include <linux/mm.h>
17#include <linux/mm_types.h>
7ade4f10 18#include <linux/scatterlist.h>
f80be457
AP
19#include <linux/slab.h>
20#include <linux/uaccess.h>
553a8018 21#include <linux/usb.h>
f80be457
AP
22
23#include "../internal.h"
24#include "../slab.h"
25#include "kmsan.h"
26
27/*
28 * Instrumented functions shouldn't be called under
29 * kmsan_enter_runtime()/kmsan_leave_runtime(), because this will lead to
30 * skipping effects of functions like memset() inside instrumented code.
31 */
32
50b5e49c
AP
33void kmsan_task_create(struct task_struct *task)
34{
35 kmsan_enter_runtime();
36 kmsan_internal_task_create(task);
37 kmsan_leave_runtime();
38}
39
40void kmsan_task_exit(struct task_struct *task)
41{
42 struct kmsan_ctx *ctx = &task->kmsan_ctx;
43
44 if (!kmsan_enabled || kmsan_in_runtime())
45 return;
46
47 ctx->allow_reporting = false;
48}
49
68ef169a
AP
50void kmsan_slab_alloc(struct kmem_cache *s, void *object, gfp_t flags)
51{
52 if (unlikely(object == NULL))
53 return;
54 if (!kmsan_enabled || kmsan_in_runtime())
55 return;
56 /*
57 * There's a ctor or this is an RCU cache - do nothing. The memory
58 * status hasn't changed since last use.
59 */
60 if (s->ctor || (s->flags & SLAB_TYPESAFE_BY_RCU))
61 return;
62
63 kmsan_enter_runtime();
64 if (flags & __GFP_ZERO)
65 kmsan_internal_unpoison_memory(object, s->object_size,
66 KMSAN_POISON_CHECK);
67 else
68 kmsan_internal_poison_memory(object, s->object_size, flags,
69 KMSAN_POISON_CHECK);
70 kmsan_leave_runtime();
71}
72
73void kmsan_slab_free(struct kmem_cache *s, void *object)
74{
75 if (!kmsan_enabled || kmsan_in_runtime())
76 return;
77
78 /* RCU slabs could be legally used after free within the RCU period */
79 if (unlikely(s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)))
80 return;
81 /*
82 * If there's a constructor, freed memory must remain in the same state
83 * until the next allocation. We cannot save its state to detect
84 * use-after-free bugs, instead we just keep it unpoisoned.
85 */
86 if (s->ctor)
87 return;
88 kmsan_enter_runtime();
89 kmsan_internal_poison_memory(object, s->object_size, GFP_KERNEL,
90 KMSAN_POISON_CHECK | KMSAN_POISON_FREE);
91 kmsan_leave_runtime();
92}
93
94void kmsan_kmalloc_large(const void *ptr, size_t size, gfp_t flags)
95{
96 if (unlikely(ptr == NULL))
97 return;
98 if (!kmsan_enabled || kmsan_in_runtime())
99 return;
100 kmsan_enter_runtime();
101 if (flags & __GFP_ZERO)
102 kmsan_internal_unpoison_memory((void *)ptr, size,
103 /*checked*/ true);
104 else
105 kmsan_internal_poison_memory((void *)ptr, size, flags,
106 KMSAN_POISON_CHECK);
107 kmsan_leave_runtime();
108}
109
110void kmsan_kfree_large(const void *ptr)
111{
112 struct page *page;
113
114 if (!kmsan_enabled || kmsan_in_runtime())
115 return;
116 kmsan_enter_runtime();
117 page = virt_to_head_page((void *)ptr);
118 KMSAN_WARN_ON(ptr != page_address(page));
119 kmsan_internal_poison_memory((void *)ptr,
5d7800d9 120 page_size(page),
68ef169a
AP
121 GFP_KERNEL,
122 KMSAN_POISON_CHECK | KMSAN_POISON_FREE);
123 kmsan_leave_runtime();
124}
125
b073d7f8
AP
126static unsigned long vmalloc_shadow(unsigned long addr)
127{
128 return (unsigned long)kmsan_get_metadata((void *)addr,
129 KMSAN_META_SHADOW);
130}
131
132static unsigned long vmalloc_origin(unsigned long addr)
133{
134 return (unsigned long)kmsan_get_metadata((void *)addr,
135 KMSAN_META_ORIGIN);
136}
137
138void kmsan_vunmap_range_noflush(unsigned long start, unsigned long end)
139{
140 __vunmap_range_noflush(vmalloc_shadow(start), vmalloc_shadow(end));
141 __vunmap_range_noflush(vmalloc_origin(start), vmalloc_origin(end));
142 flush_cache_vmap(vmalloc_shadow(start), vmalloc_shadow(end));
143 flush_cache_vmap(vmalloc_origin(start), vmalloc_origin(end));
144}
145
146/*
147 * This function creates new shadow/origin pages for the physical pages mapped
148 * into the virtual memory. If those physical pages already had shadow/origin,
149 * those are ignored.
150 */
fdea03e1
AP
151int kmsan_ioremap_page_range(unsigned long start, unsigned long end,
152 phys_addr_t phys_addr, pgprot_t prot,
153 unsigned int page_shift)
b073d7f8
AP
154{
155 gfp_t gfp_mask = GFP_KERNEL | __GFP_ZERO;
156 struct page *shadow, *origin;
157 unsigned long off = 0;
fdea03e1 158 int nr, err = 0, clean = 0, mapped;
b073d7f8
AP
159
160 if (!kmsan_enabled || kmsan_in_runtime())
fdea03e1 161 return 0;
b073d7f8
AP
162
163 nr = (end - start) / PAGE_SIZE;
164 kmsan_enter_runtime();
fdea03e1 165 for (int i = 0; i < nr; i++, off += PAGE_SIZE, clean = i) {
b073d7f8
AP
166 shadow = alloc_pages(gfp_mask, 1);
167 origin = alloc_pages(gfp_mask, 1);
fdea03e1
AP
168 if (!shadow || !origin) {
169 err = -ENOMEM;
170 goto ret;
171 }
172 mapped = __vmap_pages_range_noflush(
b073d7f8
AP
173 vmalloc_shadow(start + off),
174 vmalloc_shadow(start + off + PAGE_SIZE), prot, &shadow,
175 PAGE_SHIFT);
fdea03e1
AP
176 if (mapped) {
177 err = mapped;
178 goto ret;
179 }
180 shadow = NULL;
181 mapped = __vmap_pages_range_noflush(
b073d7f8
AP
182 vmalloc_origin(start + off),
183 vmalloc_origin(start + off + PAGE_SIZE), prot, &origin,
184 PAGE_SHIFT);
fdea03e1
AP
185 if (mapped) {
186 __vunmap_range_noflush(
187 vmalloc_shadow(start + off),
188 vmalloc_shadow(start + off + PAGE_SIZE));
189 err = mapped;
190 goto ret;
191 }
192 origin = NULL;
193 }
194 /* Page mapping loop finished normally, nothing to clean up. */
195 clean = 0;
196
197ret:
198 if (clean > 0) {
199 /*
200 * Something went wrong. Clean up shadow/origin pages allocated
201 * on the last loop iteration, then delete mappings created
202 * during the previous iterations.
203 */
204 if (shadow)
205 __free_pages(shadow, 1);
206 if (origin)
207 __free_pages(origin, 1);
208 __vunmap_range_noflush(
209 vmalloc_shadow(start),
210 vmalloc_shadow(start + clean * PAGE_SIZE));
211 __vunmap_range_noflush(
212 vmalloc_origin(start),
213 vmalloc_origin(start + clean * PAGE_SIZE));
b073d7f8
AP
214 }
215 flush_cache_vmap(vmalloc_shadow(start), vmalloc_shadow(end));
216 flush_cache_vmap(vmalloc_origin(start), vmalloc_origin(end));
217 kmsan_leave_runtime();
fdea03e1 218 return err;
b073d7f8
AP
219}
220
221void kmsan_iounmap_page_range(unsigned long start, unsigned long end)
222{
223 unsigned long v_shadow, v_origin;
224 struct page *shadow, *origin;
225 int nr;
226
227 if (!kmsan_enabled || kmsan_in_runtime())
228 return;
229
230 nr = (end - start) / PAGE_SIZE;
231 kmsan_enter_runtime();
232 v_shadow = (unsigned long)vmalloc_shadow(start);
233 v_origin = (unsigned long)vmalloc_origin(start);
234 for (int i = 0; i < nr;
235 i++, v_shadow += PAGE_SIZE, v_origin += PAGE_SIZE) {
236 shadow = kmsan_vmalloc_to_page_or_null((void *)v_shadow);
237 origin = kmsan_vmalloc_to_page_or_null((void *)v_origin);
238 __vunmap_range_noflush(v_shadow, vmalloc_shadow(end));
239 __vunmap_range_noflush(v_origin, vmalloc_origin(end));
240 if (shadow)
241 __free_pages(shadow, 1);
242 if (origin)
243 __free_pages(origin, 1);
244 }
245 flush_cache_vmap(vmalloc_shadow(start), vmalloc_shadow(end));
246 flush_cache_vmap(vmalloc_origin(start), vmalloc_origin(end));
247 kmsan_leave_runtime();
248}
249
75cf0290
AP
250void kmsan_copy_to_user(void __user *to, const void *from, size_t to_copy,
251 size_t left)
252{
253 unsigned long ua_flags;
254
255 if (!kmsan_enabled || kmsan_in_runtime())
256 return;
257 /*
258 * At this point we've copied the memory already. It's hard to check it
259 * before copying, as the size of actually copied buffer is unknown.
260 */
261
262 /* copy_to_user() may copy zero bytes. No need to check. */
263 if (!to_copy)
264 return;
265 /* Or maybe copy_to_user() failed to copy anything. */
266 if (to_copy <= left)
267 return;
268
269 ua_flags = user_access_save();
270 if ((u64)to < TASK_SIZE) {
271 /* This is a user memory access, check it. */
272 kmsan_internal_check_memory((void *)from, to_copy - left, to,
273 REASON_COPY_TO_USER);
274 } else {
275 /* Otherwise this is a kernel memory access. This happens when a
276 * compat syscall passes an argument allocated on the kernel
277 * stack to a real syscall.
278 * Don't check anything, just copy the shadow of the copied
279 * bytes.
280 */
281 kmsan_internal_memmove_metadata((void *)to, (void *)from,
282 to_copy - left);
283 }
284 user_access_restore(ua_flags);
285}
286EXPORT_SYMBOL(kmsan_copy_to_user);
287
3429055f
AP
288void kmsan_memmove(void *to, const void *from, size_t size)
289{
290 if (!kmsan_enabled || kmsan_in_runtime())
291 return;
292
293 kmsan_enter_runtime();
294 kmsan_internal_memmove_metadata(to, (void *)from, size);
295 kmsan_leave_runtime();
296}
297EXPORT_SYMBOL(kmsan_memmove);
298
553a8018
AP
299/* Helper function to check an URB. */
300void kmsan_handle_urb(const struct urb *urb, bool is_out)
301{
302 if (!urb)
303 return;
304 if (is_out)
305 kmsan_internal_check_memory(urb->transfer_buffer,
306 urb->transfer_buffer_length,
307 /*user_addr*/ 0, REASON_SUBMIT_URB);
308 else
309 kmsan_internal_unpoison_memory(urb->transfer_buffer,
310 urb->transfer_buffer_length,
311 /*checked*/ false);
312}
7ba594d7 313EXPORT_SYMBOL_GPL(kmsan_handle_urb);
553a8018 314
7ade4f10
AP
315static void kmsan_handle_dma_page(const void *addr, size_t size,
316 enum dma_data_direction dir)
317{
318 switch (dir) {
319 case DMA_BIDIRECTIONAL:
320 kmsan_internal_check_memory((void *)addr, size, /*user_addr*/ 0,
321 REASON_ANY);
322 kmsan_internal_unpoison_memory((void *)addr, size,
323 /*checked*/ false);
324 break;
325 case DMA_TO_DEVICE:
326 kmsan_internal_check_memory((void *)addr, size, /*user_addr*/ 0,
327 REASON_ANY);
328 break;
329 case DMA_FROM_DEVICE:
330 kmsan_internal_unpoison_memory((void *)addr, size,
331 /*checked*/ false);
332 break;
333 case DMA_NONE:
334 break;
335 }
336}
337
338/* Helper function to handle DMA data transfers. */
339void kmsan_handle_dma(struct page *page, size_t offset, size_t size,
340 enum dma_data_direction dir)
341{
342 u64 page_offset, to_go, addr;
343
344 if (PageHighMem(page))
345 return;
346 addr = (u64)page_address(page) + offset;
347 /*
348 * The kernel may occasionally give us adjacent DMA pages not belonging
349 * to the same allocation. Process them separately to avoid triggering
350 * internal KMSAN checks.
351 */
352 while (size > 0) {
4852a805 353 page_offset = offset_in_page(addr);
7ade4f10
AP
354 to_go = min(PAGE_SIZE - page_offset, (u64)size);
355 kmsan_handle_dma_page((void *)addr, to_go, dir);
356 addr += to_go;
357 size -= to_go;
358 }
359}
360
361void kmsan_handle_dma_sg(struct scatterlist *sg, int nents,
362 enum dma_data_direction dir)
363{
364 struct scatterlist *item;
365 int i;
366
367 for_each_sg(sg, item, nents, i)
368 kmsan_handle_dma(sg_page(item), item->offset, item->length,
369 dir);
370}
371
f80be457 372/* Functions from kmsan-checks.h follow. */
d749cc75
AP
373
374/*
375 * To create an origin, kmsan_poison_memory() unwinds the stacks and stores it
376 * into the stack depot. This may cause deadlocks if done from within KMSAN
377 * runtime, therefore we bail out if kmsan_in_runtime().
378 */
f80be457
AP
379void kmsan_poison_memory(const void *address, size_t size, gfp_t flags)
380{
381 if (!kmsan_enabled || kmsan_in_runtime())
382 return;
383 kmsan_enter_runtime();
384 /* The users may want to poison/unpoison random memory. */
385 kmsan_internal_poison_memory((void *)address, size, flags,
386 KMSAN_POISON_NOCHECK);
387 kmsan_leave_runtime();
388}
389EXPORT_SYMBOL(kmsan_poison_memory);
390
d749cc75
AP
391/*
392 * Unlike kmsan_poison_memory(), this function can be used from within KMSAN
393 * runtime, because it does not trigger allocations or call instrumented code.
394 */
f80be457
AP
395void kmsan_unpoison_memory(const void *address, size_t size)
396{
397 unsigned long ua_flags;
398
d749cc75 399 if (!kmsan_enabled)
f80be457
AP
400 return;
401
402 ua_flags = user_access_save();
f80be457
AP
403 /* The users may want to poison/unpoison random memory. */
404 kmsan_internal_unpoison_memory((void *)address, size,
405 KMSAN_POISON_NOCHECK);
f80be457
AP
406 user_access_restore(ua_flags);
407}
408EXPORT_SYMBOL(kmsan_unpoison_memory);
409
6cae637f 410/*
d749cc75 411 * Version of kmsan_unpoison_memory() called from IRQ entry functions.
6cae637f
AP
412 */
413void kmsan_unpoison_entry_regs(const struct pt_regs *regs)
414{
d749cc75 415 kmsan_unpoison_memory((void *)regs, sizeof(*regs));
6cae637f
AP
416}
417
f80be457
AP
418void kmsan_check_memory(const void *addr, size_t size)
419{
420 if (!kmsan_enabled)
421 return;
422 return kmsan_internal_check_memory((void *)addr, size, /*user_addr*/ 0,
423 REASON_ANY);
424}
425EXPORT_SYMBOL(kmsan_check_memory);